WO2014087854A1 - Electronic control apparatus - Google Patents

Electronic control apparatus Download PDF

Info

Publication number
WO2014087854A1
WO2014087854A1 PCT/JP2013/081515 JP2013081515W WO2014087854A1 WO 2014087854 A1 WO2014087854 A1 WO 2014087854A1 JP 2013081515 W JP2013081515 W JP 2013081515W WO 2014087854 A1 WO2014087854 A1 WO 2014087854A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit
abnormality detection
electronic control
test
Prior art date
Application number
PCT/JP2013/081515
Other languages
French (fr)
Japanese (ja)
Inventor
遼一 稲田
広津 鉄平
康史 森田
尚廣 秦
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2014087854A1 publication Critical patent/WO2014087854A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/0231Circuits relating to the driving or the functioning of the vehicle
    • B60R16/0232Circuits relating to the driving or the functioning of the vehicle for measuring vehicle parameters and indicating critical, abnormal or dangerous conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/228Warning displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor

Definitions

  • the present invention relates to an electronic control device including an abnormality detection circuit.
  • an electronic control device for an automobile has a large number of abnormality detection circuits inside to prevent malfunction when a failure occurs.
  • One of the abnormality detection circuits is a voltage abnormality detection circuit.
  • the voltage abnormality detection circuit measures the terminal voltage of the circuit to be monitored, and outputs a voltage abnormality detection signal when the voltage value is out of the normal range.
  • the electronic control unit determines that an abnormality has occurred inside and performs processing such as operation stop to prevent malfunction.
  • Patent Documents 1 and 2 there are Patent Documents 1 and 2 as background art of this failure detection method.
  • the voltage abnormality detecting means (voltage sensor and voltage abnormality determining unit) is disconnected from the secondary battery and the voltage abnormality detecting means is a constant voltage generating means (conversion) different from the secondary battery.
  • a constant DC voltage having a constant voltage value out of the normal voltage range is applied to the voltage abnormality detection means (voltage sensor) by the constant voltage generation means, and the voltage abnormality detection means has a voltage abnormality. If it is not determined, it is determined that the voltage abnormality detecting means has failed.
  • test signal for example, an overcharge test signal is input to the test signal input terminal, and the abnormal state detection means is differentiated so that an overcharge state occurs, "Activate a protective means that shuts off the circuit that conducts the electrical energy delivered and received by the battery”.
  • Patent Document 1 a stable DC constant voltage without voltage fluctuation is generated by a constant voltage generating means, and a failure of the voltage abnormality detecting means is accurately diagnosed by applying this DC constant voltage to the voltage abnormality detecting means.
  • the constant voltage generating means and the voltage abnormality detecting means are accommodated in one integrated circuit, the constant voltage generating means is affected by manufacturing variations of the integrated circuit and temperature, so that voltage fluctuation of the DC constant voltage should be kept small. If this is the case, the circuit scale will increase, leading to increased costs.
  • the voltage fluctuation of the DC constant voltage is allowed to be large, there is a problem that the failure diagnosis accuracy of the voltage abnormality detecting means is lowered.
  • Patent Document 2 has a problem that when the overcharge test signal fluctuates, the abnormal state detection means cannot be diagnosed with high accuracy.
  • the present application includes a plurality of means for solving the above-mentioned problems.
  • a monitoring target circuit provided in an integrated circuit composed of one chip, a terminal voltage of the monitoring target circuit, and A voltage abnormality detection circuit that detects an abnormality of the monitoring target circuit by comparing the set threshold voltage, and is set in advance to detect a failure of the voltage abnormality detection circuit, and is compared with the threshold voltage of the voltage abnormality detection circuit.
  • fault diagnosis of the voltage abnormality detection circuit can be performed with high accuracy even under conditions where the voltage fluctuation of the test voltage is large.
  • FIG. 1 is a configuration diagram of an electronic control device according to this embodiment. *
  • the electronic control device 1 includes a control controller 10 and an integrated circuit 20.
  • the controller 10 includes a CPU (not shown), a RAM (not shown), and a communication function (not shown) inside, and in addition to instructing the integrated circuit 20 to perform processing, Outputs failure detection signals and communicates with other electronic control devices.
  • the controller 10 is shown outside the integrated circuit 20, but may be inside the integrated circuit 20.
  • the integrated circuit 20 includes a monitoring target circuit 30, a voltage abnormality detection circuit 40, a test voltage generation circuit 50, a switch 21, and a switch 22 in one chip.
  • the switches 21 and 22 are controlled to open and close by a signal from the controller 10.
  • the monitoring target circuit 30 is a circuit for which the voltage abnormality detection circuit 40 is to measure a voltage abnormality.
  • the monitoring target circuit 30 is an arbitrary analog circuit, and examples thereof include a voltage boosting circuit, a voltage stepping down circuit, and a circuit for acquiring a sensor voltage outside the electronic control device 1.
  • the voltage abnormality detection circuit 40 is connected to the test voltage generation circuit 50 via the input side wiring 41 and the switch 21, and is connected to the monitoring target circuit 30 via the wiring 41 and the switch 22. Therefore, either the test voltage 55 output from the test voltage generation circuit 50 or the terminal voltage 31 of the monitoring target circuit 30 is input to the voltage abnormality detection circuit 40.
  • the voltage abnormality detection circuit 40 compares the input voltage input from the wiring 41 with a preset threshold voltage, and determines whether the input voltage is within the normal range. When the input voltage deviates from the normal range, a voltage abnormality detection signal 46 is output to the controller 10.
  • the test voltage generation circuit 50 generates a test voltage 55 for performing failure diagnosis of the voltage abnormality detection circuit 40.
  • the failure notification device 100 receives a failure detection signal from the control controller 10 and notifies, for example, the occurrence of a failure to a vehicle occupant.
  • Examples of the failure notification method include a method of lighting a lamp, generating a warning sound, and notifying by voice.
  • FIG. 2A and 2B are diagrams showing a circuit configuration example of the voltage abnormality detection circuit 40.
  • FIG. The voltage abnormality detection circuit 40 has a different circuit configuration depending on whether the voltage abnormality detection signal 46 is output when the input voltage of the wiring 41 is higher than the threshold voltage or the voltage abnormality detection signal 46 is output when the input voltage is lower than the threshold voltage.
  • the state in which the voltage abnormality detection signal 46 is output from the voltage abnormality detection circuit 40 indicates a state in which the voltage value of the voltage abnormality detection signal 46 is within the High range at the CMOS level.
  • FIG. 2A shows a voltage abnormality detection circuit 40 that outputs a voltage abnormality detection signal 46 when the input voltage of the wiring 41 is higher than the threshold voltage.
  • the input voltage of the wiring 41 is divided by the resistors 42a and 43a, the divided input voltage is input to the non-inverting input terminal (+ side) of the comparator 44a, and the reference voltage 45a is input to the inverting input terminal of the comparator 44a. Input to (-side).
  • the output voltage of the comparator 44a becomes the power supply voltage, and the voltage abnormality detection signal 46 is output.
  • the threshold voltage is determined by the values of the resistor 42a, the resistor 43a, and the reference voltage 45a.
  • FIG. 2B shows a voltage abnormality detection circuit 40 that outputs a voltage abnormality detection signal 46 when the input voltage of the wiring 41 is lower than the threshold voltage.
  • the input voltage of the wiring 41 is divided by the resistors 42b and 43b, the divided input voltage is input to the inverting input terminal ( ⁇ side) of the comparator 44b, and the reference voltage 45b is input to the non-inverting input terminal of the comparator 44b. Input to (+ side).
  • the output voltage of the comparator 44b becomes the power supply voltage, and the voltage abnormality detection signal 46 is output.
  • the threshold voltage is determined by the values of the resistor 42b, the resistor 43b, and the reference voltage 45b.
  • FIG. 3 is a diagram showing a circuit configuration of the test voltage generation circuit 50.
  • the test voltage 55 is generated by dividing the voltage of the power supply line 53 by the MOSFET 54, the resistor 56, and the resistor 57, and is output from the common connection point of the MOSFET 54 and the resistor 56.
  • the operational amplifier 52 has a role of adjusting the resistance value of the MOSFET 54 so that the reference voltage 51 of the non-inverting input terminal (+ side) and the common connection point voltage 58 of the resistors 56 and 57 of the inverting input terminal ( ⁇ side) become equal.
  • the voltage value of the test voltage 55 output from the common connection point of the MOSFET 54 and the resistor 56 is stabilized.
  • FIG. 4 is a flowchart of the failure diagnosis method in this embodiment.
  • step S1 the controller 10 outputs an OFF control signal so that the switch 22 is opened (OFF). As a result, the connection between the voltage abnormality detection circuit 40 and the monitoring target circuit 30 is disconnected.
  • step S2 the controller 10 outputs an ON control signal so that the switch 21 is closed (ON). As a result, the test voltage 55 output from the test voltage generation circuit 50 is input to the voltage abnormality detection circuit 40.
  • step S3 the controller 10 confirms whether the voltage abnormality detection signal 46 is output from the voltage abnormality detection circuit 40.
  • the controller 10 receives the voltage abnormality detection signal 46 (Yes), it is determined that the voltage abnormality detection circuit 40 is normal, and the process proceeds to step S4. If the voltage abnormality detection signal 46 has not been received (No), it is determined that the voltage abnormality detection circuit 40 has failed, and the process proceeds to step S6.
  • step S4 the controller 10 outputs an OFF control signal so that the switch 21 is opened (OFF). As a result, the connection between the test voltage generation circuit 50 and the voltage abnormality detection circuit 40 is disconnected.
  • step S5 the controller 10 outputs an ON control signal so that the switch 22 is closed (ON). As a result, the terminal voltage 31 of the monitoring target circuit 30 is input to the voltage abnormality detection circuit 40 as before the failure diagnosis.
  • step S5 the fault diagnosis process of the voltage abnormality detection circuit 40 ends.
  • step S6 the controller 10 outputs a failure detection signal to the failure notification device 100.
  • the failure notification device 100 operates and notifies the passenger of the failure.
  • step S6 When the process of step S6 is completed, the fault diagnosis process of the voltage abnormality detection circuit 40 is completed.
  • the timing for starting the failure diagnosis of the voltage abnormality detection circuit 40 is arbitrary.
  • the diagnosis may be performed when power is supplied to the electronic control device 1, or the electronic control device 1 operates for a certain period of time. Diagnosis may be performed every time.
  • 5A, 5B, and 5C are diagrams showing the relationship between the temperature coefficient of the test voltage 55 and the temperature coefficient of the threshold voltage of the voltage abnormality detection circuit 40, respectively.
  • 5A, 5B, and 5C are diagrams when the circuit of FIG. 2A is used as the voltage abnormality detection circuit 40.
  • the test voltage 55 needs to be larger than the threshold voltage in the entire temperature region. This is because if the test voltage 55 falls below the threshold voltage, the voltage abnormality detection signal 46 is not output from the voltage abnormality detection circuit 40 at the time of failure diagnosis, and it is erroneously detected that the voltage abnormality detection circuit 40 has failed. is there.
  • the above problem can be solved by making the temperature coefficient of the test voltage 55 and the temperature coefficient of the threshold voltage as equal as possible as shown in FIG. 5C.
  • the temperature coefficient of the test voltage 55 is equal to the temperature coefficient of the threshold voltage, the potential difference between the test voltage 55 and the threshold voltage does not change even if the temperature changes. Therefore, even if the test voltage 55 is set in the vicinity of the threshold voltage, erroneous detection of a failure does not occur, and the accuracy of failure detection can be improved while preventing erroneous detection. This effect increases as the difference between the temperature coefficient of the test voltage 55 and the temperature coefficient of the threshold voltage decreases.
