WO2014086313A1 - Method and device for transmitting channel state information reference signals - Google Patents

Method and device for transmitting channel state information reference signals Download PDF

Info

Publication number
WO2014086313A1
WO2014086313A1 PCT/CN2013/088752 CN2013088752W WO2014086313A1 WO 2014086313 A1 WO2014086313 A1 WO 2014086313A1 CN 2013088752 W CN2013088752 W CN 2013088752W WO 2014086313 A1 WO2014086313 A1 WO 2014086313A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
configuration information
types
zero
compressed
Prior art date
Application number
PCT/CN2013/088752
Other languages
French (fr)
Chinese (zh)
Inventor
司倩倩
林亚男
沈祖康
高雪娟
潘学明
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2014086313A1 publication Critical patent/WO2014086313A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0066Requirements on out-of-channel emissions

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method and a device for transmitting a channel state information reference signal.
  • TDD time division duplex
  • a radio frame In a Long Term Evolution (LTE) system, a radio frame has a length of 10 ms, and a subframe has a length of 1 ms, that is, a radio frame contains 10 subframes.
  • TD time division
  • seven TDD uplink and downlink configurations are currently defined in units of one radio frame, as shown in Table 1, where D represents a downlink subframe, U represents an uplink subframe, and S represents a special sub-frame in the TDD system.
  • the frame and the special subframe include three areas: a Downlink Pilot Time Slot (DwPTS), a Guard Period (GP), and an Uplink Pilot Time Slot (UpPTS), where DwPTS is used.
  • DwPTS Downlink Pilot Time Slot
  • GP Guard Period
  • UpPTS Uplink Pilot Time Slot
  • the GP is a guard interval, and is generally defined according to a downlink-to-uplink handover time, an uplink-to-downlink handover time, and a transmission delay associated with the cell radius, to avoid the same
  • the overlapping interference between the uplink and the downlink on the carrier, and the UpPTS is used to transmit the uplink random access signal and the uplink sounding signal.
  • Table 1 currently defines 10 special subframe configurations for different application scenarios, as shown in Table 2, where T s is the system sampling time interval, based on 1 subframe corresponding to 30720T S definition.
  • T s is the system sampling time interval, based on 1 subframe corresponding to 30720T S definition.
  • the subframe structure of different special subframe configurations is shown in Figure 2a - Figure 2b.
  • CP normal cyclic prefix
  • a special subframe contains 14 symbols, as shown in Figure 2a, the downlink subframe.
  • a special subframe contains 12 symbols, as shown in Figure 2b.
  • the channel state information reference signal (CSI-RS) transmitted by the network side is used for the measurement of modes 9 and 10. It is a dedicated pilot of the user equipment (User Equipment, UE, also called terminal), that is, the CSI seen by different UEs.
  • the pilots can be different, including the pilot pattern, period, starting position and power. Therefore, one cell may be configured with multiple CSI-RSs, and one UE may also have multiple CSI-RS configurations on one cell.
  • the location of the CSI-RS is usually configured in the neighboring cell, and the region is configured with a zero-power CSI-RS.
  • the CSI-RS sequence is defined as:
  • s is the slot number within a radio frame
  • 1 is orthogonal frequency division multiplexing within a slot (Orthogonal Frequency Division Multiplexing, OFDM)
  • OFDM Orthogonal Frequency Division Multiplexing
  • the pilot sequence (called the pilot that will be mapped on the complex symbol as the antenna port p:
  • the CSI-RS only when the regular CP and the extended CP satisfy the conditions of the above two tables respectively
  • the downlink subframe transmitted in the slot and simultaneously transmitting the CSI-RS shall satisfy the table 6.10.0.5-1 in the protocol 36.211.
  • the terminal assumes that the CSI-RS is not transmitted on the special subframe of the TDD system, or that the CSI-RS and the synchronization signal, the Physical Broadcast Channel (PBCH), and the System Information Format Type 1 message (SystemlnformatKHiBlockTypel messages) are crying.
  • the subframe does not transmit the CSI-RS, or the CSI-RS is not transmitted in the subframe in which the paging information is configured.
  • each bit corresponds to a 4-port CSI pilot configuration number
  • the first bit on the left corresponds to the lowest number of the 4-port CSI pilot configuration.
  • NCT New Carrier Type, defined in LTE Rel-11
  • PDCH physical downlink control channel
  • EPDCCH enhanced physical downlink control channel
  • US UE-specific reference signals
  • the length of the DwPTS is 3 OFDM symbols, it can be used to transmit the PDCCH and the synchronization signal.
  • the PDCCH transmitted at this time is mainly used for uplink scheduling signaling (UL DCI), and is not used for the physical downlink shared channel (PDSCH).
  • UL DCI uplink scheduling signaling
  • PDSCH physical downlink shared channel
  • the DwPTS in the downlink subframes 1 and 6 has no PDCCH transmission, and does not support PDSCH transmission, which causes waste of resources.
  • the CSI reference signal may collide with the control channel, the synchronization channel, or the broadcast channel, so the UE will assume that no CSI reference signal is transmitted in a specific subframe.
  • the protocol clearly states that in the following types of subframes, the UE will assume that no CSI reference signal is transmitted:
  • a subframe that may collide with a broadcast channel, a synchronization signal, or a system information block type 1 information
  • the number of downlink subframes available for CSI reference signal transmission is much less than that of FDD systems.
  • all subframes can be used for CSI reference signal transmission.
  • only a small number of subframes are available, which limits the flexibility of the CSI reference signal in the TDD system.
  • the TDD uplink and downlink configuration 0 is the most frequently used configuration. For example, for a cell with a lower load, it is more reasonable to choose to use TDD uplink and downlink configuration 0, because the number of downlink subframe transmissions is small, which can save more energy.
  • TDD uplink and downlink configuration 0 only subframes 0 and 5 can support the transmission of CSI reference signals, and the broadcast channel and the secondary synchronization signal are transmitted in subframe 0 in each radio frame, so it can be used.
  • the CSI reference signal configuration is more limited.
  • the SIB1 information is transmitted in a period of 20 milliseconds, and the secondary synchronization signal is in every radio frame.
  • Transmission, while paging information may also be transmitted in subframes 0 and 5 in each radio frame of the TDD, which further limits the available CSI-RS configuration.
  • the UE may be configured with multiple CSI reference signal processes, each of which has independent non-zero power CSI reference signal configuration, zero-power CSI reference signal configuration, and interference measurement resource configuration. These are all based on the available CSI reference signal configuration, so the CSI reference signal configuration in this scenario is also very limited.
  • CSI reference signal configuration in this scenario is also very limited.
  • a CSI-RS transmission method comprising:
  • the network side determines the configuration information used by the CSI-RS to transmit; the configuration information indicates that the network side transmits the CSI-RS by using a compressed CSI-RS structure; and all CSI-RSs in the compressed CSI-RS structure are in the downlink subframe. Or transmitting in a resource unit (RE) in the first X OFDM symbols in the downlink slot, where X is a positive integer not greater than 3; the network side sends the corresponding CSI-RS to the terminal according to the determined configuration information.
  • RE resource unit
  • the network side sends the CS I-RS in the REs in the first X OFDM symbols in the downlink subframe or the downlink slot, where X is a positive integer not greater than 3, and the method is visible.
  • a scheme of transmitting CS I-RS in the first X OFDM symbols in a downlink subframe or a downlink slot is implemented. This scheme realizes the enhancement of the CS I reference signal and can solve the problem that the CS I reference signal configuration is limited.
  • the scheme is applied to the TDD guard band and the carrier of the NCT, the first X OFDM symbols of the subframe can be fully utilized, thereby reducing the waste of time-frequency resources. It should be noted that the technical solution provided by the embodiments of the present invention is applicable not only to the TDD system but also to the FDD system.
  • the CSI-RS resource corresponding to each CSI-RS port is composed of Y time-domain neighboring or frequency-domain adjacent REs, where Y is a positive integer greater than one; ,
  • the CSI-RS resource For the CSI-RS resource corresponding to each CSI-RS port, the CSI-RS resource is multiplexed by the CSI-RS of the Y CSI-RS ports at most.
  • the CSI-RS configuration information and the zero-power CSI-RS configuration information included in the configuration information include parameters /' and mod(, 2);
  • the value of / ' and mod( , 2) is 0, where is the number of the slot in which the CSI-RS resource is located, and /' is the number of the first OFDM symbol occupied by the CSI-RS resource in the slot.
  • the number of types corresponding to the CSI-RS configuration included in the configuration information is not less than P, and P is the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure;
  • the number of bits occupied by the zero-power CSI-RS configuration information included in the above configuration information is not less than ⁇ , and K is the number of types of zero-power CSI-RS configurations corresponding to the compressed CSI-RS structure.
  • the number of types corresponding to the CSI-RS configuration included in the configuration information is not less than M, and M is the number of types of CSI-RS configurations defined in the LTE-A system protocol and the corresponding compressed CSI- The sum of the number of types of CSI-RS configurations of the RS structure;
  • the number of bits occupied by the zero-power CSI-RS configuration information included in the foregoing configuration information is not less than N, where N is the number of types of zero-power CSI-RS configurations defined in the LTE-A system protocol and zero power of the corresponding compressed CSI-RS structure. The sum of the number of types of CSI-RS configurations.
  • a CSI-RS transmission method comprising:
  • the terminal determines the configuration information used by the network side to send the CSI-RS; the configuration information indicates that the network side transmits the CSI-RS by using the compressed CSI-RS structure; and all the CSI-RSs in the compressed CSI-RS structure are in the downlink subframe or the downlink Transmitted in REs in the first X OFDM symbols in the slot, where X is a positive integer not greater than 3;
  • the terminal receives the CSI-RS sent by the network side according to the determined configuration information.
  • the terminal receives the CSI-RS on the RE in the first X OFDM symbols in the downlink subframe or the downlink time slot, where X is a positive integer not greater than 3, and the method is implemented.
  • This scheme implements an enhancement of the CSI reference signal and can solve the problem that the CS I reference signal configuration is limited.
  • the first X 0FDM symbols of the subframe can be fully utilized, thereby reducing the waste of time-frequency resources. It should be noted that the technical solution provided by the embodiment of the present invention is applicable not only to the TDD system but also to the FDD system.
  • the CSI-RS resource corresponding to each CSI-RS port is composed of Y time-domain neighboring or frequency-domain adjacent REs, where Y is a positive integer greater than one; ,
  • the CSI-RS resource For the CSI-RS resource corresponding to each CSI-RS port, the CSI-RS resource is multiplexed by the CSI-RS of the Y CSI-RS ports at most.
  • the CSI-RS configuration information and the zero-power CSI-RS configuration information included in the configuration information include parameters /' and mod(n s , 2);
  • the value of / ' and mod( , 2) is 0, where is the number of the slot in which the CSI-RS resource is located, and /' is the number of the first OFDM symbol occupied by the CSI-RS resource in the slot.
  • the configuration information includes a CSI-RS configuration corresponding to the method according to any one of the foregoing terminal side methods.
  • the number of types is not less than P, where P is the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure; the number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information is not less than ⁇ , and K is the corresponding compressed CSI- The number of types of zero-power CSI-RS configurations for the RS structure.
  • the number of types corresponding to the CSI-RS configuration included in the configuration information is not less than M, and M is the number of types of CSI-RS configurations defined in the LTE-A system protocol and corresponding to the foregoing method.
  • M is the number of types of CSI-RS configurations defined in the LTE-A system protocol and corresponding to the foregoing method. The sum of the number of types of CSI-RS configurations of the compressed CSI-RS structure;
  • the number of bits occupied by the zero-power CSI-RS configuration information included in the foregoing configuration information is not less than N, where N is the number of types of zero-power CSI-RS configurations defined in the LTE-A system protocol and zero power of the corresponding compressed CSI-RS structure. The sum of the number of types of CSI-RS configurations.
  • a base station comprising:
  • a determining unit configured to determine configuration information used by the CSI-RS to transmit; the configuration information indicates that the network side transmits the CSI-RS by using a compressed CSI-RS structure; all CSI-RSs in the compressed CSI-RS structure are in a downlink subframe or Transmitted in resource elements in the first X OFDM symbols in the downlink slot, where X is a positive integer not greater than 3;
  • a sending unit configured to send the corresponding CSI-RS to the terminal according to the determined configuration information.
  • the base station provided by the embodiment of the present invention sends in the RE in the first X OFDM symbols in the downlink subframe or the downlink slot.
  • the base station provided by the embodiment of the present invention implements a scheme of transmitting CSI-RS in the first X OFDM symbols in a downlink subframe or a downlink slot.
  • This scheme realizes the enhancement of the CS I reference signal and can solve the problem that the CSI reference signal configuration is limited.
  • the scheme is applied to the time division duplex TDD protection band and the new type NCT carrier, the first X OFDM symbols of the subframe can be fully utilized, thereby reducing the waste of time-frequency resources.
  • the technical solution provided by the embodiment of the present invention is applicable not only to the TDD system but also to the FDD system.
  • the CSI-RS resources corresponding to each CSI-RS port are composed of Y time-domain neighboring or frequency-domain neighboring REs, where Y is a positive integer greater than 1; and,
  • the CSI-RS resource For the CSI-RS resource corresponding to each CSI-RS port, the CSI-RS resource is multiplexed by the CSI-RS of the Y CSI-RS ports at most.
  • the CSI-RS configuration information and the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit respectively include parameters ⁇ and mod(n s , 2);
  • the value of / ' and mod( , 2) is 0, where is the number of the slot in which the CSI-RS resource is located, and /' is the number of the first OFDM symbol occupied by the CSI-RS resource in the slot.
  • the number of types corresponding to the CSI-RS configuration included in the configuration information determined by the determining unit is not less than P, and P is the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure;
  • the number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit is not less than K, K is the number of types of zero-power CSI-RS configurations corresponding to the compressed CSI-RS structure.
  • the number of types corresponding to the CSI-RS configuration included in the configuration information determined by the determining unit is not less than M, and M is the number of types of CSI-RS configurations defined in the LTE-A system protocol.
  • M is the number of types of CSI-RS configurations defined in the LTE-A system protocol. The sum of the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure;
  • the number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit is not less than
  • N is the sum of the number of types of zero-power CSI-RS configurations defined in the LTE-A system protocol and the number of types of zero-power CSI-RS configurations corresponding to the compressed CSI-RS structure.
  • a base station includes a processor and a radio unit.
  • the processor is configured to determine configuration information used by the CSI-RS to transmit; the configuration information indicates that the network side transmits the CSI-RS by using a compressed CSI-RS structure; and all CSI-RSs in the compressed CSI-RS structure are in the downlink Transmitted in resource elements within the first X OFDM symbols in a frame or downlink time slot, where X is a positive integer not greater than 3; the radio frequency unit is configured to transmit a corresponding CSI-RS to the terminal according to the determined configuration information.
  • the base station provided by the embodiment of the present invention sends a CS I-RS in a RE in a first X OFDM symbol in a downlink subframe or a downlink time slot, where X is a positive integer of not more than 3, which is visible in the embodiment of the present invention.
  • the base station implements a scheme of transmitting CSI-RSs in the first X OFDM symbols in a downlink subframe or a downlink slot. This scheme realizes the enhancement of the CS I reference signal and can solve the problem that the CSI reference signal configuration is limited.
  • the scheme is applied to the time division duplex TDD protection band and the new type NCT carrier, the first X OFDM symbols of the subframe can be fully utilized, thereby reducing the waste of time-frequency resources.
  • the technical solution provided by the embodiment of the present invention is applicable not only to the TDD system but also to the FDD system.
  • a terminal comprising:
  • a determining unit configured to determine configuration information used by the network side to send the CSI-RS; the configuration information indicates that the network side transmits the CSI-RS by using a compressed CSI-RS structure; and all the CSI-RSs in the compressed CSI-RS structure are in the downlink And transmitting in the resource unit in the first X OFDM symbols in the frame or the downlink time slot, where X is a positive integer not greater than 3; and receiving unit, configured to receive the CSI-RS sent by the network side according to the determined configuration information.
  • the terminal provided by the embodiment of the present invention receives the RE in the first X OFDM symbols in the downlink subframe or the downlink slot.
  • the terminal provided by the embodiment of the present invention implements a scheme for transmitting CSI-RS in the first X OFDM symbols in a downlink subframe or a downlink slot.
  • This scheme realizes the enhancement of the CS I reference signal and can solve the problem that the CSI reference signal configuration is limited.
  • the scheme is applied to the time division duplex TDD protection band and the new type NCT carrier, the first X OFDM symbols of the subframe can be fully utilized, thereby reducing the waste of time-frequency resources.
  • the technical solution provided by the embodiment of the present invention is applicable not only to the TDD system but also to the FDD system.
  • the CSI-RS resources corresponding to each CSI-RS port are adjacent or frequency-transmitted by Y time domains.
  • Domain adjacent RE Composition where Y is a positive integer greater than one;
  • the CSI-RS resource For a CSI-RS resource corresponding to each CSI-RS port, the CSI-RS resource is multiplexed by at most CSI-RS ports of the CSI-RS port.
  • the CSI-RS configuration information and the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit respectively include parameters /' and mod(, 2);
  • the value of / ' and mod( , 2) is 0, where is the number of the slot in which the CSI-RS resource is located, and /' is the number of the first OFDM symbol occupied by the CSI-RS resource in the slot.
  • the number of types corresponding to the CSI-RS configuration included in the configuration information determined by the determining unit is not less than P, and P is the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure;
  • the number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit is not less than
  • ⁇ , K is the number of types of zero-power CSI-RS configurations corresponding to the compressed CSI-RS structure.
  • the number of types corresponding to the CSI-RS configuration included in the configuration information determined by the determining unit is not less than M, and M is the number of types of CSI-RS configurations defined in the LTE-A system protocol.
  • M is the number of types of CSI-RS configurations defined in the LTE-A system protocol. The sum of the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure;
  • the number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit is not less than
  • N is the sum of the number of types of zero-power CS I-RS configurations defined in the LTE-A system protocol and the number of types of zero-power CS I-RS configurations corresponding to the compressed CSI-RS structure.
  • a terminal comprising a processor and a radio unit.
  • the processor is configured to determine configuration information used by the network side to send the CSI-RS; the configuration information indicates that the network side transmits the CSI-RS by using a compressed CSI-RS structure; and all CSI-RSs in the compressed CSI-RS structure are in the downlink
  • the resource elements in the first X OFDM symbols in the subframe or downlink time slot are transmitted, where X is a positive integer not greater than 3; the radio frequency unit is configured to receive the CSI-RS transmitted by the network side according to the determined configuration information.
  • the terminal receives the CS I-RS on the RE in the first X OFDM symbols in the downlink subframe or the downlink time slot, where X is a positive integer of not more than 3, which is visible in the embodiment of the present invention.
  • the terminal implements a scheme of transmitting CSI-RS in the first X OFDM symbols in the downlink subframe or the downlink slot.
  • the scheme implements an enhancement of the CS I reference signal and can solve the problem that the CSI reference signal configuration is limited.
  • the first X OFDM symbols of the subframe can be fully utilized, thereby reducing the waste of time-frequency resources.
  • FIG. 1 is a schematic diagram of uplink and downlink interference between TDD systems in the prior art
  • FIG. 2a is a schematic structural diagram of a special subframe configuration in a downlink conventional CP in the prior art
  • 2b is a schematic structural diagram of a special subframe configuration in a downlink CP in the prior art
  • FIG. 3 is a schematic flowchart of a method according to an embodiment of the present disclosure.
  • 5a-5u are schematic diagrams showing a CSI-RS transmission pattern in an embodiment of the present invention.
  • 6a-6u are schematic diagrams showing a CSI-RS transmission pattern according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present invention. DETAILED DESCRIPTION OF THE INVENTION
  • the waste of time-frequency resources is reduced, and the problem of limited CSI reference signal configuration is solved.
  • the method for transmitting CSI-RS provided by the network side includes the following steps: Step 30: The network side determines configuration information used for sending the CSI-RS; the configuration information indicates that the network side adopts compressed CSI-
  • the RS structure transmits a CSI-RS; all CSI-RSs in the compressed CSI-RS structure are in resource elements (RE) in the first X orthogonal frequency division multiplexing (OFDM) symbols in the downlink subframe or the downlink slot Transmission, where X is a positive integer not greater than 3;
  • RE resource elements
  • OFDM orthogonal frequency division multiplexing
  • Step 31 The network side sends a corresponding CSI-RS to the terminal according to the determined configuration information.
  • a CSI-RS resource corresponding to each CSI-RS port is composed of Y time-domain neighboring or frequency-domain adjacent REs, where Y is a positive integer greater than 1; and, for each The CSI-RS resource corresponding to the CSI-RS port, and the CSI-RS resource is multiplexed by the CSI-RS of the Y CSI-RS ports at most.
  • the above configuration information includes CSI-RS configuration information and zero-power CSI-RS configuration information, including parameters /' and mod(n s , 2); /, and mod( , 2) have a value of 0, where 3 ⁇ 4 is CSI - the number of the slot in which the RS resource is located, /' is the number of the first OFDM symbol occupied by the CSI-RS resource in the slot.
  • the number of types corresponding to the CSI-RS configuration included in the configuration information is not less than P, where P is the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure; and the bits occupied by the zero-power CSI-RS configuration information included in the configuration information.
  • the number is not less than ⁇ , and K is the number of types of zero-power CSI-RS configurations corresponding to the compressed CSI-RS structure; or
  • the number of types corresponding to the CSI-RS configuration included in the configuration information is not less than M, where M is the number of types of CSI-RS configurations defined in the LTE-A system protocol and the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure.
  • M is the number of types of CSI-RS configurations defined in the LTE-A system protocol and the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure.
  • the number of bits occupied by the zero-power CSI-RS configuration information included in the foregoing configuration information is not less than N, where N is the number of types of zero-power CSI-RS configurations defined in the LTE-A system protocol and the corresponding compressed CSI-RS structure.
  • N is the number of types of zero-power CSI-RS configurations defined in the LTE-A system protocol and the corresponding compressed CSI-RS structure.
  • the method for transmitting a CSI-RS provided by a terminal side includes the following steps: Step 40: The terminal determines configuration information used by the network side to send a CSI-RS; the configuration information indicates that the network side adopts compressed CSI. -RS structure transmission CSI-RS; all CSI-RSs in the compressed CSI-RS structure are transmitted in REs in the first X OFDM symbols in the downlink subframe or the downlink slot, where X is a positive integer not greater than 3 ;
  • Step 41 The terminal receives the CSI-RS sent by the network side according to the determined configuration information.
  • a CSI-RS resource corresponding to each CSI-RS port is composed of Y time-domain neighboring or frequency-domain adjacent REs, where Y is a positive integer greater than 1; and, for each The CSI-RS resource corresponding to the CSI-RS port, and the CSI-RS resource is multiplexed by the CSI-RS of the Y CSI-RS ports at most.
  • the above configuration information includes CSI-RS configuration information and zero-power CSI-RS configuration information, including parameters /' and mod(n s , 2); / ' and mod(n s , 2) have values of 0, where The number of the slot in which the CSI-RS resource is located, /' is the number of the first OFDM symbol occupied by the CSI-RS resource in the slot.
  • the number of types corresponding to the CSI-RS configuration included in the configuration information is not less than P, where P is the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure; the bits occupied by the zero-power CSI-RS configuration information included in the configuration information
  • the number is not less than K, K is the number of types of zero-power CSI-RS configurations corresponding to the compressed CSI-RS structure; or
  • the number of types corresponding to the CSI-RS configuration included in the configuration information is not less than M, where M is the number of types of CSI-RS configurations defined in the LTE-A system protocol and the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure.
  • M is the number of types of CSI-RS configurations defined in the LTE-A system protocol and the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure.
  • the number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information is not less than N, where N is the number of types of zero-power CSI-RS configurations defined in the LTE-A system protocol and the corresponding compressed CSI-RS structure. The sum of the number of types of zero-power CSI-RS configurations.
  • Step 1 The network side determines the port and subframe used to send the CSI-RS.
  • the port used to send the CSI-RS is port 15, and when the number of ports is 2, the CSI-RS is sent.
  • the ports used are port 15 and port 16.
  • the ports used to send CSI-RS are port 15, port 16, port 17, and port 18.
  • the CSI-RS is sent.
  • the ports used are port 15, port 16, port 17, port 18, port 19, port 20, port 21, port 22.
  • the subframe used for transmitting the CSI-RS is a downlink subframe or a special subframe.
  • Step 2 The network side determines, for each port determined, the resource unit (RE) used to send the CSI-RS to the terminal on the port, and the CSI-RS sent on each RE, and uses the port on each RE. Transmitting a corresponding CSI-RS to the terminal; where the RE used for transmitting the CSI-RS is located in the first two OFDM symbols of the subframe determined in step 30.
  • the resource unit RE
  • the RE used by CSI-RS reflects the compressed CSI-RS structure.
  • the CSI-RS may be sent to the terminal on the port according to the following formula: The RE and the CSI-RS sent on each RE: p)
  • s is the slot number, the value is 0; defined for the LTE system protocol
  • the CSI-RS sequence the values of k /, m' are determined according to the LTE system protocol, namely:
  • the RE used for transmitting the CSI-RS to the terminal on the port and the CSI-RS sent on each RE may be determined according to the following formula:
  • takes values from odd numbers 1 to 11, and 'is 0 or 1.
  • the network side can send the configuration information of the CSI-RS transmission to the terminal according to the method defined in the prior art, that is, the LTE system protocol, and the only difference lies in the CSI-RS configuration information and the zero power included in the configuration information.
  • the CSI-RS configuration information includes parameters /' and mod( , 2) whose value is 0, where is the number of the slot in which the CSI-RS resource is located, and ⁇ is the first OFDM occupied by the CSI-RS resource in the slot. The number of the symbol.
  • the network side may send at least one of the following six CSI-RS transmission configuration information to the terminal by using high layer signaling:
  • the number of CSI-RS ports to inform the number of ports used by the CSI-RS to be sent;
  • the CSI-RS configuration information is used to notify the number of the CSI-RS configuration to be used, and each CSI-RS configuration corresponds to a value of the parameter used for determining and I (ie, the value); the CSI-RS configuration information.
  • the number of occupied bits is not less than ⁇ , which is the sum of the number of CSI-RS configurations defined in the LTE system protocol and the number of newly added CSI-RS configurations, where each bit corresponds to a CSI-RS configuration, for example, If a bit is 0, it means that the CSI-RS configuration corresponding to the bit is not used, and if it is 1, it indicates that the CSI-RS configuration corresponding to the bit is adopted;
  • the CSI-RS subframe configuration information is used to notify the subframe in which the CSI-RS is transmitted;
  • the CSI-RS subframe configuration information may include a CSI-RS transmission period and a subframe offset, and the CSI-RS transmission period is assumed to be T,
  • the frame offset is 2
  • the terminal may determine that the second subframe in each CSI-RS transmission period T is the subframe in which the CSI-RS is transmitted by the network side; the power per RE on the physical downlink shared channel (PDSCH)
  • the value is a ratio of the power value per RE of the transmitted CSI-RS to inform the transmission power of the CSI-RS;
  • the zero-power CSI-RS configuration information is used to notify the CSI-RS configuration that does not transmit the CSI-RS, that is, the number of the zero-power CSI-RS configuration; the number of bits occupied by the zero-power CSI-RS configuration information is not less than M, and M is LTE.
  • M is LTE.
  • the RS is configured to a zero-power CSI-RS configuration; when the terminal determines that the adopted CSI-RS configuration is a zero-power CSI-RS configuration, the CSI-RS is not received;
  • Zero-power CSI-RS subframe configuration information to inform the number of subframes that do not transmit CSI-RS; the terminal does not receive CSI-RS on zero-power CSI-RS subframes.
  • the network side may also send at least one of the following six CSI-RS transmission configuration information to the terminal by using high layer signaling:
  • the number of CSI-RS ports to inform the number of ports used by the CSI-RS to be sent;
  • each CSI-RS configuration information to notify the number of the CSI-RS configuration used, and each CSI-RS configuration corresponds to a value of a determined, used parameter (ie, the value of ( k ', l ');
  • the number of bits occupied by the CSI-RS configuration information is not less than P, and P is the number of newly added CSI-RS configurations; wherein each bit corresponds to a CSI-RS configuration, for example, if a certain bit is 0, The CSI-RS configuration corresponding to the bit is not used, and if it is 1, it indicates that the CSI-RS configuration corresponding to the bit is adopted;
  • the CSI-RS subframe configuration information is used to notify the subframe in which the CSI-RS is transmitted;
  • the CSI-RS subframe configuration information may include a CSI-RS transmission period and a subframe offset, and the CSI-RS transmission period is assumed to be T,
  • the frame offset is 2
  • the terminal may determine that the second subframe in each CSI-RS transmission period T is a subframe in which the CSI-RS is sent by the network side;
  • the ratio of the power value per RE on the PDSCH to the power value per RE of the transmitted CSI-RS to inform the transmission power of the CSI-RS; the terminal can determine the power value per RE of the transmission CSI-RS ?08 «1 Power value per RE / the ratio;
  • Zero-power CSI-RS configuration information to inform the number of CSI-RS configurations that do not send CSI-RS
  • the number of bits occupied by the CSI-RS configuration information is not less than K, which is the number of newly added zero-power CSI-RS configurations, where each bit corresponds to a zero-power CSI-RS configuration, for example, if a certain bit is 0.
  • the CSI-RS corresponding to the bit is configured as a non-zero-power CSI-RS configuration. If 1, the CSI-RS corresponding to the bit is configured to be a zero-power CSI-RS configuration; the terminal is determining the CSI used.
  • CSI-RS reception is not performed;
  • Zero-power CSI-RS subframe configuration information to inform the number of the subframe in which the CSI-RS is not transmitted; the terminal does not receive the CSI-RS on the zero-power CSI-RS subframe.
  • Step 3 The terminal determines a port and a subframe used by the network side to send the CSI-RS.
  • Step 4 For each port that is determined, determine the network side to use to send the CSI-RS to the terminal on the port.
  • the network side may be configured to send the CSI-used REs to the terminal and the CSI-RSs sent by the REs on the port according to the following formula:
  • 3 ⁇ 4 ' is the CSI-RS sent by the network side on the port numbered p, corresponding to the numbered subcarrier and the numbered Z OFDM symbol; is the slot number, and the value of ⁇ is 0;
  • FIG. 5a to FIG. 5c The three types of CSI-RS transmission patterns corresponding to the eight ports in Table 3 are shown in FIG. 5a to FIG. 5c, and the six types of CSI-RS transmission patterns corresponding to the four ports in Table 3 are as shown in FIG. 5d to FIG. 5i, and corresponding to Table 3
  • the 12 CSI-RS transmission patterns of the 1 or 2 ports are shown in Fig. 5j to Fig. 5u.
  • step 4 the following method may also be used to determine the network side to use to send the CSI-RS to the terminal on the port.
  • is the CSI-RS transmitted by the network side on the port numbered p on the RE consisting of the numbered subcarrier and the OFDM symbol numbered Z; the slot number is 0;
  • Table 4 Specifically as shown in Table 4 above.
  • the three types of CSI-RS transmission patterns corresponding to the eight ports in Table 4 are shown in FIG. 6a to FIG. 6c, and the six types of CSI-RS transmission patterns corresponding to the four ports in Table 4 are as shown in FIG. 6d to FIG. 6i, and corresponding to Table 4
  • the 12 CSI-RS transmission patterns of the 1 or 2 ports are shown in Fig. 6j to Fig. 6u.
  • the terminal can receive the configuration information of the CSI-RS transmission sent by the network side in the manner defined in the prior art, that is, the LTE system protocol, and the only difference lies in the CSI-RS configuration information included in the configuration information.
  • the zero-power CSI-RS configuration information includes parameters /' and mod(n s , 2) whose value is 0, where is the number of the slot in which the CSI-RS resource is located, and /' is the CSI-RS resource in the slot. The number of the first OFDM symbol occupied.
  • the terminal may further receive at least one of the following six types of configuration information that is sent by the network side in advance through high layer signaling:
  • the number of CSI-RS ports is used to determine the number of ports used by the network side to send CSI-RSs, and the terminal determines the ports used by the network side to send CSI-RSs according to the number of CSI-RS ports;
  • the CSI-RS configuration information is used to determine the number of the CSI-RS configuration used by the network side, and each CSI-RS configuration corresponds to a value (ie, a value) of the parameter determined/used; the CSI-
  • the number of bits occupied by the RS configuration information is not less than ⁇ , which is the sum of the number of CSI-RS configurations defined in the LTE system protocol and the number of newly added CSI-RS configurations, where each bit corresponds to one CSI-RS configuration. For example, if a certain bit is 0, it means that the CSI-RS configuration corresponding to the bit is not used. If it is 1, it indicates that the CSI-RS configuration corresponding to the bit is adopted; the terminal determines the k according to the CSI-RS configuration information. The value of ', 1 '), and then the value of the M-location determines the RE used by the network side to send the CSI-RS to the terminal on the corresponding port and the CSI-RS sent on each RE;
  • the CSI-RS subframe configuration information is used to determine a subframe used by the network side to send the CSI-RS;
  • the CSI-RS subframe configuration information may include a CSI-RS transmission period and a subframe offset, and the CSI-RS transmission period is assumed.
  • the subframe offset is 2
  • the terminal may determine that the second subframe in each CSI-RS transmission period T is a subframe in which the network side transmits the CSI-RS;
  • the zero-power CSI-RS configuration information is used to determine the number of the CSI-RS configuration in which the network side does not send the CSI-RS; the number of bits occupied by the zero-power CSI-RS configuration information is not less than M, and M is defined in the LTE system protocol.
  • M is defined in the LTE system protocol.
  • the corresponding CSI-RS is configured as a non-zero-power CSI-RS configuration. If 1, the CSI-RS configuration corresponding to the bit is configured to be a zero-power CSI-RS configuration; the terminal determines that the adopted CSI-RS configuration is zero. When the power CSI-RS is configured, the CSI-RS is not received;
  • the zero-power CSI-RS subframe configuration information is used to determine the number of the subframe in which the network side does not transmit the CSI-RS.
  • the terminal does not receive the CSI-RS on the zero-power CSI-RS subframe.
  • the terminal may further receive at least one of the following six configuration information that is sent by the network side in advance through high layer signaling:
  • the number of CSI-RS ports is used to determine the number of ports used by the network side to send CSI-RSs; the terminal determines the ports used by the network side to send CSI-RSs according to the number of CSI-RS ports;
  • the CSI-RS configuration information is used to determine the number of the CSI-RS configuration used by the network side, and each CSI-RS configuration corresponds to a value of the parameter used for determining and I (ie, ( k ', l ').
  • the value of the CSI-RS configuration information is not less than P, and P is the number of newly added CSI-RS configurations; each bit corresponds to a CSI-RS configuration, for example, if a certain bit is 0, it means that the CSI-RS configuration corresponding to the bit is not used.
  • the terminal determines the value of O according to the CSI-RS configuration information, and further determines according to the The value determines the RE used by the network side to send the CSI-RS to the terminal on the corresponding port, and the CSI-RS sent on each RE;
  • the CSI-RS subframe configuration information is used to determine a subframe used by the network side to send the CSI-RS;
  • the CSI-RS subframe configuration information may include a CSI-RS transmission period and a subframe offset, and the CSI-RS transmission period is assumed.
  • the subframe offset is 2
  • the terminal may determine that the second subframe in each CSI-RS transmission period T is a subframe in which the network side transmits the CSI-RS;
  • the zero-power CSI-RS configuration information is used to determine the number of the CSI-RS configuration in which the network side does not send the CSI-RS; the number of bits occupied by the zero-power CSI-RS configuration information is not less than K, and the new zero power is added.
  • the zero-power CSI-RS subframe configuration information is used to determine the number of the subframe in which the network side does not transmit the CSI-RS.
  • the terminal does not receive the CSI-RS on the zero-power CSI-RS subframe.
  • an embodiment of the present invention further provides a base station, where the base station includes:
  • the determining unit 70 is configured to determine configuration information used by the CSI-RS to transmit, where the configuration information indicates that the network side transmits the CSI-RS by using a compressed CSI-RS structure; and all CSI-RSs in the compressed CSI-RS structure are in the downlink subframe. Or transmitting in a resource unit RE in the first X orthogonal frequency division multiplexing OFDM symbols in the downlink time slot, where X is a positive integer not greater than 3;
  • the sending unit 71 is configured to send, according to the determined configuration information, a corresponding CSI-RS to the terminal.
  • the CSI-RS resource corresponding to each CSI-RS port is composed of Y time-domain neighboring or frequency-domain adjacent REs, where Y Is a positive integer greater than 1;
  • the CSI-RS resource For the CSI-RS resource corresponding to each CSI-RS port, the CSI-RS resource is multiplexed by the CSI-RS of the Y CSI-RS ports at most.
  • the CSI-RS configuration information and the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit 70 both include the parameters /' and mod(, 2);
  • the value of /' and mod( , 2) is 0 , where is the number of the slot in which the CSI-RS resource is located, and /' is the number of the first OFDM symbol occupied by the CSI-RS resource in the slot.
  • the number of types corresponding to the CSI-RS configuration included in the configuration information determined by the determining unit 70 is not less than P, P is the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure;
  • the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit 70 occupies no less than K, and K is the number of types of zero-power CSI-RS configurations corresponding to the compressed CSI-RS structure.
  • the number of types corresponding to the CSI-RS configuration included in the configuration information determined by the determining unit 70 is not less than M, where M is the number of types of CSI-RS configurations defined in the LTE-A system protocol and the CSI corresponding to the compressed CSI-RS structure. - the sum of the number of types of RS configurations;
  • the number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit 70 is not less than N, where N is the number of types of zero-power CSI-RS configurations defined in the LTE-A system protocol and the corresponding compressed CSI-RS. The sum of the number of types of zero-power CSI-RS configurations of the structure.
  • Another embodiment of the present invention provides another base station, where the base station includes a processor and a radio frequency unit.
  • the processor is configured to determine configuration information used by the CSI-RS to transmit; the configuration information indicates that the network side transmits the CSI-RS by using a compressed CSI-RS structure; and all CSI-RSs in the compressed CSI-RS structure are in the downlink subframe Or transmitting in a resource unit in the first X OFDM symbols in the downlink slot, where X is a positive integer not greater than 3;
  • the radio unit is configured to transmit a corresponding CSI-RS to the terminal according to the determined configuration information.
  • the base station provided by the embodiment of the present invention sends a CSI-RS in the REs in the first X OFDM symbols in the downlink subframe or the downlink time slot, where X is a positive integer of not more than 3, and it can be seen that the base station provided by the embodiment of the present invention
  • a scheme of transmitting CSI-RSs in the first X OFDM symbols in a downlink subframe or a downlink slot is implemented.
  • This scheme implements an enhancement of the CSI reference signal and can solve the problem of limited configuration of the CSI reference signal.
  • the scheme is applied to the time division duplex TDD protection band and the new type of NCT carrier, the first X OFDM symbols of the subframe can be fully utilized, thereby reducing the waste of time-frequency resources.
  • the technical solution provided by the embodiments of the present invention is applicable not only to the TDD system but also to the FDD system.
  • an embodiment of the present invention further provides a terminal, where the terminal includes:
  • the determining unit 80 is configured to determine configuration information used by the network side to send the CSI-RS, where the configuration information indicates that the network side uses the compressed CSI-RS structure to transmit the CSI-RS; and all the CSI-RSs in the compressed CSI-RS structure are in the downlink. Transmitted in a resource unit RE within the first X orthogonal frequency division multiplexing OFDM symbols in a subframe or a downlink slot, where X is a positive integer not greater than 3;
  • the receiving unit 81 is configured to receive, according to the determined configuration information, a CSI-RS sent by the network side.
  • the CSI-RS resource corresponding to each CSI-RS port is composed of Y time-domain neighboring or frequency-domain neighboring REs, where Y Is a positive integer greater than 1;
  • the CSI-RS resource For the CSI-RS resource corresponding to each CSI-RS port, the CSI-RS resource is multiplexed by the CSI-RS of the Y CSI-RS ports at most.
  • the configuration information determined by the determining unit 80 includes CSI-RS configuration information and zero-power CSI-RS matching.
  • the set information contains the parameters /' and mod(, 2);
  • the value of / ' and mod( , 2) is 0, where is the number of the slot in which the CSI-RS resource is located, and /' is the number of the first OFDM symbol occupied by the CSI-RS resource in the slot.
  • the number of types corresponding to the CSI-RS configuration included in the configuration information determined by the determining unit 80 is not less than P, where P is the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure;
  • the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit 80 occupies no less than K, and K is the number of types of zero-power CSI-RS configurations corresponding to the compressed CSI-RS structure.
  • the number of types corresponding to the CSI-RS configuration included in the configuration information determined by the determining unit 80 is not less than M, and M is the number of types of CSI-RS configurations defined in the LTE-A system protocol and the CSI corresponding to the compressed CSI-RS structure. - the sum of the number of types of RS configurations;
  • the number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit 80 is not less than N, where N is the number of types of zero-power CSI-RS configurations defined in the LTE-A system protocol and the corresponding compressed CSI-RS. The sum of the number of types of zero-power CSI-RS configurations of the structure.
  • Another embodiment of the present invention further provides a terminal, where the terminal includes a processor and a radio frequency unit.
  • the processor is configured to determine configuration information used by the network side to send the CSI-RS; the configuration information indicates that the network side transmits the CSI-RS by using a compressed CSI-RS structure; and all CSI-RSs in the compressed CSI-RS structure are in the downlink
  • the resource elements in the first X OFDM symbols in the subframe or downlink time slot are transmitted, where X is a positive integer not greater than 3; the radio frequency unit is configured to receive the CSI-RS transmitted by the network side according to the determined configuration information.
  • the terminal provided by the embodiment of the present invention receives the CSI-RS on the REs in the first X OFDM symbols in the downlink subframe or the downlink time slot, where X is a positive integer of not more than 3, and the terminal provided by the embodiment of the present invention is visible.
  • a scheme of transmitting CSI-RSs in the first X OFDM symbols in a downlink subframe or a downlink slot is implemented. This scheme implements an enhancement of the CSI reference signal and can solve the problem of limited configuration of the CSI reference signal.
  • the scheme is applied to the time division duplex TDD protection band and the new type of NCT carrier, the first X OFDM symbols of the subframe can be fully utilized, thereby reducing the waste of time-frequency resources.
  • the technical solution provided by the embodiments of the present invention is applicable not only to the TDD system but also to the FDD system.
  • the beneficial effects of the present invention include:
  • the network side sends the CSI-RS in the first two OFDM symbols of the subframe, and the terminal receives the CSI-RS on the first two OFDM symbols of the subframe, and the method is implemented.
  • the first two OFDM symbols of the frame transmit the CSI-RS scheme.
  • This scheme implements an enhancement of the CSI reference signal and can solve the problem of limited configuration of the CSI reference signal.
  • the scheme is applied to the TDD guard band and the NCT carrier, the first two OFDM symbols of the subframe are fully utilized, thereby reducing the waste of time-frequency resources. It should be noted that the technical solution provided by the embodiment of the present invention is applicable not only to the TDD system but also to the FDD system.
  • the present invention is directed to a flowchart of a method, apparatus (system), and computer program product according to an embodiment of the present invention. And / or block diagram to describe. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Disclosed are a method and device for transmitting channel state information reference signals (CSI-RSs), which relate to the field of wireless communications and are used for reducing the waste of time-frequency resources. In the present invention, the method comprises: a network side sending CSI-RSs in resource elements (REs) in the previous X orthogonal frequency division multiplexing (OFDM) symbols in a downlink subframe or a downlink time slot, wherein X is a positive integer which is less than or equal to 3; and a terminal receiving the CSI-RSs on the REs in the previous X OFDM symbols in the downlink subframe or the downlink time slot. It can be seen that the present method realizes the solution of transmitting the CSI-RSs in the previous X OFDM symbols in the downlink subframe or the downlink time slot. When the solution is applied to a time division duplexing (TDD) guard band and a new carrier type (NCT) carrier, the previous X OFDM symbols in the subframe are fully used, and thus the waste of time-frequency resources is reduced.

Description

信道状态信息参考信号的传输方法和设备 本申请要求在 2012年 12月 06日提交中国专利局. 申请号为 201210521729.4、发明名称为 Method and device for transmitting channel state information reference signal The application is submitted to the Chinese Patent Office on December 06, 2012. The application number is 201210521729.4, and the invention name is
"信道状态信息参考信号的传输方法和设备"的中国专利申请的优先权,其全部内容通过引用结 合在本申请中。 技术领域 本发明涉及无线通信领域, 尤其涉及一种信道状态信息参考信号的传输方法和设备。 背景技术 在相邻的频带上存在不同的时分双工(TDD )运营商时, 若不同运营商在各自的频带 上配置不同的 TDD上下行配置, 则可能造成上下行传输之间的交叉干扰, 如图 1所示。 上下行间干扰会严重影响正常通信,为避免此干扰,需要在两个工作频带间预留保护频带。 目前在保护频带内不进行任何数据传输。 The priority of the Chinese Patent Application, the disclosure of which is incorporated herein by reference. TECHNICAL FIELD The present invention relates to the field of wireless communications, and in particular, to a method and a device for transmitting a channel state information reference signal. BACKGROUND When there are different time division duplex (TDD) operators in adjacent frequency bands, if different operators configure different TDD uplink and downlink configurations in their respective frequency bands, cross interference between uplink and downlink transmission may be caused. As shown in Figure 1. Interference between uplink and downlink can seriously affect normal communication. To avoid this interference, it is necessary to reserve a guard band between two working bands. Currently no data transmission takes place within the guard band.
在长期演进(Long Term Evolution, LTE ) 系统中, 一个无线帧的长度为 10ms, —个 子帧的长度为 1ms, 即一个无线帧中包含 10个子帧。 对于时分(TD ) 系统, 目前以一个 无线帧为单位定义了 7种 TDD上下行配置, 如表 1所示, 其中 D代表下行子帧, U代表 上行子帧, S代表 TDD系统中的特殊子帧,特殊子帧中包含下行导频时隙( Downlink Pilot Time Slot, DwPTS )、保护间隔( Guard Period, GP )和上行导频时隙( Uplink Pilot Time Slot, UpPTS )三个区域, 其中 DwPTS用于传输下行主同步信号及普通下行业务数据, GP为保 护间隔, 一般根据下行到上行的切换时间、 上行到下行的切换时间、 以及与小区半径相关 的传输时延来定义, 用于避免同一个载波上的上行和下行之间的重叠干扰, UpPTS用于传 输上行随机接入信号及上行探测信号。  In a Long Term Evolution (LTE) system, a radio frame has a length of 10 ms, and a subframe has a length of 1 ms, that is, a radio frame contains 10 subframes. For the time division (TD) system, seven TDD uplink and downlink configurations are currently defined in units of one radio frame, as shown in Table 1, where D represents a downlink subframe, U represents an uplink subframe, and S represents a special sub-frame in the TDD system. The frame and the special subframe include three areas: a Downlink Pilot Time Slot (DwPTS), a Guard Period (GP), and an Uplink Pilot Time Slot (UpPTS), where DwPTS is used. For transmitting the downlink primary synchronization signal and the normal downlink service data, the GP is a guard interval, and is generally defined according to a downlink-to-uplink handover time, an uplink-to-downlink handover time, and a transmission delay associated with the cell radius, to avoid the same The overlapping interference between the uplink and the downlink on the carrier, and the UpPTS is used to transmit the uplink random access signal and the uplink sounding signal.
Figure imgf000003_0001
表 1 目前定义了 10种特殊子帧配置, 用于不同的应用场景, 如表 2所示, 其中 Ts为系统 采样时间间隔, 基于 1个子帧对应 30720TS定义。 不同特殊子帧配置的子帧结构如图 2a- 图 2b所示, 下行使用常规循环前缀(cyclic prefix, CP )时, 一个特殊子帧中包含 14个符 号, 如图 2a所示, 下行子帧使用扩展 CP时, 一个特殊子帧中包含 12个符号, 如图 2b所 示。
Figure imgf000003_0001
Table 1 currently defines 10 special subframe configurations for different application scenarios, as shown in Table 2, where T s is the system sampling time interval, based on 1 subframe corresponding to 30720T S definition. The subframe structure of different special subframe configurations is shown in Figure 2a - Figure 2b. When the normal cyclic prefix (CP) is used in the downlink, a special subframe contains 14 symbols, as shown in Figure 2a, the downlink subframe. When using an extended CP, a special subframe contains 12 symbols, as shown in Figure 2b.
Figure imgf000004_0001
Figure imgf000004_0001
表 2 网络側传输的信道状态信息参考信号(CSI-RS )用于模式 9和 10的测量, 是用户设 备( User Equipment , UE , 又称终端)专用的导频, 即不同 UE看到的 CSI导频可以不同, 包括导频的图样、 周期、 起始位置和功率。 因此, 一个小区可能配置了多个 CSI-RS, —个 UE也可以在一个小区上有多种 CSI-RS配置。 CSI-RS在 1、 2、 4、或 8个天线端口上发送, 分别对应天线端口 =15 =15,16 =15,...,18 ^^^=15,...,22。此外,为了降低小区间 CSI-RS 和数据之间的干扰, 通常在邻区配置 CSI-RS的位置, 本区均配置为零功率 CSI-RS。  Table 2 The channel state information reference signal (CSI-RS) transmitted by the network side is used for the measurement of modes 9 and 10. It is a dedicated pilot of the user equipment (User Equipment, UE, also called terminal), that is, the CSI seen by different UEs. The pilots can be different, including the pilot pattern, period, starting position and power. Therefore, one cell may be configured with multiple CSI-RSs, and one UE may also have multiple CSI-RS configurations on one cell. The CSI-RS is transmitted on 1, 2, 4, or 8 antenna ports, corresponding to antenna ports =15 =15,16 =15,...,18 ^^^=15,...,22. In addition, in order to reduce interference between CSI-RS and data between cells, the location of the CSI-RS is usually configured in the neighboring cell, and the region is configured with a zero-power CSI-RS.
CSI-RS序列定义为:  The CSI-RS sequence is defined as:
ηΛ (m) = -^= {\ - 2 - c(2m)) + j -^(l -2 - c(2m 1)), m = Q,\,...,N^pL - 1 其中, "s 是一个无线帧内的时隙序号, 1 是一个时隙内的正交频分复用 (Orthogonal Frequency Division Multiplexing, OFDM)符号的序号。 随机序列 c('')在协议 36.211的 7. 节中定义。 随机序列在每个 OFDM开始进行初始化: η Λ (m) = -^= {\ - 2 - c(2m)) + j -^(l -2 - c(2m 1)), m = Q,\,...,N^ pL - 1 Where " s is the slot number within a radio frame, and 1 is orthogonal frequency division multiplexing within a slot (Orthogonal Frequency Division Multiplexing, OFDM) The serial number of the symbol. The random sequence c ('') is defined in clause 7. of the protocol 36.211. The random sequence is initialized at the beginning of each OFDM:
Cmlt = 210 · (7 · («s + 1)+ / + 1)· (2 · N^n + 1)+ 2 · N^1 + No, . for常规 CP C mlt = 2 10 · (7 · (« s + 1)+ / + 1)· (2 · N^ n + 1)+ 2 · N^ 1 + No, . for regular CP
其中, N< Where N<
Figure imgf000005_0001
for扩展 CP 在 CSI-RS的传输子帧中,导频序列 (叫将映射在复数符号上作为天线端口 p的导频: 其中
Figure imgf000005_0001
For extended CP In the transmission subframe of the CSI-RS, the pilot sequence ( called the pilot that will be mapped on the complex symbol as the antenna port p:
-0 &1"/^{15,16},常规 ?  -0 &1"/^{15,16}, regular?
-6 for/7 e{l7,18}, ¾CP  -6 for/7 e{l7,18}, 3⁄4CP
-1 forpejl9,20},常规 CP  -1 forpejl9,20}, regular CP
-7 forpe{21,22},常规 CP  -7 forpe{21,22}, regular CP
k = V+\2m +  k = V+\2m +
-0 forpEjl5,16},扩展 CP  -0 forpEjl5,16}, extended CP
-3 forpejl7,18},扩展 CP  -3 forpejl7,18}, extended CP
—6 forpejl9,20},扩展 CP  —6 forpejl9,20}, extended CP
—9 for {21,22},扩展 CP  —9 for {21,22}, extended CP
CSI导频配置 0-19,常规 CP  CSI pilot configuration 0-19, regular CP
CSI导频配置 20-31,常规 CP CSI pilot configuration 20-31, regular CP
27,扩展 CP
Figure imgf000005_0002
27, extended CP
Figure imgf000005_0002
, - 1  , - 1
N='。L— N' N='. L — N'
= m +  = m +
2 其中(k,, 1,)以及 可以通过协议 36.211中的表格 6.10.5.2-1 和 6.10.5.2-2得到, CSI-RS 仅在常规 CP和扩展 CP分别满足上述两表中条件的下行时隙中传输, 同时传输 CSI-RS的 下行子帧需满足协议 36.211中的表格 6.10.5.3-1。 终端假设在 TDD系统的特殊子帧上不发 送 CSI-RS,或者在 CSI-RS与同步信号、物理广播信道( Physical Broadcast Channel, PBCH ) 以及系统信息块类型 1消息( SystemlnformatKHiBlockTypel messages )发生冲哭的子帧不 发送 CSI-RS, 或者在配置了寻呼(paging)信息的子帧不发送 CSI-RS。  2 where (k,, 1,) and can be obtained by the tables 6.10.5.1-1 and 6.10.5.2-2 in the protocol 36.211, the CSI-RS only when the regular CP and the extended CP satisfy the conditions of the above two tables respectively The downlink subframe transmitted in the slot and simultaneously transmitting the CSI-RS shall satisfy the table 6.10.0.5-1 in the protocol 36.211. The terminal assumes that the CSI-RS is not transmitted on the special subframe of the TDD system, or that the CSI-RS and the synchronization signal, the Physical Broadcast Channel (PBCH), and the System Information Format Type 1 message (SystemlnformatKHiBlockTypel messages) are crying. The subframe does not transmit the CSI-RS, or the CSI-RS is not transmitted in the subframe in which the paging information is configured.
对于高层配置的 16比特的零功率 CSI-RS参数( ZeroPowerCSI-RS ), 如果其中某些比 特置为 1时, 假设 UE对应的 4端口 CSI导频位置为零功率, 除非这些资源元素与高层信 令配置的非零功率的 CSI导频重叠。 其中, 每个比特位与一个 4端口 CSI导频配置编号对 应, 左边第一个比特位对应 4端口 CSI导频配置的最低编号。  For the high-level configuration of the 16-bit zero-power CSI-RS parameter (ZeroPowerCSI-RS), if some of the bits are set to 1, it is assumed that the corresponding 4-port CSI pilot position of the UE is zero power, unless these resource elements and high-level letters The configured non-zero power CSI pilots are overlapped. Wherein, each bit corresponds to a 4-port CSI pilot configuration number, and the first bit on the left corresponds to the lowest number of the 4-port CSI pilot configuration.
为了降低系统开销, LTE Rel-11 中讨论定义一种新的载波类型 (New Carrier Type, NCT ), 该载波中不传输传统的物理下行控制信道(PDCCH ), 可传输增强的物理下行控制 信道( EPDCCH )。 该载波内基于用户专属参考信号( UE-specific reference signals, U S ) 进行数据解调。 CRS不传输或每 5ms占用一个子帧传输且只在端口 0上传输。 In order to reduce system overhead, a new carrier type (New Carrier Type, defined in LTE Rel-11) is defined. NCT), the traditional physical downlink control channel (PDCCH) is not transmitted in the carrier, and the enhanced physical downlink control channel (EPDCCH) can be transmitted. The carrier is demodulated based on UE-specific reference signals (US). The CRS does not transmit or occupies one subframe transmission every 5 ms and transmits only on port 0.
现有技术中, 频谱资源贫乏的问题日益严重, 然而为了避免可能产生的干扰, 目前在 预留的保护频带上不传输任何数据, 因此当保护频带的带宽较大时, 会造成相当大程度上 的频谱资源浪费, 为了緩解频借资源紧张的现状, 应尽可能的提高频谱资源的利用率。 对 于上述的七种 TDD上下行配置, 子帧 0和 5总是下行子帧, 子帧 2总是上行子帧, 子帧 1总是 特殊子帧, 因此在 TDD系统之间预留的保护带宽上, 在上述传输方向固定的子帧上可进行 同方向的数据传输而不影响现有的数据传输。 目前当 DwPTS的长度为 3个 OFDM符号时可用于 传输 PDCCH以及同步信号, 此时传输的 PDCCH主要用于上行调度信令(UL DCI ), 不用于物 理下行共享信道(PDSCH )。 若在保护频带内依然沿用该方法, 那么保护频带上的资源无法 得到充分的利用, 因为该频带内只能有一个上行子帧, 子帧 1、 6中无对应的 UL DCI传输, 而子帧 1、 6也无法传 PDSCH, 那么子帧 1和 6的前两个符号就等于全部浪费掉了。 另外, 由 于 NCT载波上不传输传统的 PDCCH, 当特殊子帧配置为配置 0、 5时, 下行子帧 1、 6中的 DwPTS 即无 PDCCH传输, 也不支持 PDSCH传输, 将造成资源浪费。  In the prior art, the problem of poor spectrum resources is becoming more and more serious. However, in order to avoid possible interference, no data is currently transmitted in the reserved guard band, so when the bandwidth of the guard band is large, a considerable degree is caused. The waste of spectrum resources, in order to alleviate the current situation of frequent borrowing resources, should improve the utilization of spectrum resources as much as possible. For the above seven TDD uplink and downlink configurations, subframes 0 and 5 are always downlink subframes, subframe 2 is always uplink subframes, and subframe 1 is always a special subframe, so the guard bandwidth reserved between TDD systems In the above-mentioned subframes in which the transmission direction is fixed, data transmission in the same direction can be performed without affecting the existing data transmission. Currently, when the length of the DwPTS is 3 OFDM symbols, it can be used to transmit the PDCCH and the synchronization signal. The PDCCH transmitted at this time is mainly used for uplink scheduling signaling (UL DCI), and is not used for the physical downlink shared channel (PDSCH). If the method is still used in the guard band, the resources in the guard band cannot be fully utilized because there can be only one uplink subframe in the band, and there is no corresponding UL DCI transmission in the subframes 1, 6, and the subframe. 1, 6 can not pass PDSCH, then the first two symbols of subframes 1 and 6 are all wasted. In addition, since the legacy PDCCH is not transmitted on the NCT carrier, when the special subframe is configured to be configured with 0 and 5, the DwPTS in the downlink subframes 1 and 6 has no PDCCH transmission, and does not support PDSCH transmission, which causes waste of resources.
另夕卜, 在 LTE Rel-10/ll中, 有些情况下, CSI参考信号可能会和控制信道、 同步信道 或者广播信道等发生冲突, 因此在特定的子帧中 UE会假设没有传输 CSI参考信号。 例如 协议中明确规定了在如下类型的子帧中, UE将假设没有传输 CSI参考信号:  In addition, in LTE Rel-10/11, in some cases, the CSI reference signal may collide with the control channel, the synchronization channel, or the broadcast channel, so the UE will assume that no CSI reference signal is transmitted in a specific subframe. . For example, the protocol clearly states that in the following types of subframes, the UE will assume that no CSI reference signal is transmitted:
-帧结构类型 2中的特殊子帧;  - a special subframe in frame structure type 2;
·可能和广播信道、 同步信号或者系统信息块类型 1信息发生碰撞的子帧;  a subframe that may collide with a broadcast channel, a synchronization signal, or a system information block type 1 information;
•配置用于传输 paging信息的子帧。  • Configure a subframe for transmitting paging information.
因此, 对于 TDD系统来说, 可用于 CSI参考信号传输的下行子帧个数要远少于 FDD 系统。例如在 FDD系统中所有子帧都能够被用于 CSI参考信号的传输,而在 TDD系统中, 只有少部分的子帧可用, 这会使 CSI参考信号在 TDD系统中的使用灵活性受限。  Therefore, for TDD systems, the number of downlink subframes available for CSI reference signal transmission is much less than that of FDD systems. For example, in a FDD system, all subframes can be used for CSI reference signal transmission. In the TDD system, only a small number of subframes are available, which limits the flexibility of the CSI reference signal in the TDD system.
进一步,考虑到在 Rel-12中新的场景和技术,对于 TDD系统来说,在以下场景中 CSI 参考信号的配置会更加受限:  Further, considering the new scenarios and technologies in Rel-12, for TDD systems, the configuration of CSI reference signals is more limited in the following scenarios:
.场景 1 : TDD上下行配置 0  Scenario 1: TDD uplink and downlink configuration 0
在 TDD上下行配置可基于传输量进行自适应切换的场景下, TDD上下行配置 0是一 种最经常被使用的配置。 例如对于一个负载较低的小区, 选择使用 TDD上下行配置 0更 加合理, 因为下行子帧传输个数小, 能够更加节约能量。 但是另一方面, 对于 TDD上下 行配置 0, 只有子帧 0和 5能够支持 CSI参考信号的传输, 且广播信道和辅同步信号在每 一个无线帧中的子帧 0都会进行传输, 因此可使用的 CSI参考信号配置更加受限。 另外, 在 TDD子帧 5中, SIB1信息会以 20毫秒的周期进行传输,辅同步信号在每一个无线帧都 传输, 同时寻呼信息还可能在 TDD的每一个无线帧中的子帧 0和 5中进行传输, 这些都 进一步限制了可使用的 CSI-RS配置。 In the scenario where the TDD uplink and downlink configuration can be adaptively switched based on the transmission amount, the TDD uplink and downlink configuration 0 is the most frequently used configuration. For example, for a cell with a lower load, it is more reasonable to choose to use TDD uplink and downlink configuration 0, because the number of downlink subframe transmissions is small, which can save more energy. On the other hand, for TDD uplink and downlink configuration 0, only subframes 0 and 5 can support the transmission of CSI reference signals, and the broadcast channel and the secondary synchronization signal are transmitted in subframe 0 in each radio frame, so it can be used. The CSI reference signal configuration is more limited. In addition, in TDD subframe 5, the SIB1 information is transmitted in a period of 20 milliseconds, and the secondary synchronization signal is in every radio frame. Transmission, while paging information may also be transmitted in subframes 0 and 5 in each radio frame of the TDD, which further limits the available CSI-RS configuration.
-场景 2: small cell  - Scene 2: small cell
在 Rel-12中, 引入了 small cell增强的议题。 对于密集部署的 small cell场景, 小区之 间的 CSI参考信号千扰会更加严重。 在 Rel-10/ll 中, 可以通过配置零功率的 CSI参考信 号来减少小区之间的干扰。但是,由于 CSI参考信号的配置是有限的,该场景下要解决 CSI 参考信号的干扰问题就更加困难。  In Rel-12, the issue of small cell enhancement was introduced. For densely deployed small cell scenarios, the CSI reference signal interference between cells is more serious. In Rel-10/ll, interference between cells can be reduced by configuring a zero-power CSI reference signal. However, since the configuration of the CSI reference signal is limited, it is more difficult to solve the interference problem of the CSI reference signal in this scenario.
-场景 3: 多点协作传输  - Scenario 3: Multipoint coordinated transmission
在多点协作传输的场景下, UE可能会被配置多个 CSI参考信号的进程, 每一个进程 都有独立的非零功率 CSI参考信号配置,零功率 CSI参考信号配置以及千扰测量资源配置, 这些都是基于可用的 CSI参考信号配置,因此,该场景下的 CSI参考信号配置也非常受限。 发明内容 本发明实施例提供一种信道状态信息参考信号的传输方法和设备, 用于减少时频资源 的浪费, 解决 CSI参考信号配置受限的问题。  In the scenario of coordinated multi-point transmission, the UE may be configured with multiple CSI reference signal processes, each of which has independent non-zero power CSI reference signal configuration, zero-power CSI reference signal configuration, and interference measurement resource configuration. These are all based on the available CSI reference signal configuration, so the CSI reference signal configuration in this scenario is also very limited. SUMMARY OF THE INVENTION The embodiments of the present invention provide a method and a device for transmitting a channel state information reference signal, which are used to reduce waste of time-frequency resources and solve the problem of limited configuration of CSI reference signals.
一种 CSI-RS的传输方法, 该方法包括:  A CSI-RS transmission method, the method comprising:
网络侧确定发送 CSI-RS 所使用的配置信息; 该所述配置信息指示网络侧采用压缩 CSI-RS结构传输 CSI-RS; 该所述压缩 CSI-RS结构中所有的 CSI-RS在下行子帧或下行时 隙中的前 X个 OFDM符号内的资源单元(RE ) 中传输, 其中 X为不大于 3的正整数; 网络側才艮据确定的配置信息向终端发送对应的 CSI-RS。  The network side determines the configuration information used by the CSI-RS to transmit; the configuration information indicates that the network side transmits the CSI-RS by using a compressed CSI-RS structure; and all CSI-RSs in the compressed CSI-RS structure are in the downlink subframe. Or transmitting in a resource unit (RE) in the first X OFDM symbols in the downlink slot, where X is a positive integer not greater than 3; the network side sends the corresponding CSI-RS to the terminal according to the determined configuration information.
本发明实施例提供的方法中, 网络侧在下行子帧或下行时隙中的前 X个 OFDM符号内 的 RE中发送 CS I-RS , 其中 X为不大于 3的正整数, 可见, 本方法实现了在下行子帧或下 行时隙中的前 X个 OFDM符号传输 CS I-RS的方案。 该方案实现了对 CS I参考信号的增强, 能够解决 CS I参考信号配置受限的问题。 另外, 在该方案应用于 TDD保护频带和 NCT的载 波上时, 子帧的前 X个 OFDM符号可以得到充分利用, 进而减少了时频资源的浪费。 应当 指出的是, 本发明实施例提供的技术方案不仅适用于 TDD系统, 同样适用于 FDD系统。  In the method provided by the embodiment of the present invention, the network side sends the CS I-RS in the REs in the first X OFDM symbols in the downlink subframe or the downlink slot, where X is a positive integer not greater than 3, and the method is visible. A scheme of transmitting CS I-RS in the first X OFDM symbols in a downlink subframe or a downlink slot is implemented. This scheme realizes the enhancement of the CS I reference signal and can solve the problem that the CS I reference signal configuration is limited. In addition, when the scheme is applied to the TDD guard band and the carrier of the NCT, the first X OFDM symbols of the subframe can be fully utilized, thereby reducing the waste of time-frequency resources. It should be noted that the technical solution provided by the embodiments of the present invention is applicable not only to the TDD system but also to the FDD system.
