WO2014087539A1 - Power grid control system and power grid control method - Google Patents

Power grid control system and power grid control method Download PDF

Info

Publication number
WO2014087539A1
WO2014087539A1 PCT/JP2012/081797 JP2012081797W WO2014087539A1 WO 2014087539 A1 WO2014087539 A1 WO 2014087539A1 JP 2012081797 W JP2012081797 W JP 2012081797W WO 2014087539 A1 WO2014087539 A1 WO 2014087539A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
control amount
data
amount
power
Prior art date
Application number
PCT/JP2012/081797
Other languages
French (fr)
Japanese (ja)
Inventor
山根 憲一郎
翔太 ▲逢▼見
正俊 熊谷
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2012/081797 priority Critical patent/WO2014087539A1/en
Priority to JP2014550876A priority patent/JP5962770B2/en
Publication of WO2014087539A1 publication Critical patent/WO2014087539A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the present invention relates to a technology of a power system control system and a power system control method for controlling a power system.
  • Control by the control device such as SVR (Step Voltage Regulator), SVC (Static Voltage Compensator), etc., so that the voltage at its own end (position where the control device is installed) becomes the target voltage. There is technology to do.
  • centralized control is disclosed in which the monitoring and control server collectively grasps the state of the entire power system and gives an optimal control command to each control device (see, for example, Patent Document 1).
  • a technique is also disclosed in which when reactive power is monitored on the SVR side and reactive power is measured for a predetermined time or longer, the SVC is estimated to be operating and tap switching control of the SVR is performed (for example, Patent Document 2).
  • This technology is a so-called autonomous distributed control technology that does not assume communication.
  • the voltage fluctuation at its own end is suppressed to an appropriate range by SVR or SVC.
  • SVR and SVC basically operate independently and do not cooperate with other control devices in the vicinity. Therefore, if a large-capacity load is provided in the power system or a large number of distributed power sources are connected to the power system, it may be difficult to suppress voltage fluctuations in the power system within an appropriate range.
  • Patent Document 1 is effective when the communication environment between the monitoring control server and each control device is stable and high-speed and high-quality communication can be performed.
  • a high-speed and high-quality communication environment is not in place such as in remote areas in mountainous areas.
  • the technique described in Patent Document 1 may delay the transmission of a control command from the monitoring control server to the control device or may not reach the control command. . Therefore, when a high-speed and high-quality communication environment cannot be used, there is a possibility that appropriate control cannot be sufficiently performed with the technique described in Patent Document 1.
  • Patent Document 2 The technique described in Patent Document 2 is considered to be effective when the SVR is on the upstream side (substation side) of the SVC and is installed at a position where the distance is short.
  • Patent Literature In the technique described in No. 2, it is considered difficult to perform appropriate control.
  • two or more SVCs are connected to the same power system, similarly, it is considered difficult to accurately estimate the reactive power output by each SVC using the SVR.
  • the present invention has been made in view of such a background, and an object of the present invention is to perform power control with high reliability.
  • the present invention is characterized in that, in the distributed control mode, when the reliability of the measurement data is low, the electric power system is controlled based on the temporary control amount.
  • FIG. 1 It is a figure showing an example of composition of an electric power system control system concerning a 1st embodiment. It is a figure which shows the hardware structural example of the central apparatus and control apparatus which concern on this embodiment. The structural example of the electric power grid
  • the power system control system 5 according to the first embodiment will be described with reference to FIGS.
  • the power system which monitors the communication state of the communication network 4 for controlling the power system comprised by a transformer etc., switches a control mode according to a communication state, and controls the control apparatus 2 appropriately.
  • An example of the control system 5 will be described.
  • FIG. 1 is a diagram illustrating a configuration example of a power system control system according to the first embodiment.
  • a central device (management device) 1 a plurality of control devices 2 (2a to 2c), and a plurality of sensors 3 (3a to 3c: measuring devices) can communicate with each other via a communication network 4. It is connected.
  • the central device 1 is configured as a computer system, for example.
  • the central apparatus 1 includes a communication state monitoring unit 101, a power state estimation unit 102, a control amount calculation processing unit 103, a model generation unit 104, a transmission / reception processing unit (transmission unit) 105, a measurement data storage unit 111, a system data storage unit 112, and A model data storage unit 113 is included.
  • the communication status monitoring unit 101 monitors the communication status of the communication network 4.
  • the communication state monitoring unit 101 collects time-stamped measurement data from each sensor 3 at a predetermined constant monitoring cycle Tm, and the collected time-stamped measurement data is stored in the measurement data storage unit 111 as measurement data. Store.
  • the measurement data is assumed to be measurement data with a time stamp.
  • the power state estimation unit 102 estimates the power state of the power system control system 5. Specifically, the power state estimation unit 102 determines observability by determining whether or not a sufficient number of measurement data for estimating the power state has been obtained. Then, the power state estimation unit 102 uses the measurement data and system data determined to be normal by a method according to whether it is observable or unobservable, and uses the power state (active power, reactive power, voltage, etc.) of the entire power system. ). The control amount calculation processing unit 103 calculates the control amount of each control device 2 and transmits each control amount to the control device 2. When the control device 2 is an LRT (Load Ratio control Transformer) or SVR, the control amount is a tap number (transformation ratio).
  • LRT Load Ratio control Transformer
  • the control device 2 refers to a tap map (a list in which tap numbers corresponding to the transformation ratio are included) included in the controlled variable, and switches the tap to the corresponding tap number. Note that the switching operation is not performed when the tap number has already been reached.
  • the model generation unit 104 calculates a power state and a control amount calculation model. The calculation model will be described later.
  • the transmission / reception processor 105 transmits / receives various data to / from each control device 2 and each sensor 3. That is, the transmission / reception processing unit 105 transmits various data such as control amount data, model data, and system data described later to the control device 2.
  • the data transmitted to these control devices 2 may be transmitted at different periods for each data type.
  • Measured data transmission cycle is predetermined in consideration of each power system, communication line specifications, number of communication devices, target performance, and the like.
  • the transmission period is set to a value such as 1 minute, 3 minutes, 10 minutes, 30 minutes, 60 minutes, or the like. These specific numerical values are examples, and are not limited to these values.
  • the measurement data storage unit 111 stores measurement data that is data related to the measurement values measured by the sensor 3. The measurement data will be described later.
  • the system data storage unit 112 stores system data that is data relating to the configuration of the power system, the specifications of the devices that configure the power system, and the like. System data will be described later.
  • the model data storage unit 113 stores model data that is data related to the power state and the control amount calculation model generated by the model generation unit 104.
  • the control device 2 is a device for mainly controlling the voltage in the state of the power system such as LRT, SVR, SVC, switched capacitor, battery-equipped PCS (Power Conditioning System), etc., and includes a controller 200 and a control processing unit. 204.
  • the controller 200 determines a control amount, and includes a transmission / reception processing unit 201, a control mode determination processing unit 202, a control amount calculation processing unit 203, a system data storage unit 211, a model data storage unit 212, and a measurement data storage unit 213.
  • the transmission / reception processing unit 201 transmits / receives data to / from the central device 1 and each sensor 3.
  • the control mode determination processing unit 202 determines any one of a plurality of control modes based on the communication state.
  • the control mode includes a central control mode, a distributed control mode, and an autonomous control mode. Each control mode will be described later.
  • the control amount calculation processing unit 203 calculates a control amount output by itself using an arithmetic model.
  • system data sent from the central apparatus 1 is stored.
  • the model data storage unit 212 stores model data sent from the central apparatus 1.
  • the measurement data storage unit 213 stores measurement data that is data related to the measurement values measured by the sensor 3. That is, the system data storage unit 211, the measurement data storage unit 212, and the model data storage unit 213 of the control device 2 are similar to the system data storage unit 112, the model data storage unit 113, and the measurement data storage unit 111 in the central device 1. Data is stored. However, when the control device 2 performs control in the autonomous control mode to be described later, only measurement data from the sensor 3 provided in the self-control device 2 of the control device 2 may be accumulated as measurement data. .
  • the control processing unit 204 performs control output according to the control amount sent from the central apparatus 1 or the control amount calculated by the control amount calculation processing unit 203.
  • the control processing unit 204 refers to a tap map (a list in which tap numbers corresponding to the transformation ratio are included) included in the controlled variable, and switches the taps to the corresponding tap numbers.
  • control outputs When the control device 2 is an SVC, a switched capacitor, or a PCS with a battery, there are two types of control outputs: reactive power output or target voltage.
  • the control output When the control output is a reactive power output, it is output as “advance 50 kvar” or “delay 30 kvar”.
  • the control processing unit 204 When the control output is the target voltage, the control processing unit 204 first monitors the difference between the voltage at the installation point of the control device 2 and the target voltage. Then, the control processing unit 204 uses the difference and the reactance between the installation point of the control device 2 and the inverter (capacitor) to set the target voltage, for example, by PI (Proportional Integral) control (proportional control, integral control). The reactive power to be output is determined so as to match, and the output operation is performed according to the reactive power.
  • PI Proportional Integral
  • the sensor 3 is a device that measures a power state quantity at an installation position on the power system or the like of the sensor 3 itself.
  • the power state quantity measured by the sensor 3 is transmitted to the central device 1 and the control device 2 via the communication network 4.
  • Data of the power state quantity measured by the sensor 3 is measurement data.
  • Each sensor 3 measures active power P, reactive power Q, voltage V, etc. every predetermined time, such as every 15 minutes, according to the type and role in a predetermined time period, and outputs it as measurement data. be able to. Further, the sensor 3 can also measure and output a current (which may include a flow direction), a voltage, and a power factor. Note that the active power P and the reactive power Q can also be calculated by a calculation formula using current, voltage, and power factor. In the case of a three-phase three-wire AC circuit, active power P, reactive power Q, current, and power factor are measured in phase units, and voltage is measured in line units. In order to simplify the measurement, only the representative phase (for example, the U phase) or between the representative lines (for example, the UV phase) may be measured.
  • the transmission / reception processing unit 105 of the central apparatus 1 stores the measurement data received from the sensor 3 in the measurement data storage unit 111.
  • the transmission / reception processing unit 201 of the control device 2 stores the measurement data received from the sensor 3 in the measurement data storage unit 213. The measurement data will be described later.
  • the communication network 4 is a communication network that connects the central device 1, the control device 2, and the sensor 3 to each other. Each of the central device 1, the control device 2, and the sensor 3 transmits and receives various data such as control commands and measurement data to each other using the communication network 4.
  • the communication network 4 may be a wired network such as a public line such as a telephone line, Ethernet (registered trademark), a dedicated communication line, and a power line carrier communication line.
  • the communication network 4 may be a wireless network such as a mobile phone communication network, a PHS (Personal Handy-phone System), a business radio, a satellite line, a wireless LAN (Local Area Network), or ZigBee (registered trademark).
  • a wireless network such as a mobile phone communication network, a PHS (Personal Handy-phone System), a business radio, a satellite line, a wireless LAN (Local Area Network), or ZigBee (registered trademark).
  • FIG. 2 is a diagram illustrating a hardware configuration example of the central device and the control device according to the present embodiment.
  • FIG. 2A is a diagram illustrating a hardware configuration example of the central device.
  • the central apparatus 1 has a CPU (Central Processing Unit) 301, a RAM (Random Access Memory) 302, a ROM (Read Only Memory) 303, an HD (Hard Disk) 304, a communication interface 305 such as a LAN (Local Area Network) card, etc. as a bus. 306 is connected.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • HD Hard Disk
  • a communication interface 305 such as a LAN (Local Area Network) card, etc. as a bus. 306 is connected.
  • LAN Local Area Network
  • the communication state monitoring unit 101, the power state estimation unit 102, the control amount calculation processing unit 103, the model generation unit 104, and the transmission / reception processing unit 105 are expanded in the RAM 302 by a program stored in the HD 304. This is realized by being executed by the CPU 301. Further, the measurement data storage unit 111, the system data storage unit 112, and the model data storage unit 113 are realized by the HD 304.
  • FIG. 2B is a diagram illustrating a hardware configuration example of the control device.
  • a CPU 401, a ROM 402, and a communication interface 403 are connected via a bus 404.
  • the control processing unit 204, the controller 200, the transmission / reception processing unit 201 constituting the controller 200, the control mode determination processing unit 202, and the control amount calculation processing unit 203 in the control device 2 of FIG. Realize by executing.
  • the system data storage unit 211, the model data storage unit 212, and the measurement data storage unit 213 are formed in the ROM 402.
  • FIG. 3 shows a configuration example of the power system according to the present embodiment.
  • the power system is roughly divided into nodes 31 (31a to 31g) and branches 32 (32a to 32f), and each node 31 and branch 32 has attribute data.
  • the node 31 is a place where a predetermined device is installed.
  • the node 31a is a transformer installed in a substation, to which a sensor 3a (3) and a control device 2a (2) are connected.
  • the node 31b is a pole transformer installed on a utility pole, to which a sensor 3b (3) is connected.
  • the node 31c is a pole transformer installed on the utility pole, but the control device 2 and the sensor 3 are not installed there.
  • the node 31d indicates a load or power source such as a customer or a distributed power source, to which a sensor 3c (3) and a control device 2b (2) are connected.
  • the node 31e is a utility pole in which a pole transformer is installed, and the sensor 3 is not installed there.
  • the node 31f is a utility pole in which a pole transformer is installed, and a sensor 3d (3) is installed there.
  • the last node 31g indicates a load or power source such as a customer or a distributed power source, to which a sensor 3e (3) and a control device 2c (2) are connected.
  • the branch 32 is a path section between the node 31 and the node 31, and specifically, a section of a power transmission line or a distribution line.
  • nodes other than the branch 32 are nodes 31.
  • Each branch 32 has a resistance R and a reactance X as its impedance. Strictly speaking, the branch 32 also has a capacitance, but in this example, it is considered to be sufficiently smaller than the others and is ignored.
  • the branch 32a in FIG. 3 is a section in which the start point node is 31a and the end point node is 31b.
  • the start point of the branch 32b is a node 31b and the end point is a node 31c.
  • the start point of the branch 32c is a node 31c, and the end point is a node 31d.
  • the start point of the branch 32d is a node 31d, and the end point is a node 31e.
  • the start point of the branch 32e is a node 31e, and the end point is a node 31f.
  • the start point of the branch 32f is a node 31f and the end point is a node 31g.
  • FIG. 4 is a diagram illustrating a configuration example of node management data according to the first embodiment.
  • the node management data is data that forms part of the system data 10.
  • the node management data has fields of a node ID (Identification), a substation flag, a pole transformer flag, a sensor ID, a control device ID, a measured value, and a power state estimated value.
  • the node ID is information for identifying the node.
  • the substation flag is information indicating the presence or absence of a substation.
  • the pole transformer flag is information indicating the presence or absence of a pole transformer.
  • the sensor ID is information for identifying the sensor 3 and information indicating the presence or absence of the sensor 3.
  • the control device ID is information for identifying the control device 2 and information for identifying the presence or absence of the control device 2.
  • the measured value is a measured value by the sensor 3. The measured value is included in the measured data.
  • the power state estimated value is a value of a power state estimated using a calculation model described later using all or a part of measurement data sent from each sensor 3 at each node.
  • the power state estimated value is an estimated value of active power P (PA to PG), reactive power Q (QA to QG), estimated voltage V (VA to VG), and the like.
  • the timing at which the power state estimated value is calculated is preferably synchronized with the sensor 3 (for example, every 15 minutes).
  • the power state at the nodes is estimated from the power flow calculation and stored in the node management data. In many cases, the power state estimated value and the measured value are different from each other.
  • a power state estimated value calculated based on power flow calculation or the like is stored in the power state estimated value.
  • the power state estimation value is calculated for all nodes.
  • the user may specify a node for calculating the power state estimated value.
  • node management data In addition to the items shown in FIG. 4, other items may be added to the node management data.
  • the shown items are divided into a plurality of node management data, and the divided node management data are linked to each other. Or the structure matched with a pointer etc. may be sufficient. The same can be said for not only the node management data but also other data described later.
  • FIG. 5 is a diagram illustrating a configuration example of branch management data according to the first embodiment.
  • the branch management data is data that forms part of the system data.
  • the branch management data includes fields of branch ID, start node ID, end node ID, resistance value R ( ⁇ ), and reactance X ( ⁇ ).
  • the branch ID is information for identifying a branch.
  • the start point node ID is the node ID of the node that is the start point of the target branch.
  • the end node ID is the node ID of the node that is the end point of the target branch.
  • the resistance value is the resistance value of the target branch.
  • the reactance is the reactance of the target branch. The resistance value and reactance are calculated from the voltage at the node, the material of the branch, and the like.
  • FIG. 6 is a diagram illustrating a configuration example of control device management data according to the first embodiment.
  • the control device management data is data that forms part of the system data.
  • the control device management data has fields of control device ID, reference voltage (V), LDC (Line Drop Compensator) parameters R, X ( ⁇ ), operation time limit (sec), and rated capacity (kVA / kvar). Yes.
  • the control device ID is information for identifying the control device 2.
  • the reference voltage, the LDC parameter, and the rated capacity are values determined by the specifications of each control device 2.
  • the LDC parameter is used for a device in which the control device 2 adjusts a voltage according to a load such as LRT or SVR.
  • the impedance (resistance, reactance) and dead zone from the control device 2 to a reference point are used. Is numerical data composed of Therefore, when the control device 2 is other than a device that adjusts the voltage according to the load such as LRT or SVR, the LDC parameter is invalid.
  • the operation time period is the time from when the control device 2 operates until the next operation becomes possible.
  • FIG. 7 is a diagram illustrating a configuration example of control amount data according to the first embodiment.
  • the control amount data has a control device ID, a control amount, and a time stamp.
  • the control device ID is an ID for identifying the control device 2 and is also a destination of control amount data.
  • the control amount is a control amount in the control device 2 corresponding to the control device ID.
  • the time stamp is the date and time when the control amount data is transmitted.
  • the control amount data in FIG. 7 is data transmitted from the central device 1 to the control device 2, and when the control device 2 performs centralized control, the control device 2 identifies itself with the control amount included in the control amount data. Control.
  • FIG. 8 is a diagram illustrating a configuration example of measurement data according to the first embodiment.
  • One record of measurement data corresponds to the measurement data sent from the sensor 3.
  • the measurement data includes a time stamp, a sensor ID, and each measurement value measured by the target sensor 3.
  • the measured values are active power P (kW), reactive power Q (kvar), and voltage V (V).
  • the time stamp is the date and time when the measurement value is measured by the target sensor 3.
  • the sensor ID is information for identifying the sensor 3.
  • FIG. 9 is a diagram for explaining the transition of the control mode according to the first embodiment.
  • the centralized control mode is a mode in which the central device 1 controls all the control devices 2, and corresponds to the centralized control of the technique described in Patent Literature 1. Specifically, the central device 1 calculates the control amount of each control device 2, and each control device 2 controls itself based on the control amount sent from the central device 1.
  • the central control mode is excellent in terms of efficiency and the like because the central device 1 performs all control.
  • the distributed control mode calculates and controls its own control amount based on the power state / control amount calculation model calculated by the central device 1 and the measurement data acquired from the sensor 3. Mode. In the distributed control mode, the control amount from the central device 1 is not used, and the control amount can be calculated by the control device 2 itself.
  • the autonomous control mode is a mode in which the control device 2 calculates and controls its own control fee regardless of the central device 1, and corresponds to the autonomous distributed control of the technology described in Patent Document 2. .
  • the distributed control mode that is controlled after estimating the power state of the power system is different from the autonomous control mode that performs control so as to simply cancel the deviation from the target voltage at the local node.
  • the control amount calculation processing unit 203 of the control device 2 performs a predetermined predetermined value based on the control parameter of each control device 2 included in the system data and the measurement data.
  • the control amount is calculated according to the method. For example, when the control device 2 is LRT or SVR, the control amount to be output by itself is calculated based on the constant voltage control in the SVC, the switched capacitor, and the battery-equipped PCS based on the LDC method, and the control processing unit 204 Performs its own control based on this control amount.
  • the priority order is (1) centralized control mode, (2) distributed control mode, and (3) autonomous control mode.
  • Control mode transition control will be described with reference to FIG.
  • the central device 1 calculates the control amount of the control device 2, it transmits the calculated control amount to the control device 2 as control amount data.
  • the control amount data is given a time stamp that is a transmission date and time.
  • the control device 2 compares the difference Td between the time stamp of the control amount data previously received from the central device 1 and the current time with a preset first predetermined time T1.
  • the first predetermined time T1 is set to be equal to or longer than the transmission period Tc of control amount data by the central device 1 (T1 ⁇ Tc).
  • Td ⁇ T1 that is, when the control amount data is transmitted from the central device 1 to the control device 2 at predetermined time intervals, the control device 2 has a communication soundness. It is determined that it is maintained, and control based on the centralized control mode is performed (S1).
  • Td ⁇ T1 that is, when the control amount data is not transmitted from the central device 1 to the control device 2 at predetermined time intervals (communication amount is equal to or less than a predetermined value), the control device 2 Then, it is determined that the soundness of communication has been lost, and the process shifts to the distributed control mode (S2).
  • the control device 2 estimates the power state of the power system in itself based on the power state estimation model received from the central device 1 and predetermined measurement data. Furthermore, the control device 2 calculates its own control amount using the control amount calculation model, and executes a predetermined control operation (performs a predetermined control output).
  • the power state estimation model is a calculation model for estimating the power state from the measured value
  • the control amount calculation model is a calculation model for calculating the control amount in itself from the estimated power state.
  • the control device 2 is sent from the central device 1 in advance even when the control amount calculated by the central device 1 cannot be received in a predetermined cycle (when the communication state deteriorates).
  • the control amount can be calculated based on the calculation model, and appropriate control can be performed.
  • the control device 2 During control in the distributed control mode, when the communication state recovers soundness and the control device 2 receives the control amount data from the central device 1 within the first predetermined time T1 (Td ⁇ T1), the control device 2 It is determined that the communication state has recovered soundness, and the control mode is shifted from the distributed control mode to the centralized control mode (S3).
  • the control device 2 may immediately shift to the centralized control mode when the control amount data can be received within the first predetermined time T1.
  • the control device 2 continues the distributed control mode until new control amount data is received, and the difference Te between the time when the new control amount is received and the time when the previous control amount is received is When Te ⁇ T1, the distributed control mode may be shifted to the centralized control mode.
  • the control device 2 When the time during which the communication state has deteriorated continues for a long time and the elapsed time Ts after the transition to the distributed control mode becomes equal to or longer than the effective period T2 of the power state estimation model (Ts ⁇ T2), the control device 2 The control mode is shifted from the distributed control mode to the autonomous control mode (S4).
  • the control device 2 can relatively accurately perform control for stabilizing the voltage of the entire power system.
  • the configuration of the power system may be changed when a new distributed power source is connected to the power system or the customer's equipment is discarded.
  • the change in the configuration of the power system also affects the estimation accuracy of the power state, and the appropriate control amount changes accordingly.
  • an arithmetic model that is far from the actual state of power supply and demand in this way reduces the estimation accuracy of the power state and does not contribute to maintaining the stability of the power system.
  • a period T2 that can be used effectively is set in advance in the calculation model of the present embodiment.
  • the effective period T2 is set longer than the predetermined time T1 (T2> T1 ⁇ Tc).
  • the control device 2 under the autonomous control mode performs control so as to eliminate the deviation between the target voltage of the local node and the measured voltage based on the measurement data from the sensor 3 of the local node.
  • the control device 2 switches from the autonomous control mode to the centralized control mode. (S5). At this time, the control device 2 may immediately shift to the centralized control mode. Alternatively, the control device 2 waits until a new control amount is received, and when the difference Te between the previous control amount reception time and the current control amount reception time is Te ⁇ T1, the autonomous control mode changes to the centralized control mode. The control mode may be shifted to.
  • the central device 1 transmits a control amount (control amount data) calculated based on each measurement data to each control device 2 at a control cycle Tc such as several seconds to several minutes.
  • the central apparatus 1 has previously transmitted a calculation model including a power state estimation model and a control amount calculation model to the control apparatus 2. If the communication state deteriorates and control amount data cannot be received even after waiting for the predetermined time T1 set to several minutes, the control device 2 shifts from the central control mode to the distributed control mode. That is, the control device 2 stops using the control amount data sent from the central device 1 and performs control using the arithmetic model sent together with the control amount data. Incidentally, the control amount data is continuously transmitted from the central device 1 to the control device 2 even in the distributed control mode and the autonomous control mode.
  • the control device 2 changes from the distributed control mode to the autonomous control mode. Transition.
  • the valid period T2 of the power state estimation model may be defined as an elapsed time since the creation, or may be defined by a date and time, for example, “valid until September 30, 2012”.
  • FIG. 10 is a flowchart illustrating a control amount calculation process in the central apparatus according to the first embodiment.
  • the process shown in FIG. 10 is a process for calculating the control amount of the control device 2 used in the centralized control mode.
  • the communication state monitoring unit 101 accumulates measurement data (with a time stamp) sent from each sensor 3 at a predetermined constant monitoring cycle Tm (S101).
  • the communication state monitoring unit 101 determines the soundness (normal or not) of the communication state with the central apparatus 1 for each sensor 3 (S102). Measurement data used for power state estimation changes depending on the determination here. That is, the power state estimation unit 102 does not use the measurement data determined to be abnormal in step S102 for power state estimation.
  • the communication state monitoring unit 101 determines the difference between the time stamp of the measurement data received last time and the current time as the predetermined time period. Compare with Tm. When the time period Tm is exceeded ((current time ⁇ time stamp of latest measurement data)> Tm), the communication state monitoring unit 101 determines that the soundness of the communication state is deteriorated. It can be determined that the soundness of the communication state decreases as the difference between the current time and the time stamp of the latest measurement data increases.
  • the cause of the deterioration of the soundness of the communication state may be the cause of the communication network 4 itself or the cause of the sensor 3 itself.
  • Possible causes of the communication network 4 include, for example, communication congestion, radio wave interference due to electromagnetic waves from obstacles and electronic devices, disconnection, and the like.
  • Possible causes of the sensor 3 itself include, for example, a failure of the sensor 3 and a temporary suspension of processing due to overload. Therefore, by determining the soundness of the communication state between the sensor 3 and the central device 1, it is possible to determine whether or not the sensor 3 is operating normally.
  • the power state estimation unit 102 performs observability determination in the power state estimation according to the number of measurement data determined to have a normal communication state in step S102 (hereinafter, normal measurement data number). It is determined whether or not observation is possible (S103). “Observable” means that the number of measurement data that can be acquired is sufficient to estimate the power state, and is determined by the following method, for example.
  • the power state estimation unit 102 sets the total number of power states (for example, active power P, reactive power Q, voltage V) of nodes and branches of the target power system as Nd.
  • the electric power state estimation part 102 calculates the ratio (Nn / Nd) of the normal measurement data number Nn with respect to the total number Nd. Subsequently, the power state estimation unit 102 determines that observation is possible if the ratio of Nn to Nd (Nn / Nd) is equal to or greater than a predetermined value, and otherwise determines that observation is impossible.
  • step S103 when it is determined that observation is possible (S103 ⁇ Yes), the power state estimation unit 102 calculates the power flow at each monitoring node using the measurement data and system data of the sensor 3 determined to be normal. Is estimated (S104), and the process proceeds to Step S106.
  • the monitoring node is a node whose voltage should be monitored, and is set by the user. If the user does not set a monitoring node, all nodes become monitoring nodes.
  • the power state estimation unit 102 estimates the power state in the following procedure. First, an initial value for the power state of each node is set via the input unit. And the electric power state estimation part 102 performs the tidal current calculation based on the set initial value. Subsequently, the power state estimation unit 102 calculates the sum of the squares of the estimated values related to the power states (active power P, reactive power Q, estimated voltage V) obtained by the power flow calculation and the deviations of the measured values included in the measurement data. A solution regarding the power state of each node is obtained by repeated calculation so as to be minimized. In this way, an estimated power state value at an arbitrary point in the power system is finally obtained. The power state estimation unit 102 adds a time stamp to the obtained power state estimation value and stores it in the node management data (FIG. 4) of the system data storage unit 112 as measurement data. Such calculation of the power state estimation value is a known method.
  • step S103 when it is determined that it is not observable (unobservable) (S103 ⁇ No), the power state estimation unit 102 uses the measurement data and system data of the sensor 3 determined to be normal to calculate the power flow. (S105), and the process proceeds to step S106.
  • the power state estimation unit 102 establishes equations (power equations) relating to active power, reactive power, and estimated voltage, and solves them using measurement data, whereby the power state of each monitoring node and each branch The power flow calculation for obtaining (active power P, reactive power Q, estimated voltage V) is performed.
  • the power state estimation unit 102 uses the power state obtained by the power flow calculation as a power state estimation value, and stores this power state estimation value as measurement data in the node management data (FIG. 4) of the system data storage unit 112. . As described above, the power state estimation unit 102 obtains the power state estimation value at an arbitrary point of the power system through the processes of steps S104 and S105.
  • the control amount calculation processing unit 103 calculates the control amount that each control device 2 should output using the power state estimation value calculated in steps S104 and S105 (S106). For example, the control amount calculation processing unit 103 calculates the control amount by the following procedure. Here, for example, the sum of the squares of the deviations of the estimated voltage from each target voltage at a plurality of predetermined points on the power system is used as the objective function.
  • the estimated voltage is a voltage calculated in steps S104 and S105 in FIG. 10, and the target voltage is a reference voltage (see FIG. 5) to be output in the control device 2.
  • the control amount calculation processing unit 103 calculates the optimal control amount of each control device 2 so as to minimize this objective function. Thereby, the control amount calculation processing unit 103 calculates an optimal control amount for stabilizing the voltage of the entire power system.
  • control amount is a tap number (transformation ratio) of a voltage regulator such as LRT or SVR, SVC, a switched capacitor, reactive power of a PCS with a battery, or the like.
  • a voltage regulator such as LRT or SVR, SVC, a switched capacitor, reactive power of a PCS with a battery, or the like.
  • There are various methods for minimizing the objective function such as hill climbing, quadratic programming, and tabu search. Which solution method to use is determined by the user according to the nature of the objective function and the nature of the controlled variable (continuous value, discrete value).
  • the calculated control amount may be stored in the system data storage unit 112 or the like as a control amount history.
  • the transmission / reception processing unit 105 transmits the calculated control amount of each control device 2 as control amount data to each control device 2 via the communication network 4 (S107).
  • the central device 1 determines the soundness of the measurement data from each sensor 3 and performs power state estimation according to the soundness. Furthermore, the central apparatus 1 calculates the control amount of each control apparatus 2 based on the calculated power state estimation value, and transmits it.
  • FIG. 11 is a flowchart illustrating the procedure of the calculation model calculation process in the central apparatus according to the first embodiment.
  • the process shown in FIG. 10 is a process for calculating a control amount used in the centralized control mode
  • the process shown in FIG. 11 is a process for calculating an arithmetic model used in the distributed control mode.
  • the central controller 2 executes the process shown in FIG. 10 and the process shown in FIG. 11 in parallel.
  • the model generation unit 104 uses the measurement values (FIG. 8) to measure the power state measured values (active power P, reactive power Q) by each sensor 3, and the power state estimation unit 102 in FIG.
  • Various power state estimation values (active power P, reactive power Q, estimated voltage V) of each node and each branch estimated in S104 and S105, and control amounts of each control device 2 calculated in step S106 of FIG. Data is read for use as teacher data (S201).
  • the model generation unit 104 uses the power state measurement value actually measured by the sensor 3 and the power state estimation value of each node and each branch estimated by the power state estimation unit 102 in the process illustrated in FIG. Then, a power state estimation model is generated (S202). The generation of the power state estimation model will be described later.
  • the model generation unit 104 controls the power state estimation value of each node and each branch estimated by the power state estimation unit 102 in FIG. 10 and the control of each control device 2 calculated by the control amount calculation processing unit 103 in FIG.
  • the control amount calculation model is generated using the amount (S203). The generation of the control amount calculation model will be described later.
  • the model generation unit 104 packages the power state estimation model and control amount calculation model data (coefficient parameters) generated for each control device 2 in a predetermined combination.
  • the power state estimation model is a combination of a measurement value of each node x and node y as an input
  • a control amount calculation model is a combination of a local node (node i) Packaging is performed.
  • the transmission / reception processing unit 105 transmits packaged data (model data) of each operation model to each control device 2 via the communication network 4 (S204).
  • the central device 1 generates a calculation model such as a power state estimation model and a control amount calculation model from the measurement data, and transmits the generated calculation model to each control device 2.
  • a calculation model such as a power state estimation model and a control amount calculation model from the measurement data
  • the generation of the arithmetic model can use a linear model or a nonlinear model.
  • a linear model will be described as an example.
  • generation of a power state estimation model will be described.
  • the input (explanatory variable) of the power state estimation model is an actual measurement value (active power P, reactive power Q) of the power state measured by each sensor 3.
  • the output from the power state estimation model is a power state estimation value of each node (or each branch) in the power system estimated by the power state estimation unit 102.
  • the model generation unit 104 identifies the coefficients a nk and b nk in the linear model represented by the following formula (1). These coefficients a nk and b nk become a power state estimation model.
  • S n represents the complex power at any node n.
  • j represents an imaginary unit.
  • P k and Q k indicate active power (real component of complex power) and reactive power (imaginary component of complex power) measured by the sensor 3 (sensor node k), respectively.
  • a nk and b nk are coefficient parameters of the power state estimation model, and indicate the influence of the sensor node k at the node n.
  • the model generation unit 104 substitutes the input data (P k , Q k ) and the output data (S n ) at each node into the equation (1), and uses the least square method or the like to calculate the coefficients (a nk , b nk). ) Is identified.
  • the central device 1 when the basic calculation formula (formula (1)) is set in advance, the central device 1 simply transmits the coefficient parameters a nk and b nk to the control device 2, and the power state estimation model. Can be updated. That is, the amount of information can be reduced by using the coefficient in Equation (1) as an arithmetic model.
  • the input (explanatory variable) of the control amount calculation model is the power state estimation value of each node estimated by the power state estimation unit 102 in steps S104 and S105 of FIG.
  • the output (objective variable) of the control amount calculation model is the control amount of each control device 2 calculated by the control amount calculation processing unit 103 in step S106 in FIG. 10, and is used to stabilize the voltage of the entire power system.
  • the control amount is close to the optimum (sub-optimal).
  • the model generation unit 104 identifies coefficients c im and d im in the linear model represented by the following formula (2).
  • the coefficients c im and d im serve as a control amount calculation model.
  • C i is the control amount (complex power) at the node i calculated by the control amount calculation processing unit 103 in the processing of FIG. j represents an imaginary unit.
  • P m and Q m are power state estimation values (active power P m and reactive power Q m ) of each node m (monitoring node m) estimated by the power state estimation unit 102 in the process of FIG.
  • c im and d im are coefficient parameters of the control amount calculation model, and indicate the influence of the node m on the node i.
  • P m and Q m if measured values (power state values P and Q of measurement data) measured by the sensor 3 are available, they may be used.
  • the model generation unit 104 substitutes the input data (power state estimation values P m , Q m ) and output data (C i ) at each node into the equation (2), and uses each of the coefficients (c im , d im ).
  • control amount Ci is a tap number (transformation ratio) of a voltage regulator such as LRT or SVR, SVC, a switched capacitor, reactive power of a battery-equipped PCS, or the like.
  • the central device 1 When the basic calculation formula (formula (2)) is set in advance in the control device 2, the central device 1 simply transmits the coefficient parameters c im and d im to the control device 2 to control the control amount calculation model. Can be updated. That is, the amount of information can be reduced by using the coefficient in Equation (2) as an arithmetic model.
  • each control device 2 can stabilize the voltage of the entire power system.
  • the control amount to be output can be easily calculated. Therefore, if each control device 2 has an operation model such as a power state estimation model and a control amount calculation model, even if the communication state of the communication network 4 between the central device 1 and the control device 2 is not good, Appropriate control can be performed using the measurement data at its own end.
  • model data includes parameters a nk and b nk constituting the power state estimation model shown in Expression (1), and parameters c im and d im constituting the control amount calculation model shown in Expression (2).
  • Expressions (1) and (2) are examples and may be changed as appropriate, and the parameters in that case are coefficient parameters according to the expressions.
  • target nodes sensor node k and monitoring node m
  • the accuracy of the power state estimated value can be improved.
  • the monitoring node m it can be expected to improve the accuracy of the control amount (close to the optimum control amount).
  • the estimation may be performed using only the measurement data of some of the sensors 3.
  • the node i of the control device 2 may include only the local node i. That is, each control device 2 may not refer to the measurement data of the sensors 3 other than its own end node.
  • the sensor 3 of the local node is a sensor 3 that is directly associated with the control device 2, that is, a sensor 3 that is provided at a node common to the node of the control device 2. In other words, the sensor 3 of the local node is the sensor 3 installed in the control device 2.
  • the local node of the control device 2a is the node 31a, and the sensor 3 of the local node is the sensor 3a.
  • the own end node of the control device 2b is the node 31d, and the sensor 3 of the own end node is the sensor 3c.
  • the own end node of the control device 2c is the node 31g, and the sensor 3 of the own end node is the sensor 3e.
  • control device 2 uses the power state estimation model even if the soundness of the communication state is lost. Can be estimated.
  • FIG. 12 is a diagram for explaining the specific meaning of the calculation model according to the first embodiment, where (a) shows a power state estimation model and (b) shows a control amount calculation model.
  • the explanatory variable on the horizontal axis is a measurement value included in the measurement data
  • the output on the vertical axis is the power state estimation value. That is, the horizontal axis is a measurement value actually measured by the sensor 3 accumulated in step S101 in FIG. 10, and the vertical axis is a power state estimation value in each node calculated in steps S104 and S105 in FIG.
  • the horizontal axis represents the P k, Q k of the formula (1)
  • the vertical axis represents S n of the formula (1). Accordingly, the horizontal axis should be originally two-dimensional coordinates, but here, it is assumed as one-dimensional coordinates for convenience.
  • the plot point 1202 is a point obtained by plotting in association actual measured value P k, and Q k, the power state estimate S n which is estimated based on the actual measurement values.
  • a solid line 1201 is a straight line calculated by the least square method based on the plot point 1202. The coefficients a nk and b nk of Equation (1), that is, the power state estimation model corresponds to the slope of the solid line 1201.
  • the horizontal axis input is the power state estimation value
  • the vertical axis output is the calculated control amount. That is, the horizontal axis is the estimated power state value at each node calculated in steps S104 and S105 in FIG. 10, and the vertical axis is the control amount at each node calculated in step S106 in FIG.
  • the horizontal axis indicates P m and Q m in the equation (2)
  • the vertical axis indicates C i in the equation (2). Accordingly, the horizontal axis should be originally two-dimensional coordinates, but here, it is assumed as one-dimensional coordinates for convenience.
  • the plot point 1212 is a point plotted by associating the power state estimated values P m and Q m with the calculated control amount C i .
  • a solid line 1212 is a straight line calculated by the least square method based on the plot point 1211.
  • the coefficients c im and d im in Equation (2), that is, the power state estimation model corresponds to the slope of the solid line 1211.
  • Each of these calculation models shows a case in which the input on the horizontal axis is two variables (as described above, it is assumed to be one-dimensional for convenience in FIG. 12), but the present invention is not necessarily limited to this. There may be input. That is, in this embodiment, the active power P and the reactive power Q are used as explanatory variables for obtaining each calculation model, but other power state values (for example, voltages) may be used as explanatory variables. However, from the viewpoint of accuracy, it is desirable that the explanatory variable has a high correlation with the objective variable (power state, control amount) to be estimated.
  • FIG. 13 is a diagram illustrating a specific example of model data according to the first embodiment.
  • FIG. 13 shows an example of the power state estimation model.
  • a calculation model for each case is stored for each control device 2.
  • the model data 1301 is for the control device 2a (FIG. 1)
  • the model data 1302 is for the control device 2b (FIG. 1)
  • the model data 1303 is for the control device 2c (FIG. 1).
  • description will be given with reference to the power state estimation model in the model data 1301 of the control device 2a.
  • the case indicates a missing pattern of measurement data.
  • “Case 1” is a case where measurement data can be normally acquired from all the sensors 3a to 3e.
  • the power state is estimated by the calculation model using the measurement data from all the sensors 3a to 3e.
  • “Case 1” is a power state estimation model used when the control device 2 a can acquire measurement data from all the sensors 3.
  • “a1a” indicates a power state estimation model “a nk (formula (1))” indicating the influence from the sensor 3a in the state of “case 1”.
  • “Case 2” is a case in which measurement data can be acquired from the sensors 3a to 3d among the sensors 3a to 3e, and only the measurement data from the sensor 3e cannot be acquired.
  • the coefficient parameter when the measurement data cannot be acquired is set to 0, and otherwise, the coefficient value is stored.
  • the power state is estimated by the calculation model based only on the measurement data of the sensors 3a to 3d.
  • “Case 2” is a power state estimation model used when the control device 2a cannot acquire measurement data only from the sensor 3e.
  • “Case 3” is a case where, among the sensors 3a to 3e, measurement data can be acquired from the sensors 3a to 3c and 3e, and only measurement data from the sensor 3d cannot be acquired. That is, in “Case 3”, the power state estimation model is generated based only on the measurement data of the sensors 3a to 3c, 3e. In short, “Case 3” is a power state estimation model used when the control device 2a cannot acquire measurement data only from the sensor 3d.
  • the central apparatus 1 generates a power state estimation model for all combinations of measurement data that can be normally acquired in step S202 of FIG.
  • the power state estimation model is also generated when the measurement data can be acquired only from any one of the sensors 3 (case n).
  • a power state estimation model for the control device 2 can be generated.
  • the control device 2 is configured to be able to acquire measurement data from the sensor 3 of a remote node other than the sensor 3 of the own node
  • the power state estimation based only on the measurement data from the sensor 3 of the remote node A model is also generated.
  • model 1 “model 2”,.
  • Such a power state estimation model for each case is generated for each control device 2.
  • the central apparatus 1 also includes the control amount calculation model (c im , d im (Expression (2))) as well as the model data together with the power state estimation model illustrated in FIG. 11.
  • the control variable calculation model uses the explanatory variable as the power state estimation value, it is not necessary to obtain a control variable calculation model for each case as shown in FIG. That is, the estimation of the power state is performed for all the nodes set as the monitoring nodes, so that the power state estimation value is not lost.
  • a power state estimation model is prepared for each control device 2 and for each combination of measurement data missing states. Thereby, even when a part of measurement data cannot be acquired due to deterioration of the communication state or failure of the sensor 3, the power state estimation unit 102 can generate the power state estimation model corresponding to the acquired combination of measurement data. Can be used to calculate the power state estimate.
  • the power state estimation model has two parameters a nk and b nk (hereinafter, appropriately described as a and b), and the control amount calculation model also has two parameters c im and d im ( Hereinafter, these are described as c and d as appropriate. Therefore, the data size of each calculation model can be reduced.
  • the size of each calculation model can be reduced, an increase in communication load can be suppressed even if a plurality of model data is periodically transmitted to each control device 2. Therefore, even when the communication speed of the communication network 4 is low, model data having a small data size can be transmitted normally.
  • each calculation model can be used with a small number of parameters, even when the performance of the CPU 201 (FIG. 2) of the control device 2 is low, an appropriate control amount can be obtained by estimating the power state. In other words, it is not necessary to mount a high-performance CPU 201 or the like in the control device 2, and the manufacturing cost can be reduced.
  • FIG. 14 is a flowchart illustrating a processing procedure of the control device according to the first embodiment.
  • the control mode determination processing unit 202 determines whether data is received from the central device 1 or the sensor 3 (S301). As a result of step S301, when data is not received (S301 ⁇ No), the control mode determination processing unit 202 returns the process to step S301 and waits for data reception. When data is received as a result of step S301 (S301 ⁇ Yes), the control mode determination processing unit 202 determines whether or not the received data is control amount data (S302).
  • step S302 If the result of step S302 is not control amount data (S302 ⁇ No), the control mode determination processing unit 202 stores data in each data storage unit according to the data type (S303), and returns the process to step S301. For example, if the received data is model data, the control mode determination processing unit 202 stores the data in the model data storage unit 212. If the received data is system data, the control mode determination processing unit 202 stores the system data. Stored in the unit 211.
  • step S302 If the result of step S302 is control amount data (S302 ⁇ Yes), the time stamp attached to the control amount data is referred to, and the time Td between the time stamp of the control amount data received last time and the current time Td Is calculated, and it is determined whether or not this Td is smaller than the preset time T1 (Td ⁇ T1) (S304).
  • step S304 when Td ⁇ T1 (S304 ⁇ Yes), that is, when the control amount data has reached within a predetermined time, the control mode determination processing unit 202 sets the control mode to the centralized control mode ( S305). If the control mode is already the centralized control mode, the control mode determination processing unit 202 maintains the current control mode. The control mode determination processing unit 202 temporarily stores the time stamp of the control amount data acquired this time in the memory (S306), and transmits the control amount in the control amount data received by the control processing unit 204 to the measurement device. Thus, the measurement apparatus is controlled (S313).
  • step S307 if Ts ⁇ T2 (S307 ⁇ Yes), that is, if within a predetermined time after shifting to the distributed control mode, the control mode determination processing unit 202 sets the control mode to the distributed control mode. (S308). If the control mode is already the distributed control mode, the control mode determination processing unit 202 maintains the current control mode. Then, the control amount calculation processing unit 203 reads measurement data from the measurement data storage unit 213 (S309).
  • control amount calculation processing unit 203 reads the calculation model from the model data storage unit 212 (S310), performs the calculation of Expression (1) from the electric energy state estimation model and the measurement data in the read calculation model, The power state is estimated (S311). Specifically, the control amount calculation processing unit 203 estimates active power and reactive power in its own control device 2. In step S310, the control amount calculation processing unit 203 may read an operation model corresponding to the missing state from the model data illustrated in FIG. 13 according to the missing state of the measurement data.
  • control amount calculation processing unit 203 calculates the control amount of itself by performing the calculation of Expression (2) from the control amount calculation model of the calculation model read in step S309 and the power state estimated in step S311. (S312). Then, the control processing unit 204 controls itself with the control amount calculated in step S312 (S313).
  • step S307 If Ts ⁇ T2 as a result of step S307 (S307h ⁇ No), that is, if it is a predetermined time or longer after shifting to the distributed control mode, the control mode determination processing unit 202 sets the control mode to the autonomous control mode. (S314). If the control mode is already the autonomous control mode, the control mode determination processing unit 202 maintains the current control mode. Then, the control amount calculation processing unit 203 reads the system data from the system data storage unit 211 (S315), and further reads the measurement data from the measurement data storage unit 213 (S316). Then, the control amount calculation processing unit 203 calculates its own control amount from the read system data and measurement data (S312).
  • control processing unit 204 controls itself with the control amount calculated in step S312 (S313).
  • the system data may or may not have a time stamp.
  • FIG. 15 is a diagram for explaining switching of the calculation model according to the time zone.
  • the power supply / demand condition varies depending on the weather, temperature, etc., but also varies depending on the time of day such as morning, noon, and night.
  • time of day such as morning, noon, and night.
  • electric power demand increases due to preparation of meals in the morning and evening.
  • power demand will decrease.
  • the amount of solar power generation in the morning and evening is small, and the amount of power generation in the daytime is large. For this reason, in a house where solar power generation is installed, power consumption from the power plant is small during the daytime and large during the morning and evening.
  • the power system control system 5 has a plurality of times such as a first time zone (morning / evening), a second time zone (daytime), and a third time zone (night), for example.
  • a power state estimation model group and a control amount calculation model are generated for each segment and time zone.
  • a plurality of power state estimation models of each control device 2 are generated according to combinations of acquired measurement data.
  • the central device 1 generates a calculation model for each control device 2 and for each time zone (that is, according to a predetermined living condition).
  • the time zone is divided into a first time zone (for example, morning and evening), a second time zone (for example, noon), and a third time zone (for example, night), but is not limited thereto.
  • it may be divided every hour.
  • it may be divided according to the weather.
  • the control amount calculation processing unit 203 may acquire the weather via the Web and use a calculation model according to the weather.
  • a power state estimation model group 1501 and a control amount calculation model 1502a are generated as calculation models for the control device 2a (FIG. 1).
  • the power state estimation model “group” is used because different power state estimation models are generated for each case even in the same control device 2 as illustrated in FIG. 13.
  • a power state estimation model group 1501b and a control amount calculation model 1502b are generated as calculation models for the control device 2b (FIG. 1).
  • a power state estimation model group 1501c and a control amount calculation model 1502c are generated.
  • a power state estimation model group 1511a (for the control device 2a), 1511b (for the control device 2b), 1511c (for the control device 2c), a control amount calculation model 1512a (for the control device 2a), 1512b (for the control device 2b) and 1512c (for the control device 2c) are generated.
  • power state estimation model groups 1521a (for the control device 2a), 1521b (for the control device 2b), 1521c (for the control device 2c), control amount calculation models 1522a (for the control device 2a), 1522b (For the control device 2b) and 1522c (for the control device 2c) are generated.
  • each of the power state estimation model groups 1501a to 1501c, 1511a to 1511c, and 1521a to 1521c corresponds to the power state estimation model group shown in FIG.
  • control amount calculation processing unit 203 of the control device 2 switches to the power state estimation model corresponding to the time zone, and further calculates a sub-optimal control amount based on the control amount calculation model.
  • the control device 2 can select any one control mode from a centralized control mode, a distributed control mode, and an autonomous control mode according to a communication state from among a plurality of control modes. Therefore, the control device 2 can appropriately operate according to the state of the communication network 4.
  • control device 2 performs control in the centralized control mode when the communication state is healthy, and performs control in the distributed control mode when the communication state deteriorates, and the validity period of the power state estimation model has passed. If it does, control in autonomous control mode. Therefore, the power state can be controlled according to the degree of soundness of the communication state.
  • the central apparatus 1 of 1st Embodiment accumulate
  • the central device 1 of the first embodiment calculates the calculation model as a coefficient of a measurement value acquired from the sensor 3 or a power state estimation value. Therefore, the size of the model data that is the data of the operation model can be reduced, and the load on the communication network 4 can be suppressed even when the model data is distributed from the central device 1 to the plurality of control devices 2. For this reason, the power system control system 5 of the present embodiment can appropriately control the power system even in an environment where the communication speed is low and the communication quality is unstable.
  • the effective period is set in the power state estimation model used in the distributed control mode, and the power system control system 5 has the power state estimation model that has passed the effective period. Switch to autonomous control mode without using. Therefore, according to the first embodiment, it is possible to suppress the execution of the distributed control far from the change in the power supply / demand state and the change in the configuration of the power system, thereby improving the reliability of the system.
  • the central apparatus 1 generates a power state estimation model according to a combination of measurement data that can be normally acquired (FIG. 13). For this reason, even if the state of the communication network 4 is poor and the control device 2 cannot receive the measurement data from all the sensors 3, the control amount is estimated so as to stabilize the voltage of the entire power system as much as possible by estimating the power state. Can be calculated. Therefore, the power system control system 5 according to the first embodiment can estimate the power state according to the communication environment even in an area where the communication environment is bad, and can appropriately control the power state of the power system.
  • the central device 1 generates a power state estimation model according to a predetermined living condition such as a time zone and weather (FIG. 15). Thereby, it can respond to the power consumption which fluctuates according to living conditions.
  • a predetermined living condition such as a time zone and weather (FIG. 15).
  • the second embodiment is intended to perform appropriate control according to the reliability of the measurement data by providing a confidence interval for the measurement data.
  • the power state estimation model is described as an example of the calculation model.
  • the present invention is not limited to this, and the control amount calculation model can be similarly handled.
  • FIG. 16 is a diagram illustrating a configuration example of the central device according to the second embodiment.
  • the same components as those in the central device 1 in FIG. 1 are denoted by the same reference numerals as those in FIG.
  • illustration and description are abbreviate
  • the central apparatus 1A in FIG. 16 is different from the central apparatus 1 according to the first embodiment in that a confidence interval processing unit 106 is added and a confidence interval data storage unit 114 is added.
  • the confidence interval processing unit 106 is realized by developing a program stored in the HD 304 or the like in FIG. 2A in the RAM 302 and executing it by the CPU 301.
  • the reliability processing unit 205 outputs data that takes into account the confidence interval for the measurement data.
  • the operation of the confidence interval processing unit 106 will be described later.
  • the confidence interval data storage unit 114 stores confidence interval data that is data relating to a confidence interval described later.
  • FIG. 17 is a diagram illustrating a configuration example of a control device according to the second embodiment.
  • the controller 200a in the control device 2A in FIG. 17 differs from the measurement device according to the first embodiment in that a reliability processing unit 205 is added and a confidence interval data storage unit 214 is added.
  • the control amount calculation processing unit 203a is different from the first embodiment in that a temporary control amount is calculated when low-reliable measurement data exists.
  • the control processing unit 204a is different from the first embodiment in that the control processing unit 204a performs control by the temporary control amount when there is low-reliability measurement data.
  • the control amount calculation processing unit 203a, the control processing unit 204a, and the reliability processing unit 205 are realized by the CPU 401 executing a program stored in the ROM 402 in FIG.
  • the confidence interval data storage unit 214 stores confidence interval data (reliability information: interval information) that is data relating to a confidence interval described later.
  • FIG. 18 is a diagram illustrating an example of a confidence interval according to the second embodiment, in which (a) illustrates a confidence interval for active power and (b) illustrates a confidence interval for reactive power.
  • the power state value fluctuates due to a temporal load fluctuation (disturbance) or the like. And it is thought that the fluctuation
  • the calculation model is not calculated using all the obtainable data, but the data within the defined confidence interval is used. With respect to data outside the confidence interval, improvement of the stability of the calculation model can be expected by performing a predetermined correction.
  • first interval 1801 is defined as in the following expression (3).
  • the high confidence interval 1801 represented by the expression (3) corresponds to the high confidence interval in FIG.
  • a high-reliability interval 1801 for reactive power is also set (see FIG. 18B).
  • the highly reliable section 1801 of reactive power is prescribed
  • the low confidence interval 1802 is provided.
  • Q M and ⁇ q in equation (4) are the average value and standard deviation of the reactive power values, respectively, and ⁇ is the same coefficient as in equation (3).
  • the active power value, the average value of the reactive power value, and the standard deviation are the average value and the standard deviation of the active power value and the reactive power value within a predetermined time.
  • the confidence interval processing unit 106 calculates the average value and the standard deviation of each measurement data, and sets the high confidence interval 1801 defined by the equations (3) and (4) based on the average value and the standard deviation. Then, a highly reliable interval 1801 (upper limit value, lower limit value) of the measurement data is calculated.
  • the upper limit values are P M + ⁇ ⁇ ⁇ p in equation (3) and Q M + ⁇ ⁇ ⁇ q in equation (4).
  • the lower limit values are P M ⁇ ⁇ ⁇ p in Equation (3) and Q M ⁇ ⁇ ⁇ q in Equation (4).
  • the confidence interval data shown in the format of FIG. 19 is stored in the confidence interval data storage unit 114.
  • the confidence interval data stores the upper limit value and the lower limit value of the high confidence interval for each sensor 3 and each measurement data type.
  • “P” indicates active power
  • “Q” indicates reactive power.
  • “90%”, “95%”, and “99%” are establishments in which a measurement value is generated within a defined high confidence interval.
  • the transmission / reception processing unit 105 of the central device 1A transmits the high confidence interval data in the confidence interval data storage unit 114 to the control device 2A
  • the transmission / reception processing unit 201 of the control device 2A transmits the received data related to the high reliability interval to the confidence interval.
  • the data is stored in the data storage unit 114. This process is performed, for example, with the system data in steps S301 to S303 in FIG.
  • the method of setting the high confidence interval and the low confidence interval as shown in FIG. 18 is an example.
  • it may be based on a beta distribution or a gamma distribution instead of the normal distribution.
  • you may set different normal distribution for every time slot
  • FIG. 20 is a flowchart illustrating a procedure of control processing according to the second embodiment. Note that the processing in FIG. 20 is processing that is inserted into the locations of steps S311 to S313 of the distributed control processing in FIG.
  • the reliability processing unit 205 determines whether each of the measurement data (active power and reactive power) stored in the measurement data storage unit 213 is highly reliable (S401). In this process, the reliability processing unit 205 refers to the confidence interval data stored in the confidence interval data storage unit 214 and determines whether the reliability interval corresponds to the high reliability interval or the low reliability interval shown in FIG. Each measurement data is determined.
  • the upper limit value and lower limit value of the active power which are measurement data of the sensor 3 when the confidence interval is 90%, are Pau and Pal, respectively, according to the confidence interval data shown in FIG. Since the lower limit values are defined as Qau and Qal, respectively, the reliability processing unit 205 determines whether each of the active power and reactive power of the measurement data is within the range of the upper and lower limit values. The reliability processing unit 205 determines that the reliability of each measurement data is high when the value is within the range of the upper and lower limit values, and otherwise determines that the reliability is low.
  • These measurement data are explanatory variables (input data) of the power state estimation model.
  • the measurement data is determined to be high reliability as the explanatory variable of the calculation model. Otherwise, it is determined to be unreliable. That is, when there are a plurality of types of measurement data as explanatory variables, if at least one reliability is low, it is determined that the reliability is low as an explanatory variable of the calculation model.
  • step S401 when it is determined that all measurement data is highly reliable (S401 ⁇ Yes), the control amount calculation processing unit 203a performs the same processing as steps S311 to S313 in FIG. Take control.
  • step S401 when there is even one piece of measurement data determined to be unreliable (S401 ⁇ No), the control amount calculation processing unit 203a calculates a temporary control amount (S402). A method for calculating the temporary control amount will be described later. Then, the control processing unit 204a controls the measuring device with the temporary control amount calculated in step S402 (S403). Next, the control amount calculation processing unit 203a acquires the measurement data of the sensor 3 (own end node sensor) of the own end node via the transmission / reception processing unit 201 after a predetermined time from the control by the temporary control amount, and the sensor 3 point A target deviation index ⁇ V indicating how much the voltage of the current is deviating from the target is calculated (S404). The calculation method of the temporary control amount will be described later.
  • the control processing unit 204a determines whether ⁇ V is equal to or less than a predetermined value (S405). As a result of step S405, if ⁇ V is equal to or smaller than the predetermined value (S405 ⁇ Yes), the control processing unit 204a finishes the process because the control is close to the target voltage. If ⁇ V is not less than or equal to the predetermined value as a result of step S405 (S405 ⁇ No), the control processing unit 204a calculates a corrected temporary control amount (S406), returns the process to step S403, and uses the corrected temporary control amount as the temporary control amount. Process. A method for calculating the corrected temporary control amount will be described later.
  • Temporal control amount calculation method 21 and 22 are diagrams for explaining a method for calculating a temporary control amount according to the second embodiment.
  • the control amount calculation processing unit 203a calculates a temporary control amount as shown in step S402 in FIG. 21 and 22, the horizontal axis should originally be the two-dimensional coordinates of the active power P and the reactive power Q, but here, the one-dimensional coordinates are used for convenience.
  • the following three methods can be considered as a method for calculating the temporary control amount.
  • the high confidence interval is “xcl” to “xcu”, and the others are low confidence intervals.
  • xcl is the upper limit value of the high confidence interval
  • xcu is the lower limit value of the high reliability interval.
  • the upper limit value and the lower limit value may be collectively referred to as a boundary value.
  • X1 is a measured value.
  • X0 is the average value of the measured values.
  • the slope of the straight line 2100 indicates the calculation model.
  • f (•) represents an arithmetic expression of the control amount calculation model according to Expression (2).
  • an operation model in a highly reliable interval is applied as it is. That is, as shown in FIG. 21A, the temporary control amount at the measurement value x1 with low reliability is calculated using the calculation model in the high reliability interval. That is, the control processing unit 204a calculates the temporary control amount 2111 using the formula (2) itself.
  • a temporary control amount is calculated based on at least one of a control amount lower limit 2201 and a control amount upper limit 2202 calculated by a predetermined method as shown in FIG.
  • the control amount lower limit 2201 and the control amount upper limit 2202 are functions of the measurement value x, and are represented by, for example, Expression (5) and Expression (6).
  • Equation (5) is a case where the measured value x belongs to the low confidence interval XA shown in FIG. 22, and Equation (6) is a case where the measured value x belongs to the low confidence interval XB shown in FIG.
  • Xd is a boundary value (either xcu or xcl) close to the measurement value x1.
  • c is a predetermined coefficient parameter. When c represents a control amount lower limit and “c” represents a control amount upper limit, “c” represents a positive real number having a relationship of “cu> cl”. It is.
  • k is a predetermined “exponential parameter”. When the measured value x belongs to the low confidence interval and “x> xd”, “0 ⁇ k ⁇ 1”, and “x ⁇ xd”. “K ⁇ 1” is set.
  • XL indicates a low confidence interval.
  • the graph of the control amount upper limit calculated by the equations (5) and (6) is denoted by reference numeral 2202 in FIG. 22, and the graph of the control amount lower limit is denoted by reference numeral 2201 in FIG.
  • the control amount calculation processing unit 203a calculates the control amount lower limit 2211 and the control amount upper limit 2212 by substituting the measured value x1 into the equations (5) and (6). Then, the control amount calculation processing unit 203a calculates an average value 2213 of the control amount lower limit 2211 and the control amount upper limit 2212, and uses the average value 2213 as a temporary control amount. Alternatively, the control amount calculation processing unit 203a may use either the control amount upper limit 2211 or the control amount lower limit 2212 as a temporary control amount.
  • the calculation formulas for the control amount lower limit and the control amount upper limit are not necessarily limited to the formulas (5) and (6).
  • the measured value and the control amount history data in the low confidence interval are accumulated more than a predetermined amount.
  • the equation calculated using the least square method may be used.
  • step S406 a method for calculating the corrected temporary control amount in step S406 in FIG. 20 will be described.
  • the control amount calculation processing unit 203a calculates the temporary control amount using the method described above. Then, as shown in step S403 of FIG. 20, the control processing unit 204a performs control according to the temporary control amount. Then, the control amount calculation processing unit 203a acquires the measurement data of the sensor 3 of the local node via the transmission / reception processing unit after a predetermined time from the control by the temporary control amount, and the voltage at the point of this sensor 3 is preset. A target deviation index ⁇ V indicating how much deviation is from the target voltage is calculated according to the equation (7) (step S404 in FIG. 20).
  • Vm is a measurement value (measurement voltage)
  • Vref is a target voltage.
  • Equation (8) calculates the corrected temporary control amount Sa according to the proportional control, but the corrected control amount Sa may be calculated according to the proportional-integral control as shown in Equation (9).
  • Ki is an integral gain
  • T is a predetermined time.
  • the proportional gain and the integral gain are determined according to the type of the control device 2A and the power system configuration (impedance, etc.), and are set in advance by sensitivity analysis or the like.
  • control processing unit 204a performs control again using the corrected temporary control amount Sa calculated in this way as a temporary control amount. Then, the control processing unit 204a obtains the target deviation index ⁇ V again after a predetermined time of control by the corrected temporary control amount Sa, and uses it to calculate the corrected control amount again. By repeating the above processing until ⁇ V becomes a predetermined value or less, control close to the target voltage can be achieved.
  • control is performed using a temporary control amount.
  • a predetermined ratio of all measurement data When the measurement data is low-reliability, control using a temporary control amount may be performed. Further, for example, x1-xcl, xcu-x1, etc. are converted into low reliability by using xcl, xcu, etc. in FIG. 21, and the control amount calculation processing unit 203a and the control processing unit 204a provide this low reliability. Whether or not to perform the control by the temporary control amount may be determined depending on the ratio of the numerical value that is equal to or greater than a predetermined numerical value.
  • a confidence interval may be used. That is, the model generation unit 104 may exclude the low-reliability measurement data and calculate the power state estimation model. At this time, it is desirable to use the basic calculation formula of the calculation model when there is low-reliability measurement data.
  • the reliability of the measurement data may be insufficient due to output disturbances in the load or the distributed power source. Even in such a case, by using the technique described in the second embodiment, control in consideration of reliability can be performed, and as a result, appropriate control can be performed.
  • the control amount calculation processing unit 203a calculates a temporary control amount based on the control amount based on the high-reliability measurement data. Then, the control processing unit 204a performs control based on the temporary control amount, the control amount calculation processing unit 203a calculates the target deviation index from the output, and the control processing unit 204a is based on the corrected temporary control amount based on the target deviation index. The control is repeated until the target deviation index becomes a predetermined value or less. In this way, even when low-reliability measurement data exists, the control amount calculated based on the high-reliability measurement data can be used, so that the control reliability can be improved.
  • An object of the third embodiment is to notify another control device 2B that measurement data with low reliability exists when measurement data is determined to be low reliability.
  • FIG. 23 is a diagram illustrating a configuration example of a control device according to the third embodiment. 23, the same components as those of the control device 2B of FIG. 15 are denoted by the same reference numerals as those of FIG.
  • the control device 2B in FIG. 23 has a function of notifying the other control device 2B via the transmission / reception processing unit 201 when the reliability processing unit 205b determines that measurement data with low reliability exists. This is the difference from the control device 2A in FIG. Since the configuration of the power system control system 5 and the configuration of the central device 1 are the same as those in FIGS. 1 and 14, illustration and description thereof are omitted.
  • FIG. 24 is a flowchart illustrating a procedure of control processing according to the third embodiment. Note that the processing in FIG. 24 is processing that is inserted into the locations of steps S311 to S313 of the distributed control processing in FIG. In the processing of FIG. 24, the same processing as that of FIG. 20 is denoted by the same step number as in FIG.
  • step S401 if all are highly reliable (S401 ⁇ Yes), has the reliability processing unit 205b received low reliability information that is information indicating that low-reliability measurement data exists from the other control device 2B? It is determined whether or not (S501). If the low reliability information is not received as a result of step S501 (S501 ⁇ No), the control amount calculation processing unit 203a performs the same processing as steps S311 to S313 in FIG. 14 to control the measuring device.
  • step S401 whether there is even one piece of low-reliability measurement data (S401 ⁇ No), or if the result of step S501 is low-reliability information (S501 ⁇ Yes), the reliability processing unit 205b Reliability information, which is information indicating that low-reliability measurement data exists, is transmitted to another control device 2B (S502). Thereafter, the control amount calculation processing unit 203a proceeds to the process of step S402.
  • the reliability processing unit 205b notifies the other control device 2B of the fact when there is even one piece of low-reliability measurement data. If the measured data is low-reliability, this may be notified to the other control device 2B.
  • the control device 2B when low-reliability measurement data exists, the control device 2B transmits a message to that effect to the other control device 2B, and receives the notification that low-reliability measurement data exists. Even if all of the measurement data are highly reliable, the measurement data is controlled with low reliability, so that it is possible to perform distributed control that is unified throughout the power system control system 5. As a result, stable voltage control is possible in the entire power system control system 5.
  • this invention is not limited to above-described embodiment, Various modifications are included.
  • a time stamp may be attached to the system data.
  • this embodiment presupposes application to an electric power grid
  • the calculation of the calculation model is not limited to the least square method, and multiple regression analysis, principal component analysis, or the like may be used.
  • the confidence intervals for the active power P and the reactive power Q are provided.
  • the present invention is not limited thereto, and for example, a confidence interval for the voltage V may be provided.
  • the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by a processor such as the CPU 301 or 401.
  • data such as programs, tables, and files for realizing each function are stored in the HD 304, as well as a memory, a recording device such as an SSD (Solid State Drive), or an IC (Integrated Circuit).
  • control lines and information lines are those that are considered necessary for explanation, and not all control lines and information lines are necessarily shown on the product. In practice, it can be considered that almost all configurations are connected to each other.

Landscapes

  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The problem addressed by the present invention is to perform highly reliable power control. A high reliability region (1801) between a prescribed upper limit and lower limit and a low reliability region (1802) excluding the high reliability region (1801) are preliminarily set as reliability region data. When performing power control in a distributed control mode where a control amount is calculated using computation model because of a deterioration in the state of communication, a power grid control system determines whether or not there is measured data in the low reliability region, calculates a provisional amount of control based on the amount of control in the high reliability region when the measured data for low reliability exists, and performs control using the provisional amount of control.

Description

電力系統制御システム及び電力系統制御方法Power system control system and power system control method
 本発明は、電力系統の制御を行う電力系統制御システム及び電力系統制御方法の技術に関する。 The present invention relates to a technology of a power system control system and a power system control method for controlling a power system.
 SVR(Step Voltage Regulator;自動電圧調整器)、SVC(Static Var Compensator;無効電力補償装置)等の制御装置によって、自端(制御装置が設置されている位置)の電圧が目標電圧となるよう制御する技術がある。 Control by the control device such as SVR (Step Voltage Regulator), SVC (Static Voltage Compensator), etc., so that the voltage at its own end (position where the control device is installed) becomes the target voltage. There is technology to do.
 さらに、監視制御サーバで一括して電力系統全体の状態を把握し、各制御装置に最適な制御指令を与える、いわゆる集中型制御が開示されている(例えば、特許文献1参照)。また、SVR側で無効電力を監視し、所定時間以上継続して無効電力を計測した場合、SVCが動作中であると推定し、SVRのタップ切替制御を行う技術も開示されている(例えば、特許文献2参照)。この技術は、通信を前提としない、いわゆる自律分散型制御の技術である。 Furthermore, so-called centralized control is disclosed in which the monitoring and control server collectively grasps the state of the entire power system and gives an optimal control command to each control device (see, for example, Patent Document 1). In addition, a technique is also disclosed in which when reactive power is monitored on the SVR side and reactive power is measured for a predetermined time or longer, the SVC is estimated to be operating and tap switching control of the SVR is performed (for example, Patent Document 2). This technology is a so-called autonomous distributed control technology that does not assume communication.
特開2007-288877号公報JP 2007-288877 A 特開2011-217581号公報JP 2011-217581 A
 近年、住宅内の調理器具、給湯器、空調機及び照明装置等を電気でまかなう、いわゆるオール電化住宅が普及しつつある。さらに、夜間の安い電気を使って湯を作る電気給湯器、電気自動車等の大容量負荷が普及しつつあり、電力需要の多様化が進んでいる。 In recent years, so-called all-electric houses that use cooking utensils, water heaters, air conditioners, lighting devices, and the like in houses have become popular. In addition, large-capacity loads such as electric water heaters and electric vehicles that produce hot water using cheap electricity at night are becoming widespread, and power demand is diversifying.
 その一方、太陽光発電、燃料電池、家庭用蓄電池等の分散型電源による補助発電が様々なところで行われるようになりつつある。従って、このような状況によって、電力系統、特に配電系統の状態(電圧)の変動が大きくなり、これを電気事業法で定められる適正範囲(101±6V又は202±20V)に維持することが、今後ますます困難になってくるものと予想される。 On the other hand, auxiliary power generation using distributed power sources such as solar power generation, fuel cells, and home storage batteries is being performed in various places. Therefore, due to such a situation, fluctuations in the state (voltage) of the power system, in particular the distribution system, become large, and maintaining this within an appropriate range (101 ± 6V or 202 ± 20V) defined by the Electricity Business Law, It is expected to become increasingly difficult in the future.
 従来の技術では、SVRや、SVCにより自端の電圧変動が適正範囲に抑制される。しかし、SVRや、SVCは基本的に単独で動作し、近隣の他の制御装置と連携動作しない。従って、電力系統に大容量負荷が設けられたり、分散型電源が電力系統に多数接続されたりすると、電力系統の電圧変動を適正範囲に抑制することが困難になる可能性がある。 In the conventional technology, the voltage fluctuation at its own end is suppressed to an appropriate range by SVR or SVC. However, SVR and SVC basically operate independently and do not cooperate with other control devices in the vicinity. Therefore, if a large-capacity load is provided in the power system or a large number of distributed power sources are connected to the power system, it may be difficult to suppress voltage fluctuations in the power system within an appropriate range.
 特許文献1に記載の技術は、監視制御サーバと各制御装置との通信環境が安定しており、高速高品質な通信を行うことができる場合に有効である。しかし、例えば、山間部の僻地等のように高速高品質の通信環境が整っていない場合も多数あると考えられる。このように高速高品質の通信環境を利用できない場合、特許文献1に記載の技術では、監視制御サーバから制御装置への制御指令の伝達が遅れたり、制御指令が届かなかったりすることが考えられる。よって、速高品質の通信環境を利用できない場合、特許文献1に記載の技術では、適切な制御を十分に行うことができない可能性がある。 The technique described in Patent Document 1 is effective when the communication environment between the monitoring control server and each control device is stable and high-speed and high-quality communication can be performed. However, for example, there are many cases where a high-speed and high-quality communication environment is not in place such as in remote areas in mountainous areas. In such a case where a high-speed and high-quality communication environment cannot be used, it is conceivable that the technique described in Patent Document 1 may delay the transmission of a control command from the monitoring control server to the control device or may not reach the control command. . Therefore, when a high-speed and high-quality communication environment cannot be used, there is a possibility that appropriate control cannot be sufficiently performed with the technique described in Patent Document 1.
 特許文献2に記載の技術は、SVRがSVCの上流側(変電所側)にあって、かつ距離が近いような位置に設置されている場合には有効であると考えられる。しかし、そのような構成以外の場合や、SVCの出力する無効電力が正しくSVR側で検出できるような位置関係(SVRがSVCの上流側にあって、かつ距離が近い等)でない場合、特許文献2に記載の技術では、適切な制御を行うことが難しいと考えられる。また、同一電力系統にSVCが2台以上接続される場合にも、同様に、SVRで各SVCの出力する無効電力を正しく推定することは特許文献2に記載の技術では困難と考えられる。 The technique described in Patent Document 2 is considered to be effective when the SVR is on the upstream side (substation side) of the SVC and is installed at a position where the distance is short. However, in cases other than such a configuration, or when the positional relationship is not such that reactive power output by the SVC can be correctly detected on the SVR side (SVR is upstream of the SVC and the distance is short, etc.), Patent Literature In the technique described in No. 2, it is considered difficult to perform appropriate control. Similarly, when two or more SVCs are connected to the same power system, similarly, it is considered difficult to accurately estimate the reactive power output by each SVC using the SVR.
 今後、大容量負荷や、分散型電源の普及が進むにつれて、電圧変動の拡大の可能性が高まることが予想される。このような問題への対策として、SVRやSVCを含む制御装置が多数電力系統へ設置されると予想される。そのような場合、前記した特定の設置条件(高速高品質の通信環境)を満たさない電力系統が多数存在することが考えられる。そして、このような場合、特許文献1や特許文献2に記載の技術では、電力系統の電圧を適切に制御することは困難と考えられる。 In the future, the possibility of expansion of voltage fluctuations is expected to increase with the spread of large-capacity loads and distributed power sources. As a countermeasure to such a problem, it is expected that a large number of control devices including SVR and SVC are installed in the power system. In such a case, it is conceivable that there are many power systems that do not satisfy the specific installation conditions (high-speed and high-quality communication environment). In such a case, it is considered difficult to appropriately control the voltage of the power system with the techniques described in Patent Document 1 and Patent Document 2.
 さらに、負荷や分散型電源の出力の擾乱が大きく発生し、センサの出力等の信頼性が低下すると、従来の制御技術では適切な制御を行うことが困難になってくることが考えられる。 Furthermore, if a large disturbance in the output of the load or the distributed power supply occurs and the reliability of the sensor output or the like decreases, it may be difficult to perform appropriate control with the conventional control technology.
 このような背景に鑑みて本発明がなされたのであり、本発明は、信頼性の高い電力制御を行うことを課題とする。 The present invention has been made in view of such a background, and an object of the present invention is to perform power control with high reliability.
 前記課題を解決するため、本発明は、分散制御モードにおいて、計測データの信頼性が低い場合には、仮制御量に基づく電量系統の制御を行うことを特徴とする。 In order to solve the above problems, the present invention is characterized in that, in the distributed control mode, when the reliability of the measurement data is low, the electric power system is controlled based on the temporary control amount.
 本発明によれば、信頼性の高い電力制御を行うことができる。 According to the present invention, highly reliable power control can be performed.
第1実施形態に係る電力系統制御システムの構成例を示す図である。It is a figure showing an example of composition of an electric power system control system concerning a 1st embodiment. 本実施形態に係る中央装置及び制御装置のハードウェア構成例を示す図である。It is a figure which shows the hardware structural example of the central apparatus and control apparatus which concern on this embodiment. 本実施形態に係る電力系統の構成例を示す。The structural example of the electric power grid | system which concerns on this embodiment is shown. 第1実施形態に係るノード管理データの構成例を示す図である。It is a figure which shows the structural example of the node management data which concerns on 1st Embodiment. 第1実施形態に係るブランチ管理データの構成例を示す図である。It is a figure which shows the structural example of the branch management data which concerns on 1st Embodiment. 第1実施形態に係る制御装置管理データの構成例を示す図である。It is a figure which shows the structural example of the control apparatus management data which concerns on 1st Embodiment. 第1実施形態に係る制御量データの構成例を示す図である。It is a figure which shows the structural example of the controlled variable data which concerns on 1st Embodiment. 第1実施形態に係る計測データの構成例を示す図である。It is a figure which shows the structural example of the measurement data which concerns on 1st Embodiment. 第1実施形態に係る制御モードの移行を説明するための図である。It is a figure for demonstrating transfer of the control mode which concerns on 1st Embodiment. 第1実施形態に係る中央装置における制御量算出処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the control amount calculation process in the central apparatus which concerns on 1st Embodiment. 第1実施形態に係る中央装置における演算モデル算出処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the calculation model calculation process in the central apparatus which concerns on 1st Embodiment. 第1実施形態に係る演算モデルの具体的な意味を説明するための図である。It is a figure for demonstrating the specific meaning of the calculation model which concerns on 1st Embodiment. 第1実施形態に係るモデルデータの具体的な一例を示す図である。It is a figure which shows a specific example of the model data which concern on 1st Embodiment. 第1実施形態に係る制御装置の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the control apparatus which concerns on 1st Embodiment. 時間帯に応じて演算モデルを切り替えることを説明するための図である。It is a figure for demonstrating switching a calculation model according to a time slot | zone. 第2実施形態に係る中央装置の構成例を示す図である。It is a figure which shows the structural example of the central apparatus which concerns on 2nd Embodiment. 第2実施形態に係る制御装置の構成例を示す図である。It is a figure which shows the structural example of the control apparatus which concerns on 2nd Embodiment. 第2実施形態に係る信頼区間の例を示す図である。It is a figure which shows the example of the confidence interval which concerns on 2nd Embodiment. 第2実施形態に係る信頼区間データの例を示す図である。It is a figure which shows the example of the confidence area data which concern on 2nd Embodiment. 第2実施形態に係る制御処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the control processing which concerns on 2nd Embodiment. 第2実施形態に係る仮制御量の算出方法を説明するための図である(その1)。It is a figure for demonstrating the calculation method of the temporary control amount which concerns on 2nd Embodiment (the 1). 第2実施形態に係る仮制御量の算出方法を説明するための図である(その2)。It is a figure for demonstrating the calculation method of the temporary control amount which concerns on 2nd Embodiment (the 2). 第3実施形態に係る制御装置の構成例を示す図である。It is a figure which shows the structural example of the control apparatus which concerns on 3rd Embodiment. 第3実施形態に係る制御処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the control processing which concerns on 3rd Embodiment.
 次に、本発明を実施するための形態(「実施形態」という)について、適宜図面を参照しながら詳細に説明する。なお、各図面において、同様の構成要素については、同一の符号を付して説明を省略する。 Next, modes for carrying out the present invention (referred to as “embodiments”) will be described in detail with reference to the drawings as appropriate. In addition, in each drawing, about the same component, the same code | symbol is attached | subjected and description is abbreviate | omitted.
[第1実施形態]
 図1~図13を参照して第1実施形態に係る電力系統制御システム5を説明する。本実施形態では、変圧器等で構成される電力系統を制御するための通信ネットワーク4の通信状態を監視し、通信状態に応じて制御モードを切り替えて、制御装置2を適切に制御する電力系統制御システム5の例を説明する。
[First Embodiment]
The power system control system 5 according to the first embodiment will be described with reference to FIGS. In this embodiment, the power system which monitors the communication state of the communication network 4 for controlling the power system comprised by a transformer etc., switches a control mode according to a communication state, and controls the control apparatus 2 appropriately. An example of the control system 5 will be described.
<システム構成>
 図1は、第1実施形態に係る電力系統制御システムの構成例を示す図である。
 電力系統制御システム5において、中央装置(管理装置)1、複数の制御装置2(2a~2c)、及び複数のセンサ3(3a~3c:計測装置)が通信ネットワーク4を介して互いに通信可能に接続されている。
<System configuration>
FIG. 1 is a diagram illustrating a configuration example of a power system control system according to the first embodiment.
In the power system control system 5, a central device (management device) 1, a plurality of control devices 2 (2a to 2c), and a plurality of sensors 3 (3a to 3c: measuring devices) can communicate with each other via a communication network 4. It is connected.
(中央装置)
 中央装置1は、例えば、コンピュータシステムとして構成されている。
 中央装置1は、通信状態監視部101、電力状態推定部102、制御量算出処理部103、モデル生成部104、送受信処理部(送信部)105、計測データ記憶部111、系統データ記憶部112及びモデルデータ記憶部113を有している。
 通信状態監視部101は、通信ネットワーク4の通信状態を監視する。また、通信状態監視部101は、予め定められた一定の監視周期Tmで各センサ3からタイムスタンプ付計測データを収集し、収集したタイムスタンプ付きの計測データを計測データとして計測データ記憶部111に格納する。なお、以降、計測データとは、タイムスタンプ付きの計測データであるとする。
(Central device)
The central device 1 is configured as a computer system, for example.
The central apparatus 1 includes a communication state monitoring unit 101, a power state estimation unit 102, a control amount calculation processing unit 103, a model generation unit 104, a transmission / reception processing unit (transmission unit) 105, a measurement data storage unit 111, a system data storage unit 112, and A model data storage unit 113 is included.
The communication status monitoring unit 101 monitors the communication status of the communication network 4. The communication state monitoring unit 101 collects time-stamped measurement data from each sensor 3 at a predetermined constant monitoring cycle Tm, and the collected time-stamped measurement data is stored in the measurement data storage unit 111 as measurement data. Store. Hereinafter, the measurement data is assumed to be measurement data with a time stamp.
 電力状態推定部102は、電力系統制御システム5の電力状態を推定する。具体的には、電力状態推定部102は、電力状態の推定に十分な数の計測データが得られたか否かを判定することで、可観測性を判定する。そして、電力状態推定部102は、可観測か不観測かに応じた方法で、正常と判定された計測データと系統データを用いて、電力系統全体の電力状態(有効電力、無効電力、電圧等)を推定する。
 制御量算出処理部103は、各制御装置2の制御量を算出し、各制御量を制御装置2へ送信する。ここで、制御装置2がLRT(Load Ratio control Transformer)や、SVRの場合は、制御量はタップ番号(変圧比)である。この場合、制御装置2は制御量に含まれるタップマップ(変圧比に対応するタップ番号が記載されたリスト)を参照して、タップを対応するタップ番号に切替動作を行う。なお、すでに該当タップ番号になっている場合には切替動作は行われない。
 モデル生成部104は、電力状態や、制御量の演算モデルを算出する。演算モデルについては、後記して説明する。
 送受信処理部105は、各制御装置2や、各センサ3との間の各種データの送受信を行う。つまり、送受信処理部105は、制御装置2へ、後記する制御量データ、モデルデータ、系統データといった各種データを送信する。これら制御装置2へ送信されるデータは、各々のデータ種別毎に異なる周期で送信されてもよい。
The power state estimation unit 102 estimates the power state of the power system control system 5. Specifically, the power state estimation unit 102 determines observability by determining whether or not a sufficient number of measurement data for estimating the power state has been obtained. Then, the power state estimation unit 102 uses the measurement data and system data determined to be normal by a method according to whether it is observable or unobservable, and uses the power state (active power, reactive power, voltage, etc.) of the entire power system. ).
The control amount calculation processing unit 103 calculates the control amount of each control device 2 and transmits each control amount to the control device 2. When the control device 2 is an LRT (Load Ratio control Transformer) or SVR, the control amount is a tap number (transformation ratio). In this case, the control device 2 refers to a tap map (a list in which tap numbers corresponding to the transformation ratio are included) included in the controlled variable, and switches the tap to the corresponding tap number. Note that the switching operation is not performed when the tap number has already been reached.
The model generation unit 104 calculates a power state and a control amount calculation model. The calculation model will be described later.
The transmission / reception processor 105 transmits / receives various data to / from each control device 2 and each sensor 3. That is, the transmission / reception processing unit 105 transmits various data such as control amount data, model data, and system data described later to the control device 2. The data transmitted to these control devices 2 may be transmitted at different periods for each data type.
 計測データの送信周期は、電力系統毎や、通信回線のスペック、通信機器数、目標性能等を勘案して予め定められる。送信周期は、例えば、1分、3分、10分、30分、60分等のような値に設定される。これらの具体的数値は一例であって、これらの値に限定されない。 Measured data transmission cycle is predetermined in consideration of each power system, communication line specifications, number of communication devices, target performance, and the like. The transmission period is set to a value such as 1 minute, 3 minutes, 10 minutes, 30 minutes, 60 minutes, or the like. These specific numerical values are examples, and are not limited to these values.
 計測データ記憶部111には、センサ3で計測された計測値に関するデータである計測データが格納されていている。計測データについては後記する。
 系統データ記憶部112には、電力系統の構成や、電力系統を構成する機器のスペック等に関するデータである系統データが格納されている。系統データについては後記する。
 モデルデータ記憶部113には、モデル生成部104で生成された、電力状態や、制御量の演算モデルに関するデータであるモデルデータが格納されている。
The measurement data storage unit 111 stores measurement data that is data related to the measurement values measured by the sensor 3. The measurement data will be described later.
The system data storage unit 112 stores system data that is data relating to the configuration of the power system, the specifications of the devices that configure the power system, and the like. System data will be described later.
The model data storage unit 113 stores model data that is data related to the power state and the control amount calculation model generated by the model generation unit 104.
(制御装置)
 次に、制御装置2の構成を説明する。
 制御装置2は、LRT、SVR、SVC、スイッチトキャパシタ、バッテリ付PCS(Power Conditioning System)等の、電力系統の状態のうち主に電圧を制御するための機器であり、コントローラ200と、制御処理部204とを有する。
 コントローラ200は、制御量を決定するものであり、送受信処理部201、制御モード決定処理部202、制御量算出処理部203、系統データ記憶部211、モデルデータ記憶部212及び計測データ記憶部213を有する。
 送受信処理部201は、中央装置1や、各センサ3との間のデータの送受信を行う。
 制御モード決定処理部202は、通信状態を基に、複数の制御モードの中からいずれか1つを決定する。制御モードには、集中制御モード、分散制御モード、自律制御モードが存在する。それぞれの制御モードについては後記して説明する。
 制御量算出処理部203は、制御モード決定処理部202にて決定された制御モードが分散制御モードである場合、演算モデルを使用して自身が出力する制御量を算出する。
(Control device)
Next, the configuration of the control device 2 will be described.
The control device 2 is a device for mainly controlling the voltage in the state of the power system such as LRT, SVR, SVC, switched capacitor, battery-equipped PCS (Power Conditioning System), etc., and includes a controller 200 and a control processing unit. 204.
The controller 200 determines a control amount, and includes a transmission / reception processing unit 201, a control mode determination processing unit 202, a control amount calculation processing unit 203, a system data storage unit 211, a model data storage unit 212, and a measurement data storage unit 213. Have.
The transmission / reception processing unit 201 transmits / receives data to / from the central device 1 and each sensor 3.
The control mode determination processing unit 202 determines any one of a plurality of control modes based on the communication state. The control mode includes a central control mode, a distributed control mode, and an autonomous control mode. Each control mode will be described later.
When the control mode determined by the control mode determination processing unit 202 is the distributed control mode, the control amount calculation processing unit 203 calculates a control amount output by itself using an arithmetic model.
 系統データ記憶部211には、中央装置1から送られた系統データが格納されている。
 モデルデータ記憶部212には、中央装置1から送られたモデルデータが格納されている。
 計測データ記憶部213には、センサ3で計測された計測値に関するデータである計測データが格納されていている。
 すなわち、制御装置2の系統データ記憶部211、計測データ記憶部212、モデルデータ記憶部213には、中央装置1における系統データ記憶部112、モデルデータ記憶部113、計測データ記憶部111と同様のデータが格納されている。ただし、制御装置2が、後記する自律制御モードによる制御を行っている場合、制御装置2の自制御装置2に設けられているセンサ3からの計測データだけが計測データとして蓄積される場合がある。
In the system data storage unit 211, system data sent from the central apparatus 1 is stored.
The model data storage unit 212 stores model data sent from the central apparatus 1.
The measurement data storage unit 213 stores measurement data that is data related to the measurement values measured by the sensor 3.
That is, the system data storage unit 211, the measurement data storage unit 212, and the model data storage unit 213 of the control device 2 are similar to the system data storage unit 112, the model data storage unit 113, and the measurement data storage unit 111 in the central device 1. Data is stored. However, when the control device 2 performs control in the autonomous control mode to be described later, only measurement data from the sensor 3 provided in the self-control device 2 of the control device 2 may be accumulated as measurement data. .
 制御処理部204は、中央装置1から送られた制御量、あるいは制御量算出処理部203で算出された制御量に従って、制御出力を行う。制御処理部204は制御量に含まれるタップマップ(変圧比に対応するタップ番号が記載されたリスト)を参照して、タップを対応するタップ番号に切替動作を行う。 The control processing unit 204 performs control output according to the control amount sent from the central apparatus 1 or the control amount calculated by the control amount calculation processing unit 203. The control processing unit 204 refers to a tap map (a list in which tap numbers corresponding to the transformation ratio are included) included in the controlled variable, and switches the taps to the corresponding tap numbers.
 制御装置2がSVC、スイッチトキャパシタ、バッテリ付PCSの場合、制御出力は無効電力の出力、あるいは目標電圧の二通りがある。制御出力が無効電力の出力の場合、「進み50kvar」又は「遅れ30kvar」のように出力される。 When the control device 2 is an SVC, a switched capacitor, or a PCS with a battery, there are two types of control outputs: reactive power output or target voltage. When the control output is a reactive power output, it is output as “advance 50 kvar” or “delay 30 kvar”.
 制御出力が目標電圧の場合、制御処理部204は、まず、制御装置2の設置地点の電圧と目標電圧の差分を監視する。そして、制御処理部204は、前記差分及び制御装置2の設置地点とインバータ(キャパシタ)との間のリアクタンスを用いて、例えばPI(Proportional Integral)制御(比例制御、積分制御)にて目標電圧に一致するように出力すべき無効電力を決定し、その無効電力にしたがって出力動作を行う。 When the control output is the target voltage, the control processing unit 204 first monitors the difference between the voltage at the installation point of the control device 2 and the target voltage. Then, the control processing unit 204 uses the difference and the reactance between the installation point of the control device 2 and the inverter (capacitor) to set the target voltage, for example, by PI (Proportional Integral) control (proportional control, integral control). The reactive power to be output is determined so as to match, and the output operation is performed according to the reactive power.
(センサ)
 次に、センサ3について説明する。
 センサ3は、センサ3自身の電力系等上の設置位置における電力状態量を計測する装置である。センサ3で計測された電力状態量は、通信ネットワーク4を介して、中央装置1や、制御装置2に送信される。センサ3で計測される電力状態量のデータが計測データである。
(Sensor)
Next, the sensor 3 will be described.
The sensor 3 is a device that measures a power state quantity at an installation position on the power system or the like of the sensor 3 itself. The power state quantity measured by the sensor 3 is transmitted to the central device 1 and the control device 2 via the communication network 4. Data of the power state quantity measured by the sensor 3 is measurement data.
 各センサ3は、所定の時間周期にて、それぞれの種類や役割に応じて、15分毎等、所定時間毎に有効電力P、無効電力Q、電圧V等を計測し、計測データとして出力することができる。さらに、センサ3は、電流(潮流方向を含んでもよい)、電圧、力率を計測、出力することも可能である。なお、有効電力P及び無効電力Qは、電流、電圧、力率を用いた算出式によって算出されることも可能である。三相三線式の交流回路の場合、有効電力P、無効電力Q、電流、力率は相単位に計測され、電圧は線間単位に計測される。計測の簡略化のため、代表相(例えばU相)又は代表線間(例えばUV相)のみが計測される場合もある。 Each sensor 3 measures active power P, reactive power Q, voltage V, etc. every predetermined time, such as every 15 minutes, according to the type and role in a predetermined time period, and outputs it as measurement data. be able to. Further, the sensor 3 can also measure and output a current (which may include a flow direction), a voltage, and a power factor. Note that the active power P and the reactive power Q can also be calculated by a calculation formula using current, voltage, and power factor. In the case of a three-phase three-wire AC circuit, active power P, reactive power Q, current, and power factor are measured in phase units, and voltage is measured in line units. In order to simplify the measurement, only the representative phase (for example, the U phase) or between the representative lines (for example, the UV phase) may be measured.
 中央装置1の送受信処理部105は、センサ3から受信した計測データを計測データ記憶部111に格納する。同様に、制御装置2の送受信処理部201は、センサ3から受信した計測データを計測データ記憶部213に格納する。計測データについては後記する。 The transmission / reception processing unit 105 of the central apparatus 1 stores the measurement data received from the sensor 3 in the measurement data storage unit 111. Similarly, the transmission / reception processing unit 201 of the control device 2 stores the measurement data received from the sensor 3 in the measurement data storage unit 213. The measurement data will be described later.
(通信ネットワーク)
 次に、通信ネットワーク4について説明する。
 通信ネットワーク4は、中央装置1、制御装置2及びセンサ3を互いに接続する通信回線網である。各々の中央装置1、制御装置2、センサ3は、通信ネットワーク4を用いて相互に、制御指令や、計測データ等の各種データを送受信する。通信ネットワーク4は、例えば、電話回線等の公衆回線、Ethernet(登録商標)、専用通信回線、電力線搬送通信回線等の有線によるネットワークでもよい。あるいは、通信ネットワーク4は、携帯電話通信網、PHS(Personal Handy-phone System)、業務用無線、衛星用回線、無線LAN(Local Area Network)、ZigBee(登録商標)等の無線によるネットワークでもよい。
(Communication network)
Next, the communication network 4 will be described.
The communication network 4 is a communication network that connects the central device 1, the control device 2, and the sensor 3 to each other. Each of the central device 1, the control device 2, and the sensor 3 transmits and receives various data such as control commands and measurement data to each other using the communication network 4. The communication network 4 may be a wired network such as a public line such as a telephone line, Ethernet (registered trademark), a dedicated communication line, and a power line carrier communication line. Alternatively, the communication network 4 may be a wireless network such as a mobile phone communication network, a PHS (Personal Handy-phone System), a business radio, a satellite line, a wireless LAN (Local Area Network), or ZigBee (registered trademark).
<ハードウェア構成>
 図2は、本実施形態に係る中央装置及び制御装置のハードウェア構成例を示す図である。
 図2(a)は、中央装置のハードウェア構成例を示す図である。
 中央装置1は、CPU(Central Processing Unit)301、RAM(Random Access Memory)302、ROM(Read Only memory)303、HD(Hard Disk)304、LAN(Local Area Network)カード等の通信インタフェース305がバス306を介して接続されている。
 図1の中央装置1における通信状態監視部101、電力状態推定部102、制御量算出処理部103、モデル生成部104、送受信処理部105は、HD304等に格納されているプログラムがRAM302に展開され、CPU301によって実行されることで具現化する。
 また、計測データ記憶部111、系統データ記憶部112、モデルデータ記憶部113はHD304によって実現されている。
<Hardware configuration>
FIG. 2 is a diagram illustrating a hardware configuration example of the central device and the control device according to the present embodiment.
FIG. 2A is a diagram illustrating a hardware configuration example of the central device.
The central apparatus 1 has a CPU (Central Processing Unit) 301, a RAM (Random Access Memory) 302, a ROM (Read Only Memory) 303, an HD (Hard Disk) 304, a communication interface 305 such as a LAN (Local Area Network) card, etc. as a bus. 306 is connected.
In the central apparatus 1 of FIG. 1, the communication state monitoring unit 101, the power state estimation unit 102, the control amount calculation processing unit 103, the model generation unit 104, and the transmission / reception processing unit 105 are expanded in the RAM 302 by a program stored in the HD 304. This is realized by being executed by the CPU 301.
Further, the measurement data storage unit 111, the system data storage unit 112, and the model data storage unit 113 are realized by the HD 304.
 図2(b)は、制御装置のハードウェア構成例を示す図である。
 制御装置2は、CPU401、ROM402、通信インタフェース403がバス404を介して接続されている。
 図1の制御装置2における制御処理部204、コントローラ200、コントローラ200を構成する送受信処理部201、制御モード決定処理部202、制御量算出処理部203は、ROM402に格納されているプログラムをCPU401が実行することにより具現化する。
 また、系統データ記憶部211、モデルデータ記憶部212、計測データ記憶部213はROM402内に形成されている。
FIG. 2B is a diagram illustrating a hardware configuration example of the control device.
In the control device 2, a CPU 401, a ROM 402, and a communication interface 403 are connected via a bus 404.
The control processing unit 204, the controller 200, the transmission / reception processing unit 201 constituting the controller 200, the control mode determination processing unit 202, and the control amount calculation processing unit 203 in the control device 2 of FIG. Realize by executing.
Further, the system data storage unit 211, the model data storage unit 212, and the measurement data storage unit 213 are formed in the ROM 402.
<電力系統の構成例>
 図3は、本実施形態に係る電力系統の構成例を示す。
 電力系統は、大別して、ノード31(31a~31g)とブランチ32(32a~32f)とから構成され、各々のノード31とブランチ32は属性データを有している。
<Example of power system configuration>
FIG. 3 shows a configuration example of the power system according to the present embodiment.
The power system is roughly divided into nodes 31 (31a to 31g) and branches 32 (32a to 32f), and each node 31 and branch 32 has attribute data.
 ノード31は、所定の機器が設置されている箇所である。
 例えば、ノード31aは、変電所に設置されている変圧器であり、そこにはセンサ3a(3)及び制御装置2a(2)が接続されている。ノード31bは、電柱に設置されている柱上変圧器であり、そこにはセンサ3b(3)が接続されている。ノード31cは、電柱に設置されている柱上変圧器であるが、そこに制御装置2やセンサ3は設置されていない。ノード31dは、需要家又は分散電源等の負荷又は電源を示し、そこにはセンサ3c(3)及び制御装置2b(2)が接続されている。ノード31eは、柱上変圧器が設置されている電柱であり、そこにセンサ3は設置されていない。ノード31fは、柱上変圧器が設置されている電柱であり、そこにはセンサ3d(3)が設置されている。最後のノード31gは、需要家又は分散電源等の負荷又は電源を示し、そこにはセンサ3e(3)及び制御装置2c(2)が接続されている。
The node 31 is a place where a predetermined device is installed.
For example, the node 31a is a transformer installed in a substation, to which a sensor 3a (3) and a control device 2a (2) are connected. The node 31b is a pole transformer installed on a utility pole, to which a sensor 3b (3) is connected. The node 31c is a pole transformer installed on the utility pole, but the control device 2 and the sensor 3 are not installed there. The node 31d indicates a load or power source such as a customer or a distributed power source, to which a sensor 3c (3) and a control device 2b (2) are connected. The node 31e is a utility pole in which a pole transformer is installed, and the sensor 3 is not installed there. The node 31f is a utility pole in which a pole transformer is installed, and a sensor 3d (3) is installed there. The last node 31g indicates a load or power source such as a customer or a distributed power source, to which a sensor 3e (3) and a control device 2c (2) are connected.
 次に、ブランチ32(32a~32f)について説明する。ブランチ32は、ノード31とノード31との間の経路区間であり、具体的には、送電線又は配電線の区間である。言い換えれば、ブランチ32以外はノード31となる。各ブランチ32は、そのインピーダンスとして、抵抗R及びリアクタンスXを有する。ブランチ32には、厳密にはキャパシタンスもあるが、この例では他に比べて十分小さいとみなし無視することにする。 Next, the branch 32 (32a to 32f) will be described. The branch 32 is a path section between the node 31 and the node 31, and specifically, a section of a power transmission line or a distribution line. In other words, nodes other than the branch 32 are nodes 31. Each branch 32 has a resistance R and a reactance X as its impedance. Strictly speaking, the branch 32 also has a capacitance, but in this example, it is considered to be sufficiently smaller than the others and is ignored.
 図3におけるブランチ32aは、始点ノードを31a、終点ノードを31bとする区間である。また、ブランチ32bの始点はノード31b、終点はノード31cである。さらに、ブランチ32cの始点はノード31c、終点はノード31dである。そして、ブランチ32dの始点はノード31d、終点はノード31eである。また、ブランチ32eの始点はノード31e、終点はノード31fである。そして、ブランチ32fの始点はノード31f、終点はノード31gである。 The branch 32a in FIG. 3 is a section in which the start point node is 31a and the end point node is 31b. The start point of the branch 32b is a node 31b and the end point is a node 31c. Furthermore, the start point of the branch 32c is a node 31c, and the end point is a node 31d. The start point of the branch 32d is a node 31d, and the end point is a node 31e. The start point of the branch 32e is a node 31e, and the end point is a node 31f. The start point of the branch 32f is a node 31f and the end point is a node 31g.
<系統データ>
 次に、図4~図6を参照して、系統データを構成する各種データについて説明する。
(ノード管理データ)
 図4は、第1実施形態に係るノード管理データの構成例を示す図である。
 なお、ノード管理データは、系統データ10の一部を構成するデータである。
 ノード管理データは、ノードID(Identification)、変電所フラグ、柱上変圧器フラグ、センサID、制御装置ID、計測値、電力状態推定値の各フィールドを有する。
<System data>
Next, various data constituting the system data will be described with reference to FIGS.
(Node management data)
FIG. 4 is a diagram illustrating a configuration example of node management data according to the first embodiment.
The node management data is data that forms part of the system data 10.
The node management data has fields of a node ID (Identification), a substation flag, a pole transformer flag, a sensor ID, a control device ID, a measured value, and a power state estimated value.
 ノードIDは、ノードを識別する情報である。
 変電所フラグは、変電所の有無を示す情報である。
 柱上変圧器フラグは、柱上変圧器の有無を示す情報である。
 センサIDは、センサ3を識別する情報であるとともに、センサ3の有無を示す情報でもある。
 制御装置IDは、制御装置2を識別する情報であるとともに、制御装置2の有無を識別する情報でもある。
 計測値は、センサ3による計測値である。なお、計測値は計測データに含まれているものである。
The node ID is information for identifying the node.
The substation flag is information indicating the presence or absence of a substation.
The pole transformer flag is information indicating the presence or absence of a pole transformer.
The sensor ID is information for identifying the sensor 3 and information indicating the presence or absence of the sensor 3.
The control device ID is information for identifying the control device 2 and information for identifying the presence or absence of the control device 2.
The measured value is a measured value by the sensor 3. The measured value is included in the measured data.
 電力状態推定値は、各ノードにおいて、各センサ3から送られる計測データの全部、あるいは一部を用いて後記する演算モデルを用いて推定される電力状態の値である。電力状態推定値は、具体的には、有効電力P(PA~PG)、無効電力Q(QA~QG)、推定電圧V(VA~VG)等の推定値である。
 電力状態推定値が算出されるタイミングはセンサ3と同期する(例えば、15分毎)ことが望ましい。センサ3の設置されていないノード31c,31eでは、そのノードにおける電力状態が潮流計算等から推定されて、ノード管理データに記憶されている。なお、電力状態推定値と、計測値とは通常異なる値となることが多い。
 また、後記する集中制御モードや、自律制御モードが行われているときには、電力状態推定値には潮流計算等を基に算出された電力状態推定値が格納される。
The power state estimated value is a value of a power state estimated using a calculation model described later using all or a part of measurement data sent from each sensor 3 at each node. Specifically, the power state estimated value is an estimated value of active power P (PA to PG), reactive power Q (QA to QG), estimated voltage V (VA to VG), and the like.
The timing at which the power state estimated value is calculated is preferably synchronized with the sensor 3 (for example, every 15 minutes). In the nodes 31c and 31e where the sensor 3 is not installed, the power state at the nodes is estimated from the power flow calculation and stored in the node management data. In many cases, the power state estimated value and the measured value are different from each other.
In addition, when a centralized control mode or an autonomous control mode, which will be described later, is being performed, a power state estimated value calculated based on power flow calculation or the like is stored in the power state estimated value.
 なお、図4に示すように電力状態推定値はすべてのノードについて算出されることが望ましい。あるいは、ユーザが電力状態推定値を算出するノードを指定してもよい。 As shown in FIG. 4, it is desirable that the power state estimation value is calculated for all nodes. Alternatively, the user may specify a node for calculating the power state estimated value.
 なお、ノード管理データは、図4に示す項目だけでなく、他の項目を加えてもよいし、図示している項目を複数のノード管理データに分割し、分割されたノード管理データ同士がリンクや、ポインタ等で対応づけられる構成でもよい。このようなことは、ノード管理データに限らず、後記する他のデータについても同様のことがいえる。 In addition to the items shown in FIG. 4, other items may be added to the node management data. The shown items are divided into a plurality of node management data, and the divided node management data are linked to each other. Or the structure matched with a pointer etc. may be sufficient. The same can be said for not only the node management data but also other data described later.
(ブランチ管理データ)
 図5は、第1実施形態に係るブランチ管理データの構成例を示す図である。
 なお、ブランチ管理データは、系統データの一部を構成するデータである。
 ブランチ管理データは、ブランチID、始点ノードID、終点ノードID、抵抗値R(Ω)、リアクタンスX(Ω)の各フィールドを有する。
 ブランチIDは、ブランチを識別する情報である。
 始点ノードIDは、対象となっているブランチの始点となっているノードのノードIDである。
 終点ノードIDは、対象となっているブランチの終点となっているノードのノードIDである。
 抵抗値は、対象となっているブランチの抵抗値である。
 リアクタンスは、対象となっているブランチのリアクタンスである。
 抵抗値や、リアクタンスは、ノードにおける電圧や、ブランチの材質等から算出される。
(Branch management data)
FIG. 5 is a diagram illustrating a configuration example of branch management data according to the first embodiment.
The branch management data is data that forms part of the system data.
The branch management data includes fields of branch ID, start node ID, end node ID, resistance value R (Ω), and reactance X (Ω).
The branch ID is information for identifying a branch.
The start point node ID is the node ID of the node that is the start point of the target branch.
The end node ID is the node ID of the node that is the end point of the target branch.
The resistance value is the resistance value of the target branch.
The reactance is the reactance of the target branch.
The resistance value and reactance are calculated from the voltage at the node, the material of the branch, and the like.
(制御装置管理データ)
 図6は、第1実施形態に係る制御装置管理データの構成例を示す図である。
 なお、制御装置管理データは、系統データの一部を構成するデータである。
 制御装置管理データは、制御装置ID、基準電圧(V)、LDC(Line Drop Compensator)パラメータR,X(Ω)、動作時限(sec)、定格容量(kVA/kvar)の各フィールドを有している。
 制御装置IDは、制御装置2を識別する情報である。
 基準電圧、LDCパラメータ、定格容量は、それぞれの制御装置2のスペックによって定められる値である。
 LDCパラメータは、制御装置2がLRT又はSVRのような負荷に応じて電圧を調整する装置に用いられるもので、具体的には、制御装置2から基準点までのインピーダンス(抵抗、リアクタンス)及び不感帯から構成される数値データである。したがって、制御装置2がLRT又はSVRのような負荷に応じて電圧を調整する装置以外のときには、LDCパラメータは無効である。
 動作時限は、制御装置2が動作してから次に動作可能となるまでの時間である。
(Control device management data)
FIG. 6 is a diagram illustrating a configuration example of control device management data according to the first embodiment.
The control device management data is data that forms part of the system data.
The control device management data has fields of control device ID, reference voltage (V), LDC (Line Drop Compensator) parameters R, X (Ω), operation time limit (sec), and rated capacity (kVA / kvar). Yes.
The control device ID is information for identifying the control device 2.
The reference voltage, the LDC parameter, and the rated capacity are values determined by the specifications of each control device 2.
The LDC parameter is used for a device in which the control device 2 adjusts a voltage according to a load such as LRT or SVR. Specifically, the impedance (resistance, reactance) and dead zone from the control device 2 to a reference point are used. Is numerical data composed of Therefore, when the control device 2 is other than a device that adjusts the voltage according to the load such as LRT or SVR, the LDC parameter is invalid.
The operation time period is the time from when the control device 2 operates until the next operation becomes possible.
(制御量データ)
 図7は、第1実施形態に係る制御量データの構成例を示す図である。
 制御量データは、制御装置ID、制御量、タイムスタンプを有している。
 制御装置IDは、制御装置2を識別するIDであり、制御量データの宛先にもなっている。
 制御量は、制御装置IDに該当する制御装置2における制御量である。
 タイムスタンプは制御量データが送信された日時である。
 図7の制御量データは、中央装置1から制御装置2へ送信されるデータであり、制御装置2が集中制御を行っている場合、制御装置2は制御量データに含まれる制御量で自身を制御する。
(Control amount data)
FIG. 7 is a diagram illustrating a configuration example of control amount data according to the first embodiment.
The control amount data has a control device ID, a control amount, and a time stamp.
The control device ID is an ID for identifying the control device 2 and is also a destination of control amount data.
The control amount is a control amount in the control device 2 corresponding to the control device ID.
The time stamp is the date and time when the control amount data is transmitted.
The control amount data in FIG. 7 is data transmitted from the central device 1 to the control device 2, and when the control device 2 performs centralized control, the control device 2 identifies itself with the control amount included in the control amount data. Control.
(計測データ)
 図8は、第1実施形態に係る計測データの構成例を示す図である。
 計測データの1レコードが、センサ3から送られる計測データに該当する。
 計測データは、タイムスタンプと、センサIDと、対象となっているセンサ3で計測された各計測値を有する。なお、本実施形態において計測値は、有効電力P(kW)、無効電力Q(kvar)、電圧V(V)であるが、この他にも電流、力率、潮流方向(電流方向)等が含まれてもよい。
 タイムスタンプは、対象となっているセンサ3で計測値が計測された日時である。
 センサIDは、センサ3を識別する情報である。
(Measurement data)
FIG. 8 is a diagram illustrating a configuration example of measurement data according to the first embodiment.
One record of measurement data corresponds to the measurement data sent from the sensor 3.
The measurement data includes a time stamp, a sensor ID, and each measurement value measured by the target sensor 3. In the present embodiment, the measured values are active power P (kW), reactive power Q (kvar), and voltage V (V). In addition to this, there are current, power factor, power flow direction (current direction), and the like. May be included.
The time stamp is the date and time when the measurement value is measured by the target sensor 3.
The sensor ID is information for identifying the sensor 3.
<制御モードの移行>
 図9は、第1実施形態に係る制御モードの移行を説明するための図である。
 本実施形態では、電力系統の制御モードとして、(1)集中制御モード、(2)分散制御モード、(3)自律制御モード、の3つがある。
 制御モードの移行についての説明を行う前に、これら3つの制御モードについて説明する。
<Control mode transition>
FIG. 9 is a diagram for explaining the transition of the control mode according to the first embodiment.
In the present embodiment, there are three power system control modes: (1) centralized control mode, (2) distributed control mode, and (3) autonomous control mode.
These three control modes will be described before describing the transition of the control mode.
(1)集中制御モード
 集中制御モードとは、中央装置1ですべての制御装置2の制御を行うモードであり、特許文献1に記載の技術の集中型制御にあたる。具体的には、中央装置1が各制御装置2の制御量を算出し、各制御装置2は中央装置1から送られた制御量を基に自身の制御を行う。集中制御モードは、中央装置1ですべての制御を行うため、効率等の点で優れている。
(1) Centralized control mode The centralized control mode is a mode in which the central device 1 controls all the control devices 2, and corresponds to the centralized control of the technique described in Patent Literature 1. Specifically, the central device 1 calculates the control amount of each control device 2, and each control device 2 controls itself based on the control amount sent from the central device 1. The central control mode is excellent in terms of efficiency and the like because the central device 1 performs all control.
(2)分散制御モード
 分散制御モードは、中央装置1で算出された電力状態・制御量の演算モデルと、センサ3から取得した計測データとを基に、自身の制御量を算出し、制御するモードである。分散制御モードは、中央装置1からの制御量を使用せず、制御装置2自身で制御量を算出することができる。
(2) Distributed control mode The distributed control mode calculates and controls its own control amount based on the power state / control amount calculation model calculated by the central device 1 and the measurement data acquired from the sensor 3. Mode. In the distributed control mode, the control amount from the central device 1 is not used, and the control amount can be calculated by the control device 2 itself.
(3)自律制御モード
 自律制御モードは、中央装置1とは関係なく、制御装置2が自身の制御料を算出し、制御するモードであり、特許文献2に記載の技術の自律分散型制御にあたる。
 電力系統の電力状態を推定した上で制御する分散制御モードは、単純に自端ノードにおける目標電圧との偏差を解消するように制御を行う自律制御モードとは異なる。
(3) Autonomous control mode The autonomous control mode is a mode in which the control device 2 calculates and controls its own control fee regardless of the central device 1, and corresponds to the autonomous distributed control of the technology described in Patent Document 2. .
The distributed control mode that is controlled after estimating the power state of the power system is different from the autonomous control mode that performs control so as to simply cancel the deviation from the target voltage at the local node.
 自律制御モードで制御が行われている場合、制御装置2の制御量算出処理部203は、系統データに含まれる各制御装置2の制御パラメータと、計測データとに基づき、予め定められた所定の方式に従って制御量を算出する。例えば、制御装置2がLRTや、SVRの場合、LDC方式に基づいて、SVC、スイッチトキャパシタ、バッテリ付PCSでは電圧一定制御に基づいて、自身で出力すべき制御量を算出し、制御処理部204は、この制御量に基づいて自身の制御を行う。 When the control is performed in the autonomous control mode, the control amount calculation processing unit 203 of the control device 2 performs a predetermined predetermined value based on the control parameter of each control device 2 included in the system data and the measurement data. The control amount is calculated according to the method. For example, when the control device 2 is LRT or SVR, the control amount to be output by itself is calculated based on the constant voltage control in the SVC, the switched capacitor, and the battery-equipped PCS based on the LDC method, and the control processing unit 204 Performs its own control based on this control amount.
 なお、優先順位としては、(1)集中制御モード、(2)分散制御モード、(3)自律制御モードの順となる。 The priority order is (1) centralized control mode, (2) distributed control mode, and (3) autonomous control mode.
 これらの制御モードは、通信状態によって移行される。
 制御モードの移行制御を、図9を参照して説明する。
 まず、集中制御モードにおいて、中央装置1は制御装置2の制御量を算出すると、算出した制御量を制御量データとして制御装置2に送信する。このとき、制御量データには、送信日時であるタイムスタンプが付されている。
 制御装置2は、中央装置1から前回受信した制御量データのタイムスタンプと現在時刻との差Tdと、予め設定されている第1所定時間T1とを比較する。ここで、第1所定時間T1は、中央装置1による制御量データの送信周期Tc以上に設定されている(T1≧Tc)。
 ここで、Td<T1のとき、すなわち、中央装置1から制御装置2に対して、予め設定されている一定時間毎に制御量データが送信されている場合、制御装置2は通信の健全性が保たれていると判定し、集中制御モードに基づいた制御を行う(S1)。
These control modes are shifted depending on the communication state.
Control mode transition control will be described with reference to FIG.
First, in the centralized control mode, when the central device 1 calculates the control amount of the control device 2, it transmits the calculated control amount to the control device 2 as control amount data. At this time, the control amount data is given a time stamp that is a transmission date and time.
The control device 2 compares the difference Td between the time stamp of the control amount data previously received from the central device 1 and the current time with a preset first predetermined time T1. Here, the first predetermined time T1 is set to be equal to or longer than the transmission period Tc of control amount data by the central device 1 (T1 ≧ Tc).
Here, when Td <T1, that is, when the control amount data is transmitted from the central device 1 to the control device 2 at predetermined time intervals, the control device 2 has a communication soundness. It is determined that it is maintained, and control based on the centralized control mode is performed (S1).
 Td≧T1の場合、すなわち、中央装置1から制御装置2に対して、予め設定されている一定時間毎に制御量データが送信されていない(通信量が所定値以下)場合、制御装置2は、通信の健全性が損なわれたと判定し、分散制御モードへ移行する(S2)。
 分散制御モード下において、制御装置2は、中央装置1から受信済みの電力状態推定モデルと所定の計測データとに基づいて、自身における電力系統の電力状態を推定する。さらに、制御装置2は、制御量算出モデルを使用して、自身の制御量を算出し、所定の制御動作を実行する(所定の制御出力を行う)。なお、電力状態推定モデルは計測値から電力状態を推定するための演算モデルであり、制御量算出モデルは推定された電力状態から自身における制御量を算出するための演算モデルである。
In the case of Td ≧ T1, that is, when the control amount data is not transmitted from the central device 1 to the control device 2 at predetermined time intervals (communication amount is equal to or less than a predetermined value), the control device 2 Then, it is determined that the soundness of communication has been lost, and the process shifts to the distributed control mode (S2).
Under the distributed control mode, the control device 2 estimates the power state of the power system in itself based on the power state estimation model received from the central device 1 and predetermined measurement data. Furthermore, the control device 2 calculates its own control amount using the control amount calculation model, and executes a predetermined control operation (performs a predetermined control output). The power state estimation model is a calculation model for estimating the power state from the measured value, and the control amount calculation model is a calculation model for calculating the control amount in itself from the estimated power state.
 従って、分散制御モードを行うことによって、制御装置2は、中央装置1で算出された制御量を所定周期で受信できない場合(通信状態が悪化した場合)でも、予め中央装置1から送られている演算モデルに基づいて制御量を算出し、適切な制御を行うことができる。 Therefore, by performing the distributed control mode, the control device 2 is sent from the central device 1 in advance even when the control amount calculated by the central device 1 cannot be received in a predetermined cycle (when the communication state deteriorates). The control amount can be calculated based on the calculation model, and appropriate control can be performed.
 分散制御モードによる制御中に、通信状態が健全性を取り戻して、中央装置1からの制御量データを第1所定時間T1内に制御装置2が受信する(Td<T1)と、制御装置2は通信状態が健全性を回復したと判定し、分散制御モードから集中制御モードに制御モードを移行する(S3)。
 ここで、制御装置2は、第1所定時間T1内に制御量データを受信できた時点で集中制御モードに直ちに移行してもよい。又は、制御装置2は、さらに新たな制御量データを受信するまで分散制御モードを続行し、新たな制御量を受信したときの時刻と前回の制御量を受信したときの時刻との差TeがTe<T1の場合に、分散制御モードから集中制御モードに移行してもよい。
During control in the distributed control mode, when the communication state recovers soundness and the control device 2 receives the control amount data from the central device 1 within the first predetermined time T1 (Td <T1), the control device 2 It is determined that the communication state has recovered soundness, and the control mode is shifted from the distributed control mode to the centralized control mode (S3).
Here, the control device 2 may immediately shift to the centralized control mode when the control amount data can be received within the first predetermined time T1. Alternatively, the control device 2 continues the distributed control mode until new control amount data is received, and the difference Te between the time when the new control amount is received and the time when the previous control amount is received is When Te <T1, the distributed control mode may be shifted to the centralized control mode.
 通信状態が悪化したままの時間が長く継続し、分散制御モードに移行してからの経過時間Tsが電力状態推定モデルの有効期間T2以上になった場合(Ts≧T2)、制御装置2は、分散制御モードから自律制御モードに制御モードを移行する(S4)。 When the time during which the communication state has deteriorated continues for a long time and the elapsed time Ts after the transition to the distributed control mode becomes equal to or longer than the effective period T2 of the power state estimation model (Ts ≧ T2), the control device 2 The control mode is shifted from the distributed control mode to the autonomous control mode (S4).
 分散制御モードを使用することにより制御装置2は、電力系統全体の電圧を安定化するための制御を、比較的精度良く行うことができる。しかし、電力需給状態は時間や季節によって変動するため、同一の演算モデルを長期間にわたって使用し続けることは望ましくない。また、例えば新たな分散電源が電力系統に接続されたり、需要家の設備が廃棄されたりして、電力系統の構成は変更される可能性がある。電力系統の構成変化は、電力状態の推定精度にも影響を及ぼし、適切な制御量もこれに伴って変化する。このように電力需給状態の実態からかけ離れた演算モデルを使用し続けることは、電力状態の推定精度を低下させてしまい、電力系統の安定性維持に寄与しない。そこで、本実施形態の演算モデルには、有効に使用可能な期間T2が予め設定されている。
 ここで、有効期間T2は、所定時間T1よりも長く設定される(T2>T1≧Tc)。
 自律制御モード下の制御装置2は、自端ノードのセンサ3からの計測データに基づいて、自端ノードの目標電圧と計測電圧との偏差を解消するように制御する。
By using the distributed control mode, the control device 2 can relatively accurately perform control for stabilizing the voltage of the entire power system. However, since the power supply and demand state varies depending on time and season, it is not desirable to continue using the same calculation model for a long period of time. In addition, for example, the configuration of the power system may be changed when a new distributed power source is connected to the power system or the customer's equipment is discarded. The change in the configuration of the power system also affects the estimation accuracy of the power state, and the appropriate control amount changes accordingly. Continuing to use an arithmetic model that is far from the actual state of power supply and demand in this way reduces the estimation accuracy of the power state and does not contribute to maintaining the stability of the power system. Therefore, a period T2 that can be used effectively is set in advance in the calculation model of the present embodiment.
Here, the effective period T2 is set longer than the predetermined time T1 (T2> T1 ≧ Tc).
The control device 2 under the autonomous control mode performs control so as to eliminate the deviation between the target voltage of the local node and the measured voltage based on the measurement data from the sensor 3 of the local node.
 そして自律制御モードによる制御中に、中央装置1からの制御量データ受信周期が第1所定周期T1以内となった場合(Td<T1)、制御装置2は自律制御モードから集中制御モードに制御モードを移行する(S5)。このとき、制御装置2は、直ちに集中制御モードに移行してもよい。又は、制御装置2は、さらに新たな制御量を受領するまで待ち、前回の制御量受信時刻と今回の制御量受信時刻との差TeがTe<T1の場合に、自律制御モードから集中制御モードに制御モードを移行してもよい。 When the control amount data reception cycle from the central device 1 is within the first predetermined cycle T1 during the control in the autonomous control mode (Td <T1), the control device 2 switches from the autonomous control mode to the centralized control mode. (S5). At this time, the control device 2 may immediately shift to the centralized control mode. Alternatively, the control device 2 waits until a new control amount is received, and when the difference Te between the previous control amount reception time and the current control amount reception time is Te <T1, the autonomous control mode changes to the centralized control mode. The control mode may be shifted to.
 制御モードの移行タイミングの理解のために一例を挙げる。通信状態が健全な場合、中央装置1は、各計測データに基づいて算出される制御量(制御量データ)を、数秒~数分等の制御周期Tcで各制御装置2に送信する。このとき、中央装置1は、電力状態推定モデル、制御量算出モデルを含む演算モデルを予め制御装置2に送信している。通信状態が悪化し、数分程度に設定される所定時間T1待っても制御量データを受信できない場合、制御装置2は集中制御モードから分散制御モードに移行する。すなわち、制御装置2は、中央装置1から送られる制御量データを用いることをやめ、制御量データとともに送られている演算モデルを用いた制御を行う。ちなみに、制御量データは、分散制御モード、自律制御モード中でも中央装置1から制御装置2へ送信され続ける。 An example is given to understand the transition timing of the control mode. When the communication state is healthy, the central device 1 transmits a control amount (control amount data) calculated based on each measurement data to each control device 2 at a control cycle Tc such as several seconds to several minutes. At this time, the central apparatus 1 has previously transmitted a calculation model including a power state estimation model and a control amount calculation model to the control apparatus 2. If the communication state deteriorates and control amount data cannot be received even after waiting for the predetermined time T1 set to several minutes, the control device 2 shifts from the central control mode to the distributed control mode. That is, the control device 2 stops using the control amount data sent from the central device 1 and performs control using the arithmetic model sent together with the control amount data. Incidentally, the control amount data is continuously transmitted from the central device 1 to the control device 2 even in the distributed control mode and the autonomous control mode.
 分散制御モードに移行してから例えば一日~数日、又は一週間~数週間、又は一ヶ月~数ヶ月程度の所定時間T2が経過すると、制御装置2は、分散制御モードから自律制御モードに移行する。なお、電力状態推定モデルの有効期間T2は、作成されてからの経過時間として定義してもよいし、例えば「2012年9月30日まで有効」のように日時で定義してもよい。これらの具体的数値は、理解のための一例に過ぎず、前記数値に限定されないことは当然である。 For example, when a predetermined time T2 such as one day to several days, one week to several weeks, or one month to several months has elapsed since the transition to the distributed control mode, the control device 2 changes from the distributed control mode to the autonomous control mode. Transition. The valid period T2 of the power state estimation model may be defined as an elapsed time since the creation, or may be defined by a date and time, for example, “valid until September 30, 2012”. These specific numerical values are merely examples for understanding and are naturally not limited to the above numerical values.
<フローチャート>
 次に、図10、図11、図14のフローチャートを参照して、電力系統制御システム5における処理の手順を説明する。
(中央装置:制御量算出処理)
 図10は、第1実施形態に係る中央装置における制御量算出処理の手順を示すフローチャートである。
 図10に示す処理は、集中制御モードで使用される制御装置2の制御量を算出するための処理である。
 通信状態監視部101は、予め定められた一定の監視周期Tmで、各センサ3から送られた計測データ(タイムスタンプ付き)を蓄積する(S101)。
 次に、通信状態監視部101は、中央装置1との通信状態の健全性(正常か否か)をセンサ3毎に判定する(S102)。ここでの判定によって、電力状態推定に使用される計測データが変わってくる。つまり、電力状態推定部102は、ステップS102で異常と判定された計測データを電力状態推定に使用しないようにする。
<Flowchart>
Next, a processing procedure in the power system control system 5 will be described with reference to the flowcharts of FIGS. 10, 11, and 14.
(Central device: Control amount calculation processing)
FIG. 10 is a flowchart illustrating a control amount calculation process in the central apparatus according to the first embodiment.
The process shown in FIG. 10 is a process for calculating the control amount of the control device 2 used in the centralized control mode.
The communication state monitoring unit 101 accumulates measurement data (with a time stamp) sent from each sensor 3 at a predetermined constant monitoring cycle Tm (S101).
Next, the communication state monitoring unit 101 determines the soundness (normal or not) of the communication state with the central apparatus 1 for each sensor 3 (S102). Measurement data used for power state estimation changes depending on the determination here. That is, the power state estimation unit 102 does not use the measurement data determined to be abnormal in step S102 for power state estimation.
 例えば、所定の時間周期Tmでセンサ3からの計測データを収集することになっている場合、通信状態監視部101は、前回受信した計測データのタイムスタンプと現在時刻との差を所定の時間周期Tmと比較する。時間周期Tmを上回っている場合((現在時刻-最新計測データのタイムスタンプ)>Tm)、通信状態監視部101は、通信状態の健全性が低下していると判定する。現在時刻と最新計測データのタイムスタンプとの差が大きくなればなるほど、通信状態の健全性は低下していると判定できる。 For example, when the measurement data from the sensor 3 is to be collected at a predetermined time period Tm, the communication state monitoring unit 101 determines the difference between the time stamp of the measurement data received last time and the current time as the predetermined time period. Compare with Tm. When the time period Tm is exceeded ((current time−time stamp of latest measurement data)> Tm), the communication state monitoring unit 101 determines that the soundness of the communication state is deteriorated. It can be determined that the soundness of the communication state decreases as the difference between the current time and the time stamp of the latest measurement data increases.
 ここで、通信状態の健全性が低下する原因には、通信ネットワーク4自体の原因や、センサ3自体の原因等が考えられる。通信ネットワーク4自体の原因としては、例えば、通信混雑、障害物や電子機器からの電磁波による電波障害、断線等が考えられる。センサ3自体の原因としては、例えば、センサ3の故障、過負荷による処理の一時停止等が考えられる。従って、センサ3と中央装置1との通信状態の健全性を判断することで、センサ3が正常稼働しているか否かを含めて判定できる。 Here, the cause of the deterioration of the soundness of the communication state may be the cause of the communication network 4 itself or the cause of the sensor 3 itself. Possible causes of the communication network 4 include, for example, communication congestion, radio wave interference due to electromagnetic waves from obstacles and electronic devices, disconnection, and the like. Possible causes of the sensor 3 itself include, for example, a failure of the sensor 3 and a temporary suspension of processing due to overload. Therefore, by determining the soundness of the communication state between the sensor 3 and the central device 1, it is possible to determine whether or not the sensor 3 is operating normally.
 そして、電力状態推定部102は、ステップS102において通信状態が正常と判定された計測データの数(以下、正常計測データ数)に応じて、電力状態推定における可観測性の判定を行うことで、可観測か否かを判定する(S103)。「可観測である」とは、取得可能な計測データの数が、電力状態の推定に十分な数であることであり、例えば、以下の手法で判定される。まず、電力状態推定部102は、対象とする電力系統のノード及びブランチの各電力状態(例えば、有効電力P、無効電力Q、電圧V)の合計数をNdとする。そして、電力状態推定部102は、合計数Ndに対する正常計測データ数Nnの割合(Nn/Nd)を算出する。続いて、電力状態推定部102は、Ndに対するNnの割合(Nn/Nd)が、所定値以上の場合は可観測であると判定し、そうでなければ不可観測と判定する。 Then, the power state estimation unit 102 performs observability determination in the power state estimation according to the number of measurement data determined to have a normal communication state in step S102 (hereinafter, normal measurement data number). It is determined whether or not observation is possible (S103). “Observable” means that the number of measurement data that can be acquired is sufficient to estimate the power state, and is determined by the following method, for example. First, the power state estimation unit 102 sets the total number of power states (for example, active power P, reactive power Q, voltage V) of nodes and branches of the target power system as Nd. And the electric power state estimation part 102 calculates the ratio (Nn / Nd) of the normal measurement data number Nn with respect to the total number Nd. Subsequently, the power state estimation unit 102 determines that observation is possible if the ratio of Nn to Nd (Nn / Nd) is equal to or greater than a predetermined value, and otherwise determines that observation is impossible.
 ステップS103の結果、可観測であると判定された場合(S103→Yes)、電力状態推定部102は、正常と判定されたセンサ3の計測データと系統データを用いて、各監視ノードにおける潮流計算を含む電力状態(有効電力P、無効電力Q、推定電圧V)の推定を行い(S104)、ステップS106へ処理を進める。ここで、監視ノードとは、電圧を監視すべきノードであり、ユーザによって設定されるものである。ユーザが監視ノードを設定しなければ、すべてのノードが監視ノードとなる。 As a result of step S103, when it is determined that observation is possible (S103 → Yes), the power state estimation unit 102 calculates the power flow at each monitoring node using the measurement data and system data of the sensor 3 determined to be normal. Is estimated (S104), and the process proceeds to Step S106. Here, the monitoring node is a node whose voltage should be monitored, and is set by the user. If the user does not set a monitoring node, all nodes become monitoring nodes.
 電力状態推定部102は、以下の手順で電力状態の推定を行う。まず、入力部を介して、各ノードの電力状態についての初期値が設定される。そして、電力状態推定部102は、設定された初期値に基づいた潮流計算を行う。続いて、電力状態推定部102は、潮流計算によって得られる電力状態(有効電力P、無効電力Q、推定電圧V)に関する推定値と、計測データに含まれる計測値の偏差の2乗の総和が最小となるように、各ノードの電力状態に関する解を繰り返し演算によって求める。このようにして、最終的に電力系統の任意地点における電力状態推定値が得られる。
 電力状態推定部102は、得られた電力状態推定値にタイムスタンプを付加し、計測データとして系統データ記憶部112のノード管理データ(図4)に格納する。なお、このような電力状態推定値の算出は既知の手法である。
The power state estimation unit 102 estimates the power state in the following procedure. First, an initial value for the power state of each node is set via the input unit. And the electric power state estimation part 102 performs the tidal current calculation based on the set initial value. Subsequently, the power state estimation unit 102 calculates the sum of the squares of the estimated values related to the power states (active power P, reactive power Q, estimated voltage V) obtained by the power flow calculation and the deviations of the measured values included in the measurement data. A solution regarding the power state of each node is obtained by repeated calculation so as to be minimized. In this way, an estimated power state value at an arbitrary point in the power system is finally obtained.
The power state estimation unit 102 adds a time stamp to the obtained power state estimation value and stores it in the node management data (FIG. 4) of the system data storage unit 112 as measurement data. Such calculation of the power state estimation value is a known method.
 ステップS103の結果、可観測ではない(不可観測)と判定された場合(S103→No)、電力状態推定部102は、正常と判定されたセンサ3の計測データと系統データを用いて、潮流計算のみを行い(S105)、ステップS106へ処理を進める。
 電力状態推定部102は、各ノード及び各ブランチに関して、有効電力、無効電力及び推定電圧に関する方程式(電力方程式)をそれぞれ立て、計測データを用いて解くことによって、各監視ノード及び各ブランチの電力状態(有効電力P、無効電力Q、推定電圧V)を求める潮流計算を行う。そして、電力状態推定部102は、この潮流計算で求められた電力状態を電力状態推定値とし、この電力状態推定値を計測データとして系統データ記憶部112のノード管理データ(図4)に格納する。
 以上、ステップS104、S105の処理により、電力状態推定部102は、電力系統の任意地点における電力状態推定値を得る
As a result of step S103, when it is determined that it is not observable (unobservable) (S103 → No), the power state estimation unit 102 uses the measurement data and system data of the sensor 3 determined to be normal to calculate the power flow. (S105), and the process proceeds to step S106.
For each node and each branch, the power state estimation unit 102 establishes equations (power equations) relating to active power, reactive power, and estimated voltage, and solves them using measurement data, whereby the power state of each monitoring node and each branch The power flow calculation for obtaining (active power P, reactive power Q, estimated voltage V) is performed. Then, the power state estimation unit 102 uses the power state obtained by the power flow calculation as a power state estimation value, and stores this power state estimation value as measurement data in the node management data (FIG. 4) of the system data storage unit 112. .
As described above, the power state estimation unit 102 obtains the power state estimation value at an arbitrary point of the power system through the processes of steps S104 and S105.
 次に、制御量算出処理部103は、ステップS104、S105で算出された電力状態推定値を用いて、各制御装置2が出力すべき制御量を算出する(S106)。
 制御量算出処理部103は、例えば、以下の手順で制御量を算出する。ここでは、例えば、電力系統上における所定の複数の地点における各目標電圧からの推定電圧の偏差の2乗の総和を、目的関数として使用する。ここで、推定電圧とは、図10のステップS104、S105において算出される電圧であり、目標電圧とは、制御装置2において出力されるべき基準電圧(図5参照)のことである。制御量算出処理部103は、この目的関数を最小化するよう、各制御装置2の最適な制御量を算出する。これにより、制御量算出処理部103は、電力系統全体の電圧を安定化するのに最適な制御量を算出する。
Next, the control amount calculation processing unit 103 calculates the control amount that each control device 2 should output using the power state estimation value calculated in steps S104 and S105 (S106).
For example, the control amount calculation processing unit 103 calculates the control amount by the following procedure. Here, for example, the sum of the squares of the deviations of the estimated voltage from each target voltage at a plurality of predetermined points on the power system is used as the objective function. Here, the estimated voltage is a voltage calculated in steps S104 and S105 in FIG. 10, and the target voltage is a reference voltage (see FIG. 5) to be output in the control device 2. The control amount calculation processing unit 103 calculates the optimal control amount of each control device 2 so as to minimize this objective function. Thereby, the control amount calculation processing unit 103 calculates an optimal control amount for stabilizing the voltage of the entire power system.
 ここで制御量は、LRTやSVR等の電圧調整器のタップ番号(変圧比)、SVC、スイッチトキャパシタ、バッテリ付PCSの無効電力等である。
 なお、目的関数を最小化する解法には、山登り法、二次計画法、タブーサーチ等様々なものがある。どの解法を使用するかは、目的関数の性質及び制御量の性質(連続値、離散値)等に応じて、ユーザが決定する。
 算出された制御量は、制御量履歴として系統データ記憶部112等に格納されてもよい。
Here, the control amount is a tap number (transformation ratio) of a voltage regulator such as LRT or SVR, SVC, a switched capacitor, reactive power of a PCS with a battery, or the like.
There are various methods for minimizing the objective function, such as hill climbing, quadratic programming, and tabu search. Which solution method to use is determined by the user according to the nature of the objective function and the nature of the controlled variable (continuous value, discrete value).
The calculated control amount may be stored in the system data storage unit 112 or the like as a control amount history.
 そして、送受信処理部105は、算出された各制御装置2の制御量を制御量データとして、通信ネットワーク4を介し、各制御装置2へ送信する(S107)。 Then, the transmission / reception processing unit 105 transmits the calculated control amount of each control device 2 as control amount data to each control device 2 via the communication network 4 (S107).
 図10に示す処理によって、中央装置1は、各センサ3からの計測データの健全性を判定し、その健全性に応じた電力状態推定を行う。さらに、中央装置1は、算出された電力状態推定値に基づいて各制御装置2の制御量を算出し、送信する。 10, the central device 1 determines the soundness of the measurement data from each sensor 3 and performs power state estimation according to the soundness. Furthermore, the central apparatus 1 calculates the control amount of each control apparatus 2 based on the calculated power state estimation value, and transmits it.
(中央装置:演算モデル算出処理)
 図11は、第1実施形態に係る中央装置における演算モデル算出処理の手順を示すフローチャートである。
 図10に示す処理が集中制御モードで使用される制御量を算出するための処理であるのに対し、図11に示す処理は分散制御モードで使用される演算モデルを算出するための処理である。なお、中央制御装置2は、図10に示す処理と、図11に示す処理とをパラレルに実行している。
 まず、モデル生成部104は、計測データ(図8)から、各センサ3で計測された電力状態の計測値(有効電力P、無効電力Q)と、電力状態推定部102にて図10のステップS104、S105で推定された各ノード及び各ブランチの電力状態推定値(有効電力P、無効電力Q、推定電圧V)と、図10のステップS106で算出された各制御装置2の制御量といった各種データを、教師データとして利用するために読み込む(S201)。
(Central unit: calculation model calculation process)
FIG. 11 is a flowchart illustrating the procedure of the calculation model calculation process in the central apparatus according to the first embodiment.
The process shown in FIG. 10 is a process for calculating a control amount used in the centralized control mode, whereas the process shown in FIG. 11 is a process for calculating an arithmetic model used in the distributed control mode. . The central controller 2 executes the process shown in FIG. 10 and the process shown in FIG. 11 in parallel.
First, the model generation unit 104 uses the measurement values (FIG. 8) to measure the power state measured values (active power P, reactive power Q) by each sensor 3, and the power state estimation unit 102 in FIG. Various power state estimation values (active power P, reactive power Q, estimated voltage V) of each node and each branch estimated in S104 and S105, and control amounts of each control device 2 calculated in step S106 of FIG. Data is read for use as teacher data (S201).
 次に、モデル生成部104は、センサ3で実測された電力状態の計測値と、図10に示す処理において電力状態推定部102が推定した各ノード及び各ブランチの電力状態推定値とを用いて、電力状態推定モデルを生成する(S202)。電力状態推定モデルの生成については後記する。 Next, the model generation unit 104 uses the power state measurement value actually measured by the sensor 3 and the power state estimation value of each node and each branch estimated by the power state estimation unit 102 in the process illustrated in FIG. Then, a power state estimation model is generated (S202). The generation of the power state estimation model will be described later.
 続いて、モデル生成部104は、図10において電力状態推定部102が推定した各ノード及び各ブランチの電力状態推定値と、図10において制御量算出処理部103が算出した各制御装置2の制御量とを用いて、制御量算出モデルを生成する(S203)。制御量算出モデルの生成については後記して説明する。 Subsequently, the model generation unit 104 controls the power state estimation value of each node and each branch estimated by the power state estimation unit 102 in FIG. 10 and the control of each control device 2 calculated by the control amount calculation processing unit 103 in FIG. The control amount calculation model is generated using the amount (S203). The generation of the control amount calculation model will be described later.
 そして、モデル生成部104は、制御装置2毎に生成した電力状態推定モデル及び制御量算出モデルのデータ(係数パラメータ)を、予め定められた組み合わせでパッケージ化する。例えば、ある制御装置2(ノードi)に関して、電力状態推定モデルは各ノードxとノードyの計測値を入力とするもの、制御量算出モデルは自端ノード(ノードi)に関するもの、といった組み合わせでパッケージ化が行われる。 Then, the model generation unit 104 packages the power state estimation model and control amount calculation model data (coefficient parameters) generated for each control device 2 in a predetermined combination. For example, with respect to a certain control device 2 (node i), the power state estimation model is a combination of a measurement value of each node x and node y as an input, and a control amount calculation model is a combination of a local node (node i) Packaging is performed.
 次に、送受信処理部105が、パッケージ化された各演算モデルのデータ(モデルデータ)を各制御装置2へ、通信ネットワーク4を介して送信する(S204)。 Next, the transmission / reception processing unit 105 transmits packaged data (model data) of each operation model to each control device 2 via the communication network 4 (S204).
 図11に示す処理によって、中央装置1は、計測データから電力状態推定モデル及び制御量算出モデルといった演算モデルを生成し、生成した演算モデルを各制御装置2へ送信する。 11, the central device 1 generates a calculation model such as a power state estimation model and a control amount calculation model from the measurement data, and transmits the generated calculation model to each control device 2.
(演算モデルの生成)
 次に、電力状態推定モデル及び制御量算出モデルといった演算モデルの生成手法について説明する。
 演算モデルの生成は、線形モデルや、非線形モデルを使用することができる。ここでは、線形モデルを例に説明する。
 まず、電力状態推定モデルの生成について説明する。
 電力状態推定モデルの入力(説明変数)は、各センサ3で計測された電力状態の実計測値(有効電力P、無効電力Q)である。電力状態推定モデルからの出力は、電力状態推定部102が推定した電力系統における各ノード(又は各ブランチ)の電力状態推定値である。
(Generation of calculation model)
Next, a method for generating a calculation model such as a power state estimation model and a control amount calculation model will be described.
The generation of the arithmetic model can use a linear model or a nonlinear model. Here, a linear model will be described as an example.
First, generation of a power state estimation model will be described.
The input (explanatory variable) of the power state estimation model is an actual measurement value (active power P, reactive power Q) of the power state measured by each sensor 3. The output from the power state estimation model is a power state estimation value of each node (or each branch) in the power system estimated by the power state estimation unit 102.
 モデル生成部104は、下記式(1)に示す線形モデルにおける係数ank,bnkを同定する。この係数ank,bnkが電力状態推定モデルとなる。 The model generation unit 104 identifies the coefficients a nk and b nk in the linear model represented by the following formula (1). These coefficients a nk and b nk become a power state estimation model.
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
 ここで、Sは、任意のノードnにおける複素電力を示す。jは虚数単位を表す。P,Qは、それぞれセンサ3(センサノードk)によって計測された有効電力(複素電力の実数成分)及び無効電力(複素電力の虚数成分)を示す。ank,bnkは、電力状態推定モデルの係数パラメータであり、ノードnにおけるセンサノードkの影響を示す。
 モデル生成部104は、各ノードにおける入力データ(P,Q)及び出力データ(S)を式(1)に代入し、最小二乗法等を用いることによって各係数(ank,bnk)を同定する。
Here, S n represents the complex power at any node n. j represents an imaginary unit. P k and Q k indicate active power (real component of complex power) and reactive power (imaginary component of complex power) measured by the sensor 3 (sensor node k), respectively. a nk and b nk are coefficient parameters of the power state estimation model, and indicate the influence of the sensor node k at the node n.
The model generation unit 104 substitutes the input data (P k , Q k ) and the output data (S n ) at each node into the equation (1), and uses the least square method or the like to calculate the coefficients (a nk , b nk). ) Is identified.
 制御装置2において、基本算出式(式(1))が事前に設定されている場合、中央装置1からは、係数パラメータank,bnkを制御装置2に送信するだけで、電力状態推定モデルを更新することができる。つまり、式(1)における係数を演算モデルとすることによって、情報量を減らすことができる。 In the control device 2, when the basic calculation formula (formula (1)) is set in advance, the central device 1 simply transmits the coefficient parameters a nk and b nk to the control device 2, and the power state estimation model. Can be updated. That is, the amount of information can be reduced by using the coefficient in Equation (1) as an arithmetic model.
 続いて制御量算出モデルの生成について説明する。
 制御量算出モデルの入力(説明変数)は、図10のステップS104、S105において電力状態推定部102が推定した各ノードの電力状態推定値である。そして、制御量算出モデルの出力(目的変数)は、図10のステップS106において制御量算出処理部103が算出した各制御装置2の制御量であり、電力系統全体の電圧を安定化するのに最適に近い(準最適な)制御量である。
Next, generation of a control amount calculation model will be described.
The input (explanatory variable) of the control amount calculation model is the power state estimation value of each node estimated by the power state estimation unit 102 in steps S104 and S105 of FIG. The output (objective variable) of the control amount calculation model is the control amount of each control device 2 calculated by the control amount calculation processing unit 103 in step S106 in FIG. 10, and is used to stabilize the voltage of the entire power system. The control amount is close to the optimum (sub-optimal).
 モデル生成部104は、下記式(2)に示す線形モデルにおける係数cim,dimを同定する。この係数cim,dimが制御量算出モデルとなる。 The model generation unit 104 identifies coefficients c im and d im in the linear model represented by the following formula (2). The coefficients c im and d im serve as a control amount calculation model.
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000002
 
 ここで、Cは、図10の処理において制御量算出処理部103が算出したノードiにおける制御量(複素電力)である。jは虚数単位を表す。また、P,Qは、図10の処理において電力状態推定部102が推定した各ノードm(監視ノードm)の電力状態推定値(有効電力P、無効電力Q)である。cim,dimは、制御量算出モデルの係数パラメータであり、ノードiにおけるノードmの影響を示す。
 なお、P,Qは、センサ3によって計測された実測値(計測データの電力状態値P,Q)が利用可能であるならば、それが使用されてもよい。
 モデル生成部104は、各ノードにおける入力データ(電力状態推定値P,Q)及び出力データ(C)を式(2)に代入し、最小二乗法等を用いることによって各係数(cim,dim)を同定する。
Here, C i is the control amount (complex power) at the node i calculated by the control amount calculation processing unit 103 in the processing of FIG. j represents an imaginary unit. P m and Q m are power state estimation values (active power P m and reactive power Q m ) of each node m (monitoring node m) estimated by the power state estimation unit 102 in the process of FIG. c im and d im are coefficient parameters of the control amount calculation model, and indicate the influence of the node m on the node i.
As for P m and Q m , if measured values (power state values P and Q of measurement data) measured by the sensor 3 are available, they may be used.
The model generation unit 104 substitutes the input data (power state estimation values P m , Q m ) and output data (C i ) at each node into the equation (2), and uses each of the coefficients (c im , d im ).
 前記したように制御量Ciは、LRTやSVR等の電圧調整器のタップ番号(変圧比)、SVC、スイッチトキャパシタ、バッテリ付PCSの無効電力等である。 As described above, the control amount Ci is a tap number (transformation ratio) of a voltage regulator such as LRT or SVR, SVC, a switched capacitor, reactive power of a battery-equipped PCS, or the like.
 制御装置2において、基本算出式(式(2))が事前に設定されている場合、中央装置1からは、係数パラメータcim,dimを制御装置2に送信するだけで、制御量算出モデルを更新することができる。つまり、式(2)における係数を演算モデルとすることによって、情報量を減らすことができる。 When the basic calculation formula (formula (2)) is set in advance in the control device 2, the central device 1 simply transmits the coefficient parameters c im and d im to the control device 2 to control the control amount calculation model. Can be updated. That is, the amount of information can be reduced by using the coefficient in Equation (2) as an arithmetic model.
 以上に示したように、電力状態推定モデル及び制御量算出モデルと、計測データ(P,Q)とを用いれば、電力系統全体の電圧を安定化するために、各制御装置2にて出力すべき制御量を簡単に算出することができる。
 従って、各制御装置2が電力状態推定モデル及び制御量算出モデルといった演算モデルをそれぞれ持っていれば、例え、中央装置1・制御装置2間の通信ネットワーク4の通信状態が良好ではない場合でも、自端での計測データを用いて適切な制御を行うことができる。
As described above, if the power state estimation model, the control amount calculation model, and the measurement data (P k , Q k ) are used, each control device 2 can stabilize the voltage of the entire power system. The control amount to be output can be easily calculated.
Therefore, if each control device 2 has an operation model such as a power state estimation model and a control amount calculation model, even if the communication state of the communication network 4 between the central device 1 and the control device 2 is not good, Appropriate control can be performed using the measurement data at its own end.
(モデルデータ)
 次に、モデルデータについて説明する。
 モデルデータは、式(1)に示す電力状態推定モデルを構成するパラメータank,bnk、及び、式(2)に示す制御量算出モデルを構成するパラメータcim,dimである。なお、式(1)、式(2)は一例であって適宜変更してもよく、その場合のパラメータは数式に応じた係数パラメータとなる。
(Model data)
Next, model data will be described.
The model data includes parameters a nk and b nk constituting the power state estimation model shown in Expression (1), and parameters c im and d im constituting the control amount calculation model shown in Expression (2). Expressions (1) and (2) are examples and may be changed as appropriate, and the parameters in that case are coefficient parameters according to the expressions.
 各演算モデルにおいて対象とするノード(センサノードk及び監視ノードm)が予め設定されておく必要がある。
 センサ3が設置されているすべてのノードをセンサノードkとして設定すれば、電力状態推定値の精度向上が期待できる。同様に、すべてのノードを監視ノードmとして設定すれば、制御量の精度向上(最適な制御量に近づける)が期待できる。
It is necessary to previously set target nodes (sensor node k and monitoring node m) in each calculation model.
If all the nodes where the sensor 3 is installed are set as the sensor node k, the accuracy of the power state estimated value can be improved. Similarly, if all the nodes are set as the monitoring node m, it can be expected to improve the accuracy of the control amount (close to the optimum control amount).
 しかし、通信ネットワーク4の通信状態が常に健全であると期待できない場合、すべてのセンサ3から計測データを取得できない可能性がある。そこで、以下のように、一部のセンサ3の計測データだけを用いて推定する構成としてもよい。 However, if the communication state of the communication network 4 cannot always be expected to be healthy, there is a possibility that measurement data cannot be acquired from all the sensors 3. Therefore, as described below, the estimation may be performed using only the measurement data of some of the sensors 3.
 例えば、すべてのノードをセンサノードとする代わりに、制御装置2のノードiでは、自端ノードiのみとしてもよい。つまり、各制御装置2では、自端ノード以外のセンサ3の計測データは参照しないようにしてもよい。自端ノードのセンサ3とは、制御装置2に直接的に対応づけられているセンサ3、すなわち制御装置2のノードと共通のノードに設けられているセンサ3である。言い換えれば、自端ノードのセンサ3とは、制御装置2に設置されているセンサ3である。 For example, instead of using all the nodes as sensor nodes, the node i of the control device 2 may include only the local node i. That is, each control device 2 may not refer to the measurement data of the sensors 3 other than its own end node. The sensor 3 of the local node is a sensor 3 that is directly associated with the control device 2, that is, a sensor 3 that is provided at a node common to the node of the control device 2. In other words, the sensor 3 of the local node is the sensor 3 installed in the control device 2.
 図3に示す電力系統例の場合、制御装置2aの自端ノードはノード31aであり、自端ノードのセンサ3はセンサ3aである。同様に、制御装置2bの自端ノードはノード31dであり、自端ノードのセンサ3はセンサ3cである。同様に、制御装置2cの自端ノードはノード31gであり、自端ノードのセンサ3はセンサ3eである。 In the case of the power system example shown in FIG. 3, the local node of the control device 2a is the node 31a, and the sensor 3 of the local node is the sensor 3a. Similarly, the own end node of the control device 2b is the node 31d, and the sensor 3 of the own end node is the sensor 3c. Similarly, the own end node of the control device 2c is the node 31g, and the sensor 3 of the own end node is the sensor 3e.
 制御装置2で参照する計測データを、自端ノードのセンサ3からの計測データに限定すれば、通信状態の健全性が失われた場合でも、制御装置2では電力状態推定モデルを用いて電力系統の電力状態を推定できる。 If the measurement data referred to by the control device 2 is limited to the measurement data from the sensor 3 of the local node, the control device 2 uses the power state estimation model even if the soundness of the communication state is lost. Can be estimated.
 なお、監視ノードmについては、センサノードと違い、対象ノードを減らす理由は特にない。つまり、すべてのノードを監視ノードとしてもよい。電力状態が推定されれば、制御量算出モデルを用いて制御量を算出できるためである。つまり、計測データが欠損していても、電力状態の推定そのものは可能であるため、制御量算出モデルの生成においてノードmの欠損について考慮する必要がない。 Note that there is no particular reason for reducing the target node for the monitoring node m, unlike the sensor node. That is, all nodes may be monitoring nodes. This is because if the power state is estimated, the control amount can be calculated using the control amount calculation model. That is, even if the measurement data is missing, it is possible to estimate the power state itself, so it is not necessary to consider the missing node m in the generation of the control amount calculation model.
 次に、図12を参照して、演算モデルの具体的な意味を説明する。
 図12は、第1実施形態に係る演算モデルの具体的な意味を説明するための図であり、(a)は電力状態推定モデル、(b)は制御量算出モデルを示す。
 図12(a)に太い実線1201で示す電力状態推定モデルは、横軸の説明変数が計測データに含まれる計測値であり、縦軸の出力が電力状態推定値である。つまり、横軸は図10のステップS101で蓄積されるセンサ3で実計測される計測値であり、縦軸は図10のステップS104、S105で算出される各ノードにおける電力状態推定値である。要するに、図12(a)のグラフにおいて、横軸が式(1)のP,Qを示し、縦軸が式(1)のSを示す。
 従って、横軸は本来2次元座標となるべきであるが、ここでは便宜上1次元座標としている。また、プロット点1202は、実計測値P,Qと、実計測値を基に推定された電力状態推定値Sを対応付けてプロットした点である。実線1201はプロット点1202を基に、最小二乗法によって算出された直線である。そして、式(1)の係数ank,bnk、つまり、電力状態推定モデルは、実線1201の傾きに相当する。
Next, the specific meaning of the calculation model will be described with reference to FIG.
FIG. 12 is a diagram for explaining the specific meaning of the calculation model according to the first embodiment, where (a) shows a power state estimation model and (b) shows a control amount calculation model.
In the power state estimation model indicated by the thick solid line 1201 in FIG. 12A, the explanatory variable on the horizontal axis is a measurement value included in the measurement data, and the output on the vertical axis is the power state estimation value. That is, the horizontal axis is a measurement value actually measured by the sensor 3 accumulated in step S101 in FIG. 10, and the vertical axis is a power state estimation value in each node calculated in steps S104 and S105 in FIG. In short, in the graph of FIG. 12 (a), the horizontal axis represents the P k, Q k of the formula (1), the vertical axis represents S n of the formula (1).
Accordingly, the horizontal axis should be originally two-dimensional coordinates, but here, it is assumed as one-dimensional coordinates for convenience. Also, the plot point 1202 is a point obtained by plotting in association actual measured value P k, and Q k, the power state estimate S n which is estimated based on the actual measurement values. A solid line 1201 is a straight line calculated by the least square method based on the plot point 1202. The coefficients a nk and b nk of Equation (1), that is, the power state estimation model corresponds to the slope of the solid line 1201.
 図12(b)に太い実線1211で示す制御量算出モデルは横軸の入力が電力状態推定値であり、縦軸の出力が算出された制御量である。つまり、横軸は図10のステップS104、S105で算出される各ノードにおける電力状態推定値であり、縦軸は図10のステップS106で算出される各ノードにおける制御量である。要するに、図12(b)のグラフにおいて、横軸が式(2)のP,Qを示し、縦軸が式(2)のCを示す。
 従って、横軸は本来2次元座標となるべきであるが、ここでは便宜上1次元座標としている。また、プロット点1212は、電力状態推定値P,Qと、算出された制御量Cを対応付けてプロットした点である。実線1212はプロット点1211を基に、最小二乗法によって算出された直線である。そして、式(2)の係数cim,dim、つまり、電力状態推定モデルは、実線1211の傾きに相当する。
In the control amount calculation model indicated by the thick solid line 1211 in FIG. 12B, the horizontal axis input is the power state estimation value, and the vertical axis output is the calculated control amount. That is, the horizontal axis is the estimated power state value at each node calculated in steps S104 and S105 in FIG. 10, and the vertical axis is the control amount at each node calculated in step S106 in FIG. In short, in the graph of FIG. 12B, the horizontal axis indicates P m and Q m in the equation (2), and the vertical axis indicates C i in the equation (2).
Accordingly, the horizontal axis should be originally two-dimensional coordinates, but here, it is assumed as one-dimensional coordinates for convenience. The plot point 1212 is a point plotted by associating the power state estimated values P m and Q m with the calculated control amount C i . A solid line 1212 is a straight line calculated by the least square method based on the plot point 1211. The coefficients c im and d im in Equation (2), that is, the power state estimation model corresponds to the slope of the solid line 1211.
 これらの演算モデルは、いずれも横軸の入力が2つの変数(前記したように図12では便宜上1次元としている)の場合を示しているが、必ずしもそれに限定されるべきものではなく、複数の入力があってもよい。つまり、本実施形態では各演算モデルを求めるための説明変数として有効電力P、無効電力Qを用いているが、その他の電力状態の値(例えば電圧)を説明変数として用いてもよい。
 ただし、精度の観点から言えば、説明変数は、推定すべき目的変数(電力状態、制御量)との相関が高いものが望ましい。
Each of these calculation models shows a case in which the input on the horizontal axis is two variables (as described above, it is assumed to be one-dimensional for convenience in FIG. 12), but the present invention is not necessarily limited to this. There may be input. That is, in this embodiment, the active power P and the reactive power Q are used as explanatory variables for obtaining each calculation model, but other power state values (for example, voltages) may be used as explanatory variables.
However, from the viewpoint of accuracy, it is desirable that the explanatory variable has a high correlation with the objective variable (power state, control amount) to be estimated.
 図13は、第1実施形態に係るモデルデータの具体的な一例を示す図である。なお、図13は電力状態推定モデルの例を示す。
 図13では、ケース毎の演算モデルが制御装置2毎に格納されている。図13では、モデルデータ1301が制御装置2a(図1)用、モデルデータ1302が制御装置2b(図1)用、モデルデータ1303が制御装置2c(図1)用である。以下、制御装置2aのモデルデータ1301における電力状態推定モデルを参照して説明する。
 ここで、ケースとは、計測データの欠損パターンを示す。電力系統がセンサ3a~3eを有しているとすると、例えば、「ケース1」は、すべてのセンサ3a~3eからそれぞれ正常に計測データを取得できるケースである。すなわち、「ケース1」では、すべてのセンサ3a~3eからの計測データを用いて演算モデルによる電力状態推定を行う。言い換えれば、「ケース1」は制御装置2aがすべてのセンサ3から計測データを取得可能な場合に使用される電力状態推定モデルである。なお、「a1a」は、「ケース1」の状態におけるセンサ3aからの影響を示す電力状態推定モデル「ank(式(1))」であることを示している。
FIG. 13 is a diagram illustrating a specific example of model data according to the first embodiment. FIG. 13 shows an example of the power state estimation model.
In FIG. 13, a calculation model for each case is stored for each control device 2. In FIG. 13, the model data 1301 is for the control device 2a (FIG. 1), the model data 1302 is for the control device 2b (FIG. 1), and the model data 1303 is for the control device 2c (FIG. 1). Hereinafter, description will be given with reference to the power state estimation model in the model data 1301 of the control device 2a.
Here, the case indicates a missing pattern of measurement data. If the power system includes the sensors 3a to 3e, for example, “Case 1” is a case where measurement data can be normally acquired from all the sensors 3a to 3e. In other words, in “Case 1”, the power state is estimated by the calculation model using the measurement data from all the sensors 3a to 3e. In other words, “Case 1” is a power state estimation model used when the control device 2 a can acquire measurement data from all the sensors 3. Note that “a1a” indicates a power state estimation model “a nk (formula (1))” indicating the influence from the sensor 3a in the state of “case 1”.
 また、「ケース2」は、各センサ3a~3eのうち、センサ3a~3dから計測データを取得でき、センサ3eからの計測データだけ取得できないケースである。ここで、計測データを取得できない場合の係数パラメータを0とし、それ以外では係数の値が格納される。「ケース2」では、センサ3a~3dの計測データのみに基づいて、演算モデルによる電力状態推定を行う。言い換えれば、「ケース2」は制御装置2aがセンサ3eのみから計測データを取得できない場合に使用される電力状態推定モデルである。 Also, “Case 2” is a case in which measurement data can be acquired from the sensors 3a to 3d among the sensors 3a to 3e, and only the measurement data from the sensor 3e cannot be acquired. Here, the coefficient parameter when the measurement data cannot be acquired is set to 0, and otherwise, the coefficient value is stored. In “Case 2”, the power state is estimated by the calculation model based only on the measurement data of the sensors 3a to 3d. In other words, “Case 2” is a power state estimation model used when the control device 2a cannot acquire measurement data only from the sensor 3e.
 「ケース3」は、各センサ3a~3eのうち、センサ3a~3c,3eから計測データを取得でき、センサ3dからの計測データだけ取得できない場合である。すなわち、「ケース3」では、センサ3a~3c,3eの計測データのみに基づいて、電力状態推定モデルを生成する。要するに、「ケース3」は制御装置2aがセンサ3dのみから計測データを取得できない場合に使用される電力状態推定モデルである。 Case 3” is a case where, among the sensors 3a to 3e, measurement data can be acquired from the sensors 3a to 3c and 3e, and only measurement data from the sensor 3d cannot be acquired. That is, in “Case 3”, the power state estimation model is generated based only on the measurement data of the sensors 3a to 3c, 3e. In short, “Case 3” is a power state estimation model used when the control device 2a cannot acquire measurement data only from the sensor 3d.
 以下同様に、中央装置1は、図11のステップS202において、正常に取得できる計測データのすべての組み合せについて電力状態推定モデルを生成する。
 ここで、計測データが、いずれか1つのセンサ3からしか取得できない場合(ケースn)についても、電力状態推定モデルが生成される。また、制御装置2の自端ノードのセンサ3からの計測データが取得できるのであれば、その制御装置2のための電力状態推定モデルを生成できる。なお、制御装置2が、自端ノードのセンサ3以外の離れたノードのセンサ3からの計測データを取得可能な構成の場合、その離れたノードのセンサ3からの計測データのみに基づく電力状態推定モデルも生成される。
そして、それぞれのケースを「モデル1」、「モデル2」・・・としている。
 このようなケース毎の電力状態推定モデルが制御装置2毎に生成される。
Similarly, the central apparatus 1 generates a power state estimation model for all combinations of measurement data that can be normally acquired in step S202 of FIG.
Here, the power state estimation model is also generated when the measurement data can be acquired only from any one of the sensors 3 (case n). Moreover, if the measurement data from the sensor 3 of the end node of the control device 2 can be acquired, a power state estimation model for the control device 2 can be generated. In the case where the control device 2 is configured to be able to acquire measurement data from the sensor 3 of a remote node other than the sensor 3 of the own node, the power state estimation based only on the measurement data from the sensor 3 of the remote node A model is also generated.
Each case is referred to as “model 1”, “model 2”,.
Such a power state estimation model for each case is generated for each control device 2.
 なお、図11では、電力状態推定モデルについて説明したが、中央装置1は、図11に示す電力状態推定モデルとともに、制御量算出モデル(cim,dim(式(2)))もモデルデータとして制御装置2に送信する。なお、制御量算出モデルは、説明変数を電力状態推定値としているため、図11に示すようなケース毎の制御量算出モデルを求めることは不要である。つまり、電力状態の推定は、監視ノードとして設定されたすべてのノードンについて行われるので、電力状態推定値が欠損することがないためである。 Although the power state estimation model has been described with reference to FIG. 11, the central apparatus 1 also includes the control amount calculation model (c im , d im (Expression (2))) as well as the model data together with the power state estimation model illustrated in FIG. 11. To the control device 2. Since the control variable calculation model uses the explanatory variable as the power state estimation value, it is not necessary to obtain a control variable calculation model for each case as shown in FIG. That is, the estimation of the power state is performed for all the nodes set as the monitoring nodes, so that the power state estimation value is not lost.
 このように、電力状態推定モデルは、制御装置2毎、かつ、計測データの欠損状態の組合せ毎に、それぞれ用意される。これにより、通信状態の悪化又はセンサ3の故障等で、一部の計測データを取得できない場合であっても、電力状態推定部102は、取得できた計測データの組合せに対応する電力状態推定モデルを用いて、電力状態推定値を算出することができる。 Thus, a power state estimation model is prepared for each control device 2 and for each combination of measurement data missing states. Thereby, even when a part of measurement data cannot be acquired due to deterioration of the communication state or failure of the sensor 3, the power state estimation unit 102 can generate the power state estimation model corresponding to the acquired combination of measurement data. Can be used to calculate the power state estimate.
 演算モデルを線形モデルとして生成する場合、電力状態推定モデルは2つのパラメータank,bnk(以下、適宜a,bと記載する)となり、制御量算出モデルも2つのパラメータcim,dim(以下、適宜c,dと記載する)となる。従って、各演算モデルのデータサイズを小さくできる。このように、本実施形態によれば、1つ1つの演算モデルのサイズを小さくできるため、周期的に各制御装置2に複数のモデルデータを送信しても、通信負荷の増大を抑制できる。従って、通信ネットワーク4の通信速度が遅い場合でも、データサイズの小さいモデルデータを正常に送信することができる。また、各演算モデルは少数のパラメータで使用できるため、制御装置2の有するCPU201(図2)の性能が低い場合でも、電力状態を推定して適切な制御量を得ることができる。逆に言えば、制御装置2に高性能のCPU201等を搭載する必要がなく、製造コストを低減することができる。 When generating the operation model as a linear model, the power state estimation model has two parameters a nk and b nk (hereinafter, appropriately described as a and b), and the control amount calculation model also has two parameters c im and d im ( Hereinafter, these are described as c and d as appropriate. Therefore, the data size of each calculation model can be reduced. Thus, according to this embodiment, since the size of each calculation model can be reduced, an increase in communication load can be suppressed even if a plurality of model data is periodically transmitted to each control device 2. Therefore, even when the communication speed of the communication network 4 is low, model data having a small data size can be transmitted normally. Moreover, since each calculation model can be used with a small number of parameters, even when the performance of the CPU 201 (FIG. 2) of the control device 2 is low, an appropriate control amount can be obtained by estimating the power state. In other words, it is not necessary to mount a high-performance CPU 201 or the like in the control device 2, and the manufacturing cost can be reduced.
(制御装置における処理)
 図14は、第1実施形態に係る制御装置の処理手順を示すフローチャートである。
 まず、制御モード決定処理部202が、中央装置1や、センサ3からデータを受信したか否かを判定する(S301)。
 ステップS301の結果、データを受信していない場合(S301→No)、制御モード決定処理部202は、ステップS301へ処理を戻し、データの受信を待機する。
 ステップS301の結果、データを受信した場合(S301→Yes)、制御モード決定処理部202は、受信したデータが制御量データであるか否かを判定する(S302)。
 ステップS302の結果、制御量データではない場合(S302→No)、制御モード決定処理部202は、データ種別に応じて各データ記憶部にデータを格納し(S303)、ステップS301へ処理を戻す。例えば、受信したデータがモデルデータであれば、制御モード決定処理部202はモデルデータ記憶部212にデータを格納し、受信したデータが系統データであれば、制御モード決定処理部202は系統データ記憶部211に格納する。
(Processing in the control device)
FIG. 14 is a flowchart illustrating a processing procedure of the control device according to the first embodiment.
First, the control mode determination processing unit 202 determines whether data is received from the central device 1 or the sensor 3 (S301).
As a result of step S301, when data is not received (S301 → No), the control mode determination processing unit 202 returns the process to step S301 and waits for data reception.
When data is received as a result of step S301 (S301 → Yes), the control mode determination processing unit 202 determines whether or not the received data is control amount data (S302).
If the result of step S302 is not control amount data (S302 → No), the control mode determination processing unit 202 stores data in each data storage unit according to the data type (S303), and returns the process to step S301. For example, if the received data is model data, the control mode determination processing unit 202 stores the data in the model data storage unit 212. If the received data is system data, the control mode determination processing unit 202 stores the system data. Stored in the unit 211.
 ステップS302の結果、制御量データである場合(S302→Yes)、制御量データに付されているタイムスタンプを参照し、前回受信した制御量データのタイムスタンプの時刻と、現在時刻との差Tdを算出し、このTdが予め設定されている時間T1より小さい(Td<T1)か否かを判定する(S304)。 If the result of step S302 is control amount data (S302 → Yes), the time stamp attached to the control amount data is referred to, and the time Td between the time stamp of the control amount data received last time and the current time Td Is calculated, and it is determined whether or not this Td is smaller than the preset time T1 (Td <T1) (S304).
 ステップS304の結果、Td<T1である場合(S304→Yes)、すなわち、制御量データが所定時間内に到達している場合、制御モード決定処理部202は、制御モードを集中制御モードとする(S305)。既に、制御モードが集中制御モードである場合、制御モード決定処理部202は、現在の制御モードを維持する。
 そして、制御モード決定処理部202は、今回取得した制御量データのタイムスタンプをメモリに一時的に格納し(S306)、制御処理部204が受信した制御量データにおける制御量を計測装置へ送信することで計測装置の制御を行う(S313)。
As a result of step S304, when Td <T1 (S304 → Yes), that is, when the control amount data has reached within a predetermined time, the control mode determination processing unit 202 sets the control mode to the centralized control mode ( S305). If the control mode is already the centralized control mode, the control mode determination processing unit 202 maintains the current control mode.
The control mode determination processing unit 202 temporarily stores the time stamp of the control amount data acquired this time in the memory (S306), and transmits the control amount in the control amount data received by the control processing unit 204 to the measurement device. Thus, the measurement apparatus is controlled (S313).
 一方、ステップS304の結果、Td≧T1である場合(S304→No)、制御モード決定処理部202は、分散制御モードに移行してからの時間Tsが、所定の時間T2より小さい(Ts<T1)か否かを判定する(S307)。なお、現在の制御モードが分散制御モードではない場合、Ts=0である。 On the other hand, if Td ≧ T1 as a result of step S304 (S304 → No), the control mode determination processing unit 202 determines that the time Ts after shifting to the distributed control mode is smaller than the predetermined time T2 (Ts <T1). ) Is determined (S307). Note that when the current control mode is not the distributed control mode, Ts = 0.
 ステップS307の結果、Ts<T2である場合(S307→Yes)、つまり、分散制御モードに移行してから所定時間内である場合、制御モード決定処理部202は、制御モードを分散制御モードとする(S308)。既に、制御モードが分散制御モードである場合、制御モード決定処理部202は、現在の制御モードを維持する。
 そして、制御量算出処理部203は、計測データ記憶部213から計測データを読み込む(S309)。
As a result of step S307, if Ts <T2 (S307 → Yes), that is, if within a predetermined time after shifting to the distributed control mode, the control mode determination processing unit 202 sets the control mode to the distributed control mode. (S308). If the control mode is already the distributed control mode, the control mode determination processing unit 202 maintains the current control mode.
Then, the control amount calculation processing unit 203 reads measurement data from the measurement data storage unit 213 (S309).
 続いて、制御量算出処理部203は、モデルデータ記憶部212から演算モデルを読み込み(S310)、読み込んだ演算モデルのうちの電量状態推定モデルと計測データとから式(1)の演算を行い、電力状態の推定を行う(S311)。具体的には、制御量算出処理部203が自身の制御装置2における有効電力と、無効電力とを推定する。ステップS310で、制御量算出処理部203は、計測データの欠損状態に応じて、図13に示すモデルデータから欠損状態に対応する演算モデルを読み込んでもよい。 Subsequently, the control amount calculation processing unit 203 reads the calculation model from the model data storage unit 212 (S310), performs the calculation of Expression (1) from the electric energy state estimation model and the measurement data in the read calculation model, The power state is estimated (S311). Specifically, the control amount calculation processing unit 203 estimates active power and reactive power in its own control device 2. In step S310, the control amount calculation processing unit 203 may read an operation model corresponding to the missing state from the model data illustrated in FIG. 13 according to the missing state of the measurement data.
 さらに、制御量算出処理部203は、ステップS309で読み込んだ演算モデルのうちの制御量算出モデルと、ステップS311で推定した電力状態とから式(2)の演算を行い、自身の制御量を算出する(S312)。
 そして、制御処理部204がステップS312で算出した制御量で自身の制御を行う(S313)。
Further, the control amount calculation processing unit 203 calculates the control amount of itself by performing the calculation of Expression (2) from the control amount calculation model of the calculation model read in step S309 and the power state estimated in step S311. (S312).
Then, the control processing unit 204 controls itself with the control amount calculated in step S312 (S313).
 また、ステップS307の結果、Ts≧T2である場合(S307h→No)、つまり、分散制御モードに移行してから所定時間以上である場合、制御モード決定処理部202は、制御モードを自律制御モードとする(S314)。既に、制御モードが自律制御モードである場合、制御モード決定処理部202は、現在の制御モードを維持する。
 そして、制御量算出処理部203は、系統データ記憶部211から系統データを読み込み(S315)、さらに、計測データ記憶部213から計測データを読み込む(S316)。
 そして、制御量算出処理部203は、読み込んだ系統データと、計測データとから自身の制御量を算出する(S312)。なお、自律制御モードにおける制御量の算出方法は前記してあるので、ここでは詳細な説明を省略する。
 そして、制御処理部204がステップS312で算出した制御量で自身の制御を行う(S313)。
 なお、系統データには、タイムスタンプが付されてもよいし、付されなくてもよい。
If Ts ≧ T2 as a result of step S307 (S307h → No), that is, if it is a predetermined time or longer after shifting to the distributed control mode, the control mode determination processing unit 202 sets the control mode to the autonomous control mode. (S314). If the control mode is already the autonomous control mode, the control mode determination processing unit 202 maintains the current control mode.
Then, the control amount calculation processing unit 203 reads the system data from the system data storage unit 211 (S315), and further reads the measurement data from the measurement data storage unit 213 (S316).
Then, the control amount calculation processing unit 203 calculates its own control amount from the read system data and measurement data (S312). Since the control amount calculation method in the autonomous control mode has been described above, detailed description thereof is omitted here.
Then, the control processing unit 204 controls itself with the control amount calculated in step S312 (S313).
The system data may or may not have a time stamp.
<時間帯による演算モデル切り替え>
 図15は、時間帯に応じて演算モデルを切り替えることを説明するための図である。
 電力需給状態は、天候や、気温等によっても変動するが、朝、昼、夜のように時間帯によっても変動する。例えば、個人住宅の場合、朝と晩で食事の支度のために電力需要が増加する。昼間は不在になる可能性が高くなるため、電力需要は低下する。これとは逆に、朝と晩の太陽光発電の発電量は小さく、昼間の発電量は大きい。このため、太陽光発電が設置されている住宅において、発電所から送られる電力の消費は昼間が小さく、朝・晩で大きくなる。このように電力の需給状態は個人住宅、工場、商業施設等の需要家の特性によっても相違するが、時間帯による相違も大きい。
 そこで、本実施形態における電力系統制御システム5は、例えば、一日の時間を第1時間帯(朝・夕)、第2時間帯(昼)、第3時間帯(夜)のように複数に区切り、時間帯毎に、電力状態推定モデル群と制御量算出モデルを生成する。
<Calculation model switching by time zone>
FIG. 15 is a diagram for explaining switching of the calculation model according to the time zone.
The power supply / demand condition varies depending on the weather, temperature, etc., but also varies depending on the time of day such as morning, noon, and night. For example, in the case of a private house, electric power demand increases due to preparation of meals in the morning and evening. There is a high possibility of being absent during the daytime, so power demand will decrease. On the contrary, the amount of solar power generation in the morning and evening is small, and the amount of power generation in the daytime is large. For this reason, in a house where solar power generation is installed, power consumption from the power plant is small during the daytime and large during the morning and evening. As described above, the supply and demand state of electric power varies depending on the characteristics of consumers such as private houses, factories, and commercial facilities, but also varies greatly depending on time zones.
Therefore, the power system control system 5 according to the present embodiment has a plurality of times such as a first time zone (morning / evening), a second time zone (daytime), and a third time zone (night), for example. A power state estimation model group and a control amount calculation model are generated for each segment and time zone.
 図13に示すように、各制御装置2の電力状態推定モデルは、取得できた計測データの組み合せに応じて複数生成される。
 ここで、中央装置1は、図15に示すように、制御装置2毎、時間帯毎に(つまり、所定の生活条件に応じて)演算モデルを生成する。図15において、時間帯は第1時間帯(例えば、朝・夕)、第2時間帯(例えば、昼)、第3時間帯(例えば、夜)の3時間帯に分けているがこれに限らず、例えば、1時間毎にわけてもよい。あるいは、天候によってわけてもよい。この場合、制御量算出処理部203がWebを介して、天候を取得して、天候に従った演算モデルを使用してもよい。
 例えば、第1時間帯において、制御装置2a(図1)用の演算モデルとして、電力状態推定モデル群1501と制御量算出モデル1502aが生成されている。ここで、電力状態推定モデル「群」としているのは、図13に示すように、同一の制御装置2でもケース毎に異なる電力状態推定モデルが生成されるためである。
As shown in FIG. 13, a plurality of power state estimation models of each control device 2 are generated according to combinations of acquired measurement data.
Here, as shown in FIG. 15, the central device 1 generates a calculation model for each control device 2 and for each time zone (that is, according to a predetermined living condition). In FIG. 15, the time zone is divided into a first time zone (for example, morning and evening), a second time zone (for example, noon), and a third time zone (for example, night), but is not limited thereto. For example, it may be divided every hour. Alternatively, it may be divided according to the weather. In this case, the control amount calculation processing unit 203 may acquire the weather via the Web and use a calculation model according to the weather.
For example, in the first time zone, a power state estimation model group 1501 and a control amount calculation model 1502a are generated as calculation models for the control device 2a (FIG. 1). Here, the power state estimation model “group” is used because different power state estimation models are generated for each case even in the same control device 2 as illustrated in FIG. 13.
 同様に、制御装置2b(図1)用の演算モデルとして、電力状態推定モデル群1501bと制御量算出モデル1502bが生成されている。また、制御装置2c(図1)用の演算モデルとして、電力状態推定モデル群1501cと制御量算出モデル1502cが生成されている。 Similarly, a power state estimation model group 1501b and a control amount calculation model 1502b are generated as calculation models for the control device 2b (FIG. 1). In addition, as an arithmetic model for the control device 2c (FIG. 1), a power state estimation model group 1501c and a control amount calculation model 1502c are generated.
 同様に、第2時間帯において、電力状態推定モデル群1511a(制御装置2a用),1511b(制御装置2b用),1511c(制御装置2c用)、制御量算出モデル1512a(制御装置2a用),1512b(制御装置2b用),1512c(制御装置2c用)が生成されている。
 また、第3時間帯において、電力状態推定モデル群1521a(制御装置2a用),1521b(制御装置2b用),1521c(制御装置2c用)、制御量算出モデル1522a(制御装置2a用),1522b(制御装置2b用),1522c(制御装置2c用)が生成されている。
 ちなみに、電力状態推定モデル群1501a~1501c,1511a~1511c,1521a~1521cのそれぞれは、図13に示す電力状態推定モデル群に相当している。
Similarly, in the second time zone, a power state estimation model group 1511a (for the control device 2a), 1511b (for the control device 2b), 1511c (for the control device 2c), a control amount calculation model 1512a (for the control device 2a), 1512b (for the control device 2b) and 1512c (for the control device 2c) are generated.
Further, in the third time zone, power state estimation model groups 1521a (for the control device 2a), 1521b (for the control device 2b), 1521c (for the control device 2c), control amount calculation models 1522a (for the control device 2a), 1522b (For the control device 2b) and 1522c (for the control device 2c) are generated.
Incidentally, each of the power state estimation model groups 1501a to 1501c, 1511a to 1511c, and 1521a to 1521c corresponds to the power state estimation model group shown in FIG.
 時間帯が替わった場合、制御装置2の制御量算出処理部203は、時間帯に応じた電力状態推定モデルに切り替え、さらに制御量算出モデルに基づいて、準最適な制御量を算出する。 When the time zone is changed, the control amount calculation processing unit 203 of the control device 2 switches to the power state estimation model corresponding to the time zone, and further calculates a sub-optimal control amount based on the control amount calculation model.
 第1実施形態に係る制御装置2は、複数の制御モードの中から通信状態に応じて、集中制御モード、分散制御モード、自律制御モードのうち、いずれか1つの制御モードを選択できる。従って、制御装置2は、通信ネットワーク4の状態に応じて適切に動作することができる。 The control device 2 according to the first embodiment can select any one control mode from a centralized control mode, a distributed control mode, and an autonomous control mode according to a communication state from among a plurality of control modes. Therefore, the control device 2 can appropriately operate according to the state of the communication network 4.
 さらに、第1実施形態に係る制御装置2は、通信状態が健全な場合は集中制御モードで制御し、通信状態が悪化した場合に分散制御モードで制御し、電力状態推定モデルの有効期間が過ぎた場合は自律制御モードで制御する。従って、通信状態の健全性の度合いに応じて電力状態を制御できる。 Furthermore, the control device 2 according to the first embodiment performs control in the centralized control mode when the communication state is healthy, and performs control in the distributed control mode when the communication state deteriorates, and the validity period of the power state estimation model has passed. If it does, control in autonomous control mode. Therefore, the power state can be controlled according to the degree of soundness of the communication state.
 そして、第1実施形態の中央装置1は、センサ3の実計測値である計測データと、電力状態推定値の履歴と、算出された制御量の履歴とを計測データとして蓄積して管理し、計測データに基づいて電力状態推定モデル及び制御量算出モデルといった演算モデルを生成する。従って、比較的高精度の演算モデルを比較的簡易に得ることができる。 And the central apparatus 1 of 1st Embodiment accumulate | stores and manages the measurement data which are the actual measurement values of the sensor 3, the log | history of an estimated power state value, and the log | history of the calculated control amount as measurement data, Calculation models such as a power state estimation model and a control amount calculation model are generated based on the measurement data. Accordingly, it is possible to relatively easily obtain a relatively high accuracy calculation model.
 また、第1実施形態の中央装置1は、演算モデルを、センサ3から取得した計測値、もしくは電力状態推定値の係数として算出する。従って、演算モデルのデータであるモデルデータのサイズを小さくでき、中央装置1から複数の制御装置2にモデルデータを配信した場合でも、通信ネットワーク4の負荷を抑制することができる。このため、本実施形態の電力系統制御システム5は、通信速度が遅く、通信品質の不安定な環境下であっても、電力系統を適切に制御することができる。 In addition, the central device 1 of the first embodiment calculates the calculation model as a coefficient of a measurement value acquired from the sensor 3 or a power state estimation value. Therefore, the size of the model data that is the data of the operation model can be reduced, and the load on the communication network 4 can be suppressed even when the model data is distributed from the central device 1 to the plurality of control devices 2. For this reason, the power system control system 5 of the present embodiment can appropriately control the power system even in an environment where the communication speed is low and the communication quality is unstable.
 そして、第1実施形態に係る電力系統制御システム5では、分散制御モードで使用する電力状態推定モデルに有効期間が設定されており、電力系統制御システム5は有効期間の過ぎた電力状態推定モデルは使用せず、自律制御モードに移行する。従って、第1実施形態によれば、電力需給状態の変化及び電力系統の構成変化からかけ離れた分散制御が実行されるのを抑制し、システムの信頼性を高めることができる。 In the power system control system 5 according to the first embodiment, the effective period is set in the power state estimation model used in the distributed control mode, and the power system control system 5 has the power state estimation model that has passed the effective period. Switch to autonomous control mode without using. Therefore, according to the first embodiment, it is possible to suppress the execution of the distributed control far from the change in the power supply / demand state and the change in the configuration of the power system, thereby improving the reliability of the system.
 第1実施形態に係る中央装置1は、正常に取得できる計測データの組み合せに応じて電力状態推定モデルを生成する(図13)。このため、制御装置2は通信ネットワーク4の状態が悪く、すべてのセンサ3からの計測データを受信できない場合でも、電力状態を推定して、電力系統全体の電圧をできるだけ安定化するように制御量を算出できる。従って、第1実施形態に係る電力系統制御システム5は、通信環境の悪い地域であっても、通信環境に合わせて電力状態を推定でき、適切に電力系統の電力状態を制御することができる。 The central apparatus 1 according to the first embodiment generates a power state estimation model according to a combination of measurement data that can be normally acquired (FIG. 13). For this reason, even if the state of the communication network 4 is poor and the control device 2 cannot receive the measurement data from all the sensors 3, the control amount is estimated so as to stabilize the voltage of the entire power system as much as possible by estimating the power state. Can be calculated. Therefore, the power system control system 5 according to the first embodiment can estimate the power state according to the communication environment even in an area where the communication environment is bad, and can appropriately control the power state of the power system.
 また、第1実施形態に係る中央装置1は、時間帯や、天候等の所定の生活条件に応じて電力状態推定モデルを生成する(図15)。これにより、生活条件に応じて変動する消費電力に対応することができる。 Further, the central device 1 according to the first embodiment generates a power state estimation model according to a predetermined living condition such as a time zone and weather (FIG. 15). Thereby, it can respond to the power consumption which fluctuates according to living conditions.
[第2実施形態]
 次に、図16~図22を参照して本発明の第2実施形態を説明する。
 第2実施形態では、計測データに対する信頼区間が設けられることで、計測データの信頼性に応じて、適切な制御を行うことを目的とする。
 また、第2実施形態では、演算モデルの例として電力状態推定モデルをとりあげて説明するが、それに限定すべきものではなく、制御量算出モデルについても同様に扱うことができる。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS.
The second embodiment is intended to perform appropriate control according to the reliability of the measurement data by providing a confidence interval for the measurement data.
In the second embodiment, the power state estimation model is described as an example of the calculation model. However, the present invention is not limited to this, and the control amount calculation model can be similarly handled.
<中央装置の構成> 
 図16は、第2実施形態に係る中央装置の構成例を示す図である。
 図16の中央装置1Aにおいて、図1の中央装置1と同様の構成要素については、図1と同一の符号を付して説明を省略する。なお、第2実施形態における電力系統制御システム5全体の構成は、第1実施形態と同様であるので、図示及び説明を省略する。
 図16における中央装置1Aは、信頼区間処理部106が加わった点と、信頼区間データ記憶部114が加わった点が第1実施形態に係る中央装置1と異なっている。
 信頼区間処理部106は、図2(a)におけるHD304等に格納されているプログラムがRAM302に展開され、CPU301によって実行されることで具現化する。
<Configuration of central unit>
FIG. 16 is a diagram illustrating a configuration example of the central device according to the second embodiment.
In the central device 1A in FIG. 16, the same components as those in the central device 1 in FIG. 1 are denoted by the same reference numerals as those in FIG. In addition, since the structure of the electric power system control system 5 whole in 2nd Embodiment is the same as that of 1st Embodiment, illustration and description are abbreviate | omitted.
The central apparatus 1A in FIG. 16 is different from the central apparatus 1 according to the first embodiment in that a confidence interval processing unit 106 is added and a confidence interval data storage unit 114 is added.
The confidence interval processing unit 106 is realized by developing a program stored in the HD 304 or the like in FIG. 2A in the RAM 302 and executing it by the CPU 301.
 信頼性処理部205は、計測データに対して信頼区間を考慮したデータを出力する。信頼区間処理部106の動作については後記して説明する。
 信頼区間データ記憶部114は、後記する信頼区間に関するデータである信頼区間データを格納している。
The reliability processing unit 205 outputs data that takes into account the confidence interval for the measurement data. The operation of the confidence interval processing unit 106 will be described later.
The confidence interval data storage unit 114 stores confidence interval data that is data relating to a confidence interval described later.
<制御装置の構成>
 図17は、第2実施形態に係る制御装置の構成例を示す図である。
 図17において、図1の制御装置2と同様の構成要素については、図1と同一の符号を付して説明を省略する。
 図17における制御装置2Aにおけるコントローラ200aは、信頼性処理部205が加わった点と、信頼区間データ記憶部214が加わった点が第1実施形態に係る計測装置と異なっている。さらに、制御量算出処理部203aが、低信頼の計測データが存在する場合に、仮制御量を算出する点で第1実施形態と異なっている。
 そして、制御処理部204aは、低信頼の計測データが存在する場合には、仮制御量による制御を行う点で第1実施形態と異なっている。
 なお、制御量算出処理部203a、制御処理部204a、信頼性処理部205は、図3(b)におけるROM402に格納されているプログラムをCPU401が実行することにより具現化する。
 信頼区間データ記憶部214は、後記する信頼区間に関するデータである信頼区間データ(信頼性情報:区間情報)を格納している。
<Control device configuration>
FIG. 17 is a diagram illustrating a configuration example of a control device according to the second embodiment.
In FIG. 17, the same components as those of the control device 2 of FIG. 1 are denoted by the same reference numerals as those of FIG.
The controller 200a in the control device 2A in FIG. 17 differs from the measurement device according to the first embodiment in that a reliability processing unit 205 is added and a confidence interval data storage unit 214 is added. Further, the control amount calculation processing unit 203a is different from the first embodiment in that a temporary control amount is calculated when low-reliable measurement data exists.
The control processing unit 204a is different from the first embodiment in that the control processing unit 204a performs control by the temporary control amount when there is low-reliability measurement data.
The control amount calculation processing unit 203a, the control processing unit 204a, and the reliability processing unit 205 are realized by the CPU 401 executing a program stored in the ROM 402 in FIG.
The confidence interval data storage unit 214 stores confidence interval data (reliability information: interval information) that is data relating to a confidence interval described later.
<信頼区間>
 図18は、第2実施形態に係る信頼区間の例を示す図であり、(a)が有効電力の信頼区間を示し、(b)が無効電力の信頼区間を示している。
 実際の電力系統においては、時間的な負荷の変動(擾乱)等によって、電力状態値の変動が生じる。そして、そのような電力状態値(有効電力、無効電力、電圧)の変動は、ある範囲に偏りがみられると考えられる。
 このような、変動が生じている場合、第1実施形態に示すように、取得可能なすべてのデータを用いて演算モデルを算出するのではなく、定められた信頼区間の範囲にあるデータを用い、信頼区間外のデータについては、所定の補正を行うことで、演算モデルの安定性の向上が期待できる。
<Confidence interval>
FIG. 18 is a diagram illustrating an example of a confidence interval according to the second embodiment, in which (a) illustrates a confidence interval for active power and (b) illustrates a confidence interval for reactive power.
In an actual power system, the power state value fluctuates due to a temporal load fluctuation (disturbance) or the like. And it is thought that the fluctuation | variation of such electric power state values (active power, reactive power, voltage) has a bias in a certain range.
When such fluctuations occur, as shown in the first embodiment, the calculation model is not calculated using all the obtainable data, but the data within the defined confidence interval is used. With respect to data outside the confidence interval, improvement of the stability of the calculation model can be expected by performing a predetermined correction.
 まず、図18(a)を参照して、有効電力の信頼区間について説明する。
 なお、ここでは、電力状態値の偏りが正規分布に従っていると仮定することとする。
 有効電力の変動が正規分布に従っていると仮定したとき、その平均値をP、標準偏差をσとすると、有効電力の正規分布は図18(a)に示すような分布となる。
 そして、高信頼区間(第1の区間)1801を以下の式(3)のように規定する。
First, the confidence interval of active power will be described with reference to FIG.
Here, it is assumed that the bias of the power state value follows a normal distribution.
Assuming that the variation in active power follows a normal distribution, assuming that the average value is P M and the standard deviation is σ p , the normal distribution of active power is a distribution as shown in FIG.
Then, a highly reliable interval (first interval) 1801 is defined as in the following expression (3).
 P-α・σ≦P≦P+α・σ ・・・ (3) P M −α · σ p ≦ P ≦ P M + α · σ p (3)
 式(3)で示される高信頼区間1801は、図18(a)の高信頼の区間に相当する。高信頼区間1801以外は低信頼区間(第2の区間)1802である。
 なお、式(3)に示すαは、高信頼区間1801を設定するための係数である。例えば、α=1.64として信頼区間を設定すれば、有効電力の値が高信頼区間1801内に生じる確率は0.9となる。さらに、例えば、α=1.96として高信頼区間1801を設定すれば、無効電力の値が高信頼区間1801内に生じる確率は0.95となる。
The high confidence interval 1801 represented by the expression (3) corresponds to the high confidence interval in FIG. Other than the high confidence interval 1801 is a low confidence interval (second interval) 1802.
Note that α shown in Equation (3) is a coefficient for setting the high confidence interval 1801. For example, if a confidence interval is set with α = 1.64, the probability that an active power value will occur in the high confidence interval 1801 is 0.9. Further, for example, if the highly reliable interval 1801 is set with α = 1.96, the probability that the value of reactive power will occur in the highly reliable interval 1801 is 0.95.
 同様にして、無効電力の高信頼区間1801も設定される(図18(b)参照)。
 なお、無効電力の高信頼区間1801を以下の式(4)で規定する。高信頼区間1801以外は低信頼区間1802である。
Similarly, a high-reliability interval 1801 for reactive power is also set (see FIG. 18B).
In addition, the highly reliable section 1801 of reactive power is prescribed | regulated by the following formula | equation (4). Other than the high confidence interval 1801, the low confidence interval 1802 is provided.
 Q-α・σ≦Q≦Q+α・σ ・・・ (4) Q M −α · σ q ≦ Q ≦ Q M + α · σ q (4)
 式(4)におけるQ、σは、それぞれ無効電力値の平均値、標準偏差であり、αは式(3)と同様の係数である。
 なお、有効電力値、無効電力値の平均値、標準偏差は、所定時間内の有効電力値、無効電力値の平均、標準偏差である。
Q M and σ q in equation (4) are the average value and standard deviation of the reactive power values, respectively, and α is the same coefficient as in equation (3).
The active power value, the average value of the reactive power value, and the standard deviation are the average value and the standard deviation of the active power value and the reactive power value within a predetermined time.
 このように、信頼区間処理部106では、計測データそれぞれの平均値、標準偏差を算出し、それを基に式(3)、式(4)で規定される高信頼区間1801を設定することによって、計測データの高信頼区間1801(上限値、下限値)を算出する。
 上限値は、式(3)のP+α・σ、式(4)のQ+α・σである。同様に、下限値は、式(3)のP-α・σ、式(4)のQ-α・σである。
As described above, the confidence interval processing unit 106 calculates the average value and the standard deviation of each measurement data, and sets the high confidence interval 1801 defined by the equations (3) and (4) based on the average value and the standard deviation. Then, a highly reliable interval 1801 (upper limit value, lower limit value) of the measurement data is calculated.
The upper limit values are P M + α · σ p in equation (3) and Q M + α · σ q in equation (4). Similarly, the lower limit values are P M −α · σ p in Equation (3) and Q M −α · σ q in Equation (4).
 例えば、図19の形式で示される信頼区間データが、信頼区間データ記憶部114に格納される。
 図19に示されるように、信頼区間データには、センサ3毎、計測データ種別毎に高信頼区間の上限値、下限値が格納されている。なお、計測データ種別において、「P」は有効電力を示し、「Q」は無効電力を示す。また、「90%」、「95%」、「99%」とは、規定されている高信頼区間内に計測値が生じる確立である。
 また、中央装置1Aの送受信処理部105は、信頼区間データ記憶部114の高信頼区間データを制御装置2Aへ送信し、制御装置2Aの送受信処理部201は受信した高信頼区間に関するデータを信頼区間データ記憶部114に格納する。この処理は、例えば、図14のステップS301~S303において、系統データ等とともに行われる。
For example, the confidence interval data shown in the format of FIG. 19 is stored in the confidence interval data storage unit 114.
As shown in FIG. 19, the confidence interval data stores the upper limit value and the lower limit value of the high confidence interval for each sensor 3 and each measurement data type. In the measurement data type, “P” indicates active power, and “Q” indicates reactive power. In addition, “90%”, “95%”, and “99%” are establishments in which a measurement value is generated within a defined high confidence interval.
Further, the transmission / reception processing unit 105 of the central device 1A transmits the high confidence interval data in the confidence interval data storage unit 114 to the control device 2A, and the transmission / reception processing unit 201 of the control device 2A transmits the received data related to the high reliability interval to the confidence interval. The data is stored in the data storage unit 114. This process is performed, for example, with the system data in steps S301 to S303 in FIG.
 なお、図18に示すような高信頼区間、低信頼区間の設定方法は一例であり、例えば、正規分布ではなく、ベータ分布や、ガンマ分布に従うものとしてもよい。
 また、図15に示す時間帯ごとに異なる正規分布を設定してもよい。
Note that the method of setting the high confidence interval and the low confidence interval as shown in FIG. 18 is an example. For example, it may be based on a beta distribution or a gamma distribution instead of the normal distribution.
Moreover, you may set different normal distribution for every time slot | zone shown in FIG.
(制御処理)
 図20は、第2実施形態に係る制御処理の手順を示すフローチャートである。
 なお、図20の処理は、図14における分散制御処理のステップS311~S313の箇所に挿入される処理である。
 まず、信頼性処理部205は、計測データ記憶部213に格納されている計測データ(有効電力、無効電力)の各々について、すべて高信頼であるか否かの判定を行う(S401)。この処理において、信頼性処理部205は、信頼区間データ記憶部214に格納されている信頼区間データを参照して、図18に示す高信頼区間に該当するか、低信頼区間に該当するかを各々の計測データについて判定する。
(Control processing)
FIG. 20 is a flowchart illustrating a procedure of control processing according to the second embodiment.
Note that the processing in FIG. 20 is processing that is inserted into the locations of steps S311 to S313 of the distributed control processing in FIG.
First, the reliability processing unit 205 determines whether each of the measurement data (active power and reactive power) stored in the measurement data storage unit 213 is highly reliable (S401). In this process, the reliability processing unit 205 refers to the confidence interval data stored in the confidence interval data storage unit 214 and determines whether the reliability interval corresponds to the high reliability interval or the low reliability interval shown in FIG. Each measurement data is determined.
 例えば、信頼区間が90%であるときのセンサ3の計測データである有効電力の上限値、下限値が、図19に示される信頼区間データによって、それぞれPau、Palであり、無効電力の上限値、下限値がそれぞれQau、Qalと定められているので、信頼性処理部205は、計測データの有効電力、無効電力のそれぞれが上下限値の範囲に入っているかを判定する。信頼性処理部205は、上下限値の範囲に入っている場合には、それぞれの計測データの信頼性が高いと判定し、そうでなければ低いと一旦判定する。これら計測データは、電力状態推定モデルの説明変数(入力データ)であるが、計測データのすべて信頼性が高いと判定された場合には、演算モデルの説明変数として計測データが高信頼と判定されるが、そうでない場合には、低信頼と判定される。つまり、説明変数としての計測データが複数種類ある場合、少なくとも一つの信頼性が低いと、演算モデルの説明変数として低信頼と判定されることになる。 For example, the upper limit value and lower limit value of the active power, which are measurement data of the sensor 3 when the confidence interval is 90%, are Pau and Pal, respectively, according to the confidence interval data shown in FIG. Since the lower limit values are defined as Qau and Qal, respectively, the reliability processing unit 205 determines whether each of the active power and reactive power of the measurement data is within the range of the upper and lower limit values. The reliability processing unit 205 determines that the reliability of each measurement data is high when the value is within the range of the upper and lower limit values, and otherwise determines that the reliability is low. These measurement data are explanatory variables (input data) of the power state estimation model. However, if all the measurement data are determined to be highly reliable, the measurement data is determined to be high reliability as the explanatory variable of the calculation model. Otherwise, it is determined to be unreliable. That is, when there are a plurality of types of measurement data as explanatory variables, if at least one reliability is low, it is determined that the reliability is low as an explanatory variable of the calculation model.
 ステップS401の結果、すべての計測データが高信頼であると判定された場合(S401→Yes)、制御量算出処理部203aが図14のステップS311~S313と同様の処理を行うことによって計測装置の制御を行う。 As a result of step S401, when it is determined that all measurement data is highly reliable (S401 → Yes), the control amount calculation processing unit 203a performs the same processing as steps S311 to S313 in FIG. Take control.
 ステップS401の結果、低信頼であると判定された計測データが1つでも存在する場合(S401→No)、制御量算出処理部203aは、仮制御量を算出する(S402)。仮制御量の算出方法は後記して説明する。
 そして、制御処理部204aが、ステップS402で算出した仮制御量で計測装置を制御する(S403)。
 次に、制御量算出処理部203aは、仮制御量による制御から所定時間後に、送受信処理部201を介して自端ノードのセンサ3(自端ノードセンサ)の計測データを取得し、センサ3地点の電圧が目標に対してどの程度乖離しているかの目標乖離指標ΔVを算出する(S404)。仮制御量の算出方法については、後記する。
As a result of step S401, when there is even one piece of measurement data determined to be unreliable (S401 → No), the control amount calculation processing unit 203a calculates a temporary control amount (S402). A method for calculating the temporary control amount will be described later.
Then, the control processing unit 204a controls the measuring device with the temporary control amount calculated in step S402 (S403).
Next, the control amount calculation processing unit 203a acquires the measurement data of the sensor 3 (own end node sensor) of the own end node via the transmission / reception processing unit 201 after a predetermined time from the control by the temporary control amount, and the sensor 3 point A target deviation index ΔV indicating how much the voltage of the current is deviating from the target is calculated (S404). The calculation method of the temporary control amount will be described later.
 そして、制御処理部204aは、ΔVが所定値以下であるか否かを判定する(S405)。
 ステップS405の結果、ΔVが所定値以下の場合(S405→Yes)、制御処理部204aは、目標電圧に近い制御ができていることになるため処理を終える。
 ステップS405の結果、ΔVが所定値以下でない場合(S405→No)、制御処理部204aは修正仮制御量を算出し(S406)、ステップS403へ処理を戻し、修正仮制御量を仮制御量として処理を行う。修正仮制御量の算出方法については後記する。
Then, the control processing unit 204a determines whether ΔV is equal to or less than a predetermined value (S405).
As a result of step S405, if ΔV is equal to or smaller than the predetermined value (S405 → Yes), the control processing unit 204a finishes the process because the control is close to the target voltage.
If ΔV is not less than or equal to the predetermined value as a result of step S405 (S405 → No), the control processing unit 204a calculates a corrected temporary control amount (S406), returns the process to step S403, and uses the corrected temporary control amount as the temporary control amount. Process. A method for calculating the corrected temporary control amount will be described later.
(仮制御量算出方法)
 図21、図22は、第2実施形態に係る仮制御量の算出方法を説明するための図である。
 低信頼の計測データがある場合、制御量算出処理部203aは、図20のステップS402で示したように仮制御量を算出する。なお、図21、図22において、横軸は、本来有効電力P、無効電力Qの2次元座標となるべきであるが、ここでは便宜上1次元座標としている。
 仮制御量の算出手法は、例えば、以下の3つの手法が考えられる。
 なお、図21、図22において、高信頼区間は「xcl」~「xcu」であり、それ以外は低信頼区間である。ここで、xclは高信頼区間の上限値であり、xcuは高信頼区間の下限値である。以降、上限値と下限値とをまとめて境界値と称することがある。「x1」は、計測値である。そして、x0は計測値の平均値である。また、直線2100の傾きが、演算モデルを示している。また、図21、図22の説明において、f(・)は式(2)による制御量算出モデルの演算式を示している。
(Temporary control amount calculation method)
21 and 22 are diagrams for explaining a method for calculating a temporary control amount according to the second embodiment.
When there is low-reliability measurement data, the control amount calculation processing unit 203a calculates a temporary control amount as shown in step S402 in FIG. 21 and 22, the horizontal axis should originally be the two-dimensional coordinates of the active power P and the reactive power Q, but here, the one-dimensional coordinates are used for convenience.
For example, the following three methods can be considered as a method for calculating the temporary control amount.
In FIGS. 21 and 22, the high confidence interval is “xcl” to “xcu”, and the others are low confidence intervals. Here, xcl is the upper limit value of the high confidence interval, and xcu is the lower limit value of the high reliability interval. Hereinafter, the upper limit value and the lower limit value may be collectively referred to as a boundary value. “X1” is a measured value. X0 is the average value of the measured values. The slope of the straight line 2100 indicates the calculation model. In the description of FIGS. 21 and 22, f (•) represents an arithmetic expression of the control amount calculation model according to Expression (2).
 第1の手法は、図21(a)に示すように、高信頼区間における演算モデルをそのまま適用するものである。
 つまり、図21(a)に示すように、低信頼である計測値x1における仮制御量は、高信頼区間における演算モデルが用いられて算出される。つまり、制御処理部204aは、式(2)そのものを用いて仮制御量2111を算出する。
In the first method, as shown in FIG. 21A, an operation model in a highly reliable interval is applied as it is.
That is, as shown in FIG. 21A, the temporary control amount at the measurement value x1 with low reliability is calculated using the calculation model in the high reliability interval. That is, the control processing unit 204a calculates the temporary control amount 2111 using the formula (2) itself.
 第2の手法は、図21(b)に示すように、計測値x1に最も近い高信頼区間の境界値xcl、xcuにおける制御量を仮制御量2112とするものである。つまり、S=f(xcu or xcl)を仮制御量2112とする。
 図21(b)の例では、計測値x1に最も近い高信頼区間の境界値は「xcu」であるから、S=f(xcu)が算出される仮制御量2112である。計測値x1に最も近い高信頼区間の境界値がxclのときは、S=f(xcl)が算出される仮制御量となる。
In the second method, as shown in FIG. 21B, the control amount at the boundary values xcl and xcu in the high confidence interval closest to the measured value x1 is set as the temporary control amount 2112. That is, S = f (xcu or xcl) is set as the temporary control amount 2112.
In the example of FIG. 21B, since the boundary value of the high confidence interval closest to the measurement value x1 is “xcu”, S = f (xcu) is the temporary control amount 2112 calculated. When the boundary value of the high confidence interval closest to the measured value x1 is xcl, S = f (xcl) is a calculated temporary control amount.
 第3の手法は、図22に示すように所定の手法で算出した制御量下限2201、制御量上限2202の少なくとも一方に基づいて仮制御量を算出するものである。
 ここで、制御量下限2201、制御量上限2202は、計測値xの関数であり、例えば、式(5)、式(6)のように表される。
In the third method, a temporary control amount is calculated based on at least one of a control amount lower limit 2201 and a control amount upper limit 2202 calculated by a predetermined method as shown in FIG.
Here, the control amount lower limit 2201 and the control amount upper limit 2202 are functions of the measurement value x, and are represented by, for example, Expression (5) and Expression (6).
 S=c・(x-xd)+f(xd) (x∈XL,x≧xd) ・・・ (5) S = c · (x−xd) k + f (xd) (x∈XL, x ≧ xd) (5)
 S=c・(x-xd)+f(xd) (x∈XL,x<xd) ・・・ (6) S = c · (x−xd) k + f (xd) (x∈XL, x <xd) (6)
 ここで、式(5)は計測値xが図22に示す低信頼区間XAに属する場合であり、式(6)は計測値xが図22に示す低信頼区間XBに属する場合である。
 「xd」は、計測値x1に近い境界値(xcu、xclのいずれか)である。cは予め定められる係数パラメータであり、制御量下限を表す場合のcを「cl」、制御量上限を表す場合のcを「cu」とすると、「cu>cl」の関係を持つ正の実数である。kは予め定められる「べき数パラメータ」であり、計測値xが低信頼区間に属し、かつ「x>xd」のときは「0<k<1」であり、「x<xd」のときは「k≧1」で設定される。そして、XLは低信頼区間を示す。
Here, Equation (5) is a case where the measured value x belongs to the low confidence interval XA shown in FIG. 22, and Equation (6) is a case where the measured value x belongs to the low confidence interval XB shown in FIG.
“Xd” is a boundary value (either xcu or xcl) close to the measurement value x1. c is a predetermined coefficient parameter. When c represents a control amount lower limit and “c” represents a control amount upper limit, “c” represents a positive real number having a relationship of “cu> cl”. It is. k is a predetermined “exponential parameter”. When the measured value x belongs to the low confidence interval and “x> xd”, “0 <k <1”, and “x <xd”. “K ≧ 1” is set. XL indicates a low confidence interval.
 式(5)及び式(6)で算出される制御量上限のグラフが図22の符号2202であり、制御量下限のグラフが図22の符号2201である。
 制御量算出処理部203aは、計測値x1を式(5)、式(6)に代入して、制御量下限2211、制御量上限2212を算出する。
 そして、制御量算出処理部203aは、制御量下限2211、制御量上限2212の平均値2213を算出し、この平均値2213を仮制御量とする。あるいは、制御量算出処理部203aは、制御量上限2211、制御量下限2212のいずれか一方を仮制御量としてもよい。
The graph of the control amount upper limit calculated by the equations (5) and (6) is denoted by reference numeral 2202 in FIG. 22, and the graph of the control amount lower limit is denoted by reference numeral 2201 in FIG.
The control amount calculation processing unit 203a calculates the control amount lower limit 2211 and the control amount upper limit 2212 by substituting the measured value x1 into the equations (5) and (6).
Then, the control amount calculation processing unit 203a calculates an average value 2213 of the control amount lower limit 2211 and the control amount upper limit 2212, and uses the average value 2213 as a temporary control amount. Alternatively, the control amount calculation processing unit 203a may use either the control amount upper limit 2211 or the control amount lower limit 2212 as a temporary control amount.
 制御量下限、制御量上限の算出式は、必ずしも式(5)、式(6)に限定されるべきものではなく、例えば、低信頼区間における計測値及び制御量の履歴データを所定以上蓄積した上で、最小二乗法を用いて算出される式でもよい。 The calculation formulas for the control amount lower limit and the control amount upper limit are not necessarily limited to the formulas (5) and (6). For example, the measured value and the control amount history data in the low confidence interval are accumulated more than a predetermined amount. The equation calculated using the least square method may be used.
(修正仮制御量の算出)
 次に、図20のステップS406における修正仮制御量の算出方法を説明する。
 計測データの信頼性が低信頼である場合、制御量算出処理部203aは前記した手法で仮制御量を算出する。そして、図20のステップS403に示すように、制御処理部204aは仮制御量に従って制御を行う。
 そして、制御量算出処理部203aは、仮制御量による制御から所定時間後に、送受信処理部を介して自端ノードのセンサ3の計測データを取得し、このセンサ3の地点における電圧が予め設定されている目標電圧に対して、どの程度乖離しているかの目標乖離指標ΔVを、式(7)に従って算出する(図20のステップS404)。
(Calculation of corrected temporary control amount)
Next, a method for calculating the corrected temporary control amount in step S406 in FIG. 20 will be described.
When the reliability of the measurement data is low, the control amount calculation processing unit 203a calculates the temporary control amount using the method described above. Then, as shown in step S403 of FIG. 20, the control processing unit 204a performs control according to the temporary control amount.
Then, the control amount calculation processing unit 203a acquires the measurement data of the sensor 3 of the local node via the transmission / reception processing unit after a predetermined time from the control by the temporary control amount, and the voltage at the point of this sensor 3 is preset. A target deviation index ΔV indicating how much deviation is from the target voltage is calculated according to the equation (7) (step S404 in FIG. 20).
 ΔV=Vm-Vref ・・・ (7) ΔV = Vm−Vref (7)
 ここで、Vmは計測値(計測電圧)、Vrefは目標電圧である。
 次に、制御量算出処理部203aは、目標乖離指標ΔVが所定値以下ではない場合(図20のステップS405→No)、式(8)に従って修正仮制御量Saを算出する(図20のステップS406)。
Here, Vm is a measurement value (measurement voltage), and Vref is a target voltage.
Next, when the target deviation index ΔV is not less than or equal to the predetermined value (step S405 → No in FIG. 20), the control amount calculation processing unit 203a calculates the corrected temporary control amount Sa according to the equation (8) (step in FIG. 20). S406).
 Sa=Kp・ΔV ・・・ (8) Sa = Kp · ΔV (8)
 ここで、Kpは比例ゲインである。式(8)は比例制御に従って修正仮制御量Saを算出するものであるが、式(9)のような比例積分制御に従って修正制御量Saが算出されてもよい。 Here, Kp is a proportional gain. Equation (8) calculates the corrected temporary control amount Sa according to the proportional control, but the corrected control amount Sa may be calculated according to the proportional-integral control as shown in Equation (9).
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000003
 
 ここで、Kiは積分ゲイン、Tは所定の時間である。比例ゲインと積分ゲインは、制御装置2Aの種類や電力系統の構成(インピーダンス等)に応じて定まるものであり、感度分析等によって予め設定されるものである。 Here, Ki is an integral gain, and T is a predetermined time. The proportional gain and the integral gain are determined according to the type of the control device 2A and the power system configuration (impedance, etc.), and are set in advance by sensitivity analysis or the like.
 そして、制御処理部204aは、このようにして算出された修正仮制御量Saを仮制御量として再び制御を行う。そして、制御処理部204aは、修正仮制御量Saによる制御の所定時間後に再び目標乖離指標ΔVを求め、それを用いて再度修正制御量を算出する。
 以上の処理を、ΔVが所定値以下になるまで繰り返すことにより、目標電圧に近い制御を達成することができるようになる。
Then, the control processing unit 204a performs control again using the corrected temporary control amount Sa calculated in this way as a temporary control amount. Then, the control processing unit 204a obtains the target deviation index ΔV again after a predetermined time of control by the corrected temporary control amount Sa, and uses it to calculate the corrected control amount again.
By repeating the above processing until ΔV becomes a predetermined value or less, control close to the target voltage can be achieved.
 なお、第2実施形態では、1つでも低信頼の計測データが存在した場合、仮制御量による制御を行うこととしているが、これに限らず、例えば、すべての計測データ中、所定の割合の計測データが低信頼の場合、仮制御量による制御を行うようにしてもよい。
 また、例えば、図21におけるxcl、xcu等を用いて、x1-xcl、xcu-x1等を数値化した低信頼性とし、制御量算出処理部203a、制御処理部204aは、この低信頼性を数値化したものが、所定の数値以上となるものの割合によって、仮制御量による制御を行うか否かを決定してもよい。
In the second embodiment, when at least one piece of low-reliability measurement data exists, control is performed using a temporary control amount. However, the present invention is not limited to this. For example, a predetermined ratio of all measurement data When the measurement data is low-reliability, control using a temporary control amount may be performed.
Further, for example, x1-xcl, xcu-x1, etc. are converted into low reliability by using xcl, xcu, etc. in FIG. 21, and the control amount calculation processing unit 203a and the control processing unit 204a provide this low reliability. Whether or not to perform the control by the temporary control amount may be determined depending on the ratio of the numerical value that is equal to or greater than a predetermined numerical value.
 また、中央装置1Aにおけるモデル生成部104が演算モデルを生成する際に、信頼区間を使用してもよい。つまり、モデル生成部104が、低信頼の計測データを除外して電力状態推定モデルを算出するようにしてもよい。この際、低信頼の計測データが存在した場合における演算モデルの基本算出式を用いることが望ましい。 Further, when the model generation unit 104 in the central apparatus 1A generates an operation model, a confidence interval may be used. That is, the model generation unit 104 may exclude the low-reliability measurement data and calculate the power state estimation model. At this time, it is desirable to use the basic calculation formula of the calculation model when there is low-reliability measurement data.
 負荷や分散型電源における出力の擾乱等により、計測データの信頼性が不十分となることがある。このような場合でも、第2実施形態に記載の技術を用いることによって、信頼性を考慮した制御を行うことができ、その結果、適切な制御を行うことをできる。
 また、低信頼の計測データが存在するときに、制御量算出処理部203aは、高信頼の計測データによる制御量に基づく仮制御量を算出する。そして、制御処理部204aは、仮制御量に基づいた制御を行い、制御量算出処理部203aがその出力から目標乖離指標を算出し、制御処理部204aが目標乖離指標による修正仮制御量に基づく制御を、目標乖離指標が所定の値以下となるまで繰り返す。このようにすることにより、低信頼の計測データが存在した場合でも、高信頼の計測データに基づいて算出された制御量を用いることができるので、制御の信頼性を高めることができる。
The reliability of the measurement data may be insufficient due to output disturbances in the load or the distributed power source. Even in such a case, by using the technique described in the second embodiment, control in consideration of reliability can be performed, and as a result, appropriate control can be performed.
When there is low-reliability measurement data, the control amount calculation processing unit 203a calculates a temporary control amount based on the control amount based on the high-reliability measurement data. Then, the control processing unit 204a performs control based on the temporary control amount, the control amount calculation processing unit 203a calculates the target deviation index from the output, and the control processing unit 204a is based on the corrected temporary control amount based on the target deviation index. The control is repeated until the target deviation index becomes a predetermined value or less. In this way, even when low-reliability measurement data exists, the control amount calculated based on the high-reliability measurement data can be used, so that the control reliability can be improved.
[第3実施形態]
 次に、図23、図24を参照して本発明の第3実施形態を説明する。
 第3実施形態では、計測データが低信頼と判定された場合、低信頼の計測データが存在する旨を他の制御装置2Bへ通知することを目的とする。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to FIGS.
An object of the third embodiment is to notify another control device 2B that measurement data with low reliability exists when measurement data is determined to be low reliability.
<制御装置の構成>
 図23は、第3実施形態に係る制御装置の構成例を示す図である。
 図23において、図15の制御装置2Bと同様の構成要素については、図15と同一の符号を付して説明を省略する。
 図23における制御装置2Bは、信頼性処理部205bが、低信頼の計測データが存在すると判定した場合、その旨の通知を他の制御装置2Bへ送受信処理部201を介して通知する機能を有している点が図15における制御装置2Aと異なっている点である。
 なお、電力系統制御システム5の構成及び中央装置1の構成は図1及び図14と同様であるので、図示及び説明を省略する。
<Control device configuration>
FIG. 23 is a diagram illustrating a configuration example of a control device according to the third embodiment.
23, the same components as those of the control device 2B of FIG. 15 are denoted by the same reference numerals as those of FIG.
The control device 2B in FIG. 23 has a function of notifying the other control device 2B via the transmission / reception processing unit 201 when the reliability processing unit 205b determines that measurement data with low reliability exists. This is the difference from the control device 2A in FIG.
Since the configuration of the power system control system 5 and the configuration of the central device 1 are the same as those in FIGS. 1 and 14, illustration and description thereof are omitted.
(制御処理)
 図24は、第3実施形態に係る制御処理の手順を示すフローチャートである。
 なお、図24の処理は、図14における分散制御処理のステップS311~S313の箇所に挿入される処理である。また、図24の処理において、図20と同様の処理については、図20と同一のステップ番号を付して、説明を省略する。
(Control processing)
FIG. 24 is a flowchart illustrating a procedure of control processing according to the third embodiment.
Note that the processing in FIG. 24 is processing that is inserted into the locations of steps S311 to S313 of the distributed control processing in FIG. In the processing of FIG. 24, the same processing as that of FIG. 20 is denoted by the same step number as in FIG.
 ステップS401の結果、すべて高信頼である場合(S401→Yes)、信頼性処理部205bが、他の制御装置2Bから低信頼の計測データが存在する旨の情報である低信頼情報を受信したか否かを判定する(S501)。
 ステップS501の結果、低信頼情報を受信していない場合(S501→No)、制御量算出処理部203aが図14のステップS311~S313と同様の処理を行うことによって計測装置の制御を行う。
 ステップS401の結果、低信頼の計測データが1つでも存在するか(S401→No)、ステップS501の結果、低信頼情報を受信している場合(S501→Yes)、信頼性処理部205bは、低信頼の計測データが存在する旨の情報である信頼性情報を他の制御装置2Bへ送信する(S502)。その後、制御量算出処理部203aはステップS402の処理へ進む。
As a result of step S401, if all are highly reliable (S401 → Yes), has the reliability processing unit 205b received low reliability information that is information indicating that low-reliability measurement data exists from the other control device 2B? It is determined whether or not (S501).
If the low reliability information is not received as a result of step S501 (S501 → No), the control amount calculation processing unit 203a performs the same processing as steps S311 to S313 in FIG. 14 to control the measuring device.
As a result of step S401, whether there is even one piece of low-reliability measurement data (S401 → No), or if the result of step S501 is low-reliability information (S501 → Yes), the reliability processing unit 205b Reliability information, which is information indicating that low-reliability measurement data exists, is transmitted to another control device 2B (S502). Thereafter, the control amount calculation processing unit 203a proceeds to the process of step S402.
 第3実施形態において、信頼性処理部205bは、低信頼の計測データが1つでも存在する場合には、その旨を他の制御装置2Bへ通知しているが、これに限らず、所定数の計測データが低信頼である場合に、その旨を他の制御装置2Bへ通知してもよい。 In the third embodiment, the reliability processing unit 205b notifies the other control device 2B of the fact when there is even one piece of low-reliability measurement data. If the measured data is low-reliability, this may be notified to the other control device 2B.
 第3実施形態によれば、低信頼の計測データが存在する場合、その旨を他の制御装置2Bへ送信し、低信頼の計測データが存在する旨の通知を受けた制御装置2Bは、自身の計測データがすべて高信頼であっても、計測データが低信頼として制御を行うので、電力系統制御システム5全体で統一のとれた分散制御を行うことができる。
 その結果として、電力系統制御システム5全体において、安定した電圧制御が可能となる。
According to the third embodiment, when low-reliability measurement data exists, the control device 2B transmits a message to that effect to the other control device 2B, and receives the notification that low-reliability measurement data exists. Even if all of the measurement data are highly reliable, the measurement data is controlled with low reliability, so that it is possible to perform distributed control that is unified throughout the power system control system 5.
As a result, stable voltage control is possible in the entire power system control system 5.
 なお、本発明は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、系統データにタイムスタンプが付されていてもよい。また、本実施形態は、電力系統システムに対する適用を前提としているが、道路交通信号システム等への適用も可能である。
 また、演算モデルの算出は、最小二乗法に限らず重回帰分析、主成分分析等を用いてもよい。
 さらに、第2,3実施形態において、有効電力P、無効電力Qの信頼区間を設けているが、これに限らず、例えば、電圧Vの信頼区間を設けてもよい。
In addition, this invention is not limited to above-described embodiment, Various modifications are included. For example, a time stamp may be attached to the system data. Moreover, although this embodiment presupposes application to an electric power grid | system system, application to a road traffic signal system etc. is also possible.
The calculation of the calculation model is not limited to the least square method, and multiple regression analysis, principal component analysis, or the like may be used.
Furthermore, in the second and third embodiments, the confidence intervals for the active power P and the reactive power Q are provided. However, the present invention is not limited thereto, and for example, a confidence interval for the voltage V may be provided.
 前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を有するものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to having all the configurations described. In addition, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、前記した各構成、機能、各処理部101~106,201~205,203a,204a,203b,205b、各記憶部111~114,211~214等は、それらの一部又はすべてを、例えば集積回路で設計すること等によりハードウェアで実現してもよい。また、図2で示すように、前記した各構成、機能等は、CPU301,401等のプロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等のデータは、図2に示すようにHD304に格納すること以外に、メモリや、SSD(Solid State Drive)等の記録装置、又は、IC(Integrated Circuit)カードや、SD(Secure Digital)カード、DVD(Digital Versatile Disc)、フラッシュメモリ等の記録媒体に格納することができる。
 また、各実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には、ほとんどすべての構成が相互に接続されていると考えてよい。
Each of the above-described configurations, functions, processing units 101 to 106, 201 to 205, 203a, 204a, 203b, and 205b, storage units 111 to 114, 211 to 214, etc. You may implement | achieve by a hardware by designing with an integrated circuit. Further, as shown in FIG. 2, the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by a processor such as the CPU 301 or 401. As shown in FIG. 2, data such as programs, tables, and files for realizing each function are stored in the HD 304, as well as a memory, a recording device such as an SSD (Solid State Drive), or an IC (Integrated Circuit). It can be stored in a recording medium such as a card, an SD (Secure Digital) card, a DVD (Digital Versatile Disc), or a flash memory.
In each embodiment, control lines and information lines are those that are considered necessary for explanation, and not all control lines and information lines are necessarily shown on the product. In practice, it can be considered that almost all configurations are connected to each other.
 1,1A   中央装置(管理装置)
 2,2a~2c,2A,2B 制御装置
 3,3a~3e センサ(計測装置)
 5   電力系統制御システム
 101 通信状態監視部
 102 電力状態推定部
 103 制御量算出処理部
 104 モデル生成部
 105 送受信部(送信部)
 106 信頼区間処理部
 111 計測データ記憶部
 112 系統データ記憶部
 113 モデルデータ記憶部(演算モデルを含む)
 114 信頼区間データ記憶部(信頼性情報を含む)
 200 コントローラ
 201 送受信処理部
 202 制御モード決定処理部
 203,203a 制御量算出処理部
 204,204a,204b 制御処理部
 205,205b 信頼性処理部
 211 系統データ記憶部
 212 モデルデータ記憶部(演算モデルを含む)
 213 計測データ記憶部
 214 信頼区間データ記憶部(信頼性情報を含む)
 1801 高信頼区間(第1の区間)
 1802 低信頼区間(第2の区間)
1,1A Central device (management device)
2, 2a to 2c, 2A, 2B Control device 3, 3a to 3e Sensor (measuring device)
DESCRIPTION OF SYMBOLS 5 Power system control system 101 Communication state monitoring part 102 Power state estimation part 103 Control amount calculation process part 104 Model generation part 105 Transmission / reception part (transmission part)
106 confidence interval processing unit 111 measurement data storage unit 112 system data storage unit 113 model data storage unit (including calculation model)
114 confidence interval data storage (including reliability information)
200 controller 201 transmission / reception processing unit 202 control mode determination processing unit 203, 203a control amount calculation processing unit 204, 204a, 204b control processing unit 205, 205b reliability processing unit 211 system data storage unit 212 model data storage unit (including calculation model) )
213 Measurement data storage unit 214 Confidence interval data storage unit (including reliability information)
1801 High confidence interval (first interval)
1802 Low confidence interval (second interval)

Claims (10)

  1.  複数の計測装置から入力される計測値を基に、電力系統における制御量を推定するための演算モデルを生成するモデル生成部と、
     前記生成した演算モデルを制御装置へ送信する送信部と、
     を有する管理装置を備えるとともに、
     所定の上限値と下限値との間の第1区間に関する情報と、前記第1区間以外の第2区間に関する情報と、を区間情報として格納している記憶部と、
     前記第1区間に生じる計測値は、前記第2区間に生じる計測値より、信頼性が高く、
     前記区間情報を基に、前記計測装置から送信される計測値が前記第1区間に属するか、前記第2区間に属するか、を判定する信頼性処理部と、
     前記管理装置との通信量を監視し、前記通信量が所定の値以下であり、かつ、前記計測値が第2区間である場合、前記第1区間において、前記演算モデルを用いて算出された制御量を基に仮制御量を算出し、当該仮制御量に基づく自身の制御を行い、
     前記通信量が所定の値以下であり、かつ、前記計測値が前記第1区間である場合、前記演算モデルに基づいて、自身の制御量を算出し、当該制御量に基づいて自身の制御を行う制御処理部と、
     を有する制御装置を備える
     ことを特徴とする電力系統制御システム。
    A model generation unit that generates an arithmetic model for estimating a control amount in the power system based on measurement values input from a plurality of measurement devices;
    A transmission unit for transmitting the generated calculation model to the control device;
    A management device having
    A storage unit that stores information on a first section between a predetermined upper limit value and a lower limit value, and information on a second section other than the first section, as section information;
    The measurement value occurring in the first interval is more reliable than the measurement value occurring in the second interval,
    A reliability processing unit that determines whether a measurement value transmitted from the measurement device belongs to the first section or the second section based on the section information;
    The amount of communication with the management device is monitored, and when the amount of communication is equal to or less than a predetermined value and the measured value is the second interval, the calculation is performed using the calculation model in the first interval. Calculate the temporary control amount based on the control amount, perform own control based on the temporary control amount,
    When the communication amount is equal to or less than a predetermined value and the measured value is the first section, the control amount is calculated based on the calculation model, and the control is performed based on the control amount. A control processing unit to perform,
    A power system control system comprising: a control device having:
  2.  前記制御処理部は、
     前記仮制御量に基づいて自装置を制御し、
     当該制御の結果としての出力値と、前記自装置における目標出力値との差である目標乖離指標を算出し、
     前記目標乖離指標を基に、前記仮制御量を新たに算出し、
     前記仮制御量に基づいた自装置の制御を行う
     ことを、前記目標乖離指標が所定の値以下となるまで繰り返す
     ことを特徴とする請求の範囲第1項に記載の電力系統制御システム。
    The control processing unit
    Control the own device based on the temporary control amount,
    Calculating a target deviation index that is a difference between an output value as a result of the control and a target output value in the device itself;
    Based on the target deviation index, the temporary control amount is newly calculated,
    The power system control system according to claim 1, wherein the control of the device based on the temporary control amount is repeated until the target deviation index becomes a predetermined value or less.
  3.  前記信頼性処理部は、
     前記第2の区間に属する前記計測値が存在する場合、他の制御装置に前記第2の区間に属する前記計測値が存在する旨の情報を送信する
     ことを特徴とする請求の範囲第1項に記載の電力系統制御システム。
    The reliability processing unit includes:
    The information indicating that the measurement value belonging to the second section exists is transmitted to another control device when the measurement value belonging to the second section exists. Power system control system described in 1.
  4.  前記第2の区間に属する前記計測値が存在する旨の情報を受信した制御装置における前記制御処理部は、
     前記仮制御量を算出し、当該仮制御量に基づく自身の制御を行う
     ことを特徴とする請求の範囲第3項に記載の電力系統制御システム。
    The control processing unit in the control device that has received the information that the measurement value belonging to the second section exists,
    The electric power system control system according to claim 3, wherein the temporary control amount is calculated and the control based on the temporary control amount is performed.
  5.  前記演算モデルは、前記計測値の欠損状態毎に生成される
     ことを特徴とする請求の範囲第1項に記載の電力系統制御システム。
    The power system control system according to claim 1, wherein the calculation model is generated for each missing state of the measurement value.
  6.  前記演算モデルは、所定の生活条件毎に生成される
     ことを特徴とする請求の範囲第1項に記載の電力系統制御システム。
    The power system control system according to claim 1, wherein the calculation model is generated for each predetermined living condition.
  7.  制御装置の制御を行う管理装置が、
     複数の計測装置から入力される計測値を基に、電力系統における制御量を推定するための演算モデルを生成し、
     前記生成した演算モデルを制御装置へ送信し、
     前記演算モデルを受信した制御装置が、
     所定の上限値と下限値との間の第1区間に関する情報と、前記第1区間以外の第2区間に関する情報と、を区間情報として記憶部に格納しており、
     前記第1区間に生じる計測値は、前記第2区間に生じる計測値より、信頼性が高く、
     前記区間情報を基に、前記計測装置から送信される計測値が前記第1区間に属するか、前記第2区間に属するか、を判定し、
     前記管理装置との通信量を監視し、前記通信量が所定の値以下であり、かつ、前記計測値が第2区間である場合、前記第1区間において、前記演算モデルを用いて算出された制御量を基に仮制御量を算出し、当該仮制御量に基づく自身の制御を行い、
     前記通信量が所定の値以下であり、かつ、前記計測値が前記第1区間である場合、前記演算モデルに基づいて、自身の制御量を算出し、当該制御量に基づいて自身の制御を行う
     ことを特徴とする電力系統制御方法。
    A management device that controls the control device
    Based on the measurement values input from multiple measurement devices, generate a calculation model for estimating the control amount in the power system,
    Send the generated calculation model to the control device,
    A control device that receives the calculation model,
    Information related to the first interval between the predetermined upper limit value and the lower limit value and information related to the second interval other than the first interval are stored in the storage unit as interval information,
    The measurement value occurring in the first interval is more reliable than the measurement value occurring in the second interval,
    Based on the section information, determine whether a measurement value transmitted from the measuring device belongs to the first section or the second section,
    The amount of communication with the management device is monitored, and when the amount of communication is equal to or less than a predetermined value and the measured value is the second interval, the calculation is performed using the calculation model in the first interval. Calculate the temporary control amount based on the control amount, perform own control based on the temporary control amount,
    When the communication amount is equal to or less than a predetermined value and the measured value is the first section, the control amount is calculated based on the calculation model, and the control is performed based on the control amount. A power system control method characterized in that:
  8.  前記制御装置は、
     前記仮制御量に基づいて自装置を制御し、
     当該制御の結果としての出力値と、前記自装置における目標出力値との差である目標乖離指標を算出し、
     前記目標乖離指標を基に、前記仮制御量を新たに算出し、
     前記仮制御量に基づいた自装置の制御を行う
     ことを、前記目標乖離指標が所定の値以下となるまで繰り返す
     ことを特徴とする請求の範囲第7項に記載の電力系統制御方法。
    The control device includes:
    Control the own device based on the temporary control amount,
    Calculating a target deviation index that is a difference between an output value as a result of the control and a target output value in the device itself;
    Based on the target deviation index, the temporary control amount is newly calculated,
    The power system control method according to claim 7, wherein the control of the device based on the temporary control amount is repeated until the target deviation index becomes a predetermined value or less.
  9.  前記制御装置は、
     前記第2の区間に属する前記計測値が存在する場合、他の制御装置に前記第2の区間に属する前記計測値が存在する旨の情報を送信する
     ことを特徴とする請求の範囲第7項に記載の電力系統制御方法。
    The control device includes:
    The information indicating that the measurement value belonging to the second section exists is transmitted to another control device when the measurement value belonging to the second section exists. The electric power system control method as described in.
  10.  前記第2の区間に属する前記計測値が存在する旨の情報を受信した制御装置は、
     前記仮制御量を算出し、当該仮制御量に基づく自身の制御を行う
     ことを特徴とする請求の範囲第9項に記載の電力系統制御方法。
    The control device that has received the information indicating that the measurement value belonging to the second section exists,
    The power system control method according to claim 9, wherein the temporary control amount is calculated and the control is performed based on the temporary control amount.
PCT/JP2012/081797 2012-12-07 2012-12-07 Power grid control system and power grid control method WO2014087539A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/081797 WO2014087539A1 (en) 2012-12-07 2012-12-07 Power grid control system and power grid control method
JP2014550876A JP5962770B2 (en) 2012-12-07 2012-12-07 Power system control system and power system control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/081797 WO2014087539A1 (en) 2012-12-07 2012-12-07 Power grid control system and power grid control method

Publications (1)

Publication Number Publication Date
WO2014087539A1 true WO2014087539A1 (en) 2014-06-12

Family

ID=50882983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081797 WO2014087539A1 (en) 2012-12-07 2012-12-07 Power grid control system and power grid control method

Country Status (2)

Country Link
JP (1) JP5962770B2 (en)
WO (1) WO2014087539A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017065941A1 (en) 2015-10-16 2017-04-20 Andrija Sadikovic Method and system for aggregation and control of energy grids with distributed energy resources
JP2018505641A (en) * 2015-01-16 2018-02-22 スリーエム イノベイティブ プロパティズ カンパニー System and method for selecting grid behavior to improve grid output
JP2019041345A (en) * 2017-08-29 2019-03-14 京セラ株式会社 Power management method, power management apparatus, and power management server
JP2019097325A (en) * 2017-11-24 2019-06-20 富士電機株式会社 Calculation apparatus for voltage control, calculation method for voltage control, and calculation program for voltage control
WO2020039845A1 (en) * 2018-08-24 2020-02-27 日立オートモティブシステムズ株式会社 Control device
JP2021033881A (en) * 2019-08-28 2021-03-01 株式会社日立製作所 Electric power load prediction device and electric power load prediction method
JP2021151012A (en) * 2020-03-17 2021-09-27 九電テクノシステムズ株式会社 Distribution line voltage regulation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269744A (en) * 2004-03-17 2005-09-29 National Institute Of Advanced Industrial & Technology Distribution system information supervisory system and system information supervisory system
JP2009065788A (en) * 2007-09-06 2009-03-26 Univ Of Ryukyus Optimal voltage controller for distribution system
JP2012191779A (en) * 2011-03-11 2012-10-04 Meidensha Corp Voltage controller of power distribution system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5809752B2 (en) * 2012-07-10 2015-11-11 株式会社日立製作所 Power system control system and power system control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269744A (en) * 2004-03-17 2005-09-29 National Institute Of Advanced Industrial & Technology Distribution system information supervisory system and system information supervisory system
JP2009065788A (en) * 2007-09-06 2009-03-26 Univ Of Ryukyus Optimal voltage controller for distribution system
JP2012191779A (en) * 2011-03-11 2012-10-04 Meidensha Corp Voltage controller of power distribution system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018505641A (en) * 2015-01-16 2018-02-22 スリーエム イノベイティブ プロパティズ カンパニー System and method for selecting grid behavior to improve grid output
US10193384B2 (en) 2015-01-16 2019-01-29 3M Innovative Properties Company Systems and methods for selecting grid actions to improve grid outcomes
US10366459B2 (en) 2015-10-16 2019-07-30 Andrija Sadikovic Method and system for aggregation and control of energy grids with distributed energy resources
WO2017065941A1 (en) 2015-10-16 2017-04-20 Andrija Sadikovic Method and system for aggregation and control of energy grids with distributed energy resources
EP3362870A4 (en) * 2015-10-16 2019-06-19 Andrija Sadikovic Method and system for aggregation and control of energy grids with distributed energy resources
JP2019041345A (en) * 2017-08-29 2019-03-14 京セラ株式会社 Power management method, power management apparatus, and power management server
JP2019097325A (en) * 2017-11-24 2019-06-20 富士電機株式会社 Calculation apparatus for voltage control, calculation method for voltage control, and calculation program for voltage control
JP7047343B2 (en) 2017-11-24 2022-04-05 富士電機株式会社 Voltage control calculator, voltage control calculator, and voltage control calculator
WO2020039845A1 (en) * 2018-08-24 2020-02-27 日立オートモティブシステムズ株式会社 Control device
JP2021033881A (en) * 2019-08-28 2021-03-01 株式会社日立製作所 Electric power load prediction device and electric power load prediction method
JP7220133B2 (en) 2019-08-28 2023-02-09 株式会社日立製作所 Power load prediction device and power load prediction method
JP2021151012A (en) * 2020-03-17 2021-09-27 九電テクノシステムズ株式会社 Distribution line voltage regulation device
JP7148562B2 (en) 2020-03-17 2022-10-05 九電テクノシステムズ株式会社 Distribution line voltage regulator

Also Published As

Publication number Publication date
JPWO2014087539A1 (en) 2017-01-05
JP5962770B2 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
JP5962770B2 (en) Power system control system and power system control method
Irfan et al. Opportunities and challenges in control of smart grids–Pakistani perspective
JP5809752B2 (en) Power system control system and power system control method
US9489701B2 (en) Adaptive energy management system
US20140214219A1 (en) Energy management system, energy management method, medium, and server
EP2953230A1 (en) Energy management system, energy management method, program and server
US10298056B2 (en) Power control system, power control method, and recording medium
Zhang et al. The performance of a grid-tied microgrid with hydrogen storage and a hydrogen fuel cell stack
JPWO2019053941A1 (en) Distributed power system
US9638545B2 (en) Power management apparatus, power management system and power management method
JP6189987B2 (en) Management system, control device, and control method
JP2014098601A (en) Insolation amount calculation method and power supply determining method
Katsanevakis et al. Energy storage system utilisation to increase photovoltaic penetration in low voltage distribution feeders
JP5973263B2 (en) Power management apparatus and power management method
JP5882150B2 (en) Power management apparatus and power management method
US9851734B2 (en) Alert presentation apparatus and alert presentation method
JP2012217248A (en) Distribution system voltage control apparatus
Purvins et al. Automated energy management in distributed electricity systems: an EEPOS approach
JP5893507B2 (en) Alarm presenting device and alarm presenting method
JP5882135B2 (en) Demand information presentation apparatus and demand information presentation method
AU2021103175A4 (en) Solar Energy Management for Agriculture and Rural Transformation (SMART)
Jelic et al. Case study of Aran Islands: Optimal demand response control of heat pumps and appliances
Basit Temporary Load Shedding-Optimization of power distribution system using load shedding Techniques
JP5869430B2 (en) Demand value prediction apparatus and demand value prediction method
Vieira Turnell Decentralized Secondary Frequency Control in an Optimized Diesel PV Hybrid System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889516

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550876

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889516

Country of ref document: EP

Kind code of ref document: A1