  • 2B is the same as the circuit in FIG. 2A except that the magnitude relationship between the test voltage 55 and the threshold voltage is reversed, the temperature coefficient of the test voltage 55 and the threshold voltage Similarly, the smaller the difference in temperature coefficient, the better the failure detection accuracy.
  • the voltage abnormality detection circuit 40 and the test voltage generation circuit 50 are designed so that the temperature coefficients match, and the voltage abnormality detection circuit 40 and the test voltage generation circuit 50 are combined. Applying a common centroid arrangement.
  • the method of matching the temperature coefficient according to the design includes, for example, the temperature coefficient of the resistor and the comparator in FIG. 2A or 2B constituting the voltage abnormality detection circuit, and the temperature coefficient of the resistor, comparator and MOSFET constituting the test voltage generation circuit in FIG. Are designed so that both are equal.
  • FIG. 6 shows an example of a common centroid layout.
  • the common centroid arrangement is a method of arranging elements so that the center of gravity comes to the center.
  • the resistor 1 is divided into two, a resistor 1a and a resistor 1b, and the divided resistors 1a and 1b are arranged diagonally.
  • the resistor 2 is also arranged diagonally after being divided into a resistor 2a and a resistor 2b. Accordingly, when the resistance values of the resistor 1a, the resistor 1b, the resistor 2a, and the resistor 2b are the same, the center of gravity comes to the center.
  • each of the resistors 42a and 43a in FIG. 2A is divided into two and then diagonally arranged as shown in FIG. Not only the resistor but also the comparator 44a may be diagonally arranged after being divided into two. The same applies to the circuit of FIG. 2B.
  • the resistors 56 and 57 shown in FIG. 3 are divided into two parts and then diagonally arranged as shown in FIG. Not only the resistor but also the operational amplifier 52 and the MOSFET 54 may be diagonally arranged after being divided into two.
  • the first embodiment described above has the following effects.
  • the test voltage 55 By bringing the temperature coefficient of the test voltage 55 closer to the temperature coefficient of the threshold voltage of the voltage abnormality detection circuit 40, the test voltage 55 can be set near the threshold voltage, and even if the voltage fluctuation of the test voltage 55 is large, the voltage A failure of the abnormality detection circuit 40 can be diagnosed with high accuracy.
  • FIG. 7 is a configuration diagram of the electronic control unit 1A according to the second embodiment.
  • the same symbols are given to the same elements as those in the configuration diagram of the electronic control device 1 in the first embodiment, and the description for these same elements is omitted.
  • the electronic control device 1A in the second embodiment has an integrated circuit 20A different from the integrated circuit 20 in the first embodiment.
  • the configuration is the same as that of the electronic control unit 1 of the first embodiment.
  • the integrated circuit 20A according to the second embodiment is different from the first embodiment except that the integrated circuit 20A includes the terminals 23 and 24 and the test voltage generation circuit 50A different from the test voltage generation circuit 50 according to the first embodiment.
  • 1 has the same configuration as the integrated circuit 20 in FIG.
  • the terminal 23 is connected so that the test voltage 55 output from the test voltage generation circuit 50A is applied, so that the temperature coefficient of the test voltage 55 is increased from the outside of the integrated circuit 20A using the terminal 23. Can be measured.
  • the terminal 24 is connected to the inside of the test voltage generation circuit 50A for adjusting the temperature coefficient of the test voltage 55.
  • FIG. 8 is a configuration diagram of the test voltage generation circuit 50A in the second embodiment.
  • the test voltage generation circuit 50A in the second embodiment includes a series circuit of an adjustment resistor 59 and a Zener diode 60 that are connected in parallel to the resistor 57. Another difference is that the common connection point of the adjustment resistor 59 and the Zener diode 60 is connected to the terminal 24.
  • This terminal 24 is used when adjusting the temperature coefficient of the test voltage 55.
  • the anode and cathode of the Zener diode 60 are short-circuited.
  • the resistor 57 and the adjustment resistor 59 are connected in parallel, and the temperature coefficient of the test voltage 55 can be changed.
  • the resistance value of the adjustment resistor 59 connected in parallel to the resistor 57 is assumed to be sufficiently smaller than the resistance value of the resistor 57.
  • the terminal 24 for adjusting the temperature coefficient, the adjusting resistor 59, and the Zener diode 60 are used only one by one. May use a plurality of terminals and adjusting resistors.
  • the temperature coefficient of the test voltage 55 may be adjusted by changing the resistance value by cutting the resistance in the test voltage generation circuit 50A with a laser.
  • the second embodiment described above has the following effects.
  • the integrated circuit 20A in the electronic control apparatus 1A has the terminal 23 that can output the test voltage 55, so that the voltage value of the test voltage 55 can be detected from the outside of the integrated circuit 20A and its temperature coefficient can be measured. As a result of measuring the test voltage 55, if the temperature coefficient is shifted, the temperature coefficient of the test voltage 55 can be adjusted using the terminal 24.
  • either the terminal 23 for measuring the temperature coefficient of the test voltage or the unit for adjusting the temperature coefficient of the test voltage (terminal 24, adjustment resistor 59, Zener diode 60) is provided. It is also possible to provide only the above.
  • an example of an electronic control device capable of performing failure diagnosis of the voltage abnormality detection circuit without the voltage booster circuit even when the threshold voltage of the voltage abnormality detection circuit is higher than the power supply voltage of the integrated circuit is shown.
  • FIG. 9 is a configuration diagram of the electronic control device according to the third embodiment.
  • the same symbols are assigned to the same elements as those in the configuration diagram of the electronic control device according to the first embodiment, and the description for these same elements is omitted.
  • the electronic control device 1B according to the third embodiment includes an integrated circuit 20B that is different from the integrated circuit 20 according to the first embodiment. Other than that, the configuration is the same as that of the electronic control unit 1 of the first embodiment.
  • the integrated circuit 20B according to the third embodiment is different from the voltage abnormality detection circuit 40 according to the first embodiment in that the integrated circuit 20B includes a voltage abnormality detection circuit 40B. Also, in the third embodiment, unlike the first embodiment, the terminal voltage 31 of the monitoring target circuit 30 is input to the voltage abnormality detection circuit 40B via the switch 22 and the wiring 41, and the test output from the test voltage generation circuit 50 is performed. The voltage 55 is input to the voltage abnormality detection circuit 40 ⁇ / b> B via the switch 21 and a wiring 47 different from the wiring 41.
  • FIGS. 10A and 10B are diagrams illustrating a configuration example of the voltage abnormality detection circuit 40B according to the third embodiment.
  • the test voltage 55 from the test voltage generation circuit 50 is input between the resistor 42a and the resistor 43a through the wiring 47 as shown in FIG. 10A, or the resistance through the wiring 47 as shown in FIG. 10B.
  • the voltage abnormality detection circuit 40 is the same as that of the first embodiment except that the voltage is input between 42b and the resistor 43b.
  • FIG. 10A shows a voltage abnormality detection circuit 40B that outputs a voltage abnormality detection signal 46 when the common connection point voltage of the resistors 42a and 43a is higher than the threshold voltage.
  • the input voltage introduced from the monitored circuit 30 through the wiring 41 is divided by the resistors 42a and 43a, and the common connection point (voltage dividing point) of the resistors 42a and 43a is divided from the test voltage generation circuit 50 to the wiring 47.
  • the voltage at the voltage dividing point is input to the non-inverting input terminal (+ side) of the comparator 44a, and the reference voltage 45a is input to the inverting input terminal ( ⁇ side) of the comparator 44a. ing.
  • FIG. 10B shows a voltage abnormality detection circuit 40B that outputs a voltage abnormality detection signal 46 when the common connection point voltage of the resistors 42b and 43b is lower than the threshold voltage.
  • the input voltage introduced from the monitored circuit 30 through the wiring 41 is divided by the resistors 42b and 43b, and the common connection point (voltage dividing point) of the resistors 42b and 43b is divided from the test voltage generation circuit 50 to the wiring 47.
  • the voltage at the voltage dividing point is input to the inverting input terminal ( ⁇ side) of the comparator 44b, and the reference voltage 45b is input to the non-inverting input terminal (+ side) of the comparator 44b. ing.
  • the output voltage of the comparator 44b becomes the power supply voltage.
  • the voltage abnormality detection signal 46 is output.
  • the output of the comparator 44b becomes 0V, and the voltage is abnormal.
  • the detection signal 46 is not output.
  • the test voltage is generated by dividing the power supply voltage. Therefore, when the threshold voltage of the voltage abnormality detection circuit 40 is higher than the power supply voltage, it is necessary to add a voltage booster circuit in the test voltage generation circuit 50 in order to generate a test voltage higher than the power supply voltage. However, when a voltage booster circuit is added, the circuit area of the integrated circuit 20 increases, leading to an increase in cost.
  • a voltage dividing resistor (a common connection point between the resistors 42a and 43a (FIG. 10A) or a common connection point between the resistors 42b and 43b (FIG. 10B)).
  • a test voltage is input via the wiring 47.
  • the test voltage introduced at the common connection point of the resistors 42a and 43a is compared with the threshold voltage, the test is performed more than when input via the wiring 41.
  • the voltage can be lowered, and the voltage booster circuit can be dispensed with. The above is the effect in the third embodiment.
  • an example of an electronic control device that can easily identify a faulty part when a fault of a monitoring target circuit or a voltage abnormality detection circuit is detected is shown.
  • FIG. 11 is a configuration diagram of the electronic control device according to the fourth embodiment.
  • the same symbols are assigned to the same elements as those in the configuration diagram of the electronic control device according to the first embodiment, and descriptions of these same elements are omitted.
  • the electronic control device 1C according to the fourth embodiment includes a control controller 10C that is different from the control controller 10 according to the first embodiment. Other than that, the configuration is the same as that of the electronic control unit 1 of the first embodiment.
  • the control controller 10C in the fourth embodiment has failure information 11 in addition to the control controller 10 in the first embodiment.
  • FIG. 12 is a diagram showing an example of the failure information 11.
  • the failure information 11 includes a failure number 11a, a date 11b, a time 11c, and a failure code 11d.
  • the failure number 11a is a failure registration number. In the case of FIG. 12, a maximum of N pieces of information can be held. Date 11b and time 11c indicate the date and time when the failure occurred.
  • different codes are stored depending on the detected fault contents. For example, the code of C00 is stored when the terminal voltage of the monitoring target circuit 30 becomes abnormal, and the code of C01 is stored when an abnormality is detected during failure diagnosis of the voltage abnormality detection circuit 40.
  • the failure information 11 can be read out and deleted from the outside of the electronic control unit 1C by the controller 10C.
  • the fourth embodiment described above has the following effects.
  • the control controller 10C in the electronic control unit 1C stores the failure content at the time of failure detection as failure information 11, for example, in its internal memory.
  • failure information 11 held in the internal memory is read from the outside of the electronic control unit 1C, so that it is easy to specify the time of failure occurrence and the failure portion.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • each of the above-described configurations, functions, and the like may be realized by software obtained by the processor interpreting and executing a program that realizes each function.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. In practice, it can be considered that almost all the components are connected to each other. While the above description has been made with reference to exemplary embodiments, it will be apparent to those skilled in the art that the invention is not limited thereto and that various changes and modifications can be made within the spirit of the invention and the scope of the appended claims.

