WO2014087830A1 - Packet-forwarding control system and method - Google Patents

Packet-forwarding control system and method Download PDF

Info

Publication number
WO2014087830A1
WO2014087830A1 PCT/JP2013/080964 JP2013080964W WO2014087830A1 WO 2014087830 A1 WO2014087830 A1 WO 2014087830A1 JP 2013080964 W JP2013080964 W JP 2013080964W WO 2014087830 A1 WO2014087830 A1 WO 2014087830A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
transfer control
data
bit rate
congestion
Prior art date
Application number
PCT/JP2013/080964
Other languages
French (fr)
Japanese (ja)
Inventor
一範 小澤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2014087830A1 publication Critical patent/WO2014087830A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/56Provisioning of proxy services
    • H04L67/565Conversion or adaptation of application format or content
    • H04L67/5651Reducing the amount or size of exchanged application data

Definitions

  • the present invention relates to packet transfer control, and more particularly to packet transfer control for storing audio data.
  • LTE Long Term Evolution
  • EPC Evolved Packet Core
  • the line exchange for voice call and video phone call and the packet exchange for sending data are composed of separate systems.
  • the voice call data and the video phone data are connected to the same packet communication path.
  • content distribution data and so-called data signals are sent together.
  • mobile terminals not only conventional so-called Galapagos mobile phones but also so-called smart devices such as smartphones and tablets are accelerating.
  • the present invention has been made in view of such a situation, and the problem to be solved by the present invention is that the transport of packets storing voice data completely stops even when congestion occurs in the network. It is to provide a packet transfer control technology that can continue without interruption.
  • the present invention has, as one aspect, when transferring a packet storing at least one of audio data and video data received from one of the two nodes to the other node.
  • Congestion detection is performed on at least one of the uplink and downlink packet communication paths between the nodes, and the first data encoded at the first bit rate stored in the received packet according to the congestion detection Is generated, and re-encoded second data is generated at a second bit rate different from the first bit rate, and a packet storing the second data is converted into a packet storing the first data.
  • a packet transfer control system characterized by transferring data on behalf of the device is provided.
  • a packet storing at least one of audio data and video data received from one of the two nodes is transferred to the other node, the uplink direction between the two nodes And detecting the congestion for at least one of the packet communication paths in the downstream direction, and decoding the first data encoded at the first bit rate stored in the received packet in response to the detection of the congestion, Second data re-encoded at a second bit rate different from the first bit rate is generated, and a packet storing the second data is transferred instead of a packet storing the first data
  • a packet transfer control method is provided.
  • the re-encoded packet is transferred instead of the received packet by changing the bit rate of the voice data, so that transmission of the voice data is completely interrupted. Can do.
  • FIG. 1 is a diagram for explaining a communication system according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram of the packet transfer control device 190 according to the first embodiment of this invention.
  • FIG. 3 is a block diagram of the transcoder 220.
  • FIG. 4 is a block diagram of the packet transfer control device 190 according to the second embodiment of this invention.
  • FIG. 5 is a block diagram of portable terminal 170 in the second embodiment of the present invention.
  • FIG. 1 shows a configuration of a first embodiment of a communication system according to the present invention.
  • a configuration in which a mobile LTE / EPC packet network is used as the network is shown.
  • FIG. 1 shows a configuration in which the packet transfer control device 190 uses P-GW (Packet data network Gateway), S-GW (Serving Gateway), or both.
  • the mobile terminal is assumed to be a so-called Galapagos mobile phone, a smartphone, or a tablet.
  • FIG. 1 shows an example in which a user A and a user B connect a mobile terminal to a network and make a call between mobile phones.
  • FIG. 1 shows that the user A uses the mobile terminal 170 to connect the mobile network 150 and the IMS.
  • a configuration is shown in which a VoIP voice call is made with user B's mobile terminal (not shown) via a network 130 via a partner network (not shown).
  • FIG. 1 illustrates a configuration for detecting congestion by extracting congestion information stored in an uplink packet (that is, in the direction of the packet transfer control device 190) from the eNodeB device 194 as an example of congestion detection.
  • congestion information a configuration for detecting congestion by receiving congestion information by ECN (Explicit Connection Notification) will be described.
  • the CE Congestion
  • the CE is set in the ECN field of the IP header portion of the uplink packet transmitted from the eNodeB to the packet transfer control device 190.
  • (Experence) bit is sent to the packet transfer control device 190.
  • the packet transfer control device 190 detects that the CE bit is in the ECN field of the IP header part in the packet received from the eNodeB, Let it be detected that the network in the direction is congested. In FIG.
  • the mobile terminal 170 when the mobile terminal 170 sends out the IP address and RTP port number of the partner terminal from the mobile terminal 170 as a voice call connection request, the mobile terminal 170 passes through the eNodeB device 194 and the packet transfer control device 190 to receive the IMS ( It is transferred to at least one of the SIP server 110 and the PCRF (Policy and Charging Rules Function) device 191 arranged in the IP Multimedia Subsystem (IP) network 130. Furthermore, the mobile terminal 170 adds at least one parameter among parameters such as voice call traffic, desired QoS class, MBR (Maximum Bit Rate), GBR (Guaranteed Bit Rate), and the like via the packet transfer control device 190. It is also possible to notify at least one of the SIP server 110 and the PCRF device 191.
  • IP IP Multimedia Subsystem
  • the SIP server 110 receives a connection request signal for a voice call, sends a connection request to a partner terminal (not shown) via a partner network (not shown), and receives an Ack signal from the partner terminal. Then, the Ack signal is transmitted to the mobile terminal 170 via the packet transfer control device 190 and the eNodeB device 194, and is received by the mobile terminal 170, whereby the control signal for the voice call is exchanged.
  • the IP address and RTP port number of the mobile terminal 170 but also at least one of the parameters of voice call traffic, desired QoS class, MBR (Maximum Bit Rate), GBR (Guaranteed Bit Rate) from the counterpart terminal. Can also be sent out.
  • the PCRF device 191 inputs the voice call traffic, the IP address and port number of the mobile terminal 170 from the packet transfer control device 190 for at least one of the upstream and downstream directions. If necessary, parameters such as a desired QoS class, MBR (Maximum Bit Rate), GBR (Guaranteed Bit Rate), and the like are also input from the packet transfer control device 190. Furthermore, the PCRF device 191 identifies a user from the IP address of the mobile terminal, and reads user profile information from the user database owned by the PCRF device 191.
  • the user profile information includes, for example, user contract information.
  • the PCRF device 191 generates parameters for QoS control based on the user profile information and the QoS information.
  • the parameter for QoS control is at least one of QCI (Quality Class Identifier) which is a value for identifying a QoS class, ARP (Allocation and Retention Priority) indicating the priority of resource reservation and retention, MBR, and GBR. .
  • QCI Quality Class Identifier
  • ARP Allocation and Retention Priority
  • MBR and GBR are used as they are when received from the packet transfer control device 190, and are generated by the PCRF device 191 when there is no reception.
  • the PCRF device 191 generates at least one of these four types of parameters for each of the uplink direction and the downlink direction, and outputs them to the packet transfer control device 190.
  • the user profile is “Premier Member”, “QoS is not allowed to be downgraded during network congestion”, and the traffic is a voice call.
  • QCI 1 (Conversational Voice)
  • ARP 2
  • GBR 12.2 kbps
  • the AMR-NB audio codec is used in the portable terminal 170, and the above parameter values are used.
  • an AMR-WB audio codec can be used, but in this case, the value of GBR can be changed.
  • the control unit 211 relays a control signal from the mobile terminal 170 to the SIP server 110 and relays a control signal and an Ack signal from the SIP server 110 to the mobile terminal 170. Further, at least one of four types of parameters, QCI, ARP, MBR, and GBR, is input from the PCRF device 191 for each traffic data. Here, in the present embodiment, at least one of four types of parameters for each of the uplink direction and the downlink direction of the voice call traffic is input from the PCRF device 191.
  • the congestion detection unit 200 receives the IP header information from the packet transfer unit 176 for the uplink packet received by the packet transfer unit 176 from the eNodeB device 194 in FIG.
  • the PCRF device 191 in FIG. 1 determines at least one of user profile information, QoS parameters, and operator policy for the mobile terminal 170 currently connected to the eNodeB device 194. Check one.
  • the operator policy is a setting determined by a telecommunications carrier that manages and operates the network 150.
  • the operator policy is a setting that determines a policy for dealing with congestion in the network.
  • processing for forcibly reducing GBR or MBR for a packet sent by a user set as a standard user in the contract information included in the user profile information processing for forcibly reducing GBR or MBR for a packet sent by a user set as a standard user in the contract information included in the user profile information
  • the packet sent by the user set as the premium member in the user profile information is transferred as it is.
  • the user profile information it is a user who has a standard fee contract and is not a heavy user who wastes packets.
  • the QoS parameter It is determined to reduce at least one of the GBR and MBR and reduce the rate of at least one of video and audio.
  • the PCRF device 191 outputs the changed OoS parameter to the rate setting unit 230 and the transfer control unit 188 via the control unit 211 of FIG.
  • the rate setting unit 230 inputs the congestion detection information from the congestion detection unit 200, and inputs the changed QoS parameter from the control unit 211.
  • the transcoder unit 220 includes demultiplexing / multiplexing units 280_1 and 280_2, an image transcoder 281 and an audio transcoder 282. Since the present embodiment is a voice call, only the voice transcoder 282 is used.
  • the demultiplexing / multiplexing unit 280_1 inputs 7.95 kbps as downlink rate information after the change, and an instruction not to change the uplink rate from the rate setting unit 230, and outputs it to the audio transcoder 282. Downstream and upstream packets are input from the packet transfer control device 190 and output to the voice transcoder 282.
  • the audio transcoder 282 transcodes the downlink audio compression encoded stream so as to convert the rate from 12.2 kbps before the change to 7.95 kbps, and sends the converted stream to the packet transfer unit 176. Output.
  • this conversion is performed by once decoding the 12.2 kbps audio compression-encoded stream with a 12.2 kbps AMR-NB audio decoder and re-encoding with a 7.95 kbps AMR-NB audio encoder. Since the upstream direction remains 12.2 kbps and no conversion is performed, the audio transcoder is passed through the 12.2 kbps audio compression-coded stream in the upstream direction and is output as it is.
  • the transfer control unit 188 inputs a QoS parameter from the PCRF device 191 via the control unit 211. And about the QoS parameter of a downlink direction, although QCII and ARP are not changed, it recognizes that GBR and MBR are changed. Then, the audio compression coded stream input from the transcoder unit 220 is packetized and then transferred based on the changed GBR and MBR. In this embodiment, since the audio compression coded stream is converted to 7.95 kbps below the changed GBR in the audio transcoder, the packet is transferred without delaying the packet. Become. Further, RTP / UDP / IP is used as a packetization protocol.
  • the input packet storing the audio compression coded stream is transferred as it is.
  • RTP / UDP / IP is used as an upstream packet protocol.
  • the packet (video packet) storing the video data is not intended only for the packet (audio packet) storing the audio data of the videophone, but instead of or in addition to the audio packet.
  • a new audio data stored in the received audio packet is decoded, re-encoded at a lower rate than the audio data rate, and the generated audio data is stored.
  • packet transfer control is performed to transfer voice packets in place of received voice packets, the same packet transfer control is performed on video packets in parallel with or in place of such packet transfer control.
  • Decode the video data stored in the received video packet re-encode at a rate lower than the video data rate to generate video data, and create a new video packet to store the generated video data
  • Packet transfer control for transferring in place of the received video packet may be performed.
  • ECN information is used to detect congestion, other information can also be used.
  • the congestion detection unit 200, the rate setting unit 230, and the transcoder 220 are built in the packet transfer control device 190, but some or all of them may be external devices. Further, the function of the PCRF device 191 can be built in the packet transfer device 190.
  • the mobile network 150 may be a 3G network, and the packet transfer control device 190 may be an SGSN (Serving GPRS Support Node) or a GGSN (Gateway GPRS Support Node).
  • SGSN Serving GPRS Support Node
  • GGSN Gateway GPRS Support Node
  • the bandwidth calculation unit 205 calculates at least one of the downlink and uplink bands for the network to which the mobile terminal 170 is connected at the time of session connection or at predetermined time intervals. Here, a case where a downstream band is calculated will be described.
  • the bandwidth calculation unit 205 calculates using both the packet transmitted from the packet transfer unit 176 to the mobile terminal 170 and the reply packet from the mobile terminal 170. First, the bandwidth calculation unit 205 instructs the packet transfer unit 176 in FIG.
  • the packet transfer unit 176 directs a plurality of specific packets to the mobile terminal 170 at the timing when the instruction is received, and continuously transmits the packets in a predetermined order.
  • the plurality of packets indicates two or more packets.
  • the sending order is a predetermined order. For example, packets are sent in order from a packet having a small data size to a packet having a large data size.
  • the time interval between the packet and the next packet is a predetermined time interval.
  • RTP / UDP / IP is used as the protocol.
  • the packet transfer unit 176 receives a reply packet from the portable terminal 170 as a result of sending the plurality of packets.
  • the reply packet includes, for example, the packet number that can be received below the threshold with respect to the differential delay, the data size of the packet, the time when the packet was transmitted from the server, the packet, Include information such as the time received by the mobile terminal.
  • the packet transfer unit 176 from the reply response signal received from the mobile terminal 170, the number of the packet that the mobile terminal 170 was able to receive within the threshold value of the delay difference, the transmission time from the packet transfer control device 190, and the mobile terminal 170 The information of the reception time at is extracted and output to the bandwidth calculation unit 205.
  • N and D (N) are the packet number and data size that can be received by the mobile terminal 170 at or below the delay difference threshold value, respectively, and are information extracted from the reply response signal from the mobile terminal 170. is there.
  • R (N) is the reception time at the portable terminal 170 of the Nth packet sent from the packet transfer control device 190, and R (N-1) is sent N-1th from the packet transfer control device 190. The reception time of the packet at the mobile terminal 170 is shown.
  • the downstream band measurement value W_d is temporally smoothed by the following equation 2 to calculate B (n) _d.
  • B (n) _d (1- ⁇ ) * B (n ⁇ 1) _d + ⁇ W_d Equation 2
  • B (n) _d indicates a downstream bandwidth calculation value after smoothing at the n-th time
  • is a constant in a range of 0 ⁇ ⁇ 1. Note that the time direction smoothing according to Equation 2 may not be performed if unnecessary.
  • the packet transfer unit 176 sends information necessary for calculating the network bandwidth to the portable terminal 170 only at the time of session connection or at predetermined time intervals based on the time of session connection and the time of session connection. A response signal is received from the mobile terminal.
  • the bandwidth calculation unit 205 calculates B (n) _d at predetermined time intervals, for example, and outputs these to the congestion detection unit 210.
  • the congestion detection unit 210 performs the following determination to detect congestion. (1) When the downlink bandwidth calculation value B (n) _d is compared with the downlink GBR + ⁇ of the voice call by the mobile terminal 170, if B (n) _d ⁇ GBR + ⁇ , the mobile terminal 170 is congested in the downlink direction. Is notified to the rate setting unit 215 and to the PCRF device 191 of FIG. 1 via the control unit 211.
  • is a predetermined numerical value.
  • the QoS parameter It is determined to reduce at least one of the GBR and MBR and reduce the rate of at least one of video and audio.
  • the downstream bandwidth calculation value is B (n) _d, and that it is a voice call, the downstream QCI and ARP remain unchanged. Only the downlink GBR and MBR are changed. For example, the downlink GBR is changed to BBR ⁇ B (n) _d, and the downlink MBR is changed to GBR ⁇ MBR ⁇ 22.8 kbps. Note that the upstream QoS parameter is not changed.
  • the PCRF device 191 outputs the changed OoS parameter to the rate setting unit 215 and the transfer control unit 188 via the control unit 211 of FIG.
  • the rate setting unit 215 receives the congestion detection information from the congestion detection unit 210 and the changed QoS parameter from the control unit 211. Based on the changed QoS parameter, the rate setting unit 215, as the changed rate, among the eight bit rates (modes) of the AMR-NB audio codec, the bit rate that satisfies the conditions below the GBR in the downlink direction Set.
  • modes eight bit rates
  • 6.7 kbps is set as the bit rate that satisfies this condition.
  • FIG. 5 is a block diagram illustrating a configuration of the mobile terminal 170.
  • a packet transmitting / receiving unit 250 generates a reply response packet for the received probe packet and sends it to the network.
  • the reply response packet is generated as follows, for example.
  • the packet transmission / reception unit 250 receives each of the plurality of probe packets transmitted from the packet transfer unit 176 in FIG. 2 and outputs the received packet to the delay difference determination unit 255.
  • the delay difference discriminating unit 255 first measures the delay time T (n) for each packet by the following equation 3.
  • T (n) R (n) -S (n) ... Formula 3
  • T (n), R (n), and S (n) indicate the delay time of the nth packet, the reception time of the nth packet, and the transmission time of the nth packet, respectively.
  • the delay difference ⁇ (n) between the packets is calculated by the following equation 4.
  • ⁇ (n) T (n) ⁇ T (n ⁇ 1) Equation 4
  • ⁇ (n) represents the delay difference of the nth packet.
  • Th3 is a predetermined threshold value. Then, the packet number N immediately after the delay difference exceeds the threshold value is output to the packet transmitting / receiving unit 250.
  • the packet transmission / reception unit 250 receives the packet number N from the delay difference determination unit 255, the packet number N immediately after the delay difference exceeds the threshold, the data size of the Nth packet, the N ⁇ 1th packet.
  • the data size, the reception time and transmission time of each of the Nth and N-1th packets are stored in the payload of the reply response packet, and then directed to the packet transfer control device 190 via the eNodeB 194 in FIG. Send it out.
  • the threshold value Th3 may be determined in advance, or may be determined each time after looking at a series of values of ⁇ (n).
  • T (n) may be compared with a threshold value set according to a predetermined rule, and n may be returned as N when the threshold value is exceeded.
  • a voice codec 253 is used during a voice call. Since the present embodiment is a voice call, the image codec 252 and the display unit 256 are not used. As another embodiment, these are used in the case of a TV phone configuration.
  • the congestion in the downlink direction is determined as follows. (1) The packet transfer unit 176 sends a probe packet to the mobile terminal 170 in accordance with an instruction from the bandwidth calculation unit 205.
  • the mobile terminal 170 Upon receiving the probe packet, the mobile terminal 170 receives the packet number N immediately after the delay difference exceeds the threshold, the data size of the Nth packet, the data size of the N ⁇ 1th packet, A reply packet storing the packet reception time and transmission time in the payload is generated, and the reply packet is transmitted to the packet transfer control device 190 via the eNodeB device 194.
  • the bandwidth calculation unit 205 obtains the value stored in the received reply packet, that is, the packet immediately after the delay difference exceeds the threshold value.
  • the downstream band W_d is calculated by applying the number N, the data size of the Nth packet, the data size of the (N-1) th packet, the reception time and transmission time of each packet to Equation 1.
  • the band calculation unit 205 calculates the smooth value B (n) _d by applying the calculated downstream band W_d to Equation 2.
  • the congestion detection unit 210 determines whether there is congestion in the downstream direction based on B (n) _d.
  • the packet is transferred in the same manner as in the first embodiment. Note that the bandwidth calculation unit 205 performs an operation corresponding to the delay difference determination unit 255 when performing the congestion determination in the upstream direction. This is the end of the description of the second embodiment of the present invention, but various modifications are possible.
  • Another algorithm may be used as the band calculation algorithm in the band calculation unit 205 in FIG.
  • the bandwidth is calculated based on the reply response signal from the mobile terminal, the bandwidth can also be calculated based on the measured delay amount with the mobile terminal.
  • a method for estimating a bandwidth using a response signal from a mobile terminal without using a probe packet, instead of calculating a bandwidth by sending a probe packet for bandwidth measurement from the packet transfer unit 176 to the mobile terminal 170. can also be used. In this case, the sending of the probe packet from the packet transfer unit 176 in FIG. 4 and the delay difference determination unit 255 in FIG. 5 are not necessary.
  • the bandwidth calculation unit 205, the congestion detection unit 210, and the rate setting unit 215 are built in the packet transfer control device 190, but at least one of them can be an external device.
  • This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2012-267871 for which it applied on December 7, 2012, and takes in those the indications of all here.

Abstract

In accordance with detected congestion, first data that is contained in a received audio/video packet and encoded at a first bit rate is decoded and then re-encoded at a second bit rate to generate second data, and a packet containing said second data is forwarded in place of the packet containing the first data.