较佳地, 上述压缩 CSI-RS结构中, 每个 CSI-RS端口对应的 CSI-RS资源由 Y个时域 相邻或者频域相邻的 RE组成, 其中 Y为大于 1的正整数; 并且,  Preferably, in the compressed CSI-RS structure, the CSI-RS resource corresponding to each CSI-RS port is composed of Y time-domain neighboring or frequency-domain adjacent REs, where Y is a positive integer greater than one; ,
对于每个 CSI-RS端口对应的 CSI-RS资源, 该 CSI-RS资源最多由 Y个 CSI-RS端口 的 CSI-RS复用。  For the CSI-RS resource corresponding to each CSI-RS port, the CSI-RS resource is multiplexed by the CSI-RS of the Y CSI-RS ports at most.
基于上述任一实施例,较佳地,上述配置信息包含的 CSI-RS配置信息和零功率 CSI-RS 配置信息均包含参数 /'和 mod( , 2); / '和 mod( , 2)的取值为 0, 其中 为 CSI-RS资源所在时隙的编号, /'为 CSI-RS资源 在时隙中占用的第一个 OFDM符号的编号。 Based on any of the above embodiments, preferably, the CSI-RS configuration information and the zero-power CSI-RS configuration information included in the configuration information include parameters /' and mod(, 2); The value of / ' and mod( , 2) is 0, where is the number of the slot in which the CSI-RS resource is located, and /' is the number of the first OFDM symbol occupied by the CSI-RS resource in the slot.
基于上述任一实施例, 较佳地, 上述配置信息包含的 CSI-RS配置对应的种类数目不 小于 P, P为对应压缩 CSI-RS结构的 CSI-RS配置的种类数目;  Preferably, the number of types corresponding to the CSI-RS configuration included in the configuration information is not less than P, and P is the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure;
上述配置信息包含的零功率 CSI-RS配置信息所占用的比特数不小于 Κ, K为对应压 缩 CSI-RS结构的零功率 CSI-RS配置的种类数目。  The number of bits occupied by the zero-power CSI-RS configuration information included in the above configuration information is not less than Κ, and K is the number of types of zero-power CSI-RS configurations corresponding to the compressed CSI-RS structure.
基于上述任一实施例, 较佳地, 上述配置信息包含的 CSI-RS配置对应的种类数目不 小于 M, M为 LTE-A系统协议中定义的 CSI-RS配置的种类数目与对应压缩 CSI-RS结构 的 CSI-RS配置的种类数目之和;  Preferably, the number of types corresponding to the CSI-RS configuration included in the configuration information is not less than M, and M is the number of types of CSI-RS configurations defined in the LTE-A system protocol and the corresponding compressed CSI- The sum of the number of types of CSI-RS configurations of the RS structure;
上述配置信息包含的零功率 CSI-RS配置信息所占用的比特数不小于 N, N为 LTE-A 系统协议中定义的零功率 CSI-RS配置的种类数目与对应压缩 CSI-RS结构的零功率 CSI-RS 配置的种类数目之和。  The number of bits occupied by the zero-power CSI-RS configuration information included in the foregoing configuration information is not less than N, where N is the number of types of zero-power CSI-RS configurations defined in the LTE-A system protocol and zero power of the corresponding compressed CSI-RS structure. The sum of the number of types of CSI-RS configurations.
一种 CSI-RS的传输方法, 该方法包括:  A CSI-RS transmission method, the method comprising:
终端确定网络侧发送 CSI-RS 所使用的配置信息; 该配置信息指示网络侧采用压缩 CSI-RS结构传输 CSI-RS; 该压缩 CSI-RS结构中所有的 CSI-RS在下行子帧或下行时隙中 的前 X个 OFDM符号内的 RE中传输, 其中 X为不大于 3的正整数;  The terminal determines the configuration information used by the network side to send the CSI-RS; the configuration information indicates that the network side transmits the CSI-RS by using the compressed CSI-RS structure; and all the CSI-RSs in the compressed CSI-RS structure are in the downlink subframe or the downlink Transmitted in REs in the first X OFDM symbols in the slot, where X is a positive integer not greater than 3;
终端根据确定的配置信息接收网络侧发送的 CSI-RS。  The terminal receives the CSI-RS sent by the network side according to the determined configuration information.
本发明实施例提供的方法中, 终端在下行子帧或下行时隙中的前 X个 OFDM符号内的 RE上接收 CSI-RS , 其中 X为不大于 3的正整数, 可见, 本方法实现了在下行子帧或下行 时隙中的前 X个 OF匪符号传输 CS I-RS的方案。 该方案实现了对 CSI参考信号的增强, 能 够解决 CS I参考信号配置受限的问题。 另外, 在该方案应用于时分双工 TDD保护频带和新 类型 NCT载波上时, 子帧的前 X个 0FDM符号可以得到充分利用, 进而减少了时频资源的 浪费。应当指出的是,本发明实施例提供的技术方案不仅适用于 TDD系统, 同样适用于 FDD 系统。  In the method provided by the embodiment of the present invention, the terminal receives the CSI-RS on the RE in the first X OFDM symbols in the downlink subframe or the downlink time slot, where X is a positive integer not greater than 3, and the method is implemented. The scheme of transmitting the CS I-RS in the first X OF匪 symbols in the downlink subframe or the downlink slot. This scheme implements an enhancement of the CSI reference signal and can solve the problem that the CS I reference signal configuration is limited. In addition, when the scheme is applied to the time division duplex TDD guard band and the new type NCT carrier, the first X 0FDM symbols of the subframe can be fully utilized, thereby reducing the waste of time-frequency resources. It should be noted that the technical solution provided by the embodiment of the present invention is applicable not only to the TDD system but also to the FDD system.
较佳地, 上述压缩 CSI-RS结构中, 每个 CSI-RS端口对应的 CSI-RS资源由 Y个时域 相邻或者频域相邻的 RE组成, 其中 Y为大于 1的正整数; 并且,  Preferably, in the compressed CSI-RS structure, the CSI-RS resource corresponding to each CSI-RS port is composed of Y time-domain neighboring or frequency-domain adjacent REs, where Y is a positive integer greater than one; ,
对于每个 CSI-RS端口对应的 CSI-RS资源, 该 CSI-RS资源最多由 Y个 CSI-RS端口 的 CSI-RS复用。  For the CSI-RS resource corresponding to each CSI-RS port, the CSI-RS resource is multiplexed by the CSI-RS of the Y CSI-RS ports at most.
基于上述任一终端侧方法实施例, 较佳地, 上述配置信息包含的 CSI-RS配置信息和 零功率 CSI-RS配置信息均包含参数 /'和 mod(ns, 2); Preferably, the CSI-RS configuration information and the zero-power CSI-RS configuration information included in the configuration information include parameters /' and mod(n s , 2);
/ '和 mod( , 2)的取值为 0, 其中 为 CSI-RS资源所在时隙的编号, /'为 CSI-RS资源 在时隙中占用的第一个 OFDM符号的编号。  The value of / ' and mod( , 2) is 0, where is the number of the slot in which the CSI-RS resource is located, and /' is the number of the first OFDM symbol occupied by the CSI-RS resource in the slot.
基于上述任一终端側方法实施例, 较佳地, 上述配置信息包含的 CSI-RS配置对应的 种类数目不小于 P, P为对应压缩 CSI-RS结构的 CSI-RS配置的种类数目; 上述配置信息包含的零功率 CSI-RS配置信息所占用的比特数不小于 Κ, K为对应压 缩 CSI-RS结构的零功率 CSI-RS配置的种类数目。 Preferably, the configuration information includes a CSI-RS configuration corresponding to the method according to any one of the foregoing terminal side methods. The number of types is not less than P, where P is the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure; the number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information is not less than Κ, and K is the corresponding compressed CSI- The number of types of zero-power CSI-RS configurations for the RS structure.
基于上述任一终端侧方法实施例, 较佳地, 上述配置信息包含的 CSI-RS配置对应的 种类数目不小于 M, M为 LTE-A系统协议中定义的 CSI-RS配置的种类数目与对应压缩 CSI-RS结构的 CSI-RS配置的种类数目之和;  Preferably, the number of types corresponding to the CSI-RS configuration included in the configuration information is not less than M, and M is the number of types of CSI-RS configurations defined in the LTE-A system protocol and corresponding to the foregoing method. The sum of the number of types of CSI-RS configurations of the compressed CSI-RS structure;
上述配置信息包含的零功率 CSI-RS配置信息所占用的比特数不小于 N, N为 LTE-A 系统协议中定义的零功率 CSI-RS配置的种类数目与对应压缩 CSI-RS结构的零功率 CSI-RS 配置的种类数目之和。  The number of bits occupied by the zero-power CSI-RS configuration information included in the foregoing configuration information is not less than N, where N is the number of types of zero-power CSI-RS configurations defined in the LTE-A system protocol and zero power of the corresponding compressed CSI-RS structure. The sum of the number of types of CSI-RS configurations.
一种基站, 该基站包括:  A base station, the base station comprising:
确定单元, 用于确定发送 CSI-RS所使用的配置信息; 该配置信息指示网络侧采用压 缩 CSI-RS结构传输 CSI-RS;该压缩 CSI-RS结构中所有的 CSI-RS在下行子帧或下行时隙 中的前 X个 OFDM符号内的资源单元中传输, 其中 X为不大于 3的正整数;  a determining unit, configured to determine configuration information used by the CSI-RS to transmit; the configuration information indicates that the network side transmits the CSI-RS by using a compressed CSI-RS structure; all CSI-RSs in the compressed CSI-RS structure are in a downlink subframe or Transmitted in resource elements in the first X OFDM symbols in the downlink slot, where X is a positive integer not greater than 3;
发送单元, 用于才艮据确定的配置信息向终端发送对应的 CSI-RS。  And a sending unit, configured to send the corresponding CSI-RS to the terminal according to the determined configuration information.
本发明实施例提供的基站在下行子帧或下行时隙中的前 X个 OFDM符号内的 RE中发送 The base station provided by the embodiment of the present invention sends in the RE in the first X OFDM symbols in the downlink subframe or the downlink slot.
CS I-RS , 其中 X为不大于 3的正整数, 可见, 本发明实施例提供的基站实现了在下行子帧 或下行时隙中的前 X个 OFDM符号传输 CSI-RS的方案。 该方案实现了对 CS I参考信号的增 强, 能够解决 CSI参考信号配置受限的问题。 另外, 在该方案应用于时分双工 TDD保护频 带和新类型 NCT载波上时, 子帧的前 X个 OFDM符号可以得到充分利用, 进而减少了时频 资源的浪费。 应当指出的是, 本发明实施例提供的技术方案不仅适用于 TDD系统, 同样适 用于 FDD系统。 CS I-RS, where X is a positive integer not greater than 3. It can be seen that the base station provided by the embodiment of the present invention implements a scheme of transmitting CSI-RS in the first X OFDM symbols in a downlink subframe or a downlink slot. This scheme realizes the enhancement of the CS I reference signal and can solve the problem that the CSI reference signal configuration is limited. In addition, when the scheme is applied to the time division duplex TDD protection band and the new type NCT carrier, the first X OFDM symbols of the subframe can be fully utilized, thereby reducing the waste of time-frequency resources. It should be noted that the technical solution provided by the embodiment of the present invention is applicable not only to the TDD system but also to the FDD system.
较佳地, 上述确定单元确定的配置信息所指示的压缩 CSI-RS结构中, 每个 CSI-RS端 口对应的 CSI-RS资源由 Y个时域相邻或者频域相邻的 RE组成, 其中 Y为大于 1的正整 数; 并且,  Preferably, in the compressed CSI-RS structure indicated by the configuration information determined by the determining unit, the CSI-RS resources corresponding to each CSI-RS port are composed of Y time-domain neighboring or frequency-domain neighboring REs, where Y is a positive integer greater than 1; and,
对于每个 CSI-RS端口对应的 CSI-RS资源, 该 CSI-RS资源最多由 Y个 CSI-RS端口 的 CSI-RS复用。  For the CSI-RS resource corresponding to each CSI-RS port, the CSI-RS resource is multiplexed by the CSI-RS of the Y CSI-RS ports at most.
基于上述任一基站实施例, 较佳地, 上述确定单元确定的配置信息包含的 CSI-RS配 置信息和零功率 CSI-RS配置信息均包含参数 Γ和 mod(ns, 2); Preferably, the CSI-RS configuration information and the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit respectively include parameters Γ and mod(n s , 2);
/ '和 mod( , 2)的取值为 0, 其中 为 CSI-RS资源所在时隙的编号, /'为 CSI-RS资源 在时隙中占用的第一个 OFDM符号的编号。  The value of / ' and mod( , 2) is 0, where is the number of the slot in which the CSI-RS resource is located, and /' is the number of the first OFDM symbol occupied by the CSI-RS resource in the slot.
基于上述任一基站实施例, 较佳地, 上述确定单元确定的配置信息包含的 CSI-RS配 置对应的种类数目不小于 P, P为对应压缩 CSI-RS结构的 CSI-RS配置的种类数目; 上述确定单元确定的配置信息包含的零功率 CSI-RS配置信息所占用的比特数不小于 K, K为对应压缩 CSI-RS结构的零功率 CSI-RS配置的种类数目。 Preferably, the number of types corresponding to the CSI-RS configuration included in the configuration information determined by the determining unit is not less than P, and P is the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure; The number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit is not less than K, K is the number of types of zero-power CSI-RS configurations corresponding to the compressed CSI-RS structure.
基于上述任一基站实施例, 较佳地, 上述确定单元确定的配置信息包含的 CSI-RS配 置对应的种类数目不小于 M, M为 LTE-A系统协议中定义的 CSI-RS配置的种类数目与对 应压缩 CSI-RS结构的 CSI-RS配置的种类数目之和;  Preferably, the number of types corresponding to the CSI-RS configuration included in the configuration information determined by the determining unit is not less than M, and M is the number of types of CSI-RS configurations defined in the LTE-A system protocol. The sum of the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure;
上述确定单元确定的配置信息包含的零功率 CSI-RS配置信息所占用的比特数不小于 The number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit is not less than
N, N为 LTE-A系统协议中定义的零功率 CSI-RS配置的种类数目与对应压缩 CSI-RS结构 的零功率 CSI-RS配置的种类数目之和。 N, N is the sum of the number of types of zero-power CSI-RS configurations defined in the LTE-A system protocol and the number of types of zero-power CSI-RS configurations corresponding to the compressed CSI-RS structure.
一种基站, 该基站包括处理器和射频单元。  A base station includes a processor and a radio unit.
该处理器被配置为确定发送 CSI-RS所使用的配置信息; 上述配置信息指示网络侧釆 用压缩 CSI-RS结构传输 CSI-RS;上述压缩 CSI-RS结构中所有的 CSI-RS在下行子帧或下 行时隙中的前 X个 OFDM符号内的资源单元中传输, 其中 X为不大于 3的正整数; 该射频单元被配置为根据确定的配置信息向终端发送对应的 CSI-RS。  The processor is configured to determine configuration information used by the CSI-RS to transmit; the configuration information indicates that the network side transmits the CSI-RS by using a compressed CSI-RS structure; and all CSI-RSs in the compressed CSI-RS structure are in the downlink Transmitted in resource elements within the first X OFDM symbols in a frame or downlink time slot, where X is a positive integer not greater than 3; the radio frequency unit is configured to transmit a corresponding CSI-RS to the terminal according to the determined configuration information.
本发明实施例提供的基站在下行子帧或下行时隙中的前 X个 OFDM符号内的 RE中发送 CS I-RS , 其中 X为不大于 3的正整数, 可见, 本发明实施例提供的基站实现了在下行子帧 或下行时隙中的前 X个 OFDM符号传输 CSI-RS的方案。 该方案实现了对 CS I参考信号的增 强, 能够解决 CSI参考信号配置受限的问题。 另外, 在该方案应用于时分双工 TDD保护频 带和新类型 NCT载波上时, 子帧的前 X个 OFDM符号可以得到充分利用, 进而减少了时频 资源的浪费。 应当指出的是, 本发明实施例提供的技术方案不仅适用于 TDD系统, 同样适 用于 FDD系统。  The base station provided by the embodiment of the present invention sends a CS I-RS in a RE in a first X OFDM symbol in a downlink subframe or a downlink time slot, where X is a positive integer of not more than 3, which is visible in the embodiment of the present invention. The base station implements a scheme of transmitting CSI-RSs in the first X OFDM symbols in a downlink subframe or a downlink slot. This scheme realizes the enhancement of the CS I reference signal and can solve the problem that the CSI reference signal configuration is limited. In addition, when the scheme is applied to the time division duplex TDD protection band and the new type NCT carrier, the first X OFDM symbols of the subframe can be fully utilized, thereby reducing the waste of time-frequency resources. It should be noted that the technical solution provided by the embodiment of the present invention is applicable not only to the TDD system but also to the FDD system.
一种终端, 该终端包括:  A terminal, the terminal comprising:
确定单元, 用于确定网络侧发送 CSI-RS所使用的配置信息; 该配置信息指示网络侧 采用压缩 CSI-RS结构传输 CSI-RS;该压缩 CSI-RS结构中所有的 CSI-RS在下行子帧或下 行时隙中的前 X个 OFDM符号内的资源单元中传输, 其中 X为不大于 3的正整数; 接收单元, 用于才艮据确定的配置信息接收网络侧发送的 CSI-RS。  a determining unit, configured to determine configuration information used by the network side to send the CSI-RS; the configuration information indicates that the network side transmits the CSI-RS by using a compressed CSI-RS structure; and all the CSI-RSs in the compressed CSI-RS structure are in the downlink And transmitting in the resource unit in the first X OFDM symbols in the frame or the downlink time slot, where X is a positive integer not greater than 3; and receiving unit, configured to receive the CSI-RS sent by the network side according to the determined configuration information.
本发明实施例提供的终端在下行子帧或下行时隙中的前 X个 OFDM符号内的 RE上接收 The terminal provided by the embodiment of the present invention receives the RE in the first X OFDM symbols in the downlink subframe or the downlink slot.
CS I-RS , 其中 X为不大于 3的正整数, 可见, 本发明实施例提供的终端实现了在下行子帧 或下行时隙中的前 X个 OFDM符号传输 CSI-RS的方案。 该方案实现了对 CS I参考信号的增 强, 能够解决 CSI参考信号配置受限的问题。 另外, 在该方案应用于时分双工 TDD保护频 带和新类型 NCT载波上时, 子帧的前 X个 OFDM符号可以得到充分利用, 进而减少了时频 资源的浪费。 应当指出的是, 本发明实施例提供的技术方案不仅适用于 TDD系统, 同样适 用于 FDD系统。 CS I-RS, where X is a positive integer not greater than 3. It can be seen that the terminal provided by the embodiment of the present invention implements a scheme for transmitting CSI-RS in the first X OFDM symbols in a downlink subframe or a downlink slot. This scheme realizes the enhancement of the CS I reference signal and can solve the problem that the CSI reference signal configuration is limited. In addition, when the scheme is applied to the time division duplex TDD protection band and the new type NCT carrier, the first X OFDM symbols of the subframe can be fully utilized, thereby reducing the waste of time-frequency resources. It should be noted that the technical solution provided by the embodiment of the present invention is applicable not only to the TDD system but also to the FDD system.
基于上述任一终端实施例, 较佳地, 上述确定单元确定的配置信息所指示的压缩 CSI-RS结构中,每个 CSI-RS端口对应的 CSI-RS资源由 Y个时域相邻或者频域相邻的 RE 组成, 其中 Y为大于 1的正整数; 并且, Preferably, in any of the foregoing terminal embodiments, in the compressed CSI-RS structure indicated by the configuration information determined by the determining unit, the CSI-RS resources corresponding to each CSI-RS port are adjacent or frequency-transmitted by Y time domains. Domain adjacent RE Composition, where Y is a positive integer greater than one; and,
对于每个 CSI-RS端口对应的 CSI-RS资源, 该 CSI-RS资源最多由 Υ个 CSI-RS端口 的 CSI-RS复用。  For a CSI-RS resource corresponding to each CSI-RS port, the CSI-RS resource is multiplexed by at most CSI-RS ports of the CSI-RS port.
基于上述任一终端实施例, 较佳地, 上述确定单元确定的配置信息包含的 CSI-RS配 置信息和零功率 CSI-RS配置信息均包含参数 /'和 mod( , 2);  Based on any of the foregoing terminal embodiments, preferably, the CSI-RS configuration information and the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit respectively include parameters /' and mod(, 2);
/ '和 mod( , 2)的取值为 0, 其中 为 CSI-RS资源所在时隙的编号, /'为 CSI-RS资源 在时隙中占用的第一个 OFDM符号的编号。  The value of / ' and mod( , 2) is 0, where is the number of the slot in which the CSI-RS resource is located, and /' is the number of the first OFDM symbol occupied by the CSI-RS resource in the slot.
基于上述任一终端实施例, 较佳地, 上述确定单元确定的配置信息包含的 CSI-RS配 置对应的种类数目不小于 P, P为对应压缩 CSI-RS结构的 CSI-RS配置的种类数目; 上述确定单元确定的配置信息包含的零功率 CSI-RS配置信息所占用的比特数不小于 Preferably, the number of types corresponding to the CSI-RS configuration included in the configuration information determined by the determining unit is not less than P, and P is the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure; The number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit is not less than
Κ, K为对应压缩 CSI-RS结构的零功率 CSI-RS配置的种类数目。 Κ, K is the number of types of zero-power CSI-RS configurations corresponding to the compressed CSI-RS structure.
基于上述任一终端实施例, 较佳地, 上述确定单元确定的配置信息包含的 CSI-RS配 置对应的种类数目不小于 M, M为 LTE-A系统协议中定义的 CSI-RS配置的种类数目与对 应压缩 CSI-RS结构的 CSI-RS配置的种类数目之和;  Preferably, the number of types corresponding to the CSI-RS configuration included in the configuration information determined by the determining unit is not less than M, and M is the number of types of CSI-RS configurations defined in the LTE-A system protocol. The sum of the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure;
上述确定单元确定的配置信息包含的零功率 CSI-RS 配置信息所占用的比特数不小于 The number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit is not less than
N, N为 LTE-A系统协议中定义的零功率 CS I-RS配置的种类数目与对应压缩 CSI-RS结构的 零功率 CS I-RS配置的种类数目之和。 N, N is the sum of the number of types of zero-power CS I-RS configurations defined in the LTE-A system protocol and the number of types of zero-power CS I-RS configurations corresponding to the compressed CSI-RS structure.
一种终端, 该终端包括处理器和射频单元。  A terminal comprising a processor and a radio unit.
该处理器被配置为确定网络侧发送 CSI-RS所使用的配置信息; 该配置信息指示网络 侧采用压缩 CSI-RS结构传输 CSI-RS; 该压缩 CSI-RS结构中所有的 CSI-RS在下行子帧或 下行时隙中的前 X个 OFDM符号内的资源单元中传输, 其中 X为不大于 3的正整数; 该射频单元被配置为根据确定的配置信息接收网络侧发送的 CSI-RS。  The processor is configured to determine configuration information used by the network side to send the CSI-RS; the configuration information indicates that the network side transmits the CSI-RS by using a compressed CSI-RS structure; and all CSI-RSs in the compressed CSI-RS structure are in the downlink The resource elements in the first X OFDM symbols in the subframe or downlink time slot are transmitted, where X is a positive integer not greater than 3; the radio frequency unit is configured to receive the CSI-RS transmitted by the network side according to the determined configuration information.
本发明实施例提供的终端在下行子帧或下行时隙中的前 X个 OFDM符号内的 RE上接收 CS I-RS , 其中 X为不大于 3的正整数, 可见, 本发明实施例提供的终端实现了在下行子帧 或下行时隙中的前 X个 OFDM符号传输 CSI-RS的方案。 该方案实现了对 CS I参考信号的增 强, 能够解决 CSI参考信号配置受限的问题。 另外, 在该方案应用于时分双工 TDD保护频 带和新类型 NCT载波上时, 子帧的前 X个 0FDM符号可以得到充分利用, 进而减少了时频 资源的浪费。 应当指出的是, 本发明实施例提供的技术方案不仅适用于 TDD系统, 同样适 用于 FDD系统。 附图说明 图 1为现有技术中的 TDD系统间的上下行干扰示意图; 图 2a为现有技术中下行常规 CP下的特殊子帧配置结构示意图; The terminal provided by the embodiment of the present invention receives the CS I-RS on the RE in the first X OFDM symbols in the downlink subframe or the downlink time slot, where X is a positive integer of not more than 3, which is visible in the embodiment of the present invention. The terminal implements a scheme of transmitting CSI-RS in the first X OFDM symbols in the downlink subframe or the downlink slot. The scheme implements an enhancement of the CS I reference signal and can solve the problem that the CSI reference signal configuration is limited. In addition, when the scheme is applied to the time division duplex TDD protection band and the new type NCT carrier, the first X OFDM symbols of the subframe can be fully utilized, thereby reducing the waste of time-frequency resources. It should be noted that the technical solution provided by the embodiment of the present invention is applicable not only to the TDD system but also to the FDD system. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of uplink and downlink interference between TDD systems in the prior art; FIG. 2a is a schematic structural diagram of a special subframe configuration in a downlink conventional CP in the prior art;
图 2b为现有技术中下行 展 CP下的特殊子帧配置结构示意图;  2b is a schematic structural diagram of a special subframe configuration in a downlink CP in the prior art;
图 3为本发明实施例提供的方法流程示意图;  FIG. 3 is a schematic flowchart of a method according to an embodiment of the present disclosure;
图 4为本发明实施例提供的另一方法流程示意图;  4 is a schematic flowchart of another method according to an embodiment of the present invention;
图 5a-图 5u为本发明实施例中的 CSI-RS传输图样示意图;  5a-5u are schematic diagrams showing a CSI-RS transmission pattern in an embodiment of the present invention;
图 6a-图 6u为本发明另一实施例中的 CSI-RS传输图样示意图;  6a-6u are schematic diagrams showing a CSI-RS transmission pattern according to another embodiment of the present invention;
图 7为本发明实施例提供的基站结构示意图;  FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present disclosure;
图 8为本发明实施例提供的终端结构示意图。 具体实施方式 为了提供一种 CSI-RS的传输方法, 进而减少时频资源的浪费, 解决 CSI参考信号配 置受限的问题。  FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present invention. DETAILED DESCRIPTION OF THE INVENTION In order to provide a CSI-RS transmission method, the waste of time-frequency resources is reduced, and the problem of limited CSI reference signal configuration is solved.
参见图 3 , 本发明实施例针对网络側提供的 CSI-RS的传输方法, 包括以下步骤: 步骤 30: 网络侧确定发送 CSI-RS所使用的配置信息; 该配置信息指示网络侧采用压 缩 CSI-RS结构传输 CSI-RS;该压缩 CSI-RS结构中所有的 CSI-RS在下行子帧或下行时隙 中的前 X个正交频分复用 (OFDM )符号内的资源单元(RE )中传输, 其中 X为不大于 3 的正整数;  Referring to FIG. 3, the method for transmitting CSI-RS provided by the network side includes the following steps: Step 30: The network side determines configuration information used for sending the CSI-RS; the configuration information indicates that the network side adopts compressed CSI- The RS structure transmits a CSI-RS; all CSI-RSs in the compressed CSI-RS structure are in resource elements (RE) in the first X orthogonal frequency division multiplexing (OFDM) symbols in the downlink subframe or the downlink slot Transmission, where X is a positive integer not greater than 3;
步骤 31 : 网络侧根据确定的配置信息向终端发送对应的 CSI-RS。  Step 31: The network side sends a corresponding CSI-RS to the terminal according to the determined configuration information.
上述压缩 CSI-RS结构中, 每个 CSI-RS端口对应的 CSI-RS资源由 Y个时域相邻或者 频域相邻的 RE组成,其中 Y为大于 1的正整数;并且,对于每个 CSI-RS端口对应的 CSI-RS 资源, 该 CSI-RS资源最多由 Y个 CSI-RS端口的 CSI-RS复用。  In the above compressed CSI-RS structure, a CSI-RS resource corresponding to each CSI-RS port is composed of Y time-domain neighboring or frequency-domain adjacent REs, where Y is a positive integer greater than 1; and, for each The CSI-RS resource corresponding to the CSI-RS port, and the CSI-RS resource is multiplexed by the CSI-RS of the Y CSI-RS ports at most.
上述配置信息包含的 CSI-RS 配置信息和零功率 CSI-RS 配置信息均包含参数 /'和 mod(ns, 2); /,和 mod( , 2)的取值为 0,其中 ¾为 CSI-RS资源所在时隙的编号, /'为 CSI-RS 资源在时隙中占用的第一个 OFDM符号的编号。 The above configuration information includes CSI-RS configuration information and zero-power CSI-RS configuration information, including parameters /' and mod(n s , 2); /, and mod( , 2) have a value of 0, where 3⁄4 is CSI - the number of the slot in which the RS resource is located, /' is the number of the first OFDM symbol occupied by the CSI-RS resource in the slot.
上述配置信息包含的 CSI-RS配置对应的种类数目不小于 P, P为对应压缩 CSI-RS结 构的 CSI-RS配置的种类数目;上述配置信息包含的零功率 CSI-RS配置信息所占用的比特 数不小于 Κ, K为对应压缩 CSI-RS结构的零功率 CSI-RS配置的种类数目; 或者,  The number of types corresponding to the CSI-RS configuration included in the configuration information is not less than P, where P is the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure; and the bits occupied by the zero-power CSI-RS configuration information included in the configuration information. The number is not less than Κ, and K is the number of types of zero-power CSI-RS configurations corresponding to the compressed CSI-RS structure; or
上述配置信息包含的 CSI-RS配置对应的种类数目不小于 M, M为 LTE-A系统协议中 定义的 CSI-RS配置的种类数目与对应压缩 CSI-RS结构的 CSI-RS配置的种类数目之和; 上述配置信息包含的零功率 CSI-RS配置信息所占用的比特数不小于 N, N为 LTE-A系统 协议中定义的零功率 CSI-RS配置的种类数目与对应压缩 CSI-RS结构的零功率 CSI-RS配 置的种类数目之和。 参见图 4, 本发明实施例针对终端侧提供的 CSI-RS的传输方法, 包括以下步骤: 步骤 40: 终端确定网络侧发送 CSI-RS所使用的配置信息; 该配置信息指示网络侧采 用压缩 CSI-RS结构传输 CSI-RS; 该压缩 CSI-RS结构中所有的 CSI-RS在下行子帧或下行 时隙中的前 X个 OFDM符号内的 RE中传输, 其中 X为不大于 3的正整数; The number of types corresponding to the CSI-RS configuration included in the configuration information is not less than M, where M is the number of types of CSI-RS configurations defined in the LTE-A system protocol and the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure. And the number of bits occupied by the zero-power CSI-RS configuration information included in the foregoing configuration information is not less than N, where N is the number of types of zero-power CSI-RS configurations defined in the LTE-A system protocol and the corresponding compressed CSI-RS structure. The sum of the number of types of zero-power CSI-RS configurations. Referring to FIG. 4, the method for transmitting a CSI-RS provided by a terminal side includes the following steps: Step 40: The terminal determines configuration information used by the network side to send a CSI-RS; the configuration information indicates that the network side adopts compressed CSI. -RS structure transmission CSI-RS; all CSI-RSs in the compressed CSI-RS structure are transmitted in REs in the first X OFDM symbols in the downlink subframe or the downlink slot, where X is a positive integer not greater than 3 ;
步骤 41 : 终端根据确定的配置信息接收网络侧发送的 CSI-RS。  Step 41: The terminal receives the CSI-RS sent by the network side according to the determined configuration information.
上述压缩 CSI-RS结构中, 每个 CSI-RS端口对应的 CSI-RS资源由 Y个时域相邻或者 频域相邻的 RE组成,其中 Y为大于 1的正整数;并且,对于每个 CSI-RS端口对应的 CSI-RS 资源, 该 CSI-RS资源最多由 Y个 CSI-RS端口的 CSI-RS复用。  In the above compressed CSI-RS structure, a CSI-RS resource corresponding to each CSI-RS port is composed of Y time-domain neighboring or frequency-domain adjacent REs, where Y is a positive integer greater than 1; and, for each The CSI-RS resource corresponding to the CSI-RS port, and the CSI-RS resource is multiplexed by the CSI-RS of the Y CSI-RS ports at most.
上述配置信息包含的 CSI-RS 配置信息和零功率 CSI-RS 配置信息均包含参数 /'和 mod(ns, 2); / '和 mod(ns, 2)的取值为 0,其中 为 CSI-RS资源所在时隙的编号, /'为 CSI-RS 资源在时隙中占用的第一个 OFDM符号的编号。 The above configuration information includes CSI-RS configuration information and zero-power CSI-RS configuration information, including parameters /' and mod(n s , 2); / ' and mod(n s , 2) have values of 0, where The number of the slot in which the CSI-RS resource is located, /' is the number of the first OFDM symbol occupied by the CSI-RS resource in the slot.
上述配置信息包含的 CSI-RS配置对应的种类数目不小于 P, P为对应压缩 CSI-RS结 构的 CSI-RS配置的种类数目; 该配置信息包含的零功率 CSI-RS配置信息所占用的比特数 不小于 K, K为对应压缩 CSI-RS结构的零功率 CSI-RS配置的种类数目; 或者,  The number of types corresponding to the CSI-RS configuration included in the configuration information is not less than P, where P is the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure; the bits occupied by the zero-power CSI-RS configuration information included in the configuration information The number is not less than K, K is the number of types of zero-power CSI-RS configurations corresponding to the compressed CSI-RS structure; or
上述配置信息包含的 CSI-RS配置对应的种类数目不小于 M, M为 LTE-A系统协议 中定义的 CSI-RS配置的种类数目与对应压缩 CSI-RS结构的 CSI-RS配置的种类数目之和; 该配置信息包含的零功率 CSI-RS配置信息所占用的比特数不小于 N, N为 LTE-A系统协 议中定义的零功率 CSI-RS配置的种类数目与对应压缩 CSI-RS结构的零功率 CSI-RS配置 的种类数目之和。  The number of types corresponding to the CSI-RS configuration included in the configuration information is not less than M, where M is the number of types of CSI-RS configurations defined in the LTE-A system protocol and the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure. And the number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information is not less than N, where N is the number of types of zero-power CSI-RS configurations defined in the LTE-A system protocol and the corresponding compressed CSI-RS structure. The sum of the number of types of zero-power CSI-RS configurations.
下面对本发明进行具体说明:  The invention will be specifically described below:
基站侧:  Base station side:
步骤一: 网络侧确定发送 CSI-RS所使用的端口和子帧; 这里, 在端口数为 1 时, 发 送 CSI-RS所使用的端口为端口 15 , 在端口数为 2时, 发送 CSI-RS所使用的端口为端口 15和端口 16, 在端口数为 4时, 发送 CSI-RS所使用的端口为端口 15、 端口 16、 端口 17 和端口 18 , 在端口数为 8时, 发送 CSI-RS所使用的端口为端口 15、 端口 16、 端口 17、 端口 18、 端口 19、 端口 20、 端口 21、 端口 22。 发送 CSI-RS所使用的子帧为下行子帧或 特殊子帧。  Step 1: The network side determines the port and subframe used to send the CSI-RS. Here, when the number of ports is 1, the port used to send the CSI-RS is port 15, and when the number of ports is 2, the CSI-RS is sent. The ports used are port 15 and port 16. When the number of ports is 4, the ports used to send CSI-RS are port 15, port 16, port 17, and port 18. When the number of ports is 8, the CSI-RS is sent. The ports used are port 15, port 16, port 17, port 18, port 19, port 20, port 21, port 22. The subframe used for transmitting the CSI-RS is a downlink subframe or a special subframe.
步骤二: 网络侧对于确定的每个端口, 确定在该端口上向终端发送 CSI-RS 所使用的 资源单元( RE )以及在各 RE上发送的 CSI-RS , 并通过该端口在各 RE上向终端发送对应 的 CSI-RS; 其中, 发送 CSI-RS所使用的 RE位于步骤 30中确定的子帧的前两个 OFDM 符号中。  Step 2: The network side determines, for each port determined, the resource unit (RE) used to send the CSI-RS to the terminal on the port, and the CSI-RS sent on each RE, and uses the port on each RE. Transmitting a corresponding CSI-RS to the terminal; where the RE used for transmitting the CSI-RS is located in the first two OFDM symbols of the subframe determined in step 30.
其中, CSI-RS所使用的 RE体现了压缩 CSI-RS结构。  Among them, the RE used by CSI-RS reflects the compressed CSI-RS structure.
作为一种实施方式, 步骤二中, 可以按照如下公式确定在该端口上向终端发送 CSI-RS 所使 RE以及在各 RE上发送的 CSI-RS: p) As an implementation manner, in step 2, the CSI-RS may be sent to the terminal on the port according to the following formula: The RE and the CSI-RS sent on each RE: p)
其中, ' '是在编号为 p的端口上、 对应编号为 的子载波和编号为/的 OFDM符号 rln (m,) Where ''is on the port numbered p, the corresponding numbered subcarrier, and the OFDM symbol r ln (m,)
的 RE上发送的 CSI-RS; "s为时隙序号, 的取值为 0; 为 LTE系统协议定义的CSI-RS sent on the RE; " s is the slot number, the value is 0; defined for the LTE system protocol
CSI-RS序列; k /、 m'的取值按照 LTE系统协议确定, 即:The CSI-RS sequence; the values of k /, m' are determined according to the LTE system protocol, namely:
Figure imgf000014_0001
Figure imgf000014_0001
-6 fo p  -6 fo p
-1 fo p  -1 fo p
-7 forp  -7 forp
k = k'+\2m +  k = k'+\2m +
-0 ΐοτρ  -0 ΐοτρ
-3 fo p  -3 fo p
-6 fo p  -6 fo p
-9 fo p  -9 fo p
CSI导频配置 0-19,常规 CP  CSI pilot configuration 0-19, regular CP
1 = 1'+ CSI导频配置 20-31,常规 CP 1 = 1'+ CSI pilot configuration 20-31, regular CP
Figure imgf000014_0002
CSI导频配置 0-27,扩展 CP
Figure imgf000014_0003
Figure imgf000014_0002
CSI pilot configuration 0-27, extended CP
Figure imgf000014_0003
Νξ Νξ
2 上述按照 LTE系统协议确定 、 /时使用的参数 (^, 如下:  2 The above parameters (^, determined according to the LTE system protocol, are as follows:
在发送 CSI-RS 所使用的端口数为 1 或 2 时: (:',/') = (11,0), 或( ',/') = (9,0) , 或 (k', ) = O,0), 或 = (10,0), 或( ',/') = (8,0), 或 = (6,0), 或 = (5,0), 或 ( ',/') = (4,0), 或( ',/') = (3,0), 或( ',/') = (2,0) , 或 = (1,0) , 或( ',/') = (0,0); 或 者,  When the number of ports used to send CSI-RS is 1 or 2: (:', /') = (11,0), or ( ', /') = (9,0) , or (k', ) = O,0), or = (10,0), or ( ',/') = (8,0), or = (6,0), or = (5,0), or ( ',/' ) = (4,0), or ( ',/') = (3,0), or ( ',/') = (2,0) , or = (1,0) , or ( ',/' ) = (0,0); or,
在发送 CSI-RS 所使用的端口数为 4 时: (!:',/') -(11,0) , 或 W) = (9,0), 或 ( ',/') = (7,0), 或( ',/') = (10,0), 或( ',/') = (8,0), 或( ',/') = (6,0); 或者,  When the number of ports used to send CSI-RS is 4: (!:', /') -(11,0) , or W) = (9,0), or ( ',/') = (7, 0), or ( ', /') = (10,0), or ( ',/') = (8,0), or ( ',/') = (6,0); or,
在发送 CSI-RS 所使用的端口数为 8 时: ,/') = (! 1,0) , 或( ',/') = (9,0) , 或 ( ',/') =(7,0)。  When the number of ports used to send CSI-RS is 8: , /') = (! 1,0) , or ( ',/') = (9,0) , or ( ',/') =(7 , 0).
具体可以参见如下表 3:  For details, see Table 3 below:
新的 CSI-RS CSI-RS端口数  New CSI-RS CSI-RS port number
配置 1 or 2 4 8  Configuration 1 or 2 4 8
ns mod2 (k',r) ns mod2 {k',r) ns mod2
Figure imgf000015_0001
n s mod2 (k',r) n s mod2 {k',r) n s mod2
Figure imgf000015_0001
作为另一种实施方式, 步驟二中, 可以按照如下公式确定在该端口上向终端发送 CSI-RS所使用的 RE以及在各 RE上发送的 CSI-RS:  As another implementation manner, in step 2, the RE used for transmitting the CSI-RS to the terminal on the port and the CSI-RS sent on each RE may be determined according to the following formula:
-0-/" for;?e{l5,16,19,20} -0-/" for;?e{l5,16,19,20}
k = k'+l2m + <  k = k'+l2m + <
-6-1" for^-e {17,18,21,22}  -6-1" for^-e {17,18,21,22}
0 pe{l5,16,17,18}  0 pe{l5,16,17,18}
l = V+  l = V+
pe {19,20,21,22}  Pe {19,20,21,22}
Figure imgf000015_0002
Figure imgf000015_0002
p)  p)
其中, ' '是在编号为 p的端口上、 在由编号为 的子载波和编号为/的 OFDM符号 构成的 RE上发送的 CSI-RS; "'为时隙序号, 的取值为 0; "' '、为 LTE系统协议定 义的 CSI-RS序列; N^为网络侧设备和终端当前工作的下行带宽, N x ¾为系统的最大 下行带宽; 确定 、 z时使用的参数 W ')满足以下条件: ^在 1到 11的奇数中取值, '的 取值为 0或 1。 Wherein '' is the CSI-RS transmitted on the RE of the numbered subcarrier and the numbered OFDM symbol on the port numbered p; "' is the slot number, and the value is 0; "'', CSI-RS sequence defined for the LTE system protocol; N^ is the downstream bandwidth of the network-side device and the terminal currently working, N x 3⁄4 is the maximum downlink bandwidth of the system; and the parameter W') used for determining, z is satisfied The following conditions: ^ takes values from odd numbers 1 to 11, and 'is 0 or 1.
具体的, 在发送 CSI-RS所使用的端口数为 1或 2时: ,/') = (11,0),或 ) = (9,0) , 或 = (7,0), 或 = (11,1), 或 (!',/') = (9,1), 或 = (7,1) , 或 Ο',/') = (5,0), 或 ( ',/') = (3,0), 或( ) = (1,0), 或( ',/') = (5,1) , 或( ',/') = (3,1) , 或( ',/') = (1,1); 或者, 在发送 CSI-RS 所使用的端口数为 4 时: (/t',/') = (ll,0) , 或( ',/') = (9,0) , 或 ( ',/') = (7,0), 或(A',/') = (! 1,1), 或( ',/') = (9,1) , 或( ',/') = (7,1); 或者,  Specifically, when the number of ports used to send the CSI-RS is 1 or 2: , /') = (11,0), or) = (9,0), or = (7,0), or = ( 11,1), or (!', /') = (9,1), or = (7,1) , or Ο', /') = (5,0), or ( ',/') = (3,0), or ( ) = (1,0), or ( ',/') = (5,1) , or ( ',/') = (3,1) , or ( ',/' ) = (1,1); Or, when the number of ports used to send CSI-RS is 4: (/t', /') = (ll,0), or ( ',/') = (9, 0) , or ( ', /') = (7,0), or (A', /') = (! 1,1), or ( ', /') = (9,1) , or ( ' , /') = (7,1); or,
在发送 CSI-RS 所使用的端口数为 8 时: ( ',/') = (11,0) , 或 = (9,0) , 或 ( ) = (7,0)。 具体如下表 4所示: When the number of ports used to send CSI-RS is 8: ( ', /') = (11,0) , or = (9,0) , or ( ) = (7,0). The details are as shown in Table 4 below:
Figure imgf000016_0001
Figure imgf000016_0001
表 4 较佳的, 网络侧可以按照现有技术即 LTE系统协议中定义的方式将 CSI-RS传输的配 置信息发送给终端, 不同点仅在于该配置信息包含的 CSI-RS配置信息和零功率 CSI-RS配 置信息包含的参数 /'和 mod( , 2)的取值为 0, 其中 为 CSI-RS资源所在时隙的编号, Γ 为 CSI-RS资源在时隙中占用的第一个 OFDM符号的编号。  Preferably, the network side can send the configuration information of the CSI-RS transmission to the terminal according to the method defined in the prior art, that is, the LTE system protocol, and the only difference lies in the CSI-RS configuration information and the zero power included in the configuration information. The CSI-RS configuration information includes parameters /' and mod( , 2) whose value is 0, where is the number of the slot in which the CSI-RS resource is located, and Γ is the first OFDM occupied by the CSI-RS resource in the slot. The number of the symbol.
较佳的, 网絡侧可以通过高层信令将以下六种 CSI-RS传输的配置信息中的至少一种 发送给终端:  Preferably, the network side may send at least one of the following six CSI-RS transmission configuration information to the terminal by using high layer signaling:
CSI-RS端口数, 以通知发送 CSI-RS所使用的端口的数目;  The number of CSI-RS ports, to inform the number of ports used by the CSI-RS to be sent;
CSI-RS配置信息, 以通知所采用的 CSI-RS配置的编号, 每种 CSI-RS配置对应一种 确定 、 I时使用的参数的取值 (即 的取值 ); 该 CSI-RS配置信息所占用的比特数不 小于 Ν, Ν为 LTE系统协议中定义的 CSI-RS配置的数目与新增加的 CSI-RS配置的数目之 和, 其中每个比特对应一种 CSI-RS配置, 比如, 若某一比特为 0, 则表示不采用该比特对 应的 CSI-RS配置, 若为 1 , 则表示采用该比特对应的 CSI-RS配置;  The CSI-RS configuration information is used to notify the number of the CSI-RS configuration to be used, and each CSI-RS configuration corresponds to a value of the parameter used for determining and I (ie, the value); the CSI-RS configuration information. The number of occupied bits is not less than Ν, which is the sum of the number of CSI-RS configurations defined in the LTE system protocol and the number of newly added CSI-RS configurations, where each bit corresponds to a CSI-RS configuration, for example, If a bit is 0, it means that the CSI-RS configuration corresponding to the bit is not used, and if it is 1, it indicates that the CSI-RS configuration corresponding to the bit is adopted;
CSI-RS子帧配置信息, 以通知发送 CSI-RS所在的子帧; 该 CSI-RS子帧配置信息可 以包括 CSI-RS传输周期和子帧偏移量, 假设 CSI-RS传输周期为 T, 子帧偏移量为 2, 则 终端可确定每个 CSI-RS传输周期 T内的第二个子帧为网络侧发送 CSI-RS所在的子帧; 物理下行共享信道( PDSCH )上的每 RE的功率值与传输 CSI-RS的每 RE的功率值的 比值, 以通知 CSI-RS的发送功率; 终端可以确定传输 CSI-RS的每 RE的功率值=?08( 11 上的每 RE的功率值 /该比值;  The CSI-RS subframe configuration information is used to notify the subframe in which the CSI-RS is transmitted; the CSI-RS subframe configuration information may include a CSI-RS transmission period and a subframe offset, and the CSI-RS transmission period is assumed to be T, The frame offset is 2, the terminal may determine that the second subframe in each CSI-RS transmission period T is the subframe in which the CSI-RS is transmitted by the network side; the power per RE on the physical downlink shared channel (PDSCH) The value is a ratio of the power value per RE of the transmitted CSI-RS to inform the transmission power of the CSI-RS; the terminal can determine the power value per RE of the transmitted CSI-RS = ?08 (the power value per RE on 11 / The ratio;
零功率 CSI-RS配置信息,以通知不发送 CSI-RS的 CSI-RS配置即零功率 CSI-RS配置 的编号; 该零功率 CSI-RS配置信息所占用的比特数不小于 M, M为 LTE系统协议中定义 的零功率 CSI-RS配置的数目与新增加的零功率 CSI-RS配置的数目之和,其中每个比特对 应一种零功率 CSI-RS配置, 比如, 若某一比特为 0, 则该比特对应的 CSI-RS配置为非零 功率 CSI-RS配置, 若为 1 , 则表示釆用该比特对应的 CSI-RS配置为零功率 CSI-RS配置; 终端在确定所采用的 CSI-RS配置为零功率 CSI-RS配置时, 不进行 CSI-RS的接收; The zero-power CSI-RS configuration information is used to notify the CSI-RS configuration that does not transmit the CSI-RS, that is, the number of the zero-power CSI-RS configuration; the number of bits occupied by the zero-power CSI-RS configuration information is not less than M, and M is LTE. The sum of the number of zero-power CSI-RS configurations defined in the system protocol and the number of newly added zero-power CSI-RS configurations, where each bit pair A zero-power CSI-RS configuration is required. For example, if a certain bit is 0, the CSI-RS corresponding to the bit is configured as a non-zero-power CSI-RS configuration. If 1, the CSI corresponding to the bit is used. - The RS is configured to a zero-power CSI-RS configuration; when the terminal determines that the adopted CSI-RS configuration is a zero-power CSI-RS configuration, the CSI-RS is not received;
零功率 CSI-RS 子帧配置信息, 以通知不发送 CSI-RS 的子帧的编号; 终端在零功率 CSI-RS子帧上不接收 CSI-RS。  Zero-power CSI-RS subframe configuration information to inform the number of subframes that do not transmit CSI-RS; the terminal does not receive CSI-RS on zero-power CSI-RS subframes.
较佳的, 网络侧还可以通过高层信令将以下六种 CSI-RS传输配置信息中的至少一种 发送给终端:  Preferably, the network side may also send at least one of the following six CSI-RS transmission configuration information to the terminal by using high layer signaling:
CSI-RS端口数, 以通知发送 CSI-RS所使用的端口的数目;  The number of CSI-RS ports, to inform the number of ports used by the CSI-RS to be sent;
CSI-RS配置信息, 以通知所釆用的 CSI-RS配置的编号, 每种 CSI-RS配置对应一种 确定 、 时使用的参数的取值 (即 (k',l' 的取值 ); 该 CSI-RS配置信息所占用的比特数不 小于 P, P为新增加的 CSI-RS配置的数目; 其中每个比特对应一种 CSI-RS配置, 比如, 若某一比特为 0, 则表示不采用该比特对应的 CSI-RS配置, 若为 1 , 则表示采用该比特对 应的 CSI-RS配置; CSI-RS configuration information, to notify the number of the CSI-RS configuration used, and each CSI-RS configuration corresponds to a value of a determined, used parameter (ie, the value of ( k ', l '); The number of bits occupied by the CSI-RS configuration information is not less than P, and P is the number of newly added CSI-RS configurations; wherein each bit corresponds to a CSI-RS configuration, for example, if a certain bit is 0, The CSI-RS configuration corresponding to the bit is not used, and if it is 1, it indicates that the CSI-RS configuration corresponding to the bit is adopted;
CSI-RS子帧配置信息, 以通知发送 CSI-RS所在的子帧; 该 CSI-RS子帧配置信息可 以包括 CSI-RS传输周期和子帧偏移量, 假设 CSI-RS传输周期为 T, 子帧偏移量为 2, 则 终端可确定每个 CSI-RS传输周期 T内的第二个子帧为网络侧发送 CSI-RS所在的子帧; The CSI-RS subframe configuration information is used to notify the subframe in which the CSI-RS is transmitted; the CSI-RS subframe configuration information may include a CSI-RS transmission period and a subframe offset, and the CSI-RS transmission period is assumed to be T, The frame offset is 2, the terminal may determine that the second subframe in each CSI-RS transmission period T is a subframe in which the CSI-RS is sent by the network side;
PDSCH上的每 RE的功率值与传输 CSI-RS的每 RE的功率值的比值, 以通知 CSI-RS 的发送功率; 终端可以确定传输 CSI-RS的每 RE的功率值=?08«1上的每 RE的功率值 / 该比值; The ratio of the power value per RE on the PDSCH to the power value per RE of the transmitted CSI-RS to inform the transmission power of the CSI-RS; the terminal can determine the power value per RE of the transmission CSI-RS = ?08 «1 Power value per RE / the ratio;
零功率 CSI-RS 配置信息, 以通知不发送 CSI-RS 的 CSI-RS 配置的编号; 该零功率 Zero-power CSI-RS configuration information to inform the number of CSI-RS configurations that do not send CSI-RS;
CSI-RS配置信息所占用的比特数不小于 K, Κ为新增加的零功率 CSI-RS配置的数目, 其 中每个比特对应一种零功率 CSI-RS配置, 比如,若某一比特为 0, 则该比特对应的 CSI-RS 配置为非零功率 CSI-RS 配置, 若为 1 , 则表示采用该比特对应的 CSI-RS 配置为零功率 CSI-RS配置; 终端在确定所采用的 CSI-RS配置为零功率 CSI-RS配置时, 不进行 CSI-RS 的接收; The number of bits occupied by the CSI-RS configuration information is not less than K, which is the number of newly added zero-power CSI-RS configurations, where each bit corresponds to a zero-power CSI-RS configuration, for example, if a certain bit is 0. The CSI-RS corresponding to the bit is configured as a non-zero-power CSI-RS configuration. If 1, the CSI-RS corresponding to the bit is configured to be a zero-power CSI-RS configuration; the terminal is determining the CSI used. When the RS is configured for zero-power CSI-RS configuration, CSI-RS reception is not performed;
零功率 CSI-RS 子帧配置信息, 以通知不发送 CSI-RS 的子帧的编号;终端在零功率 CSI-RS子帧上不接收 CSI-RS。  Zero-power CSI-RS subframe configuration information to inform the number of the subframe in which the CSI-RS is not transmitted; the terminal does not receive the CSI-RS on the zero-power CSI-RS subframe.
终端侧:  Terminal side:
步驟三: 终端确定网络侧发送 CSI-RS所使用的端口和子帧;  Step 3: The terminal determines a port and a subframe used by the network side to send the CSI-RS.
步骤四: 对于确定的每个端口, 确定网络侧在该端口上向终端发送 CSI-RS 所使用的 Step 4: For each port that is determined, determine the network side to use to send the CSI-RS to the terminal on the port.
RE以及该各 RE上发送的 CSI-RS, 并通过该端口在各 RE上接收网络侧发送的 CSI-RS; 其中, 网络侧向终端发送 CSI-RS所使用的 RE位于步骤 40中确定的子帧的前两个 OFDM 符号中。 作为一种实施方式, 步驟四中, 可以按照如下公式确定网络侧在该端口上向终端发送 CSI- 使用的 RE以及该各 RE上发送的 CSI-RS: a RE and a CSI-RS transmitted on each RE, and receiving, by using the port, a CSI-RS sent by the network side on each RE; wherein, the RE used by the network side terminal to send the CSI-RS is located in the sub-determined in step 40. In the first two OFDM symbols of the frame. As an implementation manner, in step 4, the network side may be configured to send the CSI-used REs to the terminal and the CSI-RSs sent by the REs on the port according to the following formula:
其中, ¾ '是网络侧在编号为 p的端口上、 对应编号为 的子载波和编号为 Z的 OFDM 符号的 RE上发送的 CSI-RS; 为时隙序号, ^的取值为 0; 为 LTE系统协议定 义的 CSI-RS序列; k、 /、 wr、 的取值按照 LTE系统协议确定, 即: Wherein, 3⁄4 'is the CSI-RS sent by the network side on the port numbered p, corresponding to the numbered subcarrier and the numbered Z OFDM symbol; is the slot number, and the value of ^ is 0; The CSI-RS sequence defined by the LTE system protocol; the values of k, /, w r, are determined according to the LTE system protocol, namely:
16},常规 CP 16}, regular CP
18},常规 CP  18}, regular CP
20},常规 CP 20}, regular CP
22},常规 CP  22}, regular CP
16},扩展 CP  16}, extended CP
18},扩展 CP 18}, extended CP
20},扩展 ? 20}, expansion?
22},扩展 CP 22}, extended CP
19,常规 CP 19, regular CP
-31,常规 CP -31, regular CP
7,扩展 CP
Figure imgf000018_0001
7, extended CP
Figure imgf000018_0001
Γ:  Γ:
:0,1"..,  :0,1"..,
Ν" 上述按照 LTE系统协议确定 、 1时使用的参数 (^, 如下:  Ν" The above parameters (^, as determined by the LTE system protocol, are used as follows:
在网络侧发送 CSI-RS所使用的端口数为 1或 2时: (k', = (11,0) , 或 = (9,0) , 或( ',/') = (7,0), 或 = (10,0), 或 = (8,0), 或 = (6,0), 或 = (5,0), 或 = (4,0) , 或 ( ,/') = (3,0), 或( ',/') = (2,0) , 或 = (1,0), 或( ',/') = (0,0); 或者,  When the number of ports used to send CSI-RS on the network side is 1 or 2: (k', = (11,0), or = (9,0), or ( ',/') = (7,0) , or = (10,0), or = (8,0), or = (6,0), or = (5,0), or = (4,0), or ( ,/') = (3 ,0), or ( ',/') = (2,0) , or = (1,0), or ( ',/') = (0,0); or,
在网络侧发送 CSI-RS所使用的端口数为 4时: ( ',/') = (11,0), 或 = (9,0), 或 ( ',/') = (7,0), 或( ',/') = (10,0), 或( ',/') = (8,0), 或( ',/') = (6,0); 或者,  When the number of ports used to send CSI-RS on the network side is 4: ( ', /') = (11,0), or = (9,0), or ( ',/') = (7,0) , or ( ', /') = (10,0), or ( ',/') = (8,0), or ( ',/') = (6,0); or,
在网络侧发送 CSI-RS所使用的端口数为 8 时: ( ',/') = (11,0), 或 = (9,0), 或 ( ',/') = (7,0)。  When the number of ports used to send CSI-RS on the network side is 8: ( ', /') = (11,0), or = (9,0), or ( ',/') = (7,0) .
具体可以参见上表 3。 表 3对应的 8端口的 3种 CSI-RS传输图样如图 5a-图 5c所示, 表 3对应的 4端口的 6种 CSI-RS传输图样如图 5d-图 5i所示, 表 3对应的 1或 2端口的 12种 CSI-RS传输图样如图 5j-图 5u所示。  See Table 3 above for details. The three types of CSI-RS transmission patterns corresponding to the eight ports in Table 3 are shown in FIG. 5a to FIG. 5c, and the six types of CSI-RS transmission patterns corresponding to the four ports in Table 3 are as shown in FIG. 5d to FIG. 5i, and corresponding to Table 3 The 12 CSI-RS transmission patterns of the 1 or 2 ports are shown in Fig. 5j to Fig. 5u.
步骤四中, 还可以按照如下公式确定网络侧在该端口上向终端发送 CSI-RS 所使用的 RE以及该各 RE上发送的 CSI-RS: In step 4, the following method may also be used to determine the network side to use to send the CSI-RS to the terminal on the port. RE and CSI-RS sent on each RE:
(ρ) f- 0- /" for^e {15,16,19, 20}  (ρ) f- 0- /" for^e {15,16,19, 20}
k = k'+l2m + <  k = k'+l2m + <
{-6-Γ' for/7 E {17,18,21,22}  {-6-Γ' for/7 E {17,18,21,22}
/ι+ [θ /7 E{15,16,17,18} /ι+ [θ /7 E{15,16,17,18}
" + l {19, 20, 21,22} " + l {19, 20, 21, 22}
[ 1 {15,17,19,21}  [ 1 {15,17,19,21}
{16,18,20,22}  {16,18,20,22}
= 0,1  = 0,1
= O,I"..,ACL_I = O,I"..,AC L _I
: m +
Figure imgf000019_0001
: m +
Figure imgf000019_0001
2 其中, β 是网络侧在编号为 p的端口上、在由编号为 的子载波和编号为 Z的 OFDM 符号构成的 RE上发送的 CSI-RS; 为时隙序号, 的取值为 0; 为 LTE系统协 议定义的 CSI-RS序列; 为网络侧设备和终端当前工作的下行带宽, N:PL为系统的 最大下行带宽; 确定 Z时使用的参数 (^', 满足以下条件: '在 1到 11的奇数中取值, I'的取值为 0或 1。 2, where β is the CSI-RS transmitted by the network side on the port numbered p on the RE consisting of the numbered subcarrier and the OFDM symbol numbered Z; the slot number is 0; The CSI-RS sequence defined for the LTE system protocol; the downstream bandwidth for the network side device and the terminal currently working, N: PL is the maximum downlink bandwidth of the system; the parameter used when determining Z (^', satisfies the following conditions: 'in 1 Take the value from the odd number of 11 and the value of I' is 0 or 1.
具体的, 在网络侧发送 CSI-RS 所使用的端口数为 1 或 2 时: = (11,0) , 或 ( ',/') = (9,0), 或( ',/') = (7,0) , 或 ',/') = (11,1) , 或 (!',/') = (9,1) , 或( ',/') = (7,1) , 或 (k V) = (5,0) , 或( ',/') = (3,0) , 或( ) = (1,0) , 或 = (5,1) , 或 = (3,1) , 或 = (1,1); 或者,  Specifically, when the number of ports used by the CSI-RS on the network side is 1 or 2: = (11,0), or ( ',/') = (9,0), or ( ',/') = (7,0) , or ', /') = (11,1) , or (!', /') = (9,1) , or ( ',/') = (7,1) , or ( k V) = (5,0) , or ( ',/') = (3,0) , or ( ) = (1,0) , or = (5,1) , or = (3,1) , Or = (1,1); or,
在网络侧发送 CSI-RS所使用的端口数为 4时: (:',/') = (11,0), 或( ',/') = (9,0), 或 = (7,0), 或 0',/') = (! 1,1), 或 = (9,1), 或 = (7,1); 或者,  When the number of ports used to send CSI-RS on the network side is 4: (:', /') = (11,0), or ( ', /') = (9,0), or = (7,0 ), or 0', /') = (! 1,1), or = (9,1), or = (7,1); or,
在网络侧发送 CSI-RS所使用的端口数为 8时: = (11,0), 或( ',/') = (9,0), 或 When the number of ports used by the CSI-RS to transmit on the network side is 8: = (11,0), or ( ',/') = (9,0), or
( ) = (7,0)。 ( ) = (7,0).
具体如上表 4所示。 表 4对应的 8端口的 3种 CSI-RS传输图样如图 6a-图 6c所示, 表 4对应的 4端口的 6种 CSI-RS传输图样如图 6d-图 6i所示, 表 4对应的 1或 2端口的 12种 CSI-RS传输图样如图 6j-图 6u所示。  Specifically as shown in Table 4 above. The three types of CSI-RS transmission patterns corresponding to the eight ports in Table 4 are shown in FIG. 6a to FIG. 6c, and the six types of CSI-RS transmission patterns corresponding to the four ports in Table 4 are as shown in FIG. 6d to FIG. 6i, and corresponding to Table 4 The 12 CSI-RS transmission patterns of the 1 or 2 ports are shown in Fig. 6j to Fig. 6u.
较佳的,在步骤四之前, 终端可以按照现有技术即 LTE系统协议中定义的方式接收网 络侧发送的 CSI-RS传输的配置信息,不同点仅在于该配置信息包含的 CSI-RS配置信息和 零功率 CSI-RS配置信息包含的参数 /'和 mod(ns, 2)的取值为 0, 其中 为 CSI-RS资源所 在时隙的编号, /'为 CSI-RS资源在时隙中占用的第一个 OFDM符号的编号。 Preferably, before the step 4, the terminal can receive the configuration information of the CSI-RS transmission sent by the network side in the manner defined in the prior art, that is, the LTE system protocol, and the only difference lies in the CSI-RS configuration information included in the configuration information. And the zero-power CSI-RS configuration information includes parameters /' and mod(n s , 2) whose value is 0, where is the number of the slot in which the CSI-RS resource is located, and /' is the CSI-RS resource in the slot. The number of the first OFDM symbol occupied.
较佳的, 在步驟四之前, 终端还可以接收网络侧预先通过高层信令发送的以下六种配 置信息中的至少一种: CSI-RS端口数, 用于确定网络侧发送 CSI-RS所使用的端口的数目, 终端根据 CSI-RS 端口数确定网络侧发送 CSI-RS所使用的端口; Preferably, before step 4, the terminal may further receive at least one of the following six types of configuration information that is sent by the network side in advance through high layer signaling: The number of CSI-RS ports is used to determine the number of ports used by the network side to send CSI-RSs, and the terminal determines the ports used by the network side to send CSI-RSs according to the number of CSI-RS ports;
CSI-RS配置信息, 用于确定网络侧所采用的 CSI-RS配置的编号, 每种 CSI-RS配置 对应一种确定 、 /时使用的参数的取值 (即 的取值 ); 该 CSI-RS配置信息所占用的 比特数不小于 Ν, Ν为 LTE系统协议中定义的 CSI-RS配置的数目与新增加的 CSI-RS配置 的数目之和, 其中每个比特对应一种 CSI-RS配置, 比如, 若某一比特为 0, 则表示不采用 该比特对应的 CSI-RS 配置, 若为 1 , 则表示采用该比特对应的 CSI-RS 配置; 终端才艮据 CSI-RS 配置信息确定 k',1')的取值 , 进而才 M居 的取值确定网络侧在对应端口上向终 端发送 CSI-RS所使用的 RE以及该各 RE上发送的 CSI-RS; The CSI-RS configuration information is used to determine the number of the CSI-RS configuration used by the network side, and each CSI-RS configuration corresponds to a value (ie, a value) of the parameter determined/used; the CSI- The number of bits occupied by the RS configuration information is not less than Ν, which is the sum of the number of CSI-RS configurations defined in the LTE system protocol and the number of newly added CSI-RS configurations, where each bit corresponds to one CSI-RS configuration. For example, if a certain bit is 0, it means that the CSI-RS configuration corresponding to the bit is not used. If it is 1, it indicates that the CSI-RS configuration corresponding to the bit is adopted; the terminal determines the k according to the CSI-RS configuration information. The value of ', 1 '), and then the value of the M-location determines the RE used by the network side to send the CSI-RS to the terminal on the corresponding port and the CSI-RS sent on each RE;
CSI-RS子帧配置信息, 用于确定网络侧发送 CSI-RS所使用的子帧; 该 CSI-RS子帧 配置信息可以包括 CSI-RS传输周期和子帧偏移量, 假设 CSI-RS传输周期为 T, 子帧偏移 量为 2, 则终端可确定每个 CSI-RS传输周期 T内的第二个子帧为网络侧发送 CSI-RS所在 的子帧;  The CSI-RS subframe configuration information is used to determine a subframe used by the network side to send the CSI-RS; the CSI-RS subframe configuration information may include a CSI-RS transmission period and a subframe offset, and the CSI-RS transmission period is assumed. For T, the subframe offset is 2, the terminal may determine that the second subframe in each CSI-RS transmission period T is a subframe in which the network side transmits the CSI-RS;
PDSCH上的每 RE的功率值与传输 CSI-RS的每 RE的功率值的比值,用于确定 CSI-RS 的接收功率; 终端确定传输 CSI-RS的每 RE的功率值=?08。11上的每 RE的功率值 /该比 值;  The ratio of the power value per RE on the PDSCH to the power value per RE of the transmitted CSI-RS is used to determine the received power of the CSI-RS; the terminal determines the power value per RE of the transmitted CSI-RS = ?08. Power value per RE / the ratio;
零功率 CSI-RS配置信息, 用于确定网络侧不发送 CSI-RS的 CSI-RS配置的编号; 该 零功率 CSI-RS配置信息所占用的比特数不小于 M, M为 LTE 系统协议中定义的零功率 CSI-RS配置的数目与新增加的零功率 CSI-RS配置的数目之和, 其中每个比特对应一种零 功率 CSI-RS配置,比如,若某一比特为 0,则该比特对应的 CSI-RS配置为非零功率 CSI-RS 配置, 若为 1, 则表示采用该比特对应的 CSI-RS配置为零功率 CSI-RS配置; 终端在确定 所采用的 CSI-RS配置为零功率 CSI-RS配置时, 不进行 CSI-RS的接收;  The zero-power CSI-RS configuration information is used to determine the number of the CSI-RS configuration in which the network side does not send the CSI-RS; the number of bits occupied by the zero-power CSI-RS configuration information is not less than M, and M is defined in the LTE system protocol. The sum of the number of zero-power CSI-RS configurations and the number of newly added zero-power CSI-RS configurations, where each bit corresponds to a zero-power CSI-RS configuration, for example, if a bit is 0, the bit The corresponding CSI-RS is configured as a non-zero-power CSI-RS configuration. If 1, the CSI-RS configuration corresponding to the bit is configured to be a zero-power CSI-RS configuration; the terminal determines that the adopted CSI-RS configuration is zero. When the power CSI-RS is configured, the CSI-RS is not received;
零功率 CSI-RS子帧配置信息, 用于确定网络侧不发送 CSI-RS的子帧的编号。 终端在 零功率 CSI-RS子帧上不接收 CSI-RS。  The zero-power CSI-RS subframe configuration information is used to determine the number of the subframe in which the network side does not transmit the CSI-RS. The terminal does not receive the CSI-RS on the zero-power CSI-RS subframe.
较佳的, 终端还可以接收网络侧预先通过高层信令发送的以下六种配置信息中的至少 一种:  Preferably, the terminal may further receive at least one of the following six configuration information that is sent by the network side in advance through high layer signaling:
CSI-RS端口数, 用于确定网络侧发送 CSI-RS所使用的端口的数目; 终端根据 CSI-RS 端口数确定网络侧发送 CSI-RS所使用的端口;  The number of CSI-RS ports is used to determine the number of ports used by the network side to send CSI-RSs; the terminal determines the ports used by the network side to send CSI-RSs according to the number of CSI-RS ports;
CSI-RS配置信息, 用于确定网络侧所釆用的 CSI-RS配置的编号, 每种 CSI-RS配置 对应一种确定 、 I时使用的参数的取值 (即 (k',l' 的取值 ); 该 CSI-RS配置信息所占用的 比特数不小于 P, P为新增加的 CSI-RS配置的数目; 其中每个比特对应一种 CSI-RS配置, 比如, 若某一比特为 0, 则表示不采用该比特对应的 CSI-RS配置, 若为 1 , 则表示采用该 比特对应的 CSI-RS配置;终端根据 CSI-RS配置信息确定 O的取值,进而根据^ 的 取值确定网络侧在对应端口上向终端发送 CSI-RS 所使用的 RE 以及该各 RE上发送的 CSI-RS; The CSI-RS configuration information is used to determine the number of the CSI-RS configuration used by the network side, and each CSI-RS configuration corresponds to a value of the parameter used for determining and I (ie, ( k ', l ' The value of the CSI-RS configuration information is not less than P, and P is the number of newly added CSI-RS configurations; each bit corresponds to a CSI-RS configuration, for example, if a certain bit is 0, it means that the CSI-RS configuration corresponding to the bit is not used. If it is 1, it indicates that the CSI-RS configuration corresponding to the bit is adopted; the terminal determines the value of O according to the CSI-RS configuration information, and further determines according to the The value determines the RE used by the network side to send the CSI-RS to the terminal on the corresponding port, and the CSI-RS sent on each RE;
CSI-RS子帧配置信息, 用于确定网络侧发送 CSI-RS所使用的子帧; 该 CSI-RS子帧 配置信息可以包括 CSI-RS传输周期和子帧偏移量, 假设 CSI-RS传输周期为 T, 子帧偏移 量为 2 , 则终端可确定每个 CSI-RS传输周期 T内的第二个子帧为网絡侧发送 CSI-RS所在 的子帧;  The CSI-RS subframe configuration information is used to determine a subframe used by the network side to send the CSI-RS; the CSI-RS subframe configuration information may include a CSI-RS transmission period and a subframe offset, and the CSI-RS transmission period is assumed. For T, the subframe offset is 2, the terminal may determine that the second subframe in each CSI-RS transmission period T is a subframe in which the network side transmits the CSI-RS;
PDSCH上的每 RE的功率值与传输 CSI-RS的每 RE的功率值的比值,用于确定 CSI-RS 的接收功率; 终端确定传输 CSI-RS的每 RE的功率值=?08«1上的每 RE的功率值 /该比 值;  The ratio of the power value per RE on the PDSCH to the power value per RE of the transmitted CSI-RS is used to determine the received power of the CSI-RS; the terminal determines the power value per RE of the transmitted CSI-RS = ?08 «1 Power value per RE / the ratio;
零功率 CSI-RS配置信息, 用于确定网络侧不发送 CSI-RS的 CSI-RS配置的编号; 该 零功率 CSI-RS配置信息所占用的比特数不小于 K, Κ为新增加的零功率 CSI-RS配置的数 目, 其中每个比特对应一种零功率 CSI-RS配置, 比如, 若某一比特为 0 , 则该比特对应的 CSI-RS配置为非零功率 CSI-RS配置,若为 1 , 则表示采用该比特对应的 CSI-RS配置为零 功率 CSI-RS配置; 终端在确定所采用的 CSI-RS配置为零功率 CSI-RS配置时, 不进行 CSI-RS的接收;  The zero-power CSI-RS configuration information is used to determine the number of the CSI-RS configuration in which the network side does not send the CSI-RS; the number of bits occupied by the zero-power CSI-RS configuration information is not less than K, and the new zero power is added. The number of CSI-RS configurations, where each bit corresponds to a zero-power CSI-RS configuration. For example, if a certain bit is 0, the CSI-RS corresponding to the bit is configured as a non-zero-power CSI-RS configuration. 1 that indicates that the CSI-RS corresponding to the bit is configured to be a zero-power CSI-RS configuration; when the terminal determines that the adopted CSI-RS configuration is a zero-power CSI-RS configuration, the CSI-RS is not received;
零功率 CSI-RS子帧配置信息, 用于确定网络侧不发送 CSI-RS的子帧的编号。 终端在 零功率 CSI-RS子帧上不接收 CSI-RS。  The zero-power CSI-RS subframe configuration information is used to determine the number of the subframe in which the network side does not transmit the CSI-RS. The terminal does not receive the CSI-RS on the zero-power CSI-RS subframe.
参见图 7 , 本发明实施例还提供一种基站, 该基站包括:  Referring to FIG. 7, an embodiment of the present invention further provides a base station, where the base station includes:
确定单元 70, 用于确定发送 CSI-RS所使用的配置信息; 该配置信息指示网络侧采用 压缩 CSI-RS结构传输 CSI-RS;该压缩 CSI-RS结构中所有的 CSI-RS在下行子帧或下行时 隙中的前 X个正交频分复用 OFDM符号内的资源单元 RE中传输, 其中 X为不大于 3的 正整数;  The determining unit 70 is configured to determine configuration information used by the CSI-RS to transmit, where the configuration information indicates that the network side transmits the CSI-RS by using a compressed CSI-RS structure; and all CSI-RSs in the compressed CSI-RS structure are in the downlink subframe. Or transmitting in a resource unit RE in the first X orthogonal frequency division multiplexing OFDM symbols in the downlink time slot, where X is a positive integer not greater than 3;
发送单元 71 , 用于根据确定的配置信息向终端发送对应的 CSI-RS。  The sending unit 71 is configured to send, according to the determined configuration information, a corresponding CSI-RS to the terminal.
进一步的, 确定单元 70确定的配置信息所指示的压缩 CSI-RS结构中, 每个 CSI-RS 端口对应的 CSI-RS资源由 Y个时域相邻或者频域相邻的 RE组成, 其中 Y为大于 1的正 整数; 并且,  Further, in the compressed CSI-RS structure indicated by the configuration information determined by the determining unit 70, the CSI-RS resource corresponding to each CSI-RS port is composed of Y time-domain neighboring or frequency-domain adjacent REs, where Y Is a positive integer greater than 1; and,
对于每个 CSI-RS端口对应的 CSI-RS资源, 该 CSI-RS资源最多由 Y个 CSI-RS端口 的 CSI-RS复用。  For the CSI-RS resource corresponding to each CSI-RS port, the CSI-RS resource is multiplexed by the CSI-RS of the Y CSI-RS ports at most.
进一步的, 确定单元 70确定的配置信息包含的 CSI-RS配置信息和零功率 CSI-RS配 置信息均包含参数 /'和 mod( , 2);  Further, the CSI-RS configuration information and the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit 70 both include the parameters /' and mod(, 2);
/'和 mod( , 2)的取值为 0 , 其中 为 CSI-RS资源所在时隙的编号, /'为 CSI-RS资源 在时隙中占用的第一个 OFDM符号的编号。  The value of /' and mod( , 2) is 0 , where is the number of the slot in which the CSI-RS resource is located, and /' is the number of the first OFDM symbol occupied by the CSI-RS resource in the slot.
进一步的,确定单元 70确定的配置信息包含的 CSI-RS配置对应的种类数目不小于 P , P为对应压缩 CSI-RS结构的 CSI-RS配置的种类数目; Further, the number of types corresponding to the CSI-RS configuration included in the configuration information determined by the determining unit 70 is not less than P, P is the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure;
确定单元 70确定的配置信息包含的零功率 CSI-RS配置信息所占用的比特数不小于 K, K为对应压缩 CSI-RS结构的零功率 CSI-RS配置的种类数目。  The zero-power CSI-RS configuration information included in the configuration information determined by the determining unit 70 occupies no less than K, and K is the number of types of zero-power CSI-RS configurations corresponding to the compressed CSI-RS structure.
进一步的,确定单元 70确定的配置信息包含的 CSI-RS配置对应的种类数目不小于 M, M为 LTE-A系统协议中定义的 CSI-RS配置的种类数目与对应压缩 CSI-RS结构的 CSI-RS 配置的种类数目之和;  Further, the number of types corresponding to the CSI-RS configuration included in the configuration information determined by the determining unit 70 is not less than M, where M is the number of types of CSI-RS configurations defined in the LTE-A system protocol and the CSI corresponding to the compressed CSI-RS structure. - the sum of the number of types of RS configurations;
确定单元 70确定的配置信息包含的零功率 CSI-RS配置信息所占用的比特数不小于 N, N为 LTE-A系统协议中定义的零功率 CSI-RS配置的种类数目与对应压缩 CSI-RS结构的 零功率 CSI-RS配置的种类数目之和。  The number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit 70 is not less than N, where N is the number of types of zero-power CSI-RS configurations defined in the LTE-A system protocol and the corresponding compressed CSI-RS. The sum of the number of types of zero-power CSI-RS configurations of the structure.
本发明实施例还提供另一种基站, 该基站包括处理器和射频单元。  Another embodiment of the present invention provides another base station, where the base station includes a processor and a radio frequency unit.
该处理器被配置为确定发送 CSI-RS 所使用的配置信息; 该配置信息指示网络侧采用 压缩 CSI-RS结构传输 CSI-RS; 该压缩 CSI-RS结构中所有的 CSI-RS在下行子帧或下行时 隙中的前 X个 OFDM符号内的资源单元中传输, 其中 X为不大于 3的正整数;  The processor is configured to determine configuration information used by the CSI-RS to transmit; the configuration information indicates that the network side transmits the CSI-RS by using a compressed CSI-RS structure; and all CSI-RSs in the compressed CSI-RS structure are in the downlink subframe Or transmitting in a resource unit in the first X OFDM symbols in the downlink slot, where X is a positive integer not greater than 3;
该射频单元被配置为根据确定的配置信息向终端发送对应的 CSI-RS。  The radio unit is configured to transmit a corresponding CSI-RS to the terminal according to the determined configuration information.
本发明实施例提供的基站在下行子帧或下行时隙中的前 X个 OFDM符号内的 RE中发 送 CSI-RS , 其中 X为不大于 3的正整数, 可见, 本发明实施例提供的基站实现了在下行 子帧或下行时隙中的前 X个 OFDM符号传输 CSI-RS的方案。该方案实现了对 CSI参考信 号的增强, 能够解决 CSI参考信号配置受限的问题。 另夕卜, 在该方案应用于时分双工 TDD 保护频带和新类型 NCT载波上时, 子帧的前 X个 OFDM符号可以得到充分利用, 进而减 少了时频资源的浪费。 应当指出的是, 本发明实施例提供的技术方案不仅适用于 TDD 系 统, 同样适用于 FDD系统。  The base station provided by the embodiment of the present invention sends a CSI-RS in the REs in the first X OFDM symbols in the downlink subframe or the downlink time slot, where X is a positive integer of not more than 3, and it can be seen that the base station provided by the embodiment of the present invention A scheme of transmitting CSI-RSs in the first X OFDM symbols in a downlink subframe or a downlink slot is implemented. This scheme implements an enhancement of the CSI reference signal and can solve the problem of limited configuration of the CSI reference signal. In addition, when the scheme is applied to the time division duplex TDD protection band and the new type of NCT carrier, the first X OFDM symbols of the subframe can be fully utilized, thereby reducing the waste of time-frequency resources. It should be noted that the technical solution provided by the embodiments of the present invention is applicable not only to the TDD system but also to the FDD system.
参见图 8 , 本发明实施例还提供一种终端, 该终端包括:  Referring to FIG. 8, an embodiment of the present invention further provides a terminal, where the terminal includes:
确定单元 80, 用于确定网络侧发送 CSI-RS所使用的配置信息; 该配置信息指示网络 侧采用压缩 CSI-RS结构传输 CSI-RS; 该压缩 CSI-RS结构中所有的 CSI-RS在下行子帧或 下行时隙中的前 X个正交频分复用 OFDM符号内的资源单元 RE中传输, 其中 X为不大 于 3的正整数;  The determining unit 80 is configured to determine configuration information used by the network side to send the CSI-RS, where the configuration information indicates that the network side uses the compressed CSI-RS structure to transmit the CSI-RS; and all the CSI-RSs in the compressed CSI-RS structure are in the downlink. Transmitted in a resource unit RE within the first X orthogonal frequency division multiplexing OFDM symbols in a subframe or a downlink slot, where X is a positive integer not greater than 3;
接收单元 81 , 用于根据确定的配置信息接收网络侧发送的 CSI-RS。  The receiving unit 81 is configured to receive, according to the determined configuration information, a CSI-RS sent by the network side.
进一步的, 确定单元 80确定的配置信息所指示的压缩 CSI-RS结构中, 每个 CSI-RS 端口对应的 CSI-RS资源由 Y个时域相邻或者频域相邻的 RE组成, 其中 Y为大于 1的正 整数; 并且,  Further, in the compressed CSI-RS structure indicated by the configuration information determined by the determining unit 80, the CSI-RS resource corresponding to each CSI-RS port is composed of Y time-domain neighboring or frequency-domain neighboring REs, where Y Is a positive integer greater than 1; and,
对于每个 CSI-RS端口对应的 CSI-RS资源, 该 CSI-RS资源最多由 Y个 CSI-RS端口 的 CSI-RS复用。  For the CSI-RS resource corresponding to each CSI-RS port, the CSI-RS resource is multiplexed by the CSI-RS of the Y CSI-RS ports at most.
进一步的, 确定单元 80确定的配置信息包含的 CSI-RS配置信息和零功率 CSI-RS配 置信息均包含参数 /'和 mod( , 2); Further, the configuration information determined by the determining unit 80 includes CSI-RS configuration information and zero-power CSI-RS matching. The set information contains the parameters /' and mod(, 2);
/ '和 mod( , 2)的取值为 0, 其中 为 CSI-RS资源所在时隙的编号, /'为 CSI-RS资源 在时隙中占用的第一个 OFDM符号的编号。  The value of / ' and mod( , 2) is 0, where is the number of the slot in which the CSI-RS resource is located, and /' is the number of the first OFDM symbol occupied by the CSI-RS resource in the slot.
进一步的,确定单元 80确定的配置信息包含的 CSI-RS配置对应的种类数目不小于 P, P为对应压缩 CSI-RS结构的 CSI-RS配置的种类数目;  Further, the number of types corresponding to the CSI-RS configuration included in the configuration information determined by the determining unit 80 is not less than P, where P is the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure;
确定单元 80确定的配置信息包含的零功率 CSI-RS配置信息所占用的比特数不小于 K, K为对应压缩 CSI-RS结构的零功率 CSI-RS配置的种类数目。  The zero-power CSI-RS configuration information included in the configuration information determined by the determining unit 80 occupies no less than K, and K is the number of types of zero-power CSI-RS configurations corresponding to the compressed CSI-RS structure.
进一步的,确定单元 80确定的配置信息包含的 CSI-RS配置对应的种类数目不小于 M, M为 LTE-A系统协议中定义的 CSI-RS配置的种类数目与对应压缩 CSI-RS结构的 CSI-RS 配置的种类数目之和;  Further, the number of types corresponding to the CSI-RS configuration included in the configuration information determined by the determining unit 80 is not less than M, and M is the number of types of CSI-RS configurations defined in the LTE-A system protocol and the CSI corresponding to the compressed CSI-RS structure. - the sum of the number of types of RS configurations;
确定单元 80确定的配置信息包含的零功率 CSI-RS配置信息所占用的比特数不小于 N, N为 LTE-A系统协议中定义的零功率 CSI-RS配置的种类数目与对应压缩 CSI-RS结构的 零功率 CSI-RS配置的种类数目之和。  The number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit 80 is not less than N, where N is the number of types of zero-power CSI-RS configurations defined in the LTE-A system protocol and the corresponding compressed CSI-RS. The sum of the number of types of zero-power CSI-RS configurations of the structure.
本发明实施例还提供另一种终端, 该终端包括处理器和射频单元。  Another embodiment of the present invention further provides a terminal, where the terminal includes a processor and a radio frequency unit.
该处理器被配置为确定网絡侧发送 CSI-RS所使用的配置信息; 该配置信息指示网络 侧采用压缩 CSI-RS结构传输 CSI-RS; 该压缩 CSI-RS结构中所有的 CSI-RS在下行子帧或 下行时隙中的前 X个 OFDM符号内的资源单元中传输, 其中 X为不大于 3的正整数; 该射频单元被配置为根据确定的配置信息接收网络侧发送的 CSI-RS。  The processor is configured to determine configuration information used by the network side to send the CSI-RS; the configuration information indicates that the network side transmits the CSI-RS by using a compressed CSI-RS structure; and all CSI-RSs in the compressed CSI-RS structure are in the downlink The resource elements in the first X OFDM symbols in the subframe or downlink time slot are transmitted, where X is a positive integer not greater than 3; the radio frequency unit is configured to receive the CSI-RS transmitted by the network side according to the determined configuration information.
本发明实施例提供的终端在下行子帧或下行时隙中的前 X个 OFDM符号内的 RE上接 收 CSI-RS, 其中 X为不大于 3的正整数, 可见, 本发明实施例提供的终端实现了在下行 子帧或下行时隙中的前 X个 OFDM符号传输 CSI-RS的方案。该方案实现了对 CSI参考信 号的增强, 能够解决 CSI参考信号配置受限的问题。 另夕卜, 在该方案应用于时分双工 TDD 保护频带和新类型 NCT载波上时, 子帧的前 X个 OFDM符号可以得到充分利用, 进而减 少了时频资源的浪费。 应当指出的是, 本发明实施例提供的技术方案不仅适用于 TDD 系 统, 同样适用于 FDD系统。  The terminal provided by the embodiment of the present invention receives the CSI-RS on the REs in the first X OFDM symbols in the downlink subframe or the downlink time slot, where X is a positive integer of not more than 3, and the terminal provided by the embodiment of the present invention is visible. A scheme of transmitting CSI-RSs in the first X OFDM symbols in a downlink subframe or a downlink slot is implemented. This scheme implements an enhancement of the CSI reference signal and can solve the problem of limited configuration of the CSI reference signal. In addition, when the scheme is applied to the time division duplex TDD protection band and the new type of NCT carrier, the first X OFDM symbols of the subframe can be fully utilized, thereby reducing the waste of time-frequency resources. It should be noted that the technical solution provided by the embodiments of the present invention is applicable not only to the TDD system but also to the FDD system.
综上, 本发明的有益效果包括:  In summary, the beneficial effects of the present invention include:
本发明实施例提供的方案中, 网络侧在子帧的前两个 OFDM符号中发送 CSI-RS , 终 端在子帧的前两个 OFDM符号上接收 CSI-RS ,可见,本方法实现了在子帧的前两个 OFDM 符号传输 CSI-RS的方案。 该方案实现了对 CSI参考信号的增强, 能够解决 CSI参考信号 配置受限的问题。 另外, 在该方案应用于 TDD保护频带和 NCT载波上时, 子帧的前两个 OFDM符号得到了充分利用, 进而减少了时频资源的浪费。 应当指出的是, 本发明实施例 提供的技术方案不仅适用于 TDD系统, 同样适用于 FDD系统。  In the solution provided by the embodiment of the present invention, the network side sends the CSI-RS in the first two OFDM symbols of the subframe, and the terminal receives the CSI-RS on the first two OFDM symbols of the subframe, and the method is implemented. The first two OFDM symbols of the frame transmit the CSI-RS scheme. This scheme implements an enhancement of the CSI reference signal and can solve the problem of limited configuration of the CSI reference signal. In addition, when the scheme is applied to the TDD guard band and the NCT carrier, the first two OFDM symbols of the subframe are fully utilized, thereby reducing the waste of time-frequency resources. It should be noted that the technical solution provided by the embodiment of the present invention is applicable not only to the TDD system but also to the FDD system.
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产品的流程图 和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。 The present invention is directed to a flowchart of a method, apparatus (system), and computer program product according to an embodiment of the present invention. And / or block diagram to describe. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG. These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device. Means for implementing the functions specified in one or more of the flow or in a block or blocks of the flow chart.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。  The computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device. The apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步驟。  These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device. The instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本创造性概 念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要求意欲解释为包括优选 实施例以及落入本发明范围的所有变更和修改。  Although the preferred embodiment of the invention has been described, it will be apparent to those of ordinary skill in the art that <RTIgt; Therefore, the appended claims are intended to be construed as including the preferred embodiments and the modifications
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和 范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。  It is apparent that those skilled in the art can make various modifications and variations to the invention without departing from the spirit and scope of the invention. Thus, it is intended that the present invention cover the modifications and modifications of the invention

Claims

权 利 要 求 Rights request
1、 一种信道状态信息参考信号 CSI-RS的传输方法, 其特征在于, 该方法包括: 网络侧确定发送 CSI-RS 所使用的配置信息; 所述配置信息指示网络侧采用压缩 CSI-RS结构传输 CSI-RS; 所述压缩 CSI-RS结构中所有的 CSI-RS在下行子帧或下行时隙 中的前 X个正交频分复用 OFDM符号内的资源单元 RE中传输, 其中 X为不大于 3的正 整数; A method for transmitting a channel state information reference signal CSI-RS, the method comprising: determining, by the network side, configuration information used for transmitting a CSI-RS; the configuration information indicating that the network side adopts a compressed CSI-RS structure Transmitting a CSI-RS; all CSI-RSs in the compressed CSI-RS structure are transmitted in resource elements RE in the first X orthogonal frequency division multiplexing OFDM symbols in a downlink subframe or a downlink slot, where X is a positive integer not greater than 3;
网络侧根据确定的配置信息向终端发送对应的 CSI-RS。  The network side sends a corresponding CSI-RS to the terminal according to the determined configuration information.
2、 如权利要求 1所述的方法, 其特征在于, 所述压缩 CSI-RS结构中, 每个 CSI-RS 端口对应的 CSI-RS资源由 Y个时域相邻或者频域相邻的 RE组成, 其中 Y为大于 1的正 整数; 并且,  2. The method according to claim 1, wherein in the compressed CSI-RS structure, a CSI-RS resource corresponding to each CSI-RS port is composed of Y time-domain neighboring or frequency-domain adjacent REs. Composition, where Y is a positive integer greater than one; and,
对于每个 CSI-RS端口对应的 CSI-RS资源, 该 CSI-RS资源最多由 Y个 CSI-RS端口 的 CSI-RS复用。  For the CSI-RS resource corresponding to each CSI-RS port, the CSI-RS resource is multiplexed by the CSI-RS of the Y CSI-RS ports at most.
3、 如权利要求 1所述的方法, 其特征在于, 所述配置信息包含的 CSI-RS配置信息和 零功率 CSI-RS配置信息均包含参数 /,和 mod(ns, 2); The method according to claim 1, wherein the CSI-RS configuration information and the zero-power CSI-RS configuration information included in the configuration information both include a parameter /, and mod(n s , 2);
/ '和 mod( , 2)的取值为 0, 其中 为 CSI-RS资源所在时隙的编号, /'为 CSI-RS资源 在时隙中占用的第一个 OFDM符号的编号。  The value of / ' and mod( , 2) is 0, where is the number of the slot in which the CSI-RS resource is located, and /' is the number of the first OFDM symbol occupied by the CSI-RS resource in the slot.
4、如权利要求 1所述的方法, 其特征在于, 所述配置信息包含的 CSI-RS配置对应的 种类数目不小于 P, P为对应压缩 CSI-RS结构的 CSI-RS配置的种类数目;  The method according to claim 1, wherein the number of types corresponding to the CSI-RS configuration included in the configuration information is not less than P, and P is the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure;
所述配置信息包含的零功率 CSI-RS配置信息所占用的比特数不小于 Κ, K为对应压 缩 CSI-RS结构的零功率 CSI-RS配置的种类数目。  The number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information is not less than Κ, and K is the number of types of zero-power CSI-RS configurations corresponding to the compressed CSI-RS structure.
5、如权利要求 1所述的方法, 其特征在于, 所述配置信息包含的 CSI-RS配置对应的 种类数目不小于 M, M为 LTE-A系统协议中定义的 CSI-RS配置的种类数目与对应压缩 CSI-RS结构的 CSI-RS配置的种类数目之和;  The method according to claim 1, wherein the number of types corresponding to the CSI-RS configuration included in the configuration information is not less than M, and M is the number of types of CSI-RS configurations defined in the LTE-A system protocol. The sum of the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure;
所述配置信息包含的零功率 CSI-RS配置信息所占用的比特数不小于 N, N为 LTE-A 系统协议中定义的零功率 CSI-RS配置的种类数目与对应压缩 CSI-RS结构的零功率 CSI-RS 配置的种类数目之和。  The number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information is not less than N, where N is the number of types of zero-power CSI-RS configurations defined in the LTE-A system protocol and zeros corresponding to the compressed CSI-RS structure. The sum of the number of types of power CSI-RS configurations.
6、 一种信道状态信息参考信号 CSI-RS的传输方法, 其特征在于, 该方法包括: 终端确定网絡侧发送 CSI-RS所使用的配置信息; 所述配置信息指示网絡侧采用压缩 CSI-RS结构传输 CSI-RS; 所述压缩 CSI-RS结构中所有的 CSI-RS在下行子帧或下行时隙 中的前 X个正交频分复用 OFDM符号内的资源单元 RE中传输, 其中 X为不大于 3的正 整数; 终端根据确定的配置信息接收网络侧发送的 CSI-RS。 A method for transmitting a channel state information reference signal CSI-RS, the method comprising: determining, by the terminal, configuration information used by a network side to send a CSI-RS; the configuration information indicating that the network side adopts a compressed CSI-RS Structure transmission CSI-RS; all CSI-RSs in the compressed CSI-RS structure are transmitted in resource elements RE in the first X orthogonal frequency division multiplexing OFDM symbols in a downlink subframe or a downlink slot, where X a positive integer not greater than 3; The terminal receives the CSI-RS sent by the network side according to the determined configuration information.
7、 如权利要求 6所述的方法, 其特征在于, 所述压缩 CSI-RS结构中, 每个 CSI-RS 端口对应的 CSI-RS资源由 Y个时域相邻或者频域相邻的 RE组成, 其中 Y为大于 1的正 整数; 并且,  The method according to claim 6, wherein in the compressed CSI-RS structure, a CSI-RS resource corresponding to each CSI-RS port is composed of Y time-domain neighboring or frequency-domain adjacent REs. Composition, where Y is a positive integer greater than one; and,
对于每个 CSI-RS端口对应的 CSI-RS资源, 该 CSI-RS资源最多由 Y个 CSI-RS端口 的 CSI-RS复用。  For the CSI-RS resource corresponding to each CSI-RS port, the CSI-RS resource is multiplexed by the CSI-RS of the Y CSI-RS ports at most.
8、 如权利要求 6所述的方法, 其特征在于, 所述配置信息包含的 CSI-RS配置信息和 零功率 CSI-RS配置信息均包含参数 /'和 mod( , 2);  The method according to claim 6, wherein the configuration information includes CSI-RS configuration information and zero-power CSI-RS configuration information, respectively, including parameters /' and mod(, 2);
/ '和 mod( , 2)的取值为 0, 其中 为 CSI-RS资源所在时隙的编号, /'为 CSI-RS资源 在时隙中占用的第一个 OFDM符号的编号。  The value of / ' and mod( , 2) is 0, where is the number of the slot in which the CSI-RS resource is located, and /' is the number of the first OFDM symbol occupied by the CSI-RS resource in the slot.
9、如权利要求 6所述的方法, 其特征在于, 所述配置信息包含的 CSI-RS配置对应的 种类数目不小于 P, P为对应压缩 CSI-RS结构的 CSI-RS配置的种类数目;  The method according to claim 6, wherein the number of types corresponding to the CSI-RS configuration included in the configuration information is not less than P, and P is the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure;
所述配置信息包含的零功率 CSI-RS配置信息所占用的比特数不小于 Κ, K为对应压 缩 CSI-RS结构的零功率 CSI-RS配置的种类数目。  The number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information is not less than Κ, and K is the number of types of zero-power CSI-RS configurations corresponding to the compressed CSI-RS structure.
10、 如权利要求 6所述的方法, 其特征在于, 所述配置信息包含的 CSI-RS配置对应 的种类数目不小于 M, M为 LTE-A系统协议中定义的 CSI-RS配置的种类数目与对应压缩 CSI-RS结构的 CSI-RS配置的种类数目之和;  The method according to claim 6, wherein the number of types corresponding to the CSI-RS configuration included in the configuration information is not less than M, and M is the number of types of CSI-RS configurations defined in the LTE-A system protocol. The sum of the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure;
所述配置信息包含的零功率 CSI-RS配置信息所占用的比特数不小于 N, N为 LTE-A 系统协议中定义的零功率 CSI-RS配置的种类数目与对应压缩 CSI-RS结构的零功率 CSI-RS 配置的种类数目之和。  The number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information is not less than N, where N is the number of types of zero-power CSI-RS configurations defined in the LTE-A system protocol and zeros corresponding to the compressed CSI-RS structure. The sum of the number of types of power CSI-RS configurations.
11、 一种基站, 其特征在于, 该基站包括:  A base station, the base station comprising:
确定单元, 用于确定发送 CSI-RS所使用的配置信息; 所述配置信息指示网络侧釆用 压缩 CSI-RS结构传输 CSI-RS;所述压缩 CSI-RS结构中所有的 CSI-RS在下行子帧或下行 时隙中的前 X个正交频分复用 OFDM符号内的资源单元 RE中传输, 其中 X为不大于 3 的正整数;  a determining unit, configured to determine configuration information used to send the CSI-RS; the configuration information indicates that the network side transmits the CSI-RS by using a compressed CSI-RS structure; and all CSI-RSs in the compressed CSI-RS structure are in the downlink Transmission in a resource unit RE within the first X orthogonal frequency division multiplexing OFDM symbols in a subframe or a downlink slot, where X is a positive integer not greater than 3;
发送单元, 用于才 据确定的配置信息向终端发送对应的 CSI-RS。  And a sending unit, configured to send the corresponding CSI-RS to the terminal according to the determined configuration information.
12、如权利要求 11所述的基站,其特征在于, 所述确定单元确定的配置信息所指示的 压缩 CSI-RS结构中, 每个 CSI-RS端口对应的 CSI-RS资源由 Y个时域相邻或者频域相邻 的 RE组成, 其中 Y为大于 1的正整数; 并且,  The base station according to claim 11, wherein, in the compressed CSI-RS structure indicated by the configuration information determined by the determining unit, the CSI-RS resources corresponding to each CSI-RS port are represented by Y time domains. Adjacent or adjacent to the frequency domain, wherein Y is a positive integer greater than 1;
对于每个 CSI-RS端口对应的 CSI-RS资源, 该 CSI-RS资源最多由 Y个 CSI-RS端口 的 CSI-RS复用。  For the CSI-RS resource corresponding to each CSI-RS port, the CSI-RS resource is multiplexed by the CSI-RS of the Y CSI-RS ports at most.
13、 如权利要求 11 所述的基站, 其特征在于, 所述确定单元确定的配置信息包含的 CSI-RS配置信息和零功率 CSI-RS配置信息均包含参数 /'和 mod(ns, 2); / '和 mod( , 2)的取值为 0, 其中 为 CSI-RS资源所在时隙的编号, /'为 CSI-RS资源 在时隙中占用的第一个 OFDM符号的编号。 The base station according to claim 11, wherein the CSI-RS configuration information and the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit both include a parameter /' and mod(n s , 2 ); The value of / ' and mod( , 2) is 0, where is the number of the slot in which the CSI-RS resource is located, and /' is the number of the first OFDM symbol occupied by the CSI-RS resource in the slot.
14、 如权利要求 11所述的基站, 其特征在于, 所述确定单元确定的配置信息包含的 CSI-RS配置对应的种类数目不小于 P, P为对应压缩 CSI-RS结构的 CSI-RS配置的种类数 目;  The base station according to claim 11, wherein the number of types corresponding to the CSI-RS configuration included in the configuration information determined by the determining unit is not less than P, and P is a CSI-RS configuration corresponding to the compressed CSI-RS structure. Number of species;
所述确定单元确定的配置信息包含的零功率 CSI-RS配置信息所占用的比特数不小于 Κ, K为对应压缩 CSI-RS结构的零功率 CSI-RS配置的种类数目。  The number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit is not less than Κ, where K is the number of types of zero-power CSI-RS configurations corresponding to the compressed CSI-RS structure.
15、 如权利要求 11所述的基站, 其特征在于, 所述确定单元确定的配置信息包含的 CSI-RS配置对应的种类数目不小于 M, M为 LTE-A系统协议中定义的 CSI-RS配置的种 类数目与对应压缩 CSI-RS结构的 CSI-RS配置的种类数目之和;  The base station according to claim 11, wherein the number of types corresponding to the CSI-RS configuration included in the configuration information determined by the determining unit is not less than M, and M is a CSI-RS defined in the LTE-A system protocol. The sum of the number of types of configurations and the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure;
所述确定单元确定的配置信息包含的零功率 CSI-RS配置信息所占用的比特数不小于 N, N为 LTE-A系统协议中定义的零功率 CSI-RS配置的种类数目与对应压缩 CSI-RS结构 的零功率 CSI-RS配置的种类数目之和。  The number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit is not less than N, where N is the number of types of zero-power CSI-RS configurations defined in the LTE-A system protocol and the corresponding compressed CSI- The sum of the number of types of zero-power CSI-RS configurations of the RS structure.
16、 一种终端, 其特征在于, 该终端包括:  16. A terminal, the terminal comprising:
确定单元, 用于确定网络侧发送 CSI-RS所使用的配置信息; 所述配置信息指示网络 侧采用压缩 CSI-RS结构传输 CSI-RS; 所述压缩 CSI-RS结构中所有的 CSI-RS在下行子帧 或下行时隙中的前 X个正交频分复用 OFDM符号内的资源单元 RE中传输, 其中 X为不 大于 3的正整数;  a determining unit, configured to determine configuration information used by the network side to send the CSI-RS; the configuration information indicates that the network side transmits the CSI-RS by using a compressed CSI-RS structure; and all CSI-RSs in the compressed CSI-RS structure are Transmitted in a resource unit RE in a first X orthogonal frequency division multiplexing OFDM symbols in a downlink subframe or a downlink slot, where X is a positive integer not greater than 3;
接收单元, 用于才艮据确定的配置信息接收网络侧发送的 CSI-RS。  The receiving unit is configured to receive the CSI-RS sent by the network side according to the determined configuration information.
17、 如权利要求 16所述的终端, 其特征在于, 所述确定单元确定的配置信息所指示 的压缩 CSI-RS结构中, 每个 CSI-RS端口对应的 CSI-RS资源由 Y个时域相邻或者频域相 邻的 RE组成, 其中 Y为大于 1的正整数; 并且,  The terminal according to claim 16, wherein, in the compressed CSI-RS structure indicated by the configuration information determined by the determining unit, the CSI-RS resources corresponding to each CSI-RS port are represented by Y time domains. Adjacent or adjacent to the frequency domain, wherein Y is a positive integer greater than 1;
对于每个 CSI-RS端口对应的 CSI-RS资源, 该 CSI-RS资源最多由 Y个 CSI-RS端口 的 CSI-RS复用。  For the CSI-RS resource corresponding to each CSI-RS port, the CSI-RS resource is multiplexed by the CSI-RS of the Y CSI-RS ports at most.
18、 如权利要求 16所述的终端, 其特征在于, 所述确定单元确定的配置信息包含的 The terminal according to claim 16, wherein the configuration information determined by the determining unit includes
CSI-RS配置信息和零功率 CSI-RS配置信息均包含参数 /'和 mod( , 2); CSI-RS configuration information and zero-power CSI-RS configuration information include parameters /' and mod(, 2);
/ '和 mod(¾, 2)的取值为 0, 其中 为 CSI-RS资源所在时隙的编号, /'为 CSI-RS资源 在时隙中占用的第一个 OFDM符号的编号。  The value of / ' and mod(3⁄4, 2) is 0, where is the number of the slot in which the CSI-RS resource is located, and /' is the number of the first OFDM symbol occupied by the CSI-RS resource in the slot.
19、 如权利要求 16所述的终端, 其特征在于, 所述确定单元确定的配置信息包含的 CSI-RS配置对应的种类数目不小于 P, P为对应压缩 CSI-RS结构的 CSI-RS配置的种类数 ;  The terminal according to claim 16, wherein the number of types corresponding to the CSI-RS configuration included in the configuration information determined by the determining unit is not less than P, and P is a CSI-RS configuration corresponding to the compressed CSI-RS structure. Number of species;
所述确定单元确定的配置信息包含的零功率 CSI-RS配置信息所占用的比特数不小于 Κ, K为对应压缩 CSI-RS结构的零功率 CSI-RS配置的种类数目。 The number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit is not less than Κ, and K is the number of types of zero-power CSI-RS configurations corresponding to the compressed CSI-RS structure.
20、 如权利要求 16所述的终端, 其特征在于, 所述确定单元确定的配置信息包含的 CSI-RS配置对应的种类数目不小于 M, M为 LTE-A系统协议中定义的 CSI-RS配置的种 类数目与对应压缩 CSI-RS结构的 CSI-RS配置的种类数目之和; The terminal according to claim 16, wherein the number of types corresponding to the CSI-RS configuration included in the configuration information determined by the determining unit is not less than M, and M is a CSI-RS defined in the LTE-A system protocol. The sum of the number of types of configurations and the number of types of CSI-RS configurations corresponding to the compressed CSI-RS structure;
所述确定单元确定的配置信息包含的零功率 CSI-RS 配置信息所占用的比特数不小于 N, N为 LTE-A系统协议中定义的零功率 CSI-RS配置的种类数目与对应压缩 CSI-RS结构 的零功率 CSI-RS配置的种类数目之和。  The number of bits occupied by the zero-power CSI-RS configuration information included in the configuration information determined by the determining unit is not less than N, where N is the number of types of zero-power CSI-RS configurations defined in the LTE-A system protocol and the corresponding compressed CSI- The sum of the number of types of zero-power CSI-RS configurations of the RS structure.
PCT/CN2013/088752 2012-12-06 2013-12-06 Method and device for transmitting channel state information reference signals WO2014086313A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210521729.4A CN103856310B (en) 2012-12-06 2012-12-06 The transmission method of channel state information reference signals and equipment
CN201210521729.4 2012-12-06

Publications (1)

Publication Number Publication Date
WO2014086313A1 true WO2014086313A1 (en) 2014-06-12

Family

ID=50863558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088752 WO2014086313A1 (en) 2012-12-06 2013-12-06 Method and device for transmitting channel state information reference signals

Country Status (2)

Country Link
CN (1) CN103856310B (en)
WO (1) WO2014086313A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105356978B (en) * 2014-08-21 2019-06-07 电信科学技术研究院 A kind of method and apparatus transmitting CSI-RS
CN106534001B (en) 2015-09-10 2019-07-05 上海朗帛通信技术有限公司 A kind of wireless communications method and device of low latency
WO2017075836A1 (en) * 2015-11-06 2017-05-11 华为技术有限公司 Csi-rs configuration method and related apparatus
CN115664615A (en) 2017-03-24 2023-01-31 中兴通讯股份有限公司 Method and device for receiving channel state information pilot frequency and storage medium
CN109547185B (en) 2017-04-28 2020-03-20 华为技术有限公司 Method for sending and receiving reference signal, network equipment and terminal equipment
CN108811088B (en) 2017-04-28 2024-05-14 华为技术有限公司 Message transmission method, device, terminal and base station
CN110391887B (en) * 2018-04-20 2021-11-09 华为技术有限公司 Signal processing method and device
CN111277379B (en) * 2019-01-11 2022-09-23 维沃移动通信有限公司 Wireless communication method and terminal device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340379A (en) * 2010-07-15 2012-02-01 中国移动通信集团公司 CSI-RS (Channel Status Information-Reference Signal) transmission method and detection method, and devices of CSI-RS transmission method and detection method
CN102742238A (en) * 2010-02-17 2012-10-17 中兴通讯(美国)公司 Methods and systems for CSI-RS transmission in LTE-ADVANCE systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101053635B1 (en) * 2010-01-28 2011-08-03 엘지전자 주식회사 Method for transmitting control signal to relay node at base station in mimo communication system and apparatus therefor
US9344299B2 (en) * 2011-05-13 2016-05-17 Lg Electronics Inc. CSI-RS based channel estimating method in a wireless communication system and device for same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102742238A (en) * 2010-02-17 2012-10-17 中兴通讯(美国)公司 Methods and systems for CSI-RS transmission in LTE-ADVANCE systems
CN102340379A (en) * 2010-07-15 2012-02-01 中国移动通信集团公司 CSI-RS (Channel Status Information-Reference Signal) transmission method and detection method, and devices of CSI-RS transmission method and detection method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"CATT. Discussion on CSI-RS transmission on NCT.", 3GPP TSG RAN WG1 MEETING #72, 1 February 2013 (2013-02-01), ST. JULIAN'S, MALTA, pages 1 - 3 *
"TECHNICAL SPECIFICATION GROUP RADIO ACCESS NETWORK: ''3GPP TS 36.211 V 11.0.0: Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 11", 3RD GENERATION PARTNERSHIP PROJECT (3GPP), 30 September 2012 (2012-09-30) *

Also Published As

Publication number Publication date
CN103856310B (en) 2016-12-21
CN103856310A (en) 2014-06-11

Similar Documents

Publication Publication Date Title
AU2017203697B2 (en) Mapping an enhanced physical downlink control channel
JP7163277B2 (en) Method and apparatus for uplink transmission in wireless communication system
TWI681657B (en) Uplink grants for narrowband internet-of-things
US10306614B2 (en) Method for setting search region to detect downlink control channel in wireless communication system and apparatus for same
CN108282325B (en) Special subframe signal transmission method and equipment for LTE TDD
CN111556472B (en) Internet of things design for unlicensed spectrum
CN102202324B (en) Method and system of resource position indication and channel blind detection, and apparatus thereof
CN105723640B (en) Method and arrangement for configuring CSI measurements
CN105340198B (en) The method and apparatus for obtaining control information in a wireless communication system
KR101753690B1 (en) Blind detection mode determination method, blind detection method and device
WO2014086313A1 (en) Method and device for transmitting channel state information reference signals
US20140321370A1 (en) Rate matching under irregular, sparse, or narrowband signals
EP4055944A1 (en) Updating active tci state for single-pdcch based multi-trp pdsch or multi-pdcch based multi-trp pdsch
KR20150024300A (en) Method and device for allocating resource for downlink control channel in wireless communication system, and apparatus therefor
CN104823396A (en) Method and user equipment for receiving downlink signal and method and base station for transmitting downlink signal
CN108605344A (en) User terminal, wireless base station and wireless communications method
CN104798329A (en) Method and apparatus for transmitting data, and method and apparatus for transmitting data
WO2013147523A1 (en) Method for allocating resources for downlink control channel in wireless communication system and device for same
WO2013066100A1 (en) Method for transreceiving downlink control information in wireless access system and apparatus for same
WO2014073776A1 (en) Method and device for receiving or transmitting downlink data in wireless communication system
EP3057246B1 (en) Method for managing uplink transmission resource in wireless communication system, and apparatus therefor
WO2013056593A1 (en) Method, system and device for transmitting control information
WO2014003407A1 (en) Method and user equipment for receiving broadcast/multicast service receiving, and method and base station for transmitting broadcast/multicast service
KR20150117650A (en) Method and apparatus for receiving or transmitting downlink control signal in wireless communication system
WO2014000618A1 (en) Downlink ue-specific dm-rs transmission method, ue and network-side device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859879

Country of ref document: EP

Kind code of ref document: A1