Abstract

This electronic control apparatus (1) has an integrated circuit (20), and a controller (10) for controlling the integrated circuit (20). The integrated circuit (20) has: a monitored circuit (30); a voltage-irregularity detection circuit (40) for comparing the terminal voltage of the monitored circuit (30) and a predetermined threshold voltage, and detecting a failure in the monitored circuit (30); and a test-voltage generation circuit (50) for generating a predetermined test voltage to detect a failure in the voltage-irregularity detection circuit (40). The temperature coefficient of the test voltage and the temperature coefficient of the threshold voltage are made to be substantially equal.

Description

電子制御装置Electronic control unit
 本発明は、異常検出回路を備えた電子制御装置に関する。 The present invention relates to an electronic control device including an abnormality detection circuit.
 例えば自動車用の電子制御装置は、故障発生時の誤動作を防止するために内部に多数の異常検出回路を有している。この異常検出回路の1つが電圧異常検出回路である。電圧異常検出回路は、監視対象である回路の端子電圧を測定し、電圧値が正常範囲から外れている場合には電圧異常検出信号を出力する。電圧異常検出信号が出力された場合、電子制御装置は内部に異常が発生していると判断し、動作停止などの処理を行うことで、誤動作を防止している。 For example, an electronic control device for an automobile has a large number of abnormality detection circuits inside to prevent malfunction when a failure occurs. One of the abnormality detection circuits is a voltage abnormality detection circuit. The voltage abnormality detection circuit measures the terminal voltage of the circuit to be monitored, and outputs a voltage abnormality detection signal when the voltage value is out of the normal range. When the voltage abnormality detection signal is output, the electronic control unit determines that an abnormality has occurred inside and performs processing such as operation stop to prevent malfunction.
 ところが、電圧異常検出回路が故障した場合、端子電圧の電圧異常を正確に判定することができず、電子制御装置の誤動作を招いてしまう可能性がある。この状態を防止するため、電圧異常検出回路の故障検出方法がいくつか提案されている。 However, if the voltage abnormality detection circuit breaks down, the voltage abnormality of the terminal voltage cannot be determined accurately, and the electronic control device may malfunction. In order to prevent this state, several fault detection methods for the voltage abnormality detection circuit have been proposed.
 この故障検出方法の背景技術として、例えば特許文献1、2がある。特許文献1では、「電圧異常検出手段(電圧センサ及び電圧異常判断部)と二次電池との電気的接続を切断すると共に、電圧異常検出手段を二次電池とは異なる定電圧発生手段(変換装置)に接続し、定電圧発生手段により、正常電圧範囲から外れた一定電圧値を有する直流定電圧を電圧異常検出手段(電圧センサ)に印加して、電圧異常検出手段により電圧異常であると判断されなかった場合、電圧異常検出手段が故障していると判断する」ことが記載されている。 For example, there are Patent Documents 1 and 2 as background art of this failure detection method. In Patent Document 1, “the voltage abnormality detecting means (voltage sensor and voltage abnormality determining unit) is disconnected from the secondary battery and the voltage abnormality detecting means is a constant voltage generating means (conversion) different from the secondary battery. A constant DC voltage having a constant voltage value out of the normal voltage range is applied to the voltage abnormality detection means (voltage sensor) by the constant voltage generation means, and the voltage abnormality detection means has a voltage abnormality. If it is not determined, it is determined that the voltage abnormality detecting means has failed. "
 また特許文献2では、「テスト信号、例えば過充電テスト信号をテスト信号入力端子に入力し、過充電状態が発生したと同様の状態となるように異常状態検出手段を差動させ、これによって、電池が授受する電気エネルギーを導く回路を遮断する保護手段を作動させる」ことが記載されている。 Further, in Patent Document 2, “a test signal, for example, an overcharge test signal is input to the test signal input terminal, and the abnormal state detection means is differentiated so that an overcharge state occurs, "Activate a protective means that shuts off the circuit that conducts the electrical energy delivered and received by the battery".
特許4715875号公報Japanese Patent No. 4715875 特開平11-98701号公報Japanese Patent Application Laid-Open No. 11-98701
 特許文献1では、定電圧発生手段により電圧変動の無い安定した直流定電圧を発生させ、この直流定電圧を電圧異常検出手段に印加することで、電圧異常検出手段の故障を精度良く診断している。しかし、定電圧発生手段と電圧異常検出手段を1つの集積回路内に納めた場合、定電圧発生手段は集積回路の製造ばらつきや温度の影響を受けるため、直流定電圧の電圧変動を小さく抑えようとすると回路規模が大きくなり、コスト増につながることになる。逆に直流定電圧の電圧変動が大きいことを許容すると、電圧異常検出手段の故障診断精度が低下するという問題がある。 In Patent Document 1, a stable DC constant voltage without voltage fluctuation is generated by a constant voltage generating means, and a failure of the voltage abnormality detecting means is accurately diagnosed by applying this DC constant voltage to the voltage abnormality detecting means. Yes. However, when the constant voltage generating means and the voltage abnormality detecting means are accommodated in one integrated circuit, the constant voltage generating means is affected by manufacturing variations of the integrated circuit and temperature, so that voltage fluctuation of the DC constant voltage should be kept small. If this is the case, the circuit scale will increase, leading to increased costs. On the contrary, if the voltage fluctuation of the DC constant voltage is allowed to be large, there is a problem that the failure diagnosis accuracy of the voltage abnormality detecting means is lowered.
 また特許文献2では、前記過充電テスト信号が変動した場合、異常状態検出手段を精度良く故障診断することができないという問題がある。 Further, Patent Document 2 has a problem that when the overcharge test signal fluctuates, the abnormal state detection means cannot be diagnosed with high accuracy.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。 In order to solve the above problems, for example, the configuration described in the claims is adopted.
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、「1チップで構成される集積回路に設けられた、監視対象回路と、前記監視対象回路の端子電圧と予め設定された閾値電圧を比較して監視対象回路の異常を検出する電圧異常検出回路と、前記電圧異常検出回路の故障を検出するために予め設定され、前記電圧異常検出回路の閾値電圧と比較されるテスト電圧を生成するテスト電圧生成回路とを備え、前記テスト電圧の温度係数と前記閾値電圧の温度係数を等しくなるように設定したこと」を特徴とする。 The present application includes a plurality of means for solving the above-mentioned problems. To give an example, “a monitoring target circuit provided in an integrated circuit composed of one chip, a terminal voltage of the monitoring target circuit, and A voltage abnormality detection circuit that detects an abnormality of the monitoring target circuit by comparing the set threshold voltage, and is set in advance to detect a failure of the voltage abnormality detection circuit, and is compared with the threshold voltage of the voltage abnormality detection circuit. A test voltage generation circuit for generating a test voltage to be set, and the temperature coefficient of the test voltage and the temperature coefficient of the threshold voltage are set to be equal.
 本発明によれば、テスト電圧の電圧変動が大きい状況下でも電圧異常検出回路の故障診断を精度良く実施することができる。 According to the present invention, fault diagnosis of the voltage abnormality detection circuit can be performed with high accuracy even under conditions where the voltage fluctuation of the test voltage is large.
 上記以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明の実施例1における電子制御装置の構成図である。It is a block diagram of the electronic controller in Example 1 of this invention. 本発明の実施例1における電圧異常検出回路の一例の構成を示す回路図である。It is a circuit diagram which shows a structure of an example of the voltage abnormality detection circuit in Example 1 of this invention. 本発明の実施例1における電圧異常検出回路の別の例の構成を示す回路図である。It is a circuit diagram which shows the structure of another example of the voltage abnormality detection circuit in Example 1 of this invention. 本発明の実施例1におけるテスト電圧生成回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the test voltage generation circuit in Example 1 of this invention. 本発明の電圧異常検出回路の故障診断処理を表すフローチャートである。It is a flowchart showing the failure diagnosis process of the voltage abnormality detection circuit of this invention. テスト電圧の温度係数と閾値電圧の温度係数の関係の一例を表した特性図である。It is a characteristic view showing an example of the relationship between the temperature coefficient of a test voltage and the temperature coefficient of a threshold voltage. テスト電圧の温度係数と閾値電圧の温度係数の関係の別の例を表した特性図である。It is a characteristic view showing another example of the relationship between the temperature coefficient of a test voltage and the temperature coefficient of a threshold voltage. テスト電圧の温度係数と閾値電圧の温度係数の関係の更に別の例を表した特性図である。It is a characteristic view showing still another example of the relationship between the temperature coefficient of the test voltage and the temperature coefficient of the threshold voltage. 本実施形態例におけるコモンセントロイド配置図である。It is a common centroid arrangement | positioning figure in the example of this embodiment. 本発明の実施例2における電子制御装置の構成図である。It is a block diagram of the electronic controller in Example 2 of this invention. 本発明の実施例2におけるテスト電圧生成回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the test voltage generation circuit in Example 2 of this invention. 本発明の実施例3における電子制御装置の構成図である。It is a block diagram of the electronic controller in Example 3 of this invention. 本発明の実施例3における電圧異常検出回路の一例の構成を示す回路図である。It is a circuit diagram which shows a structure of an example of the voltage abnormality detection circuit in Example 3 of this invention. 本発明の実施例3における電圧異常検出回路の別の例の構成を示す回路図である。It is a circuit diagram which shows the structure of another example of the voltage abnormality detection circuit in Example 3 of this invention. 本発明の実施例4における電子制御装置の構成図である。It is a block diagram of the electronic controller in Example 4 of this invention. 本発明の故障情報の例を表した図である。It is a figure showing the example of the failure information of this invention.
 以下、図面を参照しながら本発明の実施の形態を説明する。以下の実施例では、本発明を自動車用の電子制御装置に適用した例を説明するが、本発明は下記実施例に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, an example in which the present invention is applied to an automobile electronic control device will be described, but the present invention is not limited to the following embodiments.
 本実施例では、テスト電圧の変動量が大きい場合でも電圧異常検出回路の故障診断を精度良く実施することができる電子制御装置の例を説明する。 In this embodiment, an example of an electronic control device that can accurately perform failure diagnosis of the voltage abnormality detection circuit even when the amount of variation in the test voltage is large will be described.
 図1は、本実施例における電子制御装置の構成図である。  FIG. 1 is a configuration diagram of an electronic control device according to this embodiment. *
 電子制御装置1は、制御コントローラ10と集積回路20を備えている。このうち、制御コントローラ10は、内部にCPU(不図示)やRAM(不図示)、通信機能(不図示)を備え、集積回路20に対して処理の指示を行う他に、故障通知装置100に対する故障検出信号の出力や他の電子制御装置との通信を実施する。なお、図1において制御コントローラ10は集積回路20の外部に記されているが、集積回路20の内部にあってもよい。 The electronic control device 1 includes a control controller 10 and an integrated circuit 20. Among these, the controller 10 includes a CPU (not shown), a RAM (not shown), and a communication function (not shown) inside, and in addition to instructing the integrated circuit 20 to perform processing, Outputs failure detection signals and communicates with other electronic control devices. In FIG. 1, the controller 10 is shown outside the integrated circuit 20, but may be inside the integrated circuit 20.
 集積回路20は、1チップ内に、監視対象回路30、電圧異常検出回路40、テスト電圧生成回路50、スイッチ21およびスイッチ22を備えている。スイッチ21およびスイッチ22は、制御コントローラ10からの信号により開閉制御される。 The integrated circuit 20 includes a monitoring target circuit 30, a voltage abnormality detection circuit 40, a test voltage generation circuit 50, a switch 21, and a switch 22 in one chip. The switches 21 and 22 are controlled to open and close by a signal from the controller 10.
 監視対象回路30は、電圧異常検出回路40が電圧異常を測定する対象となる回路である。監視対象回路30は任意のアナログ回路であり、例えば、電圧昇圧回路や電圧降圧回路、電子制御装置1外部のセンサ電圧を取得する回路などが具体例として挙げられる。 The monitoring target circuit 30 is a circuit for which the voltage abnormality detection circuit 40 is to measure a voltage abnormality. The monitoring target circuit 30 is an arbitrary analog circuit, and examples thereof include a voltage boosting circuit, a voltage stepping down circuit, and a circuit for acquiring a sensor voltage outside the electronic control device 1.
