WO2017075836A1 - Csi-rs configuration method and related apparatus - Google Patents

Csi-rs configuration method and related apparatus Download PDF

Info

Publication number
WO2017075836A1
WO2017075836A1 PCT/CN2015/094063 CN2015094063W WO2017075836A1 WO 2017075836 A1 WO2017075836 A1 WO 2017075836A1 CN 2015094063 W CN2015094063 W CN 2015094063W WO 2017075836 A1 WO2017075836 A1 WO 2017075836A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
port csi
csi
port
resources
Prior art date
Application number
PCT/CN2015/094063
Other languages
French (fr)
Chinese (zh)
Inventor
刘建琴
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/094063 priority Critical patent/WO2017075836A1/en
Priority to CN201580082589.7A priority patent/CN107925896A/en
Publication of WO2017075836A1 publication Critical patent/WO2017075836A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to the field of communications, and in particular, to a method for configuring a channel state information reference signal (CSI-RS) and related devices.
  • CSI-RS channel state information reference signal
  • CSI-RS channel state information measurement
  • the CSI-RS configuration of the special subframe is not supported in the LTE R10 standard.
  • the CSI-RS configuration of the number of ports 1, 2, 4, and 8 of the downlink subframe is supported, and only 8 antenna ports can be supported at most.
  • the upcoming LTE R13 standard is beginning to consider introducing more antenna configurations, especially antenna configurations based on active antenna systems (English: Active Antenna Systems, AAS) with more than 8 antenna ports. .
  • the number of antenna ports may be 12, 16, 32 or 64, and the like.
  • the embodiments of the present invention provide a method and a related device for configuring a CSI-RS, so as to at least solve the problem that the related solution of the CSI-RS is not currently configured in a special subframe.
  • the embodiment of the present invention adopts the following technical solutions:
  • a method for configuring a channel state information reference signal CSI-RS comprising:
  • the base station sends the indication information of the CSI-RS configuration to the user equipment UE, where the indication information of the CSI-RS configuration is used to indicate the CSI-RS configuration of the special subframe.
  • a method for configuring a channel state information reference signal CSI-RS comprising:
  • the UE determines a CSI-RS configuration of the special subframe according to the indication information of the CSI-RS configuration.
  • a third aspect provides a base station, where the base station includes: a processing unit and a sending unit;
  • the processing unit is configured to determine a channel state information reference signal CSI-RS configuration of a special subframe, where the CSI-RS configuration includes an identifier of a resource unit RE of the CSI-RS, where each physical resource block PRB
  • the sending unit is configured to send the indication information of the CSI-RS configuration to the user equipment UE, where the indication information of the CSI-RS configuration is used to indicate a CSI-RS configuration of the special subframe.
  • a fourth aspect provides a user equipment UE, where the UE includes: a receiving unit and a processing unit;
  • the receiving unit is configured to receive indication information of a channel state information reference signal CSI-RS configuration sent by the base station, where the indication information of the CSI-RS configuration is used to indicate a CSI-RS configuration of a special subframe, where each t
  • the processing unit is configured to determine a CSI-RS configuration of the special subframe according to the indication information of the CSI-RS configuration.
  • a base station in a fifth aspect, includes a processor, a memory, a bus, and a communication interface;
  • the memory is configured to store a computer to execute an instruction
  • the processor is connected to the memory through the bus, and when the base station is running, the processor executes the computer-executed instruction stored in the memory to make The method in which the base station performs the CSI-RS configuration as described in the first aspect.
  • a user equipment UE includes a processor, a memory, a bus, and a communication interface;
  • the memory is configured to store a computer to execute an instruction
  • the processor is connected to the memory through the bus, and when the UE is running, the processor executes the computer-executed instruction stored in the memory to make A method in which a UE performs a CSI-RS configuration as described in the second aspect.
  • the two ports form an n/2 port CSI-RS resource, and the n-1th port and the i th n/2 of the i th n port CSI-RS resource in the m n port CSI-RS resources
  • the identifiers of the REs of the n/2-1th ports of the port CSI-RS resources are the same, 1 ⁇ i ⁇ m, and i and X are positive integers.
  • the identity of the resource unit RE of the 1 port is the same, including:
  • the identifiers of the first 2-port CSI-RS resource to the first port of the 20th 2-port CSI-RS resource are (9, 2), (11, 5, respectively). ), (9,5), (7,5), (9,2), (8,2), (10,5), (8,5), (6,5), (8,2), (3,2), (2,2), (5,5), (4,5), (3,5), (2,5), (1,5), (0,5), (3 2), (2, 2), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, respectively , 0, 0, 0, 0, 0, 0, 0, 0, 1, 1;
  • the identifiers of the REs of the first 4-port CSI-RS resource to the third port of the 10th 4-port CSI-RS resource are (9, 2), (11, 5, respectively). ), (9,5), (7,5), (9,2), (8,2), (10,5), (8,5), (6,5), (8,2), value operation mode number n s of the radio frame slot positioned RE 2 are 0,0,0,0,1,0,0,0,0,1;
  • the identifiers of the REs of the first 8-port CSI-RS resource to the 7th port of the 5th 8-port CSI-RS resource are (9, 2), (11, 5, respectively).
  • the identifiers of the REs of the first 16-port CSI-RS resource to the 15th port of the second 16-port CSI-RS resource are (9, 2), (11, 5, respectively).
  • the value of the RE located in the radio frame in the number n s modulo 2 operation is 0, 0.
  • the first 16-port CSI-RS resource and the second 16-port CSI-RS resource may be aggregated by any one of the following configurations A1, B1, C1, D1, E1, and F1. :
  • the first 16-port CSI-RS resource is aggregated from the third 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is selected from the fifth 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
  • the first 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is composed of the fourth 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
  • the first 16-port CSI-RS resource is aggregated from the 4th 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is 5th. Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
  • the first 16-port CSI-RS resource is aggregated from the 4th 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is 3rd. Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
  • the first 16-port CSI-RS resource is aggregated by the fifth 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is composed of the third 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
  • the first 16-port CSI-RS resource is aggregated from the 5th 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is 4th.
  • the port CSI-RS resource is aggregated with the second 8-port CSI-RS resource.
  • each n-port CSI-RS resource in the m n-port CSI-RS resources is configured by r w ports CSI-RS
  • the resources are aggregated, including:
  • Each of the three 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 4-port CSI-RS resources are used.
  • 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or,
  • Each of the three 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 12-port CSI-RS resources are used.
  • the 12-port CSI-RS resources are respectively obtained by subtracting one 4-port CSI-RS resource from any one of the two 16-port CSI-RS resources, and the three 12-port CSI- One 12-port CSI-RS resource other than the any two 12-port CSI-RS resources in the RS resource is aggregated by three 4-port CSI-RS resources other than the any two 12-port CSI-RS resources. Made.
  • the n-1th port of the i-th n-port CSI-RS resource and the n/2-1 of the i-th n/2 port CSI-RS resource among the m n-port CSI-RS resources The resource unit REs of the ports have the same identifier, including:
  • the identifiers of the first 2-port CSI-RS resource to the first port of the 12th 2-port CSI-RS resource are (11, 5), (9, 5, respectively). ), (7,5), (10,5), (8,5), (6,5), (5,5), (4,5), (3,5), (2,5), (1, 5), (0, 5), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0;
  • the identifiers of the REs of the first 4-port CSI-RS resource to the third port of the sixth 4-port CSI-RS resource are (11, 5), (9, 5, respectively). ), (7, 5), (10, 5), (8, 5), (6, 5), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0 , 0, 0, 0, 0;
  • the identifiers of the REs of the first 8-port CSI-RS resource to the 7th port of the 5th 8-port CSI-RS resource are (11, 5), (9, 5, respectively). (7, 5), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 0;
  • the identifier of the RE of the first 16-port CSI-RS resource is (9, 2), and the RE is located in the radio frame, the number of the slot is n s , and the value after the modulo 2 operation is respectively Is 0.
  • the first 16-port CSI-RS resource may be aggregated by using any one of the following configurations J1 and K1:
  • the first 16-port CSI-RS resource is aggregated by the second 8-port CSI-RS resource and the first 8-port CSI-RS resource;
  • the first 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the first 8-port CSI-RS resource.
  • each n-port CSI-RS resource in the m n-port CSI-RS resources is configured by r w ports CSI-RS
  • the resources are aggregated, including:
  • Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 4-port CSI-RS resources are used.
  • 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or,
  • Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any one of the two 12-port CSI-RS resources is used.
  • the 12-port CSI-RS resource is obtained by subtracting one 4-port CSI-RS resource from the one 16-port CSI-RS resource, and any one of the two 12-port CSI-RS resources except the any one of the 12-port CSI-RS resources
  • One 12-port CSI-RS resource other than the RS resource is aggregated by three 4-port CSI-RS resources other than the arbitrary one-port 12-port CSI-RS resource.
  • the m The n-1th port of the i-th n-port CSI-RS resource and the n-2-1 port resource unit RE of the i-th n/2 port CSI-RS resource in the n-port CSI-RS resource The same logo, including:
  • the identifiers of the first 2-port CSI-RS resource to the first port of the 16th 2-port CSI-RS resource are (11, 4), (9, 4, respectively). ), (10,4), (9,4), (5,4), (3,4), (4,4), (3,4), (8,4), (6,4), (2,4), (0,4), (7,4), (6,4), (1,4), (0,4), the RE is located in the slot number of the radio frame n s mode 2
  • the values after the operation are 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1;
  • the identifiers of the REs of the first 4-port CSI-RS resource to the third port of the eighth 4-port CSI-RS resource are (11, 4), (9, 4, respectively). ), (10,4), (9,4), (5,4), (3,4), (4,4), (3,4), the RE is located in the slot number n of the radio frame
  • the values after s modulo 2 operation are 0, 0, 1, 1, 0, 0, 1, 1 respectively;
  • the identifiers of the REs of the first 8-port CSI-RS resource to the 7th port of the 4th 8-port CSI-RS resource are (11, 4), (9, 4, respectively).
  • (10, 4), (9, 4) the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 1, 1, respectively;
  • the identifiers of the REs of the first 16-port CSI-RS resource to the 15th port of the second 16-port CSI-RS resource are (11, 4), (9, 4, respectively).
  • the value of the RE located in the radio frame in the number n s modulo 2 operation is 0, 0.
  • the first 16-port CSI-RS resource and the second 16-port CSI-RS resource may be aggregated by using any one of the following configurations A2 and B2:
  • the first 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is composed of the fourth 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
  • the first 16-port CSI-RS resource is aggregated from the 4th 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is 3rd.
  • the port CSI-RS resource is aggregated with the second 8-port CSI-RS resource.
  • Each n-port CSI-RS resource is aggregated by r w-port CSI-RS resources, including:
  • Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 4-port CSI-RS resources are used.
  • 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or,
  • Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein the two 12-port CSI-RS resources are respectively A 16-port CSI-RS resource is subtracted from a 4-port CSI-RS resource.
  • the n-1th port of the i-th n-port CSI-RS resource and the n/2-1 of the i-th n/2 port CSI-RS resource among the m n-port CSI-RS resources The resource unit REs of the ports have the same identifier, including:
  • the REs of the first 2-port CSI-RS resource to the first port of the 12th 2-port CSI-RS resource are (11, 1), (10, 1), respectively. (9,1), (5,1), (4,1), (3,1), (8,1), (7,1), (6,1), (2,1), (1 , 1), (0, 1), the RE is located in the radio frame, the number of the slot n s modulo 2 operation, the values are 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, respectively 1,1;
  • the REs of the first 4-port CSI-RS resource to the third port of the sixth 4-port CSI-RS resource are (11, 1), (10, 1), respectively. (9,1), (5,1), (4,1), (3,1), the RE is located in the radio frame, the number of the slot n s modulo 2 operation, the values are 1, 1, 1, respectively 1, 1, 1, 1;
  • the REs of the first 8-port CSI-RS resource to the 7th port of the 5th 8-port CSI-RS resource are (11, 1), (10, 1), respectively. (9, 1), the RE is located in the radio frame, the number of the slot n s modulo 2 operation after the value is 1, 1, 1;
  • the RE of the first 16-port CSI-RS resource is (11, 1), and the RE is located in the radio frame, the number of the slot is n s , and the value after the modulo 2 operation is 1 respectively.
  • the first 16-port CSI-RS resource may be aggregated by using any one of the following configurations E2 and F2:
  • the first 16-port CSI-RS resource is aggregated by the second 8-port CSI-RS resource and the first 8-port CSI-RS resource;
  • the first 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the first 8-port CSI-RS resource.
  • each n-port CSI-RS resource in the m n-port CSI-RS resources is configured by r w ports CSI-RS
  • the resources are aggregated, including:
  • Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 4-port CSI-RS resources are used.
  • 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or,
  • Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any one of the two 12-port CSI-RS resources is used.
  • the 12-port CSI-RS resource is obtained by subtracting one 4-port CSI-RS resource from the one 16-port CSI-RS resource, and any one of the two 12-port CSI-RS resources except the any one of the 12-port CSI-RS resources
  • One 12-port CSI-RS resource other than the RS resource is aggregated by three 4-port CSI-RS resources other than the arbitrary one-port 12-port CSI-RS resource.
  • the first n/2 ports of each n-port CSI-RS resource of the m n-port CSI-RS resources constitute an n/2 port CSI-RS resource
  • Resources of the n-1th port of the i-th n-port CSI-RS resource and the n/2-1th port of the i-th n/2 port CSI-RS resource in the m n-port CSI-RS resources The identity of the unit RE is the same, including:
  • the i-th 16-port CSI-RS resource is aggregated by an i-th 8-port CSI-RS resource in a first PRB pair and an i-th 8-port CSI-RS resource in a second PRB pair;
  • the ith 16-port CSI-RS resource is the ith and i+P 4-port CSI-RS resources in the first PRB pair, and the ith and the second in the second PRB pair.
  • i+P 4-port CSI-RS resources are aggregated, and P is the number of 8-port CSI-RS resources in each PRB pair;
  • the i-th 16-port CSI-RS resource is the i-th, i-th, i+th, and i-th+P+Q 4-port CSI-RS resources in the first PRB pair
  • the i-th, i+Pth, i+th, and i+P+Q 4-port CSI-RS resource aggregations of the second PRB pair P is the number of 8-port CSI-RS resources in each PRB pair
  • Q is the number of 4-port CSI-RS resources in each PRB pair.
  • the embodiment of the present invention provides a related solution for configuring a CSI-RS in a special subframe.
  • the method, the related device, and the system for configuring a CSI-RS according to the embodiment of the present invention may configure a CSI-RS in a special subframe.
  • a method for configuring a channel state information reference signal CSI-RS comprising:
  • a CSI-RS configuration of a downlink transmission subframe where the CSI-RS configuration includes an identifier of a resource unit RE of the CSI-RS, where each of the physical resource block PRB pairs includes m n-port CSI-RSs
  • the n-port CSI-RS resource of the m n-port CSI-RS resources is aggregated by p q-port CSI-RS resources.
  • m there are at least two n-port CSI-RSs.
  • the s q-port CSI-RS resources in the resource are the same, and the downlink transmission subframe includes a special subframe or a downlink subframe, and 1 ⁇ s ⁇ p, n>q, m, n, t, p, q, s Is a positive integer;
  • the base station sends the indication information of the CSI-RS configuration to the user equipment UE, where the indication information of the CSI-RS configuration is used to indicate the CSI-RS configuration of the downlink transmission subframe.
  • a method for configuring a channel state information reference signal CSI-RS comprising:
  • the user equipment UE receives the indication information of the CSI-RS configuration sent by the base station, where the indication information of the CSI-RS configuration is used to indicate the CSI-RS configuration of the downlink transmission subframe, where the per-physical resource block PRB pair includes m
  • Each n-port CSI-RS resource of the n-port CSI-RS resources is aggregated by p q-port CSI-RS resources, and when m ⁇ 2, there are at least two
  • the s q-port CSI-RS resources in the n-port CSI-RS resources are the same, and the downlink transmission subframe includes a special subframe or a downlink subframe, 1 ⁇ s ⁇ p, n>q, m, n, t, p, q, s are all positive integers;
  • the UE determines a CSI-RS configuration of the downlink transmission subframe according to the indication information of the CSI-RS configuration.
  • a base station includes: a processing unit and a sending unit;
  • the processing unit is configured to determine a channel state information reference signal CSI-RS configuration of a downlink transmission subframe, where the CSI-RS configuration includes an identifier of a resource unit RE of the CSI-RS,
  • Each of the m physical resource block PRB pairs includes m n-port CSI-RS resources, and each of the m n-port CSI-RS resources is configured by p q-port CSI-RS resources.
  • the downlink transmission subframe includes a special subframe or a downlink subframe, 1 ⁇ s ⁇ p,n>q, m, n, t, p, q, s are all positive integers;
  • the sending unit is configured to send, to the user equipment UE, the indication information of the CSI-RS configuration, where the indication information of the CSI-RS configuration is used to indicate a CSI-RS configuration of the downlink transmission subframe.
  • a user equipment UE includes: a receiving unit and a processing unit;
  • the receiving unit is configured to receive indication information of a channel state information reference signal CSI-RS configuration sent by the base station, where the indication information of the CSI-RS configuration is used to indicate a CSI-RS configuration of the downlink transmission subframe, where each t
  • the physical resource block PRB pair includes m n-port CSI-RS resources, and each n-port CSI-RS resource of the m n-port CSI-RS resources is aggregated by p q-port CSI-RS resources.
  • the downlink transmission subframe includes a special subframe or a downlink subframe, 1 ⁇ s ⁇ p,n >q, m, n, t, p, q, s are all positive integers;
  • the processing unit is configured to determine a CSI-RS configuration of the downlink transmission subframe according to the indication information of the CSI-RS configuration.
  • a base station comprising a processor, a memory, a bus, and a communication interface;
  • the memory is configured to store a computer to execute an instruction
  • the processor is connected to the memory through the bus, and when the base station is running, the processor executes the computer-executed instruction stored in the memory to make A method in which a base station performs a CSI-RS configuration as described in the seventh aspect.
  • a user equipment UE includes a processor, a memory, a bus, and a communication interface;
  • the memory is configured to store computer execution instructions
  • the processor is coupled to the memory via the bus, and when the UE is running, the processor executes the memory storage
  • the computer executes instructions to cause the UE to perform the method of CSI-RS configuration as described in the eighth aspect.
  • the embodiment of the present invention provides a related solution for configuring a CSI-RS in a downlink transmission subframe.
  • the CSI-RS configuration method and related device provided by the embodiment of the present invention may configure a CSI-RS in a special subframe.
  • the CSI-RS may be configured in the downlink subframe when the number of antenna ports is greater than 8.
  • FIG. 1 is a system architecture diagram of a CSI-RS configuration according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart 1 of a method for configuring a CSI-RS according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram 1 of a configuration pattern of a CSI-RS according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram 2 of a configuration pattern of a CSI-RS according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram 3 of a configuration pattern of a CSI-RS according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram 4 of a configuration pattern of a CSI-RS according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram 5 of a configuration pattern of a CSI-RS according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram 6 of a configuration pattern of a CSI-RS according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram 7 of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram 8 of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram 9 of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram 10 of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram 11 of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram 12 of a configuration pattern of a CSI-RS according to an embodiment of the present disclosure
  • FIG. 15 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 16 is a schematic diagram showing a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 17 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 18 is a schematic diagram 16 of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 19 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 20 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 21 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 22 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 23 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 24 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 25 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 26 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 27 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 28 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 29 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 30 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 31 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 32 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 33 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 34 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 35 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention.
  • FIG. 36 is a second schematic flowchart of a method for configuring a CSI-RS according to an embodiment of the present disclosure
  • FIG. 37 is a schematic structural diagram 1 of a base station according to an embodiment of the present invention.
  • FIG. 38 is a schematic structural diagram 1 of a UE according to an embodiment of the present disclosure.
  • FIG. 39 is a schematic structural diagram 2 of a base station according to an embodiment of the present disclosure.
  • FIG. 40 is a schematic structural diagram 2 of a UE according to an embodiment of the present invention.
  • the downlink multiple access method usually adopts orthogonal frequency division multiplexing multiple access (English: Or thogonal Frequency Division Multiple Access, Abbreviation: OFDMA) mode.
  • the downlink resources of the system are divided into Orthogonal Frequency Division Multiplexing (OFDM) symbols in terms of time, and are divided into subcarriers in terms of frequency.
  • OFDM Orthogonal Frequency Division Multiplexing
  • one radio frame contains 10 subframes, one subframe is 1 ms long, and the subframe of each radio frame is numbered 0-9.
  • One sub-frame contains two time slots (English: slot).
  • each time slot contains 7 OFDM symbols, numbered 0-6; in the case of extended CP Each slot contains 6 OFDM symbols, numbered 0-5.
  • a time-frequency resource composed of one OFDM symbol and one subcarrier is called a resource element (English: Resource Element, abbreviated as RE).
  • the size of a physical resource block (English: Physical Resource Block, PRB for short) is defined as one time slot in time and 180 kHz in the frequency domain. When the subcarrier spacing is 15 kHz, one PRB contains 12 subcarriers in frequency, and at this time, one PRB contains a total of 84 or 72 REs.
  • the PRB is numbered in the frequency domain, which is the PRB index.
  • a PRB pair is defined as a pair of PRBs having the same PRB index of two slots on one subframe.
  • the LTE system supports two frame structures: Type1 and Type2, where Type1 is used for Frequency Division Duplexing (English: Frequency Division Duplexing, FDD for short) and Type 2 is used for Time Division Duplexing (TDD).
  • Type1 Frequency Division Duplexing
  • FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • each subframe included in a 10 ms radio frame can be used for both downlink transmission and uplink transmission.
  • a subframe included in a 10 ms radio frame is either a downlink subframe, an uplink subframe, or a special subframe.
  • Which subframe is a downlink subframe, an uplink subframe, or a special subframe is determined by the TDD uplink and downlink configuration.
  • LTE currently supports seven different TDD uplink and downlink configurations, as shown in Table 1, where D represents a downlink subframe for downlink transmission, S represents a special subframe, and U represents an uplink subframe.
  • the special subframe includes a downlink pilot time slot (English: Downlink Pilot Time Slot, referred to as DwPTS), a guard time (English: Guard Period, abbreviated as GP), and an uplink pilot time slot (English: Uplink Pilot Time Slot) , referred to as: UpPTS) three parts, GP is mainly used for downlink to uplink conversion time and propagation delay compensation.
  • DwPTS Downlink Pilot Time Slot
  • GP Uplink Pilot Time Slot
  • UpPTS UpPTS
  • the words “first”, “second” and the like are used to distinguish the same or similar items whose functions and functions are substantially the same, in the field.
  • the skilled person will understand that the words “first”, “second” and the like do not limit the number and order of execution.
  • the present invention is mainly applied to an LTE system, or an advanced long-term evolution (English: LTE Advanced, LTE-A) system, or a future version of a continuation-evolved communication system or other mobile communication system, etc. Specifically limited.
  • the base station needs to send the CSI-RS configuration indication information to the UE, and the UE needs to receive the indication information of the CSI-RS configuration sent by the base station.
  • UE User Equipment
  • the base station and the UE1-UE6 form a communication system, in which the base station needs to send the CSI-RS configuration indication information to the UE1-UE6, and the UE1-UE6 needs to receive the CSI-RS configuration sent by the base station. Instructions.
  • the base station in the embodiment of the present invention may be a NodeB or an evolved NodeB (English: Evolved NodeB, eNB for short), which is not specifically limited in this embodiment of the present invention.
  • an embodiment of the present invention provides a method for configuring a CSI, as shown in FIG. 2, including:
  • the base station determines a CSI-RS configuration of a special subframe, where the CSI-RS configuration includes an identifier of an RE of the CSI-RS.
  • Each of the m PRB pairs includes m n-port CSI-RS resources, and each n-port CSI-RS resource of the m n-port CSI-RS resources is aggregated by r w-port CSI-RS resources.
  • n r ⁇ w, t, m, n, r, and w are all positive integers.
  • the base station sends the indication information of the CSI-RS configuration to the UE, where the indication information of the CSI-RS configuration is used to indicate a CSI-RS configuration of the special subframe.
  • the UE receives the indication information of the CSI-RS configuration sent by the base station.
  • the UE determines, according to the indication information of the CSI-RS configuration, a CSI-RS configuration of the special subframe.
  • the first n/2 ports of each n-port CSI-RS resource of the m n-port CSI-RS resources form a n/2 port CSI-RS resource
  • the n-1th port of the i-th n-port CSI-RS resource and the i-th n/2 port CSI-RS resource of the m n-port CSI-RS resources The identifiers of the REs of the n/2-1th port are the same, 1 ⁇ i ⁇ m, and both i and X are positive integers.
  • the n-1th port of the i-th n-port CSI-RS resource and the n/2-1 of the i-th n/2 port CSI-RS resource among the m n-port CSI-RS resources The resource unit REs of the ports have the same identifier, including:
  • the identifiers of the first 2-port CSI-RS resource to the first port of the 20th 2-port CSI-RS resource are (9, 2), (11, 5, respectively). ), (9,5), (7,5), (9,2), (8,2), (10,5), (8,5), (6,5), (8,2), (3,2), (2,2), (5,5), (4,5), (3,5), (2,5), (1,5), (0,5), (3 2), (2, 2), the RE is located in the radio frame, the number of the slot n s modulo 2 (ie, n s mod 2), the values after operation are 0, 0, 0, 0, 1, 0, respectively 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1;
  • the identifiers of the REs of the first 4-port CSI-RS resource to the third port of the 10th 4-port CSI-RS resource are (9, 2), (11, 5, respectively). ), (9,5), (7,5), (9,2), (8,2), (10,5), (8,5), (6,5), (8,2), value operation mode number n s of the radio frame slot positioned RE 2 are 0,0,0,0,1,0,0,0,0,1;
  • the identifiers of the REs of the first 8-port CSI-RS resource to the 7th port of the 5th 8-port CSI-RS resource are (9, 2), (11, 5, respectively).
  • the identifiers of the REs of the first 16-port CSI-RS resource to the 15th port of the second 16-port CSI-RS resource are (9, 2), (11, 5, respectively).
  • the value of the RE located in the radio frame in the number n s modulo 2 operation is 0, 0.
  • the identifier of the RE of the CSI-RS in the CSI-RS configuration of the special subframe may be as shown in Table 3.
  • the number order corresponding to the CSI-RS configuration column in Table 3 above corresponds to the order of the following port CSI-RS resources.
  • the 2-port CSI-RS resource with the CSI configuration 0 is the first 2 ports.
  • the CSI-RS resource, the 2-port CSI-RS resource with the CSI configured as 1 is the second 2-port CSI-RS resource, and so on, and will not be repeated here.
  • Table 3 shows the configuration pattern of 20 2-port CSI-RS resources corresponding to the CP type of the normal subframe, the configuration pattern of 10 4-port CSI-RS resources, and the five 8-port CSI-
  • the configuration patterns of RS resources are shown in Figure 3-5.
  • the multiple numbers of the same padding correspond to one multi-port CSI-RS resource.
  • the pattern padding is used to indicate that the OFDM symbol is not occupied. For example, in FIG. 3, the last three OFDM symbols are filled, indicating that the last three OFDM symbols are not occupied, and the following description is unified. Will not be repeated one by one.
  • the upper dotted line and the lower dotted line respectively represent the omission of the configuration pattern corresponding to the resources of other PRBs on the bandwidth resource, where Uniform instructions, the following will not be repeated.
  • the first 16-port CSI-RS resource and the second 16-port CSI-RS resource may be configured by any one of the following: A1, B1, C1, D1, E1, and F1.
  • the first 16-port CSI-RS resource is aggregated from the third 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is selected from the fifth 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
  • the first 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is composed of the fourth 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
  • the first 16-port CSI-RS resource consists of the 4th 8-port CSI-RS resource. And the first 8-port CSI-RS resource is aggregated, and the second 16-port CSI-RS resource is aggregated by the fifth 8-port CSI-RS resource and the second 8-port CSI-RS resource;
  • the first 16-port CSI-RS resource is aggregated from the 4th 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is 3rd. Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
  • the first 16-port CSI-RS resource is aggregated by the fifth 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is composed of the third 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
  • the first 16-port CSI-RS resource is aggregated from the 5th 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is 4th.
  • the port CSI-RS resource is aggregated with the second 8-port CSI-RS resource.
  • the configuration patterns corresponding to the configurations A1-F1 are as shown in FIG. 6 to FIG. 11, respectively.
  • each n-port CSI-RS resource in the m n-port CSI-RS resources is r w
  • Port CSI-RS resources are aggregated, including:
  • Each of the three 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 4-port CSI-RS resources are used.
  • 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or,
  • Each of the three 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 12-port CSI-RS resources are used.
  • the 12-port CSI-RS resources are respectively obtained by subtracting one 4-port CSI-RS resource from any one of the two 16-port CSI-RS resources, and the three 12-port CSI- One 12-port CSI-RS resource other than the any two 12-port CSI-RS resources in the RS resource is aggregated by three 4-port CSI-RS resources other than the any two 12-port CSI-RS resources. Made.
  • the configuration pattern of the 10 types of 4-port CSI-RS resources shown in FIG. 4 is taken as an example, and the configuration patterns of the three types of 12-port CSI-RS resources are respectively shown in FIG. 12 and FIG.
  • the first 12-port CSI-RS resource is aggregated by the sixth 4-port CSI-RS resource, the first 4-port CSI-RS resource, and the ninth 4-port CSI-RS resource.
  • the sixth 4-port CSI-RS resource and the first 4-port CSI-RS resource are aggregated into one 8-port CSI-RS resource;
  • the second 12-port CSI-RS resource is configured by the seventh 4-port CSI-RS.
  • the resource, the second 4-port CSI-RS resource, and the fifth 4-port CSI-RS resource are aggregated, wherein the seventh 4-port CSI-RS resource and the second 4-port CSI-RS resource are aggregated into one.
  • the eighth 4-port CSI-RS resource and the third 4-port CSI-RS resource are aggregated into one 8-port CSI-RS resource.
  • (a, b, c) represents a 12-port CSI-RS configuration that is aggregated by the a, b, and c 4-port CSI-RS configurations
  • the a-th is the first in the port number order.
  • 4-port CSI-RS resource, re-editing the b-th 4-port CSI-RS resource, and then coding the c-th 4-port CSI-RS resource, the configuration pattern shown in Figure 12 can be recorded as (6, 1, 9), (7, 2, 5) and (8, 3, 10).
  • the combination of the configuration patterns of the three types of 12-port CSI-RS resources may also be (6, 1, 9), (7, 2, 5) and (8, 3, 4), or (6, 1, 4). ), (7, 2, 5) and (8, 3, 10), or (6, 1, 4), (7, 2, 5) and (8, 3, 9), etc., as long as they meet the stated
  • the conditions for the aggregation of any two 4-port CSI-RS resources of the three 4-port CSI-RS resources into one 8-port CSI-RS resource are not listed here.
  • the first 12-port CSI-RS resource is obtained by subtracting the last 4-port CSI-RS resource from the first 16-port CSI-RS resource shown in FIG. 6, and the second 12-port is obtained.
  • the CSI-RS resource is obtained by subtracting the last one 4-port CSI-RS resource from the second 16-port CSI-RS resource, and the third 12-port CSI-RS resource is included in the remaining four 4-port CSI-RS resources.
  • Three 4-port CSI-RS resources are aggregated.
  • FIG. 13 is only an exemplary description as long as any two 12-port CSI-RSs of the three 12-port CSI-RS resources are met.
  • the resources are respectively obtained by subtracting one 4-port CSI-RS resource from any one of the two 16-port CSI-RS resources, and the three 12-port CSI-RS resources are excluded.
  • the conditions for the aggregation of the CSI-RS resources are sufficient, and the embodiments of the present invention are not enumerated here.
  • the n-1th port of the i-th n-port CSI-RS resource and the n/2-1 of the i-th n/2 port CSI-RS resource among the m n-port CSI-RS resources The resource unit REs of the ports have the same identifier, including:
  • the identifiers of the first 2-port CSI-RS resource to the first port of the 12th 2-port CSI-RS resource are (11, 5), (9, 5, respectively). ), (7,5), (10,5), (8,5), (6,5), (5,5), (4,5), (3,5), (2,5), (1, 5), (0, 5), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0;
  • the identifiers of the REs of the first 4-port CSI-RS resource to the third port of the sixth 4-port CSI-RS resource are (11, 5), (9, 5, respectively). ), (7, 5), (10, 5), (8, 5), (6, 5), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0 , 0, 0, 0, 0;
  • the identifiers of the REs of the first 8-port CSI-RS resource to the 7th port of the 5th 8-port CSI-RS resource are (11, 5), (9, 5, respectively). (7, 5), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 0;
  • the identifier of the RE of the first 16-port CSI-RS resource is (9, 2), and the RE is located in the radio frame, the number of the slot is n s , and the value after the modulo 2 operation is respectively Is 0.
  • the identifier of the RE of the CSI-RS in the CSI-RS configuration of the special subframe may be as shown in Table 4.
  • the number order corresponding to the CSI-RS configuration column in Table 4 corresponds to the following sequence of port CSI-RS resources.
  • the 2-port CSI-RS resource with CSI configuration 20 is the first 2 ports.
  • the CSI-RS resource, the 2-port CSI-RS resource with the CSI configured to 21 is the second 2-port CSI-RS resource, and so on, and will not be repeated here.
  • Table 4 shows the configuration pattern of 12 types of 2-port CSI-RS resources corresponding to the CP type of the normal subframe, the configuration pattern of the six 4-port CSI-RS resources, and the three 8-port CSI- The configuration pattern of the RS resources is shown in Figure 14-16.
  • the first 16-port CSI-RS resource may be aggregated by using any one of the following configurations J1 and K1:
  • the first 16-port CSI-RS resource consists of the 2nd 8-port CSI-RS resource and The first 8-port CSI-RS resource is aggregated;
  • the first 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the first 8-port CSI-RS resource.
  • the configuration patterns corresponding to the configurations J1 and K1 are as shown in FIG. 17 and FIG. 18, respectively.
  • the 16-port CSI-RS resource is indicated by the RE position of the 15th port.
  • the 16-port CSI-RS resource can also pass ((9, 5), (11, 5). In the manner of (or (7, 5), (11, 5)), where (9, 5) or (7, 5) corresponds to the location of the RE of port 6 (ie, the 7th port)
  • the (11, 5) corresponds to the location of the RE of the port 14 (ie, the 15th port).
  • the method for indicating the CSI-RS resource in the embodiment of the present invention is not specifically limited.
  • the CSI-RS resources of the other port numbers may also be indicated by the foregoing method, which is not specifically limited in this embodiment of the present invention.
  • each n-port CSI-RS resource in the m n-port CSI-RS resources is r w
  • Port CSI-RS resources are aggregated, including:
  • Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 4-port CSI-RS resources are used.
  • 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or,
  • Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any one of the two 12-port CSI-RS resources is used.
  • the 12-port CSI-RS resource is obtained by subtracting one 4-port CSI-RS resource from the one 16-port CSI-RS resource, and any one of the two 12-port CSI-RS resources except the any one of the 12-port CSI-RS resources
  • One 12-port CSI-RS resource other than the RS resource is aggregated by three 4-port CSI-RS resources other than the arbitrary one-port 12-port CSI-RS resource.
  • the configuration pattern of the six 4-port CSI-RS resources shown in FIG. 15 is taken as an example, and the configuration patterns of the two types of 12-port CSI-RS resources are respectively shown in FIG. 19 and FIG.
  • the first 12-port CSI-RS resource is aggregated by the fourth 4-port CSI-RS resource, the first 4-port CSI-RS resource, and the fifth 4-port CSI-RS resource.
  • the fourth 4-port CSI-RS resource and the first 4-port CSI-RS resource are aggregated into one.
  • the second 12-port CSI-RS resource is aggregated by the 6th 4-port CSI-RS resource, the 3rd 4-port CSI-RS resource, and the second 4-port CSI-RS resource
  • the sixth 4-port CSI-RS resource and the third 4-port CSI-RS resource are aggregated into one 8-port CSI-RS resource.
  • (a, b, c) represents a 12-port CSI-RS configuration that is aggregated by the a, b, and c 4-port CSI-RS configurations
  • the a-th is the first in the port number order.
  • 4-port CSI-RS resource, re-editing the b-th 4-port CSI-RS resource, and then coding the c-th 4-port CSI-RS resource, the configuration pattern shown in Figure 19 can be recorded as (4, 1, 5) and (6,3,2).
  • the combination of the configuration patterns of the two types of 12-port CSI-RS resources may also be (4, 1, 3) and (5, 2, 6), etc., as long as the three 4-port CSI-RS resources are met.
  • the conditions for the aggregation of any two 4-port CSI-RS resources into one 8-port CSI-RS resource are not listed here.
  • the first 12-port CSI-RS resource is obtained by subtracting the last 4-port CSI-RS resource from the first 16-port CSI-RS resource shown in FIG. 17, and the second 12-port is obtained.
  • the CSI-RS resource is aggregated from the remaining three 4-port CSI-RS resources.
  • the combination of the configuration patterns of the two types of 12-port CSI-RS resources may be other, and FIG. 20 is only an exemplary description as long as any one of the two 12-port CSI-RS resources is consistent with one of the 12-port CSI-RS resources.
  • the resource is obtained by subtracting one 4-port CSI-RS resource from the one 16-port CSI-RS resource, and the two 12-port CSI-RS resources are not included in any one of the 12-port CSI-RS resources.
  • the condition that the one 12-port CSI-RS resource is aggregated by the three 4-port CSI-RS resources except the any one of the 12-port CSI-RS resources may be used in the embodiment of the present invention. List.
  • the n-1th port of the i-th n-port CSI-RS resource and the n/2-1 of the i-th n/2 port CSI-RS resource among the m n-port CSI-RS resources The resource unit RE of each port has the same identifier.
  • the identifiers of the first 2-port CSI-RS resource to the first port of the 16th 2-port CSI-RS resource are (11, 4), (9, 4, respectively). ), (10,4), (9,4), (5,4), (3,4), (4,4), (3,4), (8,4), (6,4), (2,4), (0,4), (7,4), (6,4), (1,4), (0,4), the RE is located in the slot number of the radio frame n s mode 2
  • the values after the operation are 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1;
  • the identifiers of the REs of the first 4-port CSI-RS resource to the third port of the eighth 4-port CSI-RS resource are (11, 4), (9, 4, respectively). ), (10,4), (9,4), (5,4), (3,4), (4,4), (3,4), the RE is located in the slot number n of the radio frame
  • the values after s modulo 2 operation are 0, 0, 1, 1, 0, 0, 1, 1 respectively;
  • the identifiers of the REs of the first 8-port CSI-RS resource to the 7th port of the 4th 8-port CSI-RS resource are (11, 4), (9, 4, respectively).
  • (10, 4), (9, 4) the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 1, 1, respectively;
  • the identifiers of the REs of the first 16-port CSI-RS resource to the 15th port of the second 16-port CSI-RS resource are (11, 4), (9, 4, respectively).
  • the value of the RE located in the radio frame in the number n s modulo 2 operation is 0, 0.
  • the identifier of the RE of the CSI-RS in the CSI-RS configuration of the special subframe may be as shown in Table 5.
  • the number sequence corresponding to the CSI-RS configuration column in Table 5 above corresponds to the following sequence of port CSI-RS resources.
  • the 2-port CSI-RS resource with CSI configured to 0 is the first 2 ports.
  • the CSI-RS resource, the 2-port CSI-RS resource with the CSI configured as 1 is the second 2-port CSI-RS resource, and so on, and will not be repeated here.
  • Table 5 shows the configuration pattern of 16 2-port CSI-RS resources corresponding to the CP type extended CP, and the configuration pattern of 8 4-port CSI-RS resources and 4 8-port CSI- The configuration pattern of the RS resources is shown in Figure 21-23.
  • the first 16-port CSI-RS resource and the second 16-port CSI-RS resource may be aggregated by using any one of the following configurations A2 and B2:
  • the first 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is composed of the fourth 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
  • the first 16-port CSI-RS resource consists of the 4th 8-port CSI-RS resource. And the first 8-port CSI-RS resource is aggregated, and the second 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the second 8-port CSI-RS resource.
  • the configuration patterns corresponding to the configurations A2 and B2 are as shown in FIG. 24 and FIG. 25, respectively.
  • each n-port CSI-RS resource in the m n-port CSI-RS resources is r w
  • Port CSI-RS resources are aggregated, including:
  • Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 4-port CSI-RS resources are used.
  • 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or,
  • Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein the two 12-port CSI-RS resources are respectively A 16-port CSI-RS resource is subtracted from a 4-port CSI-RS resource.
  • the configuration pattern of the eight 4-port CSI-RS resources shown in FIG. 22 is taken as an example, and the configuration patterns of the two types of 12-port CSI-RS resources are respectively shown in FIG. 26 and FIG.
  • the first 12-port CSI-RS resource is aggregated by the sixth 4-port CSI-RS resource, the second 4-port CSI-RS resource, and the first 4-port CSI-RS resource.
  • the sixth 4-port CSI-RS resource and the second 4-port CSI-RS resource are aggregated into one 8-port CSI-RS resource;
  • the second 12-port CSI-RS resource is configured by the 8th 4-port CSI-RS
  • the resource, the fourth 4-port CSI-RS resource, and the third 4-port CSI-RS resource are aggregated, wherein the eighth 4-port CSI-RS resource and the fourth 4-port CSI-RS resource are aggregated into one. 8-port CSI-RS resource.
  • (a, b, c) represents a 12-port CSI-RS configuration that is aggregated by the a, b, and c 4-port CSI-RS configurations
  • the a-th is the first in the port number order.
  • 4-port CSI-RS resource, re-editing the b-th 4-port CSI-RS resource, and then coding the c-th 4-port CSI-RS resource, the configuration pattern shown in Figure 26 can be recorded as (6, 2, 1) and (8, 4, 3).
  • the combination of the configuration patterns of the two types of 12-port CSI-RS resources may also be (5, 1, 2) and (7, 3, 4), etc., as long as the three 4-port CSI-RS resources are met.
  • the condition that any two 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource can be used. The embodiments are not enumerated here.
  • the first 12-port CSI-RS resource is obtained by subtracting the last 4-port CSI-RS resource from the first 16-port CSI-RS resource shown in FIG. 24, and the second 12-port.
  • the CSI-RS resource is obtained by subtracting the last 4-port CSI-RS resource from the second 16-port CSI-RS resource.
  • FIG. 20 is only an exemplary description, as long as the two 12-port CSI-RS resources are met by the two 16-port CSI-
  • the conditions of the RS resource minus one 4-port CSI-RS resource may be used, and the embodiments of the present invention are not enumerated here.
  • each n-port CSI-RS resource in the m n-port CSI-RS resources is configured by
  • the r-port CSI-RS resources are aggregated, and may also include:
  • the 16-port CSI-RS resource of the two 16-port CSI-RS resources can be aggregated by any one of the following configurations A and B:
  • the first 16-port CSI-RS resource is aggregated by the first 8-port CSI-RS resource and the second 8-port CSI-RS resource, and the second 16-port CSI-RS resource is composed of the third 8
  • the port CSI-RS resource is aggregated with the fourth 8-port CSI-RS resource;
  • the first 16-port CSI-RS resource is aggregated by the first 8-port CSI-RS resource and the ith 8-port CSI-RS resource, and the second 16-port CSI-RS resource is composed of the second 8
  • the n-1th port of the i-th n-port CSI-RS resource and the n/2-1 of the i-th n/2 port CSI-RS resource among the m n-port CSI-RS resources The resource unit REs of the ports have the same identifier, including:
  • the REs of the first 2-port CSI-RS resource to the first port of the 12th 2-port CSI-RS resource are (11, 1), (10, 1), respectively. (9,1), (5,1), (4,1), (3,1), (8,1), (7,1), (6,1), (2,1), (1 , 1), (0, 1), the RE is located in the radio frame, the number of the slot n s modulo 2 operation, the values are 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, respectively 1,1;
  • the REs of the first 4-port CSI-RS resource to the third port of the sixth 4-port CSI-RS resource are (11, 1), (10, 1), respectively. (9,1), (5,1), (4,1), (3,1), the RE is located in the radio frame, the number of the slot n s modulo 2 operation, the values are 1, 1, 1, respectively 1, 1, 1, 1;
  • the REs of the first 8-port CSI-RS resource to the 7th port of the 5th 8-port CSI-RS resource are (11, 1), (10, 1), respectively. (9, 1), the RE is located in the radio frame, the number of the slot n s modulo 2 operation after the value is 1, 1, 1;
  • the RE of the first 16-port CSI-RS resource is (11, 1), and the RE is located in the radio frame, the number of the slot is n s , and the value after the modulo 2 operation is 1 respectively.
  • the identifier of the RE of the CSI-RS in the CSI-RS configuration of the special subframe may be as shown in Table 6.
  • the number order corresponding to the CSI-RS configuration column in Table 6 corresponds to the following sequence of port CSI-RS resources.
  • the 2-port CSI-RS resource with the CSI configuration of 16 is the first 2 ports.
  • a 2-port CSI-RS resource with a CSI configured at 17 is the second 2-port CSI-RS resource, and so on, and will not be repeated here.
  • Table 6 shows the configuration pattern of 12 2-port CSI-RS resources corresponding to the CP type extended CP, and the configuration pattern of 6 4-port CSI-RS resources and three 8-port CSI- The configuration pattern of the RS resources is shown in Figure 28-30.
  • the first 16-port CSI-RS resource may be aggregated by using any one of the following configurations E2 and F2:
  • the first 16-port CSI-RS resource is aggregated by the second 8-port CSI-RS resource and the first 8-port CSI-RS resource;
  • the first 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the first 8-port CSI-RS resource.
  • the 16-port CSI-RS resource is indicated by the RE position of the 15th port.
  • the 16-port CSI-RS resource can also pass ((10, 1), (11, 1) In the manner of (or (9, 1), (11, 1)), where (10, 1) or (9, 1) corresponds to the location of the RE of port 6 (ie, the 7th port)
  • the (11, 1) corresponds to the location of the RE of the port 14 (ie, the 15th port).
  • the method for indicating the CSI-RS resource in the embodiment of the present invention is not specifically limited.
  • the CSI-RS resources of the other port numbers may also be indicated by the foregoing method, which is not specifically limited in this embodiment of the present invention.
  • each n-port CSI-RS resource in the m n-port CSI-RS resources is r w
  • Port CSI-RS resource aggregation Made up including:
  • Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 4-port CSI-RS resources are used.
  • 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or,
  • Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any one of the two 12-port CSI-RS resources is used.
  • the 12-port CSI-RS resource is obtained by subtracting one 4-port CSI-RS resource from the one 16-port CSI-RS resource, and any one of the two 12-port CSI-RS resources except the any one of the 12-port CSI-RS resources
  • One 12-port CSI-RS resource other than the RS resource is aggregated by three 4-port CSI-RS resources other than the arbitrary one-port 12-port CSI-RS resource.
  • the configuration pattern of the six 4-port CSI-RS resources shown in FIG. 29 is taken as an example, and the configuration patterns of the two types of 12-port CSI-RS resources are respectively shown in FIG. 33 and FIG.
  • the first 12-port CSI-RS resource is aggregated by the fifth 4-port CSI-RS resource, the second 4-port CSI-RS resource, and the fourth 4-port CSI-RS resource.
  • the fifth 4-port CSI-RS resource and the second 4-port CSI-RS resource are aggregated into one 8-port CSI-RS resource;
  • the second 12-port CSI-RS resource is configured by the sixth 4-port CSI-RS.
  • the resource, the third 4-port CSI-RS resource, and the first 4-port CSI-RS resource are aggregated, wherein the sixth 4-port CSI-RS resource and the third 4-port CSI-RS resource are aggregated into one. 8-port CSI-RS resource.
  • (a, b, c) represents a 12-port CSI-RS configuration that is aggregated by the a, b, and c 4-port CSI-RS configurations
  • the a-th is the first in the port number order.
  • 4-port CSI-RS resource, re-editing the b-th 4-port CSI-RS resource, and then coding the c-th 4-port CSI-RS resource, the configuration pattern shown in Figure 33 can be recorded as (5, 2, 4) and (6,3,1).
  • the combination of the configuration patterns of the two types of 12-port CSI-RS resources may also be (5, 2, 1) and (6, 3, 4), etc., as long as the three 4-port CSI-RS resources are met.
  • the conditions for the aggregation of any two 4-port CSI-RS resources into one 8-port CSI-RS resource are not listed here.
  • the first 12-port CSI-RS resource is the first shown in FIG.
  • the 16-port CSI-RS resource is obtained by subtracting the last 4-port CSI-RS resource, and the second 12-port CSI-RS resource is aggregated from the remaining three 4-port CSI-RS resources.
  • the combination of the configuration patterns of the two types of 12-port CSI-RS resources may be other, and FIG. 20 is only an exemplary description as long as any one of the two 12-port CSI-RS resources is consistent with one of the 12-port CSI-RS resources.
  • the resource is obtained by subtracting one 4-port CSI-RS resource from the one 16-port CSI-RS resource, and the two 12-port CSI-RS resources are not included in any one of the 12-port CSI-RS resources.
  • the condition that the one 12-port CSI-RS resource is aggregated by the three 4-port CSI-RS resources except the any one of the 12-port CSI-RS resources may be used in the embodiment of the present invention. List.
  • the 12-port CSI-RS resource may be aggregated by six 2-port CSI-RS resources, wherein the six 2-port CSI-RS resources constituting the 12-port are composed of the three 4-port CSIs that constitute the 12-port.
  • - RS resource disassembly is obtained because each of the 4-port CSI-RS resources is aggregated by two 2-port CSI-RS resources. Therefore, the case where six 2-port CSI-RS resource aggregations get 12 ports is not enumerated here.
  • the i-th 16-port CSI-RS resource is aggregated by an i-th 8-port CSI-RS resource in a first PRB pair and an i-th 8-port CSI-RS resource in a second PRB pair;
  • the ith 16-port CSI-RS resource is the ith and i+P 4-port CSI-RS resources in the first PRB pair, and the ith and the second in the second PRB pair.
  • i+P 4-port CSI-RS resources are aggregated, and P is the number of 8-port CSI-RS resources in each PRB pair;
  • the i-th 16-port CSI-RS resource is the i-th, i-th, i+th, and i-th+P+Q 4-port CSI-RS resources in the first PRB pair, And the i-th, i+P, i+Q, and i+P+Q 4-port CSI-RS resources in the second PRB pair
  • P is the number of 8-port CSI-RS resources in each PRB pair
  • Q is the number of 4-port CSI-RS resources in each PRB pair.
  • FIG. 35 is a configuration pattern of three 16-port CSI-RS resources of two PRB pairs, and a left side is a resource position and a port number of the first eight ports of each 16-port CSI-RS resource, and the right side Indicates the resource location and port number for the last 8 ports of each 16-port CSI-RS resource.
  • the embodiment of the present invention provides a related solution for configuring a CSI-RS in a special subframe.
  • a CSI-RS may be configured in a special subframe.
  • the configuration pattern of the CSI-RS resources shown in FIG. 3-35 is only an exemplary description, and of course, there are other possible configuration patterns of CSI-RS resources, which are not specifically limited in this embodiment of the present invention.
  • 11 OFDM symbols are used as an example for the normal CP type, and 10 OFDM symbols are used as an example for the extended CP type.
  • CSI-RS resources can also be configured on 9, 10 or 12 OFDM symbols; in the extended CP type, CSI-RS resources can also be performed on 8 or 9 OFDM symbols.
  • the configuration of the present invention is not specifically limited thereto.
  • the foregoing method for configuring the CSI is not only applicable to the configuration of the special subframe, but also applicable to the configuration of the downlink subframe, which is not specifically limited in this embodiment of the present invention.
  • the embodiment of the present invention further provides a method for configuring a CSI, as shown in FIG. 36, including:
  • the base station determines a CSI-RS configuration of a downlink transmission subframe, where the CSI-RS configuration includes an identifier of an RE of the CSI-RS.
  • Each of the m PRB pairs includes m n-port CSI-RS resources, and each of the m n-port CSI-RS resources is aggregated by p q-port CSI-RS resources.
  • m there are s q-port CSI-RS resources in at least two n-port CSI-RS resources, and the downlink transmission subframe includes a special subframe or a downlink subframe, 1 ⁇ s ⁇ p, n>q, m, n, t, p, q, s are all positive integers;
  • the base station sends, to the UE, indication information of the CSI-RS configuration, where the CSI-RS
  • the configured indication information is used to indicate a CSI-RS configuration of the downlink transmission subframe.
  • S3603 The UE receives the indication information of the CSI-RS configuration sent by the base station.
  • the UE determines, according to the indication information of the CSI-RS configuration, a CSI-RS configuration of the downlink transmission subframe.
  • the CSI-RS configuration of the downlink transmission subframe may be performed by using an aggregation manner in which a plurality of q-port CSI-RS resources are partially overlapped.
  • the three 8-port CSI-RS resource configurations in one PRB pair shown in Figure 16 can be partially aggregated to form two 16-port CSI-RSs.
  • Resource configuration such as the first 16-port CSI-RS resource configuration consists of the first 8-port CSI-RS resource configuration plus the second 8-port CSI-RS resource configuration aggregation, and the second 16-port CSI configuration.
  • the -RS resource configuration consists of the second 8-port CSI-RS resource configuration plus the third 8-port CSI-RS resource configuration aggregation.
  • the CSI-RS resource configuration of the second 8-port is repeatedly displayed in the CSI-RS resource configuration of the first 16-port and the CSI-RS resource configuration of the second 16-port. Further, the repeatedly configured 8-port CSI-RS resources may be scrambled with different 16-port CSI-RS resource configurations, so that the reused resources may be used to perform CSI-RS resources of multiple antenna ports multiple times. polymerization.
  • the possible aggregation mode according to this method may be: 1st
  • the 16-port CSI-RS resource configuration is composed of the first eight 2-port CSI-RS resource configuration aggregations
  • the second 16-port CSI-RS resource configuration is composed of the last eight 2-port CSI-RS resource configuration aggregations.
  • the 5th, 6th, 7th, and 8th 2-port CSI-RS resources are repeated in the configuration of two 16-port CSI-RS resources.
  • the embodiment of the present invention provides a related solution for configuring a CSI-RS in a downlink transmission subframe.
  • the method for configuring a CSI-RS according to the embodiment of the present invention may configure a CSI-RS in a special subframe, or may be in an antenna.
  • the CSI-RS is configured in the downlink subframe when the number of the ports is greater than 8, which is not specifically limited in this embodiment of the present invention.
  • the embodiment of the present invention provides a base station 370.
  • the base station 370 includes a processing unit 3701 and a sending unit 3702.
  • the sending unit 3702 is configured to send the indication information of the CSI-RS configuration to the UE, where the indication information of the CSI-RS configuration is used to indicate a CSI-RS configuration of the special subframe.
  • the sending unit 3702 in this embodiment may be an interface circuit having a transmitting function on the base station 370, such as a transmitter; the processing unit 3701 may be a separately set processor, or may be integrated in a certain processing of the base station 370. In addition, it may be stored in the memory of the base station 370 in the form of program code, and the function of the above processing unit 3701 is called and executed by one of the processors of the base station 370.
  • the processor described herein may be a central processing unit (English: Central Processing Unit, CPU for short), or an application specific integrated circuit (ASIC), or configured to implement the present invention. One or more integrated circuits of an embodiment.
  • the method for performing the CSI-RS configuration and the various configuration patterns of the base station 370 provided by the embodiment of the present invention may be referred to the foregoing method embodiments, and details are not described herein again.
  • the embodiment of the present invention provides a related solution for configuring a CSI-RS in a special subframe.
  • the base station according to the embodiment of the present invention may configure a CSI-RS in a special subframe.
  • the embodiment of the present invention provides a UE 380.
  • the UE 380 includes a receiving unit 3801 and a processing unit 3802.
  • the receiving unit 3801 is configured to receive indication information of a CSI-RS configuration sent by the base station, where the indication information of the CSI-RS configuration is used to indicate a CSI-RS configuration of a special subframe, where each physical resource block PRB
  • the processing unit 3802 is configured to determine a CSI-RS configuration of the special subframe according to the indication information of the CSI-RS configuration.
  • the receiving unit 3801 in this embodiment may be an interface circuit having a receiving function on the UE 380, such as a receiver; the processing unit 3802 may be a separately set processor. It can also be implemented in a certain processor of the base station. In addition, it can also be stored in the memory of the UE 380 in the form of program code, and the function of the above processing unit 3802 can be called and executed by a certain processor of the UE 380.
  • the processor described herein can be a CPU, or an ASIC, or one or more integrated circuits configured to implement embodiments of the present invention.
  • the method for performing CSI-RS configuration and the various configuration patterns of the UE 380 provided by the embodiment of the present invention may be referred to the foregoing method embodiments, and details are not described herein again.
  • the embodiment of the present invention provides a related solution for configuring a CSI-RS in a special subframe.
  • the UE provided by the embodiment of the present invention may configure a CSI-RS in a special subframe.
  • the embodiment of the present invention further provides a base station 370.
  • the base station 370 includes: a processing unit 3701 and a sending unit 3702.
  • the processing unit 3701 is configured to determine a CSI-RS configuration of a downlink transmission subframe, where the CSI-RS configuration includes an identifier of an RE of the CSI-RS, where each n PRB pairs includes m n-port CSIs -RS resources, each n-port CSI-RS resource of the m n-port CSI-RS resources is aggregated by p q-port CSI-RS resources, and when m ⁇ 2, there are at least two n-port CSIs
  • the s q-port CSI-RS resources in the RS resource are the same, and the downlink transmission subframe includes a special subframe or a downlink subframe, 1 ⁇ S ⁇ p, n>q, m, n, t, p, q, s are positive integers.
  • the sending unit 3702 is configured to send the indication information of the CSI-RS configuration to the UE, where the indication information of the CSI-RS configuration is used to indicate a CSI-RS configuration of the downlink transmission subframe.
  • the method for performing the CSI-RS configuration by the base station 370 provided by the embodiment of the present invention may be referred to the foregoing method embodiment, and details are not described herein again.
  • the embodiment of the present invention provides a related solution for configuring a CSI-RS in a downlink transmission subframe.
  • the base station provided by the embodiment of the present invention may configure a CSI-RS in a special subframe, or when the number of antenna ports is greater than 8.
  • the CSI-RS is configured in the downlink subframe, which is not specifically limited in this embodiment of the present invention.
  • the embodiment of the present invention further provides a UE 380.
  • the UE 380 includes: a receiving unit 3801 and a processing unit 3802.
  • the receiving unit 3801 is configured to receive indication information of a CSI-RS configuration sent by a base station, where the indication information of the CSI-RS configuration is used to indicate a CSI-RS configuration of a downlink transmission subframe, where each t PRB is aligned. Containing m n-port CSI-RS resources, the m n-port CSI-RS Each n-port CSI-RS resource in the resource is aggregated by p q-port CSI-RS resources. When m ⁇ 2, there are s q-port CSI-RS resources in at least two n-port CSI-RS resources.
  • the downlink transmission subframe includes a special subframe or a downlink subframe, and 1 ⁇ s ⁇ p, n>q, and m, n, t, p, q, and s are all positive integers.
  • the processing unit 3802 is configured to determine a CSI-RS configuration of the downlink transmission subframe according to the indication information of the CSI-RS configuration.
  • the method for performing CSI-RS configuration by the UE 380 provided by the embodiment of the present invention may be referred to the foregoing method embodiment, and details are not described herein again.
  • the embodiment of the present invention provides a related solution for configuring a CSI-RS in a downlink transmission subframe.
  • the UE provided by the embodiment of the present invention may configure a CSI-RS in a special subframe, or when the number of antenna ports is greater than 8.
  • the CSI-RS is configured in the downlink subframe, which is not specifically limited in this embodiment of the present invention.
  • the embodiment of the present invention further provides a base station 390.
  • the base station 390 includes a processor 3901, a memory 3902, a bus 3903, and a communication interface 3904.
  • the memory 3902 is configured to store computer execution instructions 39021, the processor 3901 is connected to the memory 3902 via the bus 3903, and when the base station 390 is running, the processor 3901 executes the memory 3902 stored.
  • the computer executes instructions 39021 to cause the base station 390 to perform a method of CSI-RS configuration performed by the base station 390 in the method embodiment described above.
  • the processor 3901 may be a single core or multi-core central processing unit, or a specific integrated circuit, or one or more integrated circuits configured to implement the embodiments of the present invention.
  • the memory 3902 may be a high speed random access memory (English: Random Access Memory, RAM for short) or a non-volatile memory (English: non-volatile memory), such as at least one disk storage.
  • a high speed random access memory English: Random Access Memory, RAM for short
  • a non-volatile memory English: non-volatile memory
  • Memory 3902 is used to store computer execution instructions 39021. Specifically, the program code may be included in the computer execution instruction 39021.
  • the processor 3901 executes a computer-executed instruction to perform a method of CSI-RS configuration performed by the base station 390 in the above-described method embodiment.
  • the base station 390 in the embodiment of the present invention can be used to perform the foregoing method. Therefore, the technical effects can be obtained by referring to the description of the foregoing method embodiments, and details are not described herein again.
  • the embodiment of the present invention further provides a UE 400.
  • the UE 400 includes a processor 4001, a memory 4002, a bus 4003, and a communication interface 4004.
  • the memory 4002 is configured to store a computer execution instruction 40021, the processor 4001 is connected to the memory 4002 via the bus 4003, and when the UE 400 is running, the processor 4001 executes the memory stored in the memory 4002
  • the computer executes instructions 40021 to cause the UE 400 to perform a method of CSI-RS configuration performed by the UE 400 in the method embodiments described above.
  • the processor 4001 may be a single-core or multi-core central processing unit, or a specific integrated circuit, or one or more integrated circuits configured to implement the embodiments of the present invention.
  • the memory 4002 may be a high-speed random access memory (English: Random Access Memory, RAM for short) or a non-volatile memory (English: non-volatile memory), such as at least one disk storage.
  • a high-speed random access memory English: Random Access Memory, RAM for short
  • a non-volatile memory English: non-volatile memory
  • the memory 4002 is configured to store computer execution instructions 40021. Specifically, the program code may be included in the computer execution instruction 40021.
  • the processor 4001 executes a computer execution instruction, and may perform a method of CSI-RS configuration performed by the UE 400 in the above method embodiment.
  • the UE 400 in the embodiment of the present invention can be used to perform the foregoing method. Therefore, the technical effects that can be obtained can also be referred to the description of the foregoing method embodiment, and details are not described herein again.
  • the above described device is only illustrated by the division of the above functional modules. In practical applications, the above functions may be assigned differently according to needs.
  • the function module is completed, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • the device and the unit described above refer to the corresponding process in the foregoing method embodiment, and details are not described herein again.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiment described above For example, the division of the module or unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or integrated into another system. Or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

An embodiment of the present invention provides a CSI-RS configuration method and related apparatus, at least solving the problem in which at present there is no technical solution relating to the configuration of CSI-RS in a special subframe. The method comprises: a base station determines a CSI-RS configuration of a special subframe, the CSI-RS configuration comprising an identifier of a resource element (RE) of the CSI-RS, wherein, each pair of t physical resource blocks (PRBs) having m n-port CSI-RS resources, each n-port CSI-RS resource of the m n-port CSI-RS resources comprises r w-port CSI-RS resources in aggregation, n = r × w, and each of t, m, n, r, and w are positive integers; the base station sends to a user equipment (UE) a message indicating the CSI-RS configuration, the message being for indicating the special subframe CSI-RS configuration. The present invention is suitable for the field of communications.

Description

CSI-RS配置的方法及相关设备CSI-RS configuration method and related equipment 技术领域Technical field
本发明涉及通信领域,尤其涉及信道状态信息参考信号(英文:Channel State Information Reference Signal,简称:CSI-RS)配置的方法及相关设备。The present invention relates to the field of communications, and in particular, to a method for configuring a channel state information reference signal (CSI-RS) and related devices.
背景技术Background technique
在第三代合作伙伴项目(英文:the 3rd Generation Partnership Project,简称:3GPP)长期演进(英文:Long Term Evolution,简称:LTE)第10版本(英文:Release 10,简称:R10)下行系统中,用于信道状态信息测量的参考信号被称为CSI-RS。In the third generation partner project (English: the 3rd Generation Partnership Project, 3GPP) Long Term Evolution (English: Long Term Evolution, LTE) 10th Edition (English: Release 10, referred to as: R10) downlink system, The reference signal used for channel state information measurement is called CSI-RS.
其中,LTE R10标准中并不支持特殊子帧的CSI-RS配置,只支持下行子帧的1、2、4、8端口数目的CSI-RS配置,并且最多只能支持8个天线口。为了进一步提高频谱效率,目前即将启动的LTE R13标准开始考虑引入更多的天线配置,特别是基于有源天线系统(英文:Active Antenna Systems,简称:AAS)的多于8个天线口的天线配置。例如,天线端口数可以为12、16、32或64等。The CSI-RS configuration of the special subframe is not supported in the LTE R10 standard. The CSI-RS configuration of the number of ports 1, 2, 4, and 8 of the downlink subframe is supported, and only 8 antenna ports can be supported at most. In order to further improve the spectrum efficiency, the upcoming LTE R13 standard is beginning to consider introducing more antenna configurations, especially antenna configurations based on active antenna systems (English: Active Antenna Systems, AAS) with more than 8 antenna ports. . For example, the number of antenna ports may be 12, 16, 32 or 64, and the like.
目前,在Rel-13标准中,特殊子帧可支持2/4/8/12/16端口的CSI-RS配置的结论已经被通过,然而,目前并没有在特殊子帧中配置CSI-RS的相关解决方案。Currently, in the Rel-13 standard, the conclusion that the special subframe can support the CSI-RS configuration of the 2/4/8/12/16 port has been passed. However, the CSI-RS is not configured in the special subframe at present. Related solutions.
发明内容Summary of the invention
本发明实施例提供CSI-RS配置的方法及相关设备,以至少解决目前并没有在特殊子帧中配置CSI-RS的相关解决方案的问题。The embodiments of the present invention provide a method and a related device for configuring a CSI-RS, so as to at least solve the problem that the related solution of the CSI-RS is not currently configured in a special subframe.
为达到上述目的,本发明实施例采用如下技术方案:To achieve the above objective, the embodiment of the present invention adopts the following technical solutions:
第一方面,提供一种信道状态信息参考信号CSI-RS配置的方法,所述方法包括:In a first aspect, a method for configuring a channel state information reference signal CSI-RS is provided, the method comprising:
基站确定特殊子帧的CSI-RS配置,所述CSI-RS配置包括所述CSI-RS的资源单元RE的标识,其中,每t个物理资源块PRB对中包含m个n端 口CSI-RS资源,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,n=r×w,t、m、n、r、w均为正整数;Determining, by the base station, a CSI-RS configuration of a special subframe, where the CSI-RS configuration includes an identifier of a resource unit RE of the CSI-RS, where each of the physical resource block PRB pairs includes m n-ends Port CSI-RS resource, each n-port CSI-RS resource of the m n-port CSI-RS resources is aggregated by r w-port CSI-RS resources, n=r×w, t, m, n , r, w are positive integers;
所述基站向用户设备UE发送所述CSI-RS配置的指示信息,所述CSI-RS配置的指示信息用于指示所述特殊子帧的CSI-RS配置。The base station sends the indication information of the CSI-RS configuration to the user equipment UE, where the indication information of the CSI-RS configuration is used to indicate the CSI-RS configuration of the special subframe.
第二方面,提供一种信道状态信息参考信号CSI-RS配置的方法,所述方法包括:In a second aspect, a method for configuring a channel state information reference signal CSI-RS is provided, the method comprising:
用户设备UE接收基站发送的CSI-RS配置的指示信息,所述CSI-RS配置的指示信息用于指示特殊子帧的CSI-RS配置,其中,每t个物理资源块PRB对中包含m个n端口CSI-RS资源,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,n=r×w,t、m、n、r、w均为正整数;The user equipment UE receives the indication information of the CSI-RS configuration sent by the base station, where the indication information of the CSI-RS configuration is used to indicate the CSI-RS configuration of the special subframe, where the number of the PRB pairs per t physical resource block includes m An n-port CSI-RS resource, where each n-port CSI-RS resource of the m n-port CSI-RS resources is aggregated by r w-port CSI-RS resources, n=r×w, t, m, n, r, w are positive integers;
所述UE根据所述CSI-RS配置的指示信息,确定所述特殊子帧的CSI-RS配置。The UE determines a CSI-RS configuration of the special subframe according to the indication information of the CSI-RS configuration.
第三方面,提供一种基站,所述基站包括:处理单元和发送单元;A third aspect provides a base station, where the base station includes: a processing unit and a sending unit;
所述处理单元,用于确定特殊子帧的信道状态信息参考信号CSI-RS配置,所述CSI-RS配置包括所述CSI-RS的资源单元RE的标识,其中,每t个物理资源块PRB对中包含m个n端口CSI-RS资源,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,n=r×w,t、m、n、r、w均为正整数;The processing unit is configured to determine a channel state information reference signal CSI-RS configuration of a special subframe, where the CSI-RS configuration includes an identifier of a resource unit RE of the CSI-RS, where each physical resource block PRB The pair includes m n-port CSI-RS resources, and each n-port CSI-RS resource of the m n-port CSI-RS resources is aggregated by r w-port CSI-RS resources, n=r×w , t, m, n, r, w are all positive integers;
所述发送单元,用于向用户设备UE发送所述CSI-RS配置的指示信息,所述CSI-RS配置的指示信息用于指示所述特殊子帧的CSI-RS配置。The sending unit is configured to send the indication information of the CSI-RS configuration to the user equipment UE, where the indication information of the CSI-RS configuration is used to indicate a CSI-RS configuration of the special subframe.
第四方面,提供一种用户设备UE,所述UE包括:接收单元和处理单元;A fourth aspect provides a user equipment UE, where the UE includes: a receiving unit and a processing unit;
所述接收单元,用于接收基站发送的信道状态信息参考信号CSI-RS配置的指示信息,所述CSI-RS配置的指示信息用于指示特殊子帧的CSI-RS配置,其中,每t个物理资源块PRB对中包含m个n端口CSI-RS资源,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,n=r×w,t、m、n、r、w均为正整数; The receiving unit is configured to receive indication information of a channel state information reference signal CSI-RS configuration sent by the base station, where the indication information of the CSI-RS configuration is used to indicate a CSI-RS configuration of a special subframe, where each t The physical resource block PRB pair includes m n-port CSI-RS resources, and each n-port CSI-RS resource of the m n-port CSI-RS resources is aggregated by r w-port CSI-RS resources, n =r×w, t, m, n, r, w are all positive integers;
所述处理单元,用于根据所述CSI-RS配置的指示信息,确定所述特殊子帧的CSI-RS配置。The processing unit is configured to determine a CSI-RS configuration of the special subframe according to the indication information of the CSI-RS configuration.
第五方面,提供一种基站,所述基站包括处理器、存储器、总线和通信接口;In a fifth aspect, a base station is provided, where the base station includes a processor, a memory, a bus, and a communication interface;
所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述基站运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述基站执行如第一方面所述的CSI-RS配置的方法。The memory is configured to store a computer to execute an instruction, the processor is connected to the memory through the bus, and when the base station is running, the processor executes the computer-executed instruction stored in the memory to make The method in which the base station performs the CSI-RS configuration as described in the first aspect.
第六方面,提供一种用户设备UE,所述UE包括处理器、存储器、总线和通信接口;In a sixth aspect, a user equipment UE is provided, where the UE includes a processor, a memory, a bus, and a communication interface;
所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述UE运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述UE执行如第二方面所述的CSI-RS配置的方法。The memory is configured to store a computer to execute an instruction, the processor is connected to the memory through the bus, and when the UE is running, the processor executes the computer-executed instruction stored in the memory to make A method in which a UE performs a CSI-RS configuration as described in the second aspect.
在上述第一方面至第六方面的任一方面中,当r=2,n=2X时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源的前n/2个端口组成一种n/2端口CSI-RS资源,所述m个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的RE的标识相同,1≤i≤m,i、X均为正整数。In any of the above first to sixth aspects, when n=2, n=2 X , the first n/ of each n-port CSI-RS resource of the m n-port CSI-RS resources The two ports form an n/2 port CSI-RS resource, and the n-1th port and the i th n/2 of the i th n port CSI-RS resource in the m n port CSI-RS resources The identifiers of the REs of the n/2-1th ports of the port CSI-RS resources are the same, 1 ≤ i ≤ m, and i and X are positive integers.
进一步的,一种可能的实现方式中:Further, in a possible implementation manner:
若所述n端口CSI-RS资源的第n-1个端口的RE的标识记为(k,l),k表示频域索引,l表示时域索引;则当t=1,循环前缀CP类型为正常CP时,所述m个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的资源单元RE的标识相同,包括:If the identifier of the RE of the n-1th port of the n-port CSI-RS resource is denoted as (k, l), k represents a frequency domain index, and l represents a time domain index; then when t=1, a cyclic prefix CP type When it is a normal CP, the n-1th port of the i-th n-port CSI-RS resource and the n/2th of the i-th n/2 port CSI-RS resource of the m n-port CSI-RS resources - The identity of the resource unit RE of the 1 port is the same, including:
当m=20,n=2时,第1个2端口CSI-RS资源至第20个2端口CSI-RS资源的第1个端口的RE的标识分别为(9,2)、(11,5)、(9,5)、(7,5)、(9,2)、(8,2)、(10,5)、(8,5)、(6,5)、(8,2)、(3,2)、(2,2)、(5,5)、(4,5)、(3,5)、(2,5)、(1,5)、(0,5)、(3,2)、(2,2), 所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、0、0、1、0、0、0、0、1、0、0、0、0、0、0、0、0、1、1;When m=20 and n=2, the identifiers of the first 2-port CSI-RS resource to the first port of the 20th 2-port CSI-RS resource are (9, 2), (11, 5, respectively). ), (9,5), (7,5), (9,2), (8,2), (10,5), (8,5), (6,5), (8,2), (3,2), (2,2), (5,5), (4,5), (3,5), (2,5), (1,5), (0,5), (3 2), (2, 2), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, respectively , 0, 0, 0, 0, 0, 0, 0, 0, 1, 1;
当m=10,n=4时,第1个4端口CSI-RS资源至第10个4端口CSI-RS资源的第3个端口的RE的标识分别为(9,2)、(11,5)、(9,5)、(7,5)、(9,2)、(8,2)、(10,5)、(8,5)、(6,5)、(8,2),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、0、0、1、0、0、0、0、1;When m=10 and n=4, the identifiers of the REs of the first 4-port CSI-RS resource to the third port of the 10th 4-port CSI-RS resource are (9, 2), (11, 5, respectively). ), (9,5), (7,5), (9,2), (8,2), (10,5), (8,5), (6,5), (8,2), value operation mode number n s of the radio frame slot positioned RE 2 are 0,0,0,0,1,0,0,0,0,1;
当m=5,n=8时,第1个8端口CSI-RS资源至第5个8端口CSI-RS资源的第7个端口的RE的标识分别为(9,2)、(11,5)、(9,5)、(7,5)、(9,2),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、0、0、1;When m=5, n=8, the identifiers of the REs of the first 8-port CSI-RS resource to the 7th port of the 5th 8-port CSI-RS resource are (9, 2), (11, 5, respectively). ), (9, 5), (7, 5), (9, 2), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 0, 0, 1, respectively ;
当m=2,n=16时,第1个16端口CSI-RS资源至第2个16端口CSI-RS资源的第15个端口的RE的标识分别为(9,2)、(11,5),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0。When m=2, n=16, the identifiers of the REs of the first 16-port CSI-RS resource to the 15th port of the second 16-port CSI-RS resource are (9, 2), (11, 5, respectively). The value of the RE located in the radio frame in the number n s modulo 2 operation is 0, 0.
可选的,所述第1个16端口CSI-RS资源和第2个16端口CSI-RS资源可通过下述配置A1、B1、C1、D1、E1、F1中的任意一种配置聚合而成:Optionally, the first 16-port CSI-RS resource and the second 16-port CSI-RS resource may be aggregated by any one of the following configurations A1, B1, C1, D1, E1, and F1. :
配置A1:第1个16端口CSI-RS资源由第3个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第5个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成;Configuration A1: The first 16-port CSI-RS resource is aggregated from the third 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is selected from the fifth 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
配置B1:第1个16端口CSI-RS资源由第3个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第4个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成;Configuration B1: The first 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is composed of the fourth 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
配置C1:第1个16端口CSI-RS资源由第4个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第5个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成;Configuration C1: The first 16-port CSI-RS resource is aggregated from the 4th 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is 5th. Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
配置D1:第1个16端口CSI-RS资源由第4个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第3个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成; Configuration D1: The first 16-port CSI-RS resource is aggregated from the 4th 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is 3rd. Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
配置E1:第1个16端口CSI-RS资源由第5个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第3个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成;Configure E1: The first 16-port CSI-RS resource is aggregated by the fifth 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is composed of the third 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
配置F1:第1个16端口CSI-RS资源由第5个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第4个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成。Configuration F1: The first 16-port CSI-RS resource is aggregated from the 5th 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is 4th. The port CSI-RS resource is aggregated with the second 8-port CSI-RS resource.
可选的,当m=3,n=12,r=3,w=4时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,包括:Optionally, when m=3, n=12, r=3, and w=4, each n-port CSI-RS resource in the m n-port CSI-RS resources is configured by r w ports CSI-RS The resources are aggregated, including:
所述3个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述3个4端口CSI-RS资源中的任意2个4端口CSI-RS资源聚合成1个8端口CSI-RS资源;或者,Each of the three 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 4-port CSI-RS resources are used. 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or,
所述3个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述3个12端口CSI-RS资源中的任意2个12端口CSI-RS资源分别由所述2个16端口CSI-RS资源中的任意1个16端口CSI-RS资源减去1个4端口CSI-RS资源而得,所述3个12端口CSI-RS资源中除所述任意2个12端口CSI-RS资源之外的1个12端口CSI-RS资源由所述任意2个12端口CSI-RS资源之外的3个4端口CSI-RS资源聚合而成。Each of the three 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 12-port CSI-RS resources are used. The 12-port CSI-RS resources are respectively obtained by subtracting one 4-port CSI-RS resource from any one of the two 16-port CSI-RS resources, and the three 12-port CSI- One 12-port CSI-RS resource other than the any two 12-port CSI-RS resources in the RS resource is aggregated by three 4-port CSI-RS resources other than the any two 12-port CSI-RS resources. Made.
另一种可能的实现方式中:Another possible implementation:
若所述n端口CSI-RS资源的第n-1个端口的RE的标识记为(k,l),k表示频域索引,l表示时域索引;则当t=1,CP类型为正常CP时,所述m个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的资源单元RE的标识相同,包括:If the identifier of the RE of the n-1th port of the n-port CSI-RS resource is denoted as (k, l), k represents a frequency domain index, and l represents a time domain index; then when t=1, the CP type is normal. In the case of the CP, the n-1th port of the i-th n-port CSI-RS resource and the n/2-1 of the i-th n/2 port CSI-RS resource among the m n-port CSI-RS resources The resource unit REs of the ports have the same identifier, including:
当m=12,n=2时,第1个2端口CSI-RS资源至第12个2端口CSI-RS资源的第1个端口的RE的标识分别为(11,5)、(9,5)、(7,5)、(10,5)、(8,5)、(6,5)、(5,5)、(4,5)、(3,5)、(2,5)、(1,5)、(0,5),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、0、0、0、0、0、0、0、0、0、0; When m=12 and n=2, the identifiers of the first 2-port CSI-RS resource to the first port of the 12th 2-port CSI-RS resource are (11, 5), (9, 5, respectively). ), (7,5), (10,5), (8,5), (6,5), (5,5), (4,5), (3,5), (2,5), (1, 5), (0, 5), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0;
当m=6,n=4时,第1个4端口CSI-RS资源至第6个4端口CSI-RS资源的第3个端口的RE的标识分别为(11,5)、(9,5)、(7,5)、(10,5)、(8,5)、(6,5),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、0、0、0、0;When m=6 and n=4, the identifiers of the REs of the first 4-port CSI-RS resource to the third port of the sixth 4-port CSI-RS resource are (11, 5), (9, 5, respectively). ), (7, 5), (10, 5), (8, 5), (6, 5), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0 , 0, 0, 0, 0;
当m=3,n=8时,第1个8端口CSI-RS资源至第5个8端口CSI-RS资源的第7个端口的RE的标识分别为(11,5)、(9,5)、(7,5),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、0;When m=3, n=8, the identifiers of the REs of the first 8-port CSI-RS resource to the 7th port of the 5th 8-port CSI-RS resource are (11, 5), (9, 5, respectively). (7, 5), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 0;
当m=1,n=16时,第1个16端口CSI-RS资源的RE的标识为(9,2),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0。When m=1, n=16, the identifier of the RE of the first 16-port CSI-RS resource is (9, 2), and the RE is located in the radio frame, the number of the slot is n s , and the value after the modulo 2 operation is respectively Is 0.
可选的,所述第1个16端口CSI-RS资源可通过下述配置J1、K1中的任意一种配置聚合而成:Optionally, the first 16-port CSI-RS resource may be aggregated by using any one of the following configurations J1 and K1:
配置J1:第1个16端口CSI-RS资源由第2个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成;Configuration J1: The first 16-port CSI-RS resource is aggregated by the second 8-port CSI-RS resource and the first 8-port CSI-RS resource;
配置K1:第1个16端口CSI-RS资源由第3个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成。Configuration K1: The first 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the first 8-port CSI-RS resource.
可选的,当m=2,n=12,r=3,w=4时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,包括:Optionally, when m=2, n=12, r=3, and w=4, each n-port CSI-RS resource in the m n-port CSI-RS resources is configured by r w ports CSI-RS The resources are aggregated, including:
所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述3个4端口CSI-RS资源中的任意2个4端口CSI-RS资源聚合成1个8端口CSI-RS资源;或者,Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 4-port CSI-RS resources are used. 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or,
所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述2个12端口CSI-RS资源中的任意1个12端口CSI-RS资源由所述1个16端口CSI-RS资源减去1个4端口CSI-RS资源而得,所述2个12端口CSI-RS资源中除所述任意1个12端口CSI-RS资源之外的1个12端口CSI-RS资源由所述任意1个12端口CSI-RS资源之外的3个4端口CSI-RS资源聚合而成。Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any one of the two 12-port CSI-RS resources is used. The 12-port CSI-RS resource is obtained by subtracting one 4-port CSI-RS resource from the one 16-port CSI-RS resource, and any one of the two 12-port CSI-RS resources except the any one of the 12-port CSI-RS resources One 12-port CSI-RS resource other than the RS resource is aggregated by three 4-port CSI-RS resources other than the arbitrary one-port 12-port CSI-RS resource.
另一种可能的实现方式中:Another possible implementation:
若所述n端口CSI-RS资源的第n-1个端口的RE的标识记为(k,l),k表示频域索引,l表示时域索引;则当t=1,CP类型为扩展CP时,所述m 个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的资源单元RE的标识相同,包括:If the identifier of the RE of the n-1th port of the n-port CSI-RS resource is denoted as (k, l), k represents a frequency domain index, and l represents a time domain index; then when t=1, the CP type is an extension. When CP, the m The n-1th port of the i-th n-port CSI-RS resource and the n-2-1 port resource unit RE of the i-th n/2 port CSI-RS resource in the n-port CSI-RS resource The same logo, including:
当m=16,n=2时,第1个2端口CSI-RS资源至第16个2端口CSI-RS资源的第1个端口的RE的标识分别为(11,4)、(9,4)、(10,4)、(9,4)、(5,4)、(3,4)、(4,4)、(3,4)、(8,4)、(6,4)、(2,4)、(0,4)、(7,4)、(6,4)、(1,4)、(0,4),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、1、1、0、0、1、1、0、0、0、0、1、1、1、1;When m=16 and n=2, the identifiers of the first 2-port CSI-RS resource to the first port of the 16th 2-port CSI-RS resource are (11, 4), (9, 4, respectively). ), (10,4), (9,4), (5,4), (3,4), (4,4), (3,4), (8,4), (6,4), (2,4), (0,4), (7,4), (6,4), (1,4), (0,4), the RE is located in the slot number of the radio frame n s mode 2 The values after the operation are 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1;
当m=8,n=4时,第1个4端口CSI-RS资源至第8个4端口CSI-RS资源的第3个端口的RE的标识分别为(11,4)、(9,4)、(10,4)、(9,4)、(5,4)、(3,4)、(4,4)、(3,4),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、1、1、0、0、1、1;When m=8 and n=4, the identifiers of the REs of the first 4-port CSI-RS resource to the third port of the eighth 4-port CSI-RS resource are (11, 4), (9, 4, respectively). ), (10,4), (9,4), (5,4), (3,4), (4,4), (3,4), the RE is located in the slot number n of the radio frame The values after s modulo 2 operation are 0, 0, 1, 1, 0, 0, 1, 1 respectively;
当m=4,n=8时,第1个8端口CSI-RS资源至第4个8端口CSI-RS资源的第7个端口的RE的标识分别为(11,4)、(9,4)、(10,4)、(9,4),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、1、1;When m=4, n=8, the identifiers of the REs of the first 8-port CSI-RS resource to the 7th port of the 4th 8-port CSI-RS resource are (11, 4), (9, 4, respectively). , (10, 4), (9, 4), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 1, 1, respectively;
当m=2,n=16时,第1个16端口CSI-RS资源至第2个16端口CSI-RS资源的第15个端口的RE的标识分别为(11,4)、(9,4),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0。When m=2, n=16, the identifiers of the REs of the first 16-port CSI-RS resource to the 15th port of the second 16-port CSI-RS resource are (11, 4), (9, 4, respectively). The value of the RE located in the radio frame in the number n s modulo 2 operation is 0, 0.
可选的,所述第1个16端口CSI-RS资源和第2个16端口CSI-RS资源可通过下述配置A2、B2中的任意一种配置聚合而成:Optionally, the first 16-port CSI-RS resource and the second 16-port CSI-RS resource may be aggregated by using any one of the following configurations A2 and B2:
配置A2:第1个16端口CSI-RS资源由第3个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第4个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成;Configuration A2: The first 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is composed of the fourth 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
配置B2:第1个16端口CSI-RS资源由第4个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第3个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成。Configuration B2: The first 16-port CSI-RS resource is aggregated from the 4th 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is 3rd. The port CSI-RS resource is aggregated with the second 8-port CSI-RS resource.
可选的,当m=2,n=12,r=3,w=4时,所述m个n端口CSI-RS资源 中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,包括:Optionally, when m=2, n=12, r=3, and w=4, the m n-port CSI-RS resources Each n-port CSI-RS resource is aggregated by r w-port CSI-RS resources, including:
所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述3个4端口CSI-RS资源中的任意2个4端口CSI-RS资源聚合成1个8端口CSI-RS资源;或者,Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 4-port CSI-RS resources are used. 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or,
所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述2个12端口CSI-RS资源分别由所述2个16端口CSI-RS资源减去1个4端口CSI-RS资源而得。Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein the two 12-port CSI-RS resources are respectively A 16-port CSI-RS resource is subtracted from a 4-port CSI-RS resource.
另一种可能的实现方式中:Another possible implementation:
若所述n端口CSI-RS资源的第n-1个端口的RE的标识记为(k,l),k表示频域索引,l表示时域索引;则当t=1,CP类型为扩展CP时,所述m个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的资源单元RE的标识相同,包括:If the identifier of the RE of the n-1th port of the n-port CSI-RS resource is denoted as (k, l), k represents a frequency domain index, and l represents a time domain index; then when t=1, the CP type is an extension. In the case of the CP, the n-1th port of the i-th n-port CSI-RS resource and the n/2-1 of the i-th n/2 port CSI-RS resource among the m n-port CSI-RS resources The resource unit REs of the ports have the same identifier, including:
当m=12,n=2时,第1个2端口CSI-RS资源至第12个2端口CSI-RS资源的第1个端口的RE分别为(11,1)、(10,1)、(9,1)、(5,1)、(4,1)、(3,1)、(8,1)、(7,1)、(6,1)、(2,1)、(1,1)、(0,1),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为1、1、1、1、1、1、1、1、1、1、1、1;When m=12 and n=2, the REs of the first 2-port CSI-RS resource to the first port of the 12th 2-port CSI-RS resource are (11, 1), (10, 1), respectively. (9,1), (5,1), (4,1), (3,1), (8,1), (7,1), (6,1), (2,1), (1 , 1), (0, 1), the RE is located in the radio frame, the number of the slot n s modulo 2 operation, the values are 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, respectively 1,1;
当m=6,n=4时,第1个4端口CSI-RS资源至第6个4端口CSI-RS资源的第3个端口的RE分别为(11,1)、(10,1)、(9,1)、(5,1)、(4,1)、(3,1),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为1、1、1、1、1、1;When m=6 and n=4, the REs of the first 4-port CSI-RS resource to the third port of the sixth 4-port CSI-RS resource are (11, 1), (10, 1), respectively. (9,1), (5,1), (4,1), (3,1), the RE is located in the radio frame, the number of the slot n s modulo 2 operation, the values are 1, 1, 1, respectively 1, 1, 1, 1;
当m=3,n=8时,第1个8端口CSI-RS资源至第5个8端口CSI-RS资源的第7个端口的RE分别为(11,1)、(10,1)、(9,1),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为1、1、1;When m=3, n=8, the REs of the first 8-port CSI-RS resource to the 7th port of the 5th 8-port CSI-RS resource are (11, 1), (10, 1), respectively. (9, 1), the RE is located in the radio frame, the number of the slot n s modulo 2 operation after the value is 1, 1, 1;
当m=1,n=16时,第1个16端口CSI-RS资源的RE为(11,1),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为1。When m=1, n=16, the RE of the first 16-port CSI-RS resource is (11, 1), and the RE is located in the radio frame, the number of the slot is n s , and the value after the modulo 2 operation is 1 respectively. .
可选的,所述第1个16端口CSI-RS资源可通过下述配置E2、F2中的任意一种配置聚合而成: Optionally, the first 16-port CSI-RS resource may be aggregated by using any one of the following configurations E2 and F2:
配置E2:第1个16端口CSI-RS资源由第2个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成;Configure E2: the first 16-port CSI-RS resource is aggregated by the second 8-port CSI-RS resource and the first 8-port CSI-RS resource;
配置F2:第1个16端口CSI-RS资源由第3个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成。Configuration F2: The first 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the first 8-port CSI-RS resource.
可选的,当m=2,n=12,r=3,w=4时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,包括:Optionally, when m=2, n=12, r=3, and w=4, each n-port CSI-RS resource in the m n-port CSI-RS resources is configured by r w ports CSI-RS The resources are aggregated, including:
所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述3个4端口CSI-RS资源中的任意2个4端口CSI-RS资源聚合成1个8端口CSI-RS资源;或者,Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 4-port CSI-RS resources are used. 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or,
所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述2个12端口CSI-RS资源中的任意1个12端口CSI-RS资源由所述1个16端口CSI-RS资源减去1个4端口CSI-RS资源而得,所述2个12端口CSI-RS资源中除所述任意1个12端口CSI-RS资源之外的1个12端口CSI-RS资源由所述任意1个12端口CSI-RS资源之外的3个4端口CSI-RS资源聚合而成。Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any one of the two 12-port CSI-RS resources is used. The 12-port CSI-RS resource is obtained by subtracting one 4-port CSI-RS resource from the one 16-port CSI-RS resource, and any one of the two 12-port CSI-RS resources except the any one of the 12-port CSI-RS resources One 12-port CSI-RS resource other than the RS resource is aggregated by three 4-port CSI-RS resources other than the arbitrary one-port 12-port CSI-RS resource.
另一种可能的实现方式中:Another possible implementation:
当t=2,n=16时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源的前n/2个端口组成一种n/2端口CSI-RS资源,所述m个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的资源单元RE的标识相同,包括:When t=2, n=16, the first n/2 ports of each n-port CSI-RS resource of the m n-port CSI-RS resources constitute an n/2 port CSI-RS resource, Resources of the n-1th port of the i-th n-port CSI-RS resource and the n/2-1th port of the i-th n/2 port CSI-RS resource in the m n-port CSI-RS resources The identity of the unit RE is the same, including:
所述第i个16端口CSI-RS资源由第一个PRB对中的第i个8端口CSI-RS资源和第二个PRB对中的第i个8端口CSI-RS资源聚合而成;The i-th 16-port CSI-RS resource is aggregated by an i-th 8-port CSI-RS resource in a first PRB pair and an i-th 8-port CSI-RS resource in a second PRB pair;
或者,所述第i个16端口CSI-RS资源由第一个PRB对中的第i个和第i+P个4端口CSI-RS资源、以及第二个PRB对中的第i个和第i+P个4端口CSI-RS资源聚合而成,P为每个PRB对中8端口CSI-RS资源的数目;Or the ith 16-port CSI-RS resource is the ith and i+P 4-port CSI-RS resources in the first PRB pair, and the ith and the second in the second PRB pair. i+P 4-port CSI-RS resources are aggregated, and P is the number of 8-port CSI-RS resources in each PRB pair;
或者,所述第i个16端口CSI-RS资源由第一个PRB对中的第i个,第i+P个,第i+Q和第i+P+Q个4端口CSI-RS资源、以及第二个PRB对中的第i个,第i+P个,第i+Q,和第i+P+Q个4端口CSI-RS资源聚合 而成,P为每个PRB对中8端口CSI-RS资源的数目,Q为每个PRB对中4端口CSI-RS资源的数目。Or the i-th 16-port CSI-RS resource is the i-th, i-th, i+th, and i-th+P+Q 4-port CSI-RS resources in the first PRB pair, And the i-th, i+Pth, i+th, and i+P+Q 4-port CSI-RS resource aggregations of the second PRB pair P is the number of 8-port CSI-RS resources in each PRB pair, and Q is the number of 4-port CSI-RS resources in each PRB pair.
本发明实施例提供了在特殊子帧中配置CSI-RS的相关解决方案,基于本发明实施例提供的CSI-RS配置的方法、相关设备及系统,可以在特殊子帧中配置CSI-RS。The embodiment of the present invention provides a related solution for configuring a CSI-RS in a special subframe. The method, the related device, and the system for configuring a CSI-RS according to the embodiment of the present invention may configure a CSI-RS in a special subframe.
第七方面,提供一种信道状态信息参考信号CSI-RS配置的方法,所述方法包括:In a seventh aspect, a method for configuring a channel state information reference signal CSI-RS is provided, the method comprising:
基站确定下行传输子帧的CSI-RS配置,所述CSI-RS配置包括所述CSI-RS的资源单元RE的标识,其中,每t个物理资源块PRB对中包含m个n端口CSI-RS资源,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由p个q端口CSI-RS资源聚合而成,当m≥2时,存在至少两个n端口CSI-RS资源中的s个q端口CSI-RS资源相同,所述下行传输子帧包括特殊子帧或下行子帧,1≤s<p,n>q,m、n、t、p、q、s均为正整数;Determining, by the base station, a CSI-RS configuration of a downlink transmission subframe, where the CSI-RS configuration includes an identifier of a resource unit RE of the CSI-RS, where each of the physical resource block PRB pairs includes m n-port CSI-RSs The n-port CSI-RS resource of the m n-port CSI-RS resources is aggregated by p q-port CSI-RS resources. When m≥2, there are at least two n-port CSI-RSs. The s q-port CSI-RS resources in the resource are the same, and the downlink transmission subframe includes a special subframe or a downlink subframe, and 1≤s<p, n>q, m, n, t, p, q, s Is a positive integer;
所述基站向用户设备UE发送所述CSI-RS配置的指示信息,所述CSI-RS配置的指示信息用于指示所述下行传输子帧的CSI-RS配置。The base station sends the indication information of the CSI-RS configuration to the user equipment UE, where the indication information of the CSI-RS configuration is used to indicate the CSI-RS configuration of the downlink transmission subframe.
第八方面,提供一种信道状态信息参考信号CSI-RS配置的方法,所述方法包括:In an eighth aspect, a method for configuring a channel state information reference signal CSI-RS is provided, the method comprising:
用户设备UE接收基站发送的CSI-RS配置的指示信息,所述CSI-RS配置的指示信息用于指示下行传输子帧的CSI-RS配置,其中,每t个物理资源块PRB对中包含m个n端口CSI-RS资源,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由p个q端口CSI-RS资源聚合而成,当m≥2时,存在至少两个n端口CSI-RS资源中的s个q端口CSI-RS资源相同,所述下行传输子帧包括特殊子帧或下行子帧,1≤s<p,n>q,m、n、t、p、q、s均为正整数;The user equipment UE receives the indication information of the CSI-RS configuration sent by the base station, where the indication information of the CSI-RS configuration is used to indicate the CSI-RS configuration of the downlink transmission subframe, where the per-physical resource block PRB pair includes m Each n-port CSI-RS resource of the n-port CSI-RS resources is aggregated by p q-port CSI-RS resources, and when m≥2, there are at least two The s q-port CSI-RS resources in the n-port CSI-RS resources are the same, and the downlink transmission subframe includes a special subframe or a downlink subframe, 1≤s<p, n>q, m, n, t, p, q, s are all positive integers;
所述UE根据所述CSI-RS配置的指示信息,确定所述下行传输子帧的CSI-RS配置。The UE determines a CSI-RS configuration of the downlink transmission subframe according to the indication information of the CSI-RS configuration.
第九方面,提供一种基站,所述基站包括:处理单元和发送单元;A ninth aspect, a base station is provided, where the base station includes: a processing unit and a sending unit;
所述处理单元,用于确定下行传输子帧的信道状态信息参考信号CSI-RS配置,所述CSI-RS配置包括所述CSI-RS的资源单元RE的标识, 其中,每t个物理资源块PRB对中包含m个n端口CSI-RS资源,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由p个q端口CSI-RS资源聚合而成,当m≥2时,存在至少两个n端口CSI-RS资源中的s个q端口CSI-RS资源相同,所述下行传输子帧包括特殊子帧或下行子帧,1≤s<p,n>q,m、n、t、p、q、s均为正整数;The processing unit is configured to determine a channel state information reference signal CSI-RS configuration of a downlink transmission subframe, where the CSI-RS configuration includes an identifier of a resource unit RE of the CSI-RS, Each of the m physical resource block PRB pairs includes m n-port CSI-RS resources, and each of the m n-port CSI-RS resources is configured by p q-port CSI-RS resources. Agized, when m≥2, there are s q-port CSI-RS resources in at least two n-port CSI-RS resources, and the downlink transmission subframe includes a special subframe or a downlink subframe, 1≤s <p,n>q, m, n, t, p, q, s are all positive integers;
所述发送单元,用于向用户设备UE发送所述CSI-RS配置的指示信息,所述CSI-RS配置的指示信息用于指示所述下行传输子帧的CSI-RS配置。The sending unit is configured to send, to the user equipment UE, the indication information of the CSI-RS configuration, where the indication information of the CSI-RS configuration is used to indicate a CSI-RS configuration of the downlink transmission subframe.
第十方面,提供一种用户设备UE,所述UE包括:接收单元和处理单元;A tenth aspect, a user equipment UE is provided, where the UE includes: a receiving unit and a processing unit;
所述接收单元,用于接收基站发送的信道状态信息参考信号CSI-RS配置的指示信息,所述CSI-RS配置的指示信息用于指示下行传输子帧的CSI-RS配置,其中,每t个物理资源块PRB对中包含m个n端口CSI-RS资源,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由p个q端口CSI-RS资源聚合而成,当m≥2时,存在至少两个n端口CSI-RS资源中的s个q端口CSI-RS资源相同,所述下行传输子帧包括特殊子帧或下行子帧,1≤s<p,n>q,m、n、t、p、q、s均为正整数;The receiving unit is configured to receive indication information of a channel state information reference signal CSI-RS configuration sent by the base station, where the indication information of the CSI-RS configuration is used to indicate a CSI-RS configuration of the downlink transmission subframe, where each t The physical resource block PRB pair includes m n-port CSI-RS resources, and each n-port CSI-RS resource of the m n-port CSI-RS resources is aggregated by p q-port CSI-RS resources. When m≥2, there are s q-port CSI-RS resources in at least two n-port CSI-RS resources, and the downlink transmission subframe includes a special subframe or a downlink subframe, 1≤s<p,n >q, m, n, t, p, q, s are all positive integers;
所述处理单元,用于根据所述CSI-RS配置的指示信息,确定所述下行传输子帧的CSI-RS配置。The processing unit is configured to determine a CSI-RS configuration of the downlink transmission subframe according to the indication information of the CSI-RS configuration.
第十一方面,提供一种基站,所述基站包括处理器、存储器、总线和通信接口;In an eleventh aspect, a base station is provided, the base station comprising a processor, a memory, a bus, and a communication interface;
所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述基站运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述基站执行如第七方面所述的CSI-RS配置的方法。The memory is configured to store a computer to execute an instruction, the processor is connected to the memory through the bus, and when the base station is running, the processor executes the computer-executed instruction stored in the memory to make A method in which a base station performs a CSI-RS configuration as described in the seventh aspect.
第十二方面,提供一种用户设备UE,所述UE包括处理器、存储器、总线和通信接口;A twelfth aspect, a user equipment UE is provided, where the UE includes a processor, a memory, a bus, and a communication interface;
所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述UE运行时,所述处理器执行所述存储器存储的 所述计算机执行指令,以使所述UE执行如第八方面所述的CSI-RS配置的方法。The memory is configured to store computer execution instructions, the processor is coupled to the memory via the bus, and when the UE is running, the processor executes the memory storage The computer executes instructions to cause the UE to perform the method of CSI-RS configuration as described in the eighth aspect.
本发明实施例提供了在下行传输子帧中配置CSI-RS的相关解决方案,基于本发明实施例提供的CSI-RS配置的方法及相关设备,可以在特殊子帧中配置CSI-RS,也可以在天线端口数大于8时在下行子帧中配置CSI-RS。The embodiment of the present invention provides a related solution for configuring a CSI-RS in a downlink transmission subframe. The CSI-RS configuration method and related device provided by the embodiment of the present invention may configure a CSI-RS in a special subframe. The CSI-RS may be configured in the downlink subframe when the number of antenna ports is greater than 8.
附图说明DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the embodiments or the description of the prior art will be briefly described below. Obviously, the drawings in the following description are only It is a certain embodiment of the present invention, and other drawings can be obtained from those skilled in the art without any inventive labor.
图1为本发明实施例提供的CSI-RS配置的系统架构图;FIG. 1 is a system architecture diagram of a CSI-RS configuration according to an embodiment of the present invention;
图2为本发明实施例提供的CSI-RS配置的方法流程示意图一;2 is a schematic flowchart 1 of a method for configuring a CSI-RS according to an embodiment of the present invention;
图3为本发明实施例提供的CSI-RS的配置图案示意图一;FIG. 3 is a schematic diagram 1 of a configuration pattern of a CSI-RS according to an embodiment of the present disclosure;
图4为本发明实施例提供的CSI-RS的配置图案示意图二;FIG. 4 is a schematic diagram 2 of a configuration pattern of a CSI-RS according to an embodiment of the present disclosure;
图5为本发明实施例提供的CSI-RS的配置图案示意图三;FIG. 5 is a schematic diagram 3 of a configuration pattern of a CSI-RS according to an embodiment of the present disclosure;
图6为本发明实施例提供的CSI-RS的配置图案示意图四;FIG. 6 is a schematic diagram 4 of a configuration pattern of a CSI-RS according to an embodiment of the present disclosure;
图7为本发明实施例提供的CSI-RS的配置图案示意图五;FIG. 7 is a schematic diagram 5 of a configuration pattern of a CSI-RS according to an embodiment of the present disclosure;
图8为本发明实施例提供的CSI-RS的配置图案示意图六;FIG. 8 is a schematic diagram 6 of a configuration pattern of a CSI-RS according to an embodiment of the present disclosure;
图9为本发明实施例提供的CSI-RS的配置图案示意图七;FIG. 9 is a schematic diagram 7 of a configuration pattern of a CSI-RS according to an embodiment of the present invention;
图10为本发明实施例提供的CSI-RS的配置图案示意图八;FIG. 10 is a schematic diagram 8 of a configuration pattern of a CSI-RS according to an embodiment of the present invention;
图11为本发明实施例提供的CSI-RS的配置图案示意图九;FIG. 11 is a schematic diagram 9 of a configuration pattern of a CSI-RS according to an embodiment of the present invention;
图12为本发明实施例提供的CSI-RS的配置图案示意图十;FIG. 12 is a schematic diagram 10 of a configuration pattern of a CSI-RS according to an embodiment of the present invention;
图13为本发明实施例提供的CSI-RS的配置图案示意图十一;FIG. 13 is a schematic diagram 11 of a configuration pattern of a CSI-RS according to an embodiment of the present invention;
图14为本发明实施例提供的CSI-RS的配置图案示意图十二;FIG. 14 is a schematic diagram 12 of a configuration pattern of a CSI-RS according to an embodiment of the present disclosure;
图15为本发明实施例提供的CSI-RS的配置图案示意图十三;FIG. 15 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention;
图16为本发明实施例提供的CSI-RS的配置图案示意图十四;FIG. 16 is a schematic diagram showing a configuration pattern of a CSI-RS according to an embodiment of the present invention; FIG.
图17为本发明实施例提供的CSI-RS的配置图案示意图十五; FIG. 17 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention;
图18为本发明实施例提供的CSI-RS的配置图案示意图十六;FIG. 18 is a schematic diagram 16 of a configuration pattern of a CSI-RS according to an embodiment of the present invention; FIG.
图19为本发明实施例提供的CSI-RS的配置图案示意图十七;FIG. 19 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention;
图20为本发明实施例提供的CSI-RS的配置图案示意图十八;FIG. 20 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention;
图21为本发明实施例提供的CSI-RS的配置图案示意图十九;FIG. 21 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention;
图22为本发明实施例提供的CSI-RS的配置图案示意图二十;FIG. 22 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention; FIG.
图23为本发明实施例提供的CSI-RS的配置图案示意图二十一;FIG. 23 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention;
图24为本发明实施例提供的CSI-RS的配置图案示意图二十二;FIG. 24 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention;
图25为本发明实施例提供的CSI-RS的配置图案示意图二十三;FIG. 25 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention;
图26为本发明实施例提供的CSI-RS的配置图案示意图二十四;FIG. 26 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention;
图27为本发明实施例提供的CSI-RS的配置图案示意图二十五;FIG. 27 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention;
图28为本发明实施例提供的CSI-RS的配置图案示意图二十六;28 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention;
图29为本发明实施例提供的CSI-RS的配置图案示意图二十七;FIG. 29 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention;
图30为本发明实施例提供的CSI-RS的配置图案示意图二十八;FIG. 30 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention;
图31为本发明实施例提供的CSI-RS的配置图案示意图二十九;FIG. 31 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention;
图32为本发明实施例提供的CSI-RS的配置图案示意图三十;32 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention;
图33为本发明实施例提供的CSI-RS的配置图案示意图三十一;33 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention;
图34为本发明实施例提供的CSI-RS的配置图案示意图三十二;FIG. 34 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention;
图35为本发明实施例提供的CSI-RS的配置图案示意图三十三;FIG. 35 is a schematic diagram of a configuration pattern of a CSI-RS according to an embodiment of the present invention;
图36为本发明实施例提供的CSI-RS配置的方法流程示意图二;FIG. 36 is a second schematic flowchart of a method for configuring a CSI-RS according to an embodiment of the present disclosure;
图37为本发明实施例提供的基站结构示意图一;37 is a schematic structural diagram 1 of a base station according to an embodiment of the present invention;
图38为本发明实施例提供的UE结构示意图一;FIG. 38 is a schematic structural diagram 1 of a UE according to an embodiment of the present disclosure;
图39为本发明实施例提供的基站结构示意图二;FIG. 39 is a schematic structural diagram 2 of a base station according to an embodiment of the present disclosure;
图40为本发明实施例提供的UE结构示意图二。FIG. 40 is a schematic structural diagram 2 of a UE according to an embodiment of the present invention.
具体实施方式detailed description
为了下述各实施例的描述清楚简洁,首先给出相关技术的简要介绍:For a clear and concise description of the following embodiments, a brief introduction of the related art is first given:
在LTE或高级的长期演进(英文:LTE Advanced,简称:LTE-A)系统中,下行多址接入方式通常采用正交频分复用多址接入(英文:Or thogonal Frequency Division Multiple Access,简称:OFDMA)方式。 系统的下行资源从时间上看被划分成了正交频分复用(英文:Orthogonal Frequency Division Multiplexing,简称:OFDM)符号,从频率上看被划分成了子载波。根据LTE标准,一个无线帧包含10个子帧,一个子帧长1ms,每个无线帧的子帧按照0-9编号。一个子帧包含有两个时隙(英文:slot),常规循环前缀(英文:Cyclic Prefix,简称:CP)情况下每个时隙包含7个OFDM符号,编号是0-6;扩展CP情况下每个时隙包含6个OFDM符号,编号是0-5。一个OFDM符号和一个子载波构成的时频资源称为资源元素(英文:Resource Element,简称:RE)。定义一个物理资源块(英文:Physical Resource Block,简称:PRB)的大小为时间上的一个时隙,频域上的180kHz。当子载波间隔为15kHz时,一个PRB在频率上包含12个子载波,此时一个PRB共包含84个或72个RE。在频域上对PRB进行编号,即为PRB索引。定义一个PRB对(PRB pair)为在一个子帧上的两个时隙的PRB索引相同的一对PRB。In the LTE or advanced long-term evolution (LTE: LTE-A) system, the downlink multiple access method usually adopts orthogonal frequency division multiplexing multiple access (English: Or thogonal Frequency Division Multiple Access, Abbreviation: OFDMA) mode. The downlink resources of the system are divided into Orthogonal Frequency Division Multiplexing (OFDM) symbols in terms of time, and are divided into subcarriers in terms of frequency. According to the LTE standard, one radio frame contains 10 subframes, one subframe is 1 ms long, and the subframe of each radio frame is numbered 0-9. One sub-frame contains two time slots (English: slot). In the case of a regular cyclic prefix (English: Cyclic Prefix, CP for short), each time slot contains 7 OFDM symbols, numbered 0-6; in the case of extended CP Each slot contains 6 OFDM symbols, numbered 0-5. A time-frequency resource composed of one OFDM symbol and one subcarrier is called a resource element (English: Resource Element, abbreviated as RE). The size of a physical resource block (English: Physical Resource Block, PRB for short) is defined as one time slot in time and 180 kHz in the frequency domain. When the subcarrier spacing is 15 kHz, one PRB contains 12 subcarriers in frequency, and at this time, one PRB contains a total of 84 or 72 REs. The PRB is numbered in the frequency domain, which is the PRB index. A PRB pair is defined as a pair of PRBs having the same PRB index of two slots on one subframe.
LTE系统支持两种帧结构:Type1和Type2,其中Type1用于频分双工(英文:Frequency Division Duplexing,简称:FDD),Type2用于时分双工(英文:Time Division Duplexing,简称TDD)。对于FDD的帧结构Type1,一个10ms无线帧包含的每个子帧既可以用于下行传输,也可以用于上行传输。对于TDD的帧结构Type2,一个10ms的无线帧包含的子帧或者为下行子帧,或者为上行子帧,或者为特殊子帧。具体哪个子帧为下行子帧、上行子帧、或者特殊子帧由TDD上下行配置决定。LTE当前支持7种不同的TDD上下行配置,如表一所示,其中D表示下行子帧,用于下行传输,S表示特殊子帧,U表示上行子帧。 The LTE system supports two frame structures: Type1 and Type2, where Type1 is used for Frequency Division Duplexing (English: Frequency Division Duplexing, FDD for short) and Type 2 is used for Time Division Duplexing (TDD). For the frame structure Type1 of the FDD, each subframe included in a 10 ms radio frame can be used for both downlink transmission and uplink transmission. For the frame structure Type 2 of the TDD, a subframe included in a 10 ms radio frame is either a downlink subframe, an uplink subframe, or a special subframe. Which subframe is a downlink subframe, an uplink subframe, or a special subframe is determined by the TDD uplink and downlink configuration. LTE currently supports seven different TDD uplink and downlink configurations, as shown in Table 1, where D represents a downlink subframe for downlink transmission, S represents a special subframe, and U represents an uplink subframe.
表一Table I
Figure PCTCN2015094063-appb-000001
Figure PCTCN2015094063-appb-000001
其中,特殊子帧中包括下行导频时隙(英文:Downlink Pilot Time Slot,简称:DwPTS),保护时间(英文:Guard Period,简称:GP)和上行导频时隙(英文:Uplink Pilot Time Slot,简称:UpPTS)三个部分,GP主要用于下行到上行的转换时间和传播时延的补偿。此外,DwPTS中可以传输下行数据,但UpPTS中不可以传输上行数据。UpPTS和DwPTS的时间长度由特殊子帧配置决定,如表二所示。其中Ts是一个时间单元,Ts=1/(15000x2048)秒。The special subframe includes a downlink pilot time slot (English: Downlink Pilot Time Slot, referred to as DwPTS), a guard time (English: Guard Period, abbreviated as GP), and an uplink pilot time slot (English: Uplink Pilot Time Slot) , referred to as: UpPTS) three parts, GP is mainly used for downlink to uplink conversion time and propagation delay compensation. In addition, downlink data can be transmitted in the DwPTS, but uplink data cannot be transmitted in the UpPTS. The length of the UpPTS and DwPTS is determined by the special subframe configuration, as shown in Table 2. Where T s is a time unit, T s =1/(15000x2048) seconds.
表二Table II
Figure PCTCN2015094063-appb-000002
Figure PCTCN2015094063-appb-000002
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是 全部的实施例。在下文描述中,处于解释而非限定的目的,阐述了一些特定细节以便清楚理解。在一些实施例中,省略了公知的装置、电路和方法的详细描述,以免因不必要的细节使得描述模糊。通篇描述中,相同的引用数字和相同的名称指代相同或相似的元素。The technical solutions in the embodiments of the present invention will be described below with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, instead of All embodiments. In the following description, for purposes of explanation and description In some embodiments, detailed descriptions of well-known devices, circuits, and methods are omitted so as not to obscure the description in unnecessary detail. Throughout the description, the same reference numerals and the same names refer to the same or similar elements.
为了便于清楚描述本发明实施例的技术方案,在本发明的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。In order to facilitate the clear description of the technical solutions of the embodiments of the present invention, in the embodiments of the present invention, the words "first", "second" and the like are used to distinguish the same or similar items whose functions and functions are substantially the same, in the field. The skilled person will understand that the words "first", "second" and the like do not limit the number and order of execution.
本发明主要应用于LTE系统,或者高级的长期演进(英文:LTE Advanced,简称:LTE-A)系统,或者未来其它版本的继续演进通信系统或其它移动通信系统等,本发明实施例对此不作具体限定。只要该通信系统中存在用户设备(英文:User Equipment,简称:UE)和基站,基站需要向UE发送CSI-RS配置的指示信息,UE需要接收基站发送的CSI-RS配置的指示信息。如图1所示,基站和UE1-UE6组成一个通信系统,在该通信系统中,基站需要给UE1-UE6发送CSI-RS配置的指示信息,UE1-UE6需要接收基站发送的CSI-RS配置的指示信息。The present invention is mainly applied to an LTE system, or an advanced long-term evolution (English: LTE Advanced, LTE-A) system, or a future version of a continuation-evolved communication system or other mobile communication system, etc. Specifically limited. As long as the user equipment (English: User Equipment, UE) and the base station are present in the communication system, the base station needs to send the CSI-RS configuration indication information to the UE, and the UE needs to receive the indication information of the CSI-RS configuration sent by the base station. As shown in FIG. 1, the base station and the UE1-UE6 form a communication system, in which the base station needs to send the CSI-RS configuration indication information to the UE1-UE6, and the UE1-UE6 needs to receive the CSI-RS configuration sent by the base station. Instructions.
需要说明的是,本发明实施例中的基站可以是NodeB或者演进型NodeB(英文:Evolved NodeB,简称:eNB),本发明实施例对此不作具体限定。It should be noted that the base station in the embodiment of the present invention may be a NodeB or an evolved NodeB (English: Evolved NodeB, eNB for short), which is not specifically limited in this embodiment of the present invention.
基于上述通信系统,本发明实施例提供一种CSI配置的方法,如图2所示,包括:Based on the above communication system, an embodiment of the present invention provides a method for configuring a CSI, as shown in FIG. 2, including:
S201、基站确定特殊子帧的CSI-RS配置,所述CSI-RS配置包括所述CSI-RS的RE的标识。S201. The base station determines a CSI-RS configuration of a special subframe, where the CSI-RS configuration includes an identifier of an RE of the CSI-RS.
其中,每t个PRB对中包含m个n端口CSI-RS资源,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,n=r×w,t、m、n、r、w均为正整数。Each of the m PRB pairs includes m n-port CSI-RS resources, and each n-port CSI-RS resource of the m n-port CSI-RS resources is aggregated by r w-port CSI-RS resources. , n=r×w, t, m, n, r, and w are all positive integers.
S202、基站向UE发送所述CSI-RS配置的指示信息,所述CSI-RS配置的指示信息用于指示所述特殊子帧的CSI-RS配置。S202. The base station sends the indication information of the CSI-RS configuration to the UE, where the indication information of the CSI-RS configuration is used to indicate a CSI-RS configuration of the special subframe.
S203、UE接收基站发送的所述CSI-RS配置的指示信息。 S203. The UE receives the indication information of the CSI-RS configuration sent by the base station.
S204、UE根据所述CSI-RS配置的指示信息,确定所述特殊子帧的CSI-RS配置。S204. The UE determines, according to the indication information of the CSI-RS configuration, a CSI-RS configuration of the special subframe.
具体的,本发明实施例中,当r=2,n=2X时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源的前n/2个端口组成一种n/2端口CSI-RS资源,所述m个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的RE的标识相同,1≤i≤m,i、X均为正整数。Specifically, in the embodiment of the present invention, when r=2, n=2 X , the first n/2 ports of each n-port CSI-RS resource of the m n-port CSI-RS resources form a n/2 port CSI-RS resource, the n-1th port of the i-th n-port CSI-RS resource and the i-th n/2 port CSI-RS resource of the m n-port CSI-RS resources The identifiers of the REs of the n/2-1th port are the same, 1≤i≤m, and both i and X are positive integers.
其中,本发明实施例中,当CP类型为正常CP时,一种可能的实现方式中:In the embodiment of the present invention, when the CP type is a normal CP, in a possible implementation manner:
若所述n端口CSI-RS资源的第n-1个端口的RE的标识记为(k,l),k表示频域索引,l表示时域索引;则当t=1,CP类型为正常CP时,所述m个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的资源单元RE的标识相同,包括:If the identifier of the RE of the n-1th port of the n-port CSI-RS resource is denoted as (k, l), k represents a frequency domain index, and l represents a time domain index; then when t=1, the CP type is normal. In the case of the CP, the n-1th port of the i-th n-port CSI-RS resource and the n/2-1 of the i-th n/2 port CSI-RS resource among the m n-port CSI-RS resources The resource unit REs of the ports have the same identifier, including:
当m=20,n=2时,第1个2端口CSI-RS资源至第20个2端口CSI-RS资源的第1个端口的RE的标识分别为(9,2)、(11,5)、(9,5)、(7,5)、(9,2)、(8,2)、(10,5)、(8,5)、(6,5)、(8,2)、(3,2)、(2,2)、(5,5)、(4,5)、(3,5)、(2,5)、(1,5)、(0,5)、(3,2)、(2,2),所述RE位于无线帧中时隙的编号ns模2(即ns mod 2)操作后的值分别为0、0、0、0、1、0、0、0、0、1、0、0、0、0、0、0、0、0、1、1;When m=20 and n=2, the identifiers of the first 2-port CSI-RS resource to the first port of the 20th 2-port CSI-RS resource are (9, 2), (11, 5, respectively). ), (9,5), (7,5), (9,2), (8,2), (10,5), (8,5), (6,5), (8,2), (3,2), (2,2), (5,5), (4,5), (3,5), (2,5), (1,5), (0,5), (3 2), (2, 2), the RE is located in the radio frame, the number of the slot n s modulo 2 (ie, n s mod 2), the values after operation are 0, 0, 0, 0, 1, 0, respectively 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1;
当m=10,n=4时,第1个4端口CSI-RS资源至第10个4端口CSI-RS资源的第3个端口的RE的标识分别为(9,2)、(11,5)、(9,5)、(7,5)、(9,2)、(8,2)、(10,5)、(8,5)、(6,5)、(8,2),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、0、0、1、0、0、0、0、1;When m=10 and n=4, the identifiers of the REs of the first 4-port CSI-RS resource to the third port of the 10th 4-port CSI-RS resource are (9, 2), (11, 5, respectively). ), (9,5), (7,5), (9,2), (8,2), (10,5), (8,5), (6,5), (8,2), value operation mode number n s of the radio frame slot positioned RE 2 are 0,0,0,0,1,0,0,0,0,1;
当m=5,n=8时,第1个8端口CSI-RS资源至第5个8端口CSI-RS资源的第7个端口的RE的标识分别为(9,2)、(11,5)、(9,5)、(7,5)、(9,2),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、0、0、1; When m=5, n=8, the identifiers of the REs of the first 8-port CSI-RS resource to the 7th port of the 5th 8-port CSI-RS resource are (9, 2), (11, 5, respectively). ), (9, 5), (7, 5), (9, 2), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 0, 0, 1, respectively ;
当m=2,n=16时,第1个16端口CSI-RS资源至第2个16端口CSI-RS资源的第15个端口的RE的标识分别为(9,2)、(11,5),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0。When m=2, n=16, the identifiers of the REs of the first 16-port CSI-RS resource to the 15th port of the second 16-port CSI-RS resource are (9, 2), (11, 5, respectively). The value of the RE located in the radio frame in the number n s modulo 2 operation is 0, 0.
其中,上述特殊子帧的CSI-RS配置中所述CSI-RS的RE的标识可以如表三所示。The identifier of the RE of the CSI-RS in the CSI-RS configuration of the special subframe may be as shown in Table 3.
表三Table 3
Figure PCTCN2015094063-appb-000003
Figure PCTCN2015094063-appb-000003
Figure PCTCN2015094063-appb-000004
Figure PCTCN2015094063-appb-000004
需要说明的是,上述表三中CSI-RS配置列对应的编号顺序对应了下述的端口CSI-RS资源的顺序,比如CSI配置为0的2端口CSI-RS资源即为第1个2端口CSI-RS资源,CSI配置为1的2端口CSI-RS资源即为第2个2端口CSI-RS资源,以此类推,此处就不再一一赘述。It should be noted that the number order corresponding to the CSI-RS configuration column in Table 3 above corresponds to the order of the following port CSI-RS resources. For example, the 2-port CSI-RS resource with the CSI configuration 0 is the first 2 ports. The CSI-RS resource, the 2-port CSI-RS resource with the CSI configured as 1 is the second 2-port CSI-RS resource, and so on, and will not be repeated here.
下面将结合表三,给出特殊子帧在CP类型为正常CP时对应的20种2端口CSI-RS资源的配置图案、10种4端口CSI-RS资源的配置图案以及5种8端口CSI-RS资源的配置图案,分别如图3-图5所示。Table 3 below shows the configuration pattern of 20 2-port CSI-RS resources corresponding to the CP type of the normal subframe, the configuration pattern of 10 4-port CSI-RS resources, and the five 8-port CSI- The configuration patterns of RS resources are shown in Figure 3-5.
需要说明的是,在本发明实施例图3-35所示的CSI-RS的配置图案中,在包含编号的RE中,相同填充的多个编号对应1个多端口的CSI-RS资源,在不包含编号的RE中,图案填充用于指示该OFDM符号不被占用,比如在图3中,最后3个OFDM符号被填充,表明最后3个OFDM符号不被占用,在此进行统一说明,以下将不再一一赘述。It should be noted that, in the configuration pattern of the CSI-RS shown in FIG. 3-35 in the embodiment of the present invention, in the RE including the number, the multiple numbers of the same padding correspond to one multi-port CSI-RS resource. In the RE that does not include the number, the pattern padding is used to indicate that the OFDM symbol is not occupied. For example, in FIG. 3, the last three OFDM symbols are filled, indicating that the last three OFDM symbols are not occupied, and the following description is unified. Will not be repeated one by one.
需要说明的是,在本发明实施例图3-35所示的CSI-RS的配置图案中,上部虚线和下部虚线均表征带宽资源上的其它PRB对资源对应的配置图案的省略,在此进行统一说明,以下将不再一一赘述。It should be noted that, in the configuration pattern of the CSI-RS shown in FIG. 3-35 in the embodiment of the present invention, the upper dotted line and the lower dotted line respectively represent the omission of the configuration pattern corresponding to the resources of other PRBs on the bandwidth resource, where Uniform instructions, the following will not be repeated.
可选的,结合表三,所述第1个16端口CSI-RS资源和第2个16端口CSI-RS资源可通过下述配置A1、B1、C1、D1、E1、F1中的任意一种配置聚合而成:Optionally, in combination with Table 3, the first 16-port CSI-RS resource and the second 16-port CSI-RS resource may be configured by any one of the following: A1, B1, C1, D1, E1, and F1. Configure the aggregation:
配置A1:第1个16端口CSI-RS资源由第3个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第5个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成;Configuration A1: The first 16-port CSI-RS resource is aggregated from the third 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is selected from the fifth 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
配置B1:第1个16端口CSI-RS资源由第3个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第4个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成;Configuration B1: The first 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is composed of the fourth 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
配置C1:第1个16端口CSI-RS资源由第4个8端口CSI-RS资源 和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第5个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成;Configure C1: The first 16-port CSI-RS resource consists of the 4th 8-port CSI-RS resource. And the first 8-port CSI-RS resource is aggregated, and the second 16-port CSI-RS resource is aggregated by the fifth 8-port CSI-RS resource and the second 8-port CSI-RS resource;
配置D1:第1个16端口CSI-RS资源由第4个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第3个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成;Configuration D1: The first 16-port CSI-RS resource is aggregated from the 4th 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is 3rd. Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
配置E1:第1个16端口CSI-RS资源由第5个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第3个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成;Configure E1: The first 16-port CSI-RS resource is aggregated by the fifth 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is composed of the third 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
配置F1:第1个16端口CSI-RS资源由第5个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第4个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成。Configuration F1: The first 16-port CSI-RS resource is aggregated from the 5th 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is 4th. The port CSI-RS resource is aggregated with the second 8-port CSI-RS resource.
其中,配置A1-F1对应的配置图案分别如图6-图11所示。The configuration patterns corresponding to the configurations A1-F1 are as shown in FIG. 6 to FIG. 11, respectively.
可选的,结合表三,当m=3,n=12,r=3,w=4时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,包括:Optionally, in combination with Table 3, when m=3, n=12, r=3, and w=4, each n-port CSI-RS resource in the m n-port CSI-RS resources is r w Port CSI-RS resources are aggregated, including:
所述3个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述3个4端口CSI-RS资源中的任意2个4端口CSI-RS资源聚合成1个8端口CSI-RS资源;或者,Each of the three 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 4-port CSI-RS resources are used. 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or,
所述3个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述3个12端口CSI-RS资源中的任意2个12端口CSI-RS资源分别由所述2个16端口CSI-RS资源中的任意1个16端口CSI-RS资源减去1个4端口CSI-RS资源而得,所述3个12端口CSI-RS资源中除所述任意2个12端口CSI-RS资源之外的1个12端口CSI-RS资源由所述任意2个12端口CSI-RS资源之外的3个4端口CSI-RS资源聚合而成。Each of the three 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 12-port CSI-RS resources are used. The 12-port CSI-RS resources are respectively obtained by subtracting one 4-port CSI-RS resource from any one of the two 16-port CSI-RS resources, and the three 12-port CSI- One 12-port CSI-RS resource other than the any two 12-port CSI-RS resources in the RS resource is aggregated by three 4-port CSI-RS resources other than the any two 12-port CSI-RS resources. Made.
示例性的,这里以图4所示的10种4端口CSI-RS资源的配置图案为例,给出3种12端口CSI-RS资源的配置图案分别如图12和图13。Exemplarily, the configuration pattern of the 10 types of 4-port CSI-RS resources shown in FIG. 4 is taken as an example, and the configuration patterns of the three types of 12-port CSI-RS resources are respectively shown in FIG. 12 and FIG.
其中,在图12中,第1个12端口CSI-RS资源由第6个4端口CSI-RS资源、第1个4端口CSI-RS资源和第9个4端口CSI-RS资源聚合而成, 其中,第6个4端口CSI-RS资源、第1个4端口CSI-RS资源聚合成1个8端口CSI-RS资源;第2个12端口CSI-RS资源由第7个4端口CSI-RS资源、第2个4端口CSI-RS资源和第5个4端口CSI-RS资源聚合而成,其中,第7个4端口CSI-RS资源、第2个4端口CSI-RS资源聚合成1个8端口CSI-RS资源;第3个12端口CSI-RS资源由第8个4端口CSI-RS资源、第3个4端口CSI-RS资源和第10个4端口CSI-RS资源聚合而成,其中,第8个4端口CSI-RS资源、第3个4端口CSI-RS资源聚合成1个8端口CSI-RS资源。In FIG. 12, the first 12-port CSI-RS resource is aggregated by the sixth 4-port CSI-RS resource, the first 4-port CSI-RS resource, and the ninth 4-port CSI-RS resource. The sixth 4-port CSI-RS resource and the first 4-port CSI-RS resource are aggregated into one 8-port CSI-RS resource; the second 12-port CSI-RS resource is configured by the seventh 4-port CSI-RS. The resource, the second 4-port CSI-RS resource, and the fifth 4-port CSI-RS resource are aggregated, wherein the seventh 4-port CSI-RS resource and the second 4-port CSI-RS resource are aggregated into one. 8-port CSI-RS resource; the third 12-port CSI-RS resource is aggregated by the 8th 4-port CSI-RS resource, the 3rd 4-port CSI-RS resource, and the 10th 4-port CSI-RS resource. The eighth 4-port CSI-RS resource and the third 4-port CSI-RS resource are aggregated into one 8-port CSI-RS resource.
若(a,b,c)代表了由第a个,第b个和第c个4端口CSI-RS配置聚合成的1个12端口CSI-RS配置,在端口编号顺序上先编第a个4端口CSI-RS资源,再编第b个4端口CSI-RS资源,然后编第c个4端口CSI-RS资源,则图12所示的配置图案可以记为(6,1,9)、(7,2,5)和(8,3,10)。If (a, b, c) represents a 12-port CSI-RS configuration that is aggregated by the a, b, and c 4-port CSI-RS configurations, the a-th is the first in the port number order. 4-port CSI-RS resource, re-editing the b-th 4-port CSI-RS resource, and then coding the c-th 4-port CSI-RS resource, the configuration pattern shown in Figure 12 can be recorded as (6, 1, 9), (7, 2, 5) and (8, 3, 10).
当然,3种12端口CSI-RS资源的配置图案的组合还可以为(6,1,9)、(7,2,5)和(8,3,4)、或者为(6,1,4)、(7,2,5)和(8,3,10)、或者为(6,1,4)、(7,2,5)和(8,3,9)等等,只要符合所述3个4端口CSI-RS资源中的任意2个4端口CSI-RS资源聚合成1个8端口CSI-RS资源的条件即可,本发明实施例在此不再一一列举。Of course, the combination of the configuration patterns of the three types of 12-port CSI-RS resources may also be (6, 1, 9), (7, 2, 5) and (8, 3, 4), or (6, 1, 4). ), (7, 2, 5) and (8, 3, 10), or (6, 1, 4), (7, 2, 5) and (8, 3, 9), etc., as long as they meet the stated The conditions for the aggregation of any two 4-port CSI-RS resources of the three 4-port CSI-RS resources into one 8-port CSI-RS resource are not listed here.
其中,在图13中,第1个12端口CSI-RS资源由图6所示的第1个16端口CSI-RS资源减去最后1个4端口CSI-RS资源而得,第2个12端口CSI-RS资源由第2个16端口CSI-RS资源减去最后1个4端口CSI-RS资源而得,第3个12端口CSI-RS资源由剩余的4个4端口CSI-RS资源中的其中3个4端口CSI-RS资源聚合而成。In FIG. 13, the first 12-port CSI-RS resource is obtained by subtracting the last 4-port CSI-RS resource from the first 16-port CSI-RS resource shown in FIG. 6, and the second 12-port is obtained. The CSI-RS resource is obtained by subtracting the last one 4-port CSI-RS resource from the second 16-port CSI-RS resource, and the third 12-port CSI-RS resource is included in the remaining four 4-port CSI-RS resources. Three 4-port CSI-RS resources are aggregated.
当然,3种12端口CSI-RS资源的配置图案的组合还可以为其它,图13仅是示例性说明,只要符合所述3个12端口CSI-RS资源中的任意2个12端口CSI-RS资源分别由所述2个16端口CSI-RS资源中的任意1个16端口CSI-RS资源减去1个4端口CSI-RS资源而得,所述3个12端口CSI-RS资源中除所述任意2个12端口CSI-RS资源之外的1个12端口CSI-RS资源由所述任意2个12端口CSI-RS资源之外的3个4端口 CSI-RS资源聚合而成的条件即可,本发明实施例在此不再一一列举。Certainly, the combination of the configuration patterns of the three types of 12-port CSI-RS resources may be other. FIG. 13 is only an exemplary description as long as any two 12-port CSI-RSs of the three 12-port CSI-RS resources are met. The resources are respectively obtained by subtracting one 4-port CSI-RS resource from any one of the two 16-port CSI-RS resources, and the three 12-port CSI-RS resources are excluded. One 12-port CSI-RS resource other than any two 12-port CSI-RS resources, and three 4-ports other than the any two 12-port CSI-RS resources. The conditions for the aggregation of the CSI-RS resources are sufficient, and the embodiments of the present invention are not enumerated here.
其中,本发明实施例中,当CP类型为正常CP时,另一种可能的实现方式中:In the embodiment of the present invention, when the CP type is a normal CP, another possible implementation manner is as follows:
若所述n端口CSI-RS资源的第n-1个端口的RE的标识记为(k,l),k表示频域索引,l表示时域索引;则当t=1,CP类型为正常CP时,所述m个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的资源单元RE的标识相同,包括:If the identifier of the RE of the n-1th port of the n-port CSI-RS resource is denoted as (k, l), k represents a frequency domain index, and l represents a time domain index; then when t=1, the CP type is normal. In the case of the CP, the n-1th port of the i-th n-port CSI-RS resource and the n/2-1 of the i-th n/2 port CSI-RS resource among the m n-port CSI-RS resources The resource unit REs of the ports have the same identifier, including:
当m=12,n=2时,第1个2端口CSI-RS资源至第12个2端口CSI-RS资源的第1个端口的RE的标识分别为(11,5)、(9,5)、(7,5)、(10,5)、(8,5)、(6,5)、(5,5)、(4,5)、(3,5)、(2,5)、(1,5)、(0,5),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、0、0、0、0、0、0、0、0、0、0;When m=12 and n=2, the identifiers of the first 2-port CSI-RS resource to the first port of the 12th 2-port CSI-RS resource are (11, 5), (9, 5, respectively). ), (7,5), (10,5), (8,5), (6,5), (5,5), (4,5), (3,5), (2,5), (1, 5), (0, 5), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0;
当m=6,n=4时,第1个4端口CSI-RS资源至第6个4端口CSI-RS资源的第3个端口的RE的标识分别为(11,5)、(9,5)、(7,5)、(10,5)、(8,5)、(6,5),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、0、0、0、0;When m=6 and n=4, the identifiers of the REs of the first 4-port CSI-RS resource to the third port of the sixth 4-port CSI-RS resource are (11, 5), (9, 5, respectively). ), (7, 5), (10, 5), (8, 5), (6, 5), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0 , 0, 0, 0, 0;
当m=3,n=8时,第1个8端口CSI-RS资源至第5个8端口CSI-RS资源的第7个端口的RE的标识分别为(11,5)、(9,5)、(7,5),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、0;When m=3, n=8, the identifiers of the REs of the first 8-port CSI-RS resource to the 7th port of the 5th 8-port CSI-RS resource are (11, 5), (9, 5, respectively). (7, 5), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 0;
当m=1,n=16时,第1个16端口CSI-RS资源的RE的标识为(9,2),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0。When m=1, n=16, the identifier of the RE of the first 16-port CSI-RS resource is (9, 2), and the RE is located in the radio frame, the number of the slot is n s , and the value after the modulo 2 operation is respectively Is 0.
其中,上述特殊子帧的CSI-RS配置中所述CSI-RS的RE的标识可以如表四所示。 The identifier of the RE of the CSI-RS in the CSI-RS configuration of the special subframe may be as shown in Table 4.
表四Table 4
Figure PCTCN2015094063-appb-000005
Figure PCTCN2015094063-appb-000005
需要说明的是,上述表四中CSI-RS配置列对应的编号顺序对应了下述的端口CSI-RS资源的顺序,比如CSI配置为20的2端口CSI-RS资源即为第1个2端口CSI-RS资源,CSI配置为21的2端口CSI-RS资源即为第2个2端口CSI-RS资源,以此类推,此处就不再一一赘述。It should be noted that the number order corresponding to the CSI-RS configuration column in Table 4 corresponds to the following sequence of port CSI-RS resources. For example, the 2-port CSI-RS resource with CSI configuration 20 is the first 2 ports. The CSI-RS resource, the 2-port CSI-RS resource with the CSI configured to 21 is the second 2-port CSI-RS resource, and so on, and will not be repeated here.
下面将结合表四,给出特殊子帧在CP类型为正常CP时对应的12种2端口CSI-RS资源的配置图案、6种4端口CSI-RS资源的配置图案以及3种8端口CSI-RS资源的配置图案,分别如图14-图16所示。Table 4 below shows the configuration pattern of 12 types of 2-port CSI-RS resources corresponding to the CP type of the normal subframe, the configuration pattern of the six 4-port CSI-RS resources, and the three 8-port CSI- The configuration pattern of the RS resources is shown in Figure 14-16.
可选的,结合表四,所述第1个16端口CSI-RS资源可通过下述配置J1、K1中的任意一种配置聚合而成:Optionally, in combination with Table 4, the first 16-port CSI-RS resource may be aggregated by using any one of the following configurations J1 and K1:
配置J1:第1个16端口CSI-RS资源由第2个8端口CSI-RS资源和 第1个8端口CSI-RS资源聚合而成;Configure J1: The first 16-port CSI-RS resource consists of the 2nd 8-port CSI-RS resource and The first 8-port CSI-RS resource is aggregated;
配置K1:第1个16端口CSI-RS资源由第3个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成。Configuration K1: The first 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the first 8-port CSI-RS resource.
其中,配置J1和K1对应的配置图案分别如图17和图18所示。The configuration patterns corresponding to the configurations J1 and K1 are as shown in FIG. 17 and FIG. 18, respectively.
需要说明的是,在表四中,16端口CSI-RS资源由第15个端口的RE位置进行指示,当然,16端口CSI-RS资源还可以通过((9,5),(11,5))的方式或((7,5),(11,5))的方式进行指示,其中,(9,5)或(7,5)对应了端口6(即第7个端口)的RE的位置,(11,5)对应了端口14(即第15个端口)的RE的位置,本发明实施例对CSI-RS资源的指示方法不作具体限定。It should be noted that, in Table 4, the 16-port CSI-RS resource is indicated by the RE position of the 15th port. Of course, the 16-port CSI-RS resource can also pass ((9, 5), (11, 5). In the manner of (or (7, 5), (11, 5)), where (9, 5) or (7, 5) corresponds to the location of the RE of port 6 (ie, the 7th port) The (11, 5) corresponds to the location of the RE of the port 14 (ie, the 15th port). The method for indicating the CSI-RS resource in the embodiment of the present invention is not specifically limited.
当然,其他端口数的CSI-RS资源也可以通过上述类似的方法进行指示,本发明实施例对此不作具体限定。Certainly, the CSI-RS resources of the other port numbers may also be indicated by the foregoing method, which is not specifically limited in this embodiment of the present invention.
可选的,结合表四,当m=2,n=12,r=3,w=4时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,包括:Optionally, in combination with Table 4, when m=2, n=12, r=3, and w=4, each n-port CSI-RS resource in the m n-port CSI-RS resources is r w Port CSI-RS resources are aggregated, including:
所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述3个4端口CSI-RS资源中的任意2个4端口CSI-RS资源聚合成1个8端口CSI-RS资源;或者,Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 4-port CSI-RS resources are used. 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or,
所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述2个12端口CSI-RS资源中的任意1个12端口CSI-RS资源由所述1个16端口CSI-RS资源减去1个4端口CSI-RS资源而得,所述2个12端口CSI-RS资源中除所述任意1个12端口CSI-RS资源之外的1个12端口CSI-RS资源由所述任意1个12端口CSI-RS资源之外的3个4端口CSI-RS资源聚合而成。Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any one of the two 12-port CSI-RS resources is used. The 12-port CSI-RS resource is obtained by subtracting one 4-port CSI-RS resource from the one 16-port CSI-RS resource, and any one of the two 12-port CSI-RS resources except the any one of the 12-port CSI-RS resources One 12-port CSI-RS resource other than the RS resource is aggregated by three 4-port CSI-RS resources other than the arbitrary one-port 12-port CSI-RS resource.
示例性的,这里以图15所示的6种4端口CSI-RS资源的配置图案为例,给出2种12端口CSI-RS资源的配置图案分别如图19和图20。Exemplarily, the configuration pattern of the six 4-port CSI-RS resources shown in FIG. 15 is taken as an example, and the configuration patterns of the two types of 12-port CSI-RS resources are respectively shown in FIG. 19 and FIG.
其中,在图19中,第1个12端口CSI-RS资源由第4个4端口CSI-RS资源、第1个4端口CSI-RS资源和第5个4端口CSI-RS资源聚合而成,其中,第4个4端口CSI-RS资源、第1个4端口CSI-RS资源聚合成1 个8端口CSI-RS资源;第2个12端口CSI-RS资源由第6个4端口CSI-RS资源、第3个4端口CSI-RS资源和第2个4端口CSI-RS资源聚合而成,其中,第6个4端口CSI-RS资源、第3个4端口CSI-RS资源聚合成1个8端口CSI-RS资源。In FIG. 19, the first 12-port CSI-RS resource is aggregated by the fourth 4-port CSI-RS resource, the first 4-port CSI-RS resource, and the fifth 4-port CSI-RS resource. The fourth 4-port CSI-RS resource and the first 4-port CSI-RS resource are aggregated into one. 8-port CSI-RS resources; the second 12-port CSI-RS resource is aggregated by the 6th 4-port CSI-RS resource, the 3rd 4-port CSI-RS resource, and the second 4-port CSI-RS resource The sixth 4-port CSI-RS resource and the third 4-port CSI-RS resource are aggregated into one 8-port CSI-RS resource.
若(a,b,c)代表了由第a个,第b个和第c个4端口CSI-RS配置聚合成的1个12端口CSI-RS配置,在端口编号顺序上先编第a个4端口CSI-RS资源,再编第b个4端口CSI-RS资源,然后编第c个4端口CSI-RS资源,则图19所示的配置图案可以记为(4,1,5)和(6,3,2)。If (a, b, c) represents a 12-port CSI-RS configuration that is aggregated by the a, b, and c 4-port CSI-RS configurations, the a-th is the first in the port number order. 4-port CSI-RS resource, re-editing the b-th 4-port CSI-RS resource, and then coding the c-th 4-port CSI-RS resource, the configuration pattern shown in Figure 19 can be recorded as (4, 1, 5) and (6,3,2).
当然,2种12端口CSI-RS资源的配置图案的组合还可以为(4,1,3)和(5,2,6)等等,只要符合所述3个4端口CSI-RS资源中的任意2个4端口CSI-RS资源聚合成1个8端口CSI-RS资源的条件即可,本发明实施例在此不再一一列举。Of course, the combination of the configuration patterns of the two types of 12-port CSI-RS resources may also be (4, 1, 3) and (5, 2, 6), etc., as long as the three 4-port CSI-RS resources are met. The conditions for the aggregation of any two 4-port CSI-RS resources into one 8-port CSI-RS resource are not listed here.
其中,在图20中,第1个12端口CSI-RS资源由图17所示的第1个16端口CSI-RS资源减去最后1个4端口CSI-RS资源而得,第2个12端口CSI-RS资源由剩余的3个4端口CSI-RS资源聚合而成。In FIG. 20, the first 12-port CSI-RS resource is obtained by subtracting the last 4-port CSI-RS resource from the first 16-port CSI-RS resource shown in FIG. 17, and the second 12-port is obtained. The CSI-RS resource is aggregated from the remaining three 4-port CSI-RS resources.
当然,2种12端口CSI-RS资源的配置图案的组合还可以为其它,图20仅是示例性说明,只要符合所述2个12端口CSI-RS资源中的任意1个12端口CSI-RS资源由所述1个16端口CSI-RS资源减去1个4端口CSI-RS资源而得,所述2个12端口CSI-RS资源中除所述任意1个12端口CSI-RS资源之外的1个12端口CSI-RS资源由所述任意1个12端口CSI-RS资源之外的3个4端口CSI-RS资源聚合而成的条件即可,本发明实施例在此不再一一列举。Certainly, the combination of the configuration patterns of the two types of 12-port CSI-RS resources may be other, and FIG. 20 is only an exemplary description as long as any one of the two 12-port CSI-RS resources is consistent with one of the 12-port CSI-RS resources. The resource is obtained by subtracting one 4-port CSI-RS resource from the one 16-port CSI-RS resource, and the two 12-port CSI-RS resources are not included in any one of the 12-port CSI-RS resources. The condition that the one 12-port CSI-RS resource is aggregated by the three 4-port CSI-RS resources except the any one of the 12-port CSI-RS resources may be used in the embodiment of the present invention. List.
其中,本发明实施例中,当CP类型为扩展CP时,一种可能的实现方式中:In the embodiment of the present invention, when the CP type is an extended CP, in a possible implementation manner:
若所述n端口CSI-RS资源的第n-1个端口的RE的标识记为(k,l),k表示频域索引,l表示时域索引;则当t=1,CP类型为扩展CP时,所述m个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的资源单元RE的标识相同, 包括:If the identifier of the RE of the n-1th port of the n-port CSI-RS resource is denoted as (k, l), k represents a frequency domain index, and l represents a time domain index; then when t=1, the CP type is an extension. In the case of the CP, the n-1th port of the i-th n-port CSI-RS resource and the n/2-1 of the i-th n/2 port CSI-RS resource among the m n-port CSI-RS resources The resource unit RE of each port has the same identifier. include:
当m=16,n=2时,第1个2端口CSI-RS资源至第16个2端口CSI-RS资源的第1个端口的RE的标识分别为(11,4)、(9,4)、(10,4)、(9,4)、(5,4)、(3,4)、(4,4)、(3,4)、(8,4)、(6,4)、(2,4)、(0,4)、(7,4)、(6,4)、(1,4)、(0,4),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、1、1、0、0、1、1、0、0、0、0、1、1、1、1;When m=16 and n=2, the identifiers of the first 2-port CSI-RS resource to the first port of the 16th 2-port CSI-RS resource are (11, 4), (9, 4, respectively). ), (10,4), (9,4), (5,4), (3,4), (4,4), (3,4), (8,4), (6,4), (2,4), (0,4), (7,4), (6,4), (1,4), (0,4), the RE is located in the slot number of the radio frame n s mode 2 The values after the operation are 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1;
当m=8,n=4时,第1个4端口CSI-RS资源至第8个4端口CSI-RS资源的第3个端口的RE的标识分别为(11,4)、(9,4)、(10,4)、(9,4)、(5,4)、(3,4)、(4,4)、(3,4),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、1、1、0、0、1、1;When m=8 and n=4, the identifiers of the REs of the first 4-port CSI-RS resource to the third port of the eighth 4-port CSI-RS resource are (11, 4), (9, 4, respectively). ), (10,4), (9,4), (5,4), (3,4), (4,4), (3,4), the RE is located in the slot number n of the radio frame The values after s modulo 2 operation are 0, 0, 1, 1, 0, 0, 1, 1 respectively;
当m=4,n=8时,第1个8端口CSI-RS资源至第4个8端口CSI-RS资源的第7个端口的RE的标识分别为(11,4)、(9,4)、(10,4)、(9,4),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、1、1;When m=4, n=8, the identifiers of the REs of the first 8-port CSI-RS resource to the 7th port of the 4th 8-port CSI-RS resource are (11, 4), (9, 4, respectively). , (10, 4), (9, 4), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 1, 1, respectively;
当m=2,n=16时,第1个16端口CSI-RS资源至第2个16端口CSI-RS资源的第15个端口的RE的标识分别为(11,4)、(9,4),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0。When m=2, n=16, the identifiers of the REs of the first 16-port CSI-RS resource to the 15th port of the second 16-port CSI-RS resource are (11, 4), (9, 4, respectively). The value of the RE located in the radio frame in the number n s modulo 2 operation is 0, 0.
其中,上述特殊子帧的CSI-RS配置中所述CSI-RS的RE的标识可以如表五所示。The identifier of the RE of the CSI-RS in the CSI-RS configuration of the special subframe may be as shown in Table 5.
表五Table 5
Figure PCTCN2015094063-appb-000006
Figure PCTCN2015094063-appb-000006
Figure PCTCN2015094063-appb-000007
Figure PCTCN2015094063-appb-000007
需要说明的是,上述表五中CSI-RS配置列对应的编号顺序对应了下述的端口CSI-RS资源的顺序,比如CSI配置为0的2端口CSI-RS资源即为第1个2端口CSI-RS资源,CSI配置为1的2端口CSI-RS资源即为第2个2端口CSI-RS资源,以此类推,此处就不再一一赘述。It should be noted that the number sequence corresponding to the CSI-RS configuration column in Table 5 above corresponds to the following sequence of port CSI-RS resources. For example, the 2-port CSI-RS resource with CSI configured to 0 is the first 2 ports. The CSI-RS resource, the 2-port CSI-RS resource with the CSI configured as 1 is the second 2-port CSI-RS resource, and so on, and will not be repeated here.
下面将结合表五,给出特殊子帧在CP类型为扩展CP时对应的16种2端口CSI-RS资源的配置图案、8种4端口CSI-RS资源的配置图案以及4种8端口CSI-RS资源的配置图案,分别如图21-图23所示。Table 5 below shows the configuration pattern of 16 2-port CSI-RS resources corresponding to the CP type extended CP, and the configuration pattern of 8 4-port CSI-RS resources and 4 8-port CSI- The configuration pattern of the RS resources is shown in Figure 21-23.
可选的,结合表五,所述第1个16端口CSI-RS资源和第2个16端口CSI-RS资源可通过下述配置A2、B2中的任意一种配置聚合而成:Optionally, in combination with Table 5, the first 16-port CSI-RS resource and the second 16-port CSI-RS resource may be aggregated by using any one of the following configurations A2 and B2:
配置A2:第1个16端口CSI-RS资源由第3个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第4个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成;Configuration A2: The first 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is composed of the fourth 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
配置B2:第1个16端口CSI-RS资源由第4个8端口CSI-RS资源 和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第3个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成。Configure B2: The first 16-port CSI-RS resource consists of the 4th 8-port CSI-RS resource. And the first 8-port CSI-RS resource is aggregated, and the second 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the second 8-port CSI-RS resource.
其中,配置A2和B2对应的配置图案分别如图24和图25所示。The configuration patterns corresponding to the configurations A2 and B2 are as shown in FIG. 24 and FIG. 25, respectively.
可选的,结合表五,当m=2,n=12,r=3,w=4时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,包括:Optionally, in combination with Table 5, when m=2, n=12, r=3, and w=4, each n-port CSI-RS resource in the m n-port CSI-RS resources is r w Port CSI-RS resources are aggregated, including:
所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述3个4端口CSI-RS资源中的任意2个4端口CSI-RS资源聚合成1个8端口CSI-RS资源;或者,Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 4-port CSI-RS resources are used. 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or,
所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述2个12端口CSI-RS资源分别由所述2个16端口CSI-RS资源减去1个4端口CSI-RS资源而得。Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein the two 12-port CSI-RS resources are respectively A 16-port CSI-RS resource is subtracted from a 4-port CSI-RS resource.
示例性的,这里以图22所示的8种4端口CSI-RS资源的配置图案为例,给出2种12端口CSI-RS资源的配置图案分别如图26和图27。Exemplarily, the configuration pattern of the eight 4-port CSI-RS resources shown in FIG. 22 is taken as an example, and the configuration patterns of the two types of 12-port CSI-RS resources are respectively shown in FIG. 26 and FIG.
其中,在图26中,第1个12端口CSI-RS资源由第6个4端口CSI-RS资源、第2个4端口CSI-RS资源和第1个4端口CSI-RS资源聚合而成,其中,第6个4端口CSI-RS资源、第2个4端口CSI-RS资源聚合成1个8端口CSI-RS资源;第2个12端口CSI-RS资源由第8个4端口CSI-RS资源、第4个4端口CSI-RS资源和第3个4端口CSI-RS资源聚合而成,其中,第8个4端口CSI-RS资源、第4个4端口CSI-RS资源聚合成1个8端口CSI-RS资源。In FIG. 26, the first 12-port CSI-RS resource is aggregated by the sixth 4-port CSI-RS resource, the second 4-port CSI-RS resource, and the first 4-port CSI-RS resource. The sixth 4-port CSI-RS resource and the second 4-port CSI-RS resource are aggregated into one 8-port CSI-RS resource; the second 12-port CSI-RS resource is configured by the 8th 4-port CSI-RS The resource, the fourth 4-port CSI-RS resource, and the third 4-port CSI-RS resource are aggregated, wherein the eighth 4-port CSI-RS resource and the fourth 4-port CSI-RS resource are aggregated into one. 8-port CSI-RS resource.
若(a,b,c)代表了由第a个,第b个和第c个4端口CSI-RS配置聚合成的1个12端口CSI-RS配置,在端口编号顺序上先编第a个4端口CSI-RS资源,再编第b个4端口CSI-RS资源,然后编第c个4端口CSI-RS资源,则图26所示的配置图案可以记为(6,2,1)和(8,4,3)。If (a, b, c) represents a 12-port CSI-RS configuration that is aggregated by the a, b, and c 4-port CSI-RS configurations, the a-th is the first in the port number order. 4-port CSI-RS resource, re-editing the b-th 4-port CSI-RS resource, and then coding the c-th 4-port CSI-RS resource, the configuration pattern shown in Figure 26 can be recorded as (6, 2, 1) and (8, 4, 3).
当然,2种12端口CSI-RS资源的配置图案的组合还可以为(5,1,2)和(7,3,4)等等,只要符合所述3个4端口CSI-RS资源中的任意2个4端口CSI-RS资源聚合成1个8端口CSI-RS资源的条件即可,本发 明实施例在此不再一一列举。Of course, the combination of the configuration patterns of the two types of 12-port CSI-RS resources may also be (5, 1, 2) and (7, 3, 4), etc., as long as the three 4-port CSI-RS resources are met. The condition that any two 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource can be used. The embodiments are not enumerated here.
其中,在图27中,第1个12端口CSI-RS资源由图24所示的第1个16端口CSI-RS资源减去最后1个4端口CSI-RS资源而得,第2个12端口CSI-RS资源由第2个16端口CSI-RS资源减去最后1个4端口CSI-RS资源而得。In FIG. 27, the first 12-port CSI-RS resource is obtained by subtracting the last 4-port CSI-RS resource from the first 16-port CSI-RS resource shown in FIG. 24, and the second 12-port. The CSI-RS resource is obtained by subtracting the last 4-port CSI-RS resource from the second 16-port CSI-RS resource.
当然,2种12端口CSI-RS资源的配置图案的组合还可以为其它,图20仅是示例性说明,只要符合所述2个12端口CSI-RS资源分别由所述2个16端口CSI-RS资源减去1个4端口CSI-RS资源而得的条件即可,本发明实施例在此不再一一列举。Certainly, the combination of the configuration patterns of the two types of 12-port CSI-RS resources may also be other. FIG. 20 is only an exemplary description, as long as the two 12-port CSI-RS resources are met by the two 16-port CSI- The conditions of the RS resource minus one 4-port CSI-RS resource may be used, and the embodiments of the present invention are not enumerated here.
需要说明的是,本发明实施例中,当m=2,n=16,r=2,w=4时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,还可以包括:It should be noted that, in the embodiment of the present invention, when m=2, n=16, r=2, and w=4, each n-port CSI-RS resource in the m n-port CSI-RS resources is configured by The r-port CSI-RS resources are aggregated, and may also include:
所述2个16端口CSI-RS资源中的每个16端口CSI-RS资源可通过下述配置A、B中的任意一种配置聚合而成:The 16-port CSI-RS resource of the two 16-port CSI-RS resources can be aggregated by any one of the following configurations A and B:
配置A:第1个16端口CSI-RS资源由第1个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第3个8端口CSI-RS资源和第4个8端口CSI-RS资源聚合而成;Configuration A: The first 16-port CSI-RS resource is aggregated by the first 8-port CSI-RS resource and the second 8-port CSI-RS resource, and the second 16-port CSI-RS resource is composed of the third 8 The port CSI-RS resource is aggregated with the fourth 8-port CSI-RS resource;
配置B:第1个16端口CSI-RS资源由第1个8端口CSI-RS资源和第i个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第2个8端口CSI-RS资源和第j个8端口CSI-RS资源聚合而成,i=3或4,j=3或4,i≠j。Configuration B: The first 16-port CSI-RS resource is aggregated by the first 8-port CSI-RS resource and the ith 8-port CSI-RS resource, and the second 16-port CSI-RS resource is composed of the second 8 The port CSI-RS resource and the j-th 8-port CSI-RS resource are aggregated, i=3 or 4, j=3 or 4, i≠j.
本发明实施例对上述实现方式不作具体限定。The foregoing implementation manners are not specifically limited in the embodiment of the present invention.
其中,本发明实施例中,当CP类型为扩展CP时,另一种可能的实现方式中:In the embodiment of the present invention, when the CP type is an extended CP, another possible implementation manner is as follows:
若所述n端口CSI-RS资源的第n-1个端口的RE的标识记为(k,l),k表示频域索引,l表示时域索引;则当t=1,CP类型为扩展CP时,所述m个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的资源单元RE的标识相同,包括:If the identifier of the RE of the n-1th port of the n-port CSI-RS resource is denoted as (k, l), k represents a frequency domain index, and l represents a time domain index; then when t=1, the CP type is an extension. In the case of the CP, the n-1th port of the i-th n-port CSI-RS resource and the n/2-1 of the i-th n/2 port CSI-RS resource among the m n-port CSI-RS resources The resource unit REs of the ports have the same identifier, including:
当m=12,n=2时,第1个2端口CSI-RS资源至第12个2端口CSI-RS 资源的第1个端口的RE分别为(11,1)、(10,1)、(9,1)、(5,1)、(4,1)、(3,1)、(8,1)、(7,1)、(6,1)、(2,1)、(1,1)、(0,1),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为1、1、1、1、1、1、1、1、1、1、1、1;When m=12 and n=2, the REs of the first 2-port CSI-RS resource to the first port of the 12th 2-port CSI-RS resource are (11, 1), (10, 1), respectively. (9,1), (5,1), (4,1), (3,1), (8,1), (7,1), (6,1), (2,1), (1 , 1), (0, 1), the RE is located in the radio frame, the number of the slot n s modulo 2 operation, the values are 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, respectively 1,1;
当m=6,n=4时,第1个4端口CSI-RS资源至第6个4端口CSI-RS资源的第3个端口的RE分别为(11,1)、(10,1)、(9,1)、(5,1)、(4,1)、(3,1),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为1、1、1、1、1、1;When m=6 and n=4, the REs of the first 4-port CSI-RS resource to the third port of the sixth 4-port CSI-RS resource are (11, 1), (10, 1), respectively. (9,1), (5,1), (4,1), (3,1), the RE is located in the radio frame, the number of the slot n s modulo 2 operation, the values are 1, 1, 1, respectively 1, 1, 1, 1;
当m=3,n=8时,第1个8端口CSI-RS资源至第5个8端口CSI-RS资源的第7个端口的RE分别为(11,1)、(10,1)、(9,1),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为1、1、1;When m=3, n=8, the REs of the first 8-port CSI-RS resource to the 7th port of the 5th 8-port CSI-RS resource are (11, 1), (10, 1), respectively. (9, 1), the RE is located in the radio frame, the number of the slot n s modulo 2 operation after the value is 1, 1, 1;
当m=1,n=16时,第1个16端口CSI-RS资源的RE为(11,1),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为1。When m=1, n=16, the RE of the first 16-port CSI-RS resource is (11, 1), and the RE is located in the radio frame, the number of the slot is n s , and the value after the modulo 2 operation is 1 respectively. .
其中,上述特殊子帧的CSI-RS配置中所述CSI-RS的RE的标识可以如表六所示。The identifier of the RE of the CSI-RS in the CSI-RS configuration of the special subframe may be as shown in Table 6.
表六Table 6
Figure PCTCN2015094063-appb-000008
Figure PCTCN2015094063-appb-000008
Figure PCTCN2015094063-appb-000009
Figure PCTCN2015094063-appb-000009
需要说明的是,上述表六中CSI-RS配置列对应的编号顺序对应了下述的端口CSI-RS资源的顺序,比如CSI配置为16的2端口CSI-RS资源即为第1个2端口CSI-RS资源,CSI配置为17的2端口CSI-RS资源即为第2个2端口CSI-RS资源,以此类推,此处就不再一一赘述。It should be noted that the number order corresponding to the CSI-RS configuration column in Table 6 corresponds to the following sequence of port CSI-RS resources. For example, the 2-port CSI-RS resource with the CSI configuration of 16 is the first 2 ports. For a CSI-RS resource, a 2-port CSI-RS resource with a CSI configured at 17 is the second 2-port CSI-RS resource, and so on, and will not be repeated here.
下面将结合表六,给出特殊子帧在CP类型为扩展CP时对应的12种2端口CSI-RS资源的配置图案、6种4端口CSI-RS资源的配置图案以及3种8端口CSI-RS资源的配置图案,分别如图28-图30所示。Table 6 below shows the configuration pattern of 12 2-port CSI-RS resources corresponding to the CP type extended CP, and the configuration pattern of 6 4-port CSI-RS resources and three 8-port CSI- The configuration pattern of the RS resources is shown in Figure 28-30.
可选的,结合表六,所述第1个16端口CSI-RS资源可通过下述配置E2、F2中的任意一种配置聚合而成:Optionally, in combination with Table 6, the first 16-port CSI-RS resource may be aggregated by using any one of the following configurations E2 and F2:
配置E2:第1个16端口CSI-RS资源由第2个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成;Configure E2: the first 16-port CSI-RS resource is aggregated by the second 8-port CSI-RS resource and the first 8-port CSI-RS resource;
配置F2:第1个16端口CSI-RS资源由第3个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成。Configuration F2: The first 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the first 8-port CSI-RS resource.
其中,配置E2和F2对应的配置图案分别如图31和图32所示。The configuration patterns corresponding to the configurations E2 and F2 are respectively shown in FIG. 31 and FIG.
需要说明的是,在表六中,16端口CSI-RS资源由第15个端口的RE位置进行指示,当然,16端口CSI-RS资源还可以通过((10,1),(11,1))的方式或((9,1),(11,1))的方式进行指示,其中,(10,1)或(9,1)对应了端口6(即第7个端口)的RE的位置,(11,1)对应了端口14(即第15个端口)的RE的位置,本发明实施例对CSI-RS资源的指示方法不作具体限定。It should be noted that, in Table 6, the 16-port CSI-RS resource is indicated by the RE position of the 15th port. Of course, the 16-port CSI-RS resource can also pass ((10, 1), (11, 1) In the manner of (or (9, 1), (11, 1)), where (10, 1) or (9, 1) corresponds to the location of the RE of port 6 (ie, the 7th port) The (11, 1) corresponds to the location of the RE of the port 14 (ie, the 15th port). The method for indicating the CSI-RS resource in the embodiment of the present invention is not specifically limited.
当然,其他端口数的CSI-RS资源也可以通过上述类似的方法进行指示,本发明实施例对此不作具体限定。Certainly, the CSI-RS resources of the other port numbers may also be indicated by the foregoing method, which is not specifically limited in this embodiment of the present invention.
可选的,结合表六,当m=2,n=12,r=3,w=4时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合 而成,包括:Optionally, in combination with Table 6, when m=2, n=12, r=3, and w=4, each n-port CSI-RS resource in the m n-port CSI-RS resources is r w Port CSI-RS resource aggregation Made up, including:
所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述3个4端口CSI-RS资源中的任意2个4端口CSI-RS资源聚合成1个8端口CSI-RS资源;或者,Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 4-port CSI-RS resources are used. 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or,
所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述2个12端口CSI-RS资源中的任意1个12端口CSI-RS资源由所述1个16端口CSI-RS资源减去1个4端口CSI-RS资源而得,所述2个12端口CSI-RS资源中除所述任意1个12端口CSI-RS资源之外的1个12端口CSI-RS资源由所述任意1个12端口CSI-RS资源之外的3个4端口CSI-RS资源聚合而成。Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any one of the two 12-port CSI-RS resources is used. The 12-port CSI-RS resource is obtained by subtracting one 4-port CSI-RS resource from the one 16-port CSI-RS resource, and any one of the two 12-port CSI-RS resources except the any one of the 12-port CSI-RS resources One 12-port CSI-RS resource other than the RS resource is aggregated by three 4-port CSI-RS resources other than the arbitrary one-port 12-port CSI-RS resource.
示例性的,这里以图29所示的6种4端口CSI-RS资源的配置图案为例,给出2种12端口CSI-RS资源的配置图案分别如图33和图34。Exemplarily, the configuration pattern of the six 4-port CSI-RS resources shown in FIG. 29 is taken as an example, and the configuration patterns of the two types of 12-port CSI-RS resources are respectively shown in FIG. 33 and FIG.
其中,在图33中,第1个12端口CSI-RS资源由第5个4端口CSI-RS资源、第2个4端口CSI-RS资源和第4个4端口CSI-RS资源聚合而成,其中,第5个4端口CSI-RS资源、第2个4端口CSI-RS资源聚合成1个8端口CSI-RS资源;第2个12端口CSI-RS资源由第6个4端口CSI-RS资源、第3个4端口CSI-RS资源和第1个4端口CSI-RS资源聚合而成,其中,第6个4端口CSI-RS资源、第3个4端口CSI-RS资源聚合成1个8端口CSI-RS资源。In FIG. 33, the first 12-port CSI-RS resource is aggregated by the fifth 4-port CSI-RS resource, the second 4-port CSI-RS resource, and the fourth 4-port CSI-RS resource. The fifth 4-port CSI-RS resource and the second 4-port CSI-RS resource are aggregated into one 8-port CSI-RS resource; the second 12-port CSI-RS resource is configured by the sixth 4-port CSI-RS. The resource, the third 4-port CSI-RS resource, and the first 4-port CSI-RS resource are aggregated, wherein the sixth 4-port CSI-RS resource and the third 4-port CSI-RS resource are aggregated into one. 8-port CSI-RS resource.
若(a,b,c)代表了由第a个,第b个和第c个4端口CSI-RS配置聚合成的1个12端口CSI-RS配置,在端口编号顺序上先编第a个4端口CSI-RS资源,再编第b个4端口CSI-RS资源,然后编第c个4端口CSI-RS资源,则图33所示的配置图案可以记为(5,2,4)和(6,3,1)。If (a, b, c) represents a 12-port CSI-RS configuration that is aggregated by the a, b, and c 4-port CSI-RS configurations, the a-th is the first in the port number order. 4-port CSI-RS resource, re-editing the b-th 4-port CSI-RS resource, and then coding the c-th 4-port CSI-RS resource, the configuration pattern shown in Figure 33 can be recorded as (5, 2, 4) and (6,3,1).
当然,2种12端口CSI-RS资源的配置图案的组合还可以为(5,2,1)和(6,3,4)等等,只要符合所述3个4端口CSI-RS资源中的任意2个4端口CSI-RS资源聚合成1个8端口CSI-RS资源的条件即可,本发明实施例在此不再一一列举。Of course, the combination of the configuration patterns of the two types of 12-port CSI-RS resources may also be (5, 2, 1) and (6, 3, 4), etc., as long as the three 4-port CSI-RS resources are met. The conditions for the aggregation of any two 4-port CSI-RS resources into one 8-port CSI-RS resource are not listed here.
其中,在图34中,第1个12端口CSI-RS资源由图31所示的第1 个16端口CSI-RS资源减去最后1个4端口CSI-RS资源而得,第2个12端口CSI-RS资源由剩余的3个4端口CSI-RS资源聚合而成。In FIG. 34, the first 12-port CSI-RS resource is the first shown in FIG. The 16-port CSI-RS resource is obtained by subtracting the last 4-port CSI-RS resource, and the second 12-port CSI-RS resource is aggregated from the remaining three 4-port CSI-RS resources.
当然,2种12端口CSI-RS资源的配置图案的组合还可以为其它,图20仅是示例性说明,只要符合所述2个12端口CSI-RS资源中的任意1个12端口CSI-RS资源由所述1个16端口CSI-RS资源减去1个4端口CSI-RS资源而得,所述2个12端口CSI-RS资源中除所述任意1个12端口CSI-RS资源之外的1个12端口CSI-RS资源由所述任意1个12端口CSI-RS资源之外的3个4端口CSI-RS资源聚合而成的条件即可,本发明实施例在此不再一一列举。Certainly, the combination of the configuration patterns of the two types of 12-port CSI-RS resources may be other, and FIG. 20 is only an exemplary description as long as any one of the two 12-port CSI-RS resources is consistent with one of the 12-port CSI-RS resources. The resource is obtained by subtracting one 4-port CSI-RS resource from the one 16-port CSI-RS resource, and the two 12-port CSI-RS resources are not included in any one of the 12-port CSI-RS resources. The condition that the one 12-port CSI-RS resource is aggregated by the three 4-port CSI-RS resources except the any one of the 12-port CSI-RS resources may be used in the embodiment of the present invention. List.
可选地,12端口CSI-RS资源可以由6个2端口CSI-RS资源聚合而成,其中,组成12端口的6个2端口CSI-RS资源由所述组成12端口的3个4端口CSI-RS资源拆解得到,因为所述每个4端口CSI-RS资源由两个2端口CSI-RS资源聚合得到。因此这里不再对6个2端口CSI-RS资源聚合得到12端口的情况进行一一列举。Optionally, the 12-port CSI-RS resource may be aggregated by six 2-port CSI-RS resources, wherein the six 2-port CSI-RS resources constituting the 12-port are composed of the three 4-port CSIs that constitute the 12-port. - RS resource disassembly is obtained because each of the 4-port CSI-RS resources is aggregated by two 2-port CSI-RS resources. Therefore, the case where six 2-port CSI-RS resource aggregations get 12 ports is not enumerated here.
优选的,本发明实施例中,还可以基于多个PRB对(即t≥2)进行特殊子帧的CSI-RS配置。具体的,当t=2,n=16时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源的前n/2个端口组成一种n/2端口CSI-RS资源,所述m个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的资源单元RE的标识相同,包括:Preferably, in the embodiment of the present invention, the CSI-RS configuration of the special subframe may also be performed based on multiple PRB pairs (ie, t≥2). Specifically, when t=2, n=16, the first n/2 ports of each n-port CSI-RS resource of the m n-port CSI-RS resources form an n/2 port CSI-RS The n-1th port of the i-th n-port CSI-RS resource and the n/2-1th of the i-th n/2 port CSI-RS resource of the m n-port CSI-RS resources The resource element RE of the port has the same identifier, including:
所述第i个16端口CSI-RS资源由第一个PRB对中的第i个8端口CSI-RS资源和第二个PRB对中的第i个8端口CSI-RS资源聚合而成;The i-th 16-port CSI-RS resource is aggregated by an i-th 8-port CSI-RS resource in a first PRB pair and an i-th 8-port CSI-RS resource in a second PRB pair;
或者,所述第i个16端口CSI-RS资源由第一个PRB对中的第i个和第i+P个4端口CSI-RS资源、以及第二个PRB对中的第i个和第i+P个4端口CSI-RS资源聚合而成,P为每个PRB对中8端口CSI-RS资源的数目;Or the ith 16-port CSI-RS resource is the ith and i+P 4-port CSI-RS resources in the first PRB pair, and the ith and the second in the second PRB pair. i+P 4-port CSI-RS resources are aggregated, and P is the number of 8-port CSI-RS resources in each PRB pair;
或者,所述第i个16端口CSI-RS资源由第一个PRB对中的第i个,第i+P个,第i+Q和第i+P+Q个4端口CSI-RS资源、以及第二个PRB对中的第i个,第i+P个,第i+Q,和第i+P+Q个4端口CSI-RS资源聚 合而成,P为每个PRB对中8端口CSI-RS资源的数目,Q为每个PRB对中4端口CSI-RS资源的数目。Or the i-th 16-port CSI-RS resource is the i-th, i-th, i+th, and i-th+P+Q 4-port CSI-RS resources in the first PRB pair, And the i-th, i+P, i+Q, and i+P+Q 4-port CSI-RS resources in the second PRB pair In combination, P is the number of 8-port CSI-RS resources in each PRB pair, and Q is the number of 4-port CSI-RS resources in each PRB pair.
示例性的,图35为2个PRB对下3个16端口CSI-RS资源的配置图案,左侧为每个16端口CSI-RS资源的前8个端口的资源位置和端口编号示意,右侧为每个16端口CSI-RS资源的后8个端口的资源位置和端口编号示意。Exemplarily, FIG. 35 is a configuration pattern of three 16-port CSI-RS resources of two PRB pairs, and a left side is a resource position and a port number of the first eight ports of each 16-port CSI-RS resource, and the right side Indicates the resource location and port number for the last 8 ports of each 16-port CSI-RS resource.
本发明实施例提供了在特殊子帧中配置CSI-RS的相关解决方案,基于本发明实施例提供的CSI-RS配置的方法,可以在特殊子帧中配置CSI-RS。The embodiment of the present invention provides a related solution for configuring a CSI-RS in a special subframe. According to the CSI-RS configuration method provided by the embodiment of the present invention, a CSI-RS may be configured in a special subframe.
需要说明的是,图3-35所示的CSI-RS资源的配置图案仅是示例性说明,当然还存在其它可能的CSI-RS资源的配置图案,本发明实施例对此不作具体限定。其中,在图3-35所示的CSI-RS资源的配置图案中,正常CP类型下,以11个OFDM符号为例进行说明,扩展CP类型下以10个OFDM符号为例进行说明,当然,在正常CP类型下,还可以在9个、10个或12个OFDM符号上进行CSI-RS资源的配置;在扩展CP类型下,还可以在8个或9个OFDM符号上进行CSI-RS资源的配置,本发明实施例对此不作具体限定。It should be noted that the configuration pattern of the CSI-RS resources shown in FIG. 3-35 is only an exemplary description, and of course, there are other possible configuration patterns of CSI-RS resources, which are not specifically limited in this embodiment of the present invention. In the configuration pattern of the CSI-RS resources shown in FIG. 3-35, 11 OFDM symbols are used as an example for the normal CP type, and 10 OFDM symbols are used as an example for the extended CP type. In the normal CP type, CSI-RS resources can also be configured on 9, 10 or 12 OFDM symbols; in the extended CP type, CSI-RS resources can also be performed on 8 or 9 OFDM symbols. The configuration of the present invention is not specifically limited thereto.
需要说明的是,上述CSI配置的方法不仅仅适用于特殊子帧的配置,还可以适用于下行子帧的配置,本发明实施例对此不作具体限定。It should be noted that the foregoing method for configuring the CSI is not only applicable to the configuration of the special subframe, but also applicable to the configuration of the downlink subframe, which is not specifically limited in this embodiment of the present invention.
基于上述通信系统,本发明实施例还提供一种CSI配置的方法,如图36所示,包括:Based on the above communication system, the embodiment of the present invention further provides a method for configuring a CSI, as shown in FIG. 36, including:
S3601、基站确定下行传输子帧的CSI-RS配置,所述CSI-RS配置包括所述CSI-RS的RE的标识。S3601: The base station determines a CSI-RS configuration of a downlink transmission subframe, where the CSI-RS configuration includes an identifier of an RE of the CSI-RS.
其中,每t个PRB对中包含m个n端口CSI-RS资源,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由p个q端口CSI-RS资源聚合而成,当m≥2时,存在至少两个n端口CSI-RS资源中的s个q端口CSI-RS资源相同,所述下行传输子帧包括特殊子帧或下行子帧,1≤s<p,n>q,m、n、t、p、q、s均为正整数;Each of the m PRB pairs includes m n-port CSI-RS resources, and each of the m n-port CSI-RS resources is aggregated by p q-port CSI-RS resources. When m≥2, there are s q-port CSI-RS resources in at least two n-port CSI-RS resources, and the downlink transmission subframe includes a special subframe or a downlink subframe, 1≤s<p, n>q, m, n, t, p, q, s are all positive integers;
S3602、基站向UE发送所述CSI-RS配置的指示信息,所述CSI-RS 配置的指示信息用于指示所述下行传输子帧的CSI-RS配置。S3602: The base station sends, to the UE, indication information of the CSI-RS configuration, where the CSI-RS The configured indication information is used to indicate a CSI-RS configuration of the downlink transmission subframe.
S3603、UE接收基站发送的所述CSI-RS配置的指示信息。S3603: The UE receives the indication information of the CSI-RS configuration sent by the base station.
S3604、UE根据所述CSI-RS配置的指示信息,确定所述下行传输子帧的CSI-RS配置。S3604. The UE determines, according to the indication information of the CSI-RS configuration, a CSI-RS configuration of the downlink transmission subframe.
即,本发明实施例中,可以采用多个q端口CSI-RS资源部分重叠的聚合方式进行下行传输子帧的CSI-RS配置。That is, in the embodiment of the present invention, the CSI-RS configuration of the downlink transmission subframe may be performed by using an aggregation manner in which a plurality of q-port CSI-RS resources are partially overlapped.
以一个PRB对内的16端口CSI-RS配置为例,图16所示的1个PRB对内的3个8端口CSI-RS资源配置可部分资源重叠地聚合形成2个16端口的CSI-RS资源配置,如第1个16端口的CSI-RS资源配置由第1个8端口的CSI-RS资源配置加第2个8端口的CSI-RS资源配置聚合构成,而第2个16端口的CSI-RS资源配置由第2个8端口的CSI-RS资源配置加第3个8端口的CSI-RS资源配置聚合构成。其中,第2个8端口的CSI-RS资源配置重复出现在第1个16端口的CSI-RS资源配置和第2个16端口的CSI-RS资源配置中。进一步地,可对重复配置的8端口CSI-RS资源进行不同16端口CSI-RS资源配置的加扰,从而使得此重复使用的资源可用来进行多次更多天线端口数的CSI-RS资源的聚合。Taking a 16-port CSI-RS configuration in a PRB pair as an example, the three 8-port CSI-RS resource configurations in one PRB pair shown in Figure 16 can be partially aggregated to form two 16-port CSI-RSs. Resource configuration, such as the first 16-port CSI-RS resource configuration consists of the first 8-port CSI-RS resource configuration plus the second 8-port CSI-RS resource configuration aggregation, and the second 16-port CSI configuration. The -RS resource configuration consists of the second 8-port CSI-RS resource configuration plus the third 8-port CSI-RS resource configuration aggregation. The CSI-RS resource configuration of the second 8-port is repeatedly displayed in the CSI-RS resource configuration of the first 16-port and the CSI-RS resource configuration of the second 16-port. Further, the repeatedly configured 8-port CSI-RS resources may be scrambled with different 16-port CSI-RS resource configurations, so that the reused resources may be used to perform CSI-RS resources of multiple antenna ports multiple times. polymerization.
当16端口CSI-RS资源由8个2端口CSI-RS资源聚合得到,而1个PRB对内的2端口CSI-RS资源数目为12时,按照该方法可能的聚合方式可以为:第1个16端口的CSI-RS资源配置由前8个2端口的CSI-RS资源配置聚合构成,而第2个16端口的CSI-RS资源配置由后8个2端口的CSI-RS资源配置聚合构成。其中,第5,6,7,8个2端口CSI-RS资源在2个16端口的CSI-RS资源配置中重复出现。When the 16-port CSI-RS resource is aggregated by eight 2-port CSI-RS resources, and the number of 2-port CSI-RS resources in one PRB pair is 12, the possible aggregation mode according to this method may be: 1st The 16-port CSI-RS resource configuration is composed of the first eight 2-port CSI-RS resource configuration aggregations, and the second 16-port CSI-RS resource configuration is composed of the last eight 2-port CSI-RS resource configuration aggregations. The 5th, 6th, 7th, and 8th 2-port CSI-RS resources are repeated in the configuration of two 16-port CSI-RS resources.
本发明实施例提供了在下行传输子帧中配置CSI-RS的相关解决方案,基于本发明实施例提供的CSI-RS配置的方法,可以在特殊子帧中配置CSI-RS,也可以在天线端口数大于8时在下行子帧中配置CSI-RS,本发明实施例对此不作具体限定。The embodiment of the present invention provides a related solution for configuring a CSI-RS in a downlink transmission subframe. The method for configuring a CSI-RS according to the embodiment of the present invention may configure a CSI-RS in a special subframe, or may be in an antenna. The CSI-RS is configured in the downlink subframe when the number of the ports is greater than 8, which is not specifically limited in this embodiment of the present invention.
本发明实施例提供一种基站370,如图37所示,所述基站370包括处理单元3701和发送单元3702。The embodiment of the present invention provides a base station 370. As shown in FIG. 37, the base station 370 includes a processing unit 3701 and a sending unit 3702.
所述处理单元3701,用于确定特殊子帧的CSI-RS配置,所述CSI-RS 配置包括所述CSI-RS的RE的标识,其中,每t个PRB对中包含m个n端口CSI-RS资源,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,n=r×w,t、m、n、r、w均为正整数。The processing unit 3701 is configured to determine a CSI-RS configuration of a special subframe, where the CSI-RS Configuring an identifier of the RE including the CSI-RS, where each n PRB pairs includes m n-port CSI-RS resources, and each n-port CSI-RS resource of the m n-port CSI-RS resources It is composed of r w port CSI-RS resources, n=r×w, and t, m, n, r, and w are all positive integers.
所述发送单元3702,用于向UE发送所述CSI-RS配置的指示信息,所述CSI-RS配置的指示信息用于指示所述特殊子帧的CSI-RS配置。The sending unit 3702 is configured to send the indication information of the CSI-RS configuration to the UE, where the indication information of the CSI-RS configuration is used to indicate a CSI-RS configuration of the special subframe.
需要说明的是,本实施例中的发送单元3702可以为基站370上具备发射功能的接口电路,如发射机;处理单元3701可以为单独设立的处理器,也可以集成在基站370的某一个处理器中实现,此外,也可以以程序代码的形式存储于基站370的存储器中,由基站370的某一个处理器调用并执行以上处理单元3701的功能。这里所述的处理器可以是一个中央处理器(英文:Central Processing Unit,简称:CPU),或者是特定集成电路(英文:Application Specific Integrated Circuit,简称:ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。It should be noted that the sending unit 3702 in this embodiment may be an interface circuit having a transmitting function on the base station 370, such as a transmitter; the processing unit 3701 may be a separately set processor, or may be integrated in a certain processing of the base station 370. In addition, it may be stored in the memory of the base station 370 in the form of program code, and the function of the above processing unit 3701 is called and executed by one of the processors of the base station 370. The processor described herein may be a central processing unit (English: Central Processing Unit, CPU for short), or an application specific integrated circuit (ASIC), or configured to implement the present invention. One or more integrated circuits of an embodiment.
具体的,通过本发明实施例提供的基站370进行CSI-RS配置的方法以及各种配置图案可参考上述方法实施例,本发明实施例在此不再赘述。For example, the method for performing the CSI-RS configuration and the various configuration patterns of the base station 370 provided by the embodiment of the present invention may be referred to the foregoing method embodiments, and details are not described herein again.
本发明实施例提供了在特殊子帧中配置CSI-RS的相关解决方案,基于本发明实施例提供的基站,可以在特殊子帧中配置CSI-RS。The embodiment of the present invention provides a related solution for configuring a CSI-RS in a special subframe. The base station according to the embodiment of the present invention may configure a CSI-RS in a special subframe.
本发明实施例提供一种UE380,如图38所示,所述UE380包括接收单元3801和处理单元3802。The embodiment of the present invention provides a UE 380. As shown in FIG. 38, the UE 380 includes a receiving unit 3801 and a processing unit 3802.
所述接收单元3801,用于接收基站发送的CSI-RS配置的指示信息,所述CSI-RS配置的指示信息用于指示特殊子帧的CSI-RS配置,其中,每t个物理资源块PRB对中包含m个n端口CSI-RS资源,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,n=r×w,t、m、n、r、w均为正整数。The receiving unit 3801 is configured to receive indication information of a CSI-RS configuration sent by the base station, where the indication information of the CSI-RS configuration is used to indicate a CSI-RS configuration of a special subframe, where each physical resource block PRB The pair includes m n-port CSI-RS resources, and each n-port CSI-RS resource of the m n-port CSI-RS resources is aggregated by r w-port CSI-RS resources, n=r×w , t, m, n, r, w are all positive integers.
所述处理单元3802,用于根据所述CSI-RS配置的指示信息,确定所述特殊子帧的CSI-RS配置。The processing unit 3802 is configured to determine a CSI-RS configuration of the special subframe according to the indication information of the CSI-RS configuration.
需要说明的是,本实施例中的接收单元3801可以为UE380上具备接收功能的接口电路,如接收机;处理单元3802可以为单独设立的处理器, 也可以集成在基站的某一个处理器中实现,此外,也可以以程序代码的形式存储于UE380的存储器中,由UE380的某一个处理器调用并执行以上处理单元3802的功能。这里所述的处理器可以是一个CPU,或者是ASIC,或者是被配置成实施本发明实施例的一个或多个集成电路。It should be noted that the receiving unit 3801 in this embodiment may be an interface circuit having a receiving function on the UE 380, such as a receiver; the processing unit 3802 may be a separately set processor. It can also be implemented in a certain processor of the base station. In addition, it can also be stored in the memory of the UE 380 in the form of program code, and the function of the above processing unit 3802 can be called and executed by a certain processor of the UE 380. The processor described herein can be a CPU, or an ASIC, or one or more integrated circuits configured to implement embodiments of the present invention.
具体的,通过本发明实施例提供的UE380进行CSI-RS配置的方法以及各种配置图案可参考上述方法实施例,本发明实施例在此不再赘述。For example, the method for performing CSI-RS configuration and the various configuration patterns of the UE 380 provided by the embodiment of the present invention may be referred to the foregoing method embodiments, and details are not described herein again.
本发明实施例提供了在特殊子帧中配置CSI-RS的相关解决方案,基于本发明实施例提供的UE,可以在特殊子帧中配置CSI-RS。The embodiment of the present invention provides a related solution for configuring a CSI-RS in a special subframe. The UE provided by the embodiment of the present invention may configure a CSI-RS in a special subframe.
本发明实施例还提供一种基站370,如图37所示,所述基站370包括:处理单元3701和发送单元3702。The embodiment of the present invention further provides a base station 370. As shown in FIG. 37, the base station 370 includes: a processing unit 3701 and a sending unit 3702.
所述处理单元3701,用于确定下行传输子帧的CSI-RS配置,所述CSI-RS配置包括所述CSI-RS的RE的标识,其中,每t个PRB对中包含m个n端口CSI-RS资源,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由p个q端口CSI-RS资源聚合而成,当m≥2时,存在至少两个n端口CSI-RS资源中的s个q端口CSI-RS资源相同,所述下行传输子帧包括特殊子帧或下行子帧,1≤S<p,n>q,m、n、t、p、q、s均为正整数。The processing unit 3701 is configured to determine a CSI-RS configuration of a downlink transmission subframe, where the CSI-RS configuration includes an identifier of an RE of the CSI-RS, where each n PRB pairs includes m n-port CSIs -RS resources, each n-port CSI-RS resource of the m n-port CSI-RS resources is aggregated by p q-port CSI-RS resources, and when m≥2, there are at least two n-port CSIs The s q-port CSI-RS resources in the RS resource are the same, and the downlink transmission subframe includes a special subframe or a downlink subframe, 1≤S<p, n>q, m, n, t, p, q, s are positive integers.
所述发送单元3702,用于向UE发送所述CSI-RS配置的指示信息,所述CSI-RS配置的指示信息用于指示所述下行传输子帧的CSI-RS配置。The sending unit 3702 is configured to send the indication information of the CSI-RS configuration to the UE, where the indication information of the CSI-RS configuration is used to indicate a CSI-RS configuration of the downlink transmission subframe.
具体的,通过本发明实施例提供的基站370进行CSI-RS配置的方法可参考上述方法实施例,本发明实施例在此不再赘述。For example, the method for performing the CSI-RS configuration by the base station 370 provided by the embodiment of the present invention may be referred to the foregoing method embodiment, and details are not described herein again.
本发明实施例提供了在下行传输子帧中配置CSI-RS的相关解决方案,基于本发明实施例提供的基站,可以在特殊子帧中配置CSI-RS,也可以在天线端口数大于8时在下行子帧中配置CSI-RS,本发明实施例对此不作具体限定。The embodiment of the present invention provides a related solution for configuring a CSI-RS in a downlink transmission subframe. The base station provided by the embodiment of the present invention may configure a CSI-RS in a special subframe, or when the number of antenna ports is greater than 8. The CSI-RS is configured in the downlink subframe, which is not specifically limited in this embodiment of the present invention.
本发明实施例还提供一种UE380,如图38所示,所述UE380包括:接收单元3801和处理单元3802。The embodiment of the present invention further provides a UE 380. As shown in FIG. 38, the UE 380 includes: a receiving unit 3801 and a processing unit 3802.
所述接收单元3801,用于接收基站发送的CSI-RS配置的指示信息,所述CSI-RS配置的指示信息用于指示下行传输子帧的CSI-RS配置,其中,每t个PRB对中包含m个n端口CSI-RS资源,所述m个n端口CSI-RS 资源中的每个n端口CSI-RS资源由p个q端口CSI-RS资源聚合而成,当m≥2时,存在至少两个n端口CSI-RS资源中的s个q端口CSI-RS资源相同,所述下行传输子帧包括特殊子帧或下行子帧,1≤s<p,n>q,m、n、t、p、q、s均为正整数。The receiving unit 3801 is configured to receive indication information of a CSI-RS configuration sent by a base station, where the indication information of the CSI-RS configuration is used to indicate a CSI-RS configuration of a downlink transmission subframe, where each t PRB is aligned. Containing m n-port CSI-RS resources, the m n-port CSI-RS Each n-port CSI-RS resource in the resource is aggregated by p q-port CSI-RS resources. When m≥2, there are s q-port CSI-RS resources in at least two n-port CSI-RS resources. Similarly, the downlink transmission subframe includes a special subframe or a downlink subframe, and 1≤s<p, n>q, and m, n, t, p, q, and s are all positive integers.
所述处理单元3802,用于根据所述CSI-RS配置的指示信息,确定所述下行传输子帧的CSI-RS配置。The processing unit 3802 is configured to determine a CSI-RS configuration of the downlink transmission subframe according to the indication information of the CSI-RS configuration.
具体的,通过本发明实施例提供的UE380进行CSI-RS配置的方法可参考上述方法实施例,本发明实施例在此不再赘述。For example, the method for performing CSI-RS configuration by the UE 380 provided by the embodiment of the present invention may be referred to the foregoing method embodiment, and details are not described herein again.
本发明实施例提供了在下行传输子帧中配置CSI-RS的相关解决方案,基于本发明实施例提供的UE,可以在特殊子帧中配置CSI-RS,也可以在天线端口数大于8时在下行子帧中配置CSI-RS,本发明实施例对此不作具体限定。The embodiment of the present invention provides a related solution for configuring a CSI-RS in a downlink transmission subframe. The UE provided by the embodiment of the present invention may configure a CSI-RS in a special subframe, or when the number of antenna ports is greater than 8. The CSI-RS is configured in the downlink subframe, which is not specifically limited in this embodiment of the present invention.
本发明实施例还提供一种基站390,如图39所示,所述基站390包括处理器3901、存储器3902、总线3903和通信接口3904。The embodiment of the present invention further provides a base station 390. As shown in FIG. 39, the base station 390 includes a processor 3901, a memory 3902, a bus 3903, and a communication interface 3904.
所述存储器3902用于存储计算机执行指令39021,所述处理器3901与所述存储器3902通过所述总线3903连接,当所述基站390运行时,所述处理器3901执行所述存储器3902存储的所述计算机执行指令39021,以使所述基站390执行如上述方法实施例中基站390所执行的CSI-RS配置的方法。The memory 3902 is configured to store computer execution instructions 39021, the processor 3901 is connected to the memory 3902 via the bus 3903, and when the base station 390 is running, the processor 3901 executes the memory 3902 stored. The computer executes instructions 39021 to cause the base station 390 to perform a method of CSI-RS configuration performed by the base station 390 in the method embodiment described above.
需要说明的是,本发明实施例中,处理器3901可能为单核或多核中央处理单元,或者为特定集成电路,或者为被配置成实施本发明实施例的一个或多个集成电路。It should be noted that, in the embodiment of the present invention, the processor 3901 may be a single core or multi-core central processing unit, or a specific integrated circuit, or one or more integrated circuits configured to implement the embodiments of the present invention.
存储器3902可以为高速随机存取存储器(英文:Random Access Memory,简称:RAM),也可以为非易失性存储器(英文:non-volatile memory),例如至少一个磁盘存储器。The memory 3902 may be a high speed random access memory (English: Random Access Memory, RAM for short) or a non-volatile memory (English: non-volatile memory), such as at least one disk storage.
存储器3902用于存储计算机执行指令39021。具体的,计算机执行指令39021中可以包括程序代码。 Memory 3902 is used to store computer execution instructions 39021. Specifically, the program code may be included in the computer execution instruction 39021.
当所述基站390时,处理器3901运行计算机执行指令,可以执行如上述方法实施例中基站390所执行的CSI-RS配置的方法。 When the base station 390 is in operation, the processor 3901 executes a computer-executed instruction to perform a method of CSI-RS configuration performed by the base station 390 in the above-described method embodiment.
由于本发明实施例中的基站390能够用于执行上述方法,因此,其所能获得的技术效果也可以参照上述方法实施例的描述,此处不再赘述。The base station 390 in the embodiment of the present invention can be used to perform the foregoing method. Therefore, the technical effects can be obtained by referring to the description of the foregoing method embodiments, and details are not described herein again.
本发明实施例还提供一种UE400,如图40所示,所述UE400包括处理器4001、存储器4002、总线4003和通信接口4004。The embodiment of the present invention further provides a UE 400. As shown in FIG. 40, the UE 400 includes a processor 4001, a memory 4002, a bus 4003, and a communication interface 4004.
所述存储器4002用于存储计算机执行指令40021,所述处理器4001与所述存储器4002通过所述总线4003连接,当所述UE400运行时,所述处理器4001执行所述存储器4002存储的所述计算机执行指令40021,以使所述UE400执行如上述方法实施例中UE400所执行的CSI-RS配置的方法。The memory 4002 is configured to store a computer execution instruction 40021, the processor 4001 is connected to the memory 4002 via the bus 4003, and when the UE 400 is running, the processor 4001 executes the memory stored in the memory 4002 The computer executes instructions 40021 to cause the UE 400 to perform a method of CSI-RS configuration performed by the UE 400 in the method embodiments described above.
需要说明的是,本发明实施例中,处理器4001可能为单核或多核中央处理单元,或者为特定集成电路,或者为被配置成实施本发明实施例的一个或多个集成电路。It should be noted that, in the embodiment of the present invention, the processor 4001 may be a single-core or multi-core central processing unit, or a specific integrated circuit, or one or more integrated circuits configured to implement the embodiments of the present invention.
存储器4002可以为高速随机存取存储器(英文:Random Access Memory,简称:RAM),也可以为非易失性存储器(英文:non-volatile memory),例如至少一个磁盘存储器。The memory 4002 may be a high-speed random access memory (English: Random Access Memory, RAM for short) or a non-volatile memory (English: non-volatile memory), such as at least one disk storage.
存储器4002用于存储计算机执行指令40021。具体的,计算机执行指令40021中可以包括程序代码。The memory 4002 is configured to store computer execution instructions 40021. Specifically, the program code may be included in the computer execution instruction 40021.
当所述UE400时,处理器4001运行计算机执行指令,可以执行如上述方法实施例中UE400所执行的CSI-RS配置的方法。When the UE 400 is executed, the processor 4001 executes a computer execution instruction, and may perform a method of CSI-RS configuration performed by the UE 400 in the above method embodiment.
由于本发明实施例中的UE400能够用于执行上述方法,因此,其所能获得的技术效果也可以参照上述方法实施例的描述,此处不再赘述。The UE 400 in the embodiment of the present invention can be used to perform the foregoing method. Therefore, the technical effects that can be obtained can also be referred to the description of the foregoing method embodiment, and details are not described herein again.
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。It will be clearly understood by those skilled in the art that, for convenience and brevity of description, the above described device is only illustrated by the division of the above functional modules. In practical applications, the above functions may be assigned differently according to needs. The function module is completed, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above. For the specific working process of the system, the device and the unit described above, refer to the corresponding process in the foregoing method embodiment, and details are not described herein again.
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例 仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided by the present application, it should be understood that the disclosed system, apparatus, and method may be implemented in other manners. For example, the device embodiment described above For example, the division of the module or unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or integrated into another system. Or some features can be ignored or not executed. In addition, the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit. The above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。The integrated unit, if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium. Based on such understanding, the technical solution of the present invention, which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium. A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention. The foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。 The above is only a specific embodiment of the present invention, but the scope of the present invention is not limited thereto, and any person skilled in the art can easily think of changes or substitutions within the technical scope of the present invention. It should be covered by the scope of the present invention. Therefore, the scope of the invention should be determined by the scope of the appended claims.

Claims (38)

  1. 一种信道状态信息参考信号CSI-RS配置的方法,其特征在于,所述方法包括:A method for configuring a channel state information reference signal CSI-RS, the method comprising:
    基站确定特殊子帧的CSI-RS配置,所述CSI-RS配置包括所述CSI-RS的资源单元RE的标识,其中,每t个物理资源块PRB对中包含m个n端口CSI-RS资源,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,n=r×w,t、m、n、r、w均为正整数;Determining, by the base station, a CSI-RS configuration of a special subframe, where the CSI-RS configuration includes an identifier of a resource unit RE of the CSI-RS, where each of the physical resource block PRB pairs includes m n-port CSI-RS resources Each n-port CSI-RS resource of the m n-port CSI-RS resources is aggregated by r w-port CSI-RS resources, n=r×w, t, m, n, r, w Is a positive integer;
    所述基站向用户设备UE发送所述CSI-RS配置的指示信息,所述CSI-RS配置的指示信息用于指示所述特殊子帧的CSI-RS配置。The base station sends the indication information of the CSI-RS configuration to the user equipment UE, where the indication information of the CSI-RS configuration is used to indicate the CSI-RS configuration of the special subframe.
  2. 根据权利要求1所述的方法,其特征在于,当r=2,n=2X时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源的前n/2个端口组成一种n/2端口CSI-RS资源,所述m个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的RE的标识相同,1≤i≤m,i、X均为正整数。The method according to claim 1, wherein when r=2, n=2 X , the first n/2 of each n-port CSI-RS resource of the m n-port CSI-RS resources The port constitutes an n/2 port CSI-RS resource, and the n-1th port and the i-th n/2 port CSI of the i-th n-port CSI-RS resource of the m n-port CSI-RS resources - The identifier of the RE of the n/2-1th port of the RS resource is the same, 1 ≤ i ≤ m, and both i and X are positive integers.
  3. 根据权利要求2所述的方法,其特征在于,若所述n端口CSI-RS资源的第n-1个端口的RE的标识记为(k,l),k表示频域索引,l表示时域索引;则当t=1,循环前缀CP类型为正常CP时,所述m个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的资源单元RE的标识相同,包括:The method according to claim 2, wherein if the identifier of the RE of the n-1th port of the n-port CSI-RS resource is denoted as (k, l), k represents a frequency domain index, and l represents Domain index; when n=1, the cyclic prefix CP type is a normal CP, the n-1th port and the ith of the i-th n-port CSI-RS resource in the m n-port CSI-RS resources The resource element RE of the n/2-1th port of the n/2 port CSI-RS resource has the same identifier, including:
    当m=20,n=2时,第1个2端口CSI-RS资源至第20个2端口CSI-RS资源的第1个端口的RE的标识分别为(9,2)、(11,5)、(9,5)、(7,5)、(9,2)、(8,2)、(10,5)、(8,5)、(6,5)、(8,2)、(3,2)、(2,2)、(5,5)、(4,5)、(3,5)、(2,5)、(1,5)、(0,5)、(3,2)、(2,2),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、0、0、1、0、0、0、0、1、0、0、0、0、0、0、0、0、1、1;When m=20 and n=2, the identifiers of the first 2-port CSI-RS resource to the first port of the 20th 2-port CSI-RS resource are (9, 2), (11, 5, respectively). ), (9,5), (7,5), (9,2), (8,2), (10,5), (8,5), (6,5), (8,2), (3,2), (2,2), (5,5), (4,5), (3,5), (2,5), (1,5), (0,5), (3 2), (2, 2), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, respectively , 0, 0, 0, 0, 0, 0, 0, 0, 1, 1;
    当m=10,n=4时,第1个4端口CSI-RS资源至第10个4端口CSI-RS资源的第3个端口的RE的标识分别为(9,2)、(11,5)、(9,5)、 (7,5)、(9,2)、(8,2)、(10,5)、(8,5)、(6,5)、(8,2),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、0、0、1、0、0、0、0、1;When m=10 and n=4, the identifiers of the REs of the first 4-port CSI-RS resource to the third port of the 10th 4-port CSI-RS resource are (9, 2), (11, 5, respectively). ), (9,5), (7,5), (9,2), (8,2), (10,5), (8,5), (6,5), (8,2), value operation mode number n s of the radio frame slot positioned RE 2 are 0,0,0,0,1,0,0,0,0,1;
    当m=5,n=8时,第1个8端口CSI-RS资源至第5个8端口CSI-RS资源的第7个端口的RE的标识分别为(9,2)、(11,5)、(9,5)、(7,5)、(9,2),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、0、0、1;When m=5, n=8, the identifiers of the REs of the first 8-port CSI-RS resource to the 7th port of the 5th 8-port CSI-RS resource are (9, 2), (11, 5, respectively). ), (9, 5), (7, 5), (9, 2), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 0, 0, 1, respectively ;
    当m=2,n=16时,第1个16端口CSI-RS资源至第2个16端口CSI-RS资源的第15个端口的RE的标识分别为(9,2)、(11,5),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0。When m=2, n=16, the identifiers of the REs of the first 16-port CSI-RS resource to the 15th port of the second 16-port CSI-RS resource are (9, 2), (11, 5, respectively). The value of the RE located in the radio frame in the number n s modulo 2 operation is 0, 0.
  4. 根据权利要求3所述的方法,其特征在于,所述第1个16端口CSI-RS资源和第2个16端口CSI-RS资源可通过下述配置A1、B1、C1、D1、E1、F1中的任意一种配置聚合而成:The method according to claim 3, wherein the first 16-port CSI-RS resource and the second 16-port CSI-RS resource are configured by the following configurations A1, B1, C1, D1, E1, and F1. Any one of the configurations is aggregated:
    配置A1:第1个16端口CSI-RS资源由第3个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第5个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成;Configuration A1: The first 16-port CSI-RS resource is aggregated from the third 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is selected from the fifth 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
    配置B1:第1个16端口CSI-RS资源由第3个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第4个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成;Configuration B1: The first 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is composed of the fourth 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
    配置C1:第1个16端口CSI-RS资源由第4个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第5个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成;Configuration C1: The first 16-port CSI-RS resource is aggregated from the 4th 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is 5th. Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
    配置D1:第1个16端口CSI-RS资源由第4个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第3个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成;Configuration D1: The first 16-port CSI-RS resource is aggregated from the 4th 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is 3rd. Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
    配置E1:第1个16端口CSI-RS资源由第5个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第3个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成;Configure E1: The first 16-port CSI-RS resource is aggregated by the fifth 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is composed of the third 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
    配置F1:第1个16端口CSI-RS资源由第5个8端口CSI-RS资源和 第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第4个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成。Configure F1: The first 16-port CSI-RS resource consists of the 5th 8-port CSI-RS resource and The first 8-port CSI-RS resource is aggregated, and the second 16-port CSI-RS resource is aggregated by the fourth 8-port CSI-RS resource and the second 8-port CSI-RS resource.
  5. 根据权利要求3所述的方法,其特征在于,当m=3,n=12,r=3,w=4时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,包括:The method according to claim 3, wherein each of the m n-port CSI-RS resources is CSI-RS when m=3, n=12, r=3, w=4 The resource is aggregated by r w port CSI-RS resources, including:
    所述3个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述3个4端口CSI-RS资源中的任意2个4端口CSI-RS资源聚合成1个8端口CSI-RS资源;或者,Each of the three 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 4-port CSI-RS resources are used. 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or,
    所述3个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述3个12端口CSI-RS资源中的任意2个12端口CSI-RS资源分别由所述2个16端口CSI-RS资源中的任意1个16端口CSI-RS资源减去1个4端口CSI-RS资源而得,所述3个12端口CSI-RS资源中除所述任意2个12端口CSI-RS资源之外的1个12端口CSI-RS资源由所述任意2个12端口CSI-RS资源之外的3个4端口CSI-RS资源聚合而成。Each of the three 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 12-port CSI-RS resources are used. The 12-port CSI-RS resources are respectively obtained by subtracting one 4-port CSI-RS resource from any one of the two 16-port CSI-RS resources, and the three 12-port CSI- One 12-port CSI-RS resource other than the any two 12-port CSI-RS resources in the RS resource is aggregated by three 4-port CSI-RS resources other than the any two 12-port CSI-RS resources. Made.
  6. 根据权利要求2所述的方法,其特征在于,若所述n端口CSI-RS资源的第n-1个端口的RE的标识记为(k,l),k表示频域索引,l表示时域索引;则当t=1,CP类型为正常CP时,所述m个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的资源单元RE的标识相同,包括:The method according to claim 2, wherein if the identifier of the RE of the n-1th port of the n-port CSI-RS resource is denoted as (k, l), k represents a frequency domain index, and l represents Domain index; when n=1, the CP type is a normal CP, the n-1th port of the i-th n-port CSI-RS resource in the m n-port CSI-RS resources and the i-th n/ The resource unit RE of the n/2-1th port of the 2-port CSI-RS resource has the same identifier, including:
    当m=12,n=2时,第1个2端口CSI-RS资源至第12个2端口CSI-RS资源的第1个端口的RE的标识分别为(11,5)、(9,5)、(7,5)、(10,5)、(8,5)、(6,5)、(5,5)、(4,5)、(3,5)、(2,5)、(1,5)、(0,5),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、0、0、0、0、0、0、0、0、0、0;When m=12 and n=2, the identifiers of the first 2-port CSI-RS resource to the first port of the 12th 2-port CSI-RS resource are (11, 5), (9, 5, respectively). ), (7,5), (10,5), (8,5), (6,5), (5,5), (4,5), (3,5), (2,5), (1, 5), (0, 5), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0;
    当m=6,n=4时,第1个4端口CSI-RS资源至第6个4端口CSI-RS资源的第3个端口的RE的标识分别为(11,5)、(9,5)、(7,5)、(10,5)、(8,5)、(6,5),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、0、0、0、0; When m=6 and n=4, the identifiers of the REs of the first 4-port CSI-RS resource to the third port of the sixth 4-port CSI-RS resource are (11, 5), (9, 5, respectively). ), (7, 5), (10, 5), (8, 5), (6, 5), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0 , 0, 0, 0, 0;
    当m=3,n=8时,第1个8端口CSI-RS资源至第5个8端口CSI-RS资源的第7个端口的RE的标识分别为(11,5)、(9,5)、(7,5),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、0;When m=3, n=8, the identifiers of the REs of the first 8-port CSI-RS resource to the 7th port of the 5th 8-port CSI-RS resource are (11, 5), (9, 5, respectively). (7, 5), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 0;
    当m=1,n=16时,第1个16端口CSI-RS资源的RE的标识为(9,2),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0。When m=1, n=16, the identifier of the RE of the first 16-port CSI-RS resource is (9, 2), and the RE is located in the radio frame, the number of the slot is n s , and the value after the modulo 2 operation is respectively Is 0.
  7. 根据权利要求6所述的方法,其特征在于,所述第1个16端口CSI-RS资源可通过下述配置J1、K1中的任意一种配置聚合而成:The method according to claim 6, wherein the first 16-port CSI-RS resource is aggregated by any one of the following configurations J1 and K1:
    配置J1:第1个16端口CSI-RS资源由第2个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成;Configuration J1: The first 16-port CSI-RS resource is aggregated by the second 8-port CSI-RS resource and the first 8-port CSI-RS resource;
    配置K1:第1个16端口CSI-RS资源由第3个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成。Configuration K1: The first 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the first 8-port CSI-RS resource.
  8. 根据权利要求6所述的方法,其特征在于,当m=2,n=12,r=3,w=4时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,包括:The method according to claim 6, wherein each of the m n-port CSI-RS resources is CSI-RS when m=2, n=12, r=3, w=4 The resource is aggregated by r w port CSI-RS resources, including:
    所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述3个4端口CSI-RS资源中的任意2个4端口CSI-RS资源聚合成1个8端口CSI-RS资源;或者,Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 4-port CSI-RS resources are used. 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or,
    所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述2个12端口CSI-RS资源中的任意1个12端口CSI-RS资源由所述1个16端口CSI-RS资源减去1个4端口CSI-RS资源而得,所述2个12端口CSI-RS资源中除所述任意1个12端口CSI-RS资源之外的1个12端口CSI-RS资源由所述任意1个12端口CSI-RS资源之外的3个4端口CSI-RS资源聚合而成。Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any one of the two 12-port CSI-RS resources is used. The 12-port CSI-RS resource is obtained by subtracting one 4-port CSI-RS resource from the one 16-port CSI-RS resource, and any one of the two 12-port CSI-RS resources except the any one of the 12-port CSI-RS resources One 12-port CSI-RS resource other than the RS resource is aggregated by three 4-port CSI-RS resources other than the arbitrary one-port 12-port CSI-RS resource.
  9. 根据权利要求2所述的方法,其特征在于,若所述n端口CSI-RS资源的第n-1个端口的RE的标识记为(k,l),k表示频域索引,l表示时域索引;则当t=1,CP类型为扩展CP时,所述m个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的资源单元RE的标识相同,包括:The method according to claim 2, wherein if the identifier of the RE of the n-1th port of the n-port CSI-RS resource is denoted as (k, l), k represents a frequency domain index, and l represents The n-1th port and the ith n/ of the i-th n-port CSI-RS resource of the m n-port CSI-RS resources when t=1 and the CP type is the extended CP. The resource unit RE of the n/2-1th port of the 2-port CSI-RS resource has the same identifier, including:
    当m=16,n=2时,第1个2端口CSI-RS资源至第16个2端口CSI-RS 资源的第1个端口的RE的标识分别为(11,4)、(9,4)、(10,4)、(9,4)、(5,4)、(3,4)、(4,4)、(3,4)、(8,4)、(6,4)、(2,4)、(0,4)、(7,4)、(6,4)、(1,4)、(0,4),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、1、1、0、0、1、1、0、0、0、0、1、1、1、1;When m=16 and n=2, the identifiers of the first 2-port CSI-RS resource to the first port of the 16th 2-port CSI-RS resource are (11, 4), (9, 4, respectively). ), (10,4), (9,4), (5,4), (3,4), (4,4), (3,4), (8,4), (6,4), (2,4), (0,4), (7,4), (6,4), (1,4), (0,4), the RE is located in the slot number of the radio frame n s mode 2 The values after the operation are 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1;
    当m=8,n=4时,第1个4端口CSI-RS资源至第8个4端口CSI-RS资源的第3个端口的RE的标识分别为(11,4)、(9,4)、(10,4)、(9,4)、(5,4)、(3,4)、(4,4)、(3,4),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、1、1、0、0、1、1;When m=8 and n=4, the identifiers of the REs of the first 4-port CSI-RS resource to the third port of the eighth 4-port CSI-RS resource are (11, 4), (9, 4, respectively). ), (10,4), (9,4), (5,4), (3,4), (4,4), (3,4), the RE is located in the slot number n of the radio frame The values after s modulo 2 operation are 0, 0, 1, 1, 0, 0, 1, 1 respectively;
    当m=4,n=8时,第1个8端口CSI-RS资源至第4个8端口CSI-RS资源的第7个端口的RE的标识分别为(11,4)、(9,4)、(10,4)、(9,4),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、1、1;When m=4, n=8, the identifiers of the REs of the first 8-port CSI-RS resource to the 7th port of the 4th 8-port CSI-RS resource are (11, 4), (9, 4, respectively). , (10, 4), (9, 4), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 1, 1, respectively;
    当m=2,n=16时,第1个16端口CSI-RS资源至第2个16端口CSI-RS资源的第15个端口的RE的标识分别为(11,4)、(9,4),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0。When m=2, n=16, the identifiers of the REs of the first 16-port CSI-RS resource to the 15th port of the second 16-port CSI-RS resource are (11, 4), (9, 4, respectively). The value of the RE located in the radio frame in the number n s modulo 2 operation is 0, 0.
  10. 根据权利要求9所述的方法,其特征在于,所述第1个16端口CSI-RS资源和第2个16端口CSI-RS资源可通过下述配置A2、B2中的任意一种配置聚合而成:The method according to claim 9, wherein the first 16-port CSI-RS resource and the second 16-port CSI-RS resource are aggregated by any one of the following configurations A2 and B2. to make:
    配置A2:第1个16端口CSI-RS资源由第3个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第4个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成;Configuration A2: The first 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is composed of the fourth 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
    配置B2:第1个16端口CSI-RS资源由第4个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第3个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成。Configuration B2: The first 16-port CSI-RS resource is aggregated from the 4th 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is 3rd. The port CSI-RS resource is aggregated with the second 8-port CSI-RS resource.
  11. 根据权利要求9所述的方法,其特征在于,当m=2,n=12,r=3,w=4时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,包括:The method according to claim 9, wherein each of the m n-port CSI-RS resources is CSI-RS when m=2, n=12, r=3, w=4 The resource is aggregated by r w port CSI-RS resources, including:
    所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4 端口CSI-RS资源聚合而成,其中,所述3个4端口CSI-RS资源中的任意2个4端口CSI-RS资源聚合成1个8端口CSI-RS资源;或者,Each of the two 12-port CSI-RS resources is composed of three 4 CSI-RS resources. The port CSI-RS resource is aggregated, and any two 4-port CSI-RS resources of the three 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or
    所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述2个12端口CSI-RS资源分别由所述2个16端口CSI-RS资源减去1个4端口CSI-RS资源而得。Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein the two 12-port CSI-RS resources are respectively A 16-port CSI-RS resource is subtracted from a 4-port CSI-RS resource.
  12. 根据权利要求2所述的方法,其特征在于,若所述n端口CSI-RS资源的第n-1个端口的RE的标识记为(k,l),k表示频域索引,l表示时域索引;则当t=1,CP类型为扩展CP时,所述m个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的资源单元RE的标识相同,包括:The method according to claim 2, wherein if the identifier of the RE of the n-1th port of the n-port CSI-RS resource is denoted as (k, l), k represents a frequency domain index, and l represents The n-1th port and the ith n/ of the i-th n-port CSI-RS resource of the m n-port CSI-RS resources when t=1 and the CP type is the extended CP. The resource unit RE of the n/2-1th port of the 2-port CSI-RS resource has the same identifier, including:
    当m=12,n=2时,第1个2端口CSI-RS资源至第12个2端口CSI-RS资源的第1个端口的RE分别为(11,1)、(10,1)、(9,1)、(5,1)、(4,1)、(3,1)、(8,1)、(7,1)、(6,1)、(2,1)、(1,1)、(0,1),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为1、1、1、1、1、1、1、1、1、1、1、1;When m=12 and n=2, the REs of the first 2-port CSI-RS resource to the first port of the 12th 2-port CSI-RS resource are (11, 1), (10, 1), respectively. (9,1), (5,1), (4,1), (3,1), (8,1), (7,1), (6,1), (2,1), (1 , 1), (0, 1), the RE is located in the radio frame, the number of the slot n s modulo 2 operation, the values are 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, respectively 1,1;
    当m=6,n=4时,第1个4端口CSI-RS资源至第6个4端口CSI-RS资源的第3个端口的RE分别为(11,1)、(10,1)、(9,1)、(5,1)、(4,1)、(3,1),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为1、1、1、1、1、1;When m=6 and n=4, the REs of the first 4-port CSI-RS resource to the third port of the sixth 4-port CSI-RS resource are (11, 1), (10, 1), respectively. (9,1), (5,1), (4,1), (3,1), the RE is located in the radio frame, the number of the slot n s modulo 2 operation, the values are 1, 1, 1, respectively 1, 1, 1, 1;
    当m=3,n=8时,第1个8端口CSI-RS资源至第5个8端口CSI-RS资源的第7个端口的RE分别为(11,1)、(10,1)、(9,1),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为1、1、1;When m=3, n=8, the REs of the first 8-port CSI-RS resource to the 7th port of the 5th 8-port CSI-RS resource are (11, 1), (10, 1), respectively. (9, 1), the RE is located in the radio frame, the number of the slot n s modulo 2 operation after the value is 1, 1, 1;
    当m=1,n=16时,第1个16端口CSI-RS资源的RE为(11,1),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为1。When m=1, n=16, the RE of the first 16-port CSI-RS resource is (11, 1), and the RE is located in the radio frame, the number of the slot is n s , and the value after the modulo 2 operation is 1 respectively. .
  13. 根据权利要求12所述的方法,其特征在于,所述第1个16端口CSI-RS资源可通过下述配置E2、F2中的任意一种配置聚合而成:The method according to claim 12, wherein the first 16-port CSI-RS resource is aggregated by any one of the following configurations E2 and F2:
    配置E2:第1个16端口CSI-RS资源由第2个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成;Configure E2: the first 16-port CSI-RS resource is aggregated by the second 8-port CSI-RS resource and the first 8-port CSI-RS resource;
    配置F2:第1个16端口CSI-RS资源由第3个8端口CSI-RS资源和 第1个8端口CSI-RS资源聚合而成。Configure F2: The first 16-port CSI-RS resource consists of the 3rd 8-port CSI-RS resource and The first 8-port CSI-RS resource is aggregated.
  14. 根据权利要求12所述的方法,其特征在于,当m=2,n=12,r=3,w=4时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,包括:The method according to claim 12, wherein each of the m n-port CSI-RS resources is CSI-RS when m=2, n=12, r=3, w=4 The resource is aggregated by r w port CSI-RS resources, including:
    所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述3个4端口CSI-RS资源中的任意2个4端口CSI-RS资源聚合成1个8端口CSI-RS资源;或者,Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 4-port CSI-RS resources are used. 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or,
    所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述2个12端口CSI-RS资源中的任意1个12端口CSI-RS资源由所述1个16端口CSI-RS资源减去1个4端口CSI-RS资源而得,所述2个12端口CSI-RS资源中除所述任意1个12端口CSI-RS资源之外的1个12端口CSI-RS资源由所述任意1个12端口CSI-RS资源之外的3个4端口CSI-RS资源聚合而成。Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any one of the two 12-port CSI-RS resources is used. The 12-port CSI-RS resource is obtained by subtracting one 4-port CSI-RS resource from the one 16-port CSI-RS resource, and any one of the two 12-port CSI-RS resources except the any one of the 12-port CSI-RS resources One 12-port CSI-RS resource other than the RS resource is aggregated by three 4-port CSI-RS resources other than the arbitrary one-port 12-port CSI-RS resource.
  15. 根据权利要求2所述的方法,其特征在于,当t=2,n=16时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源的前n/2个端口组成一种n/2端口CSI-RS资源,所述m个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的资源单元RE的标识相同,包括:The method according to claim 2, wherein, when t=2, n=16, the first n/2 ports of each n-port CSI-RS resource of the m n-port CSI-RS resources Forming an n/2 port CSI-RS resource, the n-1th port and the ith n/2 port CSI of the i th n port CSI-RS resource of the m n port CSI-RS resources The resource unit RE of the n/2-1th port of the RS resource has the same identifier, including:
    所述第i个16端口CSI-RS资源由第一个PRB对中的第i个8端口CSI-RS资源和第二个PRB对中的第i个8端口CSI-RS资源聚合而成;The i-th 16-port CSI-RS resource is aggregated by an i-th 8-port CSI-RS resource in a first PRB pair and an i-th 8-port CSI-RS resource in a second PRB pair;
    或者,所述第i个16端口CSI-RS资源由第一个PRB对中的第i个和第i+P个4端口CSI-RS资源、以及第二个PRB对中的第i个和第i+P个4端口CSI-RS资源聚合而成,P为每个PRB对中8端口CSI-RS资源的数目;Or the ith 16-port CSI-RS resource is the ith and i+P 4-port CSI-RS resources in the first PRB pair, and the ith and the second in the second PRB pair. i+P 4-port CSI-RS resources are aggregated, and P is the number of 8-port CSI-RS resources in each PRB pair;
    或者,所述第i个16端口CSI-RS资源由第一个PRB对中的第i个,第i+P个,第i+Q和第i+P+Q个4端口CSI-RS资源、以及第二个PRB对中的第i个,第i+P个,第i+Q,和第i+P+Q个4端口CSI-RS资源聚合而成,P为每个PRB对中8端口CSI-RS资源的数目,Q为每个PRB对中4端口CSI-RS资源的数目。Or the i-th 16-port CSI-RS resource is the i-th, i-th, i+th, and i-th+P+Q 4-port CSI-RS resources in the first PRB pair, And the i-th, i+Pth, i+th, and i+P+Q 4-port CSI-RS resources of the second PRB pair are aggregated, and P is 8 ports of each PRB pair. The number of CSI-RS resources, and Q is the number of 4-port CSI-RS resources in each PRB pair.
  16. 一种信道状态信息参考信号CSI-RS配置的方法,其特征在于, 所述方法包括:A method for configuring a channel state information reference signal CSI-RS, characterized in that The method includes:
    用户设备UE接收基站发送的CSI-RS配置的指示信息,所述CSI-RS配置的指示信息用于指示特殊子帧的CSI-RS配置,其中,每t个物理资源块PRB对中包含m个n端口CSI-RS资源,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,n=r×w,t、m、n、r、w均为正整数;The user equipment UE receives the indication information of the CSI-RS configuration sent by the base station, where the indication information of the CSI-RS configuration is used to indicate the CSI-RS configuration of the special subframe, where the number of the PRB pairs per t physical resource block includes m An n-port CSI-RS resource, where each n-port CSI-RS resource of the m n-port CSI-RS resources is aggregated by r w-port CSI-RS resources, n=r×w, t, m, n, r, w are positive integers;
    所述UE根据所述CSI-RS配置的指示信息,确定所述特殊子帧的CSI-RS配置。The UE determines a CSI-RS configuration of the special subframe according to the indication information of the CSI-RS configuration.
  17. 根据权利要求16所述的方法,其特征在于,当r=2,n=2X时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源的前n/2个端口组成一种n/2端口CSI-RS资源,所述m个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的RE的标识相同,1≤i≤m,i、X均为正整数。The method according to claim 16, wherein when n=2, n=2 X , the first n/2 of each n-port CSI-RS resource of the m n-port CSI-RS resources The port constitutes an n/2 port CSI-RS resource, and the n-1th port and the i-th n/2 port CSI of the i-th n-port CSI-RS resource of the m n-port CSI-RS resources - The identifier of the RE of the n/2-1th port of the RS resource is the same, 1 ≤ i ≤ m, and both i and X are positive integers.
  18. 根据权利要求17所述的方法,其特征在于,若所述n端口CSI-RS资源的第n-1个端口的RE的标识记为(k,l),k表示频域索引,l表示时域索引;则当t=1,循环前缀CP类型为正常CP时,所述m个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的资源单元RE的标识相同,包括:The method according to claim 17, wherein if the identifier of the RE of the n-1th port of the n-port CSI-RS resource is denoted as (k, l), k represents a frequency domain index, and l represents Domain index; when n=1, the cyclic prefix CP type is a normal CP, the n-1th port and the ith of the i-th n-port CSI-RS resource in the m n-port CSI-RS resources The resource element RE of the n/2-1th port of the n/2 port CSI-RS resource has the same identifier, including:
    当m=20,n=2时,第1个2端口CSI-RS资源至第20个2端口CSI-RS资源的第1个端口的RE的标识分别为(9,2)、(11,5)、(9,5)、(7,5)、(9,2)、(8,2)、(10,5)、(8,5)、(6,5)、(8,2)、(3,2)、(2,2)、(5,5)、(4,5)、(3,5)、(2,5)、(1,5)、(0,5)、(3,2)、(2,2),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、0、0、1、0、0、0、0、1、0、0、0、0、0、0、0、0、1、1;When m=20 and n=2, the identifiers of the first 2-port CSI-RS resource to the first port of the 20th 2-port CSI-RS resource are (9, 2), (11, 5, respectively). ), (9,5), (7,5), (9,2), (8,2), (10,5), (8,5), (6,5), (8,2), (3,2), (2,2), (5,5), (4,5), (3,5), (2,5), (1,5), (0,5), (3 2), (2, 2), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, respectively , 0, 0, 0, 0, 0, 0, 0, 0, 1, 1;
    当m=10,n=4时,第1个4端口CSI-RS资源至第10个4端口CSI-RS资源的第3个端口的RE的标识分别为(9,2)、(11,5)、(9,5)、(7,5)、(9,2)、(8,2)、(10,5)、(8,5)、(6,5)、(8,2),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、0、 0、1、0、0、0、0、1;When m=10 and n=4, the identifiers of the REs of the first 4-port CSI-RS resource to the third port of the 10th 4-port CSI-RS resource are (9, 2), (11, 5, respectively). ), (9,5), (7,5), (9,2), (8,2), (10,5), (8,5), (6,5), (8,2), value operation mode number n s of the radio frame slot positioned RE 2 are 0,0,0, 0,1,0,0,0,0,1;
    当m=5,n=8时,第1个8端口CSI-RS资源至第5个8端口CSI-RS资源的第7个端口的RE的标识分别为(9,2)、(11,5)、(9,5)、(7,5)、(9,2),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、0、0、1;When m=5, n=8, the identifiers of the REs of the first 8-port CSI-RS resource to the 7th port of the 5th 8-port CSI-RS resource are (9, 2), (11, 5, respectively). ), (9, 5), (7, 5), (9, 2), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 0, 0, 1, respectively ;
    当m=2,n=16时,第1个16端口CSI-RS资源至第2个16端口CSI-RS资源的第15个端口的RE的标识分别为(9,2)、(11,5),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0。When m=2, n=16, the identifiers of the REs of the first 16-port CSI-RS resource to the 15th port of the second 16-port CSI-RS resource are (9, 2), (11, 5, respectively). The value of the RE located in the radio frame in the number n s modulo 2 operation is 0, 0.
  19. 根据权利要求18所述的方法,其特征在于,所述第1个16端口CSI-RS资源和第2个16端口CSI-RS资源可通过下述配置A1、B1、C1、D1、E1、F1中的任意一种配置聚合而成:The method according to claim 18, wherein the first 16-port CSI-RS resource and the second 16-port CSI-RS resource are configured by the following configurations A1, B1, C1, D1, E1, and F1. Any one of the configurations is aggregated:
    配置A1:第1个16端口CSI-RS资源由第3个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第5个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成;Configuration A1: The first 16-port CSI-RS resource is aggregated from the third 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is selected from the fifth 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
    配置B1:第1个16端口CSI-RS资源由第3个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第4个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成;Configuration B1: The first 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is composed of the fourth 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
    配置C1:第1个16端口CSI-RS资源由第4个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第5个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成;Configuration C1: The first 16-port CSI-RS resource is aggregated from the 4th 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is 5th. Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
    配置D1:第1个16端口CSI-RS资源由第4个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第3个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成;Configuration D1: The first 16-port CSI-RS resource is aggregated from the 4th 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is 3rd. Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
    配置E1:第1个16端口CSI-RS资源由第5个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第3个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成;Configure E1: The first 16-port CSI-RS resource is aggregated by the fifth 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is composed of the third 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
    配置F1:第1个16端口CSI-RS资源由第5个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第4个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成。 Configuration F1: The first 16-port CSI-RS resource is aggregated from the 5th 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is 4th. The port CSI-RS resource is aggregated with the second 8-port CSI-RS resource.
  20. 根据权利要求18所述的方法,其特征在于,当m=3,n=12,r=3,w=4时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,包括:The method according to claim 18, wherein each of the m n-port CSI-RS resources is CSI-RS when m=3, n=12, r=3, w=4 The resource is aggregated by r w port CSI-RS resources, including:
    所述3个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述3个4端口CSI-RS资源中的任意2个4端口CSI-RS资源聚合成1个8端口CSI-RS资源;或者,Each of the three 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 4-port CSI-RS resources are used. 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or,
    所述3个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述3个12端口CSI-RS资源中的任意2个12端口CSI-RS资源分别由所述2个16端口CSI-RS资源中的任意1个16端口CSI-RS资源减去1个4端口CSI-RS资源而得,所述3个12端口CSI-RS资源中除所述任意2个12端口CSI-RS资源之外的1个12端口CSI-RS资源由所述任意2个12端口CSI-RS资源之外的3个4端口CSI-RS资源聚合而成。Each of the three 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 12-port CSI-RS resources are used. The 12-port CSI-RS resources are respectively obtained by subtracting one 4-port CSI-RS resource from any one of the two 16-port CSI-RS resources, and the three 12-port CSI- One 12-port CSI-RS resource other than the any two 12-port CSI-RS resources in the RS resource is aggregated by three 4-port CSI-RS resources other than the any two 12-port CSI-RS resources. Made.
  21. 根据权利要求17所述的方法,其特征在于,若所述n端口CSI-RS资源的第n-1个端口的RE的标识记为(k,l),k表示频域索引,l表示时域索引;则当t=1,CP类型为正常CP时,所述m个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的资源单元RE的标识相同,包括:The method according to claim 17, wherein if the identifier of the RE of the n-1th port of the n-port CSI-RS resource is denoted as (k, l), k represents a frequency domain index, and l represents Domain index; when n=1, the CP type is a normal CP, the n-1th port of the i-th n-port CSI-RS resource in the m n-port CSI-RS resources and the i-th n/ The resource unit RE of the n/2-1th port of the 2-port CSI-RS resource has the same identifier, including:
    当m=12,n=2时,第1个2端口CSI-RS资源至第12个2端口CSI-RS资源的第1个端口的RE的标识分别为(11,5)、(9,5)、(7,5)、(10,5)、(8,5)、(6,5)、(5,5)、(4,5)、(3,5)、(2,5)、(1,5)、(0,5),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、0、0、0、0、0、0、0、0、0、0;When m=12 and n=2, the identifiers of the first 2-port CSI-RS resource to the first port of the 12th 2-port CSI-RS resource are (11, 5), (9, 5, respectively). ), (7,5), (10,5), (8,5), (6,5), (5,5), (4,5), (3,5), (2,5), (1, 5), (0, 5), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0;
    当m=6,n=4时,第1个4端口CSI-RS资源至第6个4端口CSI-RS资源的第3个端口的RE的标识分别为(11,5)、(9,5)、(7,5)、(10,5)、(8,5)、(6,5),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、0、0、0、0;When m=6 and n=4, the identifiers of the REs of the first 4-port CSI-RS resource to the third port of the sixth 4-port CSI-RS resource are (11, 5), (9, 5, respectively). ), (7, 5), (10, 5), (8, 5), (6, 5), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0 , 0, 0, 0, 0;
    当m=3,n=8时,第1个8端口CSI-RS资源至第5个8端口CSI-RS资源的第7个端口的RE的标识分别为(11,5)、(9,5)、(7,5), 所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、0;When m=3, n=8, the identifiers of the REs of the first 8-port CSI-RS resource to the 7th port of the 5th 8-port CSI-RS resource are (11, 5), (9, 5, respectively). , (7, 5), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 0;
    当m=1,n=16时,第1个16端口CSI-RS资源的RE的标识为(9,2),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0。When m=1, n=16, the identifier of the RE of the first 16-port CSI-RS resource is (9, 2), and the RE is located in the radio frame, the number of the slot is n s , and the value after the modulo 2 operation is respectively Is 0.
  22. 根据权利要求21所述的方法,其特征在于,所述第1个16端口CSI-RS资源可通过下述配置J1、K1中的任意一种配置聚合而成:The method according to claim 21, wherein the first 16-port CSI-RS resource is aggregated by any one of the following configurations J1 and K1:
    配置J1:第1个16端口CSI-RS资源由第2个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成;Configuration J1: The first 16-port CSI-RS resource is aggregated by the second 8-port CSI-RS resource and the first 8-port CSI-RS resource;
    配置K1:第1个16端口CSI-RS资源由第3个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成。Configuration K1: The first 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the first 8-port CSI-RS resource.
  23. 根据权利要求21所述的方法,其特征在于,当m=2,n=12,r=3,w=4时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,包括:The method according to claim 21, wherein each of the m n-port CSI-RS resources is CSI-RS when m=2, n=12, r=3, w=4 The resource is aggregated by r w port CSI-RS resources, including:
    所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述3个4端口CSI-RS资源中的任意2个4端口CSI-RS资源聚合成1个8端口CSI-RS资源;或者,Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 4-port CSI-RS resources are used. 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or,
    所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述2个12端口CSI-RS资源中的任意1个12端口CSI-RS资源由所述1个16端口CSI-RS资源减去1个4端口CSI-RS资源而得,所述2个12端口CSI-RS资源中除所述任意1个12端口CSI-RS资源之外的1个12端口CSI-RS资源由所述任意1个12端口CSI-RS资源之外的3个4端口CSI-RS资源聚合而成。Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any one of the two 12-port CSI-RS resources is used. The 12-port CSI-RS resource is obtained by subtracting one 4-port CSI-RS resource from the one 16-port CSI-RS resource, and any one of the two 12-port CSI-RS resources except the any one of the 12-port CSI-RS resources One 12-port CSI-RS resource other than the RS resource is aggregated by three 4-port CSI-RS resources other than the arbitrary one-port 12-port CSI-RS resource.
  24. 根据权利要求17所述的方法,其特征在于,若所述n端口CSI-RS资源的第n-1个端口的RE的标识记为(k,l),k表示频域索引,l表示时域索引;则当t=1,CP类型为扩展CP时,所述m个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的资源单元RE的标识相同,包括:The method according to claim 17, wherein if the identifier of the RE of the n-1th port of the n-port CSI-RS resource is denoted as (k, l), k represents a frequency domain index, and l represents The n-1th port and the ith n/ of the i-th n-port CSI-RS resource of the m n-port CSI-RS resources when t=1 and the CP type is the extended CP. The resource unit RE of the n/2-1th port of the 2-port CSI-RS resource has the same identifier, including:
    当m=16,n=2时,第1个2端口CSI-RS资源至第16个2端口CSI-RS资源的第1个端口的RE的标识分别为(11,4)、(9,4)、(10,4)、(9,4)、(5,4)、(3,4)、(4,4)、(3,4)、(8,4)、(6, 4)、(2,4)、(0,4)、(7,4)、(6,4)、(1,4)、(0,4),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、1、1、0、0、1、1、0、0、0、0、1、1、1、1;When m=16 and n=2, the identifiers of the first 2-port CSI-RS resource to the first port of the 16th 2-port CSI-RS resource are (11, 4), (9, 4, respectively). ), (10,4), (9,4), (5,4), (3,4), (4,4), (3,4), (8,4), (6, 4), (2,4), (0,4), (7,4), (6,4), (1,4), (0,4), the RE is located in the slot number of the radio frame n s mode 2 The values after the operation are 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1;
    当m=8,n=4时,第1个4端口CSI-RS资源至第8个4端口CSI-RS资源的第3个端口的RE的标识分别为(11,4)、(9,4)、(10,4)、(9,4)、(5,4)、(3,4)、(4,4)、(3,4),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、1、1、0、0、1、1;When m=8 and n=4, the identifiers of the REs of the first 4-port CSI-RS resource to the third port of the eighth 4-port CSI-RS resource are (11, 4), (9, 4, respectively). ), (10,4), (9,4), (5,4), (3,4), (4,4), (3,4), the RE is located in the slot number n of the radio frame The values after s modulo 2 operation are 0, 0, 1, 1, 0, 0, 1, 1 respectively;
    当m=4,n=8时,第1个8端口CSI-RS资源至第4个8端口CSI-RS资源的第7个端口的RE的标识分别为(11,4)、(9,4)、(10,4)、(9,4),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0、1、1;When m=4, n=8, the identifiers of the REs of the first 8-port CSI-RS resource to the 7th port of the 4th 8-port CSI-RS resource are (11, 4), (9, 4, respectively). , (10, 4), (9, 4), the RE is located in the radio frame, the number of the slot n s modulo 2 operation is 0, 0, 1, 1, respectively;
    当m=2,n=16时,第1个16端口CSI-RS资源至第2个16端口CSI-RS资源的第15个端口的RE的标识分别为(11,4)、(9,4),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为0、0。When m=2, n=16, the identifiers of the REs of the first 16-port CSI-RS resource to the 15th port of the second 16-port CSI-RS resource are (11, 4), (9, 4, respectively). The value of the RE located in the radio frame in the number n s modulo 2 operation is 0, 0.
  25. 根据权利要求24所述的方法,其特征在于,所述第1个16端口CSI-RS资源和第2个16端口CSI-RS资源可通过下述配置A2、B2中的任意一种配置聚合而成:The method according to claim 24, wherein the first 16-port CSI-RS resource and the second 16-port CSI-RS resource are aggregated by any one of the following configurations A2 and B2. to make:
    配置A2:第1个16端口CSI-RS资源由第3个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第4个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成;Configuration A2: The first 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is composed of the fourth 8 Port CSI-RS resources and a second 8-port CSI-RS resource are aggregated;
    配置B2:第1个16端口CSI-RS资源第4个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成,第2个16端口CSI-RS资源由第3个8端口CSI-RS资源和第2个8端口CSI-RS资源聚合而成。Configuration B2: The first 16-port CSI-RS resource is aggregated from the fourth 8-port CSI-RS resource and the first 8-port CSI-RS resource, and the second 16-port CSI-RS resource is formed by the third 8-port. The CSI-RS resource is aggregated with the second 8-port CSI-RS resource.
  26. 根据权利要求24所述的方法,其特征在于,当m=2,n=12,r=3,w=4时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,包括:The method according to claim 24, wherein each of the m n-port CSI-RS resources is CSI-RS when m=2, n=12, r=3, w=4 The resource is aggregated by r w port CSI-RS resources, including:
    所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述3个4端口CSI-RS资源中的任意2个4端口CSI-RS资源聚合成1个8端口CSI-RS资源;或者, Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 4-port CSI-RS resources are used. 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or,
    所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述2个12端口CSI-RS资源分别由所述2个16端口CSI-RS资源减去1个4端口CSI-RS资源而得。Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein the two 12-port CSI-RS resources are respectively A 16-port CSI-RS resource is subtracted from a 4-port CSI-RS resource.
  27. 根据权利要求17所述的方法,其特征在于,若所述n端口CSI-RS资源的第n-1个端口的RE的标识记为(k,l),k表示频域索引,l表示时域索引;则当t=1,CP类型为扩展CP时,所述m个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的资源单元RE的标识相同,包括:The method according to claim 17, wherein if the identifier of the RE of the n-1th port of the n-port CSI-RS resource is denoted as (k, l), k represents a frequency domain index, and l represents The n-1th port and the ith n/ of the i-th n-port CSI-RS resource of the m n-port CSI-RS resources when t=1 and the CP type is the extended CP. The resource unit RE of the n/2-1th port of the 2-port CSI-RS resource has the same identifier, including:
    当m=12,n=2时,第1个2端口CSI-RS资源至第12个2端口CSI-RS资源的第1个端口的RE分别为(11,1)、(10,1)、(9,1)、(5,1)、(4,1)、(3,1)、(8,1)、(7,1)、(6,1)、(2,1)、(1,1)、(0,1),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为1、1、1、1、1、1、1、1、1、1、1、1;When m=12 and n=2, the REs of the first 2-port CSI-RS resource to the first port of the 12th 2-port CSI-RS resource are (11, 1), (10, 1), respectively. (9,1), (5,1), (4,1), (3,1), (8,1), (7,1), (6,1), (2,1), (1 , 1), (0, 1), the RE is located in the radio frame, the number of the slot n s modulo 2 operation, the values are 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, respectively 1,1;
    当m=6,n=4时,第1个4端口CSI-RS资源至第6个4端口CSI-RS资源的第3个端口的RE分别为(11,1)、(10,1)、(9,1)、(5,1)、(4,1)、(3,1),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为1、1、1、1、1、1;When m=6 and n=4, the REs of the first 4-port CSI-RS resource to the third port of the sixth 4-port CSI-RS resource are (11, 1), (10, 1), respectively. (9,1), (5,1), (4,1), (3,1), the RE is located in the radio frame, the number of the slot n s modulo 2 operation, the values are 1, 1, 1, respectively 1, 1, 1, 1;
    当m=3,n=8时,第1个8端口CSI-RS资源至第5个8端口CSI-RS资源的第7个端口的RE分别为(11,1)、(10,1)、(9,1),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为1、1、1;When m=3, n=8, the REs of the first 8-port CSI-RS resource to the 7th port of the 5th 8-port CSI-RS resource are (11, 1), (10, 1), respectively. (9, 1), the RE is located in the radio frame, the number of the slot n s modulo 2 operation after the value is 1, 1, 1;
    当m=1,n=16时,第1个16端口CSI-RS资源的RE为(11,1),所述RE位于无线帧中时隙的编号ns模2操作后的值分别为1。When m=1, n=16, the RE of the first 16-port CSI-RS resource is (11, 1), and the RE is located in the radio frame, the number of the slot is n s , and the value after the modulo 2 operation is 1 respectively. .
  28. 根据权利要求27所述的方法,其特征在于,所述第1个16端口CSI-RS资源可通过下述配置E2、F2中的任意一种配置聚合而成:The method according to claim 27, wherein the first 16-port CSI-RS resource is aggregated by any one of the following configurations E2 and F2:
    配置E2:第1个16端口CSI-RS资源由第2个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成;Configure E2: the first 16-port CSI-RS resource is aggregated by the second 8-port CSI-RS resource and the first 8-port CSI-RS resource;
    配置F2:第1个16端口CSI-RS资源由第3个8端口CSI-RS资源和第1个8端口CSI-RS资源聚合而成。Configuration F2: The first 16-port CSI-RS resource is aggregated by the third 8-port CSI-RS resource and the first 8-port CSI-RS resource.
  29. 根据权利要求27所述的方法,其特征在于,当m=2,n=12, r=3,w=4时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,包括:The method according to claim 27, wherein when m = 2, n = 12, r=3, w=4, each of the n n-port CSI-RS resources is aggregated by r w-port CSI-RS resources, including:
    所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述3个4端口CSI-RS资源中的任意2个4端口CSI-RS资源聚合成1个8端口CSI-RS资源;或者,Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any two of the three 4-port CSI-RS resources are used. 4-port CSI-RS resources are aggregated into one 8-port CSI-RS resource; or,
    所述2个12端口CSI-RS资源中的每个12端口CSI-RS资源由3个4端口CSI-RS资源聚合而成,其中,所述2个12端口CSI-RS资源中的任意1个12端口CSI-RS资源由所述1个16端口CSI-RS资源减去1个4端口CSI-RS资源而得,所述2个12端口CSI-RS资源中除所述任意1个12端口CSI-RS资源之外的1个12端口CSI-RS资源由所述任意1个12端口CSI-RS资源之外的3个4端口CSI-RS资源聚合而成。Each of the two 12-port CSI-RS resources is aggregated by three 4-port CSI-RS resources, wherein any one of the two 12-port CSI-RS resources is used. The 12-port CSI-RS resource is obtained by subtracting one 4-port CSI-RS resource from the one 16-port CSI-RS resource, and any one of the two 12-port CSI-RS resources except the any one of the 12-port CSI-RS resources One 12-port CSI-RS resource other than the RS resource is aggregated by three 4-port CSI-RS resources other than the arbitrary one-port 12-port CSI-RS resource.
  30. 根据权利要求17所述的方法,其特征在于,当t=2,n=16时,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源的前n/2个端口组成一种n/2端口CSI-RS资源,所述m个n端口CSI-RS资源中的第i个n端口CSI-RS资源的第n-1个端口与第i个n/2端口CSI-RS资源的第n/2-1个端口的资源单元RE的标识相同,包括:The method according to claim 17, wherein when t=2, n=16, the first n/2 ports of each of the n n-port CSI-RS resources are n-port CSI-RS resources Forming an n/2 port CSI-RS resource, the n-1th port and the ith n/2 port CSI of the i th n port CSI-RS resource of the m n port CSI-RS resources The resource unit RE of the n/2-1th port of the RS resource has the same identifier, including:
    所述第i个16端口CSI-RS资源由第一个PRB对中的第i个8端口CSI-RS资源和第二个PRB对中的第i个8端口CSI-RS资源聚合而成;The i-th 16-port CSI-RS resource is aggregated by an i-th 8-port CSI-RS resource in a first PRB pair and an i-th 8-port CSI-RS resource in a second PRB pair;
    或者,所述第i个16端口CSI-RS资源由第一个PRB对中的第i个和第i+P个4端口CSI-RS资源、以及第二个PRB对中的第i个和第i+P个4端口CSI-RS资源聚合而成,P为每个PRB对中8端口CSI-RS资源的数目;Or the ith 16-port CSI-RS resource is the ith and i+P 4-port CSI-RS resources in the first PRB pair, and the ith and the second in the second PRB pair. i+P 4-port CSI-RS resources are aggregated, and P is the number of 8-port CSI-RS resources in each PRB pair;
    或者,所述第i个16端口CSI-RS资源由第一个PRB对中的第i个,第i+P个,第i+Q和第i+P+Q个4端口CSI-RS资源、以及第二个PRB对中的第i个,第i+P个,第i+Q,和第i+P+Q个4端口CSI-RS资源聚合而成,P为每个PRB对中8端口CSI-RS资源的数目,Q为每个PRB对中4端口CSI-RS资源的数目。Or the i-th 16-port CSI-RS resource is the i-th, i-th, i+th, and i-th+P+Q 4-port CSI-RS resources in the first PRB pair, And the i-th, i+Pth, i+th, and i+P+Q 4-port CSI-RS resources of the second PRB pair are aggregated, and P is 8 ports of each PRB pair. The number of CSI-RS resources, and Q is the number of 4-port CSI-RS resources in each PRB pair.
  31. 一种信道状态信息参考信号CSI-RS配置的方法,其特征在于,所述方法包括:A method for configuring a channel state information reference signal CSI-RS, the method comprising:
    基站确定下行传输子帧的CSI-RS配置,所述CSI-RS配置包括所述 CSI-RS的资源单元RE的标识,其中,每t个物理资源块PRB对中包含m个n端口CSI-RS资源,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由p个q端口CSI-RS资源聚合而成,当m≥2时,存在至少两个n端口CSI-RS资源中的s个q端口CSI-RS资源相同,所述下行传输子帧包括特殊子帧或下行子帧,1≤s<p,n>q,m、n、t、p、q、s均为正整数;Determining, by the base station, a CSI-RS configuration of a downlink transmission subframe, where the CSI-RS configuration includes the An identifier of a resource unit RE of a CSI-RS, where each t physical resource block PRB pair includes m n-port CSI-RS resources, and each n-port CSI-RS of the m n-port CSI-RS resources The resource is aggregated by the p q-port CSI-RS resources. When m≥2, there are s q-port CSI-RS resources in at least two n-port CSI-RS resources, and the downlink transmission subframe includes a special Subframe or downlink subframe, 1≤s<p, n>q, m, n, t, p, q, s are positive integers;
    所述基站向用户设备UE发送所述CSI-RS配置的指示信息,所述CSI-RS配置的指示信息用于指示所述下行传输子帧的CSI-RS配置。The base station sends the indication information of the CSI-RS configuration to the user equipment UE, where the indication information of the CSI-RS configuration is used to indicate the CSI-RS configuration of the downlink transmission subframe.
  32. 一种信道状态信息参考信号CSI-RS配置的方法,其特征在于,所述方法包括:A method for configuring a channel state information reference signal CSI-RS, the method comprising:
    用户设备UE接收基站发送的CSI-RS配置的指示信息,所述CSI-RS配置的指示信息用于指示下行传输子帧的CSI-RS配置,其中,每t个物理资源块PRB对中包含m个n端口CSI-RS资源,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由p个q端口CSI-RS资源聚合而成,当m≥2时,存在至少两个n端口CSI-RS资源中的s个q端口CSI-RS资源相同,所述下行传输子帧包括特殊子帧或下行子帧,1≤s<p,n>q,m、n、t、p、q、s均为正整数;The user equipment UE receives the indication information of the CSI-RS configuration sent by the base station, where the indication information of the CSI-RS configuration is used to indicate the CSI-RS configuration of the downlink transmission subframe, where the per-physical resource block PRB pair includes m Each n-port CSI-RS resource of the n-port CSI-RS resources is aggregated by p q-port CSI-RS resources, and when m≥2, there are at least two The s q-port CSI-RS resources in the n-port CSI-RS resources are the same, and the downlink transmission subframe includes a special subframe or a downlink subframe, 1≤s<p, n>q, m, n, t, p, q, s are all positive integers;
    所述UE根据所述CSI-RS配置的指示信息,确定所述下行传输子帧的CSI-RS配置。The UE determines a CSI-RS configuration of the downlink transmission subframe according to the indication information of the CSI-RS configuration.
  33. 一种基站,其特征在于,所述基站包括处理单元和发送单元;A base station, characterized in that the base station comprises a processing unit and a transmitting unit;
    所述处理单元,用于确定特殊子帧的信道状态信息参考信号CSI-RS配置,所述CSI-RS配置包括所述CSI-RS的资源单元RE的标识,其中,每t个物理资源块PRB对中包含m个n端口CSI-RS资源,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,n=r×w,t、m、n、r、w均为正整数;The processing unit is configured to determine a channel state information reference signal CSI-RS configuration of a special subframe, where the CSI-RS configuration includes an identifier of a resource unit RE of the CSI-RS, where each physical resource block PRB The pair includes m n-port CSI-RS resources, and each n-port CSI-RS resource of the m n-port CSI-RS resources is aggregated by r w-port CSI-RS resources, n=r×w , t, m, n, r, w are all positive integers;
    所述发送单元,用于向用户设备UE发送所述CSI-RS配置的指示信息,所述CSI-RS配置的指示信息用于指示所述特殊子帧的CSI-RS配置。The sending unit is configured to send the indication information of the CSI-RS configuration to the user equipment UE, where the indication information of the CSI-RS configuration is used to indicate a CSI-RS configuration of the special subframe.
  34. 一种用户设备UE,其特征在于,所述UE包括接收单元和处理单元;A user equipment UE, characterized in that the UE comprises a receiving unit and a processing unit;
    所述接收单元,用于接收基站发送的CSI-RS配置的指示信息,所述 CSI-RS配置的指示信息用于指示特殊子帧的CSI-RS配置,其中,每t个物理资源块PRB对中包含m个n端口CSI-RS资源,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由r个w端口CSI-RS资源聚合而成,n=r×w,t、m、n、r、w均为正整数;The receiving unit is configured to receive indication information of a CSI-RS configuration sent by the base station, where The CSI-RS configuration indication information is used to indicate a CSI-RS configuration of a special subframe, where each t physical resource block PRB pair includes m n-port CSI-RS resources, and the m n-port CSI-RS resources Each n-port CSI-RS resource is aggregated by r w-port CSI-RS resources, n=r×w, and t, m, n, r, and w are positive integers;
    所述处理单元,用于根据所述CSI-RS配置的指示信息,确定所述特殊子帧的CSI-RS配置。The processing unit is configured to determine a CSI-RS configuration of the special subframe according to the indication information of the CSI-RS configuration.
  35. 一种基站,其特征在于,所述基站包括:处理单元和发送单元;A base station, the base station includes: a processing unit and a sending unit;
    所述处理单元,用于确定下行传输子帧的信道状态信息参考信号CSI-RS配置,所述CSI-RS配置包括所述CSI-RS的资源单元RE的标识,其中,每t个物理资源块PRB对中包含m个n端口CSI-RS资源,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由p个q端口CSI-RS资源聚合而成,当m≥2时,存在至少两个n端口CSI-RS资源中的s个q端口CSI-RS资源相同,所述下行传输子帧包括特殊子帧或下行子帧,1≤s<p,n>q,m、n、t、p、q、s均为正整数;The processing unit is configured to determine a channel state information reference signal CSI-RS configuration of a downlink transmission subframe, where the CSI-RS configuration includes an identifier of a resource unit RE of the CSI-RS, where each t physical resource block The PRB pair includes m n-port CSI-RS resources, and each n-port CSI-RS resource of the m n-port CSI-RS resources is aggregated by p q-port CSI-RS resources, when m≥2 The s q-port CSI-RS resources in the at least two n-port CSI-RS resources are the same, and the downlink transmission subframe includes a special subframe or a downlink subframe, where 1≤s<p,n>q,m , n, t, p, q, s are all positive integers;
    所述发送单元,用于向用户设备UE发送所述CSI-RS配置的指示信息,所述CSI-RS配置的指示信息用于指示所述下行传输子帧的CSI-RS配置。The sending unit is configured to send, to the user equipment UE, the indication information of the CSI-RS configuration, where the indication information of the CSI-RS configuration is used to indicate a CSI-RS configuration of the downlink transmission subframe.
  36. 一种用户设备UE,其特征在于,所述UE包括:接收单元和处理单元;A user equipment (UE), the UE includes: a receiving unit and a processing unit;
    所述接收单元,用于接收基站发送的信道状态信息参考信号CSI-RS配置的指示信息,所述CSI-RS配置的指示信息用于指示下行传输子帧的CSI-RS配置,其中,每t个物理资源块PRB对中包含m个n端口CSI-RS资源,所述m个n端口CSI-RS资源中的每个n端口CSI-RS资源由p个q端口CSI-RS资源聚合而成,当m≥2时,存在至少两个n端口CSI-RS资源中的s个q端口CSI-RS资源相同,所述下行传输子帧包括特殊子帧或下行子帧,1≤s<p,n>q,m、n、t、p、q、s均为正整数;The receiving unit is configured to receive indication information of a channel state information reference signal CSI-RS configuration sent by the base station, where the indication information of the CSI-RS configuration is used to indicate a CSI-RS configuration of the downlink transmission subframe, where each t The physical resource block PRB pair includes m n-port CSI-RS resources, and each n-port CSI-RS resource of the m n-port CSI-RS resources is aggregated by p q-port CSI-RS resources. When m≥2, there are s q-port CSI-RS resources in at least two n-port CSI-RS resources, and the downlink transmission subframe includes a special subframe or a downlink subframe, 1≤s<p,n >q, m, n, t, p, q, s are all positive integers;
    所述处理单元,用于根据所述CSI-RS配置的指示信息,确定所述下行传输子帧的CSI-RS配置。The processing unit is configured to determine a CSI-RS configuration of the downlink transmission subframe according to the indication information of the CSI-RS configuration.
  37. 一种基站,其特征在于,所述基站包括处理器、存储器、总线和 通信接口;A base station, the base station comprising a processor, a memory, a bus, and Communication Interface;
    所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述基站运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述基站执行如权利要求1-15任一项所述的CSI-RS配置的方法或执行如权利要求31所述的CSI-RS配置的方法。The memory is configured to store a computer to execute an instruction, the processor is connected to the memory through the bus, and when the base station is running, the processor executes the computer-executed instruction stored in the memory to make A method in which a base station performs the CSI-RS configuration according to any one of claims 1 to 15 or a method of performing the CSI-RS configuration according to claim 31.
  38. 一种用户设备UE,其特征在于,所述UE包括处理器、存储器、总线和通信接口;A user equipment UE, characterized in that the UE comprises a processor, a memory, a bus and a communication interface;
    所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述UE运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述UE执行如权利要求16-30任一项所述的CSI-RS配置的方法或执行如权利要求32所述的CSI-RS配置的方法。 The memory is configured to store a computer to execute an instruction, the processor is connected to the memory through the bus, and when the UE is running, the processor executes the computer-executed instruction stored in the memory to make A method of the UE performing the CSI-RS configuration according to any one of claims 16-30 or a method of performing the CSI-RS configuration according to claim 32.
PCT/CN2015/094063 2015-11-06 2015-11-06 Csi-rs configuration method and related apparatus WO2017075836A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/094063 WO2017075836A1 (en) 2015-11-06 2015-11-06 Csi-rs configuration method and related apparatus
CN201580082589.7A CN107925896A (en) 2015-11-06 2015-11-06 The method and relevant device of CSI RS configurations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/094063 WO2017075836A1 (en) 2015-11-06 2015-11-06 Csi-rs configuration method and related apparatus

Publications (1)

Publication Number Publication Date
WO2017075836A1 true WO2017075836A1 (en) 2017-05-11

Family

ID=58661425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094063 WO2017075836A1 (en) 2015-11-06 2015-11-06 Csi-rs configuration method and related apparatus

Country Status (2)

Country Link
CN (1) CN107925896A (en)
WO (1) WO2017075836A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019029292A1 (en) * 2017-08-10 2019-02-14 电信科学技术研究院有限公司 Pilot configuration method, channel measurement method, and communication device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130114535A1 (en) * 2011-11-09 2013-05-09 Samsung Electronics Co., Ltd. Reference signal for time and/or frequency tracking in a wireless network
CN103179664A (en) * 2011-12-20 2013-06-26 中兴通讯股份有限公司 Method and device for port mapping and selection of pre-coding matrix and modulation coding mode
WO2014042422A2 (en) * 2012-09-11 2014-03-20 Lg Electronics Inc. Method and apparatus for transmitting channel state information-reference signals in wireless communication system
CN103856310A (en) * 2012-12-06 2014-06-11 电信科学技术研究院 Channel state information reference signal transmitting method and device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104767592B (en) * 2014-01-02 2019-01-01 中国移动通信集团公司 A kind of port configuration of CSI-RS, CSI-RS transmission method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130114535A1 (en) * 2011-11-09 2013-05-09 Samsung Electronics Co., Ltd. Reference signal for time and/or frequency tracking in a wireless network
CN103179664A (en) * 2011-12-20 2013-06-26 中兴通讯股份有限公司 Method and device for port mapping and selection of pre-coding matrix and modulation coding mode
WO2014042422A2 (en) * 2012-09-11 2014-03-20 Lg Electronics Inc. Method and apparatus for transmitting channel state information-reference signals in wireless communication system
CN103856310A (en) * 2012-12-06 2014-06-11 电信科学技术研究院 Channel state information reference signal transmitting method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019029292A1 (en) * 2017-08-10 2019-02-14 电信科学技术研究院有限公司 Pilot configuration method, channel measurement method, and communication device
CN109391411A (en) * 2017-08-10 2019-02-26 电信科学技术研究院 A kind of pilot frequency collocation method, channel measuring method and communication equipment

Also Published As

Publication number Publication date
CN107925896A (en) 2018-04-17

Similar Documents

Publication Publication Date Title
US11483117B2 (en) Method and device for configuring channel state information reference signal, and method and device for parsing configuring channel state information reference signal
WO2018090327A1 (en) Method for transmitting reference signal, and communication device
EP2660994B1 (en) Method and device for allocating reference resource
US9641300B2 (en) Method for transmitting and receiving control channel, base station, and user equipment
WO2014134966A1 (en) Method and apparatus for mapping and receiving resources, as well as method and apparatus for notifying and acquiring signalling
TWI555422B (en) Method of handling shortened resource block for mtc and related communication device
EP2712254B1 (en) Control channel transmission method and device
CN105934917A (en) Downlink control channel transmission method and device
KR20180131585A (en) Transmission methods, devices and systems
WO2014127676A1 (en) Transmission method of demodulation reference signal, base station and user equipment
TWI762531B (en) Method for resource mapping and communication equipment
TWI670958B (en) Reference signal mapping method and device
WO2017101029A1 (en) Csi-rs transmission method and base station
WO2017167158A1 (en) Method and device for transmitting pilot configuration information, and system
WO2012034444A1 (en) Method and device for notifying pilot pattern in inter-cell channel measurement
WO2016169479A1 (en) Data transmission method and device
WO2017075836A1 (en) Csi-rs configuration method and related apparatus
US11356220B2 (en) Uplink transmission method, terminal, and base station
WO2017166981A1 (en) Information processing method and device, and storage medium
EP3515024B1 (en) Method of transmitting control channel, network device and terminal device
US9444608B2 (en) Control channel transmission method and apparatus to implement transmission of ePDCCHs through an eREG in a unit physical resource block
WO2017156770A1 (en) Transmission device and method for channel state information reference signal, and communications system
US10992435B2 (en) Information indication method, device, and system
WO2018059424A1 (en) Reference signal mapping method and device
WO2019085661A1 (en) Index acquisition method and apparatus, storage medium and processor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907678

Country of ref document: EP

Kind code of ref document: A1