WO2014084665A1 - Method for allocating resources in wireless lan system and wireless lan system - Google Patents

Method for allocating resources in wireless lan system and wireless lan system Download PDF

Info

Publication number
WO2014084665A1
WO2014084665A1 PCT/KR2013/011012 KR2013011012W WO2014084665A1 WO 2014084665 A1 WO2014084665 A1 WO 2014084665A1 KR 2013011012 W KR2013011012 W KR 2013011012W WO 2014084665 A1 WO2014084665 A1 WO 2014084665A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
transmission
root
raw
information
Prior art date
Application number
PCT/KR2013/011012
Other languages
French (fr)
Korean (ko)
Inventor
이재승
정민호
권형진
이석규
정운철
신창섭
표철식
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130146441A external-priority patent/KR102166184B1/en
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Priority to US14/648,206 priority Critical patent/US9693362B2/en
Publication of WO2014084665A1 publication Critical patent/WO2014084665A1/en
Priority to US15/603,260 priority patent/US10070448B2/en
Priority to US16/046,846 priority patent/US10499405B2/en
Priority to US16/669,074 priority patent/US10939452B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the following description relates to a method of allocating resources in a WLAN system.
  • a WLAN system introduces a relay operation. Even when using the relay method, it is preferable to use the slotted method to efficiently support the transmission of a large number of STAs.
  • a WLAN system includes: an access point for allocating resources for communication between a relay and a station connected to the relay; A relay for allocating a restricted access window or slot for communication with the station based on the allocated resources; And a station in communication with the relay based on the assigned restricted access window or slot.
  • an access point includes a resource allocator for allocating resources for communication between a relay and a station connected to the relay; And a communication unit for transmitting the information about the allocated resource to the relay.
  • the relay may include: a resource allocator configured to allocate resources for communication between the relay and a station connected to the relay based on resource allocation information received from an access point; And a communication unit for transmitting the information about the allocated resource to the station.
  • a station includes: a controller for identifying a resource allocated to a station based on a beacon received from a relay; And a communication unit configured to communicate with the relay based on the identified resource.
  • a resource allocation method performed by the access point may include communication between the access point and the relay, and communication between the access point and the access point. Allocating a first resource for communication between connected stations; And allocating a second resource for communication between the relay and the station connected to the relay.
  • a resource allocation method performed by an access point may further include transmitting resource allocation information about the allocated second resource to the relay.
  • the resource allocation method performed by the access point may further include adjusting the allocated second resource based on the interference information received from the relay.
  • the resource allocation method performed by the access point may further include adjusting the allocated second resource based on the station information received from the relay.
  • a resource allocation method performed by an access point may further include transmitting a beacon including information about the allocated first resource and the allocated second resource to the relay.
  • the resource allocation method performed by the relay includes: receiving resource allocation information from the access point; And allocating a resource for communication between the relay and the station connected to the relay based on the received resource allocation information.
  • the resource allocation method performed by the relay may further include transmitting a beacon including the information about the allocated resource to the station.
  • the communication method performed by the station includes: identifying resources allocated to the station based on a beacon received from the relay; And communicating with the relay based on the identified resource.
  • FIG. 1 is a diagram illustrating an example of a method for transmitting data using a relay in a WLAN system according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of a basic service set (BSS) configuration when using a relay method according to an embodiment.
  • BSS basic service set
  • FIG 3 is a diagram illustrating an example of a method of using a restricted access window (RAW) when using a relay according to an embodiment.
  • RAW restricted access window
  • FIG. 4 is a diagram illustrating another example of a method of using a limited access window when using a relay according to an embodiment.
  • FIG. 5 illustrates another example of a method of using a restricted access window when using a relay according to an embodiment.
  • FIG. 6 illustrates a RAW structure in a slotted transmission scheme according to an embodiment.
  • FIG 7 illustrates an example of sharing the same RAW using different channels according to an embodiment.
  • FIGS. 8 through 9 are diagrams illustrating an example of allocating a plurality of clusters to one RAW by using offset information, according to an exemplary embodiment.
  • FIG. 10 is a diagram for describing a method of assigning an AID to a cluster, according to an exemplary embodiment.
  • FIG. 11 is a diagram illustrating an allocation position of a beacon transmitted by a relay AP (R-AP) according to an embodiment.
  • FIG. 12 is a diagram for describing a method of allocating slots for STAs according to an embodiment.
  • FIG. 13 illustrates a simplified leveled slot allocation according to an embodiment.
  • FIG. 14 is a diagram illustrating a RAW allocation method for a relay when a plurality of relays are used according to an embodiment.
  • 15 is a diagram illustrating an example of a RAW allocation method when a plurality of relays are used according to an embodiment.
  • FIG. 16 illustrates an example of a RAW allocation method for a relay when a plurality of relays are used according to another embodiment.
  • 17 is a diagram illustrating a leveled slot allocation method in a more generalized form according to an embodiment.
  • FIG. 18 illustrates an example of a leveled slot allocation method using an empty slot according to an embodiment.
  • 19 illustrates an example of a leveled slot allocation method using an empty slot according to another embodiment.
  • FIG. 20 illustrates an example of a leveled slot allocation method using empty RAW according to an embodiment.
  • FIG. 21 illustrates an example of a leveled slot allocation method using empty RAW according to another embodiment.
  • 22 illustrates an example of a leveled slot allocation method using sub RAW according to an embodiment.
  • FIG. 23 is a diagram illustrating a leveled slot allocation method according to another embodiment in a more generalized form.
  • FIG. 24 illustrates an example of a leveled slot allocation method using a DRAW according to an embodiment.
  • 25 is a diagram illustrating another example of a leveled slot allocation method using DRAW according to an embodiment.
  • 26 to 28 illustrate examples of a DRAW allocation method when a leveled slot allocation method is used, according to an embodiment.
  • 29 illustrates an example of allocating frequency subbands for a relay according to an embodiment.
  • FIG. 30 is a diagram for describing a case of using frequency selective transmission (FST) in a cluster when allocating a subband for a relay according to an embodiment.
  • FST frequency selective transmission
  • 31 illustrates an example of sharing RAW using different frequency subbands according to an embodiment.
  • 32 illustrates an example of transmitting data using different frequency subbands according to an embodiment.
  • 33 through 36 illustrate examples of a method of sharing RAW using different frequency subbands in a leveled slot allocation method using empty slots, according to an exemplary embodiment.
  • FIG. 37 illustrates an example of a RAW sharing method when clusters are spatially separated according to an embodiment.
  • 38 illustrates an example of a method of performing RAW sharing using a time domain according to an embodiment.
  • 39 illustrates an example of allocating a plurality of frequency subbands according to an embodiment.
  • 40 is a diagram illustrating an example of allocating a plurality of frequency subbands according to another embodiment.
  • FIG. 41 is a diagram illustrating an example of a format for Relay Resource Allocation IE of Table 3 according to an embodiment.
  • FIG. 41 is a diagram illustrating an example of a format for Relay Resource Allocation IE of Table 3 according to an embodiment.
  • FIG. 42 is a diagram illustrating an example of allocating resources for each time interval, according to an embodiment.
  • FIG. 43 illustrates an example of transmitting using a Relay Resource Allocation IE in a single frequency subband according to an embodiment.
  • 44 illustrates another example of transmitting using a Relay Resource Allocation IE in a single frequency subband according to an embodiment.
  • 45 is a diagram illustrating an example of transmitting using a Relay Resource Allocation IE in a multi-frequency subband according to an embodiment.
  • 46 illustrates an example of allocating a relay transmission interval according to an embodiment.
  • 47 is a diagram illustrating a format for frame request according to an embodiment.
  • FIG. 48 is a diagram illustrating a format for a Frame Report according to an embodiment.
  • FIG. 49 is a diagram illustrating an example of a format of a Measurement Request field according to an embodiment.
  • 50 is a diagram illustrating an example of a format of a measurement report field according to an embodiment.
  • FIG. 51 is a diagram illustrating a method of measuring interference on a neighbor relay or a neighbor relay BSS using a frame request / response according to an embodiment.
  • 52 is a diagram illustrating a configuration of an access point according to an embodiment.
  • 53 is a diagram illustrating a configuration of a relay according to an embodiment.
  • 54 is a diagram illustrating a configuration of a station according to an embodiment.
  • 55 is a flowchart illustrating an operation of a resource allocation method performed by an access point according to an embodiment.
  • 56 is a flowchart illustrating an operation of a resource allocation method performed by a relay, according to an embodiment.
  • 57 is a flowchart illustrating an operation of a communication method performed by a station, according to an embodiment.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802 system, 3GPP system, 3GPP LTE and LTE-A (LTE-Advanced) system and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • Wi-Fi IEEE 802.11
  • WiMAX IEEE 802.16
  • E-UTRA Evolved UTRA
  • FIG. 1 is a diagram illustrating an example of a method for transmitting data using a relay in a WLAN system according to an embodiment.
  • an access point transmits data (or a frame) to a station (STA)
  • STA station
  • the transmission efficiency may be reduced.
  • the STA transmits data to the AP
  • the STA since the STA has a lower transmission power than the AP, the STA may not properly transmit data to the AP.
  • a relay is used.
  • the relay may be used not only for uplink transmission but also for downlink transmission from the AP to the STA.
  • efficient resource allocation such as efficient RAW operation, transmission slot allocation, transmission time interval allocation, and subband allocation are necessary to increase transmission efficiency.
  • RAW and transmission slots must be properly allocated so that a large number of STAs can transmit data without collision.
  • a greater number of STAs must be able to simultaneously transmit data through a method such as sharing the same RAW or transmission slots or using different subbands during the same time interval.
  • FIG. 2 is a diagram illustrating an example of a basic service set (BSS) configuration when using a relay method according to an embodiment.
  • BSS basic service set
  • the WLAN system may include an access point (AP), a relay, and a station.
  • the scope of the basic service set (BSS) of the access point may be extended by the relay.
  • the access point may be referred to as AP, Root AP, or RtAP, and the relay may be referred to as Relay AP, Relay STA, or R-AP.
  • the station may be referred to as a STA and includes various communication terminals that may be connected to an access point or a relay.
  • the basic service set of the access point may be referred to as Root AP BSS.
  • the relay can configure its basic service set, Relay BSS, and within the Relay BSS, the relay can act as an access point to the STA.
  • Root AP BSS and Relay BSS may overlap each other.
  • Root AP BSS indicates an area where the STA can maintain communication with the Root AP
  • Relay BSS indicates an area where the STA can maintain communication with the Relay.
  • Root AP BSS can extend communication area by Relay, and BSS of Root AP whose area is extended by Relay is called Extended BSS (Extended BSS).
  • the extended BSS may include a relay BSS of a relay connected to the root BSS and the root AP.
  • Root AP can check the overall network status of the WLAN system. Root AP and relay can transmit a beacon including information about the allocated resources.
  • the beacon transmitted by the Root AP may be referred to as Root Beacon, Rt-Beacon, or Root AP Beacon, and the beacon transmitted by the relay may be referred to as Relay Beacon, or R-Beacon.
  • the STA may be connected to the root AP via a relay or may be directly connected to the root AP.
  • the AP may generate one BSS, and many STAs may be included in the BSS.
  • the STA directly transmits data to the AP as in STA M in FIG. 2, but may also exchange data with the AP via a relay for extending a transmission range.
  • Several relays may be associated with one AP, and each relay may relay data transmitted and received from a plurality of STAs to the AP.
  • FIG 3 is a diagram illustrating an example of a method of using a restricted access window (RAW) when using a relay according to an embodiment.
  • RAW restricted access window
  • the first method is to allocate RAW per transmission between STA and Relay (hereinafter referred to as 'bottom hop' transmission) and between Relay and AP (hereinafter referred to as 'top hop' transmission).
  • 'bottom hop' transmission RAW per transmission between STA and Relay
  • AP Relay and AP
  • RAW1 is allocated for bottom hop transmission and RAW2 is allocated for top hop.
  • STA1, STA2, STA3, etc. transmit data to Relay1 (R1), Relay2 (R2), etc., which are used by each.
  • RAW2 Relay1 (R1) and Relay2 (R2) send data to the AP.
  • RAW1 and R2 send data to the AP.
  • FIG. 4 is a diagram illustrating another example of a method of using a limited access window when using a relay according to an embodiment.
  • a method of allocating a resource such as a RAW or a slot when transmitting data using a relay a method of allocating each RAW for each STA-Relay-AP (called 'parent tree') have.
  • RAW1 includes transmission between STA1, STA3, STA5 and Relay 1 using Relay 1 (R1), and transmission between Relay 1 and AP
  • RAW2 includes STA2, STA4, STA6, STA8 using Relay 2 (R2). It includes the transmission between Relay 2 and Relay 2, and the transmission between Relay 2 and AP.
  • RAW and slot assignment information may be delivered via beacons.
  • RAW and slot assignment information for the STA that does not go through the AP and the relay but also RAW and slot assignment information for the relay, RAW and slot assignment information that allows the relay and the STA to be transmitted may be transmitted through the beacon. have.
  • FIG. 5 illustrates another example of a method of using a restricted access window when using a relay according to an embodiment.
  • a root beacon is transmitted only from a root AP within a BSS, but each relay also transmits its own beacon.
  • a STA using a corresponding relay includes RAW and slot allocation information capable of transmitting uplink or downlink with a relay in a beacon transmitted by each relay.
  • RAW and slot allocation for the transmission between the relay and the Root AP the transmission between the Root AP and the STA that does not use the relay (that is, the transmission in which the Root AP directly transmits and receives data to the STA) is performed by the Root AP.
  • the beacon called Root Beacon
  • information on RAW and slot allocation may be transmitted (this is called 'Level 0 slot allocation').
  • the corresponding relay directly intervening in the transmission between the relay and the STA transmits the RAW and slot allocation information through the relay beacon by allocating RAW and slots (this is called 'Level 1 slot allocation'). ').
  • the relay can send and receive information with the Root AP for Level 1 slot assignment, which allows the Root AP to optimize its length of time (RAW or slot or time interval independent of the RAW / Slot of the Root AP). Can be assigned to The relay may directly allocate a RAW or a slot to be used for transmission between the relay and the STA based on information exchanged with the Root AP within a time interval allocated for the transmission between the relay and the STA.
  • RAW length of time
  • the Root AP directs the Level 1 slot assignments, informs the Relay of the Level 1 slot assignments, and the Relay can only pass the Level 1 slot assignments via the beacon, but the RAW or slot to be used for transmission between the Relay and the STA. It is recommended that the relay be assigned directly. This is because the relay knows more information about STAs that are directly associated with it than the Root AP, so that the relay can more efficiently allocate Level 1 slots. That is, the Root AP allocates the transmission interval between the Relay and the STA, but does not directly perform detailed RAW / slot allocation in the transmission interval between the Relay and the STA, but does not directly perform detailed RAW / slot in the transmission interval between the Relay and the STA. Slot assignment is preferably delegated to the corresponding relay. This is hereinafter referred to as Leveled Slot (or RAW) allocation.
  • Leveled Slot or RAW
  • the STA connected to the relay may not receive the root beacon. If the relay beacon includes RAW / slot allocation information necessary for transmission between the relay and the STA, the corresponding STA may receive the relay beacon even without receiving the root beacon. In addition, since the relay beacon only needs to include RAW / slot allocation information necessary for transmission between the corresponding relay and the STA, the size of the relay beacon can be reduced.
  • Such a leveled slot (or RAW) allocation method is a method in which (A) the Root AP allocates resources such as a relay transmission interval and a relay transmission subband in the form of Delegated RAW (DRAW) at level 0 and allocates the DRAW interval to the relay. (B) Root AP may include a method for allocating resources to the relay independently of the RAW of the Root AP by using the resource allocation information, such as the relay transmission interval, the transmission band, other than the RAW format.
  • the Root AP allocates resources such as a relay transmission interval and a relay transmission subband in the form of Delegated RAW (DRAW) at level 0 and allocates the DRAW interval to the relay.
  • DRAW Delegated RAW
  • Root AP may include a method for allocating resources to the relay independently of the RAW of the Root AP by using the resource allocation information, such as the relay transmission interval, the transmission band, other than the RAW format.
  • Root AP allocates resources such as relay transmission section and relay transmission subband in Delegated RAW (DRAW) form at level 0 and allocates DRAW section to relay (how to use DRAW)>
  • resources such as relay transmission section and relay transmission subband in Delegated RAW (DRAW) form at level 0 and allocates DRAW section to relay (how to use DRAW)>
  • FIG. 5 shows an example of a method of allocating slots by dividing a level when a relay transmits a beacon (DRAW case).
  • the Root AP assigns RAW and slots directly.
  • RAW slot for transmission between Root AP and Relay
  • RAW slot for STA that transmits and receives with AP directly without passing through Root AP and Relay are allocated. Since the relay collects data transmitted from several STAs through bottom hop transmission and transmits it to the AP, it is recommended to allocate more transmission time. To allocate more transmission time to a relay, you can assign multiple slots to a relay or a very long slot.
  • uplink (UL) and downlink (DL) transmission are set to separate RAWs, it is also possible to perform uplink and downlink through one RAW.
  • uplink RAW and downlink RAW include transmission to a general STA, transmission to a relay, and the like. Only one transmission to a relay may be included in one RAW.
  • each relay can allocate a RAW and a slot for transmission with the STA using it.
  • Each Relay can manage a Level 1 slot and can transmit slot allocation information for transmission between the Relay and the STA in a beacon transmitted by the Relay.
  • the relay can exchange RAW and slot allocation information with the AP.
  • the AP may use Level 1 RAW, slot allocation, and notify the Relay of the RAW and slot allocation information.
  • the relay While the relay is transmitting and receiving data with the STA at Level 1, other STAs or relays using the same channel may not transmit or receive data with the AP.
  • the level 0 RAW and slot allocation information of the root AP is assigned to the root beacon. In addition, it can be transmitted by including information on the interval in which transmission occurs in Level 1 (called 'Empty slot' or 'Empty RAW' or 'Delegated RAW').
  • the AP may exchange information with the relay to determine an empty slot interval (or an empty RAW interval or a delegated RAW interval) at level 0.
  • the relay needs to know the amount of data to be transmitted to the AP. Therefore, the AP receives UDI (Uplink Data Indication) information from the relay and is empty.
  • UDI Uplink Data Indication
  • Slot section can be set. Since the AP already knows the data amount for the STAs receiving the downlink data through the relay, in order to configure the empty slot interval in the downlink case, the AP considers the data amount for the STAs receiving the data through the relay.
  • An empty slot section (or an empty RAW section, or a delegated RAW section) may be set to inform the relay of the set empty slot section.
  • an empty slot section (or an empty RAW section and a delegated RAW section) for uplink and an empty slot section (or an empty RAW section and a delegated RAW section) for downlink are separated,
  • the empty slot section for downlink can be set to one empty RAW (Delegated RAW), and the relay can allocate Uplink, Downlink, PS-Poll RAW, etc. at an appropriate ratio as needed within one Empty RAW (Delegated RAW). .
  • the relay can appropriately allocate slots according to the amount of uplink or downlink data with the STA connected thereto.
  • RAW Periodic RAW
  • PRAW Periodic RAW
  • a RAW (Delegated RAW) used for transmission between a relay and a STA is allocated to a full beacon that is sometimes transmitted, and the relay allocation information has not changed since, relay RAW allocation information to a short beacon transmitted after the full beacon May not be specified separately.
  • the above example is an example of transmitting two hop relays via only one relay.
  • the lower level may be set as much as the relay level, and the level may be extended based on the same method as above. .
  • an empty slot for one relay is allocated in the RAW, but empty slots for several relays may be allocated in one RAW, and empty slots for each relay in one RAW as a whole. You can also assign
  • Relay beacons are transmitted by each relay, and relay beacons can be sent periodically. For example, after the beacon of the Root AP is transmitted, the relay beacon may be transmitted in the RAW or slot (the first empty slot for the corresponding Relay of level 0) allocated by the Root AP for the corresponding relay.
  • the relay can further increase transmission efficiency by aggregating data received from each STA using the self and transmitting the data to the Root AP.
  • the Root AP aggregates and transmits data for several STAs to be transmitted through a Relay, and the Relay may increase transmission efficiency by dividing data received from the Root AP by each STA and transmitting the data to the corresponding STA.
  • existing data collection techniques such as Aggregation-MAC Service Data Unit (A-MSDU) or Aggregation-MAC protocol Data Unit (A-MPDU) may be used.
  • the utilization of the slot is higher, which may further improve transmission efficiency.
  • transmission efficiency may be further improved by allowing each STA to simultaneously transmit and receive data.
  • FIG. 6 illustrates a RAW structure in a slotted transmission scheme according to an embodiment.
  • the number of RAWs that can be included in one Beacon section is limited, and this limited number of RAWs may be insufficient to perform transmission in each cluster.
  • the cluster is a unit including a relay and STAs using the relay.
  • RAW When there are not many STAs included in a cluster, several clusters may be allocated to one RAW. In this case, even if STAs of multiple clusters are allocated to one RAW, the number of STAs is not large, so there is little probability of collision, and data is sequentially sequentially in time according to the order in which STAs are allocated channels after contention. Can be sent.
  • RAW allocated for simultaneous use in multiple clusters may be used to additionally transmit remaining data in a shared time interval.
  • one RAW can be allocated to spatially separated clusters and data transfer can be performed at the same time.
  • cluster 1 including relay 1 and cluster 2 including relay 2 may be allocated to the same RAW.
  • STA1 and STA2 are spatially far from each other, and Uplink transmission in which STA1 transmits data to Relay 1 and Uplink transmission in which STA2 transmits data to Relay 2 may be simultaneously performed. Such simultaneous transmission may be easily applied to a transmission interval between each relay and an STA using each relay.
  • Clusters can be transmitted and received with the STA using different channels. As shown in FIG. 7, if the transmission between the relay 1 and the STAs in the cluster 1 including the relay 1 uses CH3 and CH4, the transmission between the relay 2 and the STAs in the cluster 2 including the relay 2 uses the CH1 and CH2. Data transfer can be performed at the same time, and these two clusters can be allocated to one RAW. 7 illustrates an example of sharing the same RAW using different channels according to an embodiment. This is useful when using relatively small bandwidths (BW), such as sensor networks, smart grids, and the like.
  • BW bandwidths
  • Such simultaneous transmission can be easily applied to a level 1 transmission period in which transmission between a relay and an STA using the relay occurs.
  • Relay 1 or Relay 2 When simultaneous transmission is performed, communication between Relay 1 or Relay 2 and the AP may be performed using all of CH1-CH4.
  • the relay may increase transmission efficiency by accumulating data received from each STA and transmitting the aggregated data using a wider channel.
  • the Root AP uses the resource allocation information such as relay transmission interval and transmission frequency band to the relay independently of the RAW of the Root AP using separate resource allocation information. The same applies to the case of using the method of assigning a (method (B)).
  • relays capable of transmitting in the cluster at the same time in the time domain may be allocated to the same transmission interval.
  • the transmission interval allocated for simultaneous use in several clusters may be used to additionally transmit the remaining data in a shared time interval when transmission is not completed in a time interval allocated to a specific relay cluster.
  • a similar method to that in (B) may be applied to simultaneous transmission using different frequency subbands. You can configure different relays to use different subbands in the cluster.
  • the Root AP uses a subband different from the subbands used by each Relay
  • transmission between the Root AP and the STA or Relay directly connected to the Root AP may be performed simultaneously with the transmission in each relay cluster. If the subbands used for transmission performed by the Root AP and transmission in each relay cluster are different from each other, data can be independently independently transmitted simultaneously in the allocated subbands without having to adjust transmission intervals. In this case, time intervals should be allocated so that transmission is not performed simultaneously with a relay and an STA using the same subband.
  • Root AP can transmit simultaneously in the cluster.
  • relays using the same subbands can transmit simultaneously if they are spaced apart so that they are not affected by each other. Even when the same subbands are used, if there are not many STAs belonging to one cluster, multiple clusters can be allocated to one RAW.
  • This is a method of allocating a plurality of clusters (composed of one R-AP and a plurality of STAs) using an allocation offset (AO) value in one RAW period as shown in FIG. 8.
  • 8 through 9 are diagrams illustrating an example of allocating a plurality of clusters to one RAW by using offset information, according to an exemplary embodiment.
  • the R-AP value is as follows. You can calculate your own allocation position using.
  • the beacon Allocation Sequence Number (ASN) of the currently received Rt-AP is current ASN and the result value of "current ASN% 2 ⁇ (AIO + 1)" matches the AO value allocated from the Rt-AP, the current Beacon An interval interval may be determined as an interval allocated to a specific R-AP.
  • the R-AP may identify the correct allocation position using the position value of the RAW allocated from the Rt-AP.
  • the R-AP having an Allocation identifier (AID) of 64 is its own allocation interval when ASN is "0, 4, 8, " when calculated using the allocation related parameter shown in FIG. Is 2176, the R-AP becomes its allocation interval when the ASN is "1, 5, 9, ".
  • AID Allocation identifier
  • FIG. 10 is a diagram for describing a method of assigning an AID to a cluster, according to an exemplary embodiment.
  • the R-AP of each cluster may be assigned a block AID during association with the Rt-AP.
  • a block AID may be allocated in a page unit, a block index unit, and a sub-block index unit using an AID structure.
  • the first AID value of the allocated block AID may be the AID of the R-AP. have.
  • the remaining AID values except for the AID of the R-AP may allocate the AIDs within the predetermined range to the STAs when the STAs in the cluster request an association. By allocating the AID for each cluster (or level in the 2-hop network), the AP can easily allocate the AID and manage it efficiently. In the example of FIG.
  • each RAW is allocated in units of Page IDs, and each cluster is allocated in blocks of index units. Accordingly, the R-AP of each cluster may manage a total of 64 block AIDs including its own AID. This is a structure in which one R-AP can accommodate up to 63 STAs.
  • FIG. 11 is a diagram illustrating an allocation position of a beacon transmitted by a relay AP (R-AP) according to an embodiment.
  • FIG 11 illustrates an example of beacon allocation positions of R-APs when RAW is allocated in cluster (or treelevel) units.
  • Each RAW starts with the beacon of the allocated R-AP and can consist of the same number of slots.
  • the beacon allocation position of the R-AP can be automatically determined, and the length and position information of the RAW can be determined by the Root AP (Rt-AP).
  • FIG. 12 is a diagram for describing a method of allocating slots for STAs according to an embodiment.
  • slots for STAs are allocated in a RAW duration.
  • the R1 (R-AP) transmits allocation information to an STA requesting association to the STA, so that the STA may simply receive slot allocation without performing a separate allocation procedure.
  • the allocation information delivered by the R1 (R-AP) to the STA may include the following information.
  • STA slot allocation info allocated to R-AP during association
  • the STA may transmit and receive data with the R-AP in the slot period allocated to the STA. If there is downlink data (data transmitted from the R-AP to the STA), the R-AP may transmit data using an acknowledgment frame or TIM (Traffic Indication Map) information.
  • TIM Traffic Indication Map
  • FIG. 13 illustrates a simplified leveled slot allocation according to an embodiment.
  • the AP may determine the RAW structure based on the total number of STAs and the relay number at the beginning of BSS generation.
  • Each RAW may have the same length, and the information about the RAW structure may be composed of the following fields in the beacon frame of the Rt-AP.
  • RAW allocation bitmap (0: empty RAW, 1: allocation RAW)
  • RAW type information (R-AP RAW, Rt-AP RAW, common RAW)
  • RAW can be classified by RAW type.
  • the R-AP RAW indicates a section in which only the R-AP and the STA in the cluster can exclusively transmit and receive data.
  • Rt-AP RAW is a section for communication with STAs directly managed by Rt-AP itself, and a common RAW is a section in which all nodes can be used contention-based.
  • FIG. 14 is a diagram illustrating a RAW allocation method for a relay when a plurality of relays are used according to an embodiment.
  • RAWs for a plurality of relays may be allocated to a beacon interval of a root AP.
  • One or several RAWs can be assigned to a relay.
  • PS-Poll RAW for resource allocation of UL and DL
  • DL RAW or UL RAW for transmission between STA and Relay
  • DL / UL RAW transmission between Root AP and Relay DL RAW or UL RAW or DL / UL RAW
  • RAWs for transmission between a plurality of relays / STAs may be allocated within one relay beacon interval.
  • a transmission interval for transmission from the root AP to another relay or another STA may be allocated together in a relay RAW group for a specific relay.
  • the relay beacon may transmit the RAW allocation information related to the root beacon and the slot allocation information necessary for level 1 transmission to the STAs connected thereto.
  • the relay does not transfer the information contained in the root beacon as it is, and may extract only information necessary for itself from the information included in the root beacon. Since the relay transmits the extracted information including only additional slot allocation information for level 1 transmission, the relay beacon transmitted by the relay to the STA may be smaller in size than the root beacon.
  • the Root AP may include RAW allocation information for level 0 transmission (transmission between the Root AP and the Relay and between the Root AP and the STA directly connected to the Root AP) in the Root beacon.
  • the relay may receive a Root AP beacon from the Root AP and identify RAW allocation information of the Root AP from the Root AP beacon. Thereafter, the relay may include RAW allocation information necessary for the STA connected to the relay in its relay beacon and transmit the same to the STA.
  • the RAW allocation information required for the STA may include RAW and slot allocation information for transmission between the relay and the STA, section information in which transmission between the Root AP and the relay occurs.
  • the STA connected to the relay may receive the relay beacon and determine when to transmit data based on the received relay beacon.
  • 15 is a diagram illustrating an example of a RAW allocation method when a plurality of relays are used according to an embodiment.
  • a relay RAW group represents RAWs allocated for one relay.
  • a beacon of each relay is transmitted at the time when the first RAW of the corresponding relay RAW group starts.
  • the relay allocates the first RAW immediately after each relay beacon is transmitted to the PS-Poll RAW, and the STA can transmit the PS-Poll and the Unique Device Identifier (UDI) to the connected relay.
  • the Relay may transmit PS-Poll and UDI to the Root AP.
  • FIG. 16 illustrates an example of a RAW allocation method for a relay when a plurality of relays are used according to another embodiment.
  • the time point for transmitting the relay beacon in FIG. 15 is changed to immediately after the root AP beacon.
  • the beacons of all relays allocated within one beacon interval are sequentially transmitted immediately after the Root AP Beacon is transmitted, and the first RAW to be started may be allocated as PS-Poll intervals for several relays.
  • a PS-Poll section is allocated to each Relay Group RAW, but in the embodiment of FIG. 16, only one PS-Poll RAW is used, and PS-Poll and UDI for all relay transmissions in this PS-Poll RAW are used. Can be transmitted. In this case, the PS-Poll section does not need to be allocated to each Relay Group RAW.
  • the STA searching for a relay to be connected may select an optimal relay within a short time since beacons for each relay are transmitted in sequence immediately after the root AP beacon is transmitted.
  • the method of transmitting the relay beacon described in the above example that is, (1) the time of transmitting the relay beacon is distributed, and the method of transmitting the relay beacon at the RAW start time assigned to each relay, and (2) after the Root AP beacon
  • the relay beacon of each relay is transmitted, and a method in which each relay RAW may not be started immediately after the relay beacon may be selectively applied in other embodiments.
  • the distributed relay beacon transmission method or the centralized relay beacon transmission method can be applied to all of the embodiments of (A) a method using DRAW and (B) a resource allocation method using resource allocation information.
  • the relay RAW may not come immediately after the relay beacon, or relay RAW may be allocated when the relay beacon is separated from the relay beacon.
  • relay beacons that are simultaneously transmitted may safely transmit relay beacons by allocating a relay beacon transmission RAW separately from the root AP beacon.
  • 17 is a diagram illustrating a leveled slot allocation method in a more generalized form according to an embodiment.
  • allocation of all RAWs may be performed by the Root AP, and allocation information of all RAWs may be provided through a root beacon.
  • the slot for the RAW corresponding to the level 0 transmission may be allocated by the root AP.
  • RAW for level 1 transmission is allocated to an empty RAW (Delegated RAW) or an empty slot (delegated slot) by the Root AP, and no specific slot allocation is performed.
  • a duration for transmission between the relay and the STA is displayed, and based on this, another STA transmits data to the transmission interval between the relay and the STA and collides with the other. The occurrence of collision can be prevented.
  • the slot for the level 1 transmission that is, the transmission between the relay and the STA may be allocated by the relay, and the information on the allocated slot may be included in the relay beacon.
  • RAW for level 0 transmission in the relay beacon may be omitted, and RAW for level 0 transmission in the relay beacon may be indicated as an empty RAW or an empty slot.
  • RAW for level 0 transmission in the relay beacon may be indicated as an empty RAW or an empty slot.
  • an empty RAW or empty slot of a relay beacon only a transmission duration between a relay and an AP may be displayed, which prevents an STA connected to the relay from transmitting data while the relay is transmitted between the AP and the relay.
  • the STA connected to the relay receives only the RAW allocation information of the relay beacon and does not need to receive the root beacon.
  • the RAW for relay transmission may be configured as a DL RAW in which data is transmitted from a Root AP to a Relay, a DL & UL RAW between a Relay and a STA, and a UL RAW in which data is transmitted from the Relay to the Root AP.
  • DL & UL RAW refers to RAW, which allows both DL and UL transmission in one RAW.
  • the RAW configuration shown in FIG. 17 is only one example, and other types of combinations are possible.
  • the Root AP can set the DL & UL RAW between the Relay and the STA to empty RAW (Delegated RAW), and can include and transmit the RAW allocation information on the DL & UL RAW between the Relay and the STA in the Root AP beacon.
  • the relay may allocate a slot for DL & UL RAW between the Relay and the STA configured by the Root AP to empty RAW (Delegated RAW).
  • Relay can be set to DL RAW, which transmits data from Root AP to Relay, and UL RAW, which transmits data from Relay to Root AP, to empty RAW, which can be included in Relay beacon for transmission.
  • Relay transmits DL or UL or DL based on slot allocation information of Root AP in DL RAW, which transmits data from Root AP to Relay and UL RAW, which transmits data from Relay to Root AP, identified through Root AP beacon Can be performed.
  • the STA connected to the relay may perform UL and DL transmission with the relay based on slot information allocated in DL & UL RAW between the relay identified through the relay beacon and the STA.
  • RAW after Root AP beacon and Relay beacon is transmitted is assigned as PS-Poll RAW
  • STA transmits PS-Poll and UDI to Relay
  • Relay transmits PS-Poll and UDI to Root AP
  • UL RAW and DL RAW may be optimized for transmission between the RSs and transmissions between the relay and the STA.
  • FIG. 18 illustrates an example of a leveled slot allocation method using an empty slot according to an embodiment.
  • each relay RAW group may be configured with a combination of PS-Poll RAW, DL RAW, UL RAW, or UL RAW / DL RAW.
  • each STA may transmit the PS-Poll and the UDI to the relay.
  • the relay may identify the UL data amount and resource allocation requirement of the STA and then transmit the PS-Poll and UDI to the Root AP based on the identified UL data amount and the resource allocation requirement. .
  • a period during which the STA transmits PS-Poll and UDI to the relay may be protected by an empty slot at level 0, and a period during which the relay transmits PS-Poll and UDI to the AP may be protected by being set as an empty slot at level 1.
  • the Root AP can adjust slot allocation necessary for UL and DL of STA and Relay.
  • the Root AP can refine the DL slot allocation for level 0 and level 1 based on the PS-Poll information at the starting point of RAW2.
  • the Root AP may include slot allocation information for level 0, and may transmit slot allocation information at level 0 by transmitting a DL allocation frame in which a level 1 transmission interval is allocated to an empty slot.
  • the relay may display the slot allocation information at level 0 as an empty slot without including slot allocation information at level 0.
  • the relay may allocate a slot for a section allocated by the Root AP to an empty slot at level 0 and transmit slot allocation information through a DL allocation frame at level 1.
  • the STA may receive the DL allocation information and identify a slot allocated to the STA based on the DL allocation information.
  • the Root AP can adjust slot allocation in level 0 and level 1 using UDI information and UL allocation frame similarly to the above for UL RAW.
  • Empty slot may be indicated in the RPS IE or DL or UL allocation frame included in the beacon.
  • Root Beacon's RPS IE can indicate which relays are allowed to the Relay RAW Group.
  • 19 illustrates an example of a leveled slot allocation method using an empty slot according to another embodiment.
  • the Root AP may transmit a UL / DL allocation frame for DL and UL slot allocation adjustment based on the PS-Poll and UDI received through the STA and the Relay. In this case, since the DL RAW and the UL RAW are not separated, the Root AP can flexibly adjust and allocate the UL transmission section and the DL transmission section in one RAW.
  • FIG. 20 illustrates an example of a leveled slot allocation method using empty RAW according to an embodiment.
  • each relay RAW group may be configured with a combination of PS-Poll RAW, DL RAW, UL RAW, or UL / DL RAW, and an empty slot may be allocated to one separate RAW.
  • each STA may transmit PS-Poll and UDI to the relay.
  • the relay may identify the UL data amount and the resource allocation requirement of the STA and then transmit the PS-Poll and the UDI to the Root AP based on the UL data amount and the resource allocation requirement.
  • the interval during which the STA transmits PS-Poll and UDI to the relay can be protected with empty RAW at level 0, and the interval during which the relay transmits PS-Poll and UDI to the AP can be protected by being set to empty RAW at level 1. have.
  • the Root AP After receiving the PS-Poll and UDI, the Root AP can fine tune the slot allocation required for the UL and DL of the relay.
  • the Root AP can adjust the DL slot allocation for level 0 based on the PS-Poll information at the starting point of RAW2.
  • the Root AP may inform the adjusted slot allocation information at level 0 by transmitting a DL allocation frame including slot allocation information for level 0. FIG.
  • the relay can adjust the DL slot allocation for level 1 based on the PS-Poll information received from the STA at the starting point of the RAW 2 '.
  • the relay may inform the adjusted slot allocation information at level 1 by transmitting a DL allocation frame including slot allocation information for level 1.
  • the relay may finely adjust the UL slot allocation for level 1 based on the UDI information received from the STA at the RAW 3 'start point.
  • the relay may inform the adjusted slot allocation information at level 1 by transmitting a UL allocation frame including slot allocation information for level 1.
  • the Root AP can finely adjust the UL slot allocation for level 0 based on the UDI information received from the relay at the RAW 3 start point.
  • the Root AP may inform the adjusted slot allocation information at level 0 by transmitting a UL allocation frame including slot allocation information for level 0. FIG.
  • RAW may be displayed in the RPS IE (RAW Parameter Set Information Elemnet) included in the beacon.
  • RPS IE RW Parameter Set Information Elemnet
  • Root Beacon's RPS IE can indicate which relays are allowed to the Relay RAW Group.
  • FIG. 21 illustrates an example of a leveled slot allocation method using empty RAW according to another embodiment.
  • FIG. 21 illustrates an embodiment in which a transmission period between a relay and a STA is allocated to one DL / UL RAW without dividing the transmission interval between the relay and the STA into DL RAW and UL RAW in FIG. 20.
  • the DL allocation frame for the DL RAW and the UL allocation frame for the UL RAW are not separated from each other, and the DL & UL allocation frame including the UL slot and DL slot information adjusted based on the PS-Poll and the UDI information of the STA is not included.
  • the DL / UL RAW as one RAW
  • UL slots and DL slots between the STA and the relay can be flexibly allocated, thereby enabling RAW to be more efficiently utilized. That is, the transmission in the cluster where the transmission between the relay and the STA is performed can be performed more efficiently.
  • 22 illustrates an example of a leveled slot allocation method using sub RAW according to an embodiment.
  • the Root AP may allocate one RAW to one Relay transmission and may include and transmit information on RAW allocation in the Root AP beacon.
  • Each Relay can divide one Relay RAW allocated to itself into sub RAW and transmit sub RAW allocation information, which is allocation information about sub RAW, in relay beacon.
  • the STA and the root AP connected to the relay may determine when transmission between the STA and the relay and transmission between the relay and the AP are performed based on the sub RAW allocation information of the relay beacon.
  • FIG. 23 is a diagram illustrating a leveled slot allocation method according to another embodiment in a more generalized form.
  • the embodiment of FIG. 23 is similar to the embodiment of FIG. 17, but the transmission interval between the root AP and the relay is not dependent on the transmission interval between the relay and the STA, and may be allocated to any interval in a form similar to the transmission between the general AP and the STA. Can be. 23 differs from the embodiments related to FIG. 17 in that relay beacons are transmitted at a start time or before a start of Delegated RAW (empty RAW at level 0) used for transmission between a relay and a STA.
  • Delegated RAW empty RAW at level 0
  • RAW and slot in the transmission interval between the Root AP and the relay, or RAW and slot in the transmission interval between the STA and directly connected to the Root AP may be allocated by the Root AP.
  • RAW and slot allocation information may be included in the Root AP beacon and transmitted.
  • the transmission interval between the root AP and the relay may be assigned to any interval in a form similar to the transmission between the general AP and the STA, without being dependent on the transmission interval between the relay and the STA.
  • the transmission period between the root AP and the relay and the transmission period between the root AP and the STA directly connected to the root AP may be allocated together in one RAW or may be allocated in a separate RAW.
  • Root AP can be assigned by indicating the transmission interval between the relay and the STA as Delegated RAW (Empty RAW at level 0), and specific RAW / Slot assignment can be delegated to the relay.
  • Root Beacon may not include level 1 RAW / slot allocation information.
  • the Root AP may allocate one DRAW (Delegated RAW) or multiple DRAWs for transmission between the relay and the STA.
  • DRAW Delegated RAW
  • relays and transmission allowance intervals that allow transmission in the corresponding DRAW may be identified.
  • DRAW only data transmission between a relay specified as being allowed to be transmitted and STAs connected to the corresponding relay may be allowed in principle.
  • BSS basic service set
  • the Root AP determines the spatial separation between the Root BSS and the other Relay BSS, and if it is not sufficiently separated, sets another Relay transmission section (DRAW section) to Empty RAW (or AP PM RAW) and is connected to the STA. Can prohibit data transmission. Even in the DRAW interval, the STA may transmit data in the interval not explicitly set to Empty RAW. Or, the Root AP does not prohibit data transmission of all STAs in the Root BSS for another Relay transmission interval (that is, a DRAW interval), and prohibits transmission only for a specific STA that is heavily interrupted by other Relay BSS among the STAs in the Root BSS. You can also In this case, use of a modified Empty RAW (or modified AP PM RAW) that may indicate an STA that is explicitly prohibited from transmission, or a method of excluding a STA forbidden from transmission interval allocation may be used. Can be.
  • DRAW section Relay transmission section
  • Empty RAW or AP PM RAW
  • How the Root AP identifies whether a particular STA in the Root BSS is interfered with by another Relay BSS may be determined by using the Root AP using a method of determining a spatial separation between (BB) relays (to be described later). May receive the interference information of the STA, or the STA of the Root BSS that directly interferes with information on another Relay BSS or another STA that the STA interferes with may notify the Root AP directly.
  • BB spatial separation between
  • the relay AP discards the transmission section of another relay BSS in an empty RAW (or AP PM RAW). ) Can be set to prohibit transmission. Data transmission of the STA may be allowed in a section that is not set to Empty RAW.
  • Relay BSS periodically determines whether it is spatially separated from other Relay BSS, and if it is determined that it is not sufficiently separated from each other, it sets the other Relay transmission interval to Empty RAW (or AP PM RAW) to stop data transmission of STAs connected to it. Can be prohibited.
  • Empty RAW or AP PM RAW
  • the Relay BSS does not prohibit data transmission of all STAs in the Relay BSS with respect to another Relay transmission interval, and may only prohibit data transmission of a specific STA that is frequently interfered with other Relay BSS among the STAs in the Relay BSS.
  • a modified Empty RAW (or modified AP PM RAW) that may indicate a STA that is prohibited from transmission, or a RAW allocation method that excludes the STA that is prohibited from transmission may be used.
  • the relay AP knows whether a particular STA in the relay BSS is interfered by another relay BSS (or a root BSS) by using a method of determining a spatial separation between (BB) relays. Can be used to receive the interference information, or the STA of the relay BSS receiving the interference information on another relay BSS or another STA that interferes with the STA directly to the relay AP.
  • BB spatial separation between
  • transmission in the DRAW period may be exceptionally allowed.
  • the STA may not detect a transmission in another relay BSS in which transmission is in progress, or (2) another relay in progress, even if it is a time interval not allocated to the relay to which the STA belongs.
  • transmission may be allowed exceptionally for a section in which RAW is not allocated within a section allocated for transmission in the corresponding relay BSS.
  • STAs belonging to the Root AP and STAs belonging to the Relay may be allowed to transmit through contention, such as transmission in an existing OBSS environment, even in a section in which transmissions for their APs are not allocated.
  • contention such as transmission in an existing OBSS environment
  • the collision probability is high, so the STA preferably performs the RTS / CTS before transmitting the data.
  • the relay or the root AP may explicitly prohibit transmission of STAs connected to the self by setting an empty RAW period in which a collision or contention is expected to be severe among transmission periods not allocated to the relay or root AP.
  • the relayAP may prohibit the STA from transmitting to the relay in the section in which the transmission between the relay and the root AP occurs by setting the empty RAW period between the relay and the root AP.
  • the relay can request the root AP for protection of resources allocated to it.
  • the Root AP may explicitly specify certain other Relay BSSs or some STAs of certain other BSSs for the resources allocated to that Relay (e.g., the transmission interval or the interval allocated by the Root AP to DRAW). (Including STA of Root BSS) may be prohibited.
  • a relay is severely interrupted by transmissions of specific STAs (or STAs of a root BSS) belonging to another Relay BSS or another Relay BSS, so that all other Relay BSSs or some STAs of other Relay BSSs are transmitted in the transmission interval assigned to the relay.
  • the relay can request the Root AP to protect the resources allocated to the relay.
  • the relay may transmit to the root AP a list of other relay BSSs or specific STAs of the relay BSS that are severely interfering.
  • the relay AP may inform the Root AP of Relay BSS or specific STAs that interfere with it.
  • each STA in the Relay BSS may also inform other relay BSSs or specific STAs that have severe interference to the relay AP, and the relay AP may transmit information of other relay BSSs and STAs that interfere with the root AP.
  • STAs may not need a measurement function in 802.11k or the like.
  • the relay AP When the STAs have a measurement function in 802.11k, the relay AP requests a measurement from the STA and checks other relay BSSs and STAs that interfere with the STA connected to it based on the measurement result from each STA. Can be determined. The relay AP may notify the Root AP of other relay BSSs and STAs determined.
  • the Root AP When the Root AP receives a resource protection request from a relay, the Root AP may indicate specific STAs of a Relay BSS or a Relay BSS that should not be transmitted to the DRAW for a Relay that has made a resource protection request.
  • the relay does not transmit in the transmission interval of the other relay BSS if it is included in the relay prohibited list of the DRAW allocated to the other relay BSS.
  • the relay may protect the resources of the relay requesting resource protection by allocating empty RAW (or AP PM RAW) to the STA belonging to it and explicitly prohibiting transmission of the STA. If it is indicated in the DRAW to prohibit transmission to some STAs of the Relay BSS instead of the entire Relay BSS, the Relay may prohibit transmission of only a specific STA designated for the corresponding Relay BSS transmission interval.
  • a method of modifying and using an AP PM or empty RAW or (2) a method of using RAW allocation may be used.
  • the relay includes the (partial) AID list of the STA to prohibit transmission for a certain period in the AP PM RAW or Empty RAW, and only the STA to be prohibited in the AP PM RAW or Empty RAW interval is explicitly stated.
  • the transmission may be prevented and the remaining STAs may allow transmission through contention.
  • the relay may not assign an STA (that is, an STA interfering with another relay) to RAW to prevent the transmission of the STA to prohibit the transmission.
  • the corresponding STA may not be included in the DRAW and the Root AP may prohibit transmission of the STA during the Relay transmission period.
  • a strictly disallow bit, a relay AP, and a STA list may be displayed by adding a field to the DRAW.
  • the Root AP collects information on the relay AP and STA to be strictly disallowed and received from the relay, and broadcasts a message including the relay AP and STA information to strictl disallow for each Relay BSS to each Relay, or There is a method of delivering using a separate frame in unicast.
  • a relay that receives a message containing information on the relay AP and STA to be strictly disallowed checks whether or not it is strict disallowed by itself or the STA connected to it in the transmission interval of another relay, and when it is confirmed that the relay is disallowed, Do not transmit in the transmission section.
  • DRAW can be allocated periodically, in which case PRAW (Periodic RAW) can be used.
  • PRAW Period RAW
  • the use of PRAW may be appropriate because the relay beacon must be sent periodically before or at the beginning of the DRAW.
  • the relay beacon transmission period may be determined by the relay and the root AP negotiating with each other when the relay is connected to the root AP, and the relay beacon transmission period may be equal to the Root AP beacon interval or may be a multiple of the Root AP beacon interval.
  • the relay After receiving the relay beacon, the relay can check whether the DRAW is assigned to itself. When the DRAW is allocated to itself, the relay may allocate RAW / slot for transmission with STAs connected to the device within a duration range allocated to the DRAW. The relay may know whether the STAs connected to the base station have DL data based on the TIM of the Root Beacon, and may schedule the DL for the STA when receiving the DL data from the Root AP. When the relay transmits the relay beacon to the STA, the relay may inform the STA through the TIM of the relay beacon of the information on which STA has DL data and the RAW / slot allocation information. The STA connected to the relay does not need to check the root beacon. It is sufficient to check only the beacon of the connected relay.
  • the relay can receive the PS-Poll from the STA by allowing the PS-Poll RAW to be allocated immediately after transmitting the relay beacon.
  • the relay may receive detailed UDI information from the STA and transmit a resource allocation frame to fine-adjust the initial RAW / slot allocation allocated by the relay during relay beacon transmission.
  • the relay may properly allocate and utilize RAW / slot so that the DRAW allocated to the relay is suitable for transmission with the STA connected to the relay.
  • the same standard as that of the general RAW / slot allocation may be used for the RAW / slot allocation method in the DRAW.
  • the STA When the STA transmits data in a section other than the DRAW in which the Root AP guarantees transmission between the Relay and the STA, a collision between transmission of the STA connected to another relay or transmission between the Relay and the Root AP may occur.
  • the relay can prevent a collision in the BSS by preventing STAs connected to the transmission from a period other than the DRAW period allocated to the relay.
  • transmission may be allowed only in a section in which the transmission of the STA is explicitly allocated in the RAW / slot allocation of the DRAW, and the STA may be informed not to transmit in the remaining sections. According to an example, it may indicate whether to prohibit transmission except for the DRAW period in which transmission of the STA is allowed using 1 bit.
  • the STAs connected to the relay among the sections other than the DRAW may explicitly allocate a section that should not be transmitted to RAW and prohibit transmission through the RAW.
  • This RAW is called empty RAW at level 1.
  • all sections other than the DRAW may be allocated as empty RAW, only sections in which the STA should never transmit in the non-DRAW section may be set as empty RAW.
  • one bit indicating whether empty RAW (transfer prohibited RAW) can be allocated to RAW, and a start time and a period not to be transmitted can be signaled by a start time, duration, etc. of RAW.
  • Transmission may be exceptionally performed for a section in which RAW is not allocated within a section allocated for transmission.
  • STAs belonging to a relay may transmit through contention as in transmission in an existing OBSS environment even in a period where transmission for their AP is not allocated. In this case, since the probability of collision is high when transmitting in a section not allocated to its BSS, it is recommended that the STA perform RTS / CTS before data transmission.
  • Relay or Root AP can explicitly prohibit transmission of STAs connected to it by setting Empty RAW in a section where collision or contention is expected to be severe among transmission sections not assigned to it.
  • the relay AP may prohibit the STA in the relay from transmitting to the relay by allocating an interval in which the transmission between the relay and the root AP occurs to the empty RAW.
  • the relay may sleep for power saving in a section in which no transmission is performed between the relay and the root AP.
  • the Root AP may sleep for power saving in a section in which there is no transmission with a relay or STA directly connected to itself in the DRAW section. The relay must be awake during its assigned DRAW interval.
  • FIG. 24 illustrates an example of a leveled slot allocation method using a DRAW according to an embodiment.
  • FIG. 24 illustrates a case in which a DRAW at level 0 is disposed adjacent to DL RAW and UL RAW, and the DL transmission to the Root AP Relay STA and the transmission to the STA Relay Root AP are sequentially performed.
  • the STA may receive the DL data and immediately transmit the response UL data to the Root AP, thereby reducing the transmission delay.
  • the relay After receiving the relay beacon, the relay may determine whether there is data transmitted by itself based on the TIM, and transmit the PS-Poll according to the determination result.
  • the Root AP can optimize the RAW / slot allocation by receiving the PS-Poll from the Relay and transmitting a resource allocation frame 2410.
  • the relay may receive PS-Poll and UDI from the STA after the relay beacon transmission, and may optimize UL RAW and DL RAW of the relay transmission section corresponding to the DRAW section allocated by the relay.
  • Relay transmits UL data size received from STA to Root AP before transmitting UL data to Root AP.
  • Root AP may optimize UL RAW at level 0 using resource allocation frames. have.
  • 25 is a diagram illustrating another example of a leveled slot allocation method using DRAW according to an embodiment.
  • FIG. 25 illustrates an embodiment in which transmission is performed in a different order from that shown in FIG. 24.
  • the STA receives DL data from the Root AP via a Relay
  • the Relay does not immediately transmit the UL data to the Root AP, and when the next Root Beacon is transmitted.
  • the UL data may be transmitted in the allocated UL RAW, or may be transmitted in UL / DL RAW.
  • the relay stores UL data without directly transmitting it to the Root AP.
  • the next Root Beacon is received and the Relay transmits the PS-Poll to the Root AP
  • the UL data size received from the STA in the previous beacon section is stored. You can notify Root AP through UDI. Through this, the Root AP can optimize the UL / DL RAW for the relay by transmitting one PS-Poll RAW and one resource allocation frame.
  • the relay may transmit the UDI to the root AP before the next root beacon transmission time.
  • Root AP can know UL data size from Relay before Root Beacon transmission through UDI received from Relay so that UL RAW can be allocated to optimal length from Root Beacon transmission from the beginning. In this case, a delay may occur when the UL transmission from the STA is delivered to the final destination, and a memory for storing UL data is further needed.
  • 26 to 28 illustrate examples of a DRAW allocation method when a leveled slot allocation method is used, according to an embodiment.
  • 26 to 28 illustrate examples of a DRAW allocation method in the case of using the leveled slot allocation method of FIG. 23, and are examples of a DRAW allocation method when a relay beacon period is different from a root beacon period.
  • the relay beacon period does not have to be the same as the root beacon period, and the relay can negotiate the relay beacon period when transmitting association request / response frame with the root AP when connecting to the root AP.
  • the Root AP should allocate a DRAW to periodically guarantee transmission for the STA group.
  • the relay may transmit information such as the type of the STA, the traffic type of the STA, or the wake up / listen interval to the Root AP together with the AID or partial AID information of the STA connected to the Root AP.
  • Root AP can allocate the DRAW based on the information received from the relay.
  • the relay may notify the Root AP when a service type of the connected STA is changed or when a new STA is connected.
  • FIG. 26 illustrates a case in which a Root Beacon Interval is 3 and a Relay Beacon Interval is 6, and one DRAW for a specific relay is allocated to each Root AP Beacon interval.
  • the relay allocates RAW / Slots for STAs based on the DRAW interval allocated to the relay.
  • the allocation information of the RAW / Slot is not transmitted for every beacon using the PRAW, the allocation information is transmitted only in the full beacon, and the multiple of the Beacon interval (short beacon interval), etc. You can also specify the transmission period of the full beacon.
  • the relay may inform the relay beacon of PRAW in the relay beacon.
  • two DRAWs are allocated to a relay beacon interval for a relay.
  • the relay may allocate the transmission interval of the STAs that wake up more frequently among the STAs connected to the DL / UL transmission to both DRAWs, and the transmission intervals of the less wakeful STAs to one DRAW. .
  • the relay may allocate the transmission interval of the STA such that the transmission period of the STA that frequently wakes up is 3 and the transmission period of the STA that wakes up less frequently is 6.
  • FIG. 27 illustrates a case where a Root Beacon Interval is 6, a Relay Beacon Interval is 12, and two DRAWs for a specific relay are allocated to each Root Beacon interval. This is suitable when the transmission of the STA connected to the relay occurs more frequently than the root beacon interval period. DRAW1 and DRAW2 are allocated for a specific relay, and STA can transmit in shorter period than Interval of Root AP Beacon.
  • FIG. 28 illustrates a case in which [DRAWs 1 and 2 of FIG. 27 are allocated to different relays, respectively, Root Beacon Interval is 6, each Relay Beacon Interval is 6, and each relay is allocated a DRAW at a cycle 6.
  • Root Beacon Interval is 6
  • each Relay Beacon Interval is 6
  • each relay is allocated a DRAW at a cycle 6.
  • FIG. 29 illustrates an example of allocating frequency subbands for a relay according to an embodiment. More specifically, FIG. 29 illustrates a specific embodiment of RAW sharing between a relay cluster, which is a group of relays and STAs connected to the relay.
  • an interval allocated to empty slot or empty RAW at level 0 of the leveled slot allocation method may be shared between relay clusters, and simultaneous transmission between clusters may be possible. For example, (1) using different frequency subbands, (2) clusters are spatially separated, or the number of STAs belonging to one relay group is small and STAs are assigned to one RAW in time. RAW sharing is possible if you can transfer sequentially.
  • Root AP can allocate a channel to be used for transmission between each relay and STA.
  • the relay can inform the Root AP of its preferred channel range when connecting to the Root AP, and the Root AP can use the channel to be used for transmission between Relay and STA based on the channel occupancy status of other relays in the BSS. Can be assigned.
  • a primary channel used for transmission between a root AP and a relay may always be the same.
  • the relay may use a channel different from the primary channel of the root AP for transmission with the STA connected thereto.
  • Root AP can allocate relays that do not overlap channels used in the cluster to the same DRAW when DRAW is allocated so that simultaneous transmission can occur between clusters with different frequency subbands.
  • 29 shows an example of subband allocation for allocating relays in which channels do not overlap to the same DRAW.
  • the Root AP can inform the Root Beacon's RPS IE or a similar new IE of the identification information of the relay that is allowed to transmit during DRAW and the transmission allowance period.
  • the identification information of the relay may include AID, partial AID, or partial basic service set identification (BSSID) of the relay.
  • the Root AP may transmit information about the available channel and the relay to STAs that want to newly connect to the Root AP or Relay. Root AP can transmit to the Beacon including the channel allocation bitmap for each channel to inform the availability of the channel. If a beacon is transmitted with a relay allocation bitmap for each channel, the STA to attempt to connect may identify which relay is allocated to each channel based on the root beacon.
  • the STA may perform scanning by directly moving to the primary channel where the relay exists, and may identify a time point at which the beacon of each relay is transmitted based on the relay RAW allocation information of the root beacon.
  • the STA may receive a relay beacon from the relay and may associate with a relay existing in a specific channel preferred by the STA.
  • the Root AP can display information on channels used by each relay in the Beacon, Probe Response, Relay Beacon Interval, and duration to the next Relay Beacon to inform the relay allocation status for each channel.
  • the STA may determine an optimal relay faster based on the relay allocation situation for each channel. Shared DRAW can be allocated in PRAW format. The STA connected to the relay needs only to receive beacons from the connected relay.
  • the transmission between the relay and the STA in each cluster may be performed in the same form as the communication between the STA and the AP in the existing independent BSS.
  • the STA may transmit within a channel range allocated for use by the relay to which the relay is connected, and may transmit within a channel range including a primary channel in the cluster designated by the relay.
  • the relay may inform STAs by using a relay beacon of a primary channel used in a cluster of the corresponding relay in the same manner that the existing AP notifies the primary channel of the BSS through the beacon.
  • the Root AP can allocate usage of each channel to the AP using the DRAW, and the AP can allocate detailed RAW / slot of the DRAW.
  • DRAW assignment if a primary channel used by a Root AP for transmission between a relay or a STA directly connected to a Root AP is not assigned to another relay, the Root AP may assign a primary channel of the corresponding DRAW to itself. Can be.
  • the Root AP can allocate detailed RAW / slots for a Relay or STA that directly transmits to the Root AP based on the DRAW assigned to itself.
  • the Root Beacon may include RAW / slot allocation information between the Root AP and the relay or the STA for the DRAW interval allocated to the Root AP itself.
  • the relay can request the root AP to change the channel used in its cluster.
  • the relay may define a relay operating mode notification frame to request the Root AP for a channel change.
  • the Root AP that receives the channel change request from the relay sends a confirmation of the channel change request to the relay, and the relay can move the channel when the Root AP approves the channel change.
  • the relay changes the channel, the root AP can change the relay grouping. If a channel change in the cluster is allowed, information about the channel change may be transmitted to the STA through the existing Channel Switch Announcement.
  • FIG. 30 is a diagram for describing a case of using frequency selective transmission (FST) in a cluster when allocating a subband for a relay according to an embodiment.
  • FST frequency selective transmission
  • the primary channel in the cluster that is, the primary channel used for transmission between the relay and the STA may always be fixedly assigned, but the FST may be applied to the cluster so that the temporary primary channel may be changed for each RAW.
  • 30 illustrates an example of allocating a frequency subband to a relay. Unlike in FIG. 29, the primary channel in the cluster is not fixed, and the primary channel may be changed in the band range allocated to the cluster for each RAW.
  • 31 illustrates an example of sharing RAW using different frequency subbands according to an embodiment.
  • FIG. 31 is a diagram illustrating an example of extending the leveled slot allocation method of FIG. 23 to a method of performing simultaneous transmission by sharing DRAW using different frequency subbands.
  • the various types of DRAW allocation methods described with reference to FIGS. 26 to 28 may be extended to simultaneous transmission using different frequency subbands.
  • 32 illustrates an example of transmitting data using different frequency subbands according to an embodiment.
  • FIG. 32 illustrates an example in which the embodiment of the general leveled slot allocation method of FIG. 17 is extended to two relays communicating with an STA using different frequency subbands.
  • transmission slots for Relay 1 and Relay 2 may be sequentially allocated, and slot allocation information is included in the Root Beacon to be transmitted. Can be.
  • DL & UL RAW for transmission between Relay 1 and STA and transmission between Relay 2 and STA may be indicated in Empty RAW (DRAW) format in the Root Beacon.
  • DRAW Empty RAW
  • information about a relay that is allowed to be transmitted in the corresponding empty RAW (DRAW) and channel information about a frequency subband allocated to each relay may be displayed in an empty RAW (DRAW) of the root beacon.
  • the information on the relay to which transmission is allowed may include AID, partial AID, BSSID, or partial BSSID for each of Relay 1 and Relay 2, and channel information about frequency subbands assigned to each Relay.
  • Each relay may include a channel number for an allocated frequency subband, whether to allow wideband transmission including the allocated frequency subband, and information on the range of available broadband if wideband transmission is allowed. Information about the range of available broadband can be used to prevent the use of overlapping channels between relays.
  • Each relay may allocate a transmission slot for an STA connected to the relay beacon.
  • Each relay can allocate different UL and DL intervals as needed in the shared RAW. For example, if Relay 1 has more UL transmissions from the STA than Relay 2, Relay 1 may allocate more UL slots than Relay 2.
  • the Root AP can negotiate with the Relay whether each relay uses RAW sharing using frequency subbands or which frequency subband is preferred when connecting to the Root AP. In addition, even after the relay is connected to the Root AP, the Root AP may change the use of RAW sharing and the preferred frequency subband through an operating mode change request / response between the Relay and the Root AP.
  • the root AP may allocate the same channel to a specific relay transmission section to a specific relay, or determine an optimal channel for each relay transmission section, and allocate an optimal channel to the relay transmission section according to the determination result.
  • the Root AP may assign a frequency subband so that the Relay uses only a specific frequency subband (e.g. 2 MHz), and allow the relay to use a wider frequency subband (e.g. 8 MHz) that includes the specified frequency subband Allowed.
  • a specific frequency subband e.g. 2 MHz
  • a wider frequency subband e.g. 8 MHz
  • the width limit can be set.
  • transmission efficiency may be improved by enabling simultaneous transmission between different clusters.
  • 33 illustrates an example of a method of sharing RAW by using different frequency subbands in a leveled slot allocation method using empty slots according to an embodiment.
  • FIG. 33 is an extension of the embodiment of FIG. 18, and an area 3310 illustrates a section in which simultaneous transmission between clusters is possible.
  • the DL slot allocation for RAW 2 'and the UL slot allocation for RAW 3' may be displayed in the form of Empty slot in Root Beacon.
  • the Root Beacon may display information on relays that are allowed to be transmitted in the corresponding empty slot and channel information on frequency subbands allocated to each relay.
  • the information on the relay to which transmission is allowed may include AID, partial AID, BSSID, or partial BSSID for each of Relay 1 and Relay 2, and channel information about frequency subbands assigned to each Relay.
  • Each relay may include channel number for the assigned frequency subband, whether to allow wideband transmission including the assigned frequency subband, and information on the range of available broadband if wideband transmission is allowed. Information on the range of available broadband can be used to prevent the use of overlapping channels between relays.
  • the relay may transmit a sounding frame for each channel immediately after transmitting the relay beacon.
  • STAs connected to the relay can find the optimal channel based on the sounding frame, and the relay can improve transmission efficiency by transmitting data based on the optimal channel selected by the STA.
  • 34 to 35 illustrate another example of a method of sharing RAW using different frequency subbands in a leveled slot allocation method using an empty slot according to an embodiment.
  • FIG. 34 expands on the embodiment of FIG. 19 and illustrates an embodiment in which shared DL RAW and UL RAW are allocated to one shared RAW (UL / DL RAW).
  • FIG. 35 expands on the embodiment of FIG. 20 and illustrates an embodiment in which DL RAW and UL RAW are shared in transmission between Relay1 and STA and transmission between Relay2 and STA.
  • 36 illustrates another example of a method of sharing RAW using different frequency subbands in a leveled slot allocation method using an empty slot according to an embodiment.
  • FIG. 36 illustrates an embodiment in which the DL RAW and UL RAW are allocated as one shared RAW (DL / UL RAW) in the transmission between Relay1 and STA and the transmission between Relay2 and STA. Doing. By allocating DL / UL RAW as one RAW, it is possible to flexibly allocate UL slots and DL slots between STA / Relay1 and STA / Relay2 according to circumstances so that RAW can be utilized more efficiently. In FIG. 36, since UL 1 has more UL transmissions from the STA than Relay 2, more UL slots are allocated to Relay 1.
  • DL / UL RAW shared RAW
  • the Root AP tells the Relay which AP, for which frequency, for which duration, transmissions have been allocated in a particular time interval (e.g., a specific RAW or a specific slot). Information can be informed via signaling.
  • the Root AP may transmit information about a relay allowed for transmission during DRAW and information on a transmission allowance period to the relay using a Root Beacon RPS IE or a new IE similar to the RPS IE.
  • Information about a relay that is allowed to transmit may inform information such as relay AID, partial AID, or partial BSSID.
  • the signaling method may be performed based on Table 1 below.
  • Table 1 shows DRAW Signaling (signaled in Root Beacon for level 0).
  • Root Beacon may include DRAW allocation information.
  • the information shown in Table 1 may use the RAW Start Time and RAW Duration information of the existing RPS IE, add DRAW indication and DRAW allocation information to the RPS IE, or define a new IE containing similar information. have.
  • the root AP Since the relay and the root AP know channel information negotiated with the root AP for use by each relay, the root AP does not need to inform the DRAW unit about which channel is allocated to which relay in each DRAW.
  • the channel information negotiated with the Root AP for use by the relay includes information regarding channel numbers or bitmaps that allow transmission for a specific relay, whether wideband transmission including the assigned frequency subbands is allowed, etc. can do.
  • the Root AP may inform the Beacon of whether a channel is available by including a relay allocation bitmap for each channel.
  • Root AP can allocate subchannels to itself when using DRAW sharing.
  • the DRAW signaling information may include the AID, partial AID, BSSID, or partial BSSID of the root AP, and RAW / Slot allocation information for transmission between a relay or STA that transmits directly to the root AP and the root AP in the root beacon. May be included.
  • one bit indicating whether or not a PRAW and information about a period of the PRAW may be additionally included in the root beacon.
  • the period of the PRAW may be an integer value indicating how many times the short beacon.
  • one bit indicating whether a PRAW is omitted may be omitted, and only information about a period of the PRAW may be additionally included in the root beacon, in addition to the items in Table 1.
  • DRAW signaling when DRAW sharing is not performed may be performed in the same manner as described above, except that only one relay that is allowed to be transmitted is designated in DRAW allocation.
  • the strictly disallowed bit indicates whether to explicitly prohibit transmission of a specific relay or STA among the allocated intervals. If the strictly disallowed bit is 1, the strictly disallowed relay and STA information may be included in the DRAW. The strictly disallowed bit may be used to indicate whether to disallow the entire relay BSS or to disallow some STAs of the relay BSS.
  • Table 2 below shows Empty RAW signaling information included in a relay beacon.
  • Empty RAW indicates an interval in which STA transmission in the cluster is prohibited outside the DRAW interval at level 1. If marked as Empty RAW, STAs in the cluster are prohibited from transmitting data for the period specified as RAW Start Time, RAW duration.
  • an interval in which the AP enters a power save may be explicitly indicated. If the AP Power Save bit is set to 1 in the RPS IE, this indicates that the AP sleeps in the corresponding RAW period, and the STA does not transmit data to the AP. Empty RAW signaling may be performed using the AP Power Save bit. If you set the interval for setting Empty RAW to RAW and set the AP Power Save bit to 1, STAs do not transmit in the DRAW or RAW interval.
  • the AP power save can be explicitly indicated by using the Empty RAW signaling method. If the AP sets the power save interval to Empty RAW, the STA may explicitly indicate the AP power save since the STA does not transmit the interval set to Empty RAW. In this case, since the empty RAW definition has much fewer bits than the existing RPS IE definition, the application of empty RAW to the AP Power Save indication can further reduce the length of the RPS IE.
  • both the Empty RAW indication bit and the AP Power Save bit may be displayed in Empty RAW.
  • Empty RAW transmission between the STA connected to the Relay and the Relay is not allowed, but since the Relay performs transmission with the Root AP in Empty RAW and may not actually save power, the Empty RAW indication bit and the AP Power Save bit are used. By doing so, it is possible to clearly indicate whether or not the actual relay is sleeping.
  • the PRAW form may be used.
  • the PRAW type one bit indicating whether or not a PRAW and period information of the PRAW may be additionally included in the root beacon.
  • the period of the PRAW may be an integer value indicating how many times the short beacon.
  • one bit indicating whether a PRAW is omitted may be omitted, and only information about a period of the PRAW may be additionally included in the root beacon, in addition to the items in Table 1.
  • the Relay allocates 1 bit in the Relay beacon to indicate that transmission is prohibited except for the DRAW or RAW interval explicitly assigned by the Relay. Can be represented. For example, if the allocated bit is 1, the STA cannot transmit other than an interval in which RAW or DRAW is explicitly set.
  • an interval in which the AP enters a power save may be explicitly indicated. If the AP Power Save bit is set to 1 in a short beacon or a beacon, the STA may be prohibited from transmitting to the AP except for an explicitly allocated RAW period.
  • the AP Power Save bit can be used to indicate whether transmission is prohibited other than the DRAW or RAW period in the relay. Clearly, if the transmission is prohibited except for the DRAW or RAW period in the relay, STAs do not transmit in the DRAW or RAW period by setting the AP Power Save bit to 1 in the relay beacon.
  • the RAW information allocated by the relay to the STA at level 1 is similar to the RAW information of the existing 802.11ah.
  • primary channel information for FST transmission may be included in the RPS IE of the relay beacon as in the existing 802.11ah standard.
  • empty slot or empty RAW at level 0 indicates a delegated slot or DRAW.
  • RPS IE When using an empty slot, RPS IE may include the following information.
  • RAW Start Time represents the start time of RAW that contains a shared empty (delegated) slot.
  • RAW Duration represents the Duration of RAW that contains a shared empty (delegated) slot.
  • An empty (delegated) slot definition indicates the start and end times of an empty (delegated) slot.
  • an empty (delegated) slot definition may include a start slot number and an end slot number. If there are several empty (delegated) slot groups in the same RAW, the start and end times of the above empty (delegated) slots can be represented as a list. If an empty (delegated) slot definition indicates that the Root AP uses an empty (delegated) slot, an Empty (delegated) Slot allocation field must exist, and between the relay APs indicated in the empty slot allocation field and an STA connected to the corresponding relay AP. Only transmissions can indicate that they are allowed in a shared empty slot.
  • an empty (delegated) slot allocation field may not be necessary, which may indicate that only transmission between the relay AP and the root AP is allowed.
  • the empty RAW indication at level 1 may be used only when prohibiting transmission of the STA.
  • An empty (delegated) slot allocation may include a list of relay APs that are allowed to transmit to STAs connected in an empty (delegated) slot and frequency subband information that can be used by the relay AP. Subband information may be included only when RAW sharing using frequency subbands is used. When performing simultaneous transmission or spatial sharing between spatially separated clusters or RAW sharing in a time domain, information about frequency subbands does not need to be included.
  • the Root AP and the Relay may share frequency subband information in advance or may include a band allocation map in the root beacon and not include the band allocation information.
  • the list of relay APs that are allowed to transmit may include information such as AID, partial AID, BSSID, partial BSSID, etc. of the relay APs that are allowed to transmit. Allowed channel number or bitmap, or whether wideband transmission including the assigned frequency subband is allowed or the like.
  • the Root AP allows transmission to a wider frequency subband than the selected frequency subband, it indicates the channel or bandwidth that is allowed to be used by using a bitmap, so that there is no overlapping channel among the relays. Should be.
  • the RPS IE may further include information such as slot definition, Group / Resource allocation frame indication, Access restricted to paged STA only.
  • the RPS IE may include the following information.
  • RAW Start Time The RAW Start Time represents the start time of the shared RAW.
  • RAW Duration represents the duration of shared RAW.
  • the Empty RAW (DRAW) indication indicates whether RAW is used as empty RAW (DRAW). If the Empty RAW (DRAW) indication indicates that the Root AP uses empty RAW (DRAW), the Empty RAW (DRAW) allocation field must exist, and the Relay APs and corresponding Relay APs shown in the empty RAW (DRAW) allocation field. Only transmissions between STAs connected to the nodes are allowed in the shared empty RAW. If the relay AP sets the Empty RAW (DRAW) indication field, the empty RAW (DRAW) allocation field may not be necessary, which may indicate that only transmission between the relay AP and the root AP is allowed. Clearly, the empty RAW indication at level 1 may be used only when prohibiting transmission of the STA.
  • Empty RAW (DRAW) allocation can only be used for RPS IE of Root AP.
  • Empty RAW (DRAW) allocation may include a list of relay APs that are allowed to transmit with STAs connected in empty RAW (DRAW) and frequency subband information that may be used by the relay AP. Subband information may be included only when RAW sharing using frequency subbands is used. When performing simultaneous transmission or spatial sharing between spatially separated clusters or RAW sharing in a time domain, information about frequency subbands does not need to be included.
  • the list of relay APs that are allowed to transmit may include information such as AID, partial AID, BSSID, partial BSSID, etc.
  • the Root AP and the Relay may share frequency subband information in advance or may include a band allocation map in the root beacon and not include the band allocation information.
  • the Root AP allows transmission to a wider frequency subband than the selected frequency subband, it indicates the channel or bandwidth that is allowed to be used by using a bitmap, so that there is no overlapping channel among the relays. Should be.
  • 37 illustrates an example of a RAW sharing method when clusters are spatially separated according to an embodiment.
  • 37 shows an example of using an empty RAW, and can be extended in a similar manner even when using an empty slot.
  • the region 3310 represents a section in which clusters are spatially separated and transmitted simultaneously.
  • the signaling method is similar to the signaling method in RAW sharing using frequency subbands.
  • 38 illustrates an example of a method of performing RAW sharing using a time domain according to an embodiment. 38 illustrates an example of using an empty RAW, and may be extended in a similar manner using an empty slot.
  • the region 3410 represents a section in which RAW is shared by sequentially transmitting in the time domain.
  • a Relay or STA sequentially transmits through contention.
  • the method of performing RAW sharing using the time domain is a method that can be used when the number of STAs connected to each relay is not large or the transmission amount is not large.
  • the signaling method is similar to the signaling method in RAW sharing using frequency subbands.
  • Another method that can be considered in the DRAW transmission method is a method in which the Root AP does not set the DRAW as a section for transmission in the Relay BSS and allocates the DRAW to the Root AP and the UL / DL transmission section in the DRAW.
  • the relay can properly allocate RAW / slots directly from the relay, from the relay to the Root AP, as well as level 1 transmission within the relay within the range of DRAW.
  • the UL / DL transmission RAW / slot from the relay to the Root AP is displayed on the relay beacon, and the transmission slot indication to the Root AP may be displayed in a similar manner to the STA belonging to the Relay BSS in the RPS IE.
  • the relay may transmit the AID of the Root AP to the Root AP, and the UL / DL transmission to the Root AP may be indicated as DL / UL transmission for the AID of the Root AP in the RPS IE. Can be.
  • Root AP allocates resources such as relay transmission section and transmission band to relay independently of RAW of Root AP by using resource allocation information other than RAW type (Relay Resource Allocation IE) How to)
  • the method of using DRAW in the above (A) is to allocate the section set by the Root AP to the relay, and it is possible to simply extend the existing RAW signaling method and to use Empty RAW signaling to protect the transmission section.
  • DRAW has the advantage of simultaneous resource allocation.
  • the relays use a different channel from the root AP, the relays can transmit independently of the root AP in their assigned frequency subbands, so the transmission interval of the relay does not need to be determined based on the RAW of the root AP.
  • the Root AP can allocate resources to the relay by using separate resource allocation information independent of the RAW allocation of the Root AP, and thus, the Relay and Root APs in different frequency subbands Transmission can be performed in an independent section.
  • the Root AP can transmit resource allocation information necessary for transmission between the relay and the STA in the Root Beacon in a separate Resource allocation IE form.
  • Root AP can allocate resources for each relay to minimize transmission of different relay clusters in the same frequency subband at a specific time. Root APs can allocate resources to allow different relays to transmit within the cluster using different frequency subbands as much as possible at any given time to enable simultaneous transmission.
  • the resource to be allocated may include transmission allowable start time and transmission interval length for each relay in the cluster, channel information to be used when each relay uses the intra-cluster transmission.
  • the Relay may request that the Root AP set up a Relay BSS and operate as a Relay AP, and then, when approved by the Root AP, operate as a Relay AP.
  • the Relay When the Relay requests to connect to the Root AP as an STA or requests the Root AP to operate as a Relay AP, the Relay provides channel related information such as channel and bandwidth and primary channel information that the Relay intends to use for cluster transmission, Resource allocation requirements such as a relay beacon interval and an initial relay BSS transmission duration may be transmitted to the root AP.
  • the relay can also transmit information on the degree of separation for other relay BSSs to the Root AP along with resource allocation requirements.
  • the relay can operate as a relay AP by setting up a relay BSS using a channel allocated from the root AP and a relay beacon interval and transmitting a relay beacon at a predetermined time.
  • the relay When the relay is connected to the Root AP, or requests the Root AP to operate as a Relay AP, or after that, it can transmit information to the Root AP to determine the required transmission time. For example, the relay may transmit information such as mean data rate, target wake time, or wake period of STAs connected to the relay to the root AP.
  • the Root AP may allocate an appropriate transmission interval to the relay based on the information received from the relay. Root AP may allocate the same transmission interval to the relays spatially separated from each other based on the information on the degree of separation for the other relay BSS received from the relay.
  • the relay AP may periodically or aperiodically measure the degree of spatial separation with other relay BSSs, and if the degree of spatial separation with other relay BSSs is changed by more than a preset reference, the relay AP may feed back the changed contents to the root AP. For example, the relay AP may receive a lot of interference from another relay BSS that has been previously separated, or vice versa, when a new relay BSS is detected, it may notify the root AP about this. The Root AP may allocate transmissions of newly spatially separated relays to the same section based on spatial separation information between the relays.
  • the relay and the root AP know the channel allocation information for the relay, and in order to minimize the length of the resource allocation information delivered to each beacon, the channel allocation information for each relay may be transmitted without being included in the resource allocation information. .
  • Channel information allocated to each relay may be included in resource allocation information delivered for each beacon.
  • the relays can identify channel assignment information of different relays based on the root beacon and check the relays assigned to the same channel as their own.
  • the resource allocation information may not be transmitted every time, but may be transmitted by including the period information on resource allocation in the long beacon and the like. In this case, the changed resource allocation information only needs to be transmitted when the resource allocation is changed.
  • the Root AP may include resource allocation information in the Root Beacon and transmit it, and the Relay may allocate RAW for the transmission time allowed for transmission to the cluster based on the resource allocation information included in the Root Beacon.
  • the relay may include the RAW allocation information for the STA in the relay beacon and transmit the same to the STAs connected thereto. Transmission between the relay and the STA may be performed in the allocated resource.
  • the relay may use a relay beacon transmission channel and a channel transmitted with an STA in a cluster may negotiate with a root AP in advance and use an allocated channel. Channel allocation information may be indicated or omitted using relay resource allocation information.
  • the channel allocated by the root AP may be used for transmission between the relay and the root AP. Transmission between the relay and the root AP may be performed based on a transmission interval allocated by the root AP to the root beacon in RAW.
  • the leveled method may be used in the same manner as the method (A). That is, the root AP may allocate only resources for the relay cluster and not allocate RAW of the STA connected to the relay in the relay cluster.
  • the Root AP allocates only RAWs for STAs and relays directly connected to the Root AP, and RAW allocations for STAs connected to each relay can be allocated within resources such as a transmission channel and a transmission interval allocated by each relay.
  • the RAW / slot allocation information may be identified based on the relay beacon of the STA connected to the relay, and may be confirmed based on the root beacon.
  • Root AP can set Empty RAW to Root Beacon similar to the method (A) to protect the transmission of the relay cluster when transmitting between relays using the same frequency subband as Root AP. That is, the Root AP can allocate all or part of the relay transmission section using the same frequency subband as the Root AP to Empty RAW, and STAs and relays connected directly to the Root AP can be assigned to Empty RAW based on the Root Beacon. You may not send it. Accordingly, transmission of a relay cluster allocated to the same frequency subband as that of the Root AP in the time interval indicated by Empty RAW can be protected.
  • a protection method for preventing STAs from transmitting outside of the explicitly allocated relay cluster transmission interval in each relay cluster includes a method of setting empty RAW in the same manner as method (A), or transmitting other than explicitly allocated RAW. Disallowed methods may be used.
  • the Root AP In order to prevent the STA in the Root BSS from colliding with another Relay BSS transmission interval using the same channel, the Root AP explicitly sets another Relay transmission interval to Empty RAW (or AP PM RAW) to prohibit transmission of the STA. Can be.
  • the Root AP determines the spatial separation between the Root BSS and other Relay BSS, and if the space is not sufficiently separated, the Root AP sets the transmission interval of the other Relay to Empty RAW (or AP PM RAW) and is connected to itself in the transmission interval of the other Relay. Transmission of the STA may be prohibited. or.
  • the Root AP may not prohibit transmission of all STAs in the Root BSS for other Relay transmission intervals, and may prohibit transmission only for a specific STA that has much interference with other Relay BSSs among the STAs in the Root BSS.
  • the Root AP may use a modified Empty RAW (or modified AP PM RAW) that may indicate a STA whose transmission is prohibited, or a RAW allocation method that excludes a STA whose transmission is prohibited from RAW allocation.
  • How the Root AP identifies whether a particular STA in the Root BSS is interfered with by another Relay BSS may be determined by the Root AP using the “Method of Determining Spatial Separation Between (BB) Relays”.
  • a method of receiving information or informing the Root AP of a STA of a Root BSS that interferes with information on another Relay BSS or another STA that interferes with the STA may be used.
  • the relay AP clears the transmission interval of the other relay BSS similarly to (A).
  • (Or AP PM RAW) can be set to prohibit transmission.
  • the relay periodically decides whether to separate spatially from other relay BSSs, and if the result is not sufficiently spatially separated, the relay may prohibit transmission of the STA connected to itself by setting the transmission interval of another relay to Empty RAW (or AP PM RAW). Can be.
  • the relay does not prohibit transmission of all STAs in the relay BSS with respect to another relay transmission interval, but may also prohibit transmission only for a specific STA that has much interference with other relay BSSs among the STAs in the relay BSS.
  • a modified Empty RAW (or modified AP PM RAW) that may indicate a STA whose transmission is prohibited, or a RAW allocation method for excluding a STA whose transmission is prohibited from the RAW allocation may be used.
  • Root AP If there is a frame to be urgently transmitted by the Root AP, transmission in an interval other than the transmission interval allocated for Root BSS transmission may be exceptionally allowed. In addition, even for a level 1 transmission, even if the STA is not allocated to the relay to which the relay belongs, the STA does not detect transmission in another relay BSS or based on a beacon of another relay, Data can be transferred exceptionally for sections that are not assigned RAW.
  • both STAs belonging to the Root AP and STAs belonging to the Relay may be allowed to transmit data through contention, such as transmission in an existing OBSS environment, even in a period where transmission to the AP is not allocated.
  • contention such as transmission in an existing OBSS environment
  • the STA performs RTS / CTS before data transmission.
  • the relay or the root AP may explicitly prohibit transmission of STAs connected to the self by setting an empty RAW period in which a collision or contention is expected to be severe among transmission periods not allocated to the relay or root AP.
  • the relay or the root AP may prohibit the STA from transmitting to the relay in the period in which the transmission between the relay and the root AP occurs by setting the empty RAW interval between the relay and the root AP.
  • the protection method for resources allocated to other relays above is similarly applicable to the method using (A) DRAW.
  • the relay can explicitly request the Root AP for protection of resources allocated to it.
  • the Root AP may explicitly prohibit the Relay from transmitting certain relay BSSs or some STAs (including STAs of the Root BSS) for the allocated resources of the transmission interval. .
  • a relay receives severe interference from transmissions of a specific STA belonging to another Relay BSS, another Relay BSS, or STAs directly connected to a Root BSS, and thus, relays of all other Relay BSSs or all other Relay BSSs in a transmission interval assigned to the relay BSS are allocated to them. If it is desired to prohibit transmission of some STAs or STAs directly connected to the Root BSS, the relay may request protection of a resource allocated thereto from the Root AP. When requesting protection from the root AP, the relay may transmit to the root AP a list of other relay BSSs or specific STAs that are interfering.
  • each STA in the relay BSS may also transmit information on the relay BSS or a specific STA that has severe interference to the relay AP, and the relay AP may transmit the relay BSS and the STA information received from the STA to the root AP. Can be.
  • STAs may not need a measurement function such as 802.11k.
  • the relay AP may request a measurement from the STA and determine other relay BSSs and STAs that interfere with the STA connected to it based on the measurement results from the respective STAs. have.
  • the relay AP may notify the Root AP of other relay BSSs and STAs determined.
  • the Root AP When the Root AP receives a resource protection request from a relay, the Root AP may indicate specific STAs of a Relay BSS or Relay BSS that should not be transmitted in a corresponding transmission interval in a resource allocation IE for a relay that has made a resource protection request. .
  • the relay does not transmit in the transmission interval of the other relay BSS if it is included in the relay prohibited list of the resource allocation IE of the other relay BSS.
  • the relay may protect the resources of the relay requesting resource protection by allocating empty RAW (or AP PM RAW) to the STA belonging to it and explicitly prohibiting transmission of the STA. If it is indicated in the relay resource allocation IE to prohibit transmission of some STAs among the relay BSSs instead of the entire relay BSS, the relay may prohibit transmission of only a specific STA designated for the corresponding relay BSS transmission interval.
  • the relay resource allocation location IE indicates resource allocation information regarding resources for transmission between the relay and the STA connected to the relay, allocated by the root AP. Based on the Relay Resource Allocation IE, which relay can communicate with the STA in which time period may be determined.
  • a method of modifying and using an AP PM or empty RAW or (2) a method of using RAW allocation may be used.
  • the relay includes the (partial) AID list of the STA to prohibit transmission for a certain period in the AP PM RAW or Empty RAW, and only the STA to be prohibited in the AP PM RAW or Empty RAW interval is explicitly stated.
  • the transmission may be prevented and the remaining STAs may allow transmission through contention.
  • the relay may not assign an STA (that is, an STA interfering with another relay) to RAW to prevent the transmission of the STA to prohibit the transmission.
  • the corresponding STA may not be included in the Relay Resource Allocation IE, and the Root AP may prohibit transmission of the STA during the Relay transmission period.
  • the protection method for resources allocated to the relay itself is similarly applicable to the method using (A) DRAW.
  • the strictly disallow bit, the relay AP, and the STA list may be displayed through fields of the DRAW.
  • the Root AP collects information on the relay AP and STA to be strictly disallowed and received from the relay, and broadcasts a message including the relay AP and STA information to strictl disallow for each Relay BSS to each Relay, or There is a method of delivering using a separate frame in unicast.
  • a relay that receives a message containing information on the relay AP and STA to be strictly disallowed checks whether or not it is strict disallowed by itself or the STA connected to it in the transmission interval of another relay, and when it is confirmed that the relay is disallowed, Do not transmit in the transmission section.
  • the relay initially attempts to connect to the Root AP as an STA for the Root AP. After that, the relay may request that the Root AP set up a Relay BSS and operate as a Relay AP, and then operate as a Relay AP if it is approved by the Root AP.
  • the relay requests the Root AP with an association request for the resources necessary for its cluster to operate as a Relay AP, or a Relay SetUp request when the Root AP is requested to operate as a Relay AP. Can be requested to Root AP.
  • a relay may include the following information in an association request or a relay setup request and transmit the following information to a root AP.
  • Channel allocation request information for Relay Cluster Relay BSS Starting Channel Number, Relay Primary Channel Number, Relay Bandwidth (Relay BW) It may be included in the channel allocation request related information.
  • the relay can transmit the channel candidate list to be used to the root AP.
  • Root AP allocates a channel that does not overlap with another relay BSS to the relay, and if a plurality of relays are allocated to the same frequency subband, relays using the same frequency subband can be allocated to different time intervals. When the current relay is spatially separated from other relay BSSs, the root AP may allocate the same frequency subband to the current relay BSS and another relay BSS even in the same time interval.
  • Relay Beacon Interval indicates the transmission period of Relay Beacon, and Relay can negotiate with Root AP for Relay Beacon Interval.
  • the relay periodically transmits the relay beacon after the relay BSS setup, and the root AP can allocate a time when the relay transmits the relay beacon and a certain time thereafter to the corresponding relay.
  • the root AP can protect the transmission period of the relay cluster by using an empty RAW.
  • the relay beacon may be transmitted first of the transmission periods allocated to the relay.
  • the Root AP can allocate a relay beacon transmission RAW after the root beacon.
  • Each relay can transmit a relay beacon based on the assigned relay beacon transmission RAW. In this case, the transmission interval allocated to each relay and the time point at which the relay beacon is transmitted may not immediately follow.
  • the relay has requirements such as a relay transmission duration (for example, a transmission time required by the relay during the full beacon interval of the root AP) or information related to the transmission interval for allowing the root AP to determine the relay transmission interval.
  • a relay transmission duration for example, a transmission time required by the relay during the full beacon interval of the root AP
  • the transmission interval related information may include a mean data rate, a target wake time, or a wake period of the STAs connected to the relay.
  • the root AP can allocate a time interval required for each relay cluster based on the requirement received from the relay or information on the transmission interval.
  • Relay can transmit relay transmission section related information to Root Ap when connecting to Root AP or relay setup request.
  • the relay may exchange related information by using an additional resource allocation request frame after being connected to the root AP.
  • the relay can also transmit information on the spatial separation degree of other relay BSSs to the
  • the Root AP may respond to the Association Request of the Relay with an Association Response, and may transmit information including information on the transmission interval allocated by the Root AP in the Association Response frame. have.
  • the Root AP may include information on a transmission interval allocated by the Root AP in a response frame.
  • the Root AP may inform the Relay of channel allocation information such as Relay BSS Starting Channel number, Relay Primary channel number, Relay BW, and Relay Beacon Interval allowed by the Root AP.
  • the root AP can inform the relay of the negotiation result related to the relay transmission interval.
  • the information initially allocated to the relay by the Root AP may be changed by using an additional operation mode change request / response frame or a resource allocation change request / response frame.
  • resources required for transmission of the relay cluster may vary.
  • the relay can request the relay cluster bandwidth and relay transmission interval requirements even after being connected to the root AP so that the entire resource can be utilized more efficiently. If the channel used in the relay BSS is changed, the relay AP may inform the STAs connected to it by using the channel switch announcement frame used in the existing 802.11 standard.
  • Root AP may allocate the same transmission interval to the relays that are spatially separated from each other based on the information about the spatial separation degree for the other relay BSS transmitted by the relay.
  • the relay AP may periodically or aperiodically measure the degree of spatial separation from other relay BSSs, and if the degree of spatial separation from other relay BSSs is changed by more than a predetermined reference value, the relay AP may feed back the changed contents to the root AP. For example, the relay AP may receive a lot of interference from another relay BSS that has been previously separated, or vice versa, when a new relay BSS is detected, it may notify the root AP about this. The Root AP may allocate transmissions of newly spatially separated relays to the same section based on spatial separation information between the relays.
  • 39 illustrates an example of allocating a plurality of frequency subbands according to an embodiment.
  • FIG. 39 shows an example of allocating different frequency subbands to several relays and root APs to enable simultaneous transmission.
  • transmission between the STA connected to Relay 1 and Relay 1, the transmission between STA connected to Relay 2 and Relay 2, and the transmission between STA or Relay directly connected to Root AP and Root AP are performed simultaneously through different channels.
  • Relays and root APs using different frequency subbands can transmit independently, and relays using the same frequency subbands (for example, Relay 1 and Relay 3) transmit in different transmission intervals. Should be performed.
  • the STA may communicate with the relay using the frequency subband used by the connected relay, and the relay may communicate with the root AP using the frequency subband allocated by the root AP.
  • 40 is a diagram illustrating an example of allocating a plurality of frequency subbands according to another embodiment.
  • FIG. 40 illustrates an example in which different frequency subbands are allocated to various relays and root APs for simultaneous transmission.
  • the frequency subbands are allocated so that some channels overlap each other. Such overlapping channel assignment may be useful when there are not many channels available.
  • Primary channels of each relay AP and root AP may not be allocated redundantly, and only secondary channels may be allowed to be allocated. If the channel is not enough, the Root AP can allocate some channels redundantly, as shown in FIG. 40, and the channel assignment information for each relay including the assignment of the duplicated channel (this is called 'Default channel assignment information'). ) Can be sent to Relay.
  • the channel allocation information is shared in advance by the relay and the root AP, and may not be explicitly informed through the relay resource allocation IE or may be explicitly informed through the relay resource allocation IE. If the channel allocation information is not explicitly communicated through the relay resource allocation IE, the Root AP will inform which relay used the channel allocated in a specific time interval when transmitting the resource allocation IE (ie, resource allocation). Can be. Root AP can inform additional information to be known when resource allocation through resource allocation IE. Additionally, the information to be known may include information on who will use the duplicately allocated channel. If there is no additional channel allocation information in the resource allocation IE, the relay can use the channel allocated to itself including the duplicated channel.
  • the Root AP will inform which relay used the channel allocated in a specific time interval when transmitting the resource allocation IE (ie, resource allocation). Can be. Root AP can inform additional information to be known when resource allocation through resource allocation IE. Additionally, the information to be known may include information on who will use the duplicately allocated channel. If there is no additional channel allocation information in the resource
  • the Root AP can prevent the channel from being used for another relay that has been assigned a channel. For example, the Root AP can deliver a reduced bandwidth or an unused channel number to another relay that has been assigned a channel.
  • the Root AP informs Relay 3 of the reduced bandwidth than the initial allocated bandwidth, or Resource allocation IE can be told not to use duplicate channels allocated to Relay 3.
  • the resource allocation IE delivered to relay 5 may not include duplicate channel allocation related information. In other words, if there is no information related to the allocation of redundant channels explicitly in the resource allocation IE, the relay can use all channels allocated to itself including the duplicated channels.
  • the relay will have a reduced bandwidth (that is, a bandwidth excluding the duplicated allocated channel). Can be used to perform transmission in the cluster.
  • the Root AP may temporarily allocate an additional channel for the corresponding relay in addition to the initially allocated channel.
  • the Root AP can transmit additionally allocated channel information (eg, additionally allocated channel number) or increased bandwidth in the resource allocation IE for the corresponding relay.
  • a relay that receives additionally allocated channel information or information about increased bandwidth may use a channel additionally allocated by the root AP.
  • An example of a method of notifying the overlapping channel allocation or the temporary additional channel allocation to the resource allocation IE is as follows.
  • Option 1 Mark channel number + 0/1. '0' is used to inform transmission prohibition for the initially overlapped allocated channel, and '1' indicates transmission allowance. Channel information may be omitted when allowing transmission to the initially allocated overlapped channel.
  • Root Ap temporarily allocates additional channels, the number of additional allocated channels may be displayed in the resource allocation IE.
  • Option 2 Displays the bandwidth of the changed channel. If the relay does not allow transmission on the duplicated channel, the bandwidth is reduced from the initial allocated bandwidth, so the root AP delivers the reduced bandwidth to the relay. If the Root Ap temporarily allocates additional channels, the Root Ap can transmit information about the increased bandwidth through the Resource allocation IE. In this case, since only the variable bandwidth information needs to be represented, the size of the allocation IE does not increase even if a number of additional channels are allocated.
  • Relay Resource Allocation In case of explicitly telling channel information such as starting channel number, primary channel, and bandwidth allocated to IE, what relay is overlapped channel assigned, and what is temporarily changed bandwidth? There is no need to inform.
  • Relay sends relay relay beacon when the bandwidth is temporarily changed for the entire relay beacon interval.
  • the BSS bandwidth can be reported.
  • the relay can inform the relay BSS bandwidth as a full beacon, and even when the relay beacon is a short beacon format, the relay beacon can inform the STAs of the cluster by using the BSS bandwidth field of the FC of the relay beacon.
  • the relay can display channel information in the RAW for the section where the bandwidth is changed when the bandwidth of the relay BSS is changed only for a section of the relay beacon interval.
  • the relay may indicate a section in which the bandwidth is changed as 'center frequency + channel bandwidth' or 'bandwidth'. If the secondary channel increases or decreases in only one direction, the relay only needs to advertise the changing bandwidth.
  • the channel assignment can be changed only for the secondary channel of the relay BSS.
  • the Root AP When the Root AP temporarily changes the channel allocated to itself, the Root AP can notify the channel allocation information change by displaying the channel information in RAW only for the changed time interval.
  • the AID (s) of the relay that is allowed to transmit To inform the resource allocation, the AID (s) of the relay that is allowed to transmit, the transmission allowable start time, the transmission interval, the period information to which the resource is allocated when the resource is periodically allocated, and the frequency sub allocated when the multi-frequency subband is allocated. Additional resource allocation related information such as band information, duplicate channel allocation / temporary channel allocation, information on whether to prohibit transmission of another relay / STA for the assigned relay transmission interval, and information on relay / STA forbidden transmission Can be. Since the subband allocation information (default subband allocation information) is shared with the Root Ap when the Relay connects to the Root Ap, separate signaling is omitted in the resource allocation IE except for temporary changes such as duplicate channel allocation / temporary channel allocation. It may be.
  • Channel information allocated to each relay may be explicitly included in Resource Allocation IE, and relays may identify channel allocation information of different relays through a root beacon. Relays can recognize relays assigned to the same channel through their root beacons. When the channel information such as starting channel number, primary channel, and bandwidth allocated to the Resource Allocation IE is explicitly informed each time, it indicates to which relay the overlapped channel is allocated and what the temporarily changed bandwidth is. There is no need to inform.
  • the Root AP and the Relay share information on the Relay Beacon interval through pre-negotiation, and the Root AP may allocate a Relay transmission interval to transmit the Relay Beacon based on the Relay Beacon interval.
  • the relay resource allocation IE may be included in the root AP beacon and transmitted.
  • the relay resource allocation IE may be transmitted through a newly defined frame.
  • Resource allocation information is indicated in the resource allocation IE as follows.
  • the Resource Allocation IE may include Relay AID (s), Relay start time, duration, period, and other allocation information allocated during the short beacon interval of the Root AP.
  • the other allocation information may include allocated channel information or strictly disallowed relay / STA information.
  • the Relay Resource Allocation IE When resources are allocated periodically, the Relay Resource Allocation IE does not need to be sent every Short beacon. For example, the Relay Resource Allocation IE needs to be included only when transmitting a long beacon.
  • Table 3 below shows an example of Resource Allocation IE format when resource allocation information is displayed for each Relay AID.
  • each field's value, field order, and the like are shown as an example, and can be changed to other similar forms.
  • the frequency subchannel information of the additional allocation information may be included in the case of using simultaneous transmission between relays using different frequency subchannels.
  • the relay BW is assigned to the initial allocated BW. Only when there is a change in can be displayed in the Resource Allocation IE. For example, a relay BW may be displayed in case of additional allocation of a temporary channel or prohibition of transmission in an overlapping allocated channel.
  • channel information such as starting channel number, bandwidth (BW), and primary channel allocated to the relay BSS is specified in the Resource Allocation IE. Can be displayed.
  • a plurality of AIDs can be designated, and the size of IE (Information Elemnet) can be reduced by using a plurality of AIDs when different allocation information of two relays is completely identical. . Even if relay BSSs are spatially separated, if there are different resource allocation information, each allocation information may be included for each AID.
  • IE Information Elemnet
  • the severely disallowed bit indicates whether to explicitly prohibit transmission of a specific relay or STA among the allocated intervals.
  • the severely disallowed bit is 1, the strictly disallowed relay and STA information may be included in the IE. Through the strictly disallowed bit, it is possible to indicate whether to disallow the entire relay BSS or to disallow some STAs of the relay BSS.
  • a Relay can list all allocated non-contiguous time intervals at a time, so you only need to mark the resource allocation once.
  • the length of Resource Allocation IE may be long because start time and end time must be indicated for each relay.
  • the section should be divided.
  • the Root AP aligns the time to some extent, it can prevent the display of the intervals to some extent.
  • the same time interval may be allocated to a plurality of relays. In this case, the same time information may be displayed in the allocation information of the relay to be transmitted simultaneously. If transmission is not completed in a time interval allocated to a specific relay cluster, a transmission interval allocated for simultaneous use in multiple relay clusters may be used to complete the transmission.
  • FIG. 41 is a diagram illustrating an example of a format for Relay Resource Allocation IE of Table 3 according to an embodiment.
  • FIG. Relay Resource Allocation IE may include resource allocation information allocated to various relays for each AID. Resource allocation for each relay is defined in the Relay N Allocation field, and a number of time intervals in which a relay is allocated may be defined in each Relay N Allocation field. For example, a time interval in which a relay is assigned represents a time interval allocated in one root beacon.
  • the Relay Resource Allocation IE for each frequency subband, " ⁇ frequency subband, ⁇ Relay AID assigned to frequency subband, Relay start time, duration + period, Strictly disallow, list of strictly disallowed Relay AP or STAs in the Relay BSS ⁇ list ⁇ "may be used to display allocation information.
  • the frequency subband allocation information for each relay is shared when the relay is initially connected to the root AP, and the allocation information of the frequency subbands for each relay need not be displayed for each frequency subband.
  • FIG. 42 is a diagram illustrating an example of allocating resources for each time interval, according to an embodiment.
  • (short) divide the beacon interval into time intervals, and for each time interval " ⁇ Start Time, Duration + period, ⁇ other assigned information such as relay AID assigned to the time interval, channel assignment information, Strictly disallow, list of strictly disallowed Relay AP or STAs in the Relay BSS ⁇ list ⁇ "may be displayed in the Relay Resource Allocation IE.
  • the time interval represents a longer time interval than RAW.
  • Table 4 below shows a format of Resource Allocation IE in the case of displaying allocation information for each time section.
  • Resource Allocation IE may have a form similar to that of RPS IE when using RAW. If the number of relays that allow transmission in the same time zone is similar and the time intervals are similar, the method of displaying resource allocation information for each time interval is a method. If the number of relays is small and the transmission allowable time intervals of each relay are different, resource allocation information for each relay AID is used. The method of marking may be suitable.
  • the protection of the transmission section of the relay can use Empty RAW similarly to the method of (A) DRAW.
  • the Root AP uses the DRAW to protect the transmission of the relay cluster using the same frequency subband as the Root AP, and the DRAW has an explicit description of the transmission protection interval.
  • the transmission prohibition information and the relay resource allocation information for the DRAW period may be included.
  • the relay resource allocation information is transmitted in the form of Relay Resource allocation IE, not RAW, and the resource protection at level 0 is
  • A Level 1 of the method using DRAW. Empty RAW similar to the above can be used. According to another example, a method may be used in which empty RAW is not used for resource protection and transmission is allowed only in an explicitly allocated interval.
  • the resource protection method at level 1 of the method of allocating resources by using resource allocation information may use Empty RAW or a method of allowing transmission only in an explicitly allocated section.
  • Table 5 shows a format for empty RAW signaling used when indicating a section in which transmission of an STA (level 0 or 1) or a relay (level 0) connected to an AP is prohibited.
  • the information shown in Table 5 may be included in the RPS IE as RAW information.
  • Empty RAW may be used to indicate a period in which transmission of an STA connected to the Root AP and a transmission of another relay is prohibited in a transmission period of a relay using the same frequency subband as that of the Root AP.
  • Empty RAW may be used to indicate a section in which STA transmission in the Relay cluster is prohibited in addition to the explicitly allocated section. If it is set to Empty RAW, the transfer is prohibited for the period specified by Empty RAW Duration, starting at Empty RAW Start Time.
  • the AP may explicitly indicate the interval for entering the power save
  • that the AP Power Save bit of the RPS IE is set to 1 indicates that the AP sleeps in the RAW interval, and the STA may identify the AP. Do not send to. Empty RAW signaling may be performed using this AP Power Save bit. For example, if the interval for setting Empty RAW is set to RAW and the AP Power Save bit is set to 1, the same effect as using Empty RAW may occur because STAs do not transmit in the DRAW or RAW interval.
  • AP Power Save can be explicitly indicated by extending the Empty RAW signaling method. If the AP sets the power save section to Empty RAW, the AP does not transmit the section set to Empty RAW, thereby clearly indicating the AP Power Save. Since the definition of Empty RAW is much fewer bits than the existing RPS IE definition, it is possible to further reduce the length of the RPS IE by utilizing Empty RAW for the indication of AP Power Save.
  • both the Empty RAW indication bit and the AP Power Save bit may be displayed in Empty RAW.
  • the Root AP may indicate a section in which the Empty RAW section does not actually sleep, and the Root AP may allow transmission in the Empty RAW section for a STA to newly connect to the Root AP. have.
  • the PRAW form may be used. If the PRAW type is used, one bit indicating whether the PRAW is used and period information of the PRAW may be additionally provided. For example, the period of the PRAW may be an integer value indicating how many times the short beacon. Alternatively, one bit indicating whether a PRAW is omitted may be omitted, and only information about a period of the PRAW may be additionally included in the root beacon, in addition to the items in Table 1.
  • the Root AP allocates 1 bit in the Root beacon so that transmission is prohibited in RAW that is not explicitly assigned by the Root AP. It can indicate whether or not.
  • the relay allocates 1 bit in the relay beacon to indicate whether transmission is prohibited in RAW that is not explicitly assigned by the relay AP. For example, if the allocated bit is 1, the STA cannot transmit other than the period explicitly set to RAW.
  • an AP may implicitly indicate an interval for entering power saving. For example, if the AP Power Save bit is set to 1 in the Short Beacon, Beacon, etc., the STA may be prohibited from transmitting to the AP other than the explicitly allocated RAW period.
  • the AP Power Save bit may be used to indicate whether transmission of the STA is prohibited in a section other than the RAW section allocated by the relay.
  • the relay sets the AP Power Save bit to 1 in the relay beacon, the STAs may be prohibited from transmitting in the DRAW or the RAW section.
  • the Root AP sets the AP Power Saving bit to 1 in the Root beacon, transmission of an STA or Relay directly connected to the Root AP may be prohibited in a section other than RAW explicitly allocated by the Root AP. .
  • Table 6 below shows modified Empty RAW signaling information indicating that transmission is explicitly prohibited during a RAW period only for a specific STA.
  • FIG. 43 illustrates an example of transmitting using a Relay Resource Allocation IE in a single frequency subband according to an embodiment.
  • the resource allocation information may be included in a separate Relay Resource Allocation IE and transmitted, and the section to which the resource is allocated may be clearly protected through Empty RAW or may be protected through an implicit method.
  • STA When transmitting between STA-Relay-Root AP in one TXOP by using TXOP Sharing, STA transmits UL data to Relay in UL slot of a specific STA among transmission periods allocated to Relay, and when slot remains Can immediately transmit UL data to the Root AP.
  • the Root AP may set the interval allocated for the relay to Empty RAW to prevent transmission of STAs belonging to other Root APs.
  • a Root AP transmits a DL frame for a specific STA to a Relay in a section allocated to the DL interval, and the Relay has a DL transmission slot allocated to itself by the Root AP, and the STA to receive the DL frame wakes up. If there is, the DL frame can be immediately transmitted to the STA.
  • the root AP may transmit a DL frame to the relay using a slot allocated to the STA to receive the DL frame from the relay.
  • transmission of an STA belonging to another root AP can be prevented by setting the interval allocated by the root AP for relay to empty RAW.
  • the relay After receiving the DL frame for the STA from the Root AP, the relay may transmit the DL frame through a DL slot (a slot allocated by the Relay) for the corresponding STA.
  • 44 illustrates another example of transmitting using a Relay Resource Allocation IE in a single frequency subband according to an embodiment.
  • FIG. 44 shows another example of transmitting using a relay resource allocation location IE in a single frequency subband, in which a form similar to using a DRAW is applied to resource allocation in the same manner.
  • 45 is a diagram illustrating an example of transmitting using a Relay Resource Allocation IE in a multi-frequency subband according to an embodiment.
  • a root AP may independently transmit in a different frequency subband from a relay, and relays using subbands A and B may also independently transmit. Since the frequency subbands are independent of each other, the time intervals assigned to each relay at level 1 do not need to be aligned based on each other's time intervals, and do not need to be aligned with the RAW of the Root AP, as compared to the case of using DRAW. Flexible and easy to expand
  • FIG. 37 described as an example of simultaneous transmission when the relay clusters are spatially separated, and simultaneous transmission in the time domain described as an example of the DRAW
  • the resource allocation method using the resource allocation information (B) may be applied to all the embodiments of FIG. 38 described as an example of FIG.
  • the relay When the relay connects to the Root AP, and negotiates with the Root AP about relay related parameters, it requests the Root AP for the Beacon Interval to be used by the Relay and the duration required for the Relay BSS transmission, and the initial relay from the Root AP.
  • a BSS transmission interval may be allocated.
  • the relay After the transmission between the relay and the STA is started, the relay may determine whether more or less allocation of a transmission interval for the relay BSS is required based on the traffic transmitted from the STA and may feed back the determination result to the root AP.
  • the Root AP may adjust the transmission interval for the Relay BSS based on the information received from the Relay and reassign it to the Relay BSS. This method can be useful when the traffic volume and period are relatively constant. If the transmission traffic and transmission period of the STA is not constant, the following method D and method E may be used to more accurately allocate the transmission period of the relay BSS.
  • the relay may feed back a mean data rate of the STA to the root AP before the next delivery traffic indication message (DTIM) of the relay.
  • DTIM delivery traffic indication message
  • target wake time information may be transmitted together with a mean data rate.
  • Wake Interval can be additionally fed back to Root AP.
  • the Root AP may determine the next TWT by adding the Wake Interval to the previous TWT even if the Relay does not feed back the TWT every time within the range that the Wake Interval does not change as the TWT is periodically transmitted.
  • the Root AP may determine the DL Duration to be transmitted during the next Relay Beacon interval for the Relay BSS based on Equation 1 below.
  • DataSizeBufferedForTIMSTA (i) represents the data size (bits) of the TIM STA (i) buffered in the Root AP
  • MeanDLDataRateOfTIMSTA (i) represents the Mean DL Data Rate (bits / s) of the TIM STA (i).
  • the relay beacon if the TIM bit for the TIM STA (i) is set to 1, the TIMbit (i) ForNextRelayBeacon) for the next relay beacon is set to 1, otherwise, the TIMbit (i) for the next relay beacon is set. ) Is set to zero.
  • DataSizeBufferedForTWTSTA (j) represents the data size (bits) of the TWT STA (j) buffered at the Root AP, and MeanDLDataRateOfTWTSTA (j) represents the Mean DL Data Rate (bits / s) of the TWT STA (j). If the Target Wake UP Time of the TWT STA (j) exists within the next Relay Beacon Interval, the value of WithinNextRelayBeacon (j) interval is set to 1, and otherwise, the value of WithinNextRelayBeacon (j) interval is set to 0. .
  • the transmission interval may not be adjacent, and in this case, it is also possible to further add the time between transmission periods of the TWT STA to the DL Duration. Even if the relay performs TIM segmentation, the relay can transmit the remaining data after the next relay beacon transmission when there is not enough time for the first TIM segment transmission.
  • the relay may transmit the expected data amount to the Root AP based on the previous transmission statistics of UL data.
  • information of an expected data amount calculated based on a Mean Data Rate (for UL) for a relay of an STA and UL data transmission statistics of a previous STA may be needed to determine an expected data amount.
  • the TWT information needs to be additionally transmitted to the Root AP in order to determine the expected data amount.
  • Wake Interval information can be additionally transmitted to Root AP.
  • a time interval required for transmitting UL data in the relay BSS may be determined based on Equation 2 below.
  • MeanULDataSizeForTIMSTA (i) represents Mean UL Data Size (bits) for TIM STA (i), and MeanULDataRateOfTIMSTA (i) represents Mean UL Data Rate for TIM STA (i).
  • MeanULDataSizeForTWTSTA (j) represents Mean UL Data Size (bits) for TWT STA (j), and MeanULDataRateOfTWTSTA (j) represents Mean UL Data Rate for TWT STA (j).
  • Target Wake UP Time of the TWT STA (j) exists within the next Relay Beacon Interval, the value of WithinNextRelayBeacon interval is 1, and in other cases, the value of WithinNextRelayBeacon interval (j) is set to 0.
  • the transmission interval may not be adjacent, and in this case, it is also possible to further add the time between transmission periods of the TWT STA to the DL Duration.
  • the relay does not feed back Mean UL Data Size for TWT STA, Mean UL Data Rate for TWT STA, Mean UL Data Size for TIM STA, Mean UL Data Rate for TIM STA to Root AP, respectively (Mean UL Data Size for TWT STA
  • the relay may directly calculate the value of) / (Mean UL Data Rate for TWT STA) and the value of (Mean UL Data Size for TIM STA) / (Mean UL Data Rate for TIM STA) to feed back to the Root AP.
  • the expected UL duration during the next Relay beacon interval may be determined based on Equation 3 below.
  • the value of WithinNextRelayBeacon interval is 1, and in other cases, the value of WithinNextRelayBeacon interval (j) is set to 0.
  • MeanULDurationForTIMSTA (i) represents (Mean UL Data Size (bits) for TIM STA (i)) / (Mean UL Data Rate (bits / s) for TIM STA (i)).
  • MeanULDurationForTWTSTA (j) represents (Mean UL Data Size (bits) for TWT STA (j)) / (Mean UL Data Rate (bits / s) for TWT STA (j)).
  • the transmission interval of the entire Relay BSS can be calculated as shown in Equation 4 below.
  • the STA Information Announcement frame defined in 802.11ah may be extended and used.
  • an additional element of the STA Information Announcement frame may be defined to include Duration allocation related information as well as AID update information in the STA Information Announcement frame.
  • a new frame that may include duration allocation related information may be defined, and the relay may transmit a newly defined frame to the root AP. The relay does not need to update all the STA information for every DTIM, and can update only the information on the STA whose data rate fluctuates.
  • the Root AP can allocate the transmission time and the initial transmission interval of the relay beacon based on the total number of relays in the extended BSS.
  • the relay may transmit a relay setup request for an initial transmission duration, a relay beacon interval, etc. to the root AP.
  • the root AP may transmit a relay setup response regarding a next relay target beacon transmission time (TBTT), beacon interval, and initial duration to the relay.
  • TBTT relay target beacon transmission time
  • Option 1 If the traffic of the STA connected to the relay is regular, the Root AP allocates a transmission interval periodically and can adjust the transmission interval only when the relay explicitly requests the update of the transmission interval.
  • Option 2 If the traffic of the STA connected to the relay is not regular, the Root AP can adjust the transmission interval based on the information on each STA of the relay.
  • the relay can transmit information and additional information received from the STA to the Root AP using the ReachableAddressUpdate frame when the STA connects to the relay, and the Root AP can adjust the transmission interval in the relay cluster based on the information received from the Relay. .
  • the relay may transmit information on the ReachableAddress (MAC address of the STA), the Mean Data Rate, the AID of the STA, and the STA Type to the Root AP when every STA is connected to the relay.
  • Mean Data Rate uses the initial value (4 octet) transmitted to the relay when the STA first connects to the relay.
  • the relay may transmit information on the number of TIM segments (+ TIM Offset, Page Offset), updated mean data rate, and AID of the reassigned STA to the Root AP. .
  • the updated mean data rate and the AID of the reassigned STA may be transmitted when necessary for each STA.
  • the root AP may determine when the relay DTIM is transmitted based on the relay beacon.
  • the Root AP may determine the number of Beacons after DTIM based on the number of TIM Segments and the STA's AID to transmit a TIM Segment for a specific STA. Since the relay schedules DL transmission to the STA in the TIM segment, the Root AP can predict the transmission from the relay to the STA in the relay beacon period.
  • the Root AP can predict the time required for DL transmission in a specific Relay Beacon Interval based on the traffic amount for the STA, the Mean Data rate, and the Relay Beacon Interval through which DL data is transmitted.
  • the Root AP can predict the time required for DL transmission in a specific Relay Beacon Interval based on the TWT, transmission interval information, and Mean Data Rate information.
  • the root AP may determine the UL transmission interval based on STA type information transmitted when the STA connects to the relay.
  • the relay can allocate the allocated transmission interval in detail to UL RAW and DL RAW. If the transmission interval is not sufficient, the Root AP, Relay, STA may transmit data in the next transmission interval after buffering the data.
  • the relay may initially measure the spatial separation from the other relay BSS to the root AP, and transmit the measurement result to the root AP.
  • the root AP may allocate a transmission period of the relay BSS based on the measurement result received from the relay. If the new relay BSS and the other relay BSS are sufficiently separated from each other, the transmission interval can be overlapped.
  • the relay BSS explicitly clears the transmission interval of another relay BSS to empty RAW (or AP PM) in order to prevent a collision due to transmission of data in another Relay BSS transmission interval using the same channel. RAW).
  • the relay BSS periodically determines whether there is a spatial separation from another relay BSS, and if it is not separated sufficiently, set another relay transmission interval to Empty RAW (or AP PM RAW) to perform data transmission of the STA connected to it. Can be prohibited.
  • the Relay BSS does not prohibit data transmission of all STAs in the Relay BSS with respect to other Relay transmission intervals, but may also prohibit transmission only for a specific STA that is subject to much interference from other Relay BSSs among the STAs in the Relay BSS.
  • use of a modified Empty RAW (or modified AP PM RAW) that may indicate an STA that is explicitly prohibited from transmission, or a method of excluding a STA forbidden from transmission interval allocation may be used. Can be.
  • the STA of the Root BSS similarly uses the Empty RAW (or AP PM) explicitly. RAW).
  • Root BSS similar to Relay BSS, uses the method described below to determine whether it is spatially separated from other Relay BSS, and if it is not separated enough, set another Relay transmission section to Empty RAW (or AP PM RAW) Can prohibit data transmission.
  • the Root BSS does not prohibit data transmission of all STAs in the Root BSS with respect to other Relay transmission intervals, and may prohibit transmission only for a specific STA that receives much interference from other Relay BSSs among the STAs in the Root BSS.
  • use of a modified Empty RAW (or modified AP PM RAW) that may indicate an STA that is explicitly prohibited from transmission, or a method of excluding a STA forbidden from transmission interval allocation may be used. Can be.
  • the STA may transmit a transmission interval that is not explicitly assigned to an empty relay interval even if the transmission interval is not assigned to its own relay, when no transmission of another relay BSS is detected in the interval, or the corresponding relay BSS.
  • the transmission may be exceptional.
  • the corresponding relay If RAW is not set within the interval allocated for the transmission of the BSS, it can be exceptionally transmitted.
  • STAs belonging to the Root AP and STAs belonging to the Relay may be allowed to transmit through contention, such as transmission in an existing OBSS environment, even in a section in which transmissions for their APs are not allocated.
  • contention such as transmission in an existing OBSS environment
  • the collision probability is high, so the STA preferably performs the RTS / CTS before transmitting the data.
  • the relay or the root AP may explicitly prohibit transmission of STAs connected to the self by setting an empty RAW period in which a collision or contention is expected to be severe among transmission periods not allocated to the relay or root AP.
  • the relay AP may prohibit the STA from transmitting to the relay in the section in which the transmission between the relay and the root AP occurs by setting the empty RAW interval between the relay and the root AP.
  • AP PM represents a parameter for adjusting a power saving mode of a station.
  • the first method to determine the spatial separation degree is to extend the Frame Request / Response frame defined in 802.11k to determine whether STAs in their own relay BSS are separated from the relays in the neighboring relay BSS and the STAs in the neighboring relay BSS. How to judge.
  • FIG. 47 is a diagram illustrating a format for a frame request according to an embodiment
  • FIG. 48 is a diagram illustrating a format for a frame report according to one embodiment.
  • the STA may detect a received channel power indicator (RCPI) and a received signal to noise indicator (RSNI) regarding a transmission frame of an STA belonging to another relay BSS, and may report the detected RCPI and RSNI.
  • RCPI received channel power indicator
  • RSNI received signal to noise indicator
  • While the RCPI and RSNI values for the AP may be identified using the Beacon Report, the average RCPI and RSNI values for the STA may be identified through any frame transmission transmitted by any STA.
  • the Beacon Request may include a frame measurement request for an STA targeting a specific MAC address.
  • the Wildcard MAC address can be designated.
  • the frame report may include a frame count report subelement in an optional subelement.
  • One report entry may include a count, average RCPI, and RSNI information about a frame transmitted from one STA. Based on the number of frames, average RCPI, and RSNI information, it may be determined how spatially separated from a specific STA.
  • FIG. 49 is a diagram illustrating an example of a format of a Measurement Request field according to an embodiment
  • FIG. 50 is a diagram illustrating an example of a format of a Measurement report field according to an embodiment.
  • a Frame Request / Response frame is extended to measure a frame transmitted from a specific BSSID or to a specific BSSID.
  • Frame Request / Response frame is extended to add BSSID to Optional sub-element of existing format.
  • the Frame Request / Response frame can be extended to measure the frame transmitted from the BSSID and the frame transmitted to the BSSID.
  • a measurement start time may be specified in addition to the measurement duration.
  • STAs may measure only in another relay transmission interval and transmit a measurement report later.
  • RAW may be allocated for the transmission of measurement reports.
  • the STA requests broadcast / groupcast measurement report, and the STAs supporting the 802.11k function measure the designated relay during the designated start time / transmission period and measure the relay to which they are connected. You can send the result.
  • the relay receiving the measurement result may determine whether the relay is separated from the neighboring relay based on the measurement result.
  • a method of selecting an STA supporting any 802.11k belonging to a relay may also be used. This is because when the measurement report is received from all the STAs belonging to the relay, the traffic amount may be too large.
  • the relay may select any of the STAs supporting 802.11k and request a measurement report from the selected STA.
  • the relay may request an STA that performs measurement to send information such as RCPI, RSNI average value or maximum value for a specific BSS total transmission, not for each TA address.
  • the relay is the average value of RCPI, RSNI, or RCPI and RSNI for each STA, or the RCPI and RSNI value of the external STA that most affects the corresponding relay (ie, RCPI, RSNI maximum). ) Can be requested to send only STA.
  • a BSS Frame Count Report can be defined that transforms an existing Frame Report Entry to represent the entire BSS information. That is, by making the existing frame count report shorter, it is possible to define a BSS Frame Count Report including only the BSSID, the average transmission frame count in the BSSID, Average RCPI, and RSNI.
  • Each relay may request a frame report from the STAs belonging to the relay, and may measure whether the STAs are separated from the neighbor relay BSS based on the frame report.
  • the Root AP can also request a Frame Report from STAs belonging to the Root AP, and can measure whether the STA is separated between each STA of each Root BSS and the neighboring Relay BSS.
  • the relay AP or the root AP may identify STAs that are not sufficiently separated from other relays based on the measurement report from the STA belonging to the relay AP or the root AP.
  • the relay AP or the root AP may prohibit transmission only for STAs that are not sufficiently separated from other relays in the transmission period of another relay. That is, the relay AP or the root AP may prohibit transmission of only some STAs that are interfered with by a specific relay BSS, not prohibit transmission of all STAs of its BSS.
  • two methods may be used: (1) a method of modifying AP PM or empty RAW and (2) a method of using an existing RAW allocation. have.
  • a method of modifying and using AP PM or Empty RAW includes a (partial) AID list of STAs to be prohibited during transmission in AP PM RAW or Empty RAW, and in AP PM RAW or Empty RAW ( partial) This is a method of preventing only the STAs included in the AID list from transmitting explicitly and allowing the remaining STAs to transmit through the contention.
  • the method of using the existing RAW allocation is a method of preventing the STA from transmitting when the RAW for another Relay transmission interval is not allocated to RAW, the STA to explicitly prohibit transmission.
  • the Relay can transmit information on whether or not it is separated from a neighboring relay to the Root AP, and the Root AP sends a relay BSS that is spatially separated from each other based on the information received from the Relay.
  • the same transmission interval can be allocated.
  • the relay periodically or aperiodically measures the degree of spatial separation with other relay BSS, and when the degree of spatial separation with other relay BSS changes more than a preset reference, it may feed back the changed contents to the Root AP.
  • a relay may receive a lot of interference from another relay BSS that is previously separated, or vice versa, when a new relay BSS is detected, the relay AP may be notified about this.
  • the Root AP may allocate transmissions of newly spatially separated relays to the same section based on spatial separation information between the relays.
  • a reporting option similar to the Beacon Report can be added to the Frame Request.
  • the reporting option may be set to include in the measurement report only for the specific RCPI, RSNI above or below.
  • the second method for determining spatial separation is to use beacon request / response defined in 802.11k.
  • FIG. 47 is a diagram illustrating a format for a frame request according to an embodiment
  • FIG. 48 is a diagram illustrating a format for a frame report according to one embodiment.
  • the Root AP can transmit a Beacon Request frame to the STA and Relay connected to the Root AP.
  • the STA may request a list of APs transmitting beacons that can be received from other STAs through a beacon request / report. Since the relays use the same service set identification (SSID) as the Root AP, the Root AP may include the SSID of the Root AP in an optional sub-element for receiving a Beacon Report from a new STA.
  • the BSSID may be set to wildcard BSSID.
  • the newly established relay can receive a beacon request from the root AP, measure the beacon and probe response of another relay, and transmit the measurement result to the root AP through a beacon report.
  • the root AP may allocate a transmission interval for newly established relays based on RCPI, RSNI, etc. between newly established relays and other relay APs.
  • the Root AP can send a Beacon Request even after a newly established Relay, and can update the resource allocation based on the spatial separation.
  • each relay may randomly select some STAs among the STAs having a measurement function and may transmit a beacon request to the selected STAs.
  • the BSSID of the Beacon Request may be set to the wildcard BSSID and the SSID of the optional subelement to the SSID of the Root AP.
  • the relay may set a reporting condition of the Beacon Request so that the Beacon Report is transmitted when the RCPI level, RSNI level is above or below.
  • the relay may determine whether or not the spatial separation between the STA and another relay is based on the beacon report received from the STAs periodically or aperiodically. When the relay determines that the STA and another relay are spatially adjacent to each other, the relay may prohibit transmission of the corresponding STA by setting the transmission time of the corresponding other relay to Empty RAW.
  • Each relay can determine whether the spatial separation between the STAs and the neighboring relay based on the Beacon Report received from the STAs belonging to it.
  • Root AP can also determine whether the spatial separation between each STA directly connected to the root BSS and the peripheral relay based on the Beacon Report received from the STAs belonging to it.
  • the relay AP or the root AP can determine whether to spatially separate between its BSS and other relays, and determine whether to set another relay transmission interval to Empty RAW (or AP PM RAW).
  • the relay AP or the root AP may identify STAs that are not sufficiently separated from other relays based on the measurement report from the STA belonging to the relay AP or the root AP.
  • the relay AP or the root AP may prohibit transmission only for STAs that are not sufficiently separated from other relays in the transmission period of another relay. That is, the relay AP or the root AP may prohibit transmission of only some STAs that are interfered with by a specific relay BSS, not prohibit transmission of all STAs of its BSS.
  • two methods may be used: (1) a method of modifying AP PM or empty RAW and (2) a method of using an existing RAW allocation. have.
  • a method of modifying and using AP PM or Empty RAW includes a (partial) AID list of STAs to be prohibited during transmission in AP PM RAW or Empty RAW, and in AP PM RAW or Empty RAW ( partial) This is a method of preventing only the STAs included in the AID list from transmitting explicitly and allowing the remaining STAs to transmit through the contention.
  • the method of using the existing RAW allocation is a method of preventing the STA from transmitting when the RAW for another Relay transmission interval is not allocated to RAW, the STA to explicitly prohibit transmission.
  • the Relay can transmit information on whether or not it is separated from a neighboring relay to the Root AP, and the Root AP sends a relay BSS that is spatially separated from each other based on information received from the Relay.
  • the same transmission interval can be allocated.
  • the relay periodically or aperiodically measures the degree of spatial separation with other relay BSS, and when the degree of spatial separation with other relay BSS changes more than a preset reference, it may feed back the changed contents to the Root AP.
  • a relay may receive a lot of interference from another relay BSS that is previously separated, or vice versa, when a new relay BSS is detected, the relay AP may be notified about this.
  • the Root AP may allocate transmissions of newly spatially separated relays to the same section based on spatial separation information between the relays.
  • the above method of measuring the interference between the relay BSS is applicable to the method of measuring the interference between the Multi BSS in the wireless LAN as well as the relay.
  • FIG. 51 is a diagram illustrating a method of measuring interference on a neighbor relay or a neighbor relay BSS using a frame request / response according to an embodiment.
  • a relay AP (or a general AP) R1 may select STAs to perform measurement among STAs connected thereto and transmit a frame request to the selected STAs.
  • Each STA in the R1 BSS that receives the frame request may measure separation information about the neighboring relay BSS (or general BSS) having R2 as an AP and transmit the measurement result to R1 in the form of a frame report.
  • STAs in the R1 BSS that receive the Frame Request may measure a frame transmitted from STAs in the neighboring BSS such as R2 during the measurement time.
  • the separation information may indicate a degree of separation between the STA itself and the AP R2 or between the STA itself and the STAs connected to R2.
  • R1 may determine the degree of interference from the surrounding BSS based on RCPI, RSNI information, etc. included in the Frame Report received from each STA.
  • 52 is a diagram illustrating a configuration of an access point 5200 according to an embodiment.
  • the access point 5200 may include a resource allocator 5210 and a communication unit 5220.
  • the resource allocator 5210 may allocate a resource for communication between the relay and the station connected to the relay.
  • the resource allocator 5210 may allocate a transmission time or frequency subband for communication between the relay and the station connected to the relay.
  • the resource allocator 5210 may delegate detailed resource allocation for the stations connected to the relay to the relay. For example, the resource allocator 5210 may allocate a transmission section for communication between a relay and a station connected to the relay, and divide the transmission section allocated by the relay into detailed transmission sections for each station. The relay may allocate resources for stations included in the relay BSS.
  • the resource allocator 5210 may allocate a resource for communication with a station directly connected to the access point 5200 without passing through a relay.
  • the resource allocator 5210 may control the station directly connected to the access point 5200 not to communicate during the allocated transmission time for communication between the relay and the station connected to the relay.
  • the resource allocator 5210 may directly allocate resources to all stations included in the root AP BSS. That is, the resource allocator 5210 may allocate resources for the station connected to the relay as well as the station directly connected to the access point 5200. For example, the resource allocator 5210 may allocate a limited access window or slot for each station included in the root AP BSS.
  • the resource allocator 5210 is a limited access window or slot for communication between the access point 5200 and the relay, communication between the access point 5200 and the station connected to the access point 5200, as well as communication between the relay and the station connected to the relay. Can be assigned.
  • the restricted access window or slot represents a transmission interval in the time domain, and a time domain in which communication is allowed may be determined based on the limited access window or slot.
  • the restricted access window or slot may include a downlink transmission interval or an uplink transmission interval.
  • the resource allocator 5210 may allocate a resource for communication between the relay and the station connected to the relay based on the degree of spatial separation between the relays.
  • the resource allocator 5210 may determine the degree to which the relay is spatially separated from other relays, and allocate resources based on the determination result. For example, when the resource allocator 5210 determines that the relay is separated from other relays by more than a predetermined distance spatially, the resource allocator 5210 may allocate the same or overlapping transmission intervals to the relays.
  • the resource allocator 5210 may allocate resources based on a frequency subband for communication between the relay and a station connected to the relay, and a frequency subband for communication between the access point 5200 and the relay. For example, the resource allocator 5210 may perform both communications if the frequency subband used for communication between the relay and the station connected to the relay and the frequency subband used for communication between the access point 5200 and the relay do not overlap. The same or overlapping transmission intervals may be allocated.
  • the communicator 5220 may transmit resource allocation information about a resource allocated by the resource allocator 5210 to the relay.
  • the communication unit 5220 may transmit resource allocation information to the relay for information on allocation of resources for communication between the relay and the station connected to the relay.
  • the resource allocation information may include transmission section information for communication between a relay and a station connected to the relay, allocated frequency subband information, information about an assigned channel, or information about a relay or station for which communication is prohibited in a specific section. It may include.
  • Resource allocation information may be transmitted in the form of Resource Allocation IE.
  • the resource allocation information may be displayed on the basis of identification information of the relay, frequency subbands, or time intervals.
  • the communicator 5220 may periodically transmit a beacon including resource allocation information periodically or aperiodically.
  • the resource allocator 5210 may adjust an already allocated resource based on the interference information or the station information received from the relay.
  • the station information may include information about a data rate used for communication between the station and the relay, or the size of data transmitted between the station and the relay.
  • the communication unit 5220 may transmit information about the adjusted resource to the relay.
  • the relay may transmit power save poll (PS-Poll) information and uplink data indication (UDI) information received from the station to the access point 5200.
  • PS-Poll power save poll
  • UDI uplink data indication
  • the resource allocator 5210 may adjust the allocated limited access window or slot based on the PS-Poll information and the UDI information received from the relay.
  • the UDI information may include data amount information that the station transmits to the relay.
  • the PS-Poll information indicates information transmitted to the relay or the access point 5200 to receive a buffered frame during the power saving mode after the station is released from the power saving mode.
  • 53 is a diagram illustrating a configuration of a relay 5300 according to an embodiment.
  • the relay 5300 may include a resource allocator 5310 and a communication unit 5320.
  • the resource allocator 5310 may allocate a resource for communication between the relay 5300 and a station connected to the relay 5300 based on the resource allocation information received from the access point.
  • the resource allocator 5310 is configured to communicate with the station based on channel condition information, Modulation and Coding Schemes (MCS) information supported by the station, available frequency subband information, or the number of antennas of the station. You can assign a connection window or slot.
  • MCS Modulation and Coding Schemes
  • the resource allocator 5310 may allocate a limited access window or slot for communication between the relay 5300 and the station connected to the relay 5300 based on the resource allocation information.
  • the resource allocation information may include a transmission interval for communication between the relay 5300 and a station connected to the relay 5300, and the resource allocation unit 5310 may identify each transmission interval identified from the resource allocation information. It can be divided into detailed limited access windows for stations.
  • the resource allocator 5310 may prohibit transmission of all stations or some stations connected to the relay 5300 in a transmission interval allocated to another relay BSS when it interferes with another relay BSS connected to the relay 5300. have. For example, the resource allocator 5310 may empty some of the communication intervals to prevent a station connected to its relay 5300 from communicating in the communication interval between the access point and the station directly connected to the access point and the communication interval of another relay. Or AP PM RAW).
  • the relay 5300 may transmit a measurement request to the station to measure a frame transmitted from a specific basic service set identification (BSSID) or a frame transmitted to a specific BSSID.
  • the station may send a measurement report to the relay 5300 in response to the measurement request.
  • the measurement report may include information about a frame transmitted from a specific BSSID or a frame transmitted to a specific BSSID.
  • measurement reports can include received channel power indicators (RCPIs) and received signal to noise indicators (RSPI) for the number of frames transmitted from another relay, the number of frames transmitted to another relay, or the transmission frame of a station connected to another relay. It may contain information about.
  • the resource allocator 5310 may determine whether to spatially separate from the other relay based on the measurement report received from the station, and allocate a resource for the station based on the determination result.
  • the communicator 5320 may receive resource allocation information from the access point.
  • the communicator 5320 may transmit information about a resource allocated by the resource allocator 5310 to the station.
  • the communicator 5320 may transmit a beacon including information about the allocated resource to the station periodically or aperiodically.
  • the communication unit 5320 may transmit a beacon at the start of the relay transmission interval indicated in the resource allocation information.
  • the beacon may include information about a restricted access window or slot for communication between the relay 5300 and a station connected to the relay 5300.
  • the beacon transmitted by the communication unit 5320 may not include information regarding a limited access window or slot for communication between the access point and the relay 5300.
  • the communicator 5320 may transmit station information about a station connected to the relay 5300 to the access point.
  • 54 is a diagram illustrating a configuration of a station 5400 according to an embodiment.
  • the station 5400 may include a controller 5410 and a communicator 5520.
  • the communicator 5520 may receive a beacon from the relay, and the controller 5410 may identify a resource allocated to the station 5400 based on the beacon received from the relay.
  • the beacon received from the relay may include information about resources allocated by the relay.
  • the controller 5410 may identify, from the beacon received from the relay, the limited access window or the slot indicating the communication section in the time domain and the information about the frequency subband indicating the communication section in the frequency domain.
  • the communicator 5520 may communicate with the relay based on the identified resource.
  • the communicator 5520 may communicate with the relay based on the identified restricted access window or slot, frequency subband.
  • the communication unit 5520 may receive data from a relay in a RAW section in which downlink transmission is allowed, and transmit data to the relay in a RAW section in which uplink transmission is allowed.
  • 55 is a flowchart illustrating an operation of a resource allocation method performed by an access point according to an embodiment.
  • the access point may allocate resources for communication between the access point and the relay, and for communication between the access point and a station connected to the access point.
  • the access point may allocate a limited access window or slot for communication between the access point and the relay and between the access point and the station connected to the access point.
  • the restricted access window or slot may determine the time domain in which communication is allowed.
  • the restricted access window or slot may include a downlink transmission interval and an uplink transmission interval.
  • the access point may allocate a second resource for communication between the relay and the station connected to the relay.
  • the access point may allocate at least one of a transmission time and a frequency subband for communication between the relay and the station connected to the relay.
  • the access point may allocate a limited access window or slot for communication between the relay and the stations connected to the relay.
  • the access point may transmit resource allocation information about the allocated second resource to the relay.
  • the resource allocation information includes identification information of a relay, a transmission allowable start time, a transmission interval, a period in which resources are allocated, an allocated channel, an assigned frequency subband, or a relay or station for which communication is prohibited in a specific transmission interval. can do.
  • the identification information of the relay may include an Allocation Identifier (AID), partial AID, or partial BSSID of the relay.
  • the access point may transmit a beacon to the relay that includes information about the allocated first resource and the allocated second resource.
  • the access point may adjust the allocated second resource based on the interference information or station information received from the relay.
  • the station information may include information regarding at least one of a data rate used for communication between a relay and a station connected to the relay, and a size of data transmitted between the relay and the station connected to the relay.
  • the access point may adjust resources allocated for communication between the relay and the station connected to the relay based on power saving survey information and uplink data indication information of the station received from the relay.
  • 56 is a flowchart illustrating an operation of a resource allocation method performed by a relay, according to an embodiment.
  • the relay may receive resource allocation information from the access point.
  • the resource allocation information may include information on at least one of a transmission interval, a usable frequency subband, and an available channel for communication between the relay and the station connected to the relay.
  • the relay may allocate resources for communication between the relay and a station connected to the relay based on the resource allocation information.
  • the relay may allocate a limited access window or slot for communication between the relay and a station connected to the relay based on the resource allocation information.
  • the restricted access window or slot may determine the time domain in which communication between the relay and the station is allowed.
  • the relay may request the station to measure the number of frames transmitted from another relay, the number of frames transmitted to another relay, or the RCPI and RSNI for the transmission frame of the station connected to the other relay.
  • the station may send a measurement report to the relay in response to the measurement request.
  • the relay may determine whether it is spatially separated from other relays based on the measurement report received from the station, and may allocate resources for communication between the relay and the station connected to the relay based on the determination result.
  • the relay may transmit a beacon to the station that includes information about the allocated resource.
  • the relay may send beacons to the station periodically or aperiodically.
  • the beacon may include information about a restricted access window or slot for communication between the relay and a station connected to the relay.
  • the beacons transmitted by the relays may not include information about restricted access windows or slots for communication between the access point and the relays.
  • 57 is a flowchart illustrating an operation of a communication method performed by a station, according to an embodiment.
  • the station may identify the resource allocated to the station based on the beacon received from the relay.
  • the beacon received from the relay may include information about resources allocated by the relay.
  • the station may identify information about at least one of the restricted access window, slots, and frequency subbands from the beacon.
  • the station may communicate with the relay based on the identified resource.
  • the station may communicate with the relay based on a limited access window or slot, frequency subbands. For example, the station may receive data from a relay in a RAW period in which downlink transmission is allowed, and transmit data to the relay in a RAW period in which uplink transmission is allowed.
  • the method according to the embodiment may be embodied in the form of program instructions that can be executed by various computer means and recorded in a computer readable medium.
  • the computer readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • the program instructions recorded on the media may be those specially designed and constructed for the purposes of the embodiments, or they may be of the kind well-known and available to those having skill in the computer software arts.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tape, optical media such as CD-ROMs, DVDs, and magnetic disks, such as floppy disks.
  • Examples of program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware device described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Disclosed are a method for allocating resources in a wireless LAN system and a wireless LAN system. The wireless LAN system according to one embodiment of the present invention may comprise: an access point for allocating resources for communication between a relay and a station connected to the relay; the relay for allocating a restricted access window or slot for the communication with the station based on the allocated resources; and a station for communicating with the relay based on the allocated restricted access window or slot.

Description

무선랜 시스템에서의 자원 할당 방법, 무선랜 시스템Resource Allocation Method in Wireless LAN System, Wireless LAN System
아래의 설명은 무선랜 시스템에서 자원을 할당하는 방법에 관한 것이다.The following description relates to a method of allocating resources in a WLAN system.
최근 무선랜 시스템에서는 수천 개 스테이션(station, STA)이 관련된 BSS(Basic Service Set) 운영 시 STA 간의 충돌을 줄이기 위해 Slotted 방식의 채널 액세스(access)가 도입되고 있다. 수천 개의 STA이 동시에 채널을 액세스하여 전송을 시도하려 하는 경우 충돌 확률이 높아지고, Slotted 채널 액세스 방식에서는 충돌을 막기 위해 RAW (Restricted Access Window)를 설정하여, RAW 전송 구간 내에서는 전송 구간을 슬롯(slot)으로 분할한다. 각 STA 별로 전송이 허용되는 슬롯이 할당되고, STA은 자신이 할당받은 슬롯에서만 전송을 위한 경쟁(contention)을 허용함으로써 채널 액세스가 한 순간에 몰리는 것을 분산시켜 충돌을 줄여준다.Recently, in a WLAN system, slotted channel access has been introduced to reduce collisions between STAs when BSS (Basic Service Set) operations involving thousands of stations are performed. If thousands of STAs try to access the channel at the same time and try to transmit, the probability of collision increases.In the slotted channel access method, RAW (Restricted Access Window) is set to prevent collisions. Divide by) Slots that allow transmission are allocated for each STA, and the STA reduces contention by distributing channel access at a moment by allowing contention for transmission only in slots to which the STA is allocated.
또한, 액세스 포인트(Access Point, AP)의 커버리지(coverage)를 더욱 확장하기 위해 무선랜 시스템에서는 릴레이 방식(Relay operation)을 도입하고 있다. 릴레이 방식을 사용할 경우에도 많은 수의 STA의 전송을 효율적으로 지원하기 위해 Slotted 방식을 사용하는 것이 바람직하다.In addition, in order to further extend the coverage of an access point (AP), a WLAN system introduces a relay operation. Even when using the relay method, it is preferable to use the slotted method to efficiently support the transmission of a large number of STAs.
일실시예에 따른 무선랜 시스템은, 릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위한 자원을 할당하는 액세스 포인트; 상기 할당된 자원에 기초하여 상기 스테이션과의 통신을 위한 제한된 접속 윈도우 또는 슬롯을 할당하는 릴레이; 및 상기 할당된 제한된 접속 윈도우 또는 슬롯에 기초하여 상기 릴레이와 통신하는 스테이션을 포함할 수 있다.In one embodiment, a WLAN system includes: an access point for allocating resources for communication between a relay and a station connected to the relay; A relay for allocating a restricted access window or slot for communication with the station based on the allocated resources; And a station in communication with the relay based on the assigned restricted access window or slot.
일실시예에 따른 액세스 포인트는, 릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위한 자원을 할당하는 자원 할당부; 및 상기 할당된 자원에 관한 정보를 상기 릴레이에 전송하는 통신부를 포함할 수 있다.In one embodiment, an access point includes a resource allocator for allocating resources for communication between a relay and a station connected to the relay; And a communication unit for transmitting the information about the allocated resource to the relay.
일실시예에 따른 릴레이는, 액세스 포인트로부터 수신한 자원 할당 정보에 기초하여 릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위한 자원을 할당하는 자원 할당부; 및 상기 할당된 자원에 관한 정보를 상기 스테이션에 전송하는 통신부를 포함할 수 있다.The relay according to an embodiment may include: a resource allocator configured to allocate resources for communication between the relay and a station connected to the relay based on resource allocation information received from an access point; And a communication unit for transmitting the information about the allocated resource to the station.
일실시예에 따른 스테이션은, 릴레이로부터 수신한 비콘에 기초하여 스테이션에 할당된 자원을 식별하는 제어부; 및 상기 식별된 자원에 기초하여 상기 릴레이와 통신하는 통신부를 포함할 수 있다.In one embodiment, a station includes: a controller for identifying a resource allocated to a station based on a beacon received from a relay; And a communication unit configured to communicate with the relay based on the identified resource.
일실시예에 따른 액세스 포인트, 릴레이, 및 스테이션을 포함하는 무선랜 시스템에 있어서, 상기 액세스 포인트가 수행하는 자원 할당 방법은, 상기 액세스 포인트와 상기 릴레이 간의 통신, 및 상기 액세스 포인트와 상기 액세스 포인트에 연결된 스테이션 간의 통신을 위한 제1 자원을 할당하는 단계; 및 상기 릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위한 제2 자원을 할당하는 단계를 포함할 수 있다.In a WLAN system including an access point, a relay, and a station according to an embodiment, a resource allocation method performed by the access point may include communication between the access point and the relay, and communication between the access point and the access point. Allocating a first resource for communication between connected stations; And allocating a second resource for communication between the relay and the station connected to the relay.
일실시예에 따른 액세스 포인트가 수행하는 자원 할당 방법은, 상기 할당된 제2 자원에 관한 자원 할당 정보를 상기 릴레이에 전송하는 단계를 더 포함할 수 있다.A resource allocation method performed by an access point according to an embodiment may further include transmitting resource allocation information about the allocated second resource to the relay.
일실시예에 따른 액세스 포인트가 수행하는 자원 할당 방법은, 상기 릴레이로부터 수신한 간섭 정보에 기초하여 상기 할당된 제2 자원을 조정하는 단계를 더 포함할 수 있다.The resource allocation method performed by the access point according to an embodiment may further include adjusting the allocated second resource based on the interference information received from the relay.
일실시예에 따른 액세스 포인트가 수행하는 자원 할당 방법은, 상기 릴레이로부터 수신한 스테이션 정보에 기초하여 상기 할당된 제2 자원을 조정하는 단계를 더 포함할 수 있다.The resource allocation method performed by the access point according to an embodiment may further include adjusting the allocated second resource based on the station information received from the relay.
일실시예에 따른 액세스 포인트가 수행하는 자원 할당 방법은, 상기 할당된 제1 자원 및 상기 할당된 제2 자원에 관한 정보를 포함하는 비콘을 상기 릴레이에 전송하는 단계를 더 포함할 수 있다.A resource allocation method performed by an access point according to an embodiment may further include transmitting a beacon including information about the allocated first resource and the allocated second resource to the relay.
일실시예에 따른 액세스 포인트, 릴레이, 및 스테이션을 포함하는 무선랜 시스템에 있어서, 상기 릴레이가 수행하는 자원 할당 방법은, 상기 액세스 포인트로부터 자원 할당 정보를 수신하는 단계; 및 상기 수신한 자원 할당 정보에 기초하여 상기 릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위한 자원을 할당하는 단계를 포함할 수 있다.In a WLAN system including an access point, a relay, and a station according to an embodiment, the resource allocation method performed by the relay includes: receiving resource allocation information from the access point; And allocating a resource for communication between the relay and the station connected to the relay based on the received resource allocation information.
일실시예에 따른 상기 릴레이가 수행하는 자원 할당 방법은, 상기 할당된 자원에 관한 정보를 포함하는 비콘을 상기 스테이션에 전송하는 단계를 더 포함할 수 있다.The resource allocation method performed by the relay according to an embodiment may further include transmitting a beacon including the information about the allocated resource to the station.
일실시예에 따른 액세스 포인트, 릴레이, 및 스테이션을 포함하는 무선랜 시스템에 있어서, 상기 스테이션이 수행하는 통신 방법은, 상기 릴레이로부터 수신한 비콘에 기초하여 상기 스테이션에 할당된 자원을 식별하는 단계; 및 상기 식별된 자원에 기초하여 상기 릴레이와 통신하는 단계를 포함할 수 있다.In a wireless LAN system comprising an access point, a relay, and a station, the communication method performed by the station includes: identifying resources allocated to the station based on a beacon received from the relay; And communicating with the relay based on the identified resource.
도 1은 일실시예에 따른 무선랜 시스템에서 릴레이를 이용하여 데이터를 전송하는 방법의 일례를 도시한 도면이다.1 is a diagram illustrating an example of a method for transmitting data using a relay in a WLAN system according to an embodiment.
도 2는 일실시예에 따른 릴레이 방식을 이용하는 경우의 기본 서비스 세트(Basic Service Set, BSS) 구성의 일례를 도시한 도면이다.2 is a diagram illustrating an example of a basic service set (BSS) configuration when using a relay method according to an embodiment.
도 3은 일실시예에 따른 릴레이를 이용하는 경우에 있어 제한된 접속 윈도우(Restricted Access Window, RAW)를 이용하는 방법의 일례를 도시한 도면이다.3 is a diagram illustrating an example of a method of using a restricted access window (RAW) when using a relay according to an embodiment.
도 4는 일실시예에 따른 릴레이를 이용하는 경우에 있어 제한된 접속 윈도우를 이용하는 방법의 다른 예를 도시한 도면이다.4 is a diagram illustrating another example of a method of using a limited access window when using a relay according to an embodiment.
도 5는 일실시예에 따른 릴레이를 이용하는 경우에 있어 제한된 접속 윈도우를 이용하는 방법의 또 다른 예를 도시한 도면이다.5 illustrates another example of a method of using a restricted access window when using a relay according to an embodiment.
도 6은 일실시예에 따른 Slotted 전송 방식에서의 RAW 구조를 도시한 도면이다.6 illustrates a RAW structure in a slotted transmission scheme according to an embodiment.
도 7은 일실시예에 따른 서로 다른 채널을 이용하여 동일한 RAW를 공유하는 일례를 도시한 도면이다.7 illustrates an example of sharing the same RAW using different channels according to an embodiment.
도 8 내지 도 9는 일실시예에 따른 오프셋 정보를 이용하여 하나의 RAW에 복수 개의 클러스터들을 할당하는 일례를 도시한 도면이다.8 through 9 are diagrams illustrating an example of allocating a plurality of clusters to one RAW by using offset information, according to an exemplary embodiment.
도 10은 일실시예에 따른 클러스터에 AID를 할당하는 방법을 설명하기 위한 도면이다.10 is a diagram for describing a method of assigning an AID to a cluster, according to an exemplary embodiment.
도 11은 일실시예에 따른 Relay AP(R-AP)가 전송하는 Beacon의 할당 위치를 도시한 도면이다.FIG. 11 is a diagram illustrating an allocation position of a beacon transmitted by a relay AP (R-AP) according to an embodiment.
도 12는 일실시예에 따른 STA들에 대해 slot을 할당하는 방법을 설명하기 위한 도면이다.12 is a diagram for describing a method of allocating slots for STAs according to an embodiment.
도 13은 일실시예에 따른 보다 단순화된 leveled slot allocation을 설명하기 위한 도면이다.FIG. 13 illustrates a simplified leveled slot allocation according to an embodiment. FIG.
도 14는 일실시예에 따른 복수의 Relay가 이용되는 경우에 Relay를 위한 RAW 할당 방법을 설명하기 위한 도면이다.14 is a diagram illustrating a RAW allocation method for a relay when a plurality of relays are used according to an embodiment.
도 15는 일실시예에 따른 복수의 Relay들이 이용되는 경우의 RAW 할당 방법의 일례를 도시한 도면이다.15 is a diagram illustrating an example of a RAW allocation method when a plurality of relays are used according to an embodiment.
도 16은 다른 실시예에 따른 복수의 Relay가 이용되는 경우에 Relay를 위한 RAW 할당 방법의 일례를 도시한 도면이다.16 illustrates an example of a RAW allocation method for a relay when a plurality of relays are used according to another embodiment.
도 17은 일실시예에 따른 leveled slot allocation 방법을 보다 일반화된 형태로 도시한 도면이다.17 is a diagram illustrating a leveled slot allocation method in a more generalized form according to an embodiment.
도 18은 일실시예에 따른 empty slot을 이용한 leveled slot allocation 방법의 일례를 도시한 도면이다.18 illustrates an example of a leveled slot allocation method using an empty slot according to an embodiment.
도 19는 다른 실시예에 따른 empty slot을 이용한 leveled slot allocation 방법의 일례를 도시한 도면이다.19 illustrates an example of a leveled slot allocation method using an empty slot according to another embodiment.
도 20은 일실시예에 따른 empty RAW을 이용한 leveled slot allocation 방법의 일례를 도시한 도면이다.20 illustrates an example of a leveled slot allocation method using empty RAW according to an embodiment.
도 21은 다른 실시예에 따른 empty RAW을 이용한 leveled slot allocation 방법의 일례를 도시한 도면이다.21 illustrates an example of a leveled slot allocation method using empty RAW according to another embodiment.
도 22는 일실시예에 따른 sub RAW을 이용한 leveled slot allocation 방법의 일례를 도시한 도면이다.22 illustrates an example of a leveled slot allocation method using sub RAW according to an embodiment.
도 23은 다른 실시예에 따른 leveled slot allocation 방법을 보다 일반화된 형태로 도시한 도면이다.FIG. 23 is a diagram illustrating a leveled slot allocation method according to another embodiment in a more generalized form.
도 24는 일실시예에 따른 DRAW를 이용한 leveled slot allocation 방법의 일례를 도시한 도면이다.24 illustrates an example of a leveled slot allocation method using a DRAW according to an embodiment.
도 25는 일실시예에 따른 DRAW를 이용한 leveled slot allocation 방법의 다른 예를 도시한 도면이다.25 is a diagram illustrating another example of a leveled slot allocation method using DRAW according to an embodiment.
도 26 내지 도 28은 일실시예에 따른 leveled slot allocation 방법을 이용하는 경우의 DRAW 할당 방법의 예들을 도시한 도면이다.26 to 28 illustrate examples of a DRAW allocation method when a leveled slot allocation method is used, according to an embodiment.
도 29는 일실시예에 따른 Relay에 대한 주파수 서브밴드를 할당하는 일례를 도시한 도면이다.29 illustrates an example of allocating frequency subbands for a relay according to an embodiment.
도 30은 일실시예에 따른 Relay에 대한 서브밴드를 할당할 때 클러스터 내에서 FST(Frequency Selective Transmission)를 사용하는 경우를 설명하기 위한 도면이다.30 is a diagram for describing a case of using frequency selective transmission (FST) in a cluster when allocating a subband for a relay according to an embodiment.
도 31은 일실시예에 따른 서로 다른 주파수 서브밴드를 이용하여 RAW를 공유하는 일례를 도시한 도면이다.31 illustrates an example of sharing RAW using different frequency subbands according to an embodiment.
도 32는 일실시예에 따른 서로 다른 주파수 서브밴드를 이용하여 데이터를 전송하는 일례를 도시한 도면이다.32 illustrates an example of transmitting data using different frequency subbands according to an embodiment.
도 33 내지 도 36은 일실시예에 따른 empty slot을 이용하는 leveled slot allocation 방법에서 서로 다른 주파수 서브밴드를 이용하여 RAW를 공유하는 방법의 일례들을 도시한 도면이다.33 through 36 illustrate examples of a method of sharing RAW using different frequency subbands in a leveled slot allocation method using empty slots, according to an exemplary embodiment.
도 37은 일실시예에 따른 클러스터들이 공간적으로 분리된(spatially separated) 경우의 RAW 공유 방법의 일례를 도시한 도면이다.37 illustrates an example of a RAW sharing method when clusters are spatially separated according to an embodiment.
도 38은 일실시예에 따른 시간 영역을 이용하여 RAW sharing을 수행하는 방법의 일례를 도시한 도면이다.38 illustrates an example of a method of performing RAW sharing using a time domain according to an embodiment.
도 39는 일실시예에 따른 복수의 주파수 서브밴드들을 할당하는 일례를 도시하는 도면이다.39 illustrates an example of allocating a plurality of frequency subbands according to an embodiment.
도 40은 다른 실시예에 따른 복수의 주파수 서브밴드들을 할당하는 일례를 도시하는 도면이다.40 is a diagram illustrating an example of allocating a plurality of frequency subbands according to another embodiment.
도 41은 일실시예에 따른 표 3의 Relay Resource Allocation IE에 대한 포맷(format)의 일례를 도시하는 도면이다.FIG. 41 is a diagram illustrating an example of a format for Relay Resource Allocation IE of Table 3 according to an embodiment. FIG.
도 42는 일실시예에 따른 시간 구간 별로 자원을 할당하는 일례를 도시하는 도면이다.42 is a diagram illustrating an example of allocating resources for each time interval, according to an embodiment.
도 43은 일실시예에 따른 싱글 주파수 서브밴드에서 Relay Resource Allocation IE를 이용하여 전송하는 일례를 도시하는 도면이다.FIG. 43 illustrates an example of transmitting using a Relay Resource Allocation IE in a single frequency subband according to an embodiment.
도 44는 일실시예에 따른 싱글 주파수 서브밴드에서 Relay Resource Allocation IE를 이용하여 전송하는 다른 예를 도시하는 도면이다.44 illustrates another example of transmitting using a Relay Resource Allocation IE in a single frequency subband according to an embodiment.
도 45는 일실시예에 따른 멀티 주파수 서브밴드에서 Relay Resource Allocation IE를 이용하여 전송하는 일례를 도시하는 도면이다.45 is a diagram illustrating an example of transmitting using a Relay Resource Allocation IE in a multi-frequency subband according to an embodiment.
도 46은 일실시예에 따른 Relay 전송 구간을 할당하는 일례를 도시하는 도면이다.46 illustrates an example of allocating a relay transmission interval according to an embodiment.
도 47은 일실시예에 따른 Frame Request를 위한 포맷을 도시하는 도면이다.47 is a diagram illustrating a format for frame request according to an embodiment.
도 48은 일실시예에 따른 Frame Report를 위한 포맷을 도시하는 도면이다.48 is a diagram illustrating a format for a Frame Report according to an embodiment.
도 49는 일실시예에 따른 Measurement Request 필드의 포맷의 일례를 도시하는 도면이다.49 is a diagram illustrating an example of a format of a Measurement Request field according to an embodiment.
도 50은 일실시예에 따른 Measurement report 필드의 포맷의 일례를 도시하는 도면이다.50 is a diagram illustrating an example of a format of a measurement report field according to an embodiment.
도 51은 일실시예에 따른 Frame Request/Response를 이용하여 주변 Relay 또는 주변 Relay BSS에 대한 간섭을 측정하는 방법을 설명하기 위한 도면이다.FIG. 51 is a diagram illustrating a method of measuring interference on a neighbor relay or a neighbor relay BSS using a frame request / response according to an embodiment.
도 52는 일실시예에 따른 액세스 포인트의 구성을 도시한 도면이다.52 is a diagram illustrating a configuration of an access point according to an embodiment.
도 53은 일실시예에 따른 릴레이의 구성을 도시한 도면이다.53 is a diagram illustrating a configuration of a relay according to an embodiment.
도 54는 일실시예에 따른 스테이션의 구성을 도시한 도면이다.54 is a diagram illustrating a configuration of a station according to an embodiment.
도 55는 일실시예에 따른 액세스 포인트가 수행하는 자원 할당 방법의 동작을 설명하기 위한 흐름도이다.55 is a flowchart illustrating an operation of a resource allocation method performed by an access point according to an embodiment.
도 56은 일실시예에 따른 릴레이가 수행하는 자원 할당 방법의 동작을 설명하기 위한 흐름도이다.56 is a flowchart illustrating an operation of a resource allocation method performed by a relay, according to an embodiment.
도 57은 일실시예에 따른 스테이션이 수행하는 통신 방법의 동작을 설명하기 위한 흐름도이다.57 is a flowchart illustrating an operation of a communication method performed by a station, according to an embodiment.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The detailed description, which will be given below with reference to the accompanying drawings, is intended to explain exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the present invention may be practiced. The following detailed description includes specific details in order to provide a thorough understanding of the present invention. However, one of ordinary skill in the art appreciates that the present invention may be practiced without these specific details.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.The following embodiments combine the components and features of the present invention in a predetermined form. Each component or feature may be considered to be optional unless otherwise stated. Each component or feature may be embodied in a form that is not combined with other components or features. In addition, some components and / or features may be combined to form an embodiment of the present invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.Specific terms used in the following description are provided to help the understanding of the present invention, and the use of such specific terms may be changed to other forms without departing from the technical spirit of the present invention.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심 기능을 중심으로 한 블록도 형식으로 도시된다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.In some instances, well-known structures and devices are omitted or are shown in block diagram form, focusing on the essential functions of each structure and device, in order to avoid obscuring the concepts of the present invention. In addition, the same components will be described with the same reference numerals throughout the present specification.
본 발명의 실시예들은 무선 액세스 시스템들인 IEEE 802 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A(LTE-Advanced)시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다. Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802 system, 3GPP system, 3GPP LTE and LTE-A (LTE-Advanced) system and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 액세스 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. 명확성을 위하여 이하에서는 IEEE 802.11 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.The following techniques include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), and the like. It can be used in various radio access systems. CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000. TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE). OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA). For clarity, the following description focuses on the IEEE 802.11 system, but the technical spirit of the present invention is not limited thereto.
도 1은 일실시예에 따른 무선랜 시스템에서 릴레이를 이용하여 데이터를 전송하는 방법의 일례를 도시한 도면이다.1 is a diagram illustrating an example of a method for transmitting data using a relay in a WLAN system according to an embodiment.
액세스 포인트(Access Point, AP)가 스테이션(station, STA)에 데이터(또는, 프레임)를 전송하는 경우, AP와 STA 사이에 장애물이 있으면 전송 효율이 감소될 수 있다. 또한, STA이 AP에 데이터를 전송하는 경우, 일반적으로 STA은 AP보다 전송 파워가 낮으므로 STA이 AP로 데이터를 제대로 전송하지 못하는 경우가 발생할 수 있다. 이와 같은 문제점을 해결하고, AP와 STA 간의 데이터 전송 시 커버리지를 더욱 넓히기 위해 릴레이(Relay)를 사용한다.When an access point (AP) transmits data (or a frame) to a station (STA), if there is an obstacle between the AP and the STA, the transmission efficiency may be reduced. In addition, when the STA transmits data to the AP, in general, since the STA has a lower transmission power than the AP, the STA may not properly transmit data to the AP. In order to solve such a problem and to further expand coverage when transmitting data between the AP and the STA, a relay is used.
도 1에서 STA 1, STA 3은 AP와 거리가 멀어 STA1, STA 3으로부터의 데이터 전송이 AP에 도달하지 못하거나 또는 신호가 약해질 수가 있다. Relay1, Relay2를 이용하여 STA 1, STA 3으로부터의 데이터 전송을 포워딩(forwarding)시키는 경우, 이러한 문제들을 해결할 수 있다. 릴레이는 업링크(Uplink) 전송뿐만 아니라, AP로부터 STA로의 다운링크(Downlink) 전송 시에도 이용될 수 있다.In FIG. 1, since STA 1 and STA 3 are far from the AP, data transmission from STA 1 and STA 3 may not reach the AP, or a signal may be weakened. When forwarding data transmission from STA 1 and STA 3 using Relay1 and Relay2, these problems can be solved. The relay may be used not only for uplink transmission but also for downlink transmission from the AP to the STA.
무선랜 시스템에서 Slotted 방식을 사용한 릴레이 방식의 경우, 전송 효율을 높이기 위해서는 효율적인 RAW 운영 및 전송 슬롯 할당, 전송 시간 구간 할당, 서브 밴드 할당 등의 효율적인 리소스 할당이 필요하다. 전송 효율을 높이기 위해서는 RAW 및 전송 슬롯을 적절하게 할당하여 많은 수의 STA들이 충돌 없이 데이터를 전송할 수 있도록 해야 한다. 또한, 더 많은 수의 STA들이 동일한 RAW 혹은 전송 슬롯을 공유하거나, 또는 같은 시간 구간 동안 서로 다른 서브 밴드를 사용하는 등의 방법을 통해 동시에 데이터를 전송할 수 있도록 해야 한다.In the case of the relay method using the slotted method in the WLAN system, efficient resource allocation such as efficient RAW operation, transmission slot allocation, transmission time interval allocation, and subband allocation are necessary to increase transmission efficiency. In order to increase transmission efficiency, RAW and transmission slots must be properly allocated so that a large number of STAs can transmit data without collision. In addition, a greater number of STAs must be able to simultaneously transmit data through a method such as sharing the same RAW or transmission slots or using different subbands during the same time interval.
도 2는 일실시예에 따른 릴레이 방식을 이용하는 경우의 기본 서비스 세트(Basic Service Set, BSS) 구성의 일례를 도시한 도면이다.2 is a diagram illustrating an example of a basic service set (BSS) configuration when using a relay method according to an embodiment.
무선랜 시스템은 액세스 포인트(Access Point, AP), 릴레이(Relay), 스테이션(Station)을 포함할 수 있다. 액세스 포인트의 기본 서비스 세트(Basic Service Set, BSS)의 범위는 릴레이에 의해 확장될 수 있다. 액세스 포인트는 AP, Root AP, 또는 RtAP로 지칭될 수 있고, 릴레이는 Relay AP, Relay STA, 또는 R-AP로 지칭될 수 있다. 스테이션은 STA로 지칭될 수 있고, 액세스 포인트 또는 릴레이에 연결될 수 있는 다양한 통신 단말들을 포함한다.The WLAN system may include an access point (AP), a relay, and a station. The scope of the basic service set (BSS) of the access point may be extended by the relay. The access point may be referred to as AP, Root AP, or RtAP, and the relay may be referred to as Relay AP, Relay STA, or R-AP. The station may be referred to as a STA and includes various communication terminals that may be connected to an access point or a relay.
액세스 포인트의 기본 서비스 세트는 Root AP BSS로 지칭될 수 있다. 릴레이는 자신의 기본 서비스 세트인 Relay BSS를 구성할 수 있고, Relay BSS 내에서 릴레이는 STA에 대해 액세스 포인트와 같은 역활을 할 수 있다. Root AP BSS와 Relay BSS는 서로 중첩될 수 있다. Root AP BSS는 STA이 Root AP와 통신을 유지할 수 있는 영역을 나타내고, Relay BSS는 STA이 Relay와 통신을 유지할 수 있는 영역을 나타낸다. Root AP BSS는 Relay에 의해 통신 영역이 확장될 수 있으며 Relay에 의해 영역이 확장된 Root AP의 BSS를 확장 BSS (Extended BSS)로 칭한다. 확장 BSS는 Root BSS 및 Root AP에 연결된 Relay의 Relay BSS를 포함할 수 있다.The basic service set of the access point may be referred to as Root AP BSS. The relay can configure its basic service set, Relay BSS, and within the Relay BSS, the relay can act as an access point to the STA. Root AP BSS and Relay BSS may overlap each other. Root AP BSS indicates an area where the STA can maintain communication with the Root AP, and Relay BSS indicates an area where the STA can maintain communication with the Relay. Root AP BSS can extend communication area by Relay, and BSS of Root AP whose area is extended by Relay is called Extended BSS (Extended BSS). The extended BSS may include a relay BSS of a relay connected to the root BSS and the root AP.
Root AP는 무선랜 시스템의 전체적인 네트워크 상황을 점검할 수 있다. Root AP 및 릴레이는 할당된 자원에 관한 정보를 포함하는 비콘을 전송할 수 있다. Root AP가 전송하는 비콘은 Root Beacon, Rt-Beacon, 또는 Root AP Beacon으로 지칭될 수 있고, 릴레이가 전송하는 비콘은 Relay Beacon, 또는 R-Beacon으로 지칭될 수 있다. STA는 Relay를 경유하여 Root AP에 연결되거나, 또는 직접 Root AP에 연결될 수 있다.Root AP can check the overall network status of the WLAN system. Root AP and relay can transmit a beacon including information about the allocated resources. The beacon transmitted by the Root AP may be referred to as Root Beacon, Rt-Beacon, or Root AP Beacon, and the beacon transmitted by the relay may be referred to as Relay Beacon, or R-Beacon. The STA may be connected to the root AP via a relay or may be directly connected to the root AP.
AP는 하나의 BSS를 생성할 수 있고, BSS 내에는 많은 STA들이 포함될 수 있다. 일반적으로, STA은 도 2에서의 STA M과 같이 AP로 직접 데이터를 전송하지만, 전송 거리(range) 확장을 위해 릴레이를 경유하여 AP와 데이터를 주고 받을 수도 있다. 하나의 AP에는 여러 개의 릴레이가 연결(association)될 수 있으며, 또한 각 Relay는 다수의 STA로부터 송수신되는 데이터를 AP로 중계할 수 있다.The AP may generate one BSS, and many STAs may be included in the BSS. In general, the STA directly transmits data to the AP as in STA M in FIG. 2, but may also exchange data with the AP via a relay for extending a transmission range. Several relays may be associated with one AP, and each relay may relay data transmitted and received from a plurality of STAs to the AP.
커버리지를 확장하기 위해 Relay를 이용할 경우, BSS 내에 STA의 수가 많으면 Slotted 전송 방식의 사용이 요구되고, 또한 Relay가 개입된 전송까지 고려한 효율적인 슬롯 할당 방법 및 운영이 필요하다.When using a relay to extend coverage, when the number of STAs in the BSS is large, the use of the slotted transmission method is required, and an efficient slot allocation method and operation considering the transmission involving the relay is required.
도 3은 일실시예에 따른 릴레이를 이용하는 경우에 있어 제한된 접속 윈도우(Restricted Access Window, RAW)를 이용하는 방법의 일례를 도시한 도면이다.3 is a diagram illustrating an example of a method of using a restricted access window (RAW) when using a relay according to an embodiment.
Relay를 이용하여 데이터를 전송하는 경우에 있어 RAW, 슬롯 등의 리소스를 할당하는 방법의 일례를 설명하도록 한다.An example of a method of allocating a resource such as a RAW or a slot when transmitting data using a relay will be described.
첫 번째 방법은 STA과 Relay 사이의 전송 (이하에서는, 이를 'bottom hop' 전송이라 칭함), Relay와 AP 사이의 전송 (이하에서는, 이를 'top hop' 전송이라 칭함)별로 RAW를 할당하는 방법으로, 도 3은 이러한 방법의 일례를 나타내고 있다.The first method is to allocate RAW per transmission between STA and Relay (hereinafter referred to as 'bottom hop' transmission) and between Relay and AP (hereinafter referred to as 'top hop' transmission). 3 shows an example of such a method.
도 3에서 RAW1은 bottom hop 전송을 위해 할당되었고, RAW2는 top hop을 위해 할당되었다. RAW1에서 STA1, STA2, STA3 등은 각각 자기가 이용하는 Relay1(R1), Relay2(R2) 등에 데이터를 전송한다. RAW2에서 Relay1(R1), Relay2(R2)는 AP에 데이터를 전송한다. 여기서, Uplink, Downlink 전송을 하나의 RAW에서 수행하게 하는 것도 가능하다.In FIG. 3, RAW1 is allocated for bottom hop transmission and RAW2 is allocated for top hop. In RAW1, STA1, STA2, STA3, etc. transmit data to Relay1 (R1), Relay2 (R2), etc., which are used by each. In RAW2, Relay1 (R1) and Relay2 (R2) send data to the AP. Here, it is also possible to perform uplink and downlink transmission in one RAW.
도 4는 일실시예에 따른 릴레이를 이용하는 경우에 있어 제한된 접속 윈도우를 이용하는 방법의 다른 예를 도시한 도면이다.4 is a diagram illustrating another example of a method of using a limited access window when using a relay according to an embodiment.
Relay를 이용하여 데이터를 전송하는 경우에 있어 RAW, 슬롯 등의 리소스를 할당하는 방법의 다른 예로, 하나의 STA-Relay-AP(이를 'parent tree'라고 칭함)별로 각각의 RAW를 할당하는 방법이 있다.As another example of a method of allocating a resource such as a RAW or a slot when transmitting data using a relay, a method of allocating each RAW for each STA-Relay-AP (called 'parent tree') have.
도 4에서, RAW1은 Relay 1(R1)을 이용하는 STA1, STA3, STA5와 Relay 1간의 전송, Relay 1과 AP 간의 전송을 포함하고, RAW2는 Relay 2(R2)를 이용하는 STA2, STA4, STA6, STA8과 Relay 2 간의 전송, Relay 2와 AP 간의 전송을 포함한다.In FIG. 4, RAW1 includes transmission between STA1, STA3, STA5 and Relay 1 using Relay 1 (R1), and transmission between Relay 1 and AP, and RAW2 includes STA2, STA4, STA6, STA8 using Relay 2 (R2). It includes the transmission between Relay 2 and Relay 2, and the transmission between Relay 2 and AP.
RAW 및 슬롯 할당 정보는 비콘(beacon)을 통해 전달될 수 있다. 이 경우, AP와 Relay를 거치지 않는 STA에 대한 RAW 및 슬롯 할당 정보뿐만 아니라 Relay에 대한 RAW 및 슬롯 할당 정보, Relay와 STA의 전송이 허용되는 RAW 및 슬롯의 할당 정보 등이 비콘을 통해 전달될 수 있다.RAW and slot assignment information may be delivered via beacons. In this case, not only RAW and slot assignment information for the STA that does not go through the AP and the relay, but also RAW and slot assignment information for the relay, RAW and slot assignment information that allows the relay and the STA to be transmitted may be transmitted through the beacon. have.
도 5는 일실시예에 따른 릴레이를 이용하는 경우에 있어 제한된 접속 윈도우를 이용하는 방법의 또 다른 예를 도시한 도면이다.5 illustrates another example of a method of using a restricted access window when using a relay according to an embodiment.
Relay를 이용하여 데이터를 전송하는 경우에 있어 RAW, 슬롯 등의 리소스를 할당하는 방법의 또 다른 예로, BSS 내에서 루트 비콘(Root Beacon)은 Root AP에서만 전송되지만, 각 Relay도 각자의 비콘을 전송하도록 하고, 해당 Relay를 이용하는 STA이 Relay와 Uplink 혹은 Downlink 전송을 할 수 있는 RAW 및 slot 할당 정보를 각각의 Relay가 전송한 비콘(Relay beacon)에 포함하여 전달하도록 하는 방법이 있다.Another example of a method of allocating resources such as RAW and slots when transmitting data using a relay is that a root beacon is transmitted only from a root AP within a BSS, but each relay also transmits its own beacon. In addition, there is a method in which a STA using a corresponding relay includes RAW and slot allocation information capable of transmitting uplink or downlink with a relay in a beacon transmitted by each relay.
즉, Relay와 Root AP 간의 전송, Root AP와 Relay를 이용하지 않는 STA 간의 전송(다시 말하면, Root AP가 직접 STA에 데이터를 송수신하는 전송)에 대한 RAW, 슬롯 할당은 Root AP에 의해 수행되고, Root AP가 보내는 비콘(이를 Root Beacon이라 칭함)을 통해 RAW, 슬롯 할당에 대한 정보가 전달(이를 'Level 0 슬롯 할당'이라고 칭함)될 수 있다. Relay와 STA 간의 전송(즉, bottom hop)에서는 Relay와 STA 간의 전송에 직접 개입하는 해당 Relay는 RAW, slot을 할당하여 Relay 비콘을 통해 RAW, 슬롯 할당에 대한 정보를 전송(이를 'Level 1 슬롯 할당'이라고 칭함)할 수 있다.That is, RAW and slot allocation for the transmission between the relay and the Root AP, the transmission between the Root AP and the STA that does not use the relay (that is, the transmission in which the Root AP directly transmits and receives data to the STA) is performed by the Root AP. Through the beacon (called Root Beacon) sent by the Root AP, information on RAW and slot allocation may be transmitted (this is called 'Level 0 slot allocation'). In the transmission between the relay and the STA (that is, bottom hop), the corresponding relay directly intervening in the transmission between the relay and the STA transmits the RAW and slot allocation information through the relay beacon by allocating RAW and slots (this is called 'Level 1 slot allocation'). ').
Relay는 Level 1 슬롯 할당을 위해 Root AP와 정보를 주고 받을 수 있고, 이를 통해 Root AP는 최적화된 길이의 시간 구간(RAW 또는 슬롯 또는 Root AP의 RAW/슬롯과는 독립적인 시간 구간)을 해당 Relay에 할당할 수 있다. Relay는 Relay와 STA 간의 전송을 위해 할당된 시간 구간 내에서, Root AP와 주고 받은 정보에 기초하여 Relay와 STA 간의 전송에 이용할 RAW 또는 슬롯을 직접 할당할 수 있다.The relay can send and receive information with the Root AP for Level 1 slot assignment, which allows the Root AP to optimize its length of time (RAW or slot or time interval independent of the RAW / Slot of the Root AP). Can be assigned to The relay may directly allocate a RAW or a slot to be used for transmission between the relay and the STA based on information exchanged with the Root AP within a time interval allocated for the transmission between the relay and the STA.
Root AP가 Level 1 슬롯 할당까지 직접하고, Level 1 슬롯 할당 정보를 Relay에게 알려주고, Relay는 Level 1 슬롯 할당 정보를 비콘을 통해 전달하는 역할만 할 수도 있지만, Relay와 STA 간의 전송에 사용할 RAW 또는 슬롯은 Relay가 직접 할당하도록 하는 것이 바람직하다. Relay는 자기와 직접 접속(associate)된 STA들에 대한 정보를 Root AP보다 더 자세히 알고 있기 때문에 Relay가 Level 1 슬롯 할당을 보다 효율적으로 할 수 있기 때문이다. 즉, Root AP는 Relay와 STA 간의 전송 구간을 할당하지만, 직접 Relay와 STA 간의 전송 구간 내에서의 세부적인 RAW/슬롯 할당은 직접 수행하지 않고, Relay와 STA 간의 전송 구간 내에서의 세부적인 RAW/슬롯 할당은 해당 Relay에 위임(delegate)시키는 것이 바람직하다. 이하에서는 이를 Leveled Slot (또는 RAW) 할당이라고 칭한다.The Root AP directs the Level 1 slot assignments, informs the Relay of the Level 1 slot assignments, and the Relay can only pass the Level 1 slot assignments via the beacon, but the RAW or slot to be used for transmission between the Relay and the STA. It is recommended that the relay be assigned directly. This is because the relay knows more information about STAs that are directly associated with it than the Root AP, so that the relay can more efficiently allocate Level 1 slots. That is, the Root AP allocates the transmission interval between the Relay and the STA, but does not directly perform detailed RAW / slot allocation in the transmission interval between the Relay and the STA, but does not directly perform detailed RAW / slot in the transmission interval between the Relay and the STA. Slot assignment is preferably delegated to the corresponding relay. This is hereinafter referred to as Leveled Slot (or RAW) allocation.
Relay를 이용한 BSS 범위의 확장으로 인해, Relay에 연결된 STA은 Root Beacon을 수신하지 못할 가능성이 있다. Relay Beacon에 Relay와 STA 간의 전송에 필요한 RAW/slot 할당 정보를 포함할 경우, 해당 STA은 Root Beacon을 수신하지 않아도 Relay Beacon을 수신하면 된다. 또한, Relay Beacon에는 해당 Relay와 STA 간의 전송에 필요한 RAW/slot 할당 정보만 포함되면 되기 때문에 Relay Beacon의 크기도 감소시킬 수 있다.Due to the expansion of the BSS range using the relay, the STA connected to the relay may not receive the root beacon. If the relay beacon includes RAW / slot allocation information necessary for transmission between the relay and the STA, the corresponding STA may receive the relay beacon even without receiving the root beacon. In addition, since the relay beacon only needs to include RAW / slot allocation information necessary for transmission between the corresponding relay and the STA, the size of the relay beacon can be reduced.
이러한 leveled slot (또는 RAW) 할당 방법은, (A) Root AP가 Relay 전송 구간, Relay 전송 서브밴드 등의 자원을 level 0에서 Delegated RAW(DRAW) 형태로 할당하고, DRAW 구간을 Relay 에게 할당하는 방법 (B) Root AP가 Relay 전송 구간, 전송 밴드 등의 자원을 RAW 형태가 아닌 별도의 자원 할당 정보를 사용하여 Root AP의 RAW와는 독립적으로 Relay에게 자원을 할당하는 방법을 포함할 수 있다.Such a leveled slot (or RAW) allocation method is a method in which (A) the Root AP allocates resources such as a relay transmission interval and a relay transmission subband in the form of Delegated RAW (DRAW) at level 0 and allocates the DRAW interval to the relay. (B) Root AP may include a method for allocating resources to the relay independently of the RAW of the Root AP by using the resource allocation information, such as the relay transmission interval, the transmission band, other than the RAW format.
<(A) Root AP가 Relay 전송 구간, Relay 전송 서브밴드 등의 자원을 level 0에서 Delegated RAW(DRAW) 형태로 할당하고, DRAW 구간을 Relay 에게 할당하는 방법(DRAW를 사용하는 방법)><(A) Root AP allocates resources such as relay transmission section and relay transmission subband in Delegated RAW (DRAW) form at level 0 and allocates DRAW section to relay (how to use DRAW)>
도 5는 Relay가 비콘을 전송하는 경우에 있어, 레벨을 나누어 Slot을 할당하는 방법의 일례(DRAW 경우)를 나타내고 있다.FIG. 5 shows an example of a method of allocating slots by dividing a level when a relay transmits a beacon (DRAW case).
상단의 Level 0에서는, Root AP가 직접 RAW, slot을 할당한다. Root AP와 Relay 간의 전송에 대한 RAW, slot과 Root AP와 Relay를 거치지 않고 직접 AP와 송수신을 하는 STA에 대한 RAW, slot이 할당된다. Relay는 bottom hop 전송을 통해 여러 STA들로부터 전송되는 데이터를 수집하여 AP에 전송하기 때문에 더 많은 전송 시간을 할당하는 것이 좋다. Relay에 더 많은 전송 시간을 할당하기 위해 Relay에 대해서는 여러 개의 Slot들을 할당하거나 또는 하나의 아주 긴 Slot을 할당할 수도 있다. 도 5의 예에서는 Uplink(UL), Downlink(DL) 전송을 별도의 RAW로 설정한 경우이나, Uplink, Downlink가 하나의 RAW를 통해 수행하게 하는 것도 가능하다. 또한, 도 5의 예에서는 Uplink RAW, Downlink RAW에 일반 STA으로의 전송, Relay로의 전송 등이 포함되어 있는데, 하나의 RAW에 Relay와의 전송만을 포함시킬 수도 있다.At the top level 0, the Root AP assigns RAW and slots directly. RAW, slot for transmission between Root AP and Relay, and RAW, slot for STA that transmits and receives with AP directly without passing through Root AP and Relay are allocated. Since the relay collects data transmitted from several STAs through bottom hop transmission and transmits it to the AP, it is recommended to allocate more transmission time. To allocate more transmission time to a relay, you can assign multiple slots to a relay or a very long slot. In the example of FIG. 5, when uplink (UL) and downlink (DL) transmission are set to separate RAWs, it is also possible to perform uplink and downlink through one RAW. In addition, in the example of FIG. 5, uplink RAW and downlink RAW include transmission to a general STA, transmission to a relay, and the like. Only one transmission to a relay may be included in one RAW.
하단의 Level 1에서, 각 Relay는 자신을 이용하는 STA과의 전송을 위한 RAW, slot을 할당할 수 있다. 각 Relay는 Level 1 slot을 관리할 수 있으며, Relay와 STA 간의 전송을 위한 슬롯 할당 정보를 Relay가 전송하는 beacon에 포함하여 전달할 수 있다. 효율적인 RAW, slot 할당을 위해 Relay는 AP와 RAW, slot 할당 관련 정보를 주고 받을 수 있다. AP가 레벨 1 RAW, slot 할당을 하고, RAW, slot 할당 정보를 Relay에게 알려주는 방식을 사용할 수도 있지만, Relay가 직접 Relay와 STA 간의 전송을 위한 RAW/slot 할당을 수행하는 것이 더욱 효율적이다.In Level 1 at the bottom, each relay can allocate a RAW and a slot for transmission with the STA using it. Each Relay can manage a Level 1 slot and can transmit slot allocation information for transmission between the Relay and the STA in a beacon transmitted by the Relay. For efficient RAW and slot allocation, the relay can exchange RAW and slot allocation information with the AP. The AP may use Level 1 RAW, slot allocation, and notify the Relay of the RAW and slot allocation information. However, it is more efficient for the Relay to perform RAW / slot allocation for the direct transmission between the Relay and the STA.
Level 1에서 Relay가 STA과 데이터를 송수신하는 동안 동일 채널을 사용하는 다른 STA 또는 Relay는 AP와 데이터를 송수신하지 않도록 할 수 있으며, 충돌을 막기 위해 Root beacon에 Root AP의 level 0 RAW, slot 할당 정보와 함께 Level 1에서 전송이 일어나는 구간(이를 'Empty slot' 또는 'Empty RAW' 또는 'Delegated RAW' 라고 칭함)에 관한 정보를 포함하여 전달할 수 있다.While the relay is transmitting and receiving data with the STA at Level 1, other STAs or relays using the same channel may not transmit or receive data with the AP.To prevent collision, the level 0 RAW and slot allocation information of the root AP is assigned to the root beacon. In addition, it can be transmitted by including information on the interval in which transmission occurs in Level 1 (called 'Empty slot' or 'Empty RAW' or 'Delegated RAW').
레벨 0에서의 Empty slot 구간 (또는, Empty RAW 구간 혹은 Delegated RAW 구간)을 결정하기 위해 AP는 Relay과 정보를 교환할 수 있다. Uplink 경우에서의 Empty slot 구간(또는, Empty RAW 구간, Delegated RAW 구간)을 설정하기 위해서는 Relay가 AP에 전송해야 할 데이터 양을 알아야 하므로 AP는 Relay로부터 UDI (Uplink Data Indication) 정보 등을 수신하여 Empty slot 구간을 설정할 수 있다. AP는 Relay를 통해 Downlink 데이터를 수신받는 STA들에 대한 데이터 양을 이미 알고 있으므로, Downlink 경우에서의 Empty slot 구간을 설정하기 위해 AP는 Relay를 통해 데이터를 수신받는 STA들에 대한 데이터 양을 고려하여 Empty slot 구간 (또는, Empty RAW 구간, Delegated RAW 구간)을 설정하여, 설정된 Empty slot 구간을 Relay에게 알려줄 수도 있다. The AP may exchange information with the relay to determine an empty slot interval (or an empty RAW interval or a delegated RAW interval) at level 0. In order to set the empty slot interval (or empty RAW interval, or delegated RAW interval) in the uplink case, the relay needs to know the amount of data to be transmitted to the AP. Therefore, the AP receives UDI (Uplink Data Indication) information from the relay and is empty. Slot section can be set. Since the AP already knows the data amount for the STAs receiving the downlink data through the relay, in order to configure the empty slot interval in the downlink case, the AP considers the data amount for the STAs receiving the data through the relay. An empty slot section (or an empty RAW section, or a delegated RAW section) may be set to inform the relay of the set empty slot section.
위의 예에서는 Uplink를 위한 Empty slot 구간 (또는, Empty RAW 구간, Delegated RAW 구간)과 Downlink를 위한 Empty slot 구간 (또는, Empty RAW 구간, Delegated RAW 구간)을 분리하였지만, Uplink를 위한 Empty slot 구간 및 Downlink를 위한 Empty slot 구간을 하나의 Empty RAW (Delegated RAW)로 설정하고, Relay가 하나의 Empty RAW (Delegated RAW) 내에서 Uplink, Downlink, PS-Poll RAW 등을 필요한 만큼 적절한 비율로 할당할 수도 있다. 이와 같은 경우, Relay가 자신에게 연결된 STA과의 Uplink 또는 Downlink 데이터 양에 따라 적절하게 slot을 배분하여 사용할 수 있다는 이점이 있다.In the above example, an empty slot section (or an empty RAW section and a delegated RAW section) for uplink and an empty slot section (or an empty RAW section and a delegated RAW section) for downlink are separated, The empty slot section for downlink can be set to one empty RAW (Delegated RAW), and the relay can allocate Uplink, Downlink, PS-Poll RAW, etc. at an appropriate ratio as needed within one Empty RAW (Delegated RAW). . In this case, there is an advantage that the relay can appropriately allocate slots according to the amount of uplink or downlink data with the STA connected thereto.
센서 네트워크(sensor network), 스마트 그리드(smart grid) 서비스 등과 같이 비교적 트래픽 양이 일정하고 전송이 주기적으로 이루어지는 경우, AP가 초기 RAW, slot 할당 시 일정한 패턴으로 RAW, slot을 할당하고, RAW/slot 할당 정보를 알릴 수도 있다. 이와 같은 방식의 경우, RAW, slot 할당 시 PRAW (Periodic RAW)이 이용될 수도 있다. 예를 들어, 가끔 전송되는 Full Beacon에 Relay와 STA 간의 전송에 이용되는 RAW (Delegated RAW)를 할당하고, 이후 Relay 할당 정보가 변하지 않은 경우에는, Full Beacon 이후에 전송되는 Short Beacon에 Relay RAW 할당 정보를 따로 명시하지 않을 수 있다.In case of relatively constant traffic volume and periodic transmission, such as sensor network and smart grid service, the AP allocates RAW and slot in a regular pattern when initial RAW and slot allocation, and RAW / slot You can also report allocation information. In this case, RAW, slot allocation may use PRAW (Periodic RAW). For example, if a RAW (Delegated RAW) used for transmission between a relay and a STA is allocated to a full beacon that is sometimes transmitted, and the relay allocation information has not changed since, relay RAW allocation information to a short beacon transmitted after the full beacon May not be specified separately.
위의 예는 Relay 하나만을 경유하는 two hop relay 전송에 대한 예이며, 여러 개의 Relay들을 경유하는 멀티 홉의 경우에는 하위 레벨을 Relay level 만큼 더 설정하고, 위와 동일한 방법에 기초하여 level을 확장하면 된다.The above example is an example of transmitting two hop relays via only one relay.In the case of multi-hops passing through multiple relays, the lower level may be set as much as the relay level, and the level may be extended based on the same method as above. .
도 5의 예에서는 RAW 안에 하나의 Relay에 대한 Empty slot이 할당되었으나, 하나의 RAW에 여러 개의 Relay들에 대한 Empty slot들이 할당될 수도 있고, 또한 하나의 RAW 전체를 각각의 Relay들을 위한 Empty slot들로 할당할 수도 있다.In the example of FIG. 5, an empty slot for one relay is allocated in the RAW, but empty slots for several relays may be allocated in one RAW, and empty slots for each relay in one RAW as a whole. You can also assign
Relay beacon은 각 Relay에 의해 전송되며, Relay beacon은 주기적으로 전송될 수 있다. 예를 들어, Root AP의 비콘이 전송된 후, Relay beacon은 Root AP가 해당 Relay를 위해 할당한 RAW 혹은 slot (level 0의 해당 Relay를 위한 첫 번째 empty slot)에서 전송될 수도 있다.Relay beacons are transmitted by each relay, and relay beacons can be sent periodically. For example, after the beacon of the Root AP is transmitted, the relay beacon may be transmitted in the RAW or slot (the first empty slot for the corresponding Relay of level 0) allocated by the Root AP for the corresponding relay.
Relay는 자신을 이용하는 각각의 STA들로부터 수신한 데이터를 집적(aggregation)하여 Root AP에 전송함으로써 전송 효율을 더욱 높일 수 있다. 또한, Root AP는 Relay를 경유하여 전송할 여러 STA들에 대한 데이터를 집적하여 전송하고, Relay는 Root AP로부터 수신한 데이터를 각 STA별로 나누어 해당 STA으로 전송함으로써 전송 효율을 높일 수 있다. 이를 위해 A-MSDU (Aggregation-MAC Service Data Unit) 또는 A-MPDU (Aggregation-MAC protocol Data Unit) 등 기존의 데이터 취합 기술이 이용될 수 있다. The relay can further increase transmission efficiency by aggregating data received from each STA using the self and transmitting the data to the Root AP. In addition, the Root AP aggregates and transmits data for several STAs to be transmitted through a Relay, and the Relay may increase transmission efficiency by dividing data received from the Root AP by each STA and transmitting the data to the corresponding STA. To this end, existing data collection techniques such as Aggregation-MAC Service Data Unit (A-MSDU) or Aggregation-MAC protocol Data Unit (A-MPDU) may be used.
위와 같은 slot 할당 방법에서, 더 많은 STA들이 같은 RAW, slot을 공유할 수 있게 하면 slot의 활용도가 더 높아져 전송 효율을 더욱 개선시킬 수 있다. 특히, 각 STA들이 동시에 데이터를 송수신을 할 수 있도록 하면 전송 효율이 더욱 개선될 수 있다.In the slot allocation method as described above, if more STAs can share the same RAW and slot, the utilization of the slot is higher, which may further improve transmission efficiency. In particular, transmission efficiency may be further improved by allowing each STA to simultaneously transmit and receive data.
도 6은 일실시예에 따른 Slotted 전송 방식에서의 RAW 구조를 도시한 도면이다.6 illustrates a RAW structure in a slotted transmission scheme according to an embodiment.
하나의 Beacon 구간에 포함될 수 있는 RAW의 개수는 제한적이며, 이러한 제한적인 RAW의 숫자는 각 클러스터에서의 전송을 수행하기에 부족할 수도 있다. 여기서, 클러스터는 Relay와 Relay를 이용하는 STA 들을 포함하는 단위이다.The number of RAWs that can be included in one Beacon section is limited, and this limited number of RAWs may be insufficient to perform transmission in each cluster. Here, the cluster is a unit including a relay and STAs using the relay.
RAW의 제한 문제를 해결하고, RAW를 효율적으로 활용할 수 있는 방법은 다음과 같다.Here's how to solve the limitations of RAW and make the most of RAW.
(1) 시간 영역(time domain)에서 하나의 RAW에 여러 개의 클러스터들을 할당(1) assign multiple clusters to one RAW in the time domain
클러스터에 포함된 STA이 많지 않은 경우, 하나의 RAW에 여러 개의 클러스터들을 할당할 수 있다. 이 경우, 여러 클러스터의 STA들을 하나의 RAW에 할당하더라도 전체 STA의 수가 많지 않으므로 충돌이 일어날 확률이 적으며, 각 STA이 경쟁(contention) 후 채널을 할당받게 되는 순서에 따라 시간상으로 순차적으로 데이터가 전송될 수 있다. 특정 릴레이 클러스터에 할당된 시간 구간에서 전송이 완료되지 못했을 경우, 여러 클러스터들에서 동시에 사용하도록 할당된 RAW가 남은 데이터를 서로 공유된 시간 구간 내에서 추가 전송을 하도록 하는데 이용될 수도 있다.When there are not many STAs included in a cluster, several clusters may be allocated to one RAW. In this case, even if STAs of multiple clusters are allocated to one RAW, the number of STAs is not large, so there is little probability of collision, and data is sequentially sequentially in time according to the order in which STAs are allocated channels after contention. Can be sent. When transmission is not completed in a time interval allocated to a specific relay cluster, RAW allocated for simultaneous use in multiple clusters may be used to additionally transmit remaining data in a shared time interval.
(2) 공간 영역(spatial domain)에서 하나의 RAW에 여러 개의 클러스터들을 할당(2) assigning multiple clusters to a single RAW in a spatial domain
각 클러스터들이 서로 멀리 떨어져 있는 경우, 하나의 RAW를 공간적으로 분리된 클러스터들에 할당하고, 동시에 데이터 전송이 수행되도록 할 수 있다.If each cluster is far from each other, one RAW can be allocated to spatially separated clusters and data transfer can be performed at the same time.
예를 들어, 도 1에서 Relay 1이 포함된 클러스터 1, Relay 2가 포함된 클러스터 2를 같은 RAW에 할당할 수 있다. 도 1에서 STA1과 STA2는 공간적으로 서로 멀리 떨어져 있으며, STA1이 Relay 1로 데이터를 전송하는 Uplink 전송, STA2가 Relay 2로 데이터를 전송하는 Uplink 전송은 동시에 이루어질 수 있다. 이러한 동시 전송은 각각의 Relay와 각각의 Relay를 사용하는 STA 간의 전송 구간에 적용이 용이할 수 있다.For example, in FIG. 1, cluster 1 including relay 1 and cluster 2 including relay 2 may be allocated to the same RAW. In FIG. 1, STA1 and STA2 are spatially far from each other, and Uplink transmission in which STA1 transmits data to Relay 1 and Uplink transmission in which STA2 transmits data to Relay 2 may be simultaneously performed. Such simultaneous transmission may be easily applied to a transmission interval between each relay and an STA using each relay.
(3) 주파수 영역(frequency domain)에서 하나의 RAW에 여러 개의 클러스터를 할당(3) assign multiple clusters to one RAW in the frequency domain
클러스터들이 서로 다른 채널을 사용하여 STA과 송수신하게 할 수 있다. 도 7과 같이, Relay 1이 포함된 클러스터 1에서 Relay 1과 STA들 간의 전송은 CH3, CH4를 이용하고, Relay 2가 포함된 클러스터 2에서 Relay 2와 STA들 간의 전송은 CH1, CH2를 이용하면 동시에 데이터 전송이 수행될 수 있으며, 이 두 클러스터들을 하나의 RAW에 할당할 수도 있다. 도 7은 일실시예에 따른 서로 다른 채널을 이용하여 동일한 RAW를 공유하는 일례를 도시한 도면이다. 이는 센서 네트워크, 스마트 그리드 등과 같이 비교적 적은 밴드폭(bandwidth, BW)을 사용하는 경우에 유용하다. Clusters can be transmitted and received with the STA using different channels. As shown in FIG. 7, if the transmission between the relay 1 and the STAs in the cluster 1 including the relay 1 uses CH3 and CH4, the transmission between the relay 2 and the STAs in the cluster 2 including the relay 2 uses the CH1 and CH2. Data transfer can be performed at the same time, and these two clusters can be allocated to one RAW. 7 illustrates an example of sharing the same RAW using different channels according to an embodiment. This is useful when using relatively small bandwidths (BW), such as sensor networks, smart grids, and the like.
이러한 동시 전송은 Relay와 해당 Relay를 이용하는 STA 간의 전송이 일어나는 level 1의 전송 구간에 적용이 용이하다.Such simultaneous transmission can be easily applied to a level 1 transmission period in which transmission between a relay and an STA using the relay occurs.
동시 전송이 수행되는 경우, Relay 1 또는 Relay 2와 AP 간의 통신은 CH1-CH4를 모두 이용하여 이루어질 수 있다. 또한, Relay는 각 STA들로부터 수신한 데이터를 집적하고, 집적한 데이터를 보다 넓은 채널을 사용하여 전송함으로써 전송 효율을 높일 수 있다.When simultaneous transmission is performed, communication between Relay 1 or Relay 2 and the AP may be performed using all of CH1-CH4. In addition, the relay may increase transmission efficiency by accumulating data received from each STA and transmitting the aggregated data using a wider channel.
도 5와 같이, 레벨을 나누어 slot을 할당하는 leveled slot allocation 방법의 경우, RAW, slot을 최대한 효율적으로 활용하기 위해서는 Relay와 AP 간의 정보 교환 및 STA들의 트래픽(traffic) 정보 등의 교환이 필요하다. 또한, STA들이 지속적으로 BSS에 접속(join), 이탈(leave)할 경우나 STA 그룹핑을 다시 할 경우 등에는 RAW, slot에 대한 할당이 변경되어야 하며, 이는 오버헤드로 작용할 수 있다.As illustrated in FIG. 5, in the leveled slot allocation method of allocating slots by dividing levels, in order to utilize RAW and slots as efficiently as possible, information exchange between a relay and an AP and traffic information of STAs are required. In addition, when STAs continuously join, leave, or regroup STAs, the allocation of RAW and slots must be changed, which may act as an overhead.
위 (1)-(3)의 RAW Sharing 방법은, Root AP가 Relay 전송 구간, 전송 주파수 밴드 등의 자원을 RAW 형태가 아닌 별도의 자원 할당 정보를 이용하여 Root AP의 RAW와는 독립적으로 Relay에게 자원을 할당하는 방법(방법 (B))을 사용하는 경우에도 유사하게 적용이 가능하다.In the RAW sharing method of (1)-(3) above, the Root AP uses the resource allocation information such as relay transmission interval and transmission frequency band to the relay independently of the RAW of the Root AP using separate resource allocation information. The same applies to the case of using the method of assigning a (method (B)).
위 (1) 시간 영역에서 동시 전송을 허용하는 방법과 관련하여 방법 (B)를 사용할 경우, 시간 영역에서 동시에 클러스터 내에서의 전송이 가능한 Relay들을 같은 전송 구간에 할당하면 된다. 여러 클러스터들에서 동시 사용하도록 할당된 전송 구간은, 특정 릴레이 클러스터에 할당된 시간 구간에서 전송이 완료되지 못했을 경우, 남은 데이터를 서로 공유된 시간 구간 내에서 추가 전송을 하도록 하는데 이용될 수도 있다.(1) When using method (B) in connection with the method of allowing simultaneous transmission in the time domain, relays capable of transmitting in the cluster at the same time in the time domain may be allocated to the same transmission interval. The transmission interval allocated for simultaneous use in several clusters may be used to additionally transmit the remaining data in a shared time interval when transmission is not completed in a time interval allocated to a specific relay cluster.
위 (2) 공간 영역에서 동시 전송을 허용하는 방법과 관련하여 방법 (B)를 사용할 경우, 공간상으로 서로 멀리 떨어져 있어 클러스터 내에서의 동시에 전송이 가능한 Relay 들에 대해 동일한 시간에 전송이 되도록 전송 시점을 할당하면 된다. 서로 영향을 거의 받지 않을 정도로 충분하게 거리가 떨어져 있는 서로 다른 클러스터 내에서의 전송은 서로 독립적으로 동시에 진행될 수 있다. 서로 공간적으로 분리된 클러스터들 간의 전송은 전송 시간 구간을 굳이 서로의 전송 시간 구간에 기초하여 조정(align)하지 않아도 된다.(2) In the case of using method (B) in relation to the method of allowing simultaneous transmission in the space domain, transmission is performed at the same time for relays that can be simultaneously transmitted in a cluster because they are separated from each other in space. Just assign a time point. Transmissions in different clusters that are far enough apart from each other to be almost independent of each other may be simultaneously independent of each other. Transmission between spatially separated clusters does not necessarily need to align the transmission time intervals based on each other's transmission time intervals.
위 (3) 주파수 서브 밴드를 서로 다르게 이용하여 동시 전송을 하는 경우도 (B)의 방법에서와 유사한 방법을 적용할 수 있다. 서로 다른 Relay들에게 클러스터 내에서의 전송을 서로 다른 서브 밴드를 사용하도록 설정하면 된다. Root AP가 각 Relay들이 사용하는 서브 밴드와 다른 서브 밴드를 사용할 경우, Root AP와 Root AP에 직접 접속된 STA 또는 Relay 간의 전송은 각 Relay 클러스터 내에서의 전송과 동시에 이루어질 수 있다. Root AP가 수행하는 전송, 각 Relay 클러스터 내에서의 전송에 이용되는 서브 밴드들이 서로 다르면, 전송 구간을 서로 조정할 필요 없이 각자 할당받은 서브 밴드 안에서 독립적으로 동시에 데이터를 전송할 수 있다. 이때 동일한 서브 밴드를 사용하는 Relay, STA과 동시에 전송이 이루어지지 않도록 시간 구간을 할당해야 한다.(3) A similar method to that in (B) may be applied to simultaneous transmission using different frequency subbands. You can configure different relays to use different subbands in the cluster. When the Root AP uses a subband different from the subbands used by each Relay, transmission between the Root AP and the STA or Relay directly connected to the Root AP may be performed simultaneously with the transmission in each relay cluster. If the subbands used for transmission performed by the Root AP and transmission in each relay cluster are different from each other, data can be independently independently transmitted simultaneously in the allocated subbands without having to adjust transmission intervals. In this case, time intervals should be allocated so that transmission is not performed simultaneously with a relay and an STA using the same subband.
위의 (1), (2), (3)은 동시에 적용될 수 있다. 즉, 서로 다른 서브 밴드를 할당하여 Root AP 및 복수의 Relay들이 클러스터 내에서 동시에 전송할 수 있으며, 또한 같은 서브 밴드를 사용하는 Relay들도 서로 영향을 거의 받지 않을 만큼 공간상으로 떨어져 있으면 동시에 전송할 수 있으며, 또는 같은 서브 밴드를 이용하는 경우라도 한 클러스터에 속하는 STA이 많지 않은 경우에는, 하나의 RAW에 여러 개의 클러스터를 할당할 수 있다. (1), (2) and (3) above can be applied simultaneously. That is, by assigning different subbands, Root AP and multiple relays can transmit simultaneously in the cluster. Also, relays using the same subbands can transmit simultaneously if they are spaced apart so that they are not affected by each other. Even when the same subbands are used, if there are not many STAs belonging to one cluster, multiple clusters can be allocated to one RAW.
(4) 오프셋(offset) 정보를 이용하여 하나의 RAW에 복수 개의 클러스터들을 할당(4) Assign a plurality of clusters to one RAW by using offset information
이는 도 8에서와 같이 하나의 RAW 구간에 할당 오프셋(allocation offset, AO) 값을 이용하여 다수의 클러스터(1개의 R-AP 와 다수의 STAs로 구성)들을 할당하는 방법이다. 도 8 내지 도 9는 일실시예에 따른 오프셋 정보를 이용하여 하나의 RAW에 복수 개의 클러스터들을 할당하는 일례를 도시한 도면이다.This is a method of allocating a plurality of clusters (composed of one R-AP and a plurality of STAs) using an allocation offset (AO) value in one RAW period as shown in FIG. 8. 8 through 9 are diagrams illustrating an example of allocating a plurality of clusters to one RAW by using offset information, according to an exemplary embodiment.
도 8, 도 9에서와 같이 Rt-AP 의 비콘 간격(beacon interval) 내에 4개의 RAW 0-RAW 3을 할당하고, 각 RAW에는 다시 4개의 클러스터들을 할당한다고 가정한 경우 R-AP는 아래의 값을 이용하여 자신의 할당 위치를 계산할 수 있다.8 and 9, if four RAW 0-RAW 3 are allocated within the beacon interval of the Rt-AP and four clusters are allocated to each RAW, the R-AP value is as follows. You can calculate your own allocation position using.
- Rt-AP beacon frame 내의 정보Information in the Rt-AP beacon frame
- ASN(Allocation Sequence Number) : 1 octetASN (Allocation Sequence Number): 1 octet
- AIO(Allocation Interval Order) : 4 bitAllocation Interval Order (AIO): 4 bit
- R-AP parametersR-AP parameters
- Allocated RAW number : 1 octetAllocated RAW number: 1 octet
- AO(Allocation Offset) : 1 octet (0 <= AO <= 2^(AIO+1)-1 )AO (Allocation Offset): 1 octet (0 <= AO <= 2 ^ (AIO + 1) -1)
- R-AP Location : current ASN % 2^(AIO+1) == AO-R-AP Location: current ASN% 2 ^ (AIO + 1) == AO
현재 수신된 Rt-AP 의 beacon ASN(Allocation Sequence Number)이 current ASN 이고, "current ASN % 2^(AIO+1)"의 결과값이 Rt-AP 로부터 할당받은 AO 값과 일치하면, 현재의 Beacon Interval 구간이 특정 R-AP에게 할당된 구간으로 결정될 수 있다. 또한, R-AP는 Rt-AP 로부터 할당받은 RAW의 위치값을 이용하여 정확한 할당 위치를 식별할 수 있다.If the beacon Allocation Sequence Number (ASN) of the currently received Rt-AP is current ASN and the result value of "current ASN% 2 ^ (AIO + 1)" matches the AO value allocated from the Rt-AP, the current Beacon An interval interval may be determined as an interval allocated to a specific R-AP. In addition, the R-AP may identify the correct allocation position using the position value of the RAW allocated from the Rt-AP.
도 9에서 AID(Allocation identifier)가 64인 R-AP는 도 9에 도시된 할당 관련 파라미터를 이용하여 계산하면 ASN이 "0, 4, 8, … "일 경우에 자신의 할당 구간이 되고, AID가 2176인 R-AP 는 ASN이 "1, 5, 9, … "일 경우에 자신의 할당 구간이 된다.In FIG. 9, the R-AP having an Allocation identifier (AID) of 64 is its own allocation interval when ASN is "0, 4, 8, ..." when calculated using the allocation related parameter shown in FIG. Is 2176, the R-AP becomes its allocation interval when the ASN is "1, 5, 9, ...".
도 10은 일실시예에 따른 클러스터에 AID를 할당하는 방법을 설명하기 위한 도면이다.10 is a diagram for describing a method of assigning an AID to a cluster, according to an exemplary embodiment.
각 클러스터의 R-AP는 Rt-AP 와의 연결(association) 과정에서 block AID를 할당받을 수 있다. block AID 는 도 10에서와 같이 AID structure 를 이용하여 Page 단위, block Index 단위, Sub-Block Index 단위로 할당 받을 수 있으며, 이때 할당받은 block AID 의 첫 번째 AID 값이 R-AP 의 AID가 될 수 있다. R-AP의 AID를 제외한 나머지 AID 값은 클러스터 내의 STA이 연결(association)을 요청할 때 정해진 범위 내의 AID를 STA들에 할당할 수 있다. 이렇게 클러스터(또는, 2-hop 네트워크에서의 Level)별로 AID를 할당함으로써 AP가 AID를 간단히 할당할 수 있고, 효율적으로 관리할 수 있다. 도 10의 예에서 각 RAW는 Page ID 단위로 할당되었으며, 각 클러스터별로는 Block Index 단위로 할당되었다. 따라서, 각 클러스터의 R-AP는 자신의 AID를 포함하여 총 64개의 block AID를 관리할 수 있다. 이는 최대 63개의 STA들을 하나의 R-AP가 수용할 수 있는 구조이다.The R-AP of each cluster may be assigned a block AID during association with the Rt-AP. As shown in FIG. 10, a block AID may be allocated in a page unit, a block index unit, and a sub-block index unit using an AID structure. In this case, the first AID value of the allocated block AID may be the AID of the R-AP. have. The remaining AID values except for the AID of the R-AP may allocate the AIDs within the predetermined range to the STAs when the STAs in the cluster request an association. By allocating the AID for each cluster (or level in the 2-hop network), the AP can easily allocate the AID and manage it efficiently. In the example of FIG. 10, each RAW is allocated in units of Page IDs, and each cluster is allocated in blocks of index units. Accordingly, the R-AP of each cluster may manage a total of 64 block AIDs including its own AID. This is a structure in which one R-AP can accommodate up to 63 STAs.
도 11은 일실시예에 따른 Relay AP(R-AP)가 전송하는 Beacon의 할당 위치를 도시한 도면이다.FIG. 11 is a diagram illustrating an allocation position of a beacon transmitted by a relay AP (R-AP) according to an embodiment.
도 11은 클러스터(또는, treelevel) 단위로 RAW를 할당할 경우, R-AP의 beacon 할당 위치의 일례를 도시하고 있다. 각 RAW는 할당된 R-AP의 beacon으로 시작되며, 동일 길이의 slot 개수로 구성될 수 있다. 이러한 구성으로, R-AP의 beacon 할당 위치가 자동으로 결정될 수 있고, RAW의 길이 및 위치 정보는 Root AP(Rt-AP)에 의해 결정될 수 있다.11 illustrates an example of beacon allocation positions of R-APs when RAW is allocated in cluster (or treelevel) units. Each RAW starts with the beacon of the allocated R-AP and can consist of the same number of slots. With this configuration, the beacon allocation position of the R-AP can be automatically determined, and the length and position information of the RAW can be determined by the Root AP (Rt-AP).
도 12는 일실시예에 따른 STA들에 대해 slot을 할당하는 방법을 설명하기 위한 도면이다.12 is a diagram for describing a method of allocating slots for STAs according to an embodiment.
도 12를 참조하면, RAW 구간(duration) 내에서 STA들에 대한 slot들이 할당되어 있다. Referring to FIG. 12, slots for STAs are allocated in a RAW duration.
도 12에서 R1(R-AP)은 자신에게 연결(association)을 요청하는 STA에게 할당 정보를 전달함으로써 STA는 별도의 할당을 위한 절차를 수행하지 않더라도 간단히 slot 할당을 받을 수 있다. R1(R-AP)이 STA에게 전달하는 할당 정보는 다음과 같은 정보를 포함할 수 있다.In FIG. 12, the R1 (R-AP) transmits allocation information to an STA requesting association to the STA, so that the STA may simply receive slot allocation without performing a separate allocation procedure. The allocation information delivered by the R1 (R-AP) to the STA may include the following information.
- R-AP beacon frame 내의 정보Information in the R-AP beacon frame
- Slot 의 길이 정보, 총 slot의 개수-Slot length information, total number of slots
- STA Slot Allocation bitmap (0:빈 slot, 1:할당 slot)STA Slot Allocation bitmap (0: empty slot, 1: allocation slot)
- STA slot allocation info: association 과정에서 R-AP로 할당받음STA slot allocation info: allocated to R-AP during association
- Allocated slot numberAllocated slot number
STA는 자신에게 할당된 slot 구간에서 R-AP와 데이터를 송수신할 수 있다. Downlink 데이터(R-AP에서 STA로 전송되는 데이터)가 있는 경우, R-AP는 Ack(acknowledge) 프레임 또는 TIM(Traffic Indication Map) 정보를 이용하여 데이터를 전송할 수 있다.The STA may transmit and receive data with the R-AP in the slot period allocated to the STA. If there is downlink data (data transmitted from the R-AP to the STA), the R-AP may transmit data using an acknowledgment frame or TIM (Traffic Indication Map) information.
도 13은 일실시예에 따른 보다 단순화된 leveled slot allocation을 설명하기 위한 도면이다.FIG. 13 illustrates a simplified leveled slot allocation according to an embodiment. FIG.
비교적 네트워크 구성의 변화가 적은 경우, 오버헤드를 줄이기 위해 AP가 RAW, slot을 할당하는 것이 보다 효율적일 수 있다. 이러한 경우를 위한 오버헤드가 적은 Simplified leveled slot allocation 방법의 일례를 설명하도록 한다.If the network configuration changes relatively little, it may be more efficient for the AP to allocate RAW and slots to reduce overhead. An example of a simplified leveled slot allocation method with less overhead for such a case will be described.
도 13은 Simplified leveled slot allocation을 위한 RAW의 구성 예를 도시하고 있다. AP는 BSS 생성 초기에 전체 STA들의 수 및 Relay 숫자에 기초하여 RAW 구조를 결정할 수 있다. 각 RAW는 동일한 길이를 가질 수 있고, RAW 구조에 관한 정보는 Rt-AP의 beacon 프레임에 아래와 같은 필드(field)로 구성될 수 있다.13 illustrates an example of a RAW for Simplified leveled slot allocation. The AP may determine the RAW structure based on the total number of STAs and the relay number at the beginning of BSS generation. Each RAW may have the same length, and the information about the RAW structure may be composed of the following fields in the beacon frame of the Rt-AP.
- RAW의 길이-Length of RAW
- RAW의 총 개수-Total number of RAW
- RAW allocation bitmap (0:빈 RAW, 1:할당 RAW)RAW allocation bitmap (0: empty RAW, 1: allocation RAW)
- RAW type 정보 (R-AP RAW, Rt-AP RAW, common RAW)RAW type information (R-AP RAW, Rt-AP RAW, common RAW)
RAW는 RAW 타입에 의해 구분될 수 있다. R-AP RAW는 클러스터 내의 R-AP와 STA 만이 전용으로 데이터를 송수신할 수 있는 구간을 나타낸다. Rt-AP RAW는 Rt-AP 자신이 직접 관리하는 STA과의 통신을 위한 구간이고, common RAW는 모든 노드들이 공용으로 경쟁 기반(contention based)으로 사용 가능한 구간이다.RAW can be classified by RAW type. The R-AP RAW indicates a section in which only the R-AP and the STA in the cluster can exclusively transmit and receive data. Rt-AP RAW is a section for communication with STAs directly managed by Rt-AP itself, and a common RAW is a section in which all nodes can be used contention-based.
도 14는 일실시예에 따른 복수의 Relay가 이용되는 경우에 Relay를 위한 RAW 할당 방법을 설명하기 위한 도면이다.14 is a diagram illustrating a RAW allocation method for a relay when a plurality of relays are used according to an embodiment.
Root AP의 Beacon interval에 복수의 Relay들을 위한 RAW들이 할당될 수 있다. 하나의 Relay를 위해 하나 혹은 여러 개의 RAW들이 할당될 수 있다. 예를 들어, STA/Relay/Root AP 전송시 UL, DL의 자원 할당을 위한 PS-Poll RAW, STA과 Relay 간의 전송을 위한 DL RAW 또는 UL RAW 또는 DL/UL RAW, Root AP와 Relay 간의 전송을 위한 DL RAW 또는 UL RAW 또는 DL/UL RAW 등이 필요에 따라 여러 가지 조합에 의해 할당될 수 있다. 또한, Relay에 접속된 STA들의 전송 주기가 다를 경우, 하나의 Relay beacon interval 내에 복수개의 Relay/STA 간의 전송을 위한 RAW들을 할당할 수도 있다.RAWs for a plurality of relays may be allocated to a beacon interval of a root AP. One or several RAWs can be assigned to a relay. For example, when transmitting STA / Relay / Root AP, PS-Poll RAW for resource allocation of UL and DL, DL RAW or UL RAW for transmission between STA and Relay, DL / UL RAW, transmission between Root AP and Relay DL RAW or UL RAW or DL / UL RAW may be allocated by various combinations as necessary. In addition, when transmission periods of STAs connected to a relay are different, RAWs for transmission between a plurality of relays / STAs may be allocated within one relay beacon interval.
또한, 특정 Relay를 위한 Relay RAW group 내에 Root AP로부터 다른 Relay 또는 다른 STA으로의 전송을 위한 전송 구간을 함께 할당할 수도 있다.In addition, a transmission interval for transmission from the root AP to another relay or another STA may be allocated together in a relay RAW group for a specific relay.
Relay는 전송 범위의 확장을 위해 사용되기 때문에, Relay에 연결된 STA들은 Root AP의 beacon을 수신하지 못하여 Root AP가 할당한 RAW 정보를 획득하지 못할 수 있다. 따라서, 각 Relay는 Root AP로부터 Root beacon을 수신한 후, Root beacon에서 자신과 관련된 RAW 할당 정보와 level 1 전송에 필요한 slot 할당 정보를 자신에게 연결된 STA들에게 전송할 수 있다. Relay는 Root beacon에 포함된 정보를 그대로 전달하는 것이 아니고, Root beacon에 포함된 정보에서 자기에게 필요한 정보만을 추출할 수 있다. Relay는 추출된 정보에 level 1 전송을 위한 추가 slot 할당 정보만을 포함하여 전송하기 때문에 Relay가 STA에 전송하는 Relay beacon은 Root beacon에 비해 사이즈가 작을 수 있다.Since the relay is used to extend the transmission range, STAs connected to the relay may not receive the beacon of the root AP and thus may not acquire RAW information allocated by the root AP. Accordingly, after each relay receives the root beacon from the root AP, the relay beacon may transmit the RAW allocation information related to the root beacon and the slot allocation information necessary for level 1 transmission to the STAs connected thereto. The relay does not transfer the information contained in the root beacon as it is, and may extract only information necessary for itself from the information included in the root beacon. Since the relay transmits the extracted information including only additional slot allocation information for level 1 transmission, the relay beacon transmitted by the relay to the STA may be smaller in size than the root beacon.
Root AP는 level 0 전송(Root AP와 Relay 간의 전송, Root AP와 Root AP에 직접 연결된 STA 간의 전송)에 대한 RAW 할당 정보를 Root beacon에 포함시켜 전송할 수 있다.The Root AP may include RAW allocation information for level 0 transmission (transmission between the Root AP and the Relay and between the Root AP and the STA directly connected to the Root AP) in the Root beacon.
Relay는 Root AP로부터 Root AP beacon을 수신하고, Root AP beacon로부터 Root AP의 RAW 할당 정보 등을 식별할 수 있다. 그 후, Relay는 자신에게 연결된 STA에 필요한 RAW 할당 정보를 자신의 Relay beacon에 포함시켜 STA에 전송할 수 있다. 예를 들어, STA에 필요한 RAW 할당 정보는 Relay와 STA 간의 전송을 위한 RAW 및 slot 할당 정보, Root AP와 Relay 간의 전송이 일어나는 구간 정보 등을 포함할 수 있다. Relay에 연결된 STA은 Relay beacon를 수신하고, 수신한 Relay beacon에 기초하여 언제 데이터를 전송해야 하는지를 결정할 수 있다.The relay may receive a Root AP beacon from the Root AP and identify RAW allocation information of the Root AP from the Root AP beacon. Thereafter, the relay may include RAW allocation information necessary for the STA connected to the relay in its relay beacon and transmit the same to the STA. For example, the RAW allocation information required for the STA may include RAW and slot allocation information for transmission between the relay and the STA, section information in which transmission between the Root AP and the relay occurs. The STA connected to the relay may receive the relay beacon and determine when to transmit data based on the received relay beacon.
도 15는 일실시예에 따른 복수의 Relay들이 이용되는 경우의 RAW 할당 방법의 일례를 도시한 도면이다.15 is a diagram illustrating an example of a RAW allocation method when a plurality of relays are used according to an embodiment.
도 15에서 Relay RAW Group은 하나의 Relay를 위해 할당된 RAW들을 나타낸다. 도 15의 실시예에서는 각 Relay의 beacon이 해당 Relay RAW Group의 첫 번째 RAW가 시작되는 시점에 전송된다. Relay는 각 Relay beacon이 전송된 직후의 첫 번째 RAW를 PS-Poll RAW로 할당하고, STA은 자신이 연결된 Relay에 PS-Poll 및 UDI(Unique Device Identifier)를 전송할 수 있다. Root AP와 Relay 간의 전송, Relay와 STA 간의 전송에 대한 UL RAW, DL RAW를 최적화하기 위해 Relay는 Root AP에 PS-Poll 및 UDI를 전송할 수 있다.In FIG. 15, a relay RAW group represents RAWs allocated for one relay. In the embodiment of FIG. 15, a beacon of each relay is transmitted at the time when the first RAW of the corresponding relay RAW group starts. The relay allocates the first RAW immediately after each relay beacon is transmitted to the PS-Poll RAW, and the STA can transmit the PS-Poll and the Unique Device Identifier (UDI) to the connected relay. In order to optimize UL RAW and DL RAW for transmission between the Root AP and the Relay and transmission between the Relay and the STA, the Relay may transmit PS-Poll and UDI to the Root AP.
도 16은 다른 실시예에 따른 복수의 Relay가 이용되는 경우에 Relay를 위한 RAW 할당 방법의 일례를 도시한 도면이다.16 illustrates an example of a RAW allocation method for a relay when a plurality of relays are used according to another embodiment.
도 16의 실시예에서는 도 15에서 Relay beacon을 전송하는 시점을 Root AP beacon 직후로 변경한 것이다. 하나의 beacon interval 안에 할당된 모든 Relay의 beacon이 Root AP Beacon이 전송된 직후에 순차적으로 전송되며, 그 다음 시작되는 첫 번째 RAW가 여러 Relay들에 대한 PS-Poll 구간으로 할당될 수 있다. In the embodiment of FIG. 16, the time point for transmitting the relay beacon in FIG. 15 is changed to immediately after the root AP beacon. The beacons of all relays allocated within one beacon interval are sequentially transmitted immediately after the Root AP Beacon is transmitted, and the first RAW to be started may be allocated as PS-Poll intervals for several relays.
도 15의 실시예에서는 각 Relay Group RAW마다 PS-Poll 구간이 할당되었으나, 도 16의 실시예에서는 하나의 PS-Poll RAW만 사용되고, 이 PS-Poll RAW에서 모든 Relay 전송에 대한 PS-Poll, UDI가 전송될 수 있다. 이 경우, 각 Relay Group RAW에 따로 PS-Poll 구간이 할당될 필요가 없다.In the embodiment of FIG. 15, a PS-Poll section is allocated to each Relay Group RAW, but in the embodiment of FIG. 16, only one PS-Poll RAW is used, and PS-Poll and UDI for all relay transmissions in this PS-Poll RAW are used. Can be transmitted. In this case, the PS-Poll section does not need to be allocated to each Relay Group RAW.
이렇게 할 경우, PS-Poll RAW를 하나로 설정하여 각각의 Relay를 위한 PS-Poll RAW를 따로 할당하는 경우보다 RAW의 낭비가 일어날 확률이 줄어든다. 또한, 연결하려는 Relay를 찾는 STA은 Root AP beacon이 전송된 직후에 각 Relay들에 대한 beacon들이 차례로 전송되기 때문에 짧은 시간 내에 최적의 Relay를 선택할 수 있다.This reduces the chance of wasting RAW than setting PS-Poll RAW as one and allocating PS-Poll RAW for each relay separately. In addition, the STA searching for a relay to be connected may select an optimal relay within a short time since beacons for each relay are transmitted in sequence immediately after the root AP beacon is transmitted.
위의 예에서 설명한 Relay beacon을 전송하는 방법, 즉 (1) Relay beacon을 전송하는 시점이 분산되어 있으며, 각 Relay에 할당된 RAW 시작 시점에서 Relay beacon을 전송는 방법 및 (2) Root AP beacon 다음에 각 Relay의 Relay beacon이 전송되고, 각 Relay RAW는 Relay beacon 직후에 시작되지 않을 수 있는 방법은 다른 실시예에서도 선택적으로 적용이 가능하다. 이러한 분산된 Relay beacon 전송 방법 또는 중앙 집중식 Relay beacon 전송 방법은 (A) DRAW를 이용하는 방법, (B) 자원 할당 정보를 이용하는 자원 할당 방법의 각 실시예 모두에 적용이 가능하다.The method of transmitting the relay beacon described in the above example, that is, (1) the time of transmitting the relay beacon is distributed, and the method of transmitting the relay beacon at the RAW start time assigned to each relay, and (2) after the Root AP beacon The relay beacon of each relay is transmitted, and a method in which each relay RAW may not be started immediately after the relay beacon may be selectively applied in other embodiments. The distributed relay beacon transmission method or the centralized relay beacon transmission method can be applied to all of the embodiments of (A) a method using DRAW and (B) a resource allocation method using resource allocation information.
Relay beacon을 분산시켜 전송하는 방법에서도, Relay RAW가 Relay beacon 바로 다음에 오지 않을 수도 있으며, Relay RAW 스케쥴링에 따라 Relay beacon과 떨어진 시점에 Relay RAW가 할당될 수도 있다.In the method of distributing relay beacons, the relay RAW may not come immediately after the relay beacon, or relay RAW may be allocated when the relay beacon is separated from the relay beacon.
Relay beacon을 중앙 집중식으로 전송하는 방법에서도, 동시에 전송되는 Relay beacon들은 Root AP beacon에서 Relay beacon 전송 RAW를 따로 할당함으로써 Relay beacon을 안전하게 전송할 수도 있다.Even in the method of centrally relaying relay beacons, relay beacons that are simultaneously transmitted may safely transmit relay beacons by allocating a relay beacon transmission RAW separately from the root AP beacon.
도 17은 일실시예에 따른 leveled slot allocation 방법을 보다 일반화된 형태로 도시한 도면이다.17 is a diagram illustrating a leveled slot allocation method in a more generalized form according to an embodiment.
도 17을 참조하면, 전체 RAW에 대한 할당은 Root AP에 의해 수행될 수 있고, 전체 RAW에 대한 할당 정보는 Root beacon을 통해 제공될 수 있다. level 0 전송에 해당하는 RAW에 대한 slot은 Root AP에 의해 할당될 수 있다. level 1 전송에 대한 RAW는 Root AP에 의해 empty RAW (Delegated RAW) 또는 empty slot (delegated slot)으로 할당되고, 구체적인 slot 할당은 이루어지지 않는다. Root beacon의 empty RAW (Delegated RAW) 또는 empty slot (delegated slot)에서는 Relay와 STA 간의 전송에 대한 구간(duration)이 표시되고, 이에 기초하여 Relay와 STA 간의 전송 구간에 다른 STA이 데이터를 전송하여 충돌(collision)이 발생하는 것이 방지될 수 있다. Level 1 전송, 즉 Relay와 STA 간의 전송에 대한 slot은 Relay에 의해 할당될 수 있고, 할당된 slot에 대한 정보는 Relay beacon에 포함될 수 있다.Referring to FIG. 17, allocation of all RAWs may be performed by the Root AP, and allocation information of all RAWs may be provided through a root beacon. The slot for the RAW corresponding to the level 0 transmission may be allocated by the root AP. RAW for level 1 transmission is allocated to an empty RAW (Delegated RAW) or an empty slot (delegated slot) by the Root AP, and no specific slot allocation is performed. In an empty RAW (Delegated RAW) or an empty slot (delegated slot) of a root beacon, a duration for transmission between the relay and the STA is displayed, and based on this, another STA transmits data to the transmission interval between the relay and the STA and collides with the other. The occurrence of collision can be prevented. The slot for the level 1 transmission, that is, the transmission between the relay and the STA may be allocated by the relay, and the information on the allocated slot may be included in the relay beacon.
Relay beacon에서 level 0 전송에 대한 RAW의 slot 할당 정보는 생략될 수 있고, Relay beacon에서 level 0 전송에 대한 RAW는 empty RAW 또는 empty slot으로 표시될 수 있다. Relay beacon의 empty RAW 또는 empty slot에서는 Relay와 AP 간 전송 구간(duration)만 표시될 수 있고, 이는 Relay에 연결된 STA이 Relay와 AP 간 전송이 이루어지는 동안 데이터를 전송하는 것을 방지하는 역할을 한다. Relay에 연결된 STA은 Relay beacon의 RAW 할당 정보만을 수신하고, Root beacon은 수신하지 않아도 된다. Slot allocation information of RAW for level 0 transmission in the relay beacon may be omitted, and RAW for level 0 transmission in the relay beacon may be indicated as an empty RAW or an empty slot. In an empty RAW or empty slot of a relay beacon, only a transmission duration between a relay and an AP may be displayed, which prevents an STA connected to the relay from transmitting data while the relay is transmitted between the AP and the relay. The STA connected to the relay receives only the RAW allocation information of the relay beacon and does not need to receive the root beacon.
도 17에서, Relay 전송을 위한 RAW는 Root AP에서 Relay로 데이터가 전송되는 DL RAW, Relay와 STA 간의 DL&UL RAW, Relay에서 Root AP로 데이터가 전송되는 UL RAW로 구성될 수 있다. DL&UL RAW는 하나의 RAW에서 DL 전송과 UL 전송이 모두 가능한 RAW를 나타낸다. 도 17에 도시된 RAW 구성은 하나의 예에 불과하며, 다른 형태의 조합도 가능하다.In FIG. 17, the RAW for relay transmission may be configured as a DL RAW in which data is transmitted from a Root AP to a Relay, a DL & UL RAW between a Relay and a STA, and a UL RAW in which data is transmitted from the Relay to the Root AP. DL & UL RAW refers to RAW, which allows both DL and UL transmission in one RAW. The RAW configuration shown in FIG. 17 is only one example, and other types of combinations are possible.
Root AP에서 Relay로 데이터가 전송되는 DL RAW, Relay에서 Root AP로 데이터가 전송되는 UL RAW는 Root AP가 slot까지 할당할 수 있다. Root AP는 Relay와 STA 간의 DL&UL RAW를 empty RAW(Delegated RAW)로 설정할 수 있고, Relay와 STA 간의 DL&UL RAW에 대한 RAW 할당 정보를 Root AP beacon에 포함시켜 전송할 수 있다.DL RAW, in which data is transmitted from the Root AP to Relay, and UL RAW, in which data is transmitted from the Relay to Root AP, can be allocated up to the slot. The Root AP can set the DL & UL RAW between the Relay and the STA to empty RAW (Delegated RAW), and can include and transmit the RAW allocation information on the DL & UL RAW between the Relay and the STA in the Root AP beacon.
Relay는 Root AP beacon을 수신한 후, Root AP가 empty RAW(Delegated RAW)로 설정한 Relay와 STA 간의 DL&UL RAW에 대해 slot을 할당할 수 있다. Relay는 Root AP에서 Relay로 데이터가 전송되는 DL RAW, Relay에서 Root AP로 데이터가 전송되는 UL RAW는 empty RAW로 설정하고, 이를 Relay beacon에 포함시켜 전송할 수 있다.After the relay receives the Root AP beacon, the relay may allocate a slot for DL & UL RAW between the Relay and the STA configured by the Root AP to empty RAW (Delegated RAW). Relay can be set to DL RAW, which transmits data from Root AP to Relay, and UL RAW, which transmits data from Relay to Root AP, to empty RAW, which can be included in Relay beacon for transmission.
Relay는 Root AP beacon을 통해 식별한, Root AP에서 Relay로 데이터가 전송되는 DL RAW, Relay에서 Root AP로 데이터가 전송되는 UL RAW에서 Root AP의 slot 할당 정보에 기초하여 Root AP와 UL 또는 DL 전송을 수행할 수 있다.Relay transmits DL or UL or DL based on slot allocation information of Root AP in DL RAW, which transmits data from Root AP to Relay and UL RAW, which transmits data from Relay to Root AP, identified through Root AP beacon Can be performed.
Relay에 연결된 STA은, Relay beacon을 통해 식별한 Relay와 STA 간의 DL&UL RAW에서 할당된 slot 정보를 바탕으로 Relay와 UL 또는 DL 전송을 수행할 수 있다.The STA connected to the relay may perform UL and DL transmission with the relay based on slot information allocated in DL & UL RAW between the relay identified through the relay beacon and the STA.
Root AP beacon 및 Relay beacon이 전송된 다음의 RAW가 PS-Poll RAW로 할당되어 STA은 Relay에 PS-Poll 및 UDI를 전송하고, Relay는 Root AP에 PS-Poll 및 UDI를 전송하여 Root AP와 Relay 간의 전송, Relay와 STA 간의 전송에 대한 UL RAW, DL RAW가 최적화되도록 할 수 있다.RAW after Root AP beacon and Relay beacon is transmitted is assigned as PS-Poll RAW, STA transmits PS-Poll and UDI to Relay, Relay transmits PS-Poll and UDI to Root AP UL RAW and DL RAW may be optimized for transmission between the RSs and transmissions between the relay and the STA.
도 18은 일실시예에 따른 empty slot을 이용한 leveled slot allocation 방법의 일례를 도시한 도면이다.18 illustrates an example of a leveled slot allocation method using an empty slot according to an embodiment.
도 18의 실시예에서 각 Relay RAW group은 PS-Poll RAW, DL RAW, UL RAW 또는 UL RAW/DL RAW의 조합으로 구성될 수 있다.In the embodiment of FIG. 18, each relay RAW group may be configured with a combination of PS-Poll RAW, DL RAW, UL RAW, or UL RAW / DL RAW.
Root beacon 및 Relay beacon의 전송 직후, 각 STA은 Relay에게 PS-Poll 및 UDI를 전송할 수 있다. PS-Poll 및 UDI를 수신한 Relay는 STA의 UL 데이터량, 자원 할당 요구 사항을 식별한 후, 식별된 UL 데이터량, 자원 할당 요구 사항에 기초하여 Root AP에게 PS-Poll, UDI를 전송할 수 있다.Immediately after transmission of the root beacon and the relay beacon, each STA may transmit the PS-Poll and the UDI to the relay. After receiving the PS-Poll and UDI, the relay may identify the UL data amount and resource allocation requirement of the STA and then transmit the PS-Poll and UDI to the Root AP based on the identified UL data amount and the resource allocation requirement. .
STA이 Relay로 PS-Poll, UDI을 전송하는 구간은 level 0에서 empty slot으로 보호되고, Relay가 AP로 PS-Poll, UDI를 전송하는 구간은 level 1에서 empty slot으로 설정되어 보호될 수 있다.A period during which the STA transmits PS-Poll and UDI to the relay may be protected by an empty slot at level 0, and a period during which the relay transmits PS-Poll and UDI to the AP may be protected by being set as an empty slot at level 1.
Root AP는 PS-Poll, UDI를 수신한 후 STA 및 Relay의 UL, DL에 필요한 slot 할당을 세부 조정할 수 있다. Root AP는 RAW2 시작 지점에서 PS-Poll 정보에 기초하여 level 0, level 1에 대한 DL slot 할당을 세부 조정(refine)할 수 있다. Root AP는 level 0에 대한 slot 할당 정보를 포함하고, level 1의 전송 구간이 empty slot으로 할당된 DL 할당 프레임을 전송하여 level 0에서의 slot 할당 정보를 알릴 수 있다. Relay는 Root AP로부터 slot 할당 정보를 수신한 후, level 0에서의 slot 할당 정보는 포함시키지 않고, level 0에서의 slot 할당 정보를 empty slot으로 표시할 수 있다. Relay는 Root AP가 level 0에서 empty slot으로 할당한 구간에 대해 slot을 할당하고, slot 할당 정보를 level 1에서 DL 할당 프레임(allocation frame)을 통해 전송할 수 있다.After receiving the PS-Poll and UDI, the Root AP can adjust slot allocation necessary for UL and DL of STA and Relay. The Root AP can refine the DL slot allocation for level 0 and level 1 based on the PS-Poll information at the starting point of RAW2. The Root AP may include slot allocation information for level 0, and may transmit slot allocation information at level 0 by transmitting a DL allocation frame in which a level 1 transmission interval is allocated to an empty slot. After receiving the slot allocation information from the Root AP, the relay may display the slot allocation information at level 0 as an empty slot without including slot allocation information at level 0. The relay may allocate a slot for a section allocated by the Root AP to an empty slot at level 0 and transmit slot allocation information through a DL allocation frame at level 1.
STA은 DL 할당 정보를 수신하고, DL 할당 정보에 기초하여 자신에게 할당된 slot을 식별할 수 있다.The STA may receive the DL allocation information and identify a slot allocated to the STA based on the DL allocation information.
Root AP는 UL RAW에 대해서도, 위와 유사하게 UDI 정보 및 UL allocation frame을 이용하여 level 0, level 1에서의 slot 할당을 조정할 수 있다.The Root AP can adjust slot allocation in level 0 and level 1 using UDI information and UL allocation frame similarly to the above for UL RAW.
Empty slot은 beacon에 포함되는 RPS IE 혹은 DL or UL allocation frame에 표시될 수 있다. Root Beacon의 RPS IE는 Relay RAW Group에 어느 Relay에 대한 전송이 허용되는지를 나타낼 수 있다.Empty slot may be indicated in the RPS IE or DL or UL allocation frame included in the beacon. Root Beacon's RPS IE can indicate which relays are allowed to the Relay RAW Group.
도 19는 다른 실시예에 따른 empty slot을 이용한 leveled slot allocation 방법의 일례를 도시한 도면이다.19 illustrates an example of a leveled slot allocation method using an empty slot according to another embodiment.
도 19는 DL RAW, UL RAW를 별도의 RAW로 할당하지 않고, 하나의 RAW (UL/DL RAW)로 할당한 예를 도시하고 있다. Root AP는 STA, Relay를 경유하여 수신한 PS-Poll, UDI에 기초하여 DL, UL slot 할당 조정을 위한 UL/DL allocation frame을 전송할 수 있다. 이 경우, DL RAW, UL RAW가 분리되어 있지 않기 때문에, Root AP는 하나의 RAW 안에서 UL 전송 구간, DL 전송 구간을 유연하게 조정하여 할당할 수 있다.19 shows an example of allocating DL RAW and UL RAW to one RAW (UL / DL RAW) without assigning them to separate RAWs. The Root AP may transmit a UL / DL allocation frame for DL and UL slot allocation adjustment based on the PS-Poll and UDI received through the STA and the Relay. In this case, since the DL RAW and the UL RAW are not separated, the Root AP can flexibly adjust and allocate the UL transmission section and the DL transmission section in one RAW.
도 20은 일실시예에 따른 empty RAW을 이용한 leveled slot allocation 방법의 일례를 도시한 도면이다.20 illustrates an example of a leveled slot allocation method using empty RAW according to an embodiment.
도 20을 참고하면, 각 Relay RAW group은 PS-Poll RAW, DL RAW, UL RAW 또는 UL/DL RAW의 조합으로 구성될 수 있고, empty slot이 하나의 별도의 RAW로 할당될 수 있다.Referring to FIG. 20, each relay RAW group may be configured with a combination of PS-Poll RAW, DL RAW, UL RAW, or UL / DL RAW, and an empty slot may be allocated to one separate RAW.
Root beacon 및 Relay beacon 전송 직후 각 STA들은 Relay에게 PS-Poll 및 UDI를 전송할 수 있다. PS-Poll 및 UDI를 수신한 Relay는 STA의 UL 데이터양, 자원 할당 요구 사항을 파악한 후, UL 데이터양, 자원 할당 요구 사항에 기초하여 Root AP에게 PS-Poll, UDI를 전송할 수 있다.Immediately after transmission of the root beacon and relay beacon, each STA may transmit PS-Poll and UDI to the relay. After receiving the PS-Poll and the UDI, the relay may identify the UL data amount and the resource allocation requirement of the STA and then transmit the PS-Poll and the UDI to the Root AP based on the UL data amount and the resource allocation requirement.
STA이 Relay로 PS-Poll, UDI을 전송하는 구간은 level 0에서 empty RAW로 보호될 수 있고, Relay가 AP로 PS-Poll, UDI를 전송하는 구간은 level 1에서 empty RAW로 설정되어 보호될 수 있다.The interval during which the STA transmits PS-Poll and UDI to the relay can be protected with empty RAW at level 0, and the interval during which the relay transmits PS-Poll and UDI to the AP can be protected by being set to empty RAW at level 1. have.
Root AP는 PS-Poll, UDI를 수신한 후, Relay의 UL, DL에 필요한 slot 할당을 세부 조정(refine)할 수 있다. Root AP는 RAW2 시작 지점에서 PS-Poll 정보에 기초하여 level 0에 대한 DL slot 할당을 조정할 수 있다. Root AP는 level 0에 대한 slot 할당 정보를 포함하는 DL allocation frame을 전송하여 level 0에서의 조정된 slot 할당 정보를 알릴 수 있다.After receiving the PS-Poll and UDI, the Root AP can fine tune the slot allocation required for the UL and DL of the relay. The Root AP can adjust the DL slot allocation for level 0 based on the PS-Poll information at the starting point of RAW2. The Root AP may inform the adjusted slot allocation information at level 0 by transmitting a DL allocation frame including slot allocation information for level 0. FIG.
Relay는 RAW 2' 시작 지점에서 STA으로부터 수신한 PS-Poll 정보에 기초하여 level 1에 대한 DL slot 할당을 세부 조정할 수 있다. Relay는 level 1에 대한 slot 할당 정보를 포함하는 DL allocation frame을 전송하여 level 1에서의 조정된 slot 할당 정보를 알릴 수 있다.The relay can adjust the DL slot allocation for level 1 based on the PS-Poll information received from the STA at the starting point of the RAW 2 '. The relay may inform the adjusted slot allocation information at level 1 by transmitting a DL allocation frame including slot allocation information for level 1.
Relay는 RAW 3' 시작 지점에서 STA으로부터 수신한 UDI 정보에 기초하여 level 1에 대한 UL slot 할당을 세부 조정할 수 있다. Relay는 level 1에 대한 slot 할당 정보를 포함하는 UL allocation frame을 전송하여 level 1에서의 조정된 slot 할당 정보를 알릴 수 있다. The relay may finely adjust the UL slot allocation for level 1 based on the UDI information received from the STA at the RAW 3 'start point. The relay may inform the adjusted slot allocation information at level 1 by transmitting a UL allocation frame including slot allocation information for level 1.
Root AP는 RAW 3 시작 지점에서 Relay로부터 수신한 UDI 정보에 기초하여 level 0에 대한 UL slot 할당을 세부 조정할 수 있다. Root AP는 level 0에 대한 slot 할당 정보를 포함하는 UL allocation frame을 전송하여 level 0에서의 조정된 slot 할당 정보를 알릴 수 있다. The Root AP can finely adjust the UL slot allocation for level 0 based on the UDI information received from the relay at the RAW 3 start point. The Root AP may inform the adjusted slot allocation information at level 0 by transmitting a UL allocation frame including slot allocation information for level 0. FIG.
Empty RAW는 beacon에 포함되는 RPS IE(RAW Parameter Set Information Elemnet)에 표시될 수 있다. Root Beacon의 RPS IE는 Relay RAW Group에 어느 Relay에 대한 전송이 허용되는 지를 나타낼 수 있다.Empty RAW may be displayed in the RPS IE (RAW Parameter Set Information Elemnet) included in the beacon. Root Beacon's RPS IE can indicate which relays are allowed to the Relay RAW Group.
도 21은 다른 실시예에 따른 empty RAW을 이용한 leveled slot allocation 방법의 일례를 도시한 도면이다.21 illustrates an example of a leveled slot allocation method using empty RAW according to another embodiment.
도 21은 도 20에서 Relay와 STA 간의 전송 구간을 DL RAW, UL RAW로 분할하지 않고, 하나의 DL/UL RAW로 할당한 실시예를 나타낸다. 이 경우, DL RAW에 대한 DL allocation frame, UL RAW에 대한 UL allocation frame이 서로 분리되지 않고, STA의 PS-Poll, UDI 정보에 기초하여 조정된 UL slot, DL slot 정보를 포함하는 DL&UL allocation frame이 RAW2' 시작 지점에서 전송될 수 있다.FIG. 21 illustrates an embodiment in which a transmission period between a relay and a STA is allocated to one DL / UL RAW without dividing the transmission interval between the relay and the STA into DL RAW and UL RAW in FIG. 20. In this case, the DL allocation frame for the DL RAW and the UL allocation frame for the UL RAW are not separated from each other, and the DL & UL allocation frame including the UL slot and DL slot information adjusted based on the PS-Poll and the UDI information of the STA is not included. Can be sent from the RAW2 'start point.
DL/UL RAW를 하나의 RAW로 설정함으로써 STA와 Relay 간의 UL slot, DL slot을 플렉서블(flexible)하게 할당할 수 있고, 이로 인해 RAW가 더욱 효율적으로 활용될 수 있다. 즉, Relay와 STA 간의 전송이 이루어지는 클러스터 내에서의 전송이 더욱 효율적으로 수행될수 있다.By setting the DL / UL RAW as one RAW, UL slots and DL slots between the STA and the relay can be flexibly allocated, thereby enabling RAW to be more efficiently utilized. That is, the transmission in the cluster where the transmission between the relay and the STA is performed can be performed more efficiently.
도 22는 일실시예에 따른 sub RAW을 이용한 leveled slot allocation 방법의 일례를 도시한 도면이다.22 illustrates an example of a leveled slot allocation method using sub RAW according to an embodiment.
도 22의 실시예에서는, Root AP가 하나의 Relay 전송에 대해 하나의 RAW를 할당하고, RAW 할당에 관한 정보를 Root AP beacon에 포함시켜 전송할 수 있다.In the embodiment of FIG. 22, the Root AP may allocate one RAW to one Relay transmission and may include and transmit information on RAW allocation in the Root AP beacon.
각 Relay는 자신에게 할당된 하나의 Relay RAW를 sub RAW로 분할할 수 있고, sub RAW에 관한 할당 정보인 sub RAW 할당 정보를 Relay beacon에 포함시켜 전송할 수 있다.Each Relay can divide one Relay RAW allocated to itself into sub RAW and transmit sub RAW allocation information, which is allocation information about sub RAW, in relay beacon.
Relay에 연결된 STA 및 Root AP는 Relay beacon의 sub RAW 할당 정보에 기초하여 언제 STA와 Relay 간의 전송 및 Relay와 AP 간의 전송이 이루어지는지를 판단할 수 있다.The STA and the root AP connected to the relay may determine when transmission between the STA and the relay and transmission between the relay and the AP are performed based on the sub RAW allocation information of the relay beacon.
도 23은 다른 실시예에 따른 leveled slot allocation 방법을 보다 일반화된 형태로 도시한 도면이다.FIG. 23 is a diagram illustrating a leveled slot allocation method according to another embodiment in a more generalized form.
도 23의 실시예는 도 17의 실시예와 유사하나, Root AP와 Relay 간의 전송 구간은 Relay와 STA 간의 전송 구간에 종속되지 않고, 일반 AP와 STA 간의 전송과 유사한 형태로 임의의 구간에 할당될 수 있다. 도 23의 실시예에서는 Relay와 STA 간의 전송에 이용되는 Delegated RAW (empty RAW at level 0) 시작 시점 또는 시작 이전 시점에서 Relay beacon이 전송된다는 점이 도 17과 관련된 실시예들과 다른 점이다.The embodiment of FIG. 23 is similar to the embodiment of FIG. 17, but the transmission interval between the root AP and the relay is not dependent on the transmission interval between the relay and the STA, and may be allocated to any interval in a form similar to the transmission between the general AP and the STA. Can be. 23 differs from the embodiments related to FIG. 17 in that relay beacons are transmitted at a start time or before a start of Delegated RAW (empty RAW at level 0) used for transmission between a relay and a STA.
Root AP와 Relay 간의 전송 구간에서의 RAW 및 slot, 또는 Root AP와 Root AP에 직접 연결된 STA 간의 전송 구간에서의 RAW 및 slot은 Root AP에 의해 할당될 수 있다. RAW 및 slot 할당 정보는 Root AP beacon에 포함되어 전송될 수 있다. 이 때, Root AP와 Relay 간의 전송 구간은 Relay와 STA 간의 전송 구간에 종속되지 않고, 일반 AP와 STA 간의 전송과 유사한 형태로 임의의 구간에 할당될 수 있다. Root AP와 Relay 간의 전송 구간, Root AP와 Root AP에 직접 연결된 STA 간의 전송 구간은 하나의 RAW에 함께 할당될 수도 있고, 또는 각각 별도의 RAW에 할당될 수도 있다.RAW and slot in the transmission interval between the Root AP and the relay, or RAW and slot in the transmission interval between the STA and directly connected to the Root AP may be allocated by the Root AP. RAW and slot allocation information may be included in the Root AP beacon and transmitted. At this time, the transmission interval between the root AP and the relay may be assigned to any interval in a form similar to the transmission between the general AP and the STA, without being dependent on the transmission interval between the relay and the STA. The transmission period between the root AP and the relay and the transmission period between the root AP and the STA directly connected to the root AP may be allocated together in one RAW or may be allocated in a separate RAW.
Root AP는 Relay와 STA 간의 전송 구간을 Delegated RAW (Empty RAW at level 0)로 표시하여 할당할 수 있고, 구체적인 RAW/Slot 할당은 Relay에 위임할 수 있다. Root Beacon에는 level 1의 RAW/slot 할당 정보가 포함되지 않을 수 있다.Root AP can be assigned by indicating the transmission interval between the relay and the STA as Delegated RAW (Empty RAW at level 0), and specific RAW / Slot assignment can be delegated to the relay. Root Beacon may not include level 1 RAW / slot allocation information.
Root AP는 Relay와 STA 간의 전송을 위해 하나의 DRAW (Delegated RAW)를 할당할 수도 있고, 여러 개의 DRAW를 할당할 수도 있다.The Root AP may allocate one DRAW (Delegated RAW) or multiple DRAWs for transmission between the relay and the STA.
DRAW에 기초하여 해당 DRAW에서 전송이 허용된 Relay 및 전송 허용 구간(duration)이 식별될 수 있다. DRAW에서는 전송이 허용되는 것으로 명시된 Relay 및 해당 Relay에 연결된 STA들 간의 데이터 전송만이 원칙적으로 허용될 수 있다. 이로 인해, BSS(Basic Service Set) 내에서의 확장된 서비스 범위로 인한 서로 다른 Relay에 연결된 STA들 간의 충돌이 효과적으로 방지될 수 있다.Based on the DRAW, relays and transmission allowance intervals that allow transmission in the corresponding DRAW may be identified. In DRAW, only data transmission between a relay specified as being allowed to be transmitted and STAs connected to the corresponding relay may be allowed in principle. As a result, collision between STAs connected to different relays due to an extended service range in a basic service set (BSS) can be effectively prevented.
미디엄(medium) 이용의 효율성을 위해, DRAW 구간 중 명시적으로 Root AP가 Empty RAW를 설정한 구간에 대해서만 Root BSS에 속한 STA의 전송을 금지시키고, 그 이외의 구간에 대해서는 전송을 허용하도록 할 수도 있다. 이 경우, Relay 전송을 보호하기 위해 다음과 같은 두 가지 방법이 사용될 수 있다.For the efficiency of medium use, it is possible to prohibit transmission of the STA belonging to the root BSS only for the section in which the Root AP explicitly sets Empty RAW in the DRAW section, and allows the transmission for other sections. have. In this case, the following two methods can be used to protect the relay transmission.
<1. 다른 Relay에 할당된 자원에 대한 보호 방법><1. How to Protect Resources Assigned to Other Relays>
Root AP는 Root BSS와 다른 Relay BSS와의 공간적 분리(spatial separation) 여부를 판단하고, 만약 충분히 분리되지 않는다면 다른 Relay 전송 구간 (DRAW 구간)을 Empty RAW (또는 AP PM RAW)로 설정하여 자신에게 연결된 STA의 데이터 전송을 금지시킬 수 있다. DRAW 구간이라도 명시적으로 Empty RAW로 설정되지 않은 구간에서는, STA가 데이터를 전송할 수 있다. 또는, Root AP는 다른 Relay 전송 구간(즉 DRAW 구간)에 대해 Root BSS 내 모든 STA의 데이터 전송을 금지시키지는 않고, Root BSS 내의 STA들 중 다른 Relay BSS의 간섭을 많이 받는 특정 STA에 대해서만 전송을 금지시킬 수도 있다. 이 경우, 명시적으로 전송이 금지된 STA을 나타낼 수 있는 변형된 Empty RAW (또는, 변형된 AP PM RAW)의 사용, 또는 전송이 금지된 STA을 전송 구간 할당 대상에서 제외하는 방법 등이 이용될 수 있다.The Root AP determines the spatial separation between the Root BSS and the other Relay BSS, and if it is not sufficiently separated, sets another Relay transmission section (DRAW section) to Empty RAW (or AP PM RAW) and is connected to the STA. Can prohibit data transmission. Even in the DRAW interval, the STA may transmit data in the interval not explicitly set to Empty RAW. Or, the Root AP does not prohibit data transmission of all STAs in the Root BSS for another Relay transmission interval (that is, a DRAW interval), and prohibits transmission only for a specific STA that is heavily interrupted by other Relay BSS among the STAs in the Root BSS. You can also In this case, use of a modified Empty RAW (or modified AP PM RAW) that may indicate an STA that is explicitly prohibited from transmission, or a method of excluding a STA forbidden from transmission interval allocation may be used. Can be.
Root AP가 Root BSS 내의 특정 STA이 다른 Relay BSS에서 간섭을 받는지의 여부를 식별하는 방법은, "(BB) Relay 간의 공간적 분리(Spatial Separation)를 판단하는 방법(후술함)"을 이용하여 Root AP가 STA의 간섭 정보를 수신하거나, 또는 STA이 간섭을 주는 다른 Relay BSS 또는 다른 STA에 대한 정보를 간섭을 받는 Root BSS의 STA이 직접 Root AP에 통보하는 방법이 이용될 수 있다.How the Root AP identifies whether a particular STA in the Root BSS is interfered with by another Relay BSS may be determined by using the Root AP using a method of determining a spatial separation between (BB) relays (to be described later). May receive the interference information of the STA, or the STA of the Root BSS that directly interferes with information on another Relay BSS or another STA that the STA interferes with may notify the Root AP directly.
Relay BSS에 속한 STA이, 동일 채널을 사용하는 다른 Relay BSS의 전송 구간에서 전송하는 것에 의해 충돌이 발생하는 것을 방지하기 위해, Relay AP가 다른 Relay BSS의 전송 구간을 Empty RAW (또는, AP PM RAW)를 설정하여 전송을 금지시킬 수 있다. Empty RAW로 설정되지 않은 구간에서 STA의 데이터 전송은 허용될 수 있다.In order to prevent a collision caused by an STA belonging to a relay BSS transmitting in a transmission section of another relay BSS using the same channel, the relay AP discards the transmission section of another relay BSS in an empty RAW (or AP PM RAW). ) Can be set to prohibit transmission. Data transmission of the STA may be allowed in a section that is not set to Empty RAW.
Relay BSS는 주기적으로 다른 Relay BSS와의 공간적 분리 여부를 판단하고, 판단 결과 서로 공간적으로 충분히 떨어져 있지 않는다면, 다른 Relay 전송 구간을 Empty RAW(또는 AP PM RAW)로 설정함으로써 자신에게 연결된 STA들의 데이터 전송을 금지시킬 수 있다.Relay BSS periodically determines whether it is spatially separated from other Relay BSS, and if it is determined that it is not sufficiently separated from each other, it sets the other Relay transmission interval to Empty RAW (or AP PM RAW) to stop data transmission of STAs connected to it. Can be prohibited.
또는, Relay BSS는 다른 Relay 전송 구간에 대해 Relay BSS 내의 모든 STA들의 데이터 전송을 금지시키지는 않고, Relay BSS 내의 STA들 중 다른 Relay BSS와 간섭을 많이 받는 특정 STA의 데이터 전송만을 금지시킬 수도 있다. 이 경우, 전송이 금지된 STA을 나타낼 수 있는 변형된 Empty RAW (또는, 변형된 AP PM RAW)을 사용하거나 또는 전송이 금지된 STA을 할당 대상에서 제외하는 RAW 할당 방법 등이 이용될 수 있다.Alternatively, the Relay BSS does not prohibit data transmission of all STAs in the Relay BSS with respect to another Relay transmission interval, and may only prohibit data transmission of a specific STA that is frequently interfered with other Relay BSS among the STAs in the Relay BSS. In this case, a modified Empty RAW (or modified AP PM RAW) that may indicate a STA that is prohibited from transmission, or a RAW allocation method that excludes the STA that is prohibited from transmission may be used.
Relay AP가 Relay BSS 내의 특정 STA이 다른 Relay BSS (또는, Root BSS)에 의해 간섭을 받는지 여부를 아는 방법은, "(BB) Relay 간의 Spatial Separation을 판단하는 방법"을 이용하여 Relay AP가 특정 STA의 간섭 정보를 수신하거나, 또는 STA이 간섭을 주는 다른 Relay BSS 또는 다른 STA에 대한 정보를 간섭을 받는 Relay BSS의 STA이 직접 Relay AP에 통보하는 방법을 이용될 수 있다.The relay AP knows whether a particular STA in the relay BSS is interfered by another relay BSS (or a root BSS) by using a method of determining a spatial separation between (BB) relays. Can be used to receive the interference information, or the STA of the relay BSS receiving the interference information on another relay BSS or another STA that interferes with the STA directly to the relay AP.
Root AP에서 긴급하게 전송할 프레임이 있는 경우에는, DRAW 구간에서의 전송이 예외적으로 허용될 수 있다. 또한, Level 1 전송에서, STA은 자신이 속한 Relay에 할당되지 않은 시간 구간이더라도, (1) 전송이 진행 중인 다른 Relay BSS 내에서의 전송이 감지되지 않거나, 또는 (2) 전송이 진행 중인 다른 Relay의 beacon을 수신하였을 때, 해당 Relay BSS 내에서의 전송을 위해 할당된 구간 내에 RAW가 할당되어 있지 않은 구간에 대해서는 전송이 예외적으로 허용될 수 있다.If there is a frame to be urgently transmitted from the Root AP, transmission in the DRAW period may be exceptionally allowed. In addition, in the level 1 transmission, the STA may not detect a transmission in another relay BSS in which transmission is in progress, or (2) another relay in progress, even if it is a time interval not allocated to the relay to which the STA belongs. When receiving a beacon of, transmission may be allowed exceptionally for a section in which RAW is not allocated within a section allocated for transmission in the corresponding relay BSS.
또는, Root AP에 속한 STA, Relay에 속한 STA는, 자신들의 AP에 대한 전송이 할당되지 않은 구간에서라도, 기존 OBSS 환경에서의 전송과 같이 경쟁(contention)을 통해 전송이 허용될 수도 있다. 하지만, 자신의 BSS에 할당되지 않은 구간에서 데이터를 전송할 경우에는 충돌 확률이 높기 때문에 STA는 RTS/CTS를 데이터 전송 전에 수행하는 것이 바람직하다.Alternatively, STAs belonging to the Root AP and STAs belonging to the Relay may be allowed to transmit through contention, such as transmission in an existing OBSS environment, even in a section in which transmissions for their APs are not allocated. However, when transmitting data in a section not allocated to its BSS, the collision probability is high, so the STA preferably performs the RTS / CTS before transmitting the data.
Relay나 Root AP는 자신에게 할당되지 않은 전송 구간 중 충돌이나 경쟁이 심할 것으로 예상되는 구간을 Empty RAW로 설정하여 자신에게 연결된 STA들의 전송을 명시적으로 금지시킬 수 있다. 또한, RelayAP는 Relay와 Root AP 간의 전송이 일어나는 구간을 Empty RAW로 설정하여 Relay와 Root AP 간의 전송이 일어나는 구간에서 STA이 Relay로 전송하는 것을 금지시킬 수 있다.The relay or the root AP may explicitly prohibit transmission of STAs connected to the self by setting an empty RAW period in which a collision or contention is expected to be severe among transmission periods not allocated to the relay or root AP. In addition, the relayAP may prohibit the STA from transmitting to the relay in the section in which the transmission between the relay and the root AP occurs by setting the empty RAW period between the relay and the root AP.
<2. Relay 자신에게 할당된 자원에 대한 보호 방법><2. Relay How to Protect Resources Assigned to It>
Relay는 자신에게 할당된 자원에 대한 보호를 Root AP에 요청할 수 있다. Relay의 요청에 응답하여, Root AP는 해당 Relay에게 할당된 자원 (예를 들어, 전송 구간 또는 Root AP가 DRAW로 할당한 구간)에 대해 명시적으로 특정 다른 Relay BSS들 또는 특정 다른 BSS의 일부 STA들(Root BSS의 STA 포함)의 전송을 금지시킬 수 있다.The relay can request the root AP for protection of resources allocated to it. In response to a Relay's request, the Root AP may explicitly specify certain other Relay BSSs or some STAs of certain other BSSs for the resources allocated to that Relay (e.g., the transmission interval or the interval allocated by the Root AP to DRAW). (Including STA of Root BSS) may be prohibited.
일례로, Relay가 다른 Relay BSS 또는 다른 Relay BSS에 속한 특정 STA (또는, Root BSS의 STA)들의 전송에 심한 간섭을 받아, 자신에게 할당된 전송 구간에 다른 Relay BSS 전체 또는 다른 Relay BSS의 일부 STA들의 전송을 금지시키고자 할 경우(즉, 보호를 받고자 할 경우), Relay는 자신에게 할당된 자원에 대한 보호를 Root AP에게 요청할 수 있다. Relay는 Root AP에 보호를 요청할 때, 심한 간섭을 주고 있는 다른 Relay BSS 또는 Relay BSS의 특정 STA들의 리스트를 Root AP에게 전달할 수 있다.For example, a relay is severely interrupted by transmissions of specific STAs (or STAs of a root BSS) belonging to another Relay BSS or another Relay BSS, so that all other Relay BSSs or some STAs of other Relay BSSs are transmitted in the transmission interval assigned to the relay. If the user wants to prohibit the transmission of the data, that is, to be protected, the relay can request the Root AP to protect the resources allocated to the relay. When the relay requests protection from the root AP, the relay may transmit to the root AP a list of other relay BSSs or specific STAs of the relay BSS that are severely interfering.
Relay AP는 자신에게 간섭을 주는 Relay BSS 또는 특정 STA들을 Root AP에게 알릴 수 있다. 또한, Relay BSS 내의 각 STA들도 자신에게 심한 간섭을 주는 다른 Relay BSS 또는 특정 STA 들을 Relay AP에게 알릴 수 있으며, Relay AP는 간섭을 주는 다른 Relay BSS 및 STA들의 정보를 Root AP에 전송할 수 있다. 이 경우, STA들은 802.11k 등에서의 측정(measurement) 기능이 필요하지 않을 수 있다. The relay AP may inform the Root AP of Relay BSS or specific STAs that interfere with it. In addition, each STA in the Relay BSS may also inform other relay BSSs or specific STAs that have severe interference to the relay AP, and the relay AP may transmit information of other relay BSSs and STAs that interfere with the root AP. In this case, STAs may not need a measurement function in 802.11k or the like.
STA 들이 802.11k에서의 측정 기능을 가지고 있는 경우, Relay AP는 STA에 측정(measure)을 요청하고, 각 STA들로부터의 측정 결과에 기초하여 자신에게 연결된 STA에 간섭을 주는 다른 Relay BSS 및 STA을 판별할 수 있다. Relay AP는 판별한 다른 Relay BSS 및 STA를 Root AP에 통지할 수 있다.When the STAs have a measurement function in 802.11k, the relay AP requests a measurement from the STA and checks other relay BSSs and STAs that interfere with the STA connected to it based on the measurement result from each STA. Can be determined. The relay AP may notify the Root AP of other relay BSSs and STAs determined.
Root AP는 Relay로부터 자원 보호 요청을 수신하면, 자원 보호 요청을 한 Relay에 대한 DRAW에 전송을 하지 말아야 할 (strictly disallowed) Relay BSS 혹은 Relay BSS의 특정 STA 들을 표시할 수 있다.When the Root AP receives a resource protection request from a relay, the Root AP may indicate specific STAs of a Relay BSS or a Relay BSS that should not be transmitted to the DRAW for a Relay that has made a resource protection request.
Relay는 만약 자신이 다른 Relay BSS에게 할당된 DRAW의 전송 금지된 Relay 리스트에 포함되어 있으면, 위 다른 Relay BSS의 전송 구간에서 전송을 하지 않는다. Relay는 자신에게 속한 STA에게 empty RAW (또는, AP PM RAW)를 할당하여 명시적으로 STA의 전송을 금지시킴으로써, 자원 보호를 요청한 Relay의 자원을 보호할 수 있다. 만약 Relay BSS 전체가 아니라 Relay BSS 중 일부 STA들에 대한 전송을 금지시키는 것으로 DRAW에 표시되어 있으면, Relay는 해당 Relay BSS 전송 구간에 대해 지정된 특정 STA의 전송만을 금지시킬 수 있다. The relay does not transmit in the transmission interval of the other relay BSS if it is included in the relay prohibited list of the DRAW allocated to the other relay BSS. The relay may protect the resources of the relay requesting resource protection by allocating empty RAW (or AP PM RAW) to the STA belonging to it and explicitly prohibiting transmission of the STA. If it is indicated in the DRAW to prohibit transmission to some STAs of the Relay BSS instead of the entire Relay BSS, the Relay may prohibit transmission of only a specific STA designated for the corresponding Relay BSS transmission interval.
Relay BSS 내의 특정 STA의 전송만을 금지시키기 위해 (1) AP PM 혹은 Empty RAW를 변형하여 사용하는 방법 또는 (2) RAW 할당을 사용하는 방법이 이용될 수 있다. (1)의 방법의 경우, Relay는 AP PM RAW 또는 Empty RAW에 특정 구간 동안 전송을 금지시킬 STA의 (partial) AID 리스트를 포함시키고, AP PM RAW 혹은 Empty RAW 구간에는 금지시킬 STA만 명시적으로 전송을 하지 못하게 하며, 나머지 STA들은 경쟁을 통해 전송을 허용하도록 할 수 있다. (2)의 방법의 경우, Relay는 전송을 명시적으로 금지시킬 STA(즉, 다른 Relay에 간섭을 받는 STA)을 RAW에 할당하지 않아 전송을 금지시킬 STA이 전송을 하지 못하도록 할 수 있다.In order to prohibit only transmission of a specific STA in the relay BSS, (1) a method of modifying and using an AP PM or empty RAW or (2) a method of using RAW allocation may be used. In the case of the method (1), the relay includes the (partial) AID list of the STA to prohibit transmission for a certain period in the AP PM RAW or Empty RAW, and only the STA to be prohibited in the AP PM RAW or Empty RAW interval is explicitly stated. The transmission may be prevented and the remaining STAs may allow transmission through contention. In the case of the method (2), the relay may not assign an STA (that is, an STA interfering with another relay) to RAW to prevent the transmission of the STA to prohibit the transmission.
Relay가 Root BSS 내의 특정 STA에게 간섭을 받는다고 요청할 경우, 해당 STA은 DRAW에는 포함되지 않을 수 있고, Root AP가 Relay 전송 구간 동안 해당 STA의 전송을 금지시킬 수 있다.When the relay requests that the specific STA in the Root BSS receives interference, the corresponding STA may not be included in the DRAW and the Root AP may prohibit transmission of the STA during the Relay transmission period.
DRAW를 사용하는 경우, strictly disallow bit 및 Relay AP, STA 리스트를 DRAW에 필드를 추가하여 표시할 수 있다.In the case of using the DRAW, a strictly disallow bit, a relay AP, and a STA list may be displayed by adding a field to the DRAW.
위와 같이 DRAW에 strictly disallowed된 STA의 정보까지 모두 나타내는 경우, 비콘의 사이즈가 너무 커질 수 있다. 또 다른 방법으로는, Root AP가 Relay로부터 수신한 strictly disallow할 Relay AP, STA의 정보를 수집하고, 각 Relay BSS별로 strictl disallow할 Relay AP, STA의 정보를 포함하는 메시지를 각 Relay에게 브로드캐스트 또는 유니캐스트로 별도의 프레임을 이용하여 전달하는 방법이 있다. strictly disallow할 Relay AP, STA의 정보를 포함하는 메시지를 수신한 Relay는, 다른 Relay의 전송 구간에서 자신 또는 자신에게 연결된 STA의 strict disallow 여부를 확인하고, 확인 결과 disallow된 것으로 확인된 경우 다른 Relay의 전송 구간에서 전송을 하지 않는다.If all of the information of the strictly disallowed STA in the DRAW as described above, the size of the beacon may be too large. As another method, the Root AP collects information on the relay AP and STA to be strictly disallowed and received from the relay, and broadcasts a message including the relay AP and STA information to strictl disallow for each Relay BSS to each Relay, or There is a method of delivering using a separate frame in unicast. A relay that receives a message containing information on the relay AP and STA to be strictly disallowed checks whether or not it is strict disallowed by itself or the STA connected to it in the transmission interval of another relay, and when it is confirmed that the relay is disallowed, Do not transmit in the transmission section.
DRAW는 주기적으로 할당될 수 있고, 이 경우 PRAW(Periodic RAW)를 사용할 수 있다. Relay Beacon이 DRAW 시작 시점 또는 시작 이전에 주기적으로 전송되어야 하므로, PRAW 사용이 적합할 수 있다.DRAW can be allocated periodically, in which case PRAW (Periodic RAW) can be used. The use of PRAW may be appropriate because the relay beacon must be sent periodically before or at the beginning of the DRAW.
Relay beacon 전송 주기는, Relay가 Root AP에 연결 시에 Relay와 Root AP가 서로 협상함으로써 결정될 수 있으며, Relay beacon 전송 주기는 Root AP beacon 간격과 동일하거나 또는 Root AP beacon 간격의 배수가 될 수 있다.The relay beacon transmission period may be determined by the relay and the root AP negotiating with each other when the relay is connected to the root AP, and the relay beacon transmission period may be equal to the Root AP beacon interval or may be a multiple of the Root AP beacon interval.
Relay는 Root Beacon을 수신한 후, DRAW가 자신에게 할당되었는지의 여부를 확인할 수 있다. DRAW가 자신에게 할당된 경우, Relay는 DRAW에 할당된 구간(duration) 범위 내에서 자신에게 연결된 STA들과 전송하기 위한 RAW/slot을 할당할 수 있다. Relay는 Root Beacon의 TIM에 기초하여 자신에게 연결된 STA들에게 DL 데이터가 있는지 여부를 알 수 있고, Root AP로부터 DL 데이터를 수신하면 STA에 대한 DL를 스케쥴링할 수 있다. Relay가 Relay beacon을 STA에 전송하는 경우, Relay는 어느 STA에 DL 데이터가 있는지에 대한 정보 및 RAW/slot 할당 정보를 Relay beacon의 TIM을 통해 STA에게 알릴 수 있다. Relay에 연결된 STA은 Root Beacon을 확인할 필요가 없고, 자신이 연결된 Relay의 beacon만 확인하면 충분하다.After receiving the relay beacon, the relay can check whether the DRAW is assigned to itself. When the DRAW is allocated to itself, the relay may allocate RAW / slot for transmission with STAs connected to the device within a duration range allocated to the DRAW. The relay may know whether the STAs connected to the base station have DL data based on the TIM of the Root Beacon, and may schedule the DL for the STA when receiving the DL data from the Root AP. When the relay transmits the relay beacon to the STA, the relay may inform the STA through the TIM of the relay beacon of the information on which STA has DL data and the RAW / slot allocation information. The STA connected to the relay does not need to check the root beacon. It is sufficient to check only the beacon of the connected relay.
Relay는 Relay beacon을 전송한 직후에 PS-Poll RAW가 할당되도록 함으로써 STA으로부터 PS-Poll을 수신할 수 있다. 또한, Relay는 STA으로부터 UDI 정보를 수신하고, 자원 할당 프레임을 전송함으로써 Relay가 Relay Beacon 전송 시 할당한 초기 RAW/slot 할당을 세부 조정할 수도 있다.The relay can receive the PS-Poll from the STA by allowing the PS-Poll RAW to be allocated immediately after transmitting the relay beacon. In addition, the relay may receive detailed UDI information from the STA and transmit a resource allocation frame to fine-adjust the initial RAW / slot allocation allocated by the relay during relay beacon transmission.
즉, Relay는 자신에게 할당된 DRAW를 자신에게 연결된 STA과의 전송에 적합하도록 적절하게 RAW/slot을 할당하여 활용할 수 있다. 이 때, DRAW 내에서의 RAW/slot 할당 방법에는 일반적인 RAW/slot 할당과 동일한 규격이 이용될 수 있다.That is, the relay may properly allocate and utilize RAW / slot so that the DRAW allocated to the relay is suitable for transmission with the STA connected to the relay. In this case, the same standard as that of the general RAW / slot allocation may be used for the RAW / slot allocation method in the DRAW.
Root AP가 Relay와 STA 간의 전송을 보장한 DRAW 이외의 구간에서 STA이 데이터를 전송하는 경우, 다른 Relay에 연결된 STA의 전송 또는 Relay와 Root AP 간의 전송과의 충돌이 발생할 수 있다. Relay는 자신에게 할당된 DRAW 구간 이외의 구간에서, 자신에게 연결된 STA들이 전송하지 못하도록 함으로써 BSS 내의 충돌을 막을 수 있다. 이 경우, DRAW의 RAW/slot 할당에서 STA의 전송이 명시적으로 할당된 구간에서만 전송이 허용되도록 하고, 나머지 구간에서는 STA이 전송을 하지 못하도록 알릴 수도 있다. 일례에 따르면, 1 비트를 이용하여 STA의 전송이 허용된 DRAW 구간 이외에는 전송을 금지할지 여부를 나타낼 수 있다.When the STA transmits data in a section other than the DRAW in which the Root AP guarantees transmission between the Relay and the STA, a collision between transmission of the STA connected to another relay or transmission between the Relay and the Root AP may occur. The relay can prevent a collision in the BSS by preventing STAs connected to the transmission from a period other than the DRAW period allocated to the relay. In this case, transmission may be allowed only in a section in which the transmission of the STA is explicitly allocated in the RAW / slot allocation of the DRAW, and the STA may be informed not to transmit in the remaining sections. According to an example, it may indicate whether to prohibit transmission except for the DRAW period in which transmission of the STA is allowed using 1 bit.
다른 방법으로, DRAW 이외의 구간 중 Relay에 연결된 STA들이 절대로 전송을 하지 말아야 하는 구간을 RAW로 명시적으로 할당하고, 이 RAW를 통해 전송을 금지하는 것을 알릴 수 있다. 이러한 RAW를 level 1에서의 empty RAW로 칭한다. DRAW 이외의 모든 구간을 Empty RAW로 할당할 수도 있지만, DRAW 이외의 구간 중 STA이 실제로 절대로 전송을 하지 말아야 하는 구간만 Empty RAW로 잡을 수도 있다. 일례에 따르면, RAW에 empty RAW 여부(전송 금지 RAW 여부)를 나타내는 1 비트를 할당할 수 있고, 전송하지 말아야 하는 시작 시점 및 구간 등은 RAW의 start time, duration 등에 의해 시그널링할 수 있다.Alternatively, the STAs connected to the relay among the sections other than the DRAW may explicitly allocate a section that should not be transmitted to RAW and prohibit transmission through the RAW. This RAW is called empty RAW at level 1. Although all sections other than the DRAW may be allocated as empty RAW, only sections in which the STA should never transmit in the non-DRAW section may be set as empty RAW. According to an example, one bit indicating whether empty RAW (transfer prohibited RAW) can be allocated to RAW, and a start time and a period not to be transmitted can be signaled by a start time, duration, etc. of RAW.
명시적으로 Empty RAW로 전송이 금지되지 않은 구간에서, Relay에 속한 STA은 전송이 진행 중인 다른 Relay BSS 내에서의 전송이 감지되지 않거나, 또는 해당 Relay의 beacon을 수신하였을 때 다른 Relay BSS 내에서의 전송을 위해 할당된 구간 내에 RAW가 할당되어 있지 않은 구간에 대해서는 전송을 예외적으로 수행할 수 있다.In a period where transmission to an empty RAW is not explicitly prohibited, a STA belonging to a relay cannot detect a transmission in another relay BSS in progress or when receiving a beacon of the corresponding relay, Transmission may be exceptionally performed for a section in which RAW is not allocated within a section allocated for transmission.
다른 예로, Relay에 속한 STA들은 자신들의 AP에 대한 전송이 할당되지 않은 구간에서라도, 기존 OBSS 환경에서의 전송과 같이 경쟁을 통해 전송을 할 수도 있다. 이렇게 자신의 BSS에 할당되지 않은 구간에서 전송하는 경우에는 충돌 확률이 높기 때문에, STA는 RTS/CTS를 데이터 전송 전에 수행하는 것이 좋다.As another example, STAs belonging to a relay may transmit through contention as in transmission in an existing OBSS environment even in a period where transmission for their AP is not allocated. In this case, since the probability of collision is high when transmitting in a section not allocated to its BSS, it is recommended that the STA perform RTS / CTS before data transmission.
Relay나 Root AP는 자신에게 할당되지 않은 전송 구간 중 충돌이나 경쟁이 심할 것으로 예상되는 구간은 Empty RAW로 설정함으로써 자신에게 연결된 STA 들의 전송을 명시적으로 금지시킬 수 있다.Relay or Root AP can explicitly prohibit transmission of STAs connected to it by setting Empty RAW in a section where collision or contention is expected to be severe among transmission sections not assigned to it.
또한, Relay AP는 Relay와 Root AP 간의 전송이 일어나는 구간은 Empty RAW로 할당함으로써, Relay 내에서의 STA이 Relay에 전송하는 것을 금지시킬 수 있다.In addition, the relay AP may prohibit the STA in the relay from transmitting to the relay by allocating an interval in which the transmission between the relay and the root AP occurs to the empty RAW.
Relay에 연결된 STA의 전송이 금지된 구간 중, Relay와 Root AP와의 전송이 없는 구간에서 Relay는 전원 절감을 위해 슬립(sleep)할 수 있다. 또한, Root AP도 DRAW 구간에서 자신과 직접 연결된 Relay 혹은 STA과의 전송이 없는 구간에서 전원 절감을 위해 슬립할 수 있다. Relay는 자신이 할당된 DRAW 구간 동안에는 깨어있어야 한다.In a section in which transmission of an STA connected to a relay is prohibited, the relay may sleep for power saving in a section in which no transmission is performed between the relay and the root AP. In addition, the Root AP may sleep for power saving in a section in which there is no transmission with a relay or STA directly connected to itself in the DRAW section. The relay must be awake during its assigned DRAW interval.
도 24는 일실시예에 따른 DRAW를 이용한 leveled slot allocation 방법의 일례를 도시한 도면이다.24 illustrates an example of a leveled slot allocation method using a DRAW according to an embodiment.
도 24는 level 0에서의 DRAW를 DL RAW, UL RAW와 인접하게 배치하고, Root AP Relay STA으로의 DL 전송 및 STA Relay Root AP로의 전송이 순차적으로 이루어지도록 한 경우를 도시하고 있다. 이와 같이 RAW를 배치할 경우, STA은 Root AP로부터 해당 STA에 대한 DL 전송이 있는 경우, DL 데이터를 수신하여 바로 응답 UL 데이터를 Root AP까지 연속적으로 전달할 수 있어 전송 딜레이가 적다는 이점이 있다.FIG. 24 illustrates a case in which a DRAW at level 0 is disposed adjacent to DL RAW and UL RAW, and the DL transmission to the Root AP Relay STA and the transmission to the STA Relay Root AP are sequentially performed. When arranging RAW in this way, when the STA has DL transmission from the Root AP to the corresponding STA, the STA may receive the DL data and immediately transmit the response UL data to the Root AP, thereby reducing the transmission delay.
Relay는 Root Beacon을 수신한 후, TIM에 기초하여 자신이 전달한 데이터가 있는지 여부를 판단하고, 판단 결과에 따라 PS-Poll을 전송할 수 있다. Root AP는 Relay로부터 PS-Poll을 수신하고, 자원 할당 프레임(resource allocation frame)(2410)을 전송하여 RAW/slot 할당을 최적화할 수 있다.After receiving the relay beacon, the relay may determine whether there is data transmitted by itself based on the TIM, and transmit the PS-Poll according to the determination result. The Root AP can optimize the RAW / slot allocation by receiving the PS-Poll from the Relay and transmitting a resource allocation frame 2410.
Relay는 Relay Beacon 전송 후, STA으로부터 PS-Poll, UDI를 수신하고, 자신이 할당한 DRAW 구간에 해당하는 Relay 전송 구간의 UL RAW, DL RAW를 최적화할 수 있다.The relay may receive PS-Poll and UDI from the STA after the relay beacon transmission, and may optimize UL RAW and DL RAW of the relay transmission section corresponding to the DRAW section allocated by the relay.
Relay는 Root AP로 UL data를 전송하기 전에, STA으로부터 받은 UL 데이터 사이즈(data size)를 UDI 형태로 Root AP에 전달함으로써 Root AP는 level 0에서의 UL RAW를 자원 할당 프레임을 이용하여 최적화할 수도 있다.Relay transmits UL data size received from STA to Root AP before transmitting UL data to Root AP. Root AP may optimize UL RAW at level 0 using resource allocation frames. have.
도 25는 일실시예에 따른 DRAW를 이용한 leveled slot allocation 방법의 다른 예를 도시한 도면이다.25 is a diagram illustrating another example of a leveled slot allocation method using DRAW according to an embodiment.
도 25는 도 24에 도시된 전송 순서와 다른 순서로 전송하는 실시예를 나타낸다. 도 25를 참조하면, STA이 Relay를 경유하여 Root AP로부터 DL 데이터를 수신한 후, STA이 UL 데이터를 Relay에 전송하면, Relay가 UL 데이터를 바로 Root AP로 전송하지 않고, 다음 Root Beacon 전송 시 할당되는 UL RAW에 전송하거나, 또는 UL/DL RAW에서 UL 데이터를 전송할 수 있다. 이 경우, Relay가 UL 데이터를 바로 Root AP에 전달하지 않고 저장하고 있다가, 다음 Root Beacon이 수신되고 Relay가 PS-Poll을 Root AP에 전송할 때, 이전 beacon 구간에서 STA으로부터 수신한 UL 데이터 사이즈를 UDI를 통해 Root AP에 알릴 수 있다. 이를 통해, Root AP가 Relay를 위한 UL/DL RAW를 한번의 PS-Poll RAW 및 한번의 자원 할당 프레임의 전송을 통해 최적화할 수 있다.FIG. 25 illustrates an embodiment in which transmission is performed in a different order from that shown in FIG. 24. Referring to FIG. 25, after the STA receives DL data from the Root AP via a Relay, when the STA transmits UL data to the Relay, the Relay does not immediately transmit the UL data to the Root AP, and when the next Root Beacon is transmitted. The UL data may be transmitted in the allocated UL RAW, or may be transmitted in UL / DL RAW. In this case, the relay stores UL data without directly transmitting it to the Root AP. When the next Root Beacon is received and the Relay transmits the PS-Poll to the Root AP, the UL data size received from the STA in the previous beacon section is stored. You can notify Root AP through UDI. Through this, the Root AP can optimize the UL / DL RAW for the relay by transmitting one PS-Poll RAW and one resource allocation frame.
Relay는 UDI를 다음 Root Beacon 전송 시점 이전에 Root AP에 전송할 수도 있다. Root AP는 Relay로부터 수신한 UDI를 통해 Root Beacon 전송 이전 시점에 Relay로부터의 UL 데이터 사이즈를 알 수 있기 때문에 Root Beacon 전송 시 처음부터 UL RAW를 최적의 길이로 할당할 수 있다. 이 경우, STA으로부터의 UL 전송이 최종 목적지까지 전달되는데 딜레이가 발생할 수 있으며, UL 데이터를 저장하기 위한 메모리가 더 필요하다.The relay may transmit the UDI to the root AP before the next root beacon transmission time. Root AP can know UL data size from Relay before Root Beacon transmission through UDI received from Relay so that UL RAW can be allocated to optimal length from Root Beacon transmission from the beginning. In this case, a delay may occur when the UL transmission from the STA is delivered to the final destination, and a memory for storing UL data is further needed.
도 26 내지 도 28은 일실시예에 따른 leveled slot allocation 방법을 이용하는 경우의 DRAW 할당 방법의 예들을 도시한 도면이다.26 to 28 illustrate examples of a DRAW allocation method when a leveled slot allocation method is used, according to an embodiment.
도 26 내지 도 28은 도 23의 leveled slot allocation 방법을 이용하는 경우의 DRAW 할당 방법의 일례들을 나타낸 것으로, Relay Beacon 주기가 Root Beacon 주기와 다를 경우의 DRAW 할당 방법의 일례들이다.26 to 28 illustrate examples of a DRAW allocation method in the case of using the leveled slot allocation method of FIG. 23, and are examples of a DRAW allocation method when a relay beacon period is different from a root beacon period.
Relay Beacon 주기는 Root Beacon 주기와 동일할 필요는 없으며, Relay는 Root AP에 연결시 Root AP와 Association Request/Response frame 전송시 Relay Beacon 주기에 관하여 협상할 수 있다.The relay beacon period does not have to be the same as the root beacon period, and the relay can negotiate the relay beacon period when transmitting association request / response frame with the root AP when connecting to the root AP.
또한, Relay에 연결된 각 STA들이 서로 다른 웨이크업(wake up) 주기를 가질 수 있으므로 Relay는 동일한 Relay Beacon 간격(interval)을 이용하더라도 특정 STA 그룹에 대해서는 더 잦은 주기로 RAW를 할당해 주어야 할 필요가 있다. Root AP는 STA 그룹에 대한 전송을 주기적으로 보장할 수 있도록 DRAW를 할당해 주어야 한다. Relay는 Root AP에 연결(association) 시 자신에게 연결된 STA의 AID 또는 partial AID 정보와 함께 STA의 타입, STA의 트래픽 타입, 또는 wake up/listen interval 등의 정보를 Root AP에 전송할 수 있다. Root AP는 Relay로부터 수신한 정보에 기초하여 DRAW를 할당할 수 있다. Relay는 연결된 STA의 서비스 타입 등이 변경되거나, 또는 새로운 STA이 연결될 경우, 이를 Root AP에게 알릴 수 있다. In addition, since each STA connected to a relay may have a different wake up period, the relay needs to allocate RAW more frequently for a specific STA group even when using the same relay beacon interval. . The Root AP should allocate a DRAW to periodically guarantee transmission for the STA group. The relay may transmit information such as the type of the STA, the traffic type of the STA, or the wake up / listen interval to the Root AP together with the AID or partial AID information of the STA connected to the Root AP. Root AP can allocate the DRAW based on the information received from the relay. The relay may notify the Root AP when a service type of the connected STA is changed or when a new STA is connected.
도 26은 Root Beacon Interval이 3, Relay Beacon Interval이 6이고, 각 Root AP Beacon interval마다 특정 Relay에 대한 DRAW가 하나씩 할당된 경우를 나타낸다. Relay는 자기에게 할당된 DRAW 구간에 기초하여 STA들을 위한 RAW/Slot을 할당한다.FIG. 26 illustrates a case in which a Root Beacon Interval is 3 and a Relay Beacon Interval is 6, and one DRAW for a specific relay is allocated to each Root AP Beacon interval. The relay allocates RAW / Slots for STAs based on the DRAW interval allocated to the relay.
다른 실시예에 따르면, DRAW가 주기적으로 할당되는 경우 PRAW를 이용하여 매 beacon 마다 RAW/Slot의 할당 정보를 전송하지 않고, Full Beacon에서만 할당 정보를 전송하고, Beacon interval (short beacon interval)의 배수 등으로 Full Beacon의 전송 주기를 지정할 수도 있다.According to another embodiment, when the DRAW is periodically allocated, the allocation information of the RAW / Slot is not transmitted for every beacon using the PRAW, the allocation information is transmitted only in the full beacon, and the multiple of the Beacon interval (short beacon interval), etc. You can also specify the transmission period of the full beacon.
DRAW 구간에서의 할당된 RAW가 주기적으로 반복되는 경우, Relay는 RAW의 반복과 관련된 정보를 Relay Beacon에서 PRAW를 이용하여 알릴 수 있다.When the allocated RAW in the DRAW period is periodically repeated, the relay may inform the relay beacon of PRAW in the relay beacon.
도 26에서는 Relay에 대한 Relay Beacon Interval에 2개의 DRAW가 할당되었다. Relay는 자신에게 연결된 STA들 중 보다 자주 wake up하여 DL/UL 전송을 하는 STA의 전송 구간을 2개의 DRAW 모두에 할당하고, 보다 덜 wake up하는 STA의 전송 구간은 1개의 DRAW에 할당할 수 있다. 예를 들어, Relay는 자주 깨는 STA의 전송 주기는 3이 되고, 덜 자주 깨는 STA의 전송 주기는 6이 되도록 STA의 전송 구간을 할당할 수 있다.In FIG. 26, two DRAWs are allocated to a relay beacon interval for a relay. The relay may allocate the transmission interval of the STAs that wake up more frequently among the STAs connected to the DL / UL transmission to both DRAWs, and the transmission intervals of the less wakeful STAs to one DRAW. . For example, the relay may allocate the transmission interval of the STA such that the transmission period of the STA that frequently wakes up is 3 and the transmission period of the STA that wakes up less frequently is 6.
도 27은 Root Beacon Interval이 6, Relay Beacon Interval이 12이고, 각 Root Beacon interval마다 특정 Relay에 대한 DRAW가 2개씩 할당된 경우를 나타내고 있다. 이는 Root Beacon interval 주기보다 더 자주 Relay에 연결된 STA의 전송이 발생하는 경우에 적합하다. DRAW1, DRAW2가 특정 Relay를 위해 할당되었고 STA은 Root AP Beacon의 Interval보다 짧은 주기로 전송을 할 수 있다.FIG. 27 illustrates a case where a Root Beacon Interval is 6, a Relay Beacon Interval is 12, and two DRAWs for a specific relay are allocated to each Root Beacon interval. This is suitable when the transmission of the STA connected to the relay occurs more frequently than the root beacon interval period. DRAW1 and DRAW2 are allocated for a specific relay, and STA can transmit in shorter period than Interval of Root AP Beacon.
도 28은 도 27의 [DRAW 1, 2를 각각 서로 다른 Relay에 할당한 경우로서, Root Beacon Interval이 6, 각 Relay Beacon Interval이 6이고, 각 relay는 주기 6으로 DRAW를 할당받은 경우를 나타낸다.FIG. 28 illustrates a case in which [DRAWs 1 and 2 of FIG. 27 are allocated to different relays, respectively, Root Beacon Interval is 6, each Relay Beacon Interval is 6, and each relay is allocated a DRAW at a cycle 6. FIG.
도 29는 일실시예에 따른 Relay에 대한 주파수 서브밴드를 할당하는 일례를 도시한 도면이다. 보다 구체적으로, 도 29는 Relay 및 Relay에 연결된 STA들의 그룹인 Relay 클러스터 간의 RAW 공유(sharing)에 대한 구체적인 실시예를 도시하고 있다.29 illustrates an example of allocating frequency subbands for a relay according to an embodiment. More specifically, FIG. 29 illustrates a specific embodiment of RAW sharing between a relay cluster, which is a group of relays and STAs connected to the relay.
각 Relay Cluster들 간의 전송이 분리될 수 있다면, leveled slot allocation 방법의 level 0에서 empty slot 또는 empty RAW로 할당된 구간은 Relay Cluster 간에 공유될 수 있고, 클러스터들 간의 동시 전송이 가능할 수 있다. 예를 들어, (1) 서로 다른 주파수 서브밴드(frequency subband)를 사용하거나, (2) 클러스터들이 공간적으로 분리되었거나, 또는 하나의 Relay 그룹에 속한 STA들의 수가 적고 STA들을 하나의 RAW에 할당하여 시간상 순차적으로 전송할 수 있는 경우에는 RAW sharing이 가능하다. If transmission between relay clusters can be separated, an interval allocated to empty slot or empty RAW at level 0 of the leveled slot allocation method may be shared between relay clusters, and simultaneous transmission between clusters may be possible. For example, (1) using different frequency subbands, (2) clusters are spatially separated, or the number of STAs belonging to one relay group is small and STAs are assigned to one RAW in time. RAW sharing is possible if you can transfer sequentially.
<1. 서로 다른 주파수 서브밴드를 이용하여 RAW sharing을 수행하는 방법><1. How to perform RAW sharing using different frequency subbands>
Root AP는 각 Relay와 STA 간의 전송에 사용할 채널을 할당할 수 있다. Relay는 Root AP에 연결 시에 자신이 선호하는 채널 범위를 Root AP에 알릴 수 있고, Root AP는 BSS에 있는 다른 Relay들의 채널 점유 상태에 기초하여 새로이 연결하려는 Relay가 Relay와 STA 간 전송에 사용할 채널을 할당할 수 있다.Root AP can allocate a channel to be used for transmission between each relay and STA. The relay can inform the Root AP of its preferred channel range when connecting to the Root AP, and the Root AP can use the channel to be used for transmission between Relay and STA based on the channel occupancy status of other relays in the BSS. Can be assigned.
Root AP와 Relay 간의 전송에 이용되는 프라이머리 채널(primary channel)은 항상 같은 것이 사용될 수 있다. Relay는 각자 자신에게 연결된 STA과의 전송에 사용되는 채널은 Root AP의 primary channel과 다른 채널을 이용할 수 있다.A primary channel used for transmission between a root AP and a relay may always be the same. The relay may use a channel different from the primary channel of the root AP for transmission with the STA connected thereto.
Root AP는 서로 다른 주파수 서브밴드로 클러스터들 간에 동시 전송이 일어날 수 있도록, DRAW 할당 시 Cluster 내에서 사용하는 채널이 겹치지 않는 Relay들을 같은 DRAW에 할당할 수 있다. 있다. 도 29는 채널이 겹치지 않는 Relay들을 같은 DRAW에 할당하는 서브 밴드 할당의 일례를 나타낸다.Root AP can allocate relays that do not overlap channels used in the cluster to the same DRAW when DRAW is allocated so that simultaneous transmission can occur between clusters with different frequency subbands. have. 29 shows an example of subband allocation for allocating relays in which channels do not overlap to the same DRAW.
Root AP는 Root Beacon의 RPS IE 또는 이와 유사한 새로운 IE를 통해 DRAW 동안 전송이 허용된 Relay의 식별 정보 및 전송 허용 기간을 알릴 수 있다. 예를 들어, Relay의 식별 정보는 Relay의 AID, partial AID, 또는 partial BSSID(basic service set identification) 등을 포함할 수 있다. Root AP는 새롭게 Root AP 또는 Relay에 연결하려는 STA들에게 사용 가능 채널 및 Relay에 관한 정보를 전송할 수 있다. Root AP는 채널 사용 가능 여부를 알리기 위해 Beacon에 채널별 릴레이 할당 비트맵 등을 포함하여 전송할 수 있다. 만약 Beacon에 채널별 릴레이 할당 비트맵이 포함되어 전송되는 경우, 연결을 시도하려는 STA은 Root Beacon에 기초하여 각 채널에 어느 Relay가 할당되어 있는지를 식별할 수 있다. STA은 Relay가 존재하는 Primary Channel로 바로 이동하여 스캐닝(scanning)을 수행할 수 있고, Root Beacon의 Relay RAW 할당 정보에 기초하여 각 Relay의 Beacon이 전송되는 시점을 식별할 수도 있다. 또한, STA은 Relay로부터 Relay Beacon을 수신하고, 자신이 선호하는 특정 채널에 존재하는 Relay에 연결(association)할 수도 있다. Root AP는 채널별 Relay 할당 상황을 알리기 위해 Beacon, Probe response 등에 각 Relay가 사용하는 채널, Relay Beacon Interval, 다음 Relay Beacon까지의 기간(duration) 등에 관한 정보를 표시할 수 있다. STA는 채널별 Relay 할당 상황에 기초하여 최적의 Relay를 보다 빨리 결정할 수 있다. 공유된 DRAW는 PRAW 형태로 할당이 가능하다. Relay에 연결된 STA은 자기가 연결된 Relay로부터의 비콘만 수신하면 충분하다.The Root AP can inform the Root Beacon's RPS IE or a similar new IE of the identification information of the relay that is allowed to transmit during DRAW and the transmission allowance period. For example, the identification information of the relay may include AID, partial AID, or partial basic service set identification (BSSID) of the relay. The Root AP may transmit information about the available channel and the relay to STAs that want to newly connect to the Root AP or Relay. Root AP can transmit to the Beacon including the channel allocation bitmap for each channel to inform the availability of the channel. If a beacon is transmitted with a relay allocation bitmap for each channel, the STA to attempt to connect may identify which relay is allocated to each channel based on the root beacon. The STA may perform scanning by directly moving to the primary channel where the relay exists, and may identify a time point at which the beacon of each relay is transmitted based on the relay RAW allocation information of the root beacon. In addition, the STA may receive a relay beacon from the relay and may associate with a relay existing in a specific channel preferred by the STA. The Root AP can display information on channels used by each relay in the Beacon, Probe Response, Relay Beacon Interval, and duration to the next Relay Beacon to inform the relay allocation status for each channel. The STA may determine an optimal relay faster based on the relay allocation situation for each channel. Shared DRAW can be allocated in PRAW format. The STA connected to the relay needs only to receive beacons from the connected relay.
각 클러스터 내에서 Relay와 STA 간 전송은 기존 독립된 BSS 내에서의 STA와 AP 간 통신과 동일한 형태로 수행될 수 있다. 클러스터 내에서 STA은, 자신이 연결된 Relay가 클러스터 내에서 이용하도록 할당된 채널 범위 안에서 전송을 할 수 있고, Relay가 지정한 클러스터 내에서의 primary channel을 포함하는 채널 범위 내에서 전송을 수행할 수 있다. Relay는 기존의 AP가 BSS의 primary channel을 비콘을 통해 알리는 것과 동일한 방법으로 해당 Relay의 클러스터 내에서 사용되는 primary channel을 Relay Beacon을 이용하여 STA들에게 알릴 수 있다.The transmission between the relay and the STA in each cluster may be performed in the same form as the communication between the STA and the AP in the existing independent BSS. In a cluster, the STA may transmit within a channel range allocated for use by the relay to which the relay is connected, and may transmit within a channel range including a primary channel in the cluster designated by the relay. The relay may inform STAs by using a relay beacon of a primary channel used in a cluster of the corresponding relay in the same manner that the existing AP notifies the primary channel of the BSS through the beacon.
주파수 서브밴드를 사용하여 RAW를 공유하는 경우, Root AP는 DRAW를 이용하여 AP에게 각 채널의 사용을 할당(delegate)하고, AP는 DRAW의 세부 RAW/slot을 할당할 수 있다. DRAW 할당과 관련하여, Root AP가 Relay 또는 Root AP에 직접 연결된 STA 간의 전송에 사용하는 primary channel이 다른 Relay에 할당되지 않은 경우, Root AP는 해당 DRAW의 primary channel을 자기 자신에게 할당(delegate)할 수 있다. Root AP는 자기 자신에게 할당한 DRAW에 기초하여 Root AP와 직접 전송을 하는 Relay 또는 STA을 위해 세부 RAW/slot을 할당할 수 있다. 이 경우, Root Beacon에 DRAW 할당 정보 이외에 Root AP 자신에게 할당된 DRAW 구간에 대한 Root AP와 Relay 또는 STA 간의 RAW/slot 할당 정보가 포함될 수 있다.When RAW is shared using frequency subbands, the Root AP can allocate usage of each channel to the AP using the DRAW, and the AP can allocate detailed RAW / slot of the DRAW. Regarding DRAW assignment, if a primary channel used by a Root AP for transmission between a relay or a STA directly connected to a Root AP is not assigned to another relay, the Root AP may assign a primary channel of the corresponding DRAW to itself. Can be. The Root AP can allocate detailed RAW / slots for a Relay or STA that directly transmits to the Root AP based on the DRAW assigned to itself. In this case, in addition to the DRAW allocation information, the Root Beacon may include RAW / slot allocation information between the Root AP and the relay or the STA for the DRAW interval allocated to the Root AP itself.
Relay가 자신의 클러스터 내에서 사용하는 채널을 변경하고자 할 경우, Relay는 Root AP에게 자신의 클러스터에서 사용하는 채널의 변경을 요청할 수 있다. 예를 들어, Relay는 Relay Operating mode notification frame 등을 정의하여 Root AP에게 채널의 변경을 요청할 수 있다. Relay로부터 채널 변경의 요청을 수신한 Root AP는 Relay에게 채널 변경 요청에 대한 확인을 전달하고, Relay는 Root AP가 채널 변경을 승인한 경우 채널을 이동할 수 있다. Relay가 채널을 변경한 경우, Root AP는 Relay 그룹핑을 변경할 수 있다. Cluster 내 채널 변경이 허용된 경우, 기존의 Channel Switch Announcement를 통해 STA에게 채널 변경에 관한 정보가 전달될 수 있다.When the relay wants to change the channel used in its cluster, the relay can request the root AP to change the channel used in its cluster. For example, the relay may define a relay operating mode notification frame to request the Root AP for a channel change. The Root AP that receives the channel change request from the relay sends a confirmation of the channel change request to the relay, and the relay can move the channel when the Root AP approves the channel change. When the relay changes the channel, the root AP can change the relay grouping. If a channel change in the cluster is allowed, information about the channel change may be transmitted to the STA through the existing Channel Switch Announcement.
도 30은 일실시예에 따른 Relay에 대한 서브밴드를 할당할 때 클러스터 내에서 FST(Frequency Selective Transmission)를 사용하는 경우를 설명하기 위한 도면이다.30 is a diagram for describing a case of using frequency selective transmission (FST) in a cluster when allocating a subband for a relay according to an embodiment.
클러스터 내에서의 primary channel, 즉 Relay와 STA 간의 전송에 이용되는 primary 채널은 항상 고정적으로 할당될 수도 있지만, FST가 클러스터에 적용되어 매 RAW마다 임시 primary channel이 변경될 수도 있다. 도 30은 Relay에 대해 주파수 서브밴드를 할당하는 예로, 도 29에서와 달리 클러스터 내에서의 primary channel이 고정되어 있지 않고, RAW마다 클러스터에 할당된 밴드 범위 내에서 primary channel이 변경될 수 있다.The primary channel in the cluster, that is, the primary channel used for transmission between the relay and the STA may always be fixedly assigned, but the FST may be applied to the cluster so that the temporary primary channel may be changed for each RAW. 30 illustrates an example of allocating a frequency subband to a relay. Unlike in FIG. 29, the primary channel in the cluster is not fixed, and the primary channel may be changed in the band range allocated to the cluster for each RAW.
도 31은 일실시예에 따른 서로 다른 주파수 서브밴드를 이용하여 RAW를 공유하는 일례를 도시한 도면이다.31 illustrates an example of sharing RAW using different frequency subbands according to an embodiment.
구체적으로, 도 31은 도 23의 leveled slot allocation 방법을 서로 다른 주파수 서브밴드를 이용하여 DRAW를 공유하는 것에 의해 동시 전송을 수행하는 방법으로 확장한 예를 나타낸 도면이다. 도 26 내지 도 28에서 설명한 다양한 형태의 DRAW 할당 방법을 서로 다른 주파수 서브밴드를 이용하여 동시 전송하는 것으로 확장할 수 있다.Specifically, FIG. 31 is a diagram illustrating an example of extending the leveled slot allocation method of FIG. 23 to a method of performing simultaneous transmission by sharing DRAW using different frequency subbands. The various types of DRAW allocation methods described with reference to FIGS. 26 to 28 may be extended to simultaneous transmission using different frequency subbands.
도 32는 일실시예에 따른 서로 다른 주파수 서브밴드를 이용하여 데이터를 전송하는 일례를 도시한 도면이다.32 illustrates an example of transmitting data using different frequency subbands according to an embodiment.
도 32는 도 17의 일반적인 leveled slot allocation 방법의 실시예를, 서로 다른 주파수 서브밴드를 이용하여 STA과 통신하는 Relay가 2개가 있는 경우로 확장한 예를 도시하고 있다.FIG. 32 illustrates an example in which the embodiment of the general leveled slot allocation method of FIG. 17 is extended to two relays communicating with an STA using different frequency subbands.
Level 0에서의 Root AP Relay로 전송되는 DL RAW, Relay Root AP로 전송되는 UL RAW에서는 Relay 1, Relay 2에 대한 전송 slot이 순차적으로 할당될 수 있고, slot 할당 정보는 Root Beacon에 포함되어 전송될 수 있다. In DL RAW transmitted to Root AP Relay at Level 0 and UL RAW transmitted to Relay Root AP, transmission slots for Relay 1 and Relay 2 may be sequentially allocated, and slot allocation information is included in the Root Beacon to be transmitted. Can be.
Relay 1과 STA 간의 전송, Relay 2와 STA 간의 전송에 대한 DL&UL RAW는 Root Beacon에서는 Empty RAW (DRAW) 형식으로 표시(indicate)될 수 있다. 이 때, Root Beacon의 Empty RAW(DRAW)에는 해당 Empty RAW (DRAW)에서 전송이 허용되는 Relay에 대한 정보와 각 Relay에 할당된 주파수 서브밴드에 대한 채널 정보 등이 표시될 수 있다. 예를 들어, 전송이 허용되는 Relay에 대한 정보는 Relay 1, Relay 2 각각에 대한 AID, partial AID, BSSID, 또는 partial BSSID 등을 포함할 수 있고, 각 Relay에 할당된 주파수 서브밴드에 대한 채널 정보는 각 Relay가 할당된 주파수 서브밴드에 대한 채널 번호, 할당된 주파수 서브밴드를 포함한 광대역(wideband) 전송의 허용 여부, 광대역 전송을 허용한다면 사용 가능한 광대역의 범위에 대한 정보 등을 포함할 수 있다. 사용 가능한 광대역의 범위에 대한 정보는 Relay들 간 서로 겹치는 채널의 사용을 막기 위해 이용될 수 있다.DL & UL RAW for transmission between Relay 1 and STA and transmission between Relay 2 and STA may be indicated in Empty RAW (DRAW) format in the Root Beacon. In this case, information about a relay that is allowed to be transmitted in the corresponding empty RAW (DRAW) and channel information about a frequency subband allocated to each relay may be displayed in an empty RAW (DRAW) of the root beacon. For example, the information on the relay to which transmission is allowed may include AID, partial AID, BSSID, or partial BSSID for each of Relay 1 and Relay 2, and channel information about frequency subbands assigned to each Relay. Each relay may include a channel number for an allocated frequency subband, whether to allow wideband transmission including the allocated frequency subband, and information on the range of available broadband if wideband transmission is allowed. Information about the range of available broadband can be used to prevent the use of overlapping channels between relays.
각 Relay는 Relay beacon에 자신에게 연결된 STA에 대한 전송 slot을 할당할 수 있다.Each relay may allocate a transmission slot for an STA connected to the relay beacon.
도 32에서 Relay 1, Relay 2는 서로 다른 주파수 서브밴드를 사용하기 때문에 해당 DL&UL RAW 구간 (shared RAW)에서는 동시 전송이 가능하다.In FIG. 32, since Relay 1 and Relay 2 use different frequency subbands, simultaneous transmission is possible in a corresponding DL & UL RAW period (shared RAW).
각 Relay들은 공유된 RAW에서 UL, DL 구간 할당을 필요에 따라 서로 다르게 할당할 수 있다. 예를 들어, Relay 1이 Relay 2보다 STA으로부터의 UL 전송이 더 많은 경우, Relay 1은 Relay 2보다 더 많은 UL slot을 할당할 수 있다.Each relay can allocate different UL and DL intervals as needed in the shared RAW. For example, if Relay 1 has more UL transmissions from the STA than Relay 2, Relay 1 may allocate more UL slots than Relay 2.
Root AP는 각 Relay가 Root AP에 연결시 주파수 서브밴드를 이용한 RAW sharing을 이용할 것인지, 또는 어느 주파수 서브밴드를 선호하는지 등에 대해 Relay와 협상할 수 있다. 또한, Relay가 Root AP에 연결된 이후라도, Root AP는 Relay와 Root AP간 operating mode change request/response 등을 통해 RAW sharing 사용 여부, 선호 주파수 서브밴드 등을 변경할 수 있다.The Root AP can negotiate with the Relay whether each relay uses RAW sharing using frequency subbands or which frequency subband is preferred when connecting to the Root AP. In addition, even after the relay is connected to the Root AP, the Root AP may change the use of RAW sharing and the preferred frequency subband through an operating mode change request / response between the Relay and the Root AP.
Root AP는 특정 Relay에 Relay 전송 구간마다 동일 채널을 할당하거나, 또는 매 Relay 전송 구간마다 최적의 채널을 판단하고, 판단 결과에 따른 최적의 채널을 Relay 전송 구간에 할당할 수도 있다.The root AP may allocate the same channel to a specific relay transmission section to a specific relay, or determine an optimal channel for each relay transmission section, and allocate an optimal channel to the relay transmission section according to the determination result.
Root AP는 Relay가 특정 주파수 서브밴드 (예: 2 MHz)만을 사용하도록 주파수 서브밴드를 할당할 수도 있고, 할당한 특정 주파수 서브밴드를 포함하는 더 넓은 주파수 서브밴드(예: 8 MHz)를 이용하도록 허용할 수 있다. The Root AP may assign a frequency subband so that the Relay uses only a specific frequency subband (e.g. 2 MHz), and allow the relay to use a wider frequency subband (e.g. 8 MHz) that includes the specified frequency subband Allowed.
Root AP가 Relay에 더 넓은 주파수 서브밴드를 이용하도록 허용한 경우, RAW를 공유한 Relay들 간에 서로 겹치는 주파수 서브밴드를 이용할 위험이 있고, Root AP는 이러한 위험을 방지하기 위해 선택 가능한 채널 번호, 밴드폭(bandwidth) 제한 등을 설정할 수 있다.If the Root AP allows a wider frequency subband to be used for a relay, there is a risk of using overlapping frequency subbands among the relays that share RAW, and the Root AP has a selectable channel number and band to prevent this risk. The width limit can be set.
위와 같이 서로 다른 클러스터들 간의 동시 전송을 가능하게 함으로써 전송 효율이 개선될 수 있다.As described above, transmission efficiency may be improved by enabling simultaneous transmission between different clusters.
도 33은 일실시예에 따른 empty slot을 이용하는 leveled slot allocation 방법에서 서로 다른 주파수 서브밴드를 이용하여 RAW를 공유하는 방법의 일례를 도시한 도면이다.33 illustrates an example of a method of sharing RAW by using different frequency subbands in a leveled slot allocation method using empty slots according to an embodiment.
도 33은 도 18의 실시예를 확장한 것이며, 영역(3310)은 클러스터들 간의 동시 전송이 가능한 구간을 나타낸다.FIG. 33 is an extension of the embodiment of FIG. 18, and an area 3310 illustrates a section in which simultaneous transmission between clusters is possible.
RAW 2'에 대한 DL slot 할당, RAW 3'에 대한 UL slot 할당은 Root Beacon에서는 Empty slot 형식으로 표시될 수 있다. 이 때, Root Beacon에는 해당 Empty slot에서 전송이 허용되는 Relay에 대한 정보 정보와 각 Relay에 할당된 주파수 서브밴드에 대한 채널 정보 등이 표시될 수 있다. 예를 들어, 전송이 허용되는 Relay에 대한 정보는 Relay 1, Relay 2 각각에 대한 AID, partial AID, BSSID, 또는 partial BSSID 등을 포함할 수 있고, 각 Relay에 할당된 주파수 서브밴드에 대한 채널 정보는 각 Relay가 할당된 주파수 서브밴드에 대한 채널 번호, 할당된 주파수 서브밴드를 포함한 광대역 전송의 허용 여부, 광대역 전송을 허용한다면 사용 가능한 광대역 의 범위에 대한 정보 등을 포함할 수 있다. 사용 가능한 광대역 의 범위에 대한 정보는 Relay들 간 서로 겹치는 채널의 사용을 막기 위해 이용될 수 있다.The DL slot allocation for RAW 2 'and the UL slot allocation for RAW 3' may be displayed in the form of Empty slot in Root Beacon. At this time, the Root Beacon may display information on relays that are allowed to be transmitted in the corresponding empty slot and channel information on frequency subbands allocated to each relay. For example, the information on the relay to which transmission is allowed may include AID, partial AID, BSSID, or partial BSSID for each of Relay 1 and Relay 2, and channel information about frequency subbands assigned to each Relay. Each relay may include channel number for the assigned frequency subband, whether to allow wideband transmission including the assigned frequency subband, and information on the range of available broadband if wideband transmission is allowed. Information on the range of available broadband can be used to prevent the use of overlapping channels between relays.
Relay 전송 구간마다 Relay가 이용하는 주파수 서브채널이 변경되는 경우, Relay는 Relay Beacon을 전송한 직후 각 채널마다 사운딩 프레임을 전송할 수 있다. Relay에 연결된 STA들은 사운딩 프레임에 기초하여 최적의 채널을 찾을 수 있고, Relay는 STA가 선택한 최적의 채널에 기초하여 데이터를 전송함으로써 전송 효율이 개선될 수 있다.When the frequency subchannel used by the relay is changed for each relay transmission period, the relay may transmit a sounding frame for each channel immediately after transmitting the relay beacon. STAs connected to the relay can find the optimal channel based on the sounding frame, and the relay can improve transmission efficiency by transmitting data based on the optimal channel selected by the STA.
도 34 내지 도 35는 일실시예에 따른 empty slot을 이용하는 leveled slot allocation 방법에서 서로 다른 주파수 서브밴드를 이용하여 RAW를 공유하는 방법의 다른 예를 도시한 도면이다.34 to 35 illustrate another example of a method of sharing RAW using different frequency subbands in a leveled slot allocation method using an empty slot according to an embodiment.
도 34는 도 19의 실시예를 확장한 것이며, 공유된 DL RAW, UL RAW를 하나의 공유된 RAW (UL/DL RAW)로 할당한 실시예를 도시하고 있다. 도 35는 도 20의 실시예를 확장한 것이며, Relay1와 STA간의 전송, Relay2와 STA간의 전송에서 DL RAW, UL RAW를 공유한 실시예를 도시하고 있다.FIG. 34 expands on the embodiment of FIG. 19 and illustrates an embodiment in which shared DL RAW and UL RAW are allocated to one shared RAW (UL / DL RAW). FIG. 35 expands on the embodiment of FIG. 20 and illustrates an embodiment in which DL RAW and UL RAW are shared in transmission between Relay1 and STA and transmission between Relay2 and STA.
도 36은 일실시예에 따른 empty slot을 이용하는 leveled slot allocation 방법에서 서로 다른 주파수 서브밴드를 이용하여 RAW를 공유하는 방법의 또 다른 예를 도시한 도면이다.36 illustrates another example of a method of sharing RAW using different frequency subbands in a leveled slot allocation method using an empty slot according to an embodiment.
도 36은 도 21의 실시예를 확장한 것이며, Relay1와 STA간의 전송 및 Relay2와 STA 간의 전송에서, DL RAW, UL RAW를 하나의 공유된 RAW (DL/UL RAW) 로 할당한 실시예를 도시하고 있다. DL/UL RAW를 하나의 RAW로 할당함으로써 STA/Relay1, STA/Relay2 간의 UL slot, DL slot을 상황에 따라 유연하게 할당하여 RAW를 더욱 효율적으로 활용할 수 있다. 도 36에서는 Relay 1이 Relay 2보다 STA으로부터의 UL 전송이 더 많기 때문에 Relay 1에 더 많은 UL slot이 할당되었다.FIG. 36 illustrates an embodiment in which the DL RAW and UL RAW are allocated as one shared RAW (DL / UL RAW) in the transmission between Relay1 and STA and the transmission between Relay2 and STA. Doing. By allocating DL / UL RAW as one RAW, it is possible to flexibly allocate UL slots and DL slots between STA / Relay1 and STA / Relay2 according to circumstances so that RAW can be utilized more efficiently. In FIG. 36, since UL 1 has more UL transmissions from the STA than Relay 2, more UL slots are allocated to Relay 1.
<1.1 주파수 서브밴드를 이용한 RAW sharing시 시그널링 방법><1.1 Signaling Method for RAW Sharing Using Frequency Subbands>
주파수 서브밴드를 이용한 RAW sharing 시, Root AP는 Relay에게 특정 시간 구간(예를 들어, 특정 RAW 또는 특정 slot)에서 어느 주파수, 얼마만큼의 기간(duration) 동안의 전송이 어느 AP에게 할당되었는지에 관한 정보를 시그널링을 통해 알릴 수 있다.In RAW sharing using frequency subbands, the Root AP tells the Relay which AP, for which frequency, for which duration, transmissions have been allocated in a particular time interval (e.g., a specific RAW or a specific slot). Information can be informed via signaling.
Root AP는 Root Beacon의 RPS IE 또는 RPS IE와 유사한 새로운 IE를 이용하여 DRAW 동안 전송이 허용된 Relay에 관한 정보 및 전송 허용 기간에 관한 정보를 Relay에게 전송할 수 있다. 전송이 허용된 Relay에 관한 정보는 Relay의 AID, partial AID, 또는 partial BSSID 등의 정보를 알릴 수 있다.The Root AP may transmit information about a relay allowed for transmission during DRAW and information on a transmission allowance period to the relay using a Root Beacon RPS IE or a new IE similar to the RPS IE. Information about a relay that is allowed to transmit may inform information such as relay AID, partial AID, or partial BSSID.
예를 들어, 시그널링 방법은 아래 표 1에 기초하여 수행될 수 있다. 표 1은 DRAW Signaling (signaled in Root Beacon for level 0)을 나타낸다.For example, the signaling method may be performed based on Table 1 below. Table 1 shows DRAW Signaling (signaled in Root Beacon for level 0).
Root Beacon은 DRAW 할당 정보를 포함할 수 있다.Root Beacon may include DRAW allocation information.
표 1에 나타난 정보는 기존 RPS IE의 RAW Start Time, RAW Duration 정보를 그대로 이용하고, RPS IE에 DRAW indication, DRAW allocation 정보를 추가하여 사용하거나, 또는 이와 유사한 정보를 담은 새로운 IE를 정의하여 사용할 수도 있다.The information shown in Table 1 may use the RAW Start Time and RAW Duration information of the existing RPS IE, add DRAW indication and DRAW allocation information to the RPS IE, or define a new IE containing similar information. have.
Figure PCTKR2013011012-appb-I000001
Figure PCTKR2013011012-appb-I000001
Relay와 Root AP는 각 Relay가 이용하기로 Root AP와 협상한 채널 정보를 알고 있으므로, Root AP는 각 DRAW에서 어느 채널을 어느 Relay가 사용하도록 할당했는지에 관한 정보는 DRAW 단위로 알리지 않아도 된다. 예를 들어, Relay가 이용하기로 Root AP와 협상한 채널 정보는 특정 Relay에 대하여 전송이 허용된 채널 번호 또는 비트맵, 할당된 주파수 서브밴드를 포함한 광대역 전송이 허용되는지의 여부 등과 관련된 정보를 포함할 수 있다. 하지만, 새롭게 Root AP 또는 Relay에 연결하려는 STA 들에게 사용 가능 채널 및 Relay에 관한 정보를 전송하거나, RAW가 할당되지 않은 구간 또는 RAW 전송 구간이 남은 경우 남은 RAW 구간을 다른 STA이 사용할 수 있도록 하기 위해 Root AP는 Beacon에 채널별 릴레이 할당 비트맵 등을 포함하여 전송함으로써 채널 사용 가능 여부를 알릴 수도 있다.Since the relay and the root AP know channel information negotiated with the root AP for use by each relay, the root AP does not need to inform the DRAW unit about which channel is allocated to which relay in each DRAW. For example, the channel information negotiated with the Root AP for use by the relay includes information regarding channel numbers or bitmaps that allow transmission for a specific relay, whether wideband transmission including the assigned frequency subbands is allowed, etc. can do. However, in order to transmit information about available channels and relays to STAs newly connected to the Root AP or Relay, or to allow other STAs to use the remaining RAW section when RAW is not allocated or a RAW transmission section remains The Root AP may inform the Beacon of whether a channel is available by including a relay allocation bitmap for each channel.
Root AP는 DRAW sharing 사용시 자기 자신에게 서브 채널을 할당할 수 있다. 이 경우, DRAW 시그널링 정보에 Root AP의 AID, partial AID, BSSID, 또는 Partial BSSID가 포함될 수 있고, Root Beacon에 Root AP와 Root AP에 직접 전송을 하는 Relay 또는 STA 간의 전송을 위한 RAW/Slot 할당 정보가 포함될 수 있다.Root AP can allocate subchannels to itself when using DRAW sharing. In this case, the DRAW signaling information may include the AID, partial AID, BSSID, or partial BSSID of the root AP, and RAW / Slot allocation information for transmission between a relay or STA that transmits directly to the root AP and the root AP in the root beacon. May be included.
PRAW 형태가 이용되는 경우, PRAW 여부를 나타내는 1 비트와, PRAW의 주기에 관한 정보가 Root Beacon에 추가로 포함될 수 있다. 예를 들어, PRAW의 주기는 short Beacon의 몇 배수인지를 나타내는 정수값일 수 있다. 또는, PRAW 여부를 나타내는 1 비트를 생략하고, 표 1의 항목 이외에 PRAW의 주기에 관한 정보만 Root Beacon에 추가로 포함될 수 있다.When the PRAW type is used, one bit indicating whether or not a PRAW and information about a period of the PRAW may be additionally included in the root beacon. For example, the period of the PRAW may be an integer value indicating how many times the short beacon. Alternatively, one bit indicating whether a PRAW is omitted may be omitted, and only information about a period of the PRAW may be additionally included in the root beacon, in addition to the items in Table 1.
DRAW Sharing을 하지 않는 경우의 DRAW 시그널링은, DRAW allocation에 전송이 허용된 Relay가 하나만 지정된다는 차이점을 제외하면, 위 기재된 방법과 동일하게 수행될 수 있다.DRAW signaling when DRAW sharing is not performed may be performed in the same manner as described above, except that only one relay that is allowed to be transmitted is designated in DRAW allocation.
Strictly disallowed 비트는 할당된 구간 중 특정 Relay 또는 STA들의 전송을 명시적으로 금지할 지 여부를 나타낸다. Strictly disallowed 비트가 1인 경우, strictly disallow된 Relay 및 STA 정보가 DRAW에 포함될 수 있다. Strictly disallowed 비트를 이용하여 Relay BSS 전체에 대한 disallow, 또는 Relay BSS중 일부 STA에 대한 disallow 여부를 표시할 수 있다.The strictly disallowed bit indicates whether to explicitly prohibit transmission of a specific relay or STA among the allocated intervals. If the strictly disallowed bit is 1, the strictly disallowed relay and STA information may be included in the DRAW. The strictly disallowed bit may be used to indicate whether to disallow the entire relay BSS or to disallow some STAs of the relay BSS.
다음의 표 2는 Relay beacon에 포함되는 Empty RAW signaling 정보를 나타낸다.Table 2 below shows Empty RAW signaling information included in a relay beacon.
Figure PCTKR2013011012-appb-I000002
Figure PCTKR2013011012-appb-I000002
Empty RAW는 level 1에서 DRAW 구간 밖에서 클러스터 내의 STA 전송이 금지되는 구간을 나타낸다. Empty RAW로 표시된 경우, 클러스터 내의 STA은 RAW Start Time, RAW duration 으로 명시된 기간 동안 데이터 전송이 금지된다.Empty RAW indicates an interval in which STA transmission in the cluster is prohibited outside the DRAW interval at level 1. If marked as Empty RAW, STAs in the cluster are prohibited from transmitting data for the period specified as RAW Start Time, RAW duration.
다른 예로, AP가 Power Save에 들어가는 구간을 명시적으로 나타낼 수 있다. RPS IE에 AP Power Save 비트가 1로 설정되면 해당 RAW 구간에서는 AP가 sleep하는 것을 나타내고, STA은 AP에 데이터를 전송을 하지 않는다. 이러한 AP Power Save 비트를 이용하여 Empty RAW 시그널링을 수행할 수도 있다. Empty RAW를 설정할 구간을 RAW로 설정하고, AP Power Save 비트를 1로 설정하면, STA들이 DRAW 또는 RAW 구간에서 전송을 하지 않는다.As another example, an interval in which the AP enters a power save may be explicitly indicated. If the AP Power Save bit is set to 1 in the RPS IE, this indicates that the AP sleeps in the corresponding RAW period, and the STA does not transmit data to the AP. Empty RAW signaling may be performed using the AP Power Save bit. If you set the interval for setting Empty RAW to RAW and set the AP Power Save bit to 1, STAs do not transmit in the DRAW or RAW interval.
반대로, Empty RAW 시그널링 방법을 이용하여 AP Power Save를 명시적으로 나타낼 수 있다. AP가 Power Save를 하는 구간을 Empty RAW로 설정하면, STA은 Empty RAW로 설정한 구간에 전송을 하지 않기 때문에 AP Power Save를 명시적으로 나타낼 수 있다. 이 때, Empty RAW 정의가 기존 RPS IE 정의보다 훨씬 비트 수가 적기 때문에 AP Power Save indication에 Empty RAW를 적용하는 경우가 RPS IE의 길이를 보다 줄일 수 있다.On the contrary, the AP power save can be explicitly indicated by using the Empty RAW signaling method. If the AP sets the power save interval to Empty RAW, the STA may explicitly indicate the AP power save since the STA does not transmit the interval set to Empty RAW. In this case, since the empty RAW definition has much fewer bits than the existing RPS IE definition, the application of empty RAW to the AP Power Save indication can further reduce the length of the RPS IE.
또 다른 실시예로, Empty RAW indication 비트와 AP Power Save 비트 2개를 모두 Empty RAW에 표시할 수 있다. Empty RAW에서는 Relay에 연결된 STA과 Relay 간의 전송이 허용되지 않지만, Relay가 Empty RAW에서는 Root AP와의 전송을 수행하며 실제로는 Power Save를 하지 않을 수가 있기 때문에, Empty RAW indication 비트와 AP Power Save 비트를 이용함으로써 실제 Relay의 Sleep 여부를 명확하게 나타낼 수 있다.In another embodiment, both the Empty RAW indication bit and the AP Power Save bit may be displayed in Empty RAW. In Empty RAW, transmission between the STA connected to the Relay and the Relay is not allowed, but since the Relay performs transmission with the Root AP in Empty RAW and may not actually save power, the Empty RAW indication bit and the AP Power Save bit are used. By doing so, it is possible to clearly indicate whether or not the actual relay is sleeping.
Empty RAW를 명확하게 주기적으로 할당하는 경우, PRAW 형태가 이용될 수 있다. PRAW 형태가 이용되는 경우, PRAW 여부를 나타내는 1 비트와, PRAW의 주기 정보가 Root Beacon에 추가로 포함될 수 있다. 예를 들어, PRAW의 주기는 short Beacon의 몇 배수인지를 나타내는 정수값일 수 있다. 또는, PRAW 여부를 나타내는 1 비트를 생략하고, 표 1의 항목 이외에 PRAW의 주기에 관한 정보만 Root Beacon에 추가로 포함될 수 있다.In the case of an explicit allocation of Empty RAW periodically, the PRAW form may be used. When the PRAW type is used, one bit indicating whether or not a PRAW and period information of the PRAW may be additionally included in the root beacon. For example, the period of the PRAW may be an integer value indicating how many times the short beacon. Alternatively, one bit indicating whether a PRAW is omitted may be omitted, and only information about a period of the PRAW may be additionally included in the root beacon, in addition to the items in Table 1.
명확하게 DRAW 밖에서 클러스터 내의 STA 전송을 금지하는 경우에는, Empty RAW는 이용되지 않고, Relay가 Relay beacon 내에 1 비트를 할당하여 명시적으로 Relay에 의해 할당된 DRAW 또는 RAW 구간 이외에는 전송이 금지되는 지의 여부를 나타낼 수 있다. 예를 들어, 할당된 비트가 1이면, STA은 명시적으로 RAW 또는 DRAW가 설정된 구간 외에는 전송을 할 수가 없다.If explicitly prohibiting STA transmission within the cluster outside of DRAW, Empty RAW is not used and the Relay allocates 1 bit in the Relay beacon to indicate that transmission is prohibited except for the DRAW or RAW interval explicitly assigned by the Relay. Can be represented. For example, if the allocated bit is 1, the STA cannot transmit other than an interval in which RAW or DRAW is explicitly set.
다른 예로, AP가 Power Save에 들어가는 구간을 명시적으로 나타낼 수 있다. short beacon, beacon 등에서 AP Power Save 비트가 1로 설정되면 STA은 명시적으로 할당된 RAW 구간 외에는 AP로의 전송이 금지될 수 있다. AP Power Save 비트를 이용하여 Relay에서의 DRAW 혹은 RAW 구간 이외에 전송이 금지되는지의 여부를 나타낼 수 있다. 명확하게 Relay에서의 DRAW 혹은 RAW 구간 이외에 전송을 금지시킬 경우, Relay beacon 내에 AP Power Save 비트를 1로 설정하면 STA들이 DRAW 혹은 RAW 구간에 전송을 하지 않는다.As another example, an interval in which the AP enters a power save may be explicitly indicated. If the AP Power Save bit is set to 1 in a short beacon or a beacon, the STA may be prohibited from transmitting to the AP except for an explicitly allocated RAW period. The AP Power Save bit can be used to indicate whether transmission is prohibited other than the DRAW or RAW period in the relay. Clearly, if the transmission is prohibited except for the DRAW or RAW period in the relay, STAs do not transmit in the DRAW or RAW period by setting the AP Power Save bit to 1 in the relay beacon.
레벨 1에서 릴레이가 STA에게 할당하는 RAW 정보는 기존 802.11ah의 RAW 정보와 유사하다. 클러스터 내에서 FST가 사용되는 경우, 기존 802.11ah 규격과 마찬가지로 Relay beacon의 RPS IE에 FST 전송을 위한 primary channel 정보가 포함될 수 있다.The RAW information allocated by the relay to the STA at level 1 is similar to the RAW information of the existing 802.11ah. When FST is used in a cluster, primary channel information for FST transmission may be included in the RPS IE of the relay beacon as in the existing 802.11ah standard.
이외에, 다음과 같은 변형된 예들(Option 1, Option 2)도 가능하다. 아래의 설명에서 level 0에서의 empty slot 또는 empty RAW는 Delegated slot 또는 DRAW를 나타낸다.In addition, the following modified examples (Option 1, Option 2) are also possible. In the following description, empty slot or empty RAW at level 0 indicates a delegated slot or DRAW.
<Option 1 - empty slot (Delegated slot)을 사용하는 경우의 예><Option 1-Example of using an empty slot (Delegated slot)>
Empty slot을 사용하는 경우 RPS IE에 다음과 같은 정보가 포함될 수 있다.When using an empty slot, RPS IE may include the following information.
1) RAW Start Time: RAW Start Time은 공유된 empty (delegated) slot을 포함하고 있는 RAW의 시작 시간을 나타낸다.1) RAW Start Time: The RAW Start Time represents the start time of RAW that contains a shared empty (delegated) slot.
2) RAW Duration: RAW Duration은 공유된 empty (delegated) slot을 포함하고 있는 RAW의 기간(Duration)을 나타낸다.2) RAW Duration: RAW Duration represents the Duration of RAW that contains a shared empty (delegated) slot.
3) Empty (delegated) slot definition: Empty (delegated) slot definition은 empty (delegated) slot의 시작 시점과 끝 시점을 나타낸다. 예를 들어, Empty (delegated) slot definition은 시작 slot 번호, 끝 slot 번호 등을 포함할 수 있다. 같은 RAW 안에 여러 개의 empty (delegated) slot 그룹이 있는 경우, 위의 empty (delegated) slot의 시작 시점과 끝 시점을 리스트로 나타낼 수 있다. Empty (delegated) slot definition이 Root AP가 empty (delegated) slot을 사용한다고 나타낸 경우, Empty (delegated) Slot allocation field가 존재해야 하고, empty slot allocation field에 나타난 Relay AP 들과 해당 Relay AP에 연결된 STA 간의 전송만이 공유된 empty slot에서 허용됨을 나타낼 수 있다. 만약, Relay AP가 Empty (delegated) slot definition 필드를 설정한다면, empty (delegated) slot allocation field는 필요없을 수 있고, 이는 Relay AP와 Root AP 간의 전송만이 허용됨을 나타낼 수 있다. 명확하게 STA의 전송을 금지시키는 경우에만 level 1에서의 empty RAW indication이 사용될 수 있다.3) Empty (delegated) slot definition: An empty (delegated) slot definition indicates the start and end times of an empty (delegated) slot. For example, an empty (delegated) slot definition may include a start slot number and an end slot number. If there are several empty (delegated) slot groups in the same RAW, the start and end times of the above empty (delegated) slots can be represented as a list. If an empty (delegated) slot definition indicates that the Root AP uses an empty (delegated) slot, an Empty (delegated) Slot allocation field must exist, and between the relay APs indicated in the empty slot allocation field and an STA connected to the corresponding relay AP. Only transmissions can indicate that they are allowed in a shared empty slot. If the relay AP configures an empty (delegated) slot definition field, an empty (delegated) slot allocation field may not be necessary, which may indicate that only transmission between the relay AP and the root AP is allowed. Clearly, the empty RAW indication at level 1 may be used only when prohibiting transmission of the STA.
4) Empty (delegated) slot allocation: Empty (delegated) slot allocation은 Root AP의 RPS IE 또는 DL/UL allocation frame에만 사용될 수 있다. Empty (delegated) slot allocation은 empty (delegated) slot에서 연결된 STA들과 전송이 허용되는 Relay AP의 리스트 및 Relay AP가 사용할 수 있는 주파수 서브밴드 정보를 포함할 수 있다. 서브밴드 정보는 주파수 서브밴드를 사용한 RAW sharing이 사용되는 경우에만 포함될 수 있다. 공간적으로 분리된 클러스터들 간의 동시 전송 또는 시간 영역에서 RAW sharing을 할 경우 주파수 서브밴드에 관한 정보는 포함되지 않아도 된다. Root AP와 Relay는 사전에 주파수 서브밴드 정보를 공유하거나 또는 Root Beacon에 밴드 할당 맵이 포함되고 밴드 할당 정보는 포함되지 않게 할 수도 있다. 예를 들어, 전송이 허용되는 Relay AP의 리스트에는 전송이 허용된 Relay AP 들의 AID, partial AID, BSSID, partial BSSID 등의 정보가 포함될 수 있고, Relay AP가 사용할 수 있는 주파수 서브밴드 정보에는 전송이 허용된 채널 번호 또는 비트맵, 또는 할당된 주파수 서브밴드를 포함한 광대역 전송이 허용되는지의 여부 등이 포함될 수 있다. Root AP는 선택한 주파수 서브밴드보다 더 넓은 주파수 서브밴드로의 전송을 허용하는 경우, 비트맵 등을 이용하여 사용이 허용되는 채널 혹은 밴드폭 등을 함께 나타내어 Relay들 간에 중복적으로 사용하는 채널이 없도록 해야한다.4) Empty (delegated) slot allocation: Empty (delegated) slot allocation can be used only for RPS IE or DL / UL allocation frame of Root AP. An empty (delegated) slot allocation may include a list of relay APs that are allowed to transmit to STAs connected in an empty (delegated) slot and frequency subband information that can be used by the relay AP. Subband information may be included only when RAW sharing using frequency subbands is used. When performing simultaneous transmission or spatial sharing between spatially separated clusters or RAW sharing in a time domain, information about frequency subbands does not need to be included. The Root AP and the Relay may share frequency subband information in advance or may include a band allocation map in the root beacon and not include the band allocation information. For example, the list of relay APs that are allowed to transmit may include information such as AID, partial AID, BSSID, partial BSSID, etc. of the relay APs that are allowed to transmit. Allowed channel number or bitmap, or whether wideband transmission including the assigned frequency subband is allowed or the like. When the Root AP allows transmission to a wider frequency subband than the selected frequency subband, it indicates the channel or bandwidth