Description

パケット転送制御システム及び方法Packet transfer control system and method
 本発明はパケットの転送制御に関し、特に、音声データを格納するパケットの転送制御に関する。 The present invention relates to packet transfer control, and more particularly to packet transfer control for storing audio data.
 近年、モバイルネットワークでも大容量化、高速化が進展し、LTE(Long Term Evolution)やEPC(Evolved Packet Core)などのシステムが導入開始されている。従来システムでは、音声通話やTV電話を行なう回線交換と、データを流すパケット交換は別々のシステムから構成されていたが、LTE/EPCシステムでは、同じパケット通信路に、音声通話データやTV電話データやコンテンツ配信データなどといわゆるデータ信号(アプリデータ、ドキュメントデータ、写真データなど)とを一緒に流すことを特徴とする。さらに、携帯端末としては、従来型の、いわゆるガラパゴス携帯だけでなく、スマートフォンやタブレットなどの、いわゆるスマートデバイスの普及が加速化している。これにより、従来システムとは比較にならない膨大な量の信号がパケット通信路を流れることになる。
 パケット転送制御装置(例えばEPCのP−GW:Packet data network GateWayやS−GW:Serving GateWay)では、これまでは、QCI(Quality Class Identifier)、MBR (Maximum Bit Rate)、GBR(Guaranteed Bit Rate)などのパラメータを設定して、パケット毎にQoS(Quality of Service)を制御していた。
 しかしながら、LTE/EPC全体のネットワークの帯域幅は、トラヒック量の時間的な変動に依存して時間的に変動するため、パケット転送制御装置ではネットワークの輻輳のタイミングを検出するのが困難であった。特に、突発的なイベントや、人気コンテンツの投入や、ヘビイユーザの新規使用開始などにより、トラヒックが大幅に変化する、増大する、というケースに対応することができないという課題があった。
 そのため、今後、LTE/EPCのパケット通信路を用いて高音質VoIPや高解像度TV電話などのリアルタイム通信サービスとして開始されると、ネットワークが輻輳すると、最悪には、VoIPによる音声通話の際に端末で音が途切れたり、TV電話の際に端末で映像が乱れたりあるいはフリーズしたりする、といった、端末側のQoE(Quality of Experience)の劣化に関する課題が発生する恐れがあった。
 本発明に関連する技術が記載された文献として特許文献1を挙げる。
In recent years, the capacity and speed of mobile networks have been increased, and systems such as LTE (Long Term Evolution) and EPC (Evolved Packet Core) have begun to be introduced. In the conventional system, the line exchange for voice call and video phone call and the packet exchange for sending data are composed of separate systems. However, in the LTE / EPC system, the voice call data and the video phone data are connected to the same packet communication path. And content distribution data and so-called data signals (application data, document data, photo data, etc.) are sent together. Furthermore, as mobile terminals, not only conventional so-called Galapagos mobile phones but also so-called smart devices such as smartphones and tablets are accelerating. As a result, an enormous amount of signals that cannot be compared with the conventional system flows through the packet communication path.
Up to now, packet transfer control devices (for example, EPC P-GW: Packet data network Gateway and S-GW: Serving Gateway), QCI (Quality Class Identifier), MBR (Maximum Bit Rate), GR (R) Parameters such as the above are set to control QoS (Quality of Service) for each packet.
However, since the network bandwidth of the entire LTE / EPC fluctuates in time depending on the traffic fluctuation, it is difficult for the packet transfer control device to detect the timing of network congestion. . In particular, there has been a problem that it is impossible to deal with a case in which traffic is drastically changed or increased due to an unexpected event, the introduction of popular content, the start of new use by a heavy user, or the like.
Therefore, in the future, when it starts as a real-time communication service such as high-quality voice VoIP and high-resolution videophone using LTE / EPC packet communication path, if the network is congested, the terminal will be used at the time of voice call by VoIP. There is a risk that problems related to deterioration of QoE (Quality of Experience) on the terminal side may occur, such as sound being interrupted or video being disturbed or frozen at the terminal during a videophone call.
Patent Document 1 is cited as a document describing a technique related to the present invention.
特開2004−320452号JP-A-2004-320452
 本発明はこのような状況に鑑みてなされたものであり、本発明が解決しようとする課題は、ネットワークで輻輳が発生しても、音声データを格納したパケットの搬送が、完全に停止することなく継続されるようなパケット転送制御技術を提供することである。 The present invention has been made in view of such a situation, and the problem to be solved by the present invention is that the transport of packets storing voice data completely stops even when congestion occurs in the network. It is to provide a packet transfer control technology that can continue without interruption.
 上述の課題を解決するため、本発明は、その一態様として、2つのノードの一方から受信した、音声データ及び映像データの少なくとも一方を格納したパケットを他方のノードに転送する際、前記2つのノード間の上り方向及び下り方向のパケット通信路の少なくとも一方について輻輳の検出を行い、輻輳の検出に応じて、受信したパケットに格納された、第1のビットレートでエンコードされた第1のデータをデコードして、前記第1のビットレートとは異なる第2のビットレートで再エンコードした第2のデータを生成し、前記第2のデータを格納するパケットを前記第1のデータを格納するパケットに代わって転送することを特徴とするパケット転送制御システムを提供する。 また、本発明は、他の一態様として、2つのノードの一方から受信した、音声データ及び映像データの少なくとも一方を格納したパケットを他方のノードに転送する際、前記2つのノード間の上り方向及び下り方向のパケット通信路の少なくとも一方について輻輳の検出を行い、輻輳の検出に応じて、受信したパケットに格納された、第1のビットレートでエンコードされた第1のデータをデコードして、前記第1のビットレートとは異なる第2のビットレートで再エンコードした第2のデータを生成し、前記第2のデータを格納するパケットを前記第1のデータを格納するパケットに代わって転送することを特徴とするパケット転送制御方法を提供する。 In order to solve the above-mentioned problem, the present invention has, as one aspect, when transferring a packet storing at least one of audio data and video data received from one of the two nodes to the other node. Congestion detection is performed on at least one of the uplink and downlink packet communication paths between the nodes, and the first data encoded at the first bit rate stored in the received packet according to the congestion detection Is generated, and re-encoded second data is generated at a second bit rate different from the first bit rate, and a packet storing the second data is converted into a packet storing the first data. A packet transfer control system characterized by transferring data on behalf of the device is provided. According to another aspect of the present invention, when a packet storing at least one of audio data and video data received from one of the two nodes is transferred to the other node, the uplink direction between the two nodes And detecting the congestion for at least one of the packet communication paths in the downstream direction, and decoding the first data encoded at the first bit rate stored in the received packet in response to the detection of the congestion, Second data re-encoded at a second bit rate different from the first bit rate is generated, and a packet storing the second data is transferred instead of a packet storing the first data A packet transfer control method is provided.
 本発明によれば、輻輳発生時であっても、音声データのビットレートを変更して再エンコードしたパケットを受信パケットの代わりに転送するので、音声データの送信が完全に途切れるのを回避することができる。 According to the present invention, even when congestion occurs, the re-encoded packet is transferred instead of the received packet by changing the bit rate of the voice data, so that transmission of the voice data is completely interrupted. Can do.
 図1は本発明の第1の実施の形態である通信システムについて説明するための図である。
 図2は本発明の第1の実施の形態におけるパケット転送制御装置190のブロック図である。
 図3はトランスコーダ220のブロック図である。
 図4は本発明の第2の実施の形態におけるパケット転送制御装置190のブロック図である。
 図5は本発明の第2の実施の形態における携帯端末170のブロック図である。
FIG. 1 is a diagram for explaining a communication system according to a first embodiment of the present invention.
FIG. 2 is a block diagram of the packet transfer control device 190 according to the first embodiment of this invention.
FIG. 3 is a block diagram of the transcoder 220.
FIG. 4 is a block diagram of the packet transfer control device 190 according to the second embodiment of this invention.
FIG. 5 is a block diagram of portable terminal 170 in the second embodiment of the present invention.
 図1~図5を参照して本発明の第1の実施の形態について説明する。図1は本発明による通信システムの第1の実施形態の構成を示している。ここでは、ネットワークとしてはモバイルLTE/EPCパケットネットワークを用いる場合の構成を示している。また図1では、パケット転送制御装置190はP−GW(Packet data network GateWay)またはS−GW(Serving GateWay)またはそれらの両者を用いる場合の構成を示している。また携帯端末は、いわゆるガラパゴス携帯、スマートフォン、タブレットを想定している。図1では、ユーザAとユーザBが携帯端末をネットワークに接続して携帯電話同士で通話を行なう例を示しており、図1は、ユーザAが携帯端末170を用いて、モバイルネットワーク150およびIMS網130を介して、相手先ネットワーク(図示せず)を経由してユーザBの携帯端末(図示せず)とVoIP音声通話を行なう構成を示している。なお、音声通話(音声電話)ではなく、映像と音声の両方を用いるTV電話に対しても、図1と同じ構成により実現することができる。
 また、図1では、輻輳検出の一例として、eNodeB装置194から、上り方向(すなわちパケット転送制御装置190の方向)のパケットに格納された輻輳情報を抽出して輻輳を検出する構成を示す。ここでは、輻輳情報の一例として、ECN(Explicit Congestion Notification)による輻輳情報を受信して輻輳を検出する構成について示す。
 なお、ここでは、eNodeB装置194が、下り方向の無線ネットワークでの輻輳状態を検出すると、eNodeBからパケット転送制御装置190へ向けて送出する上り方向のパケットのIPヘッダ部のECNフィールドにCE(Congestion Experience)ビットをたて、パケット転送制御装置190に送出し、パケット転送制御装置190は、eNodeBから受信したパケットにおいて、IPヘッダ部のECNフィールドにCEビットがたっていることを検出した場合は、下り方向のネットワークが輻輳していることを検出することとする。
 図1において、携帯端末170は、音声通話の接続要求として、携帯端末170から相手先端末のIPアドレス、RTPポート番号を送出すると、eNodeB装置194ならびにパケット転送制御装置190を経由して、IMS(IP Multimedia Subsystem)網130に配置されたSIPサーバ110ならびに、PCRF(Policy and Charging Rules Function)装置191、の少なくとも一方に転送される。さらに、携帯端末170は、音声通話トラヒック、希望QoSクラス、MBR(Maximum Bit Rate)、GBR(Guaranteed Bit Rate)などのパラメータのうちの少なくとも一つのパラメータを追加し、パケット転送制御装置190経由で、SIPサーバ110ならびにPCRF装置191の少なくとも一方に通知することもできる。
 SIPサーバ110は、音声通話の接続要求信号を受け取り、相手先端末(図示せず)に対し相手先ネットワーク(図示せず)を経由して接続要求を送出し、相手先端末からAck信号を受け取ると、当該Ack信号をパケット転送制御装置190ならびにeNodeB装置194を経由して携帯端末170に送出し、携帯端末170でこれを受信することで、音声通話のための制御信号のやりとりが行なわれる。ここで、相手先端末からは、携帯端末170のIPアドレス、RTPポート番号だけでなく、音声通話トラヒック、希望QoSクラス、MBR(Maximum Bit Rate)、GBR(Guaranteed Bit Rate)のパラメータの少なくとも一つを追加して送出することもできる。これらのパラメータは、SIPサーバ110だけでなくPCRF装置191に伝えることできる。
 PCRF装置191は、上りならびに下り方向の少なくとも一方に対して、音声通話トラヒック、携帯端末170のIPアドレス、ポート番号をパケット転送制御装置190から入力する。さらに必要であれば、希望QoSクラス、MBR(Maximum Bit Rate)、GBR(Guaranteed Bit Rate)などのパラメータもパケット転送制御装置190から入力する。さらにPCRF装置191は、携帯端末のIPアドレスからユーザを特定し、自身が保有するユーザデータベースから、ユーザプロファイル情報を読み出す。ここで、ユーザプロファイル情報としては、例えば、ユーザの契約情報がある。
 次に、PCRF装置191は、ユーザプロファイル情報やQoS情報をもとに、QoS制御のためのパラメータを生成させる。QoS制御のためのパラメータは、QoSクラスを識別する値であるQCI(Quality Class Identifier)、リソースの確保と保持の優先度を表すARP(Allocation and Retention Priority)、MBR、GBRの少なくとも一つである。ここで、MBRとGBRはパケット転送制御装置190から受信する場合はそのまま使い、受信がない場合はPCRF装置191が生成する。PCRF装置191は、上り方向ならびに下り方向の各々に対し、これら4種類のパラメータの少なくとも一つを生成し、パケット転送制御装置190に出力する。携帯端末170に対しては、ユーザプロファイルが「プレミアメンバ」であること、「ネットワーク輻輳時にQoSのダウングレードは許可していない」こと、トラヒックが音声通話であることから、QoSパラメータの値は、具体的には、例えば、上り、下りともに、QCI=1(Conversational Voice)、ARP=2、GBR=12.2kbps、MBR=22.8kbps、と設定する。ここでは、一例として携帯端末170でAMR−NB音声コーデックを用いることとし上記のパラメータ値を用いる。なお、別の構成として、AMR−WB音声コーデックを用いることもできるが、この場合は、GBRの数値を変更することができる。
 次に、パケット転送制御装置190の構成を図2を用いて説明する。
 図2は、パケット転送制御装置190の構成を示すブロック図である。図において、制御部211は、携帯端末170からの制御信号をSIPサーバ110に中継するとともに、SIPサーバ110からの制御信号やAck信号を携帯端末170へ中継する。さらに、PCRF装置191から、トラヒックデータ毎に、QCI、ARP、MBR、GBRの4種のパラメータの少なくとも一つを入力する。ここで、本実施の形態では、音声通話トラヒックの上り方向ならびに下り方向の各々に対する4種類のパラメータの少なくとも一つを、PCRF装置191から入力する。
 輻輳検出部200は、パケット転送部176から、パケット転送部176が図1のeNodeB装置194から受信した上りパケットに対するIPヘッダ部の情報を入力し、IPヘッダ部のECN(Explicit Congestion Notification)フィールドをチェックする。ECNフィールドにCEビットがたっている場合は、eNodeB装置194から携帯端末170までの下り方向が輻輳状態であることを検出し、下り方向の輻輳検出情報をレート設定部230に出力する。さらに下り方向の輻輳検出情報を制御部211を経由して図1のPCRF装置191に出力する。
 図1のPCRF装置191は、図2の制御部211から輻輳検出情報を入力すると、現在eNodeB装置194に接続している携帯端末170について、ユーザプロファイル情報ならびにQoSパラメータならびにオペレータポリシーのうちの少なくとも一つをチェックする。
 ここでオペレータポリシーとは、ネットワーク150を管理運用する通信事業者が定める設定であり、本発明では特に、ネットワークで輻輳が発生したときの対処の方針を定める設定である。本実施の形態では、ネットワークで輻輳の発生を検出すると、ユーザプロファイル情報に含まれる契約情報において、スタンダードユーザと設定されているユーザが流すパケットを対象として、GBRまたはMBRを強制的に削減する処理を行なった後で転送する一方、ユーザプロファイル情報にてプレミアメンバと設定されているユーザが流すパケットはそのまま転送する。
 ここでは、これらをチェックする場合を示す。ユーザプロファイル情報では、スタンダードな料金契約をしているユーザでありパケットを浪費するヘビーユーザではないこと、オペレータポリシーによれば音声通話またはTV電話通信の場合に、ネットワークが輻輳した場合は、QoSパラメータのGBRまたはMBRの少なくとも一方を削減し、映像または音声の少なくとも一方のレートを削減することを判断する。ここで、携帯端末170のQoSパラメータは、前述のように、上り、下りともに、QCI=1(Conversational Voice)、ARP=2、GBR=12.2kbps、MBR=22.8kbpsであった。下り方向のネットワークが輻輳検出していること、音声通話であることから、下り方向のQCIとARPは変更せずにそのままとし、下り方向のGBRとMBRのみを変更することとし、例えば、下り方向のGBR=8kbps、下り方向のMBR=12.2kbpsに変更する。なお、上り方向のQoSパラメータは変更しない。PCRF装置191は、変更後のOoSパラメータを図2の制御部211を経由してレート設定部230ならびに転送制御部188に出力する。
 図2に戻って、レート設定部230は、輻輳検出部200から輻輳検出情報を入力し、制御部211から変更後のQoSパラメータを入力する。レート設定部230は、変更後のQoSパラメータをもとに、変更後のレートとして、AMR−NB音声コーデックの8種類のビットレート(モード)のうち、下り方向のGBR=8kbps以下の条件を満たす、7.95kbpsを設定し、下り方向のレートを7.95kbpsに変更する指示ならびに、上り方向のレートは12.2kbpsで変更しない指示を、トランスコーダ部220に出力する。
 次に、トランスコーダ部220の構成を図3を用いて説明する。トランスコーダ部220は、分離・多重部280_1および280_2、画像トランスコーダ281ならびに音声トランスコーダ282を含んでいる。本実施の構成では音声通話であるので音声トランスコーダ282のみを使用することにする。分離・多重部280_1は、変更後の下りのレート情報として7.95kbpsを、上りのレートは変更しない指示を、レート設定部230から入力し、音声トランスコーダ282に出力する。また、下り方向および上り方向のパケットをパケット転送制御装置190から入力し音声トランスコーダ282に出力する。
 音声トランスコーダ282は、下り方向の音声圧縮符号化ストリームに対し、レートを、変更前の12.2kbpsから7.95kbpsに変換するようにトランスコードを行い、変換後のストリームをパケット転送部176に出力する。ここで、この変換は、12.2kbps音声圧縮符号化ストリームを、一旦、12.2kbpsのAMR−NB音声デコーダで復号し、7.95kbpsのAMR−NB音声エンコーダで再エンコードすることによって実施する。なお、上り方向は12.2kbpsのままで変換なしであるので、上り方向の12.2kbpsの音声圧縮符号化ストリームに対し音声トランスコーダをスルーさせそのまま出力する。
 図2に戻って、転送制御部188は、PCRF装置191から、QoSパラメータを、制御部211経由で入力する。そして、下り方向のQoSパラメータについては、QCIIとARPは変更されていないが、GBRとMBRが変更されていることを認識する。そして、トランスコーダ部220から入力した音声圧縮符号化ストリームをパケット化した上で、変更されたGBRならびにMBRにもとづき、転送を行なう。なお、本実施例では、音声圧縮符号化ストリームが、音声トランスコーダにおいて、変更後のGBR以下の7.95kbpsに変換されているため、パケット転送において、パケットを遅延させずに転送されることになる。また、パケット化のプロトコルとしては、RTP/UDP/IPを用いることとする。一方、上り方向については、QoSパラメータの変更がないことを認識し、入力した、音声圧縮符号化ストリームを格納したパケットをそのまま転送する。上り方向のパケットのプロトコルとしては、RTP/UDP/IPを用いることとする。
 以上で本発明の第1の実施の構成の説明を終えるが、種々の変形が可能である。
 本実施の形態では、音声通話を行なう場合について示したが、リアルタイムコミュニケーションであれば、同じ構成で他のサービスにも使うことができる。例えば、TV電話などに対しても同じ構成で実現することができる。
 その際、TV電話の音声データを格納したパケット(音声パケット)のみを対象とするのではなく、音声パケットに代わって、或いは、音声パケットに加えて、映像データを格納したパケット(映像パケット)を処理の対象としてもよい。即ち、上述の説明では、受信した音声パケットに格納された音声データをデコードし、その音声データのレートよりも低いレートで再エンコードして音声データを生成し、生成した音声データを格納する新たな音声パケットを、受信した音声パケットに代わって転送するパケット転送制御を行なったが、こうしたパケット転送制御と並行して、或いは、こうしたパケット転送制御に代わって、同様のパケット転送制御を映像パケットに対して行い、受信した映像パケットに格納された映像データをデコードし、その映像データのレートよりも低いレートで再エンコードして映像データを生成し、生成した映像データを格納する新たな映像パケットを、受信した映像パケットに代わって転送するパケット転送制御を行なうこととしてもよい。
 輻輳の検出にはECN情報を用いたが、他の情報を用いることも出来る。
 輻輳検出部200、レート設定部230ならびにトランスコーダ220は、パケット転送制御装置190に内蔵させたが、これらの一部または全部を外付けの装置とすることもできる。
 また、PCRF装置191の機能をパケット転送装置190に内蔵させることもできる。
 また、モバイルネットワーク150は、3Gネットワークとすることもできるし、パケット転送制御装置190に、SGSN(Serving GPRS Support Node)やGGSN(Gateway GPRS Support Node)を用いることも出来る。
 次に、本発明の第2の実施の形態について説明する。第2の実施の形態は、パケット転送制御装置190及び携帯端末170の構成が異なり、他の構成は図1に示す第1の実施の構成と同じである。第2の実施の形態におけるパケット転送制御装置190の構成を図4に示し、同じく第2の実施の形態における携帯端末170の構成を図5に示す。図4において、図2と同じ番号を付した構成要素は図2と同じ動作を行うので、説明は省略する。
 図4において、帯域算出部205は、セッション接続時、またはあらかじめ定められた時間間隔毎に、携帯端末170が接続されるネットワークに対し、下り方向及び上り方向の少なくとも一方の帯域を算出する。ここでは、下り方向の帯域を算出する場合について説明する。
 帯域算出部205は、パケット転送部176から携帯端末170に送信したパケットならびに、携帯端末170からの返信パケットの両者を用いて算出する。帯域算出部205は、まず、あらかじめ定められたタイミングで、図3のパケット転送部176に対し、携帯端末170に向け複数個の特定のパケット(プローブパケット)を送出する指示を出す。パケット転送部176は、前記指示に従い、指示を受けたタイミングで複数個の特定のパケットを携帯端末170に向け、あらかじめ定められた順番で、時間的に連続して送出する。ここで、複数個のパケットとは2パケット以上を示す。また、送出する順番はあらかじめ定められた順番とし、例えば、データサイズの小さいパケットからデータサイズの大きなパケットまで、順番に送出するものとする。さらに、パケットと次のパケットの間の時間間隔はあらかじめ定められた時間区間とする。ここで、プロトコルとしては、例えばRTP/UDP/IPを使用する。
 次に、パケット転送部176は、前記複数個のパケットを送出した結果として、携帯端末170から返信パケットを受信する。ここで、返信パケットには、例えば、携帯端末170において、差分遅延に対してしきい値以下で受信できたパケットの番号、当該パケットのデータサイズ、当該パケットをサーバから送信した時刻、当該パケットを携帯端末で受信した時刻、などの情報を含めておく。
 パケット転送部176は、携帯端末170から受信した返信応答信号から、携帯端末170が遅延差分のしきい値以下で受信できたパケットの番号、パケット転送制御装置190からの送信時刻ならびに、携帯端末170での受信時刻の情報を抽出し、これらを帯域算出部205に出力する。
 帯域算出部205は、パケット転送部176から上記の情報を入力し、ネットワークの帯域を算出する。具体的には、携帯端末170において遅延差分のしきい値以下で受信できたパケットの番号、当該パケットのデータサイズ、当該パケットのパケット転送制御装置190からの送信時刻、当該パケットの携帯端末170での受信時刻の情報を入力し、次の式1に従い、下り方向の帯域W_dを算出する。
D(N)/W_d=R(N)−R(N−1) … 式1
式1で、D(N)は、パケット転送制御装置190から第N番目に送出したパケットのデータサイズを示す。ここで、N、D(N)は、それぞれ、携帯端末170において遅延差分のしきい値以下で受信できたパケットの番号、データサイズであり、携帯端末170からの返信応答信号から抽出した情報である。また、R(N)は、パケット転送制御装置190からN番目に送出したパケットの携帯端末170での受信時刻を、R(N−1)はパケット転送制御装置190からN−1番目に送出したパケットの携帯端末170での受信時刻をそれぞれ示す。
 次に、下り方向の帯域計測値W_dを次の式2により時間的に平滑化し、B(n)_dを算出する。
B(n)_d=(1−β)*B(n−1)_d+βW_d … 式2
ここで、B(n)_dは、第n時刻における平滑化後の、下り方向の帯域算出値を示し、βは0<β<1の範囲の定数である。なお、式2よる時間方向平滑化は、不要な場合は、施さなくても良い。
 パケット転送部176は、ネットワーク帯域算出に必要な情報を、例えばセッション接続時のみ、またはセッション接続時ならびにセッション接続時を基点としあらかじめ定められた時間間隔毎に携帯端末170に送出するとともに、定期的に携帯端末から応答信号を受信する。
 帯域算出部205は、例えばあらかじめ定められた時間間隔毎に、B(n)_dを算出し、これらを輻輳検出部210に出力する。
 輻輳検出部210は、以下の判別を行い輻輳を検出する。
(1)下り方向の帯域算出値B(n)_dと携帯端末170による音声通話の下り方向のGBR+αとを比較したとき、B(n)_d≧GBR+αならば、携帯端末170の下り方向で輻輳は発生していないと判断し、その旨をレート設定部215に通知するとともに、制御部211を介して図1のPCRF装置191に通知する。ここでαはあらかじめ定められた数値とする。
(2)下り方向の帯域算出値B(n)_dと携帯端末170による音声通話の下り方向のGBR+αとを比較したとき、B(n)_d<GBR+αならば、携帯端末170の下り方向で輻輳が発生していると判断し、その旨をレート設定部215に通知するとともに、制御部211を介して図1のPCRF装置191に通知する。ここでαはあらかじめ定められた数値とする。更に、この場合は、B(n)_dの数値を制御部211を介してPCRF装置191に通知する。
 図1のPCRF装置191は、図2の制御部211から輻輳検出情報ならびにB(n)_dの数値を入力すると、現在eNodeB装置194に接続している携帯端末170について、ユーザプロファイル情報ならびにQoSパラメータならびにオペレータポリシーのうちの少なくとも一つをチェックする。
 ここでは、これらをチェックする場合を示す。ユーザプロファイル情報では、スタンダードな料金契約をしているユーザでありパケットを浪費するヘビーユーザではないこと、オペレータポリシーによれば音声通話またはTV電話通信の場合に、ネットワークが輻輳した場合は、QoSパラメータのGBRまたはMBRの少なくとも一方を削減し、映像または音声の少なくとも一方のレートを削減することを判断する。ここで、携帯端末170のQoSパラメータは、前述のように、上り、下りともに、QCI=1(Conversational Voice)、ARP=2、GBR=12.2kbps、MBR=22.8kbpsであった。
 下り方向のネットワークが輻輳検出していること、下り方向の帯域算出値はB(n)_dであること、音声通話であることを考慮して、下り方向のQCIとARPは変更せずにそのままとし、下り方向のGBRとMBRのみを変更することとし、例えば、下り方向のGBR≦B(n)_dに変更し、さらに、下り方向のMBRをGBR<MBR<22.8kbpsに変更する。なお、上り方向のQoSパラメータは変更しない。PCRF装置191は、変更後のOoSパラメータを図2の制御部211を経由してレート設定部215ならびに転送制御部188に出力する。
 レート設定部215は、輻輳検出部210から輻輳検出情報を入力し、制御部211から変更後のQoSパラメータを入力する。レート設定部215は、変更後のQoSパラメータをもとに、変更後のレートとして、AMR−NB音声コーデックの8種類のビットレート(モード)のうち、下り方向のGBR以下の条件を満たすビットレートを設定する。ここでは、この条件を満たすビットレートとして、6.7kbpsを設定するものとする。さらに、下り方向のレートを6.7kbpsに変更する指示ならびに、上り方向のレートは12.2kbpsで変更しない指示を、トランスコーダ部220に出力する。
 次に、図5は、携帯端末170の構成を示すブロック図である。図5において、パケット送受信部250は、受信したプローブパケットに対し、返信応答パケットを生成し、ネットワークに送出する。ここで、返信応答パケットは、例えば、以下のように生成する。
 パケット送受信部250は、図2のパケット転送部176から送出された複数個のプローブパケットの各々を受信し、遅延差分判別部255に出力する。
 遅延差分判別部255は、まず、各パケットに対する遅延時間T(n)を、次の式3により計測する。
T(n)=R(n)−S(n) … 式3
ここで、T(n)、R(n)、S(n)は、それぞれ、第n番目のパケットの遅延時間、第n番目のパケットの受信時刻、第n番目のパケットの送信時刻、を示す。
 さらに、各パケット間の遅延差分τ(n)を次の式4により算出する。
τ(n)=T(n)−T(n−1) … 式4
ここで、τ(n)はn番目のパケットの遅延差分を示す。
 次にτ(n)を用いて、遅延差分があらかじめ定められたしきい値を超えるか否かを判別する。もし、τ(N)≧Th3の場合は、N番目のパケットで遅延差分がしきい値を超えたと判別する。ここで、Th3はあらかじめ定められたしきい値である。そして、遅延差分がしきい値をこえた直後のパケットの番号Nをパケット送受信部250に出力する。
 パケット送受信部250は、遅延差分判別部255からパケット番号Nを入力し、遅延差分がしきい値をこえた直後のパケット番号N、第N番目のパケットのデータサイズ、N−1番目のパケットのデータサイズ、第N番目ならびに第N−1番目、それぞれのパケットの受信時刻ならびに送信時刻を、返信応答パケットのペイロードに格納した上で、図1のeNodeB194を経由してパケット転送制御装置190に向け送出する。
 ここで、しきい値Th3はあらかじめ定めておいても良いし、τ(n)の一連の数値を見た上でその都度決定してもよい。
 また、判別法としては、他の方法を用いることも出来る。たとえば、T(n)を、あらかじめ定めるルールで設定したしきい値と比較し、当該しきい値をこえた時点のnをNとして返信するようにしてもよい。
 図5において、音声コーデック253は音声通話の際に使用する。本実施の形態は音声通話であるので、画像コーデック252ならびに表示部256は使用しない。なお、別の実施の形態として、TV電話の構成の場合には、これらを使用する。
 第2の実施の形態では、次のようにして下り方向の輻輳を判定する。
(1)帯域算出部205からの指示に従ってパケット転送部176が携帯端末170にプローブパケットを送出する。
(2)プローブパケットを受信すると、携帯端末170は、遅延差分がしきい値をこえた直後のパケットの番号N、第N番目のパケットのデータサイズ、N−1番目のパケットのデータサイズ、おのおののパケットの受信時刻、送信時刻をペイロードに格納した返信パケットを生成して、eNodeB装置194を経由してパケット転送制御装置190に向けてその返信パケットを送出する。
(3)パケット転送制御装置190が返信パケットを携帯端末170から受信すると、帯域算出部205は、受信した返信パケットに格納された値、即ち、遅延差分がしきい値をこえた直後のパケットの番号N、第N番目のパケットのデータサイズ、N−1番目のパケットのデータサイズ、おのおののパケットの受信時刻、送信時刻を式1に適用して下り方向の帯域W_dを算出する。
(4)帯域算出部205は、算出した下り方向の帯域W_dを式2に適用して平滑値B(n)_dを算出する。
(5)輻輳検出部210はB(n)_dに基づいて下り方向での輻輳の有無を判定する。
(6)輻輳を検出した後の動作は第1の実施の形態と同様にしてパケットを転送する。
 尚、上り方向の輻輳判定を行う際には、帯域算出部205が遅延差分判別部255に相当する動作を行なう。
 以上で本発明の第2の実施の形態の説明を終えるが、種々の変形が可能である。
 図4の帯域算出部205における帯域算出アルゴリズムには、別のアルゴリズムを用いることも出来る。携帯端末からの返信応答信号をもとに帯域を算出したが、携帯端末との間の遅延量を計測しこれをもとに帯域を算出することもできる。
 なお、パケット転送部176から帯域計測用のプローブパケットを携帯端末170に向け送出することにより帯域を算出するのではなく、プローブパケットを用いずに携帯端末からの応答信号を用いて帯域推定する方法を用いることも出来る。この場合は、図4のパケット転送部176からのプローブパケットの送出ならびに、図5の遅延差分判別部255は不要となる。
 なお、本実施の形態では、帯域算出部205、輻輳検出部210ならびに、レート設定部215をパケット転送制御装置190に内蔵させたが、すくなくとも一つを外付け装置とすることもできる。
 この出願は、2012年12月7日に出願された日本出願特願第2012−267871号を基礎とする優先権を主張し、その開示のすべてをここに取り込むものである。
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a configuration of a first embodiment of a communication system according to the present invention. Here, a configuration in which a mobile LTE / EPC packet network is used as the network is shown. Further, FIG. 1 shows a configuration in which the packet transfer control device 190 uses P-GW (Packet data network Gateway), S-GW (Serving Gateway), or both. The mobile terminal is assumed to be a so-called Galapagos mobile phone, a smartphone, or a tablet. FIG. 1 shows an example in which a user A and a user B connect a mobile terminal to a network and make a call between mobile phones. FIG. 1 shows that the user A uses the mobile terminal 170 to connect the mobile network 150 and the IMS. A configuration is shown in which a VoIP voice call is made with user B's mobile terminal (not shown) via a network 130 via a partner network (not shown). Note that the same configuration as that in FIG. 1 can be realized for a videophone that uses both video and audio, instead of a voice call (voice call).
In addition, FIG. 1 illustrates a configuration for detecting congestion by extracting congestion information stored in an uplink packet (that is, in the direction of the packet transfer control device 190) from the eNodeB device 194 as an example of congestion detection. Here, as an example of congestion information, a configuration for detecting congestion by receiving congestion information by ECN (Explicit Connection Notification) will be described.
Here, when the eNodeB device 194 detects a congestion state in the downlink wireless network, the CE (Congestion) is set in the ECN field of the IP header portion of the uplink packet transmitted from the eNodeB to the packet transfer control device 190. (Experence) bit is sent to the packet transfer control device 190. When the packet transfer control device 190 detects that the CE bit is in the ECN field of the IP header part in the packet received from the eNodeB, Let it be detected that the network in the direction is congested.
In FIG. 1, when the mobile terminal 170 sends out the IP address and RTP port number of the partner terminal from the mobile terminal 170 as a voice call connection request, the mobile terminal 170 passes through the eNodeB device 194 and the packet transfer control device 190 to receive the IMS ( It is transferred to at least one of the SIP server 110 and the PCRF (Policy and Charging Rules Function) device 191 arranged in the IP Multimedia Subsystem (IP) network 130. Furthermore, the mobile terminal 170 adds at least one parameter among parameters such as voice call traffic, desired QoS class, MBR (Maximum Bit Rate), GBR (Guaranteed Bit Rate), and the like via the packet transfer control device 190. It is also possible to notify at least one of the SIP server 110 and the PCRF device 191.
The SIP server 110 receives a connection request signal for a voice call, sends a connection request to a partner terminal (not shown) via a partner network (not shown), and receives an Ack signal from the partner terminal. Then, the Ack signal is transmitted to the mobile terminal 170 via the packet transfer control device 190 and the eNodeB device 194, and is received by the mobile terminal 170, whereby the control signal for the voice call is exchanged. Here, not only the IP address and RTP port number of the mobile terminal 170 but also at least one of the parameters of voice call traffic, desired QoS class, MBR (Maximum Bit Rate), GBR (Guaranteed Bit Rate) from the counterpart terminal. Can also be sent out. These parameters can be transmitted not only to the SIP server 110 but also to the PCRF device 191.
The PCRF device 191 inputs the voice call traffic, the IP address and port number of the mobile terminal 170 from the packet transfer control device 190 for at least one of the upstream and downstream directions. If necessary, parameters such as a desired QoS class, MBR (Maximum Bit Rate), GBR (Guaranteed Bit Rate), and the like are also input from the packet transfer control device 190. Furthermore, the PCRF device 191 identifies a user from the IP address of the mobile terminal, and reads user profile information from the user database owned by the PCRF device 191. Here, the user profile information includes, for example, user contract information.
Next, the PCRF device 191 generates parameters for QoS control based on the user profile information and the QoS information. The parameter for QoS control is at least one of QCI (Quality Class Identifier) which is a value for identifying a QoS class, ARP (Allocation and Retention Priority) indicating the priority of resource reservation and retention, MBR, and GBR. . Here, MBR and GBR are used as they are when received from the packet transfer control device 190, and are generated by the PCRF device 191 when there is no reception. The PCRF device 191 generates at least one of these four types of parameters for each of the uplink direction and the downlink direction, and outputs them to the packet transfer control device 190. For the mobile terminal 170, the user profile is “Premier Member”, “QoS is not allowed to be downgraded during network congestion”, and the traffic is a voice call. Specifically, for example, QCI = 1 (Conversational Voice), ARP = 2, GBR = 12.2 kbps, MBR = 22.8 kbps are set for both uplink and downlink. Here, as an example, the AMR-NB audio codec is used in the portable terminal 170, and the above parameter values are used. As another configuration, an AMR-WB audio codec can be used, but in this case, the value of GBR can be changed.
Next, the configuration of the packet transfer control device 190 will be described with reference to FIG.
FIG. 2 is a block diagram showing the configuration of the packet transfer control device 190. In the figure, the control unit 211 relays a control signal from the mobile terminal 170 to the SIP server 110 and relays a control signal and an Ack signal from the SIP server 110 to the mobile terminal 170. Further, at least one of four types of parameters, QCI, ARP, MBR, and GBR, is input from the PCRF device 191 for each traffic data. Here, in the present embodiment, at least one of four types of parameters for each of the uplink direction and the downlink direction of the voice call traffic is input from the PCRF device 191.
The congestion detection unit 200 receives the IP header information from the packet transfer unit 176 for the uplink packet received by the packet transfer unit 176 from the eNodeB device 194 in FIG. 1, and sets an ECN (Explicit Connection Notification) field in the IP header unit. To check. When the CE bit is set in the ECN field, it is detected that the downlink direction from the eNodeB device 194 to the mobile terminal 170 is in a congestion state, and the downlink congestion detection information is output to the rate setting unit 230. Further, the downstream congestion detection information is output to the PCRF device 191 of FIG.
When the congestion detection information is input from the control unit 211 in FIG. 2, the PCRF device 191 in FIG. 1 determines at least one of user profile information, QoS parameters, and operator policy for the mobile terminal 170 currently connected to the eNodeB device 194. Check one.
Here, the operator policy is a setting determined by a telecommunications carrier that manages and operates the network 150. In the present invention, the operator policy is a setting that determines a policy for dealing with congestion in the network. In the present embodiment, when the occurrence of congestion is detected in the network, processing for forcibly reducing GBR or MBR for a packet sent by a user set as a standard user in the contract information included in the user profile information On the other hand, the packet sent by the user set as the premium member in the user profile information is transferred as it is.
Here, the case where these are checked is shown. In the user profile information, it is a user who has a standard fee contract and is not a heavy user who wastes packets. According to the operator policy, in the case of voice call or TV phone communication, if the network is congested, the QoS parameter It is determined to reduce at least one of the GBR and MBR and reduce the rate of at least one of video and audio. Here, as described above, the QoS parameters of the mobile terminal 170 are QCI = 1 (Conversational Voice), ARP = 2, GBR = 12.2 kbps, and MBR = 22.8 kbps for both uplink and downlink. Since the downlink network detects congestion and is a voice call, the downlink QCI and ARP are left unchanged and only the downlink GBR and MBR are changed. GBR = 8 kbps and downlink MBR = 12.2 kbps. Note that the upstream QoS parameter is not changed. The PCRF device 191 outputs the changed OoS parameter to the rate setting unit 230 and the transfer control unit 188 via the control unit 211 of FIG.
Returning to FIG. 2, the rate setting unit 230 inputs the congestion detection information from the congestion detection unit 200, and inputs the changed QoS parameter from the control unit 211. Based on the changed QoS parameter, the rate setting unit 230 satisfies the condition of GBR = 8 kbps or less in the downlink direction among the eight types of bit rates (modes) of the AMR-NB audio codec as the changed rate. 7.95 kbps, an instruction to change the downlink rate to 7.95 kbps, and an instruction not to change the uplink rate at 12.2 kbps are output to the transcoder unit 220.
Next, the configuration of the transcoder unit 220 will be described with reference to FIG. The transcoder unit 220 includes demultiplexing / multiplexing units 280_1 and 280_2, an image transcoder 281 and an audio transcoder 282. Since the present embodiment is a voice call, only the voice transcoder 282 is used. The demultiplexing / multiplexing unit 280_1 inputs 7.95 kbps as downlink rate information after the change, and an instruction not to change the uplink rate from the rate setting unit 230, and outputs it to the audio transcoder 282. Downstream and upstream packets are input from the packet transfer control device 190 and output to the voice transcoder 282.
The audio transcoder 282 transcodes the downlink audio compression encoded stream so as to convert the rate from 12.2 kbps before the change to 7.95 kbps, and sends the converted stream to the packet transfer unit 176. Output. Here, this conversion is performed by once decoding the 12.2 kbps audio compression-encoded stream with a 12.2 kbps AMR-NB audio decoder and re-encoding with a 7.95 kbps AMR-NB audio encoder. Since the upstream direction remains 12.2 kbps and no conversion is performed, the audio transcoder is passed through the 12.2 kbps audio compression-coded stream in the upstream direction and is output as it is.
Returning to FIG. 2, the transfer control unit 188 inputs a QoS parameter from the PCRF device 191 via the control unit 211. And about the QoS parameter of a downlink direction, although QCII and ARP are not changed, it recognizes that GBR and MBR are changed. Then, the audio compression coded stream input from the transcoder unit 220 is packetized and then transferred based on the changed GBR and MBR. In this embodiment, since the audio compression coded stream is converted to 7.95 kbps below the changed GBR in the audio transcoder, the packet is transferred without delaying the packet. Become. Further, RTP / UDP / IP is used as a packetization protocol. On the other hand, in the upstream direction, it is recognized that there is no change in the QoS parameter, and the input packet storing the audio compression coded stream is transferred as it is. It is assumed that RTP / UDP / IP is used as an upstream packet protocol.
This is the end of the description of the first embodiment of the present invention, but various modifications are possible.
In the present embodiment, a case where a voice call is performed is shown, but real-time communication can be used for other services with the same configuration. For example, the same configuration can be realized for a TV phone or the like.
At that time, the packet (video packet) storing the video data is not intended only for the packet (audio packet) storing the audio data of the videophone, but instead of or in addition to the audio packet. It is good also as an object of processing. In other words, in the above description, a new audio data stored in the received audio packet is decoded, re-encoded at a lower rate than the audio data rate, and the generated audio data is stored. Although packet transfer control is performed to transfer voice packets in place of received voice packets, the same packet transfer control is performed on video packets in parallel with or in place of such packet transfer control. Decode the video data stored in the received video packet, re-encode at a rate lower than the video data rate to generate video data, and create a new video packet to store the generated video data, Packet transfer control for transferring in place of the received video packet may be performed.
Although ECN information is used to detect congestion, other information can also be used.
The congestion detection unit 200, the rate setting unit 230, and the transcoder 220 are built in the packet transfer control device 190, but some or all of them may be external devices.
Further, the function of the PCRF device 191 can be built in the packet transfer device 190.
The mobile network 150 may be a 3G network, and the packet transfer control device 190 may be an SGSN (Serving GPRS Support Node) or a GGSN (Gateway GPRS Support Node).
Next, a second embodiment of the present invention will be described. In the second embodiment, the configurations of the packet transfer control device 190 and the portable terminal 170 are different, and the other configurations are the same as those of the first embodiment shown in FIG. FIG. 4 shows the configuration of the packet transfer control device 190 in the second embodiment, and FIG. 5 shows the configuration of the portable terminal 170 in the second embodiment. In FIG. 4, the constituent elements having the same numbers as those in FIG. 2 perform the same operations as those in FIG.
In FIG. 4, the bandwidth calculation unit 205 calculates at least one of the downlink and uplink bands for the network to which the mobile terminal 170 is connected at the time of session connection or at predetermined time intervals. Here, a case where a downstream band is calculated will be described.
The bandwidth calculation unit 205 calculates using both the packet transmitted from the packet transfer unit 176 to the mobile terminal 170 and the reply packet from the mobile terminal 170. First, the bandwidth calculation unit 205 instructs the packet transfer unit 176 in FIG. 3 to transmit a plurality of specific packets (probe packets) to the mobile terminal 170 at a predetermined timing. In accordance with the instruction, the packet transfer unit 176 directs a plurality of specific packets to the mobile terminal 170 at the timing when the instruction is received, and continuously transmits the packets in a predetermined order. Here, the plurality of packets indicates two or more packets. The sending order is a predetermined order. For example, packets are sent in order from a packet having a small data size to a packet having a large data size. Further, the time interval between the packet and the next packet is a predetermined time interval. Here, for example, RTP / UDP / IP is used as the protocol.
Next, the packet transfer unit 176 receives a reply packet from the portable terminal 170 as a result of sending the plurality of packets. Here, the reply packet includes, for example, the packet number that can be received below the threshold with respect to the differential delay, the data size of the packet, the time when the packet was transmitted from the server, the packet, Include information such as the time received by the mobile terminal.
The packet transfer unit 176, from the reply response signal received from the mobile terminal 170, the number of the packet that the mobile terminal 170 was able to receive within the threshold value of the delay difference, the transmission time from the packet transfer control device 190, and the mobile terminal 170 The information of the reception time at is extracted and output to the bandwidth calculation unit 205.
The bandwidth calculation unit 205 receives the above information from the packet transfer unit 176 and calculates the network bandwidth. Specifically, the packet number that can be received by the mobile terminal 170 below the delay difference threshold, the data size of the packet, the transmission time of the packet from the packet transfer control device 190, the mobile terminal 170 of the packet Is received, and the downstream bandwidth W_d is calculated according to the following equation 1.
D (N) / W_d = R (N) -R (N-1) ... Formula 1
In Expression 1, D (N) represents the data size of the Nth packet transmitted from the packet transfer control device 190. Here, N and D (N) are the packet number and data size that can be received by the mobile terminal 170 at or below the delay difference threshold value, respectively, and are information extracted from the reply response signal from the mobile terminal 170. is there. R (N) is the reception time at the portable terminal 170 of the Nth packet sent from the packet transfer control device 190, and R (N-1) is sent N-1th from the packet transfer control device 190. The reception time of the packet at the mobile terminal 170 is shown.
Next, the downstream band measurement value W_d is temporally smoothed by the following equation 2 to calculate B (n) _d.
B (n) _d = (1-β) * B (n−1) _d + βW_d Equation 2
Here, B (n) _d indicates a downstream bandwidth calculation value after smoothing at the n-th time, and β is a constant in a range of 0 <β <1. Note that the time direction smoothing according to Equation 2 may not be performed if unnecessary.
The packet transfer unit 176 sends information necessary for calculating the network bandwidth to the portable terminal 170 only at the time of session connection or at predetermined time intervals based on the time of session connection and the time of session connection. A response signal is received from the mobile terminal.
The bandwidth calculation unit 205 calculates B (n) _d at predetermined time intervals, for example, and outputs these to the congestion detection unit 210.
The congestion detection unit 210 performs the following determination to detect congestion.
(1) When the downlink bandwidth calculation value B (n) _d is compared with the downlink GBR + α of the voice call by the mobile terminal 170, if B (n) _d ≧ GBR + α, the mobile terminal 170 is congested in the downlink direction. Is notified to the rate setting unit 215 and to the PCRF device 191 of FIG. 1 via the control unit 211. Here, α is a predetermined numerical value.
(2) Comparing the downlink bandwidth calculation value B (n) _d with the downlink GBR + α of the voice call by the mobile terminal 170, if B (n) _d <GBR + α, the mobile terminal 170 is congested in the downlink direction. Is notified to the rate setting unit 215 and to the PCRF device 191 of FIG. 1 via the control unit 211. Here, α is a predetermined numerical value. Further, in this case, the numerical value of B (n) _d is notified to the PCRF device 191 via the control unit 211.
When the congestion detection information and the value of B (n) _d are input from the control unit 211 of FIG. 2, the PCRF device 191 of FIG. 1 determines the user profile information and the QoS parameters for the mobile terminal 170 currently connected to the eNodeB device 194. And at least one of the operator policies is checked.
Here, the case where these are checked is shown. In the user profile information, it is a user who has a standard fee contract and is not a heavy user who wastes packets. According to the operator policy, in the case of voice call or TV phone communication, if the network is congested, the QoS parameter It is determined to reduce at least one of the GBR and MBR and reduce the rate of at least one of video and audio. Here, as described above, the QoS parameters of the mobile terminal 170 are QCI = 1 (Conversational Voice), ARP = 2, GBR = 12.2 kbps, and MBR = 22.8 kbps for both uplink and downlink.
Considering that the downstream network has detected congestion, the downstream bandwidth calculation value is B (n) _d, and that it is a voice call, the downstream QCI and ARP remain unchanged. Only the downlink GBR and MBR are changed. For example, the downlink GBR is changed to BBR ≦ B (n) _d, and the downlink MBR is changed to GBR <MBR <22.8 kbps. Note that the upstream QoS parameter is not changed. The PCRF device 191 outputs the changed OoS parameter to the rate setting unit 215 and the transfer control unit 188 via the control unit 211 of FIG.
The rate setting unit 215 receives the congestion detection information from the congestion detection unit 210 and the changed QoS parameter from the control unit 211. Based on the changed QoS parameter, the rate setting unit 215, as the changed rate, among the eight bit rates (modes) of the AMR-NB audio codec, the bit rate that satisfies the conditions below the GBR in the downlink direction Set. Here, it is assumed that 6.7 kbps is set as the bit rate that satisfies this condition. Further, an instruction to change the downlink rate to 6.7 kbps and an instruction to not change the uplink rate at 12.2 kbps are output to transcoder section 220.
Next, FIG. 5 is a block diagram illustrating a configuration of the mobile terminal 170. In FIG. 5, a packet transmitting / receiving unit 250 generates a reply response packet for the received probe packet and sends it to the network. Here, the reply response packet is generated as follows, for example.
The packet transmission / reception unit 250 receives each of the plurality of probe packets transmitted from the packet transfer unit 176 in FIG. 2 and outputs the received packet to the delay difference determination unit 255.
The delay difference discriminating unit 255 first measures the delay time T (n) for each packet by the following equation 3.
T (n) = R (n) -S (n) ... Formula 3
Here, T (n), R (n), and S (n) indicate the delay time of the nth packet, the reception time of the nth packet, and the transmission time of the nth packet, respectively. .
Further, the delay difference τ (n) between the packets is calculated by the following equation 4.
τ (n) = T (n) −T (n−1) Equation 4
Here, τ (n) represents the delay difference of the nth packet.
Next, using τ (n), it is determined whether or not the delay difference exceeds a predetermined threshold value. If τ (N) ≧ Th3, it is determined that the delay difference has exceeded the threshold value in the Nth packet. Here, Th3 is a predetermined threshold value. Then, the packet number N immediately after the delay difference exceeds the threshold value is output to the packet transmitting / receiving unit 250.
The packet transmission / reception unit 250 receives the packet number N from the delay difference determination unit 255, the packet number N immediately after the delay difference exceeds the threshold, the data size of the Nth packet, the N−1th packet The data size, the reception time and transmission time of each of the Nth and N-1th packets are stored in the payload of the reply response packet, and then directed to the packet transfer control device 190 via the eNodeB 194 in FIG. Send it out.
Here, the threshold value Th3 may be determined in advance, or may be determined each time after looking at a series of values of τ (n).
Also, other methods can be used as the discrimination method. For example, T (n) may be compared with a threshold value set according to a predetermined rule, and n may be returned as N when the threshold value is exceeded.
In FIG. 5, a voice codec 253 is used during a voice call. Since the present embodiment is a voice call, the image codec 252 and the display unit 256 are not used. As another embodiment, these are used in the case of a TV phone configuration.
In the second embodiment, the congestion in the downlink direction is determined as follows.
(1) The packet transfer unit 176 sends a probe packet to the mobile terminal 170 in accordance with an instruction from the bandwidth calculation unit 205.
(2) Upon receiving the probe packet, the mobile terminal 170 receives the packet number N immediately after the delay difference exceeds the threshold, the data size of the Nth packet, the data size of the N−1th packet, A reply packet storing the packet reception time and transmission time in the payload is generated, and the reply packet is transmitted to the packet transfer control device 190 via the eNodeB device 194.
(3) When the packet transfer control device 190 receives a reply packet from the portable terminal 170, the bandwidth calculation unit 205 obtains the value stored in the received reply packet, that is, the packet immediately after the delay difference exceeds the threshold value. The downstream band W_d is calculated by applying the number N, the data size of the Nth packet, the data size of the (N-1) th packet, the reception time and transmission time of each packet to Equation 1.
(4) The band calculation unit 205 calculates the smooth value B (n) _d by applying the calculated downstream band W_d to Equation 2.
(5) The congestion detection unit 210 determines whether there is congestion in the downstream direction based on B (n) _d.
(6) After the congestion is detected, the packet is transferred in the same manner as in the first embodiment.
Note that the bandwidth calculation unit 205 performs an operation corresponding to the delay difference determination unit 255 when performing the congestion determination in the upstream direction.
This is the end of the description of the second embodiment of the present invention, but various modifications are possible.
Another algorithm may be used as the band calculation algorithm in the band calculation unit 205 in FIG. Although the bandwidth is calculated based on the reply response signal from the mobile terminal, the bandwidth can also be calculated based on the measured delay amount with the mobile terminal.
A method for estimating a bandwidth using a response signal from a mobile terminal without using a probe packet, instead of calculating a bandwidth by sending a probe packet for bandwidth measurement from the packet transfer unit 176 to the mobile terminal 170. Can also be used. In this case, the sending of the probe packet from the packet transfer unit 176 in FIG. 4 and the delay difference determination unit 255 in FIG. 5 are not necessary.
In this embodiment, the bandwidth calculation unit 205, the congestion detection unit 210, and the rate setting unit 215 are built in the packet transfer control device 190, but at least one of them can be an external device.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2012-267871 for which it applied on December 7, 2012, and takes in those the indications of all here.

Claims (10)

  1.  2つのノードの一方から受信した、音声データ及び映像データの少なくとも一方を格納したパケットを他方のノードに転送する際、前記2つのノード間の上り方向及び下り方向のパケット通信路の少なくとも一方について輻輳の検出を行い、輻輳の検出に応じて、受信したパケットに格納された、第1のビットレートでエンコードされた第1のデータをデコードして、前記第1のビットレートとは異なる第2のビットレートで再エンコードした第2のデータを生成し、前記第2のデータを格納するパケットを前記第1のデータを格納するパケットに代わって転送することを特徴とするパケット転送制御システム。 When a packet storing at least one of audio data and video data received from one of the two nodes is transferred to the other node, congestion occurs in at least one of the upstream and downstream packet communication paths between the two nodes. In response to detection of congestion, the first data encoded at the first bit rate stored in the received packet is decoded, and a second data different from the first bit rate is decoded. A packet transfer control system, wherein second data re-encoded at a bit rate is generated, and a packet storing the second data is transferred instead of a packet storing the first data.
  2.  受信したパケットのQoSパラメータを変更する手段と、
     前記第1のビットレート及び変更後のQoSパラメータに基づいて前記第2のビットレートを定める手段と
    を備えることを特徴とする請求項1に記載のパケット転送制御システム。
    Means for changing the QoS parameters of the received packet;
    The packet transfer control system according to claim 1, further comprising means for determining the second bit rate based on the first bit rate and the changed QoS parameter.
  3.  前記QoSパラメータは、QoSクラスを識別する値であるQCI(Quality Class Identifier)、リソースの確保と保持の優先度を表すARP(Allocation and Retention Priority)、MBR(Maximum Bit Rate)、GBR(Guaranteed Bit Rate)の少なくとも一つであることを特徴とする請求項2に記載のパケット転送制御システム。 The QoS parameters include a QCI (Quality Class Identifier) that is a value for identifying a QoS class, an ARP (Allocation and Retention Priority) indicating a priority for securing and retaining resources, an MBR (Maximum Bit Rate), and a GBR (Guarante Guate). 3. The packet transfer control system according to claim 2, wherein the packet transfer control system is at least one of
  4.  パケットに格納されたECN(Explicit Congestion Notification)に基づいて輻輳の発生を検出することを特徴とする請求項1乃至請求項3のいずれかに記載のパケット転送制御システム。 The packet transfer control system according to any one of claims 1 to 3, wherein occurrence of congestion is detected based on ECN (Explicit Congestion Notification) stored in the packet.
  5.  パケット通信路を確立する2つのノードの一方である端末に対してプローブパケットを送信し、前記プローブパケットに対する応答に基づいて輻輳の発生を検出することを特徴とする請求項1乃至請求項4のいずれかに記載のパケット転送制御システム。 5. The probe packet is transmitted to a terminal that is one of two nodes that establish a packet communication path, and occurrence of congestion is detected based on a response to the probe packet. The packet transfer control system according to any one of the above.
  6.  2つのノードの一方から受信した、音声データ及び映像データの少なくとも一方を格納したパケットを他方のノードに転送する際、前記2つのノード間の上り方向及び下り方向のパケット通信路の少なくとも一方について輻輳の検出を行い、輻輳の検出に応じて、受信したパケットに格納された、第1のビットレートでエンコードされた第1のデータをデコードして、前記第1のビットレートとは異なる第2のビットレートで再エンコードした第2のデータを生成し、前記第2のデータを格納するパケットを前記第1のデータを格納するパケットに代わって転送することを特徴とするパケット転送制御方法。 When a packet storing at least one of audio data and video data received from one of the two nodes is transferred to the other node, congestion occurs in at least one of the upstream and downstream packet communication paths between the two nodes. In response to detection of congestion, the first data encoded at the first bit rate stored in the received packet is decoded, and a second data different from the first bit rate is decoded. A packet transfer control method, wherein second data re-encoded at a bit rate is generated, and a packet storing the second data is transferred instead of a packet storing the first data.
  7.  受信したパケットのQoSパラメータを変更する手段と、
     前記第1のビットレート及び変更後のQoSパラメータに基づいて前記第2のビットレートを定める手段と
    を備えることを特徴とする請求項6に記載のパケット転送制御方法。
    Means for changing the QoS parameters of the received packet;
    The packet transfer control method according to claim 6, further comprising means for determining the second bit rate based on the first bit rate and the changed QoS parameter.
  8.  前記QoSパラメータは、QoSクラスを識別する値であるQCI(Quality Class Identifier)、リソースの確保と保持の優先度を表すARP(Allocation and Retention Priority)、MBR(Maximum Bit Rate)、GBR(Guaranteed Bit Rate)の少なくとも一つであることを特徴とする請求項7に記載のパケット転送制御方法。 The QoS parameters include a QCI (Quality Class Identifier) that is a value for identifying a QoS class, an ARP (Allocation and Retention Priority) indicating a priority for securing and retaining resources, an MBR (Maximum Bit Rate), and a GBR (Guarante Guate). The packet transfer control method according to claim 7, wherein the packet transfer control method is at least one of the following.
  9.  パケットに格納されたECN(Explicit Congestion Notification)に基づいて輻輳の発生を検出することを特徴とする請求項6乃至請求項8のいずれかに記載のパケット転送制御方法。 The packet transfer control method according to any one of claims 6 to 8, wherein the occurrence of congestion is detected based on ECN (Explicit Congestion Notification) stored in the packet.
  10.  パケット通信路を確立する2つのノードの一方である端末に対してプローブパケットを送信し、前記プローブパケットに対する応答に基づいて輻輳の発生を検出することを特徴とする請求項6乃至請求項8のいずれかに記載のパケット転送制御方法。 9. The probe packet is transmitted to a terminal that is one of two nodes that establish a packet communication path, and occurrence of congestion is detected based on a response to the probe packet. The packet transfer control method according to any one of the above.
PCT/JP2013/080964 2012-12-07 2013-11-11 Packet-forwarding control system and method WO2014087830A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012267871 2012-12-07
JP2012-267871 2012-12-07

Publications (1)

Publication Number Publication Date
WO2014087830A1 true WO2014087830A1 (en) 2014-06-12

Family

ID=50883255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080964 WO2014087830A1 (en) 2012-12-07 2013-11-11 Packet-forwarding control system and method

Country Status (1)

Country Link
WO (1) WO2014087830A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008519528A (en) * 2004-11-05 2008-06-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ System and method for transmitting layered video over a QoS enabled WLAN
WO2012048026A1 (en) * 2010-10-06 2012-04-12 Qualcomm Incorporated Method and apparatus for ecn receiver driven congestion control

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008519528A (en) * 2004-11-05 2008-06-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ System and method for transmitting layered video over a QoS enabled WLAN
WO2012048026A1 (en) * 2010-10-06 2012-04-12 Qualcomm Incorporated Method and apparatus for ecn receiver driven congestion control

Similar Documents

Publication Publication Date Title
EP3446464B1 (en) Systems and method for quality of service monitoring, policy enforcement, and charging in communications network
EP2165481B1 (en) Adaptive rate control in a communications system
US8145770B2 (en) Devices, methods, and media for determining and assigning optimal media characteristics in communications sessions
CN108282671B (en) Streaming media data transmission method
US20130194937A1 (en) Method and apparatus for providing intelligent codec rate adaptation for wireless users
JP2010521856A (en) Data transmission method in communication system
WO2011104225A1 (en) Monitoring mobile user quality-of-experience on a wireless network
US20150195326A1 (en) Detecting whether header compression is being used for a first stream based upon a delay disparity between the first stream and a second stream
US9954926B2 (en) QoS-guaranteed video stream method and system, and transmitting server
US20070201501A1 (en) Base station and base-station control apparatus
Abish et al. Detecting packet drop attacks in wireless sensor networks using bloom filter
US9509618B2 (en) Method of transmitting data in a communication system
JP5434570B2 (en) Stream distribution device
US8830853B2 (en) Signal processing
TWI470974B (en) Multimedia data rate allocation method and voice over ip data rate allocation method
WO2014083962A1 (en) Communications system
WO2014087830A1 (en) Packet-forwarding control system and method
WO2014142295A1 (en) Media communication system, bitrate control method and computer readable information recording medium
JP2008211568A (en) Streaming data transmission system, cognitive control node, video server, transcoding method, and band reservation method
US10038734B2 (en) Telecommunication network manager
WO2014087764A1 (en) Terminal and communication system
WO2014083994A1 (en) Packet transfer control system and method
JP2009124629A (en) Band management system and method, and access device
WO2014083961A1 (en) Packet transfer control device and communications system
US9826541B1 (en) System and method for user-specific quality of service scheduling in wireless systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP