WO2014086148A1 - 混模测温通信相导线及测温通信系统 - Google Patents

混模测温通信相导线及测温通信系统 Download PDF

Info

Publication number
WO2014086148A1
WO2014086148A1 PCT/CN2013/079466 CN2013079466W WO2014086148A1 WO 2014086148 A1 WO2014086148 A1 WO 2014086148A1 CN 2013079466 W CN2013079466 W CN 2013079466W WO 2014086148 A1 WO2014086148 A1 WO 2014086148A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
stainless steel
wire
steel sleeve
temperature measurement
Prior art date
Application number
PCT/CN2013/079466
Other languages
English (en)
French (fr)
Inventor
舒彬
张颖
张凯
王伟勇
李伟
于红丽
林一凡
朱占巍
王志慧
Original Assignee
国家电网公司
国网北京市电力公司
北京电力经济技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 国网北京市电力公司, 北京电力经济技术研究院 filed Critical 国家电网公司
Priority to EP13861144.7A priority Critical patent/EP2930721A4/en
Priority to US14/650,225 priority patent/US10288495B2/en
Publication of WO2014086148A1 publication Critical patent/WO2014086148A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/324Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres using Raman scattering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4416Heterogeneous cables
    • G02B6/4422Heterogeneous cables of the overhead type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12107Grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12138Sensor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/08Several wires or the like stranded in the form of a rope
    • H01B5/10Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material
    • H01B5/108Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material stranded around communication or control conductors

Definitions

  • BACKGROUND OF THE INVENTION 1.
  • the present invention relates to the field of communications, and in particular to a mixed mode temperature measurement communication phase conductor and a temperature measurement communication system.
  • BACKGROUND OF THE INVENTION Optical fiber communication is widely used in power system communication due to its large capacity, good confidentiality, and low electromagnetic interference, and plays an important role in communication systems requiring higher and higher power.
  • Optical phase conductor (OPPC) is a new type of special power special optical cable embedded in fiber optic unit in the traditional wire structure. It has traditional overhead wires and communication wires. Usually, OPPC is a traditional power transmission wire.
  • One or more of the steel wires are replaced with a stainless steel tube light unit, and the steel tube light unit is twisted together with the (aluminum-clad) steel wire and the aluminum (alloy) wire.
  • the wire may cause local high temperature due to broken strands or fittings, which is harmful to operation and needs to be discovered and treated as early as possible.
  • the conventional OPPC cannot measure the temperature of the wire in full. Therefore, the problem of local high temperature of the wire cannot be found in time. In view of the fact that the conventional OPPC in the related art cannot perform temperature measurement on the entire wire, no effective solution has been proposed yet.
  • the main object of the present invention is to provide a mixed mode temperature measuring communication phase conductor and a temperature measuring communication system, so as to solve the problem that the conventional OPPC cannot measure the temperature of the whole wire.
  • a mixed mode temperature measurement communication phase conductor comprising: a stainless steel sleeve fiber unit and stranded together with the stainless steel sleeve fiber unit Supporting wire, stranded aluminum wire outside the stainless steel casing fiber unit and the support wire, the stainless steel casing fiber unit comprises: a plurality of single mode fibers and at least one multimode fiber, the fiber in the stainless steel casing fiber unit Stranded together.
  • the support line is a 14% AS line.
  • the support wire and the stainless steel sleeve fiber unit have a diameter of 2.5 mm.
  • the number of the single mode fibers is 20, and the number of the multimode fibers is four.
  • the length of the single mode fiber and the multimode fiber is greater than the length of the support line.
  • the mixed-mode temperature-measuring communication phase conductor includes a center layer, a first layer, a second layer, a third layer, and a fourth layer, wherein the center layer is a 14% AS line having a diameter of 2.5 mm,
  • the first layer is 5 14% AS wire with a diameter of 2.5mm, used to withstand the tensile force in the wire, and the stainless steel casing fiber unit for communication and temperature measurement
  • the second layer is 10 aluminum wires with a diameter of 3.22 mm for power transmission
  • the third layer is 16 aluminum wires with a diameter of 3.22 mm for power transmission
  • the fourth layer is 22 aluminum wires with a diameter of 3.22 mm. Used for power transmission.
  • a temperature measurement communication system comprising: a laser for emitting a light pulse to a multimode fiber; and a directional coupler for reflecting light of the light pulse Performing separation to obtain an echo; a photoelectric detecting device for measuring the intensity and delay of the echo, and calculating a temperature and a position of a reflection point of the reflected light according to the intensity and the delay; a mixed mode temperature measuring communication phase conductor,
  • the mixed mode temperature measuring communication phase conductor comprises: a stainless steel sleeve fiber unit and a support line stranded together with the stainless steel sleeve fiber unit, and a stranded aluminum wire outside the stainless steel sleeve fiber unit and the support line; the stainless steel sleeve fiber
  • the unit includes: a plurality of single mode fibers and at least one of the multimode fibers, wherein the fibers in the stainless steel sleeve fiber units are twisted together.
  • the support line is 14% AS line.
  • the support line and the stainless steel sleeve fiber unit have a diameter of 2.5 mm.
  • the number of the single-mode fibers is 20, and the number of the multimode fibers is four. Further, the length of the single mode fiber and the multimode fiber is greater than the length of the support line.
  • the mixed-mode temperature-measuring communication phase conductor includes a center layer, a first layer, a second layer, a third layer, and a fourth step.
  • the center layer is a 14% AS having a diameter of 2.5 mm.
  • the invention realizes the whole process temperature measurement of the wire by setting single mode fiber communication and measuring temperature by multimode fiber.
  • FIG. 1 is a schematic cross-sectional view of a mixed mode temperature measurement communication phase conductor according to an embodiment of the present invention
  • FIG. 2 is a structural diagram of a temperature measurement communication system according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. The invention will be described in detail below with reference to the drawings in conjunction with the embodiments.
  • the mixed mode temperature measurement communication phase conductor of the embodiment includes: a stainless steel sleeve fiber optic unit 3 and a stainless steel sleeve fiber.
  • the stainless steel sleeve fiber unit 3 includes: a plurality of single mode fibers and at least one multimode fiber, and the fibers are twisted together.
  • the single mode fiber is used for communication, and the multimode fiber is used for temperature measurement.
  • the support line is a 14% AS (steel core coated aluminum) wire, and the support wire and the stainless steel sleeve fiber unit have a diameter of 2.5 mm.
  • the single mode fiber is a single mode G.652 fiber, and the multimode fiber is Multimode G.651 fiber.
  • the number of the single mode fibers is 20, and the number of the multimode fibers is four.
  • the fiber in the stainless steel sleeve fiber unit is applied with a certain excess length.
  • the length of the single mode fiber and the multimode fiber may be greater than the length of the support line.
  • the mixed mode temperature measurement communication phase conductor provided by the embodiment of the present invention may include a center layer, a first layer, a second layer, a third layer, and a fourth layer, wherein the center layer is one having a diameter of 2.5 mm.
  • the second layer is 5 diameters of 2.5mm 14% AS wire for tensioning in the wire, and stainless steel casing fiber unit for communication and temperature measurement
  • the second layer is 10 aluminum wires with a diameter of 3.22mm for power transmission
  • the third layer is 16 aluminum wires with a diameter of 3.22mm for power transmission
  • the fourth layer is 22 aluminum wires with a diameter of 3.22mm. , used for transmission. Table 1
  • Table 2 is a technical parameter diagram of a mixed mode temperature measurement communication phase conductor provided by an embodiment of the present invention.
  • the outermost stranding direction is "right direction"
  • the mixed mode temperature measurement communication phase wire provided by the embodiment of the invention can realize the whole process temperature measurement of the wire by setting single mode fiber communication and measuring temperature through multimode fiber.
  • 2 is a temperature measurement communication system according to an embodiment of the present invention.
  • the temperature measurement communication system includes: a laser 21 for emitting a light pulse to a multimode fiber.
  • the directional coupler 22 is configured to separate the reflected light of the light pulse to obtain an echo.
  • the photodetecting device 23 is configured to measure the intensity and delay of the echo, and calculate the temperature and position of the reflected point of the reflected light according to the intensity and the delay.
  • the mixed mode temperature measurement communication phase conductor 24 comprises: a stainless steel sleeve fiber unit and a support line stranded together with the stainless steel sleeve fiber unit, stranded outside the support line of the stainless steel sleeve fiber unit Aluminum wire.
  • the stainless steel sleeve fiber unit comprises: a plurality of single mode fibers and at least one of the multimode fibers, wherein the fibers in the stainless steel sleeve fiber units are twisted together.
  • the single mode fiber is used for communication, and the multimode fiber is used for temperature measurement.
  • the support line is a 14% AS line
  • the diameter of the support line and the stainless steel sleeve fiber unit is
  • the single mode fiber is a single mode G.652 fiber
  • the multimode fiber is a multimode G.651 fiber.
  • the number of the single mode fibers is 20, and the number of the multimode fibers is four.
  • the fiber in the stainless steel sleeve fiber unit is applied with a certain excess length.
  • the length of the single mode fiber and the multimode fiber may be greater than the length of the support line.
  • the mixed mode temperature measurement communication phase conductor provided by the embodiment of the present invention may include a center layer, a first layer, a second layer, a third layer, and a fourth layer.
  • the center layer is a 14% AS having a diameter of 2.5 mm.
  • Wire, used to withstand the tension in the wire the second layer is 5 diameters of 2.5mm 14% AS wire, used to withstand the tension in the wire, and stainless steel casing fiber unit for communication and temperature measurement, second The layer is 10 aluminum wires with a diameter of 3.22mm for power transmission, the third layer is 16 aluminum wires with a diameter of 3.22mm for power transmission, and the fourth layer is 22 aluminum wires with a diameter of 3.22mm for Transmission.
  • 14% AS mainly bears the tension resistance effect
  • the aluminum wire mainly bears the current conveying effect.
  • the stainless steel casing mainly bears the mechanical protection function of the 24-core fiber bundle to avoid crushing the fiber during transportation, construction and operation.
  • the temperature measurement communication system in the embodiment of the invention can perform real-time full-time point-by-point temperature monitoring on the high-voltage transmission line conductor, collect continuous measurement information, and cooperate with three-point full-section contact type temperature measurement to realize three-phase wire temperature of the transmission line.
  • the temperature measurement communication system in the embodiment of the invention performs temperature measurement and positioning according to the Raman reflection principle.
  • Raman reflection refers to the laser emitting a pulse of light to the fiber. A part of the light will form backscattered light and forward scattered light in the fiber.
  • the directional coupler collects the backscattered light and sends it to the photoelectric detection system. analysis. The higher the temperature of the reflection point (the ambient temperature of the fiber at this point), the greater the intensity of the reflected light. Then, the intensity and delay analysis of the reflected light collected by the directional coupler can be calculated according to the empirical model. The temperature and position of the reflection point. Since the multimode fiber is more reflective than the single mode fiber, the measurement accuracy is more accurate.
  • multimode fiber temperature measurement and single mode fiber communication are used to mix the single mode and the multimode, and the color standard ring is used to form the mixed mode.
  • Fiber optic technology The temperature measurement communication system provided by the embodiment of the invention can realize the whole process temperature measurement of the wire by setting single mode fiber communication and measuring temperature through the multimode fiber.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

本发明公开了一种混模测温通信相导线及测温通信系统。其中,该混模测温通信相导线包括:不锈钢套管光纤单元及与该不锈钢套管光纤单元一起绞合的支撑线,在不锈钢套管光纤单元与支撑线外绞合铝线;该不锈钢套管光纤单元包括:多根单模光纤与至少一根多模光纤,该不锈钢套管光纤单元中的光纤之间相互绞合。本发明通过设置单模光纤通信,通过多模光纤测温,实现了可以对导线进行全程测温。

Description

混模测温通信相导线及测温通信系统 技术领域 本发明涉及通信领域, 具体而言,涉及一种混模测温通信相导线及测温通信系统。 背景技术 光纤通信由于其容量大、 保密性好、 不易受电磁干扰等优点, 被广泛应用于电力 系统通信中, 在要求越来越高的电力系统通信中发挥着重要的作用。 光纤复合导线(Optical phase conductor, 以下简称为 OPPC)是在传统的导线结构 中嵌入光纤单元的一种新型特种电力特种光缆,具有传统架空导线和通信能力的导线, 通常, OPPC 是将传统输电导线中的一根或多根钢丝用不锈钢管光单元进行替换, 使 钢管光单元与 (铝包) 钢线、 铝 (合金) 线共同绞合。 但是, 导线因断股或金具问题 会产生局部高温, 有害运行, 需要及时发现并尽早处理, 而传统的 OPPC不能够对导 线进行全程测温, 因此, 对于导线产生局部高温的问题不能及时发现。 针对相关技术中传统的 OPPC不能够对导线进行全程测温的问题, 目前尚未提出 有效的解决方案。 发明内容 本发明的主要目的在于提供一种混模测温通信相导线及测温通信系统, 以解决传 统的 OPPC不能够对导线进行全程测温的问题。 为了实现上述目的, 根据本发明的一个方面, 提供了一种混模测温通信相导线, 该混模测温通信相导线包括: 不锈钢套管光纤单元及与该不锈钢套管光纤单元一起绞 合的支撑线, 在不锈钢套管光纤单元与支撑线外绞合铝线, 该不锈钢套管光纤单元包 括: 多根单模光纤与至少一根多模光纤, 该不锈钢套管光纤单元中的光纤之间相互绞 合。 进一步地, 该支撑线为 14%AS线。 进一步地, 该支撑线和该不锈钢套管光纤单元的直径为 2.5mm。 进一步地, 该单模光纤的数量为 20根, 该多模光纤的数量为 4根。 进一步地, 该单模光纤和该多模光纤的长度大于该支撑线的长度。 进一步地, 混模测温通信相导线包括中心层、 第一层、 第二层、 第三层和第四 进一步地, 所述中心层为 1根直径为 2.5mm的 14%AS线, 用于承受导线中拉 力, 所述第一层为 5根直径为 2.5mm的 14%AS线, 用于承受导线中拉力, 以及不 锈钢套管光纤单元, 用于通信及测温, 所述第二层为 10根直径为 3.22mm的铝线, 用于输电, 所述第三层为 16根直径为 3.22mm的铝线, 用于输电, 所述第四层为 22 根直径为 3.22mm的铝线, 用于输电。 根据本发明的另一个方面, 还提供了一种测温通信系统, 该测温通信系统包括: 激光器, 用于向多模光纤发射光脉冲; 定向耦合器, 用于对该光脉冲的反射光进行分 离, 得到回波; 光电检测装置, 用于测量该回波的强度和延时, 并根据该强度和延时 计算该反射光的反射点的温度和位置; 混模测温通信相导线, 该混模测温通信相导线 包括: 不锈钢套管光纤单元及与该不锈钢套管光纤单元一起绞合的支撑线, 在不锈钢 套管光纤单元与支撑线外绞合铝线; 该不锈钢套管光纤单元包括: 多根单模光纤与至 少一根该多模光纤, 该不锈钢套管光纤单元中的光纤之间相互绞合。 进进一—步步第第, 该支撑线为 14%AS线。 进进一—步步地地, 该支撑线和该不锈钢套管光纤单元的直径为 2.5mm。 进进一—步步地地, 该单模光纤的数量为 20根, 该多模光纤的数量为 4根。 进进一—步步地地, 该单模光纤和该多模光纤的长度大于该支撑线的长度。 进—步地地, 混模测温通信相导线包括中心层、 第一层、 第二层、 第三层和第四 进—步地 所述中心层为 1根直径为 2.5mm的 14%AS线, 用于承受导线中拉 力, 所述第一层为 5根直径为 2.5mm的 14%AS线, 用于承受导线中拉力, 以及不 锈钢套管光纤单元, 用于通信及测温, 所述第二层为 10根直径为 3.22mm的铝线, 用于输电, 所述第三层为 16根直径为 3.22mm的铝线, 用于输电, 所述第四层为 22 根直径为 3.22mm的铝线, 用于输电。 本发明通过设置单模光纤通信, 通过多模光纤测温, 实现了可以对导线进行全程 测温。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是本发明实施例提供的一种混模测温通信相导线的断面示意图; 以及 图 2是根据本发明实施例提供的一种测温通信系统的结构图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 图 1是本发明实施例提供的一种混模测温通信相导线, 如图 1所示, 该实施例的 混模测温通信相导线包括: 不锈钢套管光纤单元 3及与不锈钢套管光纤单元 3—起绞合的支撑线 2, 在不锈 钢套管光纤单元与支撑线外绞合铝线 1。 所述不锈钢套管光纤单元 3包括: 多根单模光纤与至少一根多模光纤, 光纤之间相互绞合。 其中, 该单模光纤用于通信, 该多模光纤用于测温。 例如, 该支撑线为 14%AS (钢芯覆铝) 线 , 该支撑线和该不锈钢套管光纤单元 的直径为 2.5mm, 该单模光纤为单模 G.652光纤, 该多模光纤为多模 G.651光纤。 优选地, 该单模光纤的数量为 20根, 该多模光纤的数量为 4根。 为保证光纤在导线运行中不受拉伸, 该不锈钢套管光纤单元中的光纤应用一定的 余长, 例如, 该单模光纤和该多模光纤的长度可以大于该支撑线的长度。 参见表 1, 本发明实施例提供的混模测温通信相导线可以包括中心层、 第一层、 第二层、 第三层和第四层, 其中, 中心层为 1根直径为 2.5mm的 14%AS 线, 用于承 受导线中拉力,第二层为 5根直径为 2.5mm的 14%AS 线,用于用于承受导线中拉力, 以及不锈钢套管光纤单元, 用于通信及测温, 第二层为 10根直径为 3.22mm的铝线, 用于输电, 第三层为 16根直径为 3.22mm的铝线, 用于输电, 第四层为 22根直径为 3.22mm的铝线, 用于输电。 表 1
Figure imgf000006_0001
参见表 2, 表 2是本发明实施例提供的一种混模测温通信相导线的技术参数图表。 表 2
参照标准: IEEE std 1138
最外层绞合方向为"右向"
20根 G.652
光纤芯数 &型号
4根 G.651
标称外径 26.82 mm
承载截面积 420.33 mm2
AS面积 29.45 mm2
AL面积 390.88 mm2
单位重量 1321.0kg/km
技 额定拉断力 (RTS) 103.9kN
最大允许应力 (MAT)(40%RTS) 98.9N/mm2
年平均运行应力 (EDS)(25%RTS) 61.8N/mm2
应变限量应力 (70%RTS) 173.1N/mm2
综合弹性模量 (E-Modulus) 64.0GPa
线膨胀系数 21.0 lO-6/°C
20 °C 直流电阻 0.0725Q/km
最小充许弯曲半径 536 mm
拉力重量比 8.02 km
参考载流量 40— 70°C620A
(;风速 0.5m/s,导体表面吸收系数 0.9 1/k) 40— 80 °C 760 A
(日照强度 0.1w/cm2,导体辐射系数 0.9 1/k) 40— 90°C 869A
、〉曰
安装温度 -10°C〜+50°C
工作与运输温度 -40°C〜+80°C
注: 所有尺寸和数据均为标称值 本发明实施例提供的混模测温通信相导线, 通过设置单模光纤通信, 通过多模光 纤测温, 实现了可以对导线进行全程测温。 图 2是本发明实施例提供的一种测温通信系统, 参见图 2, 该测温通信系统包括: 激光器 21, 用于向多模光纤发射光脉冲。 定向耦合器 22, 用于对该光脉冲的反射光进行分离, 得到回波。 光电检测装置 23, 用于测量该回波的强度和延时, 并根据该强度和延时计算该反 射光的反射点的温度和位置。 混模测温通信相导线 24, 混模测温通信相导线包括: 不锈钢套管光纤单元及与该不锈钢套管光纤单元一起绞合的支撑线, 在不锈钢套 管光纤单元与支撑线外绞合铝线。 该不锈钢套管光纤单元包括: 多根单模光纤与至少一根该多模光纤, 该不锈钢套管光纤单元中的光纤之间相互 绞合。 其中, 该单模光纤用于通信, 该多模光纤用于测温。 例如, 该支撑线为 14%AS 线 , 该支撑线和该不锈钢套管光纤单元的直径为
2.5mm, 该单模光纤为单模 G.652光纤, 该多模光纤为多模 G.651光纤。 优选地, 该单模光纤的数量为 20根, 该多模光纤的数量为 4根。 为保证光纤在导线运行中不受拉伸, 该不锈钢套管光纤单元中的光纤应用一定的 余长, 例如, 该单模光纤和该多模光纤的长度可以大于该支撑线的长度。 本发明实施例提供的混模测温通信相导线可以包括中心层、 第一层、 第二层、 第 三层和第四层, 优选地, 中心层为 1根直径为 2.5mm的 14%AS 线, 用于承受导线中 张力, 第二层为 5根直径为 2.5mm的 14%AS 线, 用于用于承受导线中张力, 以及不 锈钢套管光纤单元, 用于通信及测温, 第二层为 10根直径为 3.22mm的铝线, 用于输 电, 第三层为 16根直径为 3.22mm的铝线, 用于输电, 第四层为 22根直径为 3.22mm 的铝线,用于输电。其中, 14%AS主要承担耐张力作用,铝线主要承担电流输送作用, 不锈钢套管主要承担 24芯的光纤束的机械保护作用, 避免运输、施工、运行中压伤光 纤。 本发明实施例中的测温通信系统可对高压输电线路导线进行实时全程逐点温度监 测, 采集连续测量信息, 配合三点全断面接触式测温, 可实现输电线路三相导线温度
本发明实施例中的测温通信系统依据拉曼反射原理进行温度测量与定位。 拉曼反 射是指激光器向光纤发射光脉冲, 有一部分光会在光纤中形成后向散射光和前向散射 光, 经定向耦合器收集后向散射光送至光电检测系统进光强度、 延时分析。 反射点的 温度 (该点光纤的环境温度) 越高, 反射光的强度也越大, 然后对定向耦合器收集到 的后向散射光进行反射光的强度和延时分析, 依据经验模型可以计算出反射点的温度 和位置。 由于多模光纤比单模光纤反射更强, 因此测量精度更准, 因此采用多模光纤 测温、 单模光纤通信, 将单模与多模混合在一起, 通过色标环区分, 构成混模光纤技 术。 本发明实施例提供的一种测温通信系统, 通过设置单模光纤通信, 通过多模光纤 测温, 实现了可以对导线进行全程测温。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书 一种混模测温通信相导线, 其特征在于, 包括:
不锈钢套管光纤单元及与所述不锈钢套管光纤单元一起绞合的支撑线, 在 不锈钢套管光纤单元与支撑线外绞合铝线;
所述不锈钢套管光纤单元包括:
多根单模光纤与至少一根多模光纤, 所述不锈钢套管光纤单元中的光纤之 间相互绞合。 根据权利要求 1所述的模测温通信相导线, 其特征在于, 所述支撑线为 14%AS 线。 根据权利要求 1所述的模测温通信相导线, 其特征在于, 所述支撑线和所述不 锈钢套管光纤单元的直径为 2.5mm。 根据权利要求 1所述的模测温通信相导线, 其特征在于, 所述单模光纤的数量 为 20根, 所述多模光纤的数量为 4根。 根据权利要求 1所述的模测温通信相导线, 其特征在于, 所述单模光纤和所述 多模光纤的长度大于所述支撑线的长度。 根据权利要求 1所述的模测温通信相导线, 其特征在于, 所述混模测温通信相 导线包括中心层、 第一层、 第二层、 第三层和第四层。 根据权利要求 1所述的模测温通信相导线, 其特征在于, 所述中心层为 1根直 径为 2.5mm的 14%AS线, 用于承受导线中拉力, 所述第一层为 5根直径为 2.5mm的 14%AS线, 用于承受导线中拉力, 以及不锈钢套管光纤单元, 用于 通信及测温, 所述第二层为 10根直径为 3.22mm的铝线, 用于输电, 所述第三 层为 16根直径为 3.22mm的铝线,用于输电,所述第四层为 22根直径为 3.22mm 的铝线, 用于输电。 一种测温通信系统, 其特征在于, 包括:
激光器, 用于向多模光纤发射光脉冲;
定向耦合器, 用于对所述光脉冲的反射光进行分离, 得到回波; 光电检测装置, 用于测量所述回波的强度和延时, 并根据所述强度和延时 计算所述反射光的反射点的温度和位置;
混模测温通信相导线, 所述混模测温通信相导线包括:
不锈钢套管光纤单元及与所述不锈钢套管光纤单元一起绞合的支撑线, 在 不锈钢套管光纤单元与支撑线外绞合铝线;
所述不锈钢套管光纤单元包括:
多根单模光纤与至少一根所述多模光纤, 所述不锈钢套管光纤单元中的光 纤之间相互绞合。
9. 根据权利要求 8所述的系统, 其特征在于, 所述支撑线为 14%AS线。
10. 根据权利要求 8所述的系统, 其特征在于, 所述支撑线和所述不锈钢套管光纤 单元的直径为 2.5mm。
11. 根据权利要求 8所述的系统, 其特征在于, 所述单模光纤的数量为 20根, 所述 多模光纤的数量为 4根。
12. 根据权利要求 8所述的系统, 其特征在于, 所述单模光纤和所述多模光纤的长 度大于所述支撑线的长度。
13. 根据权利要求 8所述的系统, 其特征在于, 所述混模测温通信相导线包括中心 层、 第一层、 第二层、 第三层和第四层。
14. 根据权利要求 8所述的系统, 其特征在于, 所述中心层为 1根直径为 2.5mm的 14%AS线, 用于承受导线中拉力, 所述第一层为 5根直径为 2.5mm的 14%AS 线, 用于承受导线中拉力, 以及不锈钢套管光纤单元, 用于通信及测温, 所述 第二层为 10根直径为 3.22mm的铝线, 用于输电, 所述第三层为 16根直径为 3.22mm的铝线, 用于输电, 所述第四层为 22根直径为 3.22mm的铝线, 用于 输电。
PCT/CN2013/079466 2012-12-06 2013-07-16 混模测温通信相导线及测温通信系统 WO2014086148A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13861144.7A EP2930721A4 (en) 2012-12-06 2013-07-16 PHASE DRIVER FOR MIXED MODE TEMPERATURE MEASURING COMMUNICATION AND TEMPERATURE MEASURING COMMUNICATION SYSTEM
US14/650,225 US10288495B2 (en) 2012-12-06 2013-07-16 Mixed-mode temperature measurement communication phase conductor and temperature measurement communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210521712.9 2012-12-06
CN201210521712.9A CN103854722A (zh) 2012-12-06 2012-12-06 混模测温通信相导线及测温通信系统

Publications (1)

Publication Number Publication Date
WO2014086148A1 true WO2014086148A1 (zh) 2014-06-12

Family

ID=50862268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079466 WO2014086148A1 (zh) 2012-12-06 2013-07-16 混模测温通信相导线及测温通信系统

Country Status (4)

Country Link
US (1) US10288495B2 (zh)
EP (1) EP2930721A4 (zh)
CN (1) CN103854722A (zh)
WO (1) WO2014086148A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10288803B2 (en) * 2016-01-20 2019-05-14 Schott Corporation, Inc. Foveal image inverter
JP6694754B2 (ja) * 2016-05-16 2020-05-20 株式会社フジクラ レーザ装置及びレーザシステム
BR112020015181B1 (pt) * 2018-01-24 2023-11-14 Ctc Global Corporation Disposição de terminação para um cabo elétrico suspenso
CN110261965B (zh) * 2019-07-02 2021-06-08 北京飞拓新创通信技术有限公司 一种可增强表面拉曼散射信号的光纤头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1052369A (zh) * 1990-12-29 1991-06-19 清华大学 多路复用激光调频外差干涉光纤维测量仪
CN101923921A (zh) * 2009-06-11 2010-12-22 华北电力科学研究院有限责任公司 电力光纤复合导线
CN201936681U (zh) * 2011-01-22 2011-08-17 深圳市特发信息股份有限公司 一种具有测温功能的光纤复合相线
CN102468008A (zh) * 2010-11-16 2012-05-23 杭州华新电力线缆有限公司 多相电光纤复合电力电缆
CN202957055U (zh) * 2012-12-06 2013-05-29 国家电网公司 混模测温通信相导线及测温通信系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3070560B2 (ja) * 1997-01-30 2000-07-31 住友電気工業株式会社 自己支持型光ケーブルの製造方法
ATE235679T1 (de) * 1998-08-03 2003-04-15 Avu Ag Fuer Versorgungsunterne Überwachung und nachrichtenübermittlung in rohren durch verbundglasfaserkabel und deren verlegung
DE19844753B4 (de) * 1998-08-03 2004-07-15 AVU Aktiengesellschaft für Versorgungs-Unternehmen Vorrichtung zum Überwachen des Zustands von Rohren, Rohrsystemen, Pipelines oder dergleichen Gas oder flüssige Medien führenden Einrichtungen und Verfahren und Einrichtung zum Verlegen einer Kabel-Verbundanordnung für die Zustandsüberwachung und Nachrichtenübermittlung
US20040124001A1 (en) * 2002-09-09 2004-07-01 Sanders Eugene T. Overhead electrical cable with temperature sensing means
WO2009014649A1 (en) * 2007-07-20 2009-01-29 Sensortran, Inc. New pure silica core multimode fiber sensors for dts applications
CN201820023U (zh) * 2010-10-25 2011-05-04 四川汇源塑料光纤有限公司 具有色条标识的多芯塑料光纤光缆
CN102012285B (zh) * 2010-11-16 2013-09-04 江苏通光光电子有限公司 微形传感光单元及其嵌入式应用
CN202197280U (zh) * 2011-08-30 2012-04-18 华南师范大学 融合光时域反射计与分布式光纤拉曼温度传感器的系统
CN102360633B (zh) * 2011-09-30 2013-04-03 江苏亨通电力电缆有限公司 铜带屏蔽光纤测温与通信复合中压电缆成缆工艺
CN202512945U (zh) * 2012-04-20 2012-10-31 河南科信电缆有限公司 一种具有测温光栅的碳纤维光电复合电缆
US9769201B2 (en) * 2015-03-06 2017-09-19 Radware, Ltd. System and method thereof for multi-tiered mitigation of cyber-attacks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1052369A (zh) * 1990-12-29 1991-06-19 清华大学 多路复用激光调频外差干涉光纤维测量仪
CN101923921A (zh) * 2009-06-11 2010-12-22 华北电力科学研究院有限责任公司 电力光纤复合导线
CN102468008A (zh) * 2010-11-16 2012-05-23 杭州华新电力线缆有限公司 多相电光纤复合电力电缆
CN201936681U (zh) * 2011-01-22 2011-08-17 深圳市特发信息股份有限公司 一种具有测温功能的光纤复合相线
CN202957055U (zh) * 2012-12-06 2013-05-29 国家电网公司 混模测温通信相导线及测温通信系统

Also Published As

Publication number Publication date
CN103854722A (zh) 2014-06-11
US20150308904A1 (en) 2015-10-29
EP2930721A4 (en) 2016-07-27
EP2930721A1 (en) 2015-10-14
US10288495B2 (en) 2019-05-14

Similar Documents

Publication Publication Date Title
WO2014086148A1 (zh) 混模测温通信相导线及测温通信系统
RU2012115445A (ru) Электрический кабель с датчиком изгиба и системой контроля и способ обнаружения изгиба в по меньшей мере одном электрическом кабеле
CN101957244B (zh) 高空间分辨力分布式光纤传感系统
DK1420279T3 (da) Optimeret fiberoptisk kabel med en tekstureret ydre overflade egnet til installering i mikroledninger ved blæsning
JP2012189580A (ja) マルチコア光ファイバから出力される光の受光方法、及び、分離装置
CN103901532A (zh) 多芯光纤、采用该多芯光纤的传感装置及其运行方法
JP2013127608A5 (ja) 光ファイバ
CN104796191B (zh) 一种传输装置
CN103325470B (zh) 用于分布式温度应变监测的光纤复合架空相线及系统
JP5313079B2 (ja) 光ファイバの特性評価方法
CN202957055U (zh) 混模测温通信相导线及测温通信系统
IT202000005347A1 (it) Conduttore per linee elettriche aeree nude con anima in materiale composito e sistema di monitoraggio in tempo reale per il controllo dell’integrità strutturale del conduttore durante la produzione, lo stendimento e l’installazione
CN103134533B (zh) 基于双通道的分布式光纤传感装置及其运行方法
CN108861806B (zh) 一种管道光缆施工用放线装置
CN104535220B (zh) 一种电力架空光缆分布式在线监测装置
CN103353643A (zh) 一种8字形自承式多芯光缆
JP2017110921A (ja) ケーブル診断システムおよびセンシング・ケーブル
CN104298139A (zh) 一种筛选设备自动控制系统
CN204359461U (zh) 一种电力架空光缆分布式在线监测装置
CN204373692U (zh) 一种电力架空光缆温度及应变分布式监测装置
JP2013096734A (ja) 光ファイバの診断方法
CN208818224U (zh) 一种碳纤维光纤复合架空相线在线温度及应力监测系统
CN205722958U (zh) 一种复合型电力电缆
CN205920813U (zh) 集成电缆
CN103822722B (zh) 一种基于光纤复合架空相线的长距离分布式温度监测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861144

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013861144

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14650225

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE