JP2012191779A - Voltage controller of power distribution system - Google Patents

Voltage controller of power distribution system Download PDF

Info

Publication number
JP2012191779A
JP2012191779A JP2011053996A JP2011053996A JP2012191779A JP 2012191779 A JP2012191779 A JP 2012191779A JP 2011053996 A JP2011053996 A JP 2011053996A JP 2011053996 A JP2011053996 A JP 2011053996A JP 2012191779 A JP2012191779 A JP 2012191779A
Authority
JP
Japan
Prior art keywords
voltage
center point
load center
line
current measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011053996A
Other languages
Japanese (ja)
Other versions
JP5673241B2 (en
Inventor
Takanori Hayashi
孝則 林
Yoshimichi Okuno
義道 奥野
Takayuki Tanabe
隆之 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2011053996A priority Critical patent/JP5673241B2/en
Publication of JP2012191779A publication Critical patent/JP2012191779A/en
Application granted granted Critical
Publication of JP5673241B2 publication Critical patent/JP5673241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that a high-speed arithmetic unit and a number of voltage sensors and detection voltage transmission means are required for tap switching by LRT and SVR because distributed power supplies are connected to a distribution system.SOLUTION: A second voltage/current measuring instrument is provided downstream of a virtual load center point of a distribution line. By using a line impedance Zfrom the measuring instrument to the load center point, measurement information V, Iby the measuring instrument, measurement information V, Iby a first voltage/current measuring instrument installed near the secondary side of LRT and SVR, a line impedance Zto the load center point, and a weighting coefficient α, an estimated voltage V of the load center point is calculated by the following equation: V=|{(1-α)V+αV}-{(1-α)ZI-αZI}|.

Description

本発明は、配電系統の電圧制御装置に係わり、特に、配電系統の電圧分布を管理範囲内に収めるようにした電圧制御装置に関するものである。   The present invention relates to a voltage control device for a power distribution system, and more particularly to a voltage control device that allows a voltage distribution of a power distribution system to fall within a management range.

配電系統の電圧制御方式として、配電用変電所における負荷時タップ切替変圧器(以下LRTという)や配電線上の自動電圧調整器(以下SVRという)等が存在し、自端情報である電圧・電流計測値に基づいてタップ位置を算出し、算出値に応じてタップ位置を決定する方式が多く採用されている。   Voltage control methods for distribution systems include on-load tap switching transformers (hereinafter referred to as LRT) and automatic voltage regulators on distribution lines (hereinafter referred to as SVR) in distribution substations. Many methods are employed in which the tap position is calculated based on the measured value and the tap position is determined according to the calculated value.

SVRやLRTでは、SVRやLRTの設置点より端末側に負荷中心点と呼ばれる目標点を定め、自端における電圧・電流計測値を用いて負荷中心点における電圧値を推定し、その電圧値が適正範囲に収まるように変圧器タップの位置制御を行っている。   In SVR or LRT, a target point called a load center point is determined on the terminal side from the installation point of SVR or LRT, the voltage value at the load center point is estimated using the voltage / current measurement value at its own end, and the voltage value is The position of the transformer tap is controlled to be within the proper range.

近年、配電系統に、太陽光発電で代表される多くの分散電源が接続されることから、自端の電圧・電流計測値に基づいて算出する中心点電圧の利用のみでは誤差電圧が大きくなって電圧の管理範囲内から逸脱し適切なタップ選択ができない虞が生じている。これを防止するための電圧制御方式として、特許文献1や特許文献2などが公知となっている。   In recent years, since many distributed power sources represented by photovoltaic power generation are connected to the distribution system, the error voltage increases only by using the center point voltage calculated based on the measured voltage and current at its own end. There is a possibility that a proper tap selection cannot be performed because the voltage deviates from the voltage management range. As a voltage control method for preventing this, Patent Document 1 and Patent Document 2 are known.

特開2009−65788JP2009-65788 特開2004−56931JP 2004-56931 A

特許文献1では、配電系統全体の電圧を最適に制御するという観点から、潮流計算シミュレーションと遺伝的アルゴリズムによる最適化を行って最適制御するという手法を提案している。この特許文献1の手法は、配電系統全体を把握するために多数の計測器や多くの演算資源を常時必要とし、電圧管理システムとして信頼性の高い計測ネットワークと高速な演算装置が必要となる問題点を有している。   Patent Document 1 proposes a method of optimal control by performing optimization using a power flow calculation simulation and a genetic algorithm from the viewpoint of optimally controlling the voltage of the entire distribution system. The method of Patent Document 1 requires a large number of measuring instruments and many computing resources at all times to grasp the entire distribution system, and requires a highly reliable measurement network and a high-speed computing device as a voltage management system. Has a point.

特許文献2では、SVR管轄化の多数の位置に電圧センサを設置し、各部の電圧分布とSVRの1タップの電圧幅を勘案しながら線路電圧を管理値内に制御することを提案している。この特許文献2でも、多数の電圧センサや検出電圧の送信手段を必要としている。   Patent Document 2 proposes that voltage sensors are installed at a number of positions in the jurisdiction of the SVR, and the line voltage is controlled within the management value while taking into account the voltage distribution of each part and the voltage width of one tap of the SVR. . This Patent Document 2 also requires a large number of voltage sensors and detection voltage transmission means.

そこで、本発明が目的とするとこは、部品点数を少なくし、且つ電圧管理範囲を逸脱することなく精度くタップ切替を可能とする配電系統の電圧制御装置を提供することにある。   Accordingly, an object of the present invention is to provide a voltage control device for a distribution system that reduces the number of components and enables tap switching with high accuracy without departing from the voltage management range.

本発明は、負荷時タップ切替変圧器や自動電圧調整器の二次側近辺の配電線に設置された第1の電圧・電流計測器による計測情報V0,I0と、この電圧・電流計測器の設置点の下流に設けられる仮想の負荷中心点まで線路インピーダンス
0を用いての算出電圧に応じてタップ切替え制御を行うものにおいて、
前記仮想の負荷中心点より配電線の下流側に第2の電圧・電流計測器を設け、この電圧・電流計測器による検出情報V1,I1と負荷中心点より第2の電圧・電流計測器設置点までの線路インピーダンスZ1を用いて次式で負荷中心点の推定電圧Vを算出し、算出された推定電圧と予め設定された基準電圧との差電圧でタップの切替え制御を行うことをすることを特徴としたものである。
V=|{(1−α)V0+αV1}−{(1−α)Z00−αZ11}|
ただし、αは重み係数
また、本発明は、前記算出された負荷中心点の推定電圧Vの誤差が最小となるよう重み係数αと線路インピーダンスZ0,Z1を求めることを特徴としたものである。
The present invention relates to measurement information V 0 , I 0 by the first voltage / current measuring instrument installed on the distribution line near the secondary side of the load tap switching transformer or the automatic voltage regulator, and the voltage / current measurement. In the tap switching control according to the calculated voltage using the line impedance Z 0 to the virtual load center point provided downstream of the installation point of the device,
A second voltage / current measuring device is provided on the downstream side of the distribution line from the virtual load center point, and detection information V 1 , I 1 by the voltage / current measuring device and a second voltage / current measurement from the load center point are provided. The estimated voltage V at the load center point is calculated by the following equation using the line impedance Z 1 up to the installation point, and tap switching control is performed using the difference voltage between the calculated estimated voltage and a preset reference voltage. It is characterized by doing.
V = | {(1-α) V 0 + αV 1 } − {(1-α) Z 0 I 0 −αZ 1 I 1 } |
However, α is a weighting factor. The present invention is characterized in that the weighting factor α and the line impedances Z 0 and Z 1 are obtained so that the error of the calculated estimated voltage V at the load center point is minimized. is there.

さらに本発明は、重み係数αと線路インピーダンスZ0,Z1および前記算出された負荷中心点の推定電圧Vの目標値に、配電線の多様な負荷パターンに対して配電線の系統全体潮流のシミュレーション後の最適値を用いることを特徴としたものである。 Furthermore, the present invention provides the weighting factor α, the line impedances Z 0 and Z 1, and the target value of the calculated estimated voltage V at the load center point with respect to various load patterns of the distribution line, The optimum value after simulation is used.

以上のとおり、本発明によれば、従来機器二次側の電圧・電流の他に、仮想の負荷中心点よりも下流任意点の電圧・電流情報と3つのパラメータを用いた簡単な情報で負荷中心点の電圧を推定し、その推定値と基準電圧との偏差に基づいてタップ切替え制御を行うものである。
これによって、簡単な制御装置によって、「軽負荷」,「重負荷+発電」に関係なく
負荷中心点の電圧が推定でき、管理範囲電圧を逸脱することなく精度良くタップの切替え制御が可能となるものである。
As described above, according to the present invention, in addition to the voltage / current on the secondary side of the conventional device, the load can be obtained with simple information using the voltage / current information at an arbitrary point downstream from the virtual load center point and the three parameters. The voltage at the center point is estimated, and tap switching control is performed based on the deviation between the estimated value and the reference voltage.
This makes it possible to estimate the voltage at the center point of the load regardless of “light load” and “heavy load + power generation” with a simple control device, and to perform tap switching control with high accuracy without departing from the management range voltage. Is.

本発明の実施形態を示す構成図。The block diagram which shows embodiment of this invention. 本発明の制御装置の構成図。The block diagram of the control apparatus of this invention. 本発明の制御フロー図。The control flow figure of this invention. シミュレーションによる比較図。Comparison chart by simulation.

図1は、本発明の実施例を示す配電線の部分系統図である。1は配電線、2は配電線に設置された自動電圧調整器(或いは負荷時タップ切替変圧器)で、その内部,もしくは二次側隣接して電圧・電流計測器3を設置し、自端の電圧・電流を計測する。4は電圧・電流計測器3の設置点よりも下流の配電線1に位置する仮想的な負荷中心点、5は電圧・電流計測器で、この計測器5は負荷中心点4よりもさらに下流側の配電線1上に設けられる。なお、この電圧・電流計測器5は改めて設置しなくとも、配電線の任意点に設置される開閉器に内蔵の計測器を利用してもよいことは勿論である。   FIG. 1 is a partial system diagram of a distribution line showing an embodiment of the present invention. 1 is a distribution line, 2 is an automatic voltage regulator (or a load-tap switching transformer) installed in the distribution line, and a voltage / current measuring device 3 is installed inside or adjacent to the secondary side. Measure the voltage and current. 4 is a virtual load center point located on the distribution line 1 downstream from the installation point of the voltage / current measuring device 3, 5 is a voltage / current measuring device, and this measuring device 5 is further downstream from the load center point 4. It is provided on the distribution line 1 on the side. Of course, the voltage / current measuring instrument 5 may be installed in a switch installed at an arbitrary point of the distribution line without being newly installed.

6は通信装置で、電圧・電流計測器5によって検出された電圧・電流は通信装置6を介して制御装置10に送信される。制御装置10は、電圧・電流計測器3で計測した電圧V0,I0と、電圧・電流計測器5で計測した電圧V1,I1を入力して負荷中心点4の電圧推定値Vを演算する。 Reference numeral 6 denotes a communication device, and the voltage / current detected by the voltage / current measuring instrument 5 is transmitted to the control device 10 via the communication device 6. The control device 10 receives the voltages V 0 and I 0 measured by the voltage / current measuring instrument 3 and the voltages V 1 and I 1 measured by the voltage / current measuring instrument 5 and inputs the estimated voltage V at the load center point 4. Is calculated.

図2は、制御装置10の概略の機能構成図を示したもので、電圧の推定値Vは推定電圧演算部11で(1)式に基づいて算出する。
V=|{(1−α)V0+αV1}−{(1−α)Z00−αZ11}|……(1)
ここで、Z0は自動電圧調整器2から負荷中心点4までの線路インピーダンス、Z1は負荷中心点4から電圧・電流計測器5までの線路インピーダンス、αは電圧・電流計測器5の重みで、α=L0/(L0+L1)で算出される(ただし、L0は計測器3から負荷中心点4までの距離、L1は負荷中心点4から計測器5までの距離)。
FIG. 2 shows a schematic functional configuration diagram of the control device 10, and the estimated voltage value V is calculated by the estimated voltage calculation unit 11 based on the equation (1).
V = | {(1−α) V 0 + αV 1 } − {(1−α) Z 0 I 0 −αZ 1 I 1 } | (1)
Here, Z 0 is the line impedance from the automatic voltage regulator 2 to the load center 4, Z 1 is the line impedance from the load center 4 to the voltage / current measuring instrument 5, and α is the weight of the voltage / current measuring instrument 5. Thus, α = L 0 / (L 0 + L 1 ) (where L 0 is the distance from the measuring device 3 to the load center point 4 and L 1 is the distance from the load center point 4 to the measuring device 5). .

12は偏差演算部で、算出された推定値Vと負荷中心点の目標電圧として予め設定された基準電圧Vrefとの偏差電圧ΔVを算出する。13は判定部で、偏差電圧ΔVが予め設定される不感帯を超えた正ならば一定の動作時限の後にタップ下げ指令を出力し、負ならば一定の動作時限の後にタップ上げ指令を出力する。14は電圧調整継電部で、偏差電圧ΔVの正負に応じたタップ変更動作を実行する。なお、12から14までの機能は、従来のSVRの制御と同様である。   A deviation calculator 12 calculates a deviation voltage ΔV between the calculated estimated value V and a reference voltage Vref preset as a target voltage at the load center point. A determination unit 13 outputs a tap lowering command after a certain operation time if the deviation voltage ΔV exceeds a preset dead band, and outputs a tap raising command after a certain operation time if negative. Reference numeral 14 denotes a voltage adjustment relay unit, which executes a tap changing operation according to whether the deviation voltage ΔV is positive or negative. The functions from 12 to 14 are the same as those in the conventional SVR control.

図3は図2で示す制御装置の動作フローを示したものである。
ステップS1では、推定電圧演算部11は、電圧・電流計測器3,5によって計測された電圧・電流V0,I0、V1,I1を所定のサンプリング間隔で取り込む。
ステップS2では、取り込んだ電圧・電流値と予め設定された3つのパラメータα、Z0およびZ1を用いて(1)式の演算を実行して仮想の負荷中心点4の電圧Vを推定する。
FIG. 3 shows an operation flow of the control device shown in FIG.
In step S1, the estimated voltage calculation unit 11 takes in the voltage / current V 0 , I 0 , V 1 , I 1 measured by the voltage / current measuring devices 3 and 5 at a predetermined sampling interval.
In step S2, the voltage V of the virtual load center point 4 is estimated by executing the calculation of the equation (1) using the acquired voltage / current value and three preset parameters α, Z 0 and Z 1. .

ステップS3では、偏差演算部12に入力された推定電圧Vと基準電圧Vrefを用いてΔV=V−Vrefの演算を実行して偏差電圧ΔVを求める。判定部13は、ステップS4で入力されたΔVの値を用いてタップ上げおよびタップ下げの
時限カウンタを、加算、或いは減算方向にカウントする。その際、カウント量は時間積算か時間積分かのカウント方式の相違によっても異なるが、ΔVの絶対値が不感帯を超える場合にΔVの正負によってタップ下げ、又はタップ上げの時限カウントを加算し、不感帯に入る場合には時限カウントを減算する。
In step S3, the deviation voltage ΔV is obtained by calculating ΔV = V−Vref using the estimated voltage V and the reference voltage Vref input to the deviation calculator 12. The determination unit 13 counts the tap-up and tap-down time limit counters in the addition or subtraction direction using the value of ΔV input in step S4. At that time, the count amount varies depending on the difference in the counting method of time integration or time integration, but when the absolute value of ΔV exceeds the dead zone, the dead time zone is added by adding the time count of tap down or tap up by the positive or negative of ΔV. When entering, the timed count is subtracted.

ステップS5では、時限カウントが設定値を超えたか否かを判定し、超過している場合には、ステップS6で電圧調整継電部14を介してタップ下げ、又はタップ上げ制御を行い、タップ変更動作後に時限カウントをリセットする。ステップS7では次の周期待ちに入り、次の周期になればステップ1から動作を再開する。   In step S5, it is determined whether or not the time count has exceeded the set value. If it has exceeded, tap lowering or tap raising control is performed via the voltage adjusting relay unit 14 in step S6 to change the tap. Reset timed count after operation. In step S7, the next cycle is waited. When the next cycle is reached, the operation is restarted from step 1.

図4はシミュレーション結果の電圧分布図である。
線ア、イは本発明による電圧分布曲線で、線アは軽負荷、線イは重負荷+発電時の場合、線ア´、イ´は従来の適切なタップ選択ができなかった場合の電圧分布曲線で、線ア´は軽負荷時に線アと同じタップを選んだ場合、線イ´は重負荷+発電時に線イと同じタップを選んだ場合である。ULは電圧管理範囲の上限、LLは電圧管理範囲の下限である。また、本発明のパラメータを、α=0.5、線路インピーダンスZ0,Z1を各2%とし、従来の場合はα=0とし、基準電圧は6660Vとしてシミュレーションを行った。
FIG. 4 is a voltage distribution diagram of the simulation result.
Lines A and B are voltage distribution curves according to the present invention. Line A is a light load, line A is a heavy load + power generation, and lines A 'and A' are voltages when conventional appropriate tap selection cannot be performed. In the distribution curve, line A ′ is selected when the same tap as line A is selected at light load, and line A ′ is when the same tap as line A is selected at heavy load + power generation. UL is the upper limit of the voltage management range, and LL is the lower limit of the voltage management range. The simulation was performed with the parameters of the present invention being α = 0.5, the line impedances Z 0 and Z 1 being 2% each, α = 0 in the conventional case, and the reference voltage being 6660V.

図4で明らかなように、従来の場合、負荷が軽い「軽負荷」パターンと負荷が重いがそれを補う発電が系統内にある「重負荷+発電」の両方で、共に電圧・電流計測器3の設置点L1で検出された電流がほぼ同じであるため両パターンを区別できない。しかし、L1時点の「軽負荷」時の線ア´のパターンでの電圧約6700Vの場合と、「重負荷+発電」時の線イ´の電圧約6800Vの場合には、軽負荷曲線ア´では負荷中心点L0近辺から距離L3を越えた範囲で下限LLを逸脱しており、また、重負荷+発電時の線イ´では、電圧・電流計測器5の設置点L4近辺で上限ULを逸脱している。
これに対して本発明による線ア、イの場合には電圧管理範囲のULとLL内に入っている。
As is apparent from FIG. 4, in the conventional case, both the “light load” pattern with a light load and the “heavy load + power generation” in which the load is heavy but the power generation that compensates for it is in the system. Since the currents detected at the installation point L1 of 3 are almost the same, the two patterns cannot be distinguished. However, in the case of the voltage of about 6700 V in the line A ′ pattern at the time of “light load” at the time of L1 and the voltage of about 6800 V in the line A ′ at the time of “heavy load + power generation”, the light load curve curve “ In the range exceeding the distance L3 from the vicinity of the load center point L0, the upper limit UL is exceeded near the installation point L4 of the voltage / current measuring instrument 5 in the heavy load + line A during power generation. Deviates.
On the other hand, in the case of the line a and b according to the present invention, the voltage is within the voltage management range UL and LL.

図4は、計測点3及び計測点5と負荷中心点までの距離の逆数の比から求める重みα=0.5、線路インピーダンスZ0,Z1をそれぞれ2%として(1)式で求まった推定値を使用したものである。電圧分布曲線が「軽負荷」時および「重負荷+発電」時に関係なく精度良く管理範囲UL,LL内に入るようにするためには、推定値の誤差が最小となるよう上記3つのパラメータを決める方法でもよく、また、多様な負荷パターンに対して系統全体の潮流をシミュレーションし、系統の電圧逸脱が最小となるように、重み係数αおよび線路インピーダンスZ0,Z1に最適整定値を用いるようにしてもよい。この場合、基準電圧も同時に計算される最適整定値が用いられる。 FIG. 4 is obtained by the equation (1) with the weight α = 0.5 obtained from the ratio of the reciprocal of the distance between the measurement point 3 and the measurement point 5 and the load center point, and the line impedances Z 0 and Z 1 being 2%, respectively. The estimated value is used. In order for the voltage distribution curve to fall within the control ranges UL and LL with high accuracy regardless of whether the voltage distribution curve is “light load” or “heavy load + power generation”, the above three parameters are set so that the error of the estimated value is minimized. Alternatively, the power flow of the entire system is simulated with respect to various load patterns, and optimum set values are used for the weight coefficient α and the line impedances Z 0 and Z 1 so that the voltage deviation of the system is minimized. You may do it. In this case, an optimum set value for calculating the reference voltage at the same time is used.

以上本発明は、従来のSVRの手法に、負荷中心点よりも下流任意点の電圧・電流情報と3つのパラメータを用いた簡単な情報で負荷中心点の電圧を推定し、その推定値と基準電圧との偏差に基づいてタップ切替え制御を行うものである。
これによって、簡単な制御装置によって、「軽負荷」,「重負荷+発電」に関係なく
負荷中心点の電圧が推定でき、管理範囲電圧を逸脱することなく精度良くタップ切替が可能となるものである。
As described above, the present invention estimates the voltage at the load center point based on the conventional SVR method using simple information using voltage / current information at the downstream of the load center point and three parameters, and the estimated value and the reference Tap switching control is performed based on the deviation from the voltage.
This makes it possible to estimate the voltage at the load center point regardless of “light load” or “heavy load + power generation” with a simple control device, and tap switching can be performed accurately without departing from the management range voltage. is there.

1… 配電線
2… 自動電圧調整器(又は負荷時タップ切替変圧器)
3… 第1の電圧・電流計測器
4… 仮想の負荷中心点
5… 第2の電圧・電流計測器
6… 通信装置
10…制御装置
11… 推定電圧演算部
12… 偏差演算部
13… 判定部
14… 電圧調整継電部
1 ... Distribution line 2 ... Automatic voltage regulator (or load tap change transformer)
DESCRIPTION OF SYMBOLS 3 ... 1st voltage and current measuring device 4 ... Virtual load center point 5 ... 2nd voltage and current measuring device 6 ... Communication apparatus 10 ... Control apparatus 11 ... Estimated voltage calculating part 12 ... Deviation calculating part 13 ... Judgment part 14 ... Voltage adjustment relay

Claims (3)

負荷時タップ切替変圧器や自動電圧調整器の二次側近辺の配電線に設置された第1の電圧・電流計測器による計測情報V0,I0と、この電圧・電流計測器の設置点の下流に設けられる仮想の負荷中心点まで線路インピーダンス
0を用いての算出電圧に応じてタップ切替え制御を行うものにおいて、
前記仮想の負荷中心点より配電線の下流側に第2の電圧・電流計測器を設け、この電圧・電流計測器による検出情報V1,I1と負荷中心点より第2の電圧・電流計測器設置点までの線路インピーダンスZ1を用いて次式で負荷中心点の推定電圧Vを算出し、算出された推定電圧と予め設定された基準電圧との差電圧でタップの切替え制御を行うことを特徴とした配電系統の電圧制御装置。
V=|{(1−α)V0+αV1}−{(1−α)Z00−αZ11}|
ただし、αは重み係数
Measurement information V 0 , I 0 by the first voltage / current measuring device installed on the distribution line near the secondary side of the tap-switching transformer or automatic voltage regulator, and the installation point of this voltage / current measuring device In the tap switching control according to the calculated voltage using the line impedance Z 0 to the virtual load center point provided downstream of
A second voltage / current measuring device is provided on the downstream side of the distribution line from the virtual load center point, and detection information V 1 , I 1 by the voltage / current measuring device and a second voltage / current measurement from the load center point are provided. The estimated voltage V at the load center point is calculated by the following equation using the line impedance Z 1 up to the installation point, and tap switching control is performed using the difference voltage between the calculated estimated voltage and a preset reference voltage. A voltage control device for a distribution system characterized by
V = | {(1-α) V 0 + αV 1 } − {(1-α) Z 0 I 0 −αZ 1 I 1 } |
Where α is the weighting factor
前記算出された負荷中心点の推定電圧Vの誤差が最小となるよう重み係数αと線路インピーダンスZ0,Z1を求めることを特徴とした請求項1記載の配電系統の電圧制御装置。 2. The voltage control apparatus for a distribution system according to claim 1 , wherein the weighting coefficient α and the line impedances Z 0 and Z 1 are obtained so that the error of the calculated estimated voltage V at the load center point is minimized. 前記重み係数αと線路インピーダンスZ0,Z1および前記算出された負荷中心点の推定電圧Vの目標値に、配電線の多様な負荷パターンに対して配電線の系統全体潮流のシミュレーション後の最適値を用いることを特徴とした請求項1記載の配電系統の電圧制御装置。 Optimum after simulation of the overall power flow of the distribution line with respect to various load patterns of the distribution line to the target values of the weight coefficient α, the line impedances Z 0 and Z 1 and the calculated estimated voltage V of the load center point The voltage control device for a distribution system according to claim 1, wherein a value is used.
JP2011053996A 2011-03-11 2011-03-11 Voltage control device for distribution system Active JP5673241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011053996A JP5673241B2 (en) 2011-03-11 2011-03-11 Voltage control device for distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011053996A JP5673241B2 (en) 2011-03-11 2011-03-11 Voltage control device for distribution system

Publications (2)

Publication Number Publication Date
JP2012191779A true JP2012191779A (en) 2012-10-04
JP5673241B2 JP5673241B2 (en) 2015-02-18

Family

ID=47084358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011053996A Active JP5673241B2 (en) 2011-03-11 2011-03-11 Voltage control device for distribution system

Country Status (1)

Country Link
JP (1) JP5673241B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087539A1 (en) * 2012-12-07 2014-06-12 株式会社日立製作所 Power grid control system and power grid control method
JP2015109728A (en) * 2013-12-03 2015-06-11 株式会社日立製作所 Arrangement plan support apparatus and arrangement plan support method for switch with built-in sensor
JP2018019517A (en) * 2016-07-28 2018-02-01 富士電機株式会社 Series type voltage regulating device
JP6452909B1 (en) * 2018-02-05 2019-01-16 三菱電機株式会社 Centralized voltage control device and centralized voltage control system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102523551B1 (en) * 2020-07-23 2023-04-20 한국전력공사 Real-time voltage/interval load management method of distribution system based on load distribution coefficient and operation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163051A (en) * 1993-12-02 1995-06-23 Toshiba Corp Substation output voltage controller in distribution power system
JP2002040085A (en) * 2000-07-28 2002-02-06 Nissin Electric Co Ltd Method for locating fault point of branched parallel dual line
JP2003209926A (en) * 2002-01-11 2003-07-25 Kansai Electric Power Co Inc:The Optimum setting method for voltage control apparatus in distribution system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163051A (en) * 1993-12-02 1995-06-23 Toshiba Corp Substation output voltage controller in distribution power system
JP2002040085A (en) * 2000-07-28 2002-02-06 Nissin Electric Co Ltd Method for locating fault point of branched parallel dual line
JP2003209926A (en) * 2002-01-11 2003-07-25 Kansai Electric Power Co Inc:The Optimum setting method for voltage control apparatus in distribution system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087539A1 (en) * 2012-12-07 2014-06-12 株式会社日立製作所 Power grid control system and power grid control method
JP5962770B2 (en) * 2012-12-07 2016-08-03 株式会社日立製作所 Power system control system and power system control method
JPWO2014087539A1 (en) * 2012-12-07 2017-01-05 株式会社日立製作所 Power system control system and power system control method
JP2015109728A (en) * 2013-12-03 2015-06-11 株式会社日立製作所 Arrangement plan support apparatus and arrangement plan support method for switch with built-in sensor
JP2018019517A (en) * 2016-07-28 2018-02-01 富士電機株式会社 Series type voltage regulating device
JP6452909B1 (en) * 2018-02-05 2019-01-16 三菱電機株式会社 Centralized voltage control device and centralized voltage control system

Also Published As

Publication number Publication date
JP5673241B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
JP5673241B2 (en) Voltage control device for distribution system
CN102545210B (en) Method and system for optimizing and regulating distribution network power supply reliability indexes
WO2012114582A1 (en) Voltage control apparatus
JP5914231B2 (en) Method and apparatus for calculating settling value of line voltage drop compensator
WO2015022746A1 (en) Voltage monitoring control device and voltage control device
JP4266003B2 (en) Control method and apparatus for distributed power generator
JPWO2014080514A1 (en) Voltage monitoring control device, voltage control device, and voltage monitoring control method
JPWO2014132374A1 (en) Power system control system and distributed controller used therefor
RU2665700C2 (en) Device and method for controlling the stability of a local network using an adjustable local network transformer
JP5431560B1 (en) Monitoring device, monitoring system, program
JP2012182897A (en) Voltage regulation device and power control system for distribution system
JP2015094752A (en) Transformer connection phase determination device, method, and program
US20170063089A1 (en) Voltage Reactive Power Control System
JP6478856B2 (en) Centralized voltage control device and voltage control system
US11353908B2 (en) Centralized voltage control apparatus and centralized voltage control system
JP2007143313A (en) Method for controlling power distribution line voltage
KR20190043297A (en) Apparatus for controlling voltage regulation based on voltage measurement, Method thereof, and Computer readable storage medium having the same
JP2014183632A (en) Energy saving system
JP6374684B2 (en) System and method for identifying weak buses in a power system
JP6615052B2 (en) Centralized voltage control device, centralized voltage control system, and measuring device
US10424912B2 (en) Phase control device
KR101218463B1 (en) Apparatus for detecting information using power
CN203167357U (en) Street lamp lighting control terminal
CN109444533B (en) Optimization method for performance detection of reactive compensation device
KR20190130855A (en) PCS linked to the electricity meter of the grid electricity network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5673241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150