 電圧異常検出回路40は、入力側の配線41およびスイッチ21を介してテスト電圧生成回路50と接続されており、配線41およびスイッチ22を介して監視対象回路30と接続されている。そのため、電圧異常検出回路40には、テスト電圧生成回路50が出力するテスト電圧55か監視対象回路30の端子電圧31のどちらかが入力される。 The voltage abnormality detection circuit 40 is connected to the test voltage generation circuit 50 via the input side wiring 41 and the switch 21, and is connected to the monitoring target circuit 30 via the wiring 41 and the switch 22. Therefore, either the test voltage 55 output from the test voltage generation circuit 50 or the terminal voltage 31 of the monitoring target circuit 30 is input to the voltage abnormality detection circuit 40.
 そして電圧異常検出回路40は、配線41から入力された入力電圧と予め設定した閾値電圧を比較し、入力電圧が正常範囲内であるかを判断する。入力電圧が正常範囲内から逸脱した場合には、制御コントローラ10に対して電圧異常検出信号46を出力する。 Then, the voltage abnormality detection circuit 40 compares the input voltage input from the wiring 41 with a preset threshold voltage, and determines whether the input voltage is within the normal range. When the input voltage deviates from the normal range, a voltage abnormality detection signal 46 is output to the controller 10.
 テスト電圧生成回路50は、電圧異常検出回路40の故障診断を実施するためのテスト電圧55を生成する。 The test voltage generation circuit 50 generates a test voltage 55 for performing failure diagnosis of the voltage abnormality detection circuit 40.
 故障通知装置100は、制御コントローラ10からの故障検出信号を受け付け、例えば自動車の搭乗者に故障の発生を通知する。故障の通知方法としては、例えば、ランプを点灯させる、警告音を発生させる、音声で通知するなどの方法が挙げられる。 The failure notification device 100 receives a failure detection signal from the control controller 10 and notifies, for example, the occurrence of a failure to a vehicle occupant. Examples of the failure notification method include a method of lighting a lamp, generating a warning sound, and notifying by voice.
 図2A、2Bは、電圧異常検出回路40の回路構成例を表した図である。電圧異常検出回路40は、配線41の入力電圧が閾値電圧より高い場合に電圧異常検出信号46を出力するか、閾値電圧より低い場合に電圧異常検出信号46を出力するかによって回路構成が異なる。なお、本実施例において、電圧異常検出回路40から電圧異常検出信号46が出力された状態とは、電圧異常検出信号46の電圧値がCMOSレベルにおけるHighの範囲内にある状態を指す。 2A and 2B are diagrams showing a circuit configuration example of the voltage abnormality detection circuit 40. FIG. The voltage abnormality detection circuit 40 has a different circuit configuration depending on whether the voltage abnormality detection signal 46 is output when the input voltage of the wiring 41 is higher than the threshold voltage or the voltage abnormality detection signal 46 is output when the input voltage is lower than the threshold voltage. In the present embodiment, the state in which the voltage abnormality detection signal 46 is output from the voltage abnormality detection circuit 40 indicates a state in which the voltage value of the voltage abnormality detection signal 46 is within the High range at the CMOS level.
 図2Aは、配線41の入力電圧が閾値電圧より高い場合に電圧異常検出信号46を出力する電圧異常検出回路40を示している。図2Aでは、配線41の入力電圧を抵抗42aおよび抵抗43aによって分圧し、分圧した入力電圧をコンパレータ44aの非反転入力端子(+側)に入力し、基準電圧45aをコンパレータ44aの反転入力端子(-側)に入力している。これにより、分圧した入力電圧が基準電圧45aより大きい場合には、コンパレータ44aの出力電圧は電源電圧となり、電圧異常検出信号46が出力されている状態となる。逆に、分圧した入力電圧が基準電圧45aより小さい場合には、コンパレータ44aの出力電圧は0Vとなり、電圧異常検出信号46が出力されていない状態となる。この回路の場合、閾値電圧は抵抗42a、抵抗43a、基準電圧45aの値によって決まる。 FIG. 2A shows a voltage abnormality detection circuit 40 that outputs a voltage abnormality detection signal 46 when the input voltage of the wiring 41 is higher than the threshold voltage. In FIG. 2A, the input voltage of the wiring 41 is divided by the resistors 42a and 43a, the divided input voltage is input to the non-inverting input terminal (+ side) of the comparator 44a, and the reference voltage 45a is input to the inverting input terminal of the comparator 44a. Input to (-side). Thereby, when the divided input voltage is larger than the reference voltage 45a, the output voltage of the comparator 44a becomes the power supply voltage, and the voltage abnormality detection signal 46 is output. On the other hand, when the divided input voltage is smaller than the reference voltage 45a, the output voltage of the comparator 44a is 0V, and the voltage abnormality detection signal 46 is not output. In the case of this circuit, the threshold voltage is determined by the values of the resistor 42a, the resistor 43a, and the reference voltage 45a.
 図2Bは、配線41の入力電圧が閾値電圧より低い場合に電圧異常検出信号46を出力する電圧異常検出回路40である。図2Bでは、配線41の入力電圧を抵抗42bおよび抵抗43bによって分圧し、分圧した入力電圧をコンパレータ44bの反転入力端子(-側)に入力し、基準電圧45bをコンパレータ44bの非反転入力端子(+側)に入力している。これにより、分圧した入力電圧が基準電圧45bより小さい場合には、コンパレータ44bの出力電圧は電源電圧となり、電圧異常検出信号46が出力された状態となる。逆に、分圧した入力電圧が基準電圧45bより大きい場合には、コンパレータ44bの出力は0Vとなり、電圧異常検出信号46は出力されていない状態となる。この回路の場合、閾値電圧は抵抗42b、抵抗43b、基準電圧45bの値によって決まる。 FIG. 2B shows a voltage abnormality detection circuit 40 that outputs a voltage abnormality detection signal 46 when the input voltage of the wiring 41 is lower than the threshold voltage. In FIG. 2B, the input voltage of the wiring 41 is divided by the resistors 42b and 43b, the divided input voltage is input to the inverting input terminal (− side) of the comparator 44b, and the reference voltage 45b is input to the non-inverting input terminal of the comparator 44b. Input to (+ side). Thereby, when the divided input voltage is smaller than the reference voltage 45b, the output voltage of the comparator 44b becomes the power supply voltage, and the voltage abnormality detection signal 46 is output. On the contrary, when the divided input voltage is larger than the reference voltage 45b, the output of the comparator 44b is 0V, and the voltage abnormality detection signal 46 is not output. In the case of this circuit, the threshold voltage is determined by the values of the resistor 42b, the resistor 43b, and the reference voltage 45b.
 図3は、テスト電圧生成回路50の回路構成を表した図である。テスト電圧55は、電源線53の電圧をMOSFET54、抵抗56、抵抗57で分圧して作られ、MOSFET54および抵抗56の共通接続点から出力される。オペアンプ52は、非反転入力端子(+側)の基準電圧51と、反転入力端子(-側)の抵抗56および57の共通接続点電圧58が等しくなるようにMOSFET54の抵抗値を調整する役割があり、これによりMOSFET54および抵抗56の共通接続点から出力されるテスト電圧55の電圧値が安定する仕組みとなっている。 FIG. 3 is a diagram showing a circuit configuration of the test voltage generation circuit 50. The test voltage 55 is generated by dividing the voltage of the power supply line 53 by the MOSFET 54, the resistor 56, and the resistor 57, and is output from the common connection point of the MOSFET 54 and the resistor 56. The operational amplifier 52 has a role of adjusting the resistance value of the MOSFET 54 so that the reference voltage 51 of the non-inverting input terminal (+ side) and the common connection point voltage 58 of the resistors 56 and 57 of the inverting input terminal (− side) become equal. Thus, the voltage value of the test voltage 55 output from the common connection point of the MOSFET 54 and the resistor 56 is stabilized.
 図4は、本実施例における故障診断方法のフローチャートである。 FIG. 4 is a flowchart of the failure diagnosis method in this embodiment.
 ステップS1において、制御コントローラ10はスイッチ22が開路(OFF)となるようにOFF制御信号を出力する。これにより、電圧異常検出回路40と監視対象回路30との接続が切断されることになる。次いでステップS2において、制御コントローラ10はスイッチ21が閉路(ON)となるようにON制御信号を出力する。これにより、テスト電圧生成回路50から出力されるテスト電圧55が電圧異常検出回路40に入力されることになる。 In step S1, the controller 10 outputs an OFF control signal so that the switch 22 is opened (OFF). As a result, the connection between the voltage abnormality detection circuit 40 and the monitoring target circuit 30 is disconnected. Next, in step S2, the controller 10 outputs an ON control signal so that the switch 21 is closed (ON). As a result, the test voltage 55 output from the test voltage generation circuit 50 is input to the voltage abnormality detection circuit 40.
 次のステップS3において、制御コントローラ10は電圧異常検出回路40から電圧異常検出信号46が出力されるかを確認する。制御コントローラ10が電圧異常検出信号46を受け取った場合(Yes)は、電圧異常検出回路40は正常であると判断し、ステップS4の処理に移る。電圧異常検出信号46を受け取らなかった場合(No)は、電圧異常検出回路40が故障していると判断し、ステップS6の処理に移る。 In the next step S3, the controller 10 confirms whether the voltage abnormality detection signal 46 is output from the voltage abnormality detection circuit 40. When the controller 10 receives the voltage abnormality detection signal 46 (Yes), it is determined that the voltage abnormality detection circuit 40 is normal, and the process proceeds to step S4. If the voltage abnormality detection signal 46 has not been received (No), it is determined that the voltage abnormality detection circuit 40 has failed, and the process proceeds to step S6.
 ステップS4では、制御コントローラ10はスイッチ21が開路(OFF)となるようにOFF制御信号を出力する。これにより、テスト電圧生成回路50と電圧異常検出回路40の接続が切断される。次のステップS5では、制御コントローラ10はスイッチ22が閉路(ON)となるようにON制御信号を出力する。これにより、故障診断前と同様に、監視対象回路30の端子電圧31が電圧異常検出回路40に入力されることになる。ステップS5の処理が完了すると、電圧異常検出回路40の故障診断処理は終了となる。 In step S4, the controller 10 outputs an OFF control signal so that the switch 21 is opened (OFF). As a result, the connection between the test voltage generation circuit 50 and the voltage abnormality detection circuit 40 is disconnected. In the next step S5, the controller 10 outputs an ON control signal so that the switch 22 is closed (ON). As a result, the terminal voltage 31 of the monitoring target circuit 30 is input to the voltage abnormality detection circuit 40 as before the failure diagnosis. When the process of step S5 is completed, the fault diagnosis process of the voltage abnormality detection circuit 40 ends.
 ステップS6では、制御コントローラ10は故障通知装置100に対して故障検出信号を出力する。これを受けて、故障通知装置100が動作し、搭乗者に故障を通知する。 In step S6, the controller 10 outputs a failure detection signal to the failure notification device 100. In response to this, the failure notification device 100 operates and notifies the passenger of the failure.
 これによって、電圧異常検出回路40の故障を電子制御装置の外部へ通知することができる。 Thereby, the failure of the voltage abnormality detection circuit 40 can be notified outside the electronic control unit.
 ステップS6の処理が完了すると、電圧異常検出回路40の故障診断処理は終了となる。 When the process of step S6 is completed, the fault diagnosis process of the voltage abnormality detection circuit 40 is completed.
 なお、電圧異常検出回路40の故障診断を開始するタイミングについては任意であり、例えば、電子制御装置1に電源が供給された際に診断を行っても良いし、電子制御装置1が一定時間動作する毎に診断を行っても良い。 The timing for starting the failure diagnosis of the voltage abnormality detection circuit 40 is arbitrary. For example, the diagnosis may be performed when power is supplied to the electronic control device 1, or the electronic control device 1 operates for a certain period of time. Diagnosis may be performed every time.
 図5A、5B、5Cの各々は、テスト電圧55の温度係数と電圧異常検出回路40が持つ閾値電圧の温度係数の関係を表した図である。なお、図5A、5B、5Cの各々は電圧異常検出回路40として図2Aの回路を用いた場合の図である。 5A, 5B, and 5C are diagrams showing the relationship between the temperature coefficient of the test voltage 55 and the temperature coefficient of the threshold voltage of the voltage abnormality detection circuit 40, respectively. 5A, 5B, and 5C are diagrams when the circuit of FIG. 2A is used as the voltage abnormality detection circuit 40. FIG.
 電圧異常検出回路40として図2Aの回路を用いた場合、全温度領域においてテスト電圧55は閾値電圧よりも大きい必要がある。これは、テスト電圧55が閾値電圧を下回ると、故障診断時に電圧異常検出回路40から電圧異常検出信号46が出力されず、電圧異常検出回路40が故障していると誤検出されてしまうためである。 When the circuit of FIG. 2A is used as the voltage abnormality detection circuit 40, the test voltage 55 needs to be larger than the threshold voltage in the entire temperature region. This is because if the test voltage 55 falls below the threshold voltage, the voltage abnormality detection signal 46 is not output from the voltage abnormality detection circuit 40 at the time of failure diagnosis, and it is erroneously detected that the voltage abnormality detection circuit 40 has failed. is there.
 この誤検出の問題は、図5Aのようにテスト電圧55の変動範囲と閾値電圧の変動範囲が重ならないようにすることで、確実に避けることができる。しかし、変動範囲が重ならないようにする場合、テスト電圧55の変動量が大きいと、図5Bのようにテスト電圧55と閾値電圧の電位差が大きくなる。テスト電圧55と閾値電圧の電位差が大きいほど、電圧異常検出回路40の閾値電圧が上昇するような故障を検出することは困難となる。 This problem of false detection can be reliably avoided by preventing the fluctuation range of the test voltage 55 and the fluctuation range of the threshold voltage from overlapping as shown in FIG. 5A. However, when the variation ranges do not overlap, if the variation amount of the test voltage 55 is large, the potential difference between the test voltage 55 and the threshold voltage is large as shown in FIG. 5B. The greater the potential difference between the test voltage 55 and the threshold voltage, the more difficult it is to detect a failure in which the threshold voltage of the voltage abnormality detection circuit 40 increases.
 これに対し、図5Cのようにテスト電圧55の温度係数と閾値電圧の温度係数をできる限り等しくすることで上記の問題を解決できる。テスト電圧55の温度係数と閾値電圧の温度係数が等しい場合、温度が変化してもテスト電圧55と閾値電圧の電位差は変動しない。そのため、テスト電圧55を閾値電圧の付近に設定しても故障の誤検出が起こることはなく、誤検出を防止しつつ故障検出精度を向上させることができる。テスト電圧55の温度係数と閾値電圧の温度係数の差が小さいほど、この効果は大きくなる。 On the other hand, the above problem can be solved by making the temperature coefficient of the test voltage 55 and the temperature coefficient of the threshold voltage as equal as possible as shown in FIG. 5C. When the temperature coefficient of the test voltage 55 is equal to the temperature coefficient of the threshold voltage, the potential difference between the test voltage 55 and the threshold voltage does not change even if the temperature changes. Therefore, even if the test voltage 55 is set in the vicinity of the threshold voltage, erroneous detection of a failure does not occur, and the accuracy of failure detection can be improved while preventing erroneous detection. This effect increases as the difference between the temperature coefficient of the test voltage 55 and the temperature coefficient of the threshold voltage decreases.
 また、電圧異常検知回路40が図2Bの回路の場合でも、テスト電圧55と閾値電圧の大小関係が逆転する以外は図2Aの回路と同じであるため、テスト電圧55の温度係数と閾値電圧の温度係数の差が小さいほど、同じように故障検知精度は向上する。 2B is the same as the circuit in FIG. 2A except that the magnitude relationship between the test voltage 55 and the threshold voltage is reversed, the temperature coefficient of the test voltage 55 and the threshold voltage Similarly, the smaller the difference in temperature coefficient, the better the failure detection accuracy.
 テスト電圧55と閾値電圧の温度係数を合わせる方法としては、温度係数が合うように電圧異常検出回路40とテスト電圧生成回路50を設計することと、電圧異常検出回路40とテスト電圧生成回路50にコモンセントロイド配置を適用することが挙げられる。 As a method of matching the temperature coefficient of the test voltage 55 and the threshold voltage, the voltage abnormality detection circuit 40 and the test voltage generation circuit 50 are designed so that the temperature coefficients match, and the voltage abnormality detection circuit 40 and the test voltage generation circuit 50 are combined. Applying a common centroid arrangement.
 前記設計により温度係数を合わせる方法は、例えば電圧異常検出回路を構成する図2A又は図2Bの抵抗、コンパレータの温度係数と、テスト電圧生成回路を構成する図3の抵抗、コンパレータ、MOSFETの温度係数とをシミュレーションして両者が等しくなるように設計するものである。 The method of matching the temperature coefficient according to the design includes, for example, the temperature coefficient of the resistor and the comparator in FIG. 2A or 2B constituting the voltage abnormality detection circuit, and the temperature coefficient of the resistor, comparator and MOSFET constituting the test voltage generation circuit in FIG. Are designed so that both are equal.
 図6はコモンセントロイド配置図の例を示している。コモンセントロイド配置とは、中央に重心が来るように素子を配置する方法である。図6の場合、抵抗1を抵抗1aと抵抗1bの2つに分割し、分割した抵抗1aと抵抗1bを対角に配置している。同様に、抵抗2も抵抗2aと抵抗2bに分割した後に、対角に配置している。これにより、抵抗1a、抵抗1b、抵抗2a、抵抗2bの抵抗値がそれぞれ同じ場合には、重心が中央に来ることになる。コモンセントロイド配置を用いた場合、素子を単純に並べた場合と比べて、集積回路20製造時に重心がばらついて特定の素子に偏ることを防止でき、テスト電圧55の温度係数と閾値電圧の温度係数とのずれを小さくすることができる。 FIG. 6 shows an example of a common centroid layout. The common centroid arrangement is a method of arranging elements so that the center of gravity comes to the center. In the case of FIG. 6, the resistor 1 is divided into two, a resistor 1a and a resistor 1b, and the divided resistors 1a and 1b are arranged diagonally. Similarly, the resistor 2 is also arranged diagonally after being divided into a resistor 2a and a resistor 2b. Accordingly, when the resistance values of the resistor 1a, the resistor 1b, the resistor 2a, and the resistor 2b are the same, the center of gravity comes to the center. When the common centroid arrangement is used, it is possible to prevent the center of gravity from being scattered and biased to a specific element when the integrated circuit 20 is manufactured, compared to the case where the elements are simply arranged, and the temperature coefficient of the test voltage 55 and the temperature of the threshold voltage Deviation from the coefficient can be reduced.
 例えば電圧異常検出回路40であれば、図2Aの各抵抗42a、43aを各々2つに分割した後に図6のように対角配置する。尚、抵抗に限らずコンパレータ44aについても2つに分割した後に対角配置してもよい。また図2Bの回路の場合も同様である。 For example, in the case of the voltage abnormality detection circuit 40, each of the resistors 42a and 43a in FIG. 2A is divided into two and then diagonally arranged as shown in FIG. Not only the resistor but also the comparator 44a may be diagonally arranged after being divided into two. The same applies to the circuit of FIG. 2B.
 また、テスト電圧生成回路50であれば、図3の各抵抗56、57を各々2つに分割した後に図6のように対角配置する。尚、抵抗に限らずオペアンプ52、MOSFET54についても2つに分割した後に対角配置してもよい。 In the case of the test voltage generation circuit 50, the resistors 56 and 57 shown in FIG. 3 are divided into two parts and then diagonally arranged as shown in FIG. Not only the resistor but also the operational amplifier 52 and the MOSFET 54 may be diagonally arranged after being divided into two.
 以上で説明した実施例1では次のような効果がある。 The first embodiment described above has the following effects.
 テスト電圧55の温度係数を電圧異常検出回路40が持つ閾値電圧の温度係数に近づけることで、テスト電圧55を閾値電圧付近に設定することが可能となり、テスト電圧55の電圧変動が大きい場合でも電圧異常検出回路40の故障を精度良く診断することができる。 By bringing the temperature coefficient of the test voltage 55 closer to the temperature coefficient of the threshold voltage of the voltage abnormality detection circuit 40, the test voltage 55 can be set near the threshold voltage, and even if the voltage fluctuation of the test voltage 55 is large, the voltage A failure of the abnormality detection circuit 40 can be diagnosed with high accuracy.
 本実施例では、集積回路の外部からテスト電圧の温度係数調整を可能とする電子制御装置の例を示す。  In this embodiment, an example of an electronic control device that enables adjustment of the temperature coefficient of the test voltage from the outside of the integrated circuit is shown. *
 図7は、実施例2における電子制御装置1Aの構成図である。ここで、実施例1における電子制御装置1の構成図と同一の要素には同一の記号を付与しており、これら同一の要素に対する説明は省略する。 FIG. 7 is a configuration diagram of the electronic control unit 1A according to the second embodiment. Here, the same symbols are given to the same elements as those in the configuration diagram of the electronic control device 1 in the first embodiment, and the description for these same elements is omitted.
 実施例2における電子制御装置1Aは、実施例1における集積回路20とは異なる集積回路20Aを有している。それ以外は、実施例1の電子制御装置1と同様の構成となっている。 The electronic control device 1A in the second embodiment has an integrated circuit 20A different from the integrated circuit 20 in the first embodiment. Other than that, the configuration is the same as that of the electronic control unit 1 of the first embodiment.
 実施例2における集積回路20Aは、端子23、端子24を有していることと、実施例1におけるテスト電圧生成回路50とは異なるテスト電圧生成回路50Aを有していること以外は、実施例1における集積回路20と同様の構成となっている。ここで端子23は、テスト電圧生成回路50Aから出力されるテスト電圧55が印加されるように接続されており、これにより、端子23を用いて集積回路20Aの外部からテスト電圧55の温度係数を測定することができる。端子24は、テスト電圧55の温度係数調整用としてテスト電圧生成回路50Aの内部に接続されている。 The integrated circuit 20A according to the second embodiment is different from the first embodiment except that the integrated circuit 20A includes the terminals 23 and 24 and the test voltage generation circuit 50A different from the test voltage generation circuit 50 according to the first embodiment. 1 has the same configuration as the integrated circuit 20 in FIG. Here, the terminal 23 is connected so that the test voltage 55 output from the test voltage generation circuit 50A is applied, so that the temperature coefficient of the test voltage 55 is increased from the outside of the integrated circuit 20A using the terminal 23. Can be measured. The terminal 24 is connected to the inside of the test voltage generation circuit 50A for adjusting the temperature coefficient of the test voltage 55.
 図8は、実施例2におけるテスト電圧生成回路50Aの構成図である。実施例2におけるテスト電圧生成回路50Aは、実施例1におけるテスト電圧生成回路50に加えて、抵抗57に並列接続される、調整抵抗59およびツェナーダイオード60の直列回路を有している。また、調整抵抗59およびツェナーダイオード60の共通接続点が端子24と接続されている点も異なる。 FIG. 8 is a configuration diagram of the test voltage generation circuit 50A in the second embodiment. In addition to the test voltage generation circuit 50 in the first embodiment, the test voltage generation circuit 50A in the second embodiment includes a series circuit of an adjustment resistor 59 and a Zener diode 60 that are connected in parallel to the resistor 57. Another difference is that the common connection point of the adjustment resistor 59 and the Zener diode 60 is connected to the terminal 24.
 この端子24は、テスト電圧55の温度係数を調整する際に使用する。端子24に高電圧を印加すると、ツェナーダイオード60のアノード、カソード間がショート状態となる。これにより、抵抗57と調整抵抗59が並列接続され、テスト電圧55の温度係数を変化させることができる。 This terminal 24 is used when adjusting the temperature coefficient of the test voltage 55. When a high voltage is applied to the terminal 24, the anode and cathode of the Zener diode 60 are short-circuited. Thereby, the resistor 57 and the adjustment resistor 59 are connected in parallel, and the temperature coefficient of the test voltage 55 can be changed.
 この際、テスト電圧を変更させない場合には、抵抗57に並列接続される調整抵抗59の抵抗値は、抵抗57の抵抗値よりも十分に小さいものとする。 At this time, if the test voltage is not changed, the resistance value of the adjustment resistor 59 connected in parallel to the resistor 57 is assumed to be sufficiently smaller than the resistance value of the resistor 57.
 なお、実施例2では、温度係数を調整するための端子24、調整抵抗59、ツェナーダイオード60(本発明のテスト電圧の温度係数を調整するユニット)を1つずつしか用いていないが、実際には複数の端子と調整抵抗を用いても良い。また、別の方法、例えば、テスト電圧生成回路50A内の抵抗にレーザーで切れ目を入れて抵抗値を変化させ、テスト電圧55の温度係数を調整しても良い。 In the second embodiment, the terminal 24 for adjusting the temperature coefficient, the adjusting resistor 59, and the Zener diode 60 (unit for adjusting the temperature coefficient of the test voltage of the present invention) are used only one by one. May use a plurality of terminals and adjusting resistors. Alternatively, the temperature coefficient of the test voltage 55 may be adjusted by changing the resistance value by cutting the resistance in the test voltage generation circuit 50A with a laser.
 以上で説明した実施例2では次のような効果がある。 The second embodiment described above has the following effects.
 電子制御装置1Aにおける集積回路20Aは、テスト電圧55を出力可能な端子23を有することで、集積回路20Aの外部からテスト電圧55の電圧値を検出し、その温度係数を測定することができる。テスト電圧55を測定した結果、温度係数にずれが生じている場合には、端子24を利用してテスト電圧55の温度係数を調整することができる。 The integrated circuit 20A in the electronic control apparatus 1A has the terminal 23 that can output the test voltage 55, so that the voltage value of the test voltage 55 can be detected from the outside of the integrated circuit 20A and its temperature coefficient can be measured. As a result of measuring the test voltage 55, if the temperature coefficient is shifted, the temperature coefficient of the test voltage 55 can be adjusted using the terminal 24.
 また、他の実施形態としては、前記テスト電圧の温度係数を測定するための端子23と、テスト電圧の温度係数を調整するユニット(端子24、調整抵抗59、ツェナーダイオード60)は、どちらか一方のみを設ける構成にしてもよい。 In another embodiment, either the terminal 23 for measuring the temperature coefficient of the test voltage or the unit for adjusting the temperature coefficient of the test voltage (terminal 24, adjustment resistor 59, Zener diode 60) is provided. It is also possible to provide only the above.
 本実施例では、電圧異常検出回路の閾値電圧が集積回路の電源電圧よりも高い場合でも、電圧昇圧回路なしに電圧異常検出回路の故障診断を実施できる電子制御装置の例を示す。 In the present embodiment, an example of an electronic control device capable of performing failure diagnosis of the voltage abnormality detection circuit without the voltage booster circuit even when the threshold voltage of the voltage abnormality detection circuit is higher than the power supply voltage of the integrated circuit is shown.
 図9は、実施例3における電子制御装置の構成図である。ここで、実施例1における電子制御装置の構成図と同一の要素には同一の記号を付与しており、これら同一の要素に対する説明は省略する。 FIG. 9 is a configuration diagram of the electronic control device according to the third embodiment. Here, the same symbols are assigned to the same elements as those in the configuration diagram of the electronic control device according to the first embodiment, and the description for these same elements is omitted.
 実施例3における電子制御装置1Bは、実施例1における集積回路20とは異なる集積回路20Bを有している。それ以外は、実施例1の電子制御装置1と同様の構成となっている。 The electronic control device 1B according to the third embodiment includes an integrated circuit 20B that is different from the integrated circuit 20 according to the first embodiment. Other than that, the configuration is the same as that of the electronic control unit 1 of the first embodiment.
 実施例3における集積回路20Bは、実施例1における電圧異常検出回路40とは異なる電圧異常検出回路40Bを有していることが異なる。また、実施例3では、実施例1とは異なり、監視対象回路30の端子電圧31はスイッチ22および配線41を介して電圧異常検出回路40Bに入力され、テスト電圧生成回路50から出力されたテスト電圧55は、スイッチ21、および配線41とは別の配線47を介して電圧異常検出回路40Bに入力される構成となっている。 The integrated circuit 20B according to the third embodiment is different from the voltage abnormality detection circuit 40 according to the first embodiment in that the integrated circuit 20B includes a voltage abnormality detection circuit 40B. Also, in the third embodiment, unlike the first embodiment, the terminal voltage 31 of the monitoring target circuit 30 is input to the voltage abnormality detection circuit 40B via the switch 22 and the wiring 41, and the test output from the test voltage generation circuit 50 is performed. The voltage 55 is input to the voltage abnormality detection circuit 40 </ b> B via the switch 21 and a wiring 47 different from the wiring 41.
 図10A,10Bは、実施例3における電圧異常検出回路40Bの構成例を表した図である。電圧異常検出回路40Bでは、テスト電圧生成回路50からのテスト電圧55が、図10Aのように配線47を通して抵抗42aと抵抗43aの間に入力されるか、又は図10Bのように配線47を通して抵抗42bと抵抗43bの間に入力される以外は、実施例1における電圧異常検出回路40と同様である。 10A and 10B are diagrams illustrating a configuration example of the voltage abnormality detection circuit 40B according to the third embodiment. In the voltage abnormality detection circuit 40B, the test voltage 55 from the test voltage generation circuit 50 is input between the resistor 42a and the resistor 43a through the wiring 47 as shown in FIG. 10A, or the resistance through the wiring 47 as shown in FIG. 10B. The voltage abnormality detection circuit 40 is the same as that of the first embodiment except that the voltage is input between 42b and the resistor 43b.
 図10Aは、抵抗42aおよび43aの共通接続点電圧が閾値電圧より高い場合に電圧異常検出信号46を出力する電圧異常検出回路40Bを示している。図10Aでは、監視対象回路30から配線41を通して導入される入力電圧を抵抗42aおよび抵抗43aによって分圧し、抵抗42aおよび43aの共通接続点(分圧点)を、テスト電圧生成回路50から配線47を通して導入されるテスト電圧の入力端子とし、前記分圧点の電圧をコンパレータ44aの非反転入力端子(+側)に入力し、基準電圧45aをコンパレータ44aの反転入力端子(-側)に入力している。これにより、配線47を通して導入されるテスト電圧か、又は配線41を通して導入され抵抗42a、43aにより分圧された入力電圧が基準電圧45aより大きい場合には、コンパレータ44aの出力電圧は電源電圧となり、電圧異常検出信号46が出力されている状態となる。逆に、配線47を通して導入されるテスト電圧か、又は配線41を通して導入され抵抗42a、43aにより分圧された入力電圧が基準電圧45aより小さい場合には、コンパレータ44aの出力電圧は0Vとなり、電圧異常検出信号46が出力されていない状態となる。 FIG. 10A shows a voltage abnormality detection circuit 40B that outputs a voltage abnormality detection signal 46 when the common connection point voltage of the resistors 42a and 43a is higher than the threshold voltage. 10A, the input voltage introduced from the monitored circuit 30 through the wiring 41 is divided by the resistors 42a and 43a, and the common connection point (voltage dividing point) of the resistors 42a and 43a is divided from the test voltage generation circuit 50 to the wiring 47. The voltage at the voltage dividing point is input to the non-inverting input terminal (+ side) of the comparator 44a, and the reference voltage 45a is input to the inverting input terminal (− side) of the comparator 44a. ing. Thereby, when the test voltage introduced through the wiring 47 or the input voltage introduced through the wiring 41 and divided by the resistors 42a and 43a is larger than the reference voltage 45a, the output voltage of the comparator 44a becomes the power supply voltage, The voltage abnormality detection signal 46 is being output. On the contrary, when the test voltage introduced through the wiring 47 or the input voltage introduced through the wiring 41 and divided by the resistors 42a and 43a is smaller than the reference voltage 45a, the output voltage of the comparator 44a becomes 0V. The abnormality detection signal 46 is not output.
 図10Bは、抵抗42bおよび43bの共通接続点電圧が閾値電圧より低い場合に電圧異常検出信号46を出力する電圧異常検出回路40Bである。図10Bでは、監視対象回路30から配線41を通して導入される入力電圧を抵抗42bおよび抵抗43bによって分圧し、抵抗42bおよび43bの共通接続点(分圧点)を、テスト電圧生成回路50から配線47を通して導入されるテスト電圧の入力端子とし、前記分圧点の電圧をコンパレータ44bの反転入力端子(-側)に入力し、基準電圧45bをコンパレータ44bの非反転入力端子(+側)に入力している。これにより、配線47を通して導入されるテスト電圧か、又は配線41を通して導入され抵抗42b、43bにより分圧された入力電圧が基準電圧45bより小さい場合には、コンパレータ44bの出力電圧は電源電圧となり、電圧異常検出信号46が出力された状態となる。逆に、配線47を通して導入されるテスト電圧か、又は配線41を通して導入され抵抗42b、43bにより分圧された入力電圧が基準電圧45bより大きい場合には、コンパレータ44bの出力は0Vとなり、電圧異常検出信号46は出力されていない状態となる。 FIG. 10B shows a voltage abnormality detection circuit 40B that outputs a voltage abnormality detection signal 46 when the common connection point voltage of the resistors 42b and 43b is lower than the threshold voltage. In FIG. 10B, the input voltage introduced from the monitored circuit 30 through the wiring 41 is divided by the resistors 42b and 43b, and the common connection point (voltage dividing point) of the resistors 42b and 43b is divided from the test voltage generation circuit 50 to the wiring 47. The voltage at the voltage dividing point is input to the inverting input terminal (− side) of the comparator 44b, and the reference voltage 45b is input to the non-inverting input terminal (+ side) of the comparator 44b. ing. Thus, when the test voltage introduced through the wiring 47 or the input voltage introduced through the wiring 41 and divided by the resistors 42b and 43b is smaller than the reference voltage 45b, the output voltage of the comparator 44b becomes the power supply voltage. The voltage abnormality detection signal 46 is output. On the contrary, when the test voltage introduced through the wiring 47 or the input voltage introduced through the wiring 41 and divided by the resistors 42b and 43b is larger than the reference voltage 45b, the output of the comparator 44b becomes 0V, and the voltage is abnormal. The detection signal 46 is not output.
 実施例1で説明したテスト電圧生成回路50では、電源電圧を分圧してテスト電圧を生成している。そのため、電圧異常検出回路40の閾値電圧が電源電圧よりも高い場合には、電源電圧よりも高いテスト電圧を生成するために、テスト電圧生成回路50内に電圧昇圧回路を加える必要がある。しかし、電圧昇圧回路を追加すると、集積回路20の回路面積が増加し、コスト増につながる。 In the test voltage generation circuit 50 described in the first embodiment, the test voltage is generated by dividing the power supply voltage. Therefore, when the threshold voltage of the voltage abnormality detection circuit 40 is higher than the power supply voltage, it is necessary to add a voltage booster circuit in the test voltage generation circuit 50 in order to generate a test voltage higher than the power supply voltage. However, when a voltage booster circuit is added, the circuit area of the integrated circuit 20 increases, leading to an increase in cost.
 この問題を解決するため、実施例3における電圧異常検出回路40Bでは、分圧用抵抗の間(抵抗42aおよび43aの共通接続点(図10A)、又は抵抗42bおよび43bの共通接続点(図10B))に、配線47を介してテスト電圧を入力する構成としている。この構成の場合、抵抗42aおよび43aの共通接続点(又は抵抗42bおよび43bの共通接続点)に導入されたテスト電圧が閾値電圧と比較されるため、配線41を介して入力する場合よりもテスト電圧を低くすることができ、前記電圧昇圧回路を不要にすることができる。以上が実施例3における効果である。 In order to solve this problem, in the voltage abnormality detection circuit 40B according to the third embodiment, a voltage dividing resistor (a common connection point between the resistors 42a and 43a (FIG. 10A) or a common connection point between the resistors 42b and 43b (FIG. 10B)). ), A test voltage is input via the wiring 47. In this configuration, since the test voltage introduced at the common connection point of the resistors 42a and 43a (or the common connection point of the resistors 42b and 43b) is compared with the threshold voltage, the test is performed more than when input via the wiring 41. The voltage can be lowered, and the voltage booster circuit can be dispensed with. The above is the effect in the third embodiment.
 本実施例では、監視対象回路もしくは電圧異常検出回路の故障が検出された際に、故障部分の特定を容易にすることができる電子制御装置の例を示す。 In this embodiment, an example of an electronic control device that can easily identify a faulty part when a fault of a monitoring target circuit or a voltage abnormality detection circuit is detected is shown.
 図11は、実施例4における電子制御装置の構成図である。ここで、実施例1における電子制御装置の構成図と同一の要素には同一の記号を付与おり、これら同一の要素に対する説明は省略する。 FIG. 11 is a configuration diagram of the electronic control device according to the fourth embodiment. Here, the same symbols are assigned to the same elements as those in the configuration diagram of the electronic control device according to the first embodiment, and descriptions of these same elements are omitted.
 実施例4における電子制御装置1Cは、実施例1における制御コントローラ10とは異なる制御コントローラ10Cを有している。それ以外は、実施例1の電子制御装置1と同様の構成となっている。 The electronic control device 1C according to the fourth embodiment includes a control controller 10C that is different from the control controller 10 according to the first embodiment. Other than that, the configuration is the same as that of the electronic control unit 1 of the first embodiment.
 実施例4における制御コントローラ10Cは、実施例1における制御コントローラ10に加えて、故障情報11を有している。 The control controller 10C in the fourth embodiment has failure information 11 in addition to the control controller 10 in the first embodiment.
 図12は、故障情報11の例を表した図である。故障情報11は、故障番号11a、日付11b、時間11c、故障コード11dを有している。故障番号11aは、故障の登録番号であり、図12の場合には最大N個の情報を保持できる。日付11bおよび時間11cは、故障が発生した日時を示している。故障コード11dの部分には、検出された故障内容によって異なるコードが保存される。例えば、監視対象回路30の端子電圧が異常となった場合にはC00、電圧異常検出回路40の故障診断時に異常が検出された場合にはC01のコードが保存される。 FIG. 12 is a diagram showing an example of the failure information 11. The failure information 11 includes a failure number 11a, a date 11b, a time 11c, and a failure code 11d. The failure number 11a is a failure registration number. In the case of FIG. 12, a maximum of N pieces of information can be held. Date 11b and time 11c indicate the date and time when the failure occurred. In the part of the fault code 11d, different codes are stored depending on the detected fault contents. For example, the code of C00 is stored when the terminal voltage of the monitoring target circuit 30 becomes abnormal, and the code of C01 is stored when an abnormality is detected during failure diagnosis of the voltage abnormality detection circuit 40.
 この故障情報11は、制御コントローラ10Cにより電子制御装置1C外部から読み出しおよび消去の操作が可能である。 The failure information 11 can be read out and deleted from the outside of the electronic control unit 1C by the controller 10C.
 以上で説明した実施例4では次のような効果がある。 The fourth embodiment described above has the following effects.
 電子制御装置1Cにおける制御コントローラ10Cは、故障検出時の故障内容を故障情報11として、例えばその内部メモリに保持する。故障発生時には、当該内部メモリに保持されたこの故障情報11を電子制御装置1C外部から読み出すことで、故障発生の時間や故障部分の特定が容易となる。 The control controller 10C in the electronic control unit 1C stores the failure content at the time of failure detection as failure information 11, for example, in its internal memory. When a failure occurs, the failure information 11 held in the internal memory is read from the outside of the electronic control unit 1C, so that it is easy to specify the time of failure occurrence and the failure portion.
 なお、本発明は上記の実施例に限定されるものではなく、さまざまな変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 In addition, this invention is not limited to said Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部または全部を、例えば集積回路で設計する等によるハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによるソフトウェアで実現してもよい。 In addition, each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. In addition, each of the above-described configurations, functions, and the like may be realized by software obtained by the processor interpreting and executing a program that realizes each function.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には、殆ど全ての構成が相互に接続されていると考えて良い。
 上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである。
Further, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. In practice, it can be considered that almost all the components are connected to each other.
While the above description has been made with reference to exemplary embodiments, it will be apparent to those skilled in the art that the invention is not limited thereto and that various changes and modifications can be made within the spirit of the invention and the scope of the appended claims.
 1、1A、1B、1C 電子制御装置
 10、10C 制御コントローラ
 20、20A、20B 集積回路
 30 監視対象回路
 40、40B 電圧異常検出回路
 41、47 配線
 42a、42b、43a、43b、56、57 抵抗
 44a、44b コンパレータ
 50、50A テスト電圧生成回路
 52 オペアンプ
 54 MOSFET
 59 調整抵抗
 100 故障通知装置
1, 1A, 1B, 1C Electronic control device 10, 10C Controller 20, 20A, 20B Integrated circuit 30 Monitored circuit 40, 40B Voltage abnormality detection circuit 41, 47 Wiring 42a, 42b, 43a, 43b, 56, 57 Resistance 44a 44b Comparator 50, 50A Test voltage generation circuit 52 Operational amplifier 54 MOSFET
59 Adjustment resistor 100 Failure notification device

Claims (7)

  1.  監視対象回路と、
     前記監視対象回路の端子電圧と予め設定された閾値電圧を比較して監視対象回路の異常を検出する電圧異常検出回路と、
     前記電圧異常検出回路の故障を検出するために予め設定され、前記電圧異常検出回路の閾値電圧と比較されるテスト電圧を生成するテスト電圧生成回路とを備え、
     前記監視対象回路と、前記電圧異常検出回路と、前記テスト電圧生成回路は1チップで構成される集積回路に設けられ、
     前記テスト電圧の温度係数と前記閾値電圧の温度係数を等しくなるように設定した電子制御装置。
    A circuit to be monitored;
    A voltage abnormality detection circuit that detects an abnormality of the monitoring target circuit by comparing a terminal voltage of the monitoring target circuit with a preset threshold voltage;
    A test voltage generation circuit that generates a test voltage that is preset to detect a failure of the voltage abnormality detection circuit and is compared with a threshold voltage of the voltage abnormality detection circuit;
    The monitoring target circuit, the voltage abnormality detection circuit, and the test voltage generation circuit are provided in an integrated circuit configured by one chip,
    An electronic control device in which a temperature coefficient of the test voltage and a temperature coefficient of the threshold voltage are set to be equal.
  2.  請求項1に記載の電子制御装置において、更に
     前記集積回路との間で信号の授受を行う制御コントローラを有し、該制御コントローラは、前記電圧異常検出回路の故障が検出されたときに故障検出信号を外部に出力することを特徴とする電子制御装置。
    The electronic control device according to claim 1, further comprising a control controller that exchanges signals with the integrated circuit, wherein the control controller detects a failure when a failure of the voltage abnormality detection circuit is detected. An electronic control device that outputs a signal to the outside.
  3. 請求項1に記載の電子制御装置において、
     前記テスト電圧生成回路と電圧異常検出回路をコモンセントロイド配置して、前記テスト電圧の温度係数と前記閾値電圧の温度係数を等しくなるように設定したことを特徴とする電子制御装置。
    The electronic control device according to claim 1.
    An electronic control device, wherein the test voltage generation circuit and the voltage abnormality detection circuit are arranged in a common centroid and the temperature coefficient of the test voltage and the temperature coefficient of the threshold voltage are set to be equal.
  4. 請求項1に記載の電子制御装置において、
     前記集積回路は、前記テスト電圧を集積回路の外部に出力する端子を有することを特徴とする電子制御装置。
    The electronic control device according to claim 1.
    The electronic control device, wherein the integrated circuit has a terminal for outputting the test voltage to the outside of the integrated circuit.
  5. 請求項1に記載の電子制御装置において、
     前記集積回路は、前記テスト電圧の温度係数を調整するユニットを有することを特徴とする電子制御装置。
    The electronic control device according to claim 1.
    The electronic control device, wherein the integrated circuit includes a unit for adjusting a temperature coefficient of the test voltage.
  6. 請求項1に記載の電子制御装置において、
     前記電圧異常検出回路は、前記テスト電圧の入力端子を分圧抵抗の分圧点に有することを特徴とする電子制御装置。
    The electronic control device according to claim 1.
    The electronic controller according to claim 1, wherein the voltage abnormality detection circuit has an input terminal for the test voltage at a voltage dividing point of a voltage dividing resistor.
  7. 請求項2に記載の電子制御装置において、
     前記制御コントローラは、前記電圧異常検出回路からの故障情報を保持する機能を有していることを特徴とする電子制御装置。
    The electronic control device according to claim 2,
    The electronic controller according to claim 1, wherein the controller has a function of holding failure information from the voltage abnormality detection circuit.
PCT/JP2013/081515 2012-12-04 2013-11-22 Electronic control apparatus WO2014087854A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012264893A JP5830458B2 (en) 2012-12-04 2012-12-04 Electronic control unit
JP2012-264893 2012-12-04

Publications (1)

Publication Number Publication Date
WO2014087854A1 true WO2014087854A1 (en) 2014-06-12

Family

ID=50883277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081515 WO2014087854A1 (en) 2012-12-04 2013-11-22 Electronic control apparatus

Country Status (2)

Country Link
JP (1) JP5830458B2 (en)
WO (1) WO2014087854A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018084486A (en) * 2016-11-24 2018-05-31 トヨタ自動車株式会社 Abnormality determination device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9550499B2 (en) 2014-07-30 2017-01-24 Komatsu Ltd. Work vehicle and control method for work vehicle
JP6735611B2 (en) * 2016-06-17 2020-08-05 ローム株式会社 Electronic circuits, electronic devices and integrated circuits
JP7254362B2 (en) 2020-11-20 2023-04-10 株式会社オンリースタイル orthodontic appliance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123923A (en) * 1985-11-20 1987-06-05 日本電信電話株式会社 Secondary battery source monitor circuit
JPS62123924A (en) * 1985-11-20 1987-06-05 日本電信電話株式会社 Discrimination circuit of secondary battery
JP4715875B2 (en) * 2008-06-25 2011-07-06 トヨタ自動車株式会社 Failure diagnosis method for voltage abnormality detection means, secondary battery system, and hybrid vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123923A (en) * 1985-11-20 1987-06-05 日本電信電話株式会社 Secondary battery source monitor circuit
JPS62123924A (en) * 1985-11-20 1987-06-05 日本電信電話株式会社 Discrimination circuit of secondary battery
JP4715875B2 (en) * 2008-06-25 2011-07-06 トヨタ自動車株式会社 Failure diagnosis method for voltage abnormality detection means, secondary battery system, and hybrid vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018084486A (en) * 2016-11-24 2018-05-31 トヨタ自動車株式会社 Abnormality determination device

Also Published As

Publication number Publication date
JP2014110361A (en) 2014-06-12
JP5830458B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP2004219414A (en) Circuit and method for detecting defective insulation
CN109656301B (en) Real-time slope control device and method for real-time controlling voltage slope of voltage stabilizer
JP6046404B2 (en) Display device
US9520830B2 (en) Crystal oscillator
WO2014087854A1 (en) Electronic control apparatus
US20170192060A1 (en) Enhanced protection, diagnosis, and control of power distribution and control units
US10992127B2 (en) Electronic control unit
US9739822B2 (en) Input circuit
JP2010210238A (en) Probe card, semiconductor inspection device equipped with the same and method for checking fuse of probe card
KR20190139251A (en) Power supply device and power supply monitoring method for the control unit
US8698353B2 (en) Method for operating a redundant system and system therefor
US20150346243A1 (en) Current load detection device and current load detection method
US9846191B2 (en) Systems and methods for internal and external error detection in sensor output interfaces
US10514307B2 (en) Fault detection apparatus
KR20070115408A (en) Method and system for testing of switching element
US10915387B2 (en) Circuit assembly and method for monitoring a micro-controller based on a watchdog voltage
JP4103145B2 (en) Input module
US11079409B2 (en) Assembly with at least two redundant analog input units for a measurement current
EP2701028B1 (en) An integrated circuit with an external reference resistor network
JP2009229327A (en) Circuit element measuring device
JP2011061968A (en) Power supply monitoring circuit, power supply monitoring method used for the same, power supply monitoring control program, and electronic apparatus
JP2015021954A (en) Current controller
EP2239588A1 (en) Voltage surveillance circuit
JP2019052943A (en) Electronic controller
JP6038529B2 (en) measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13860961

Country of ref document: EP

Kind code of ref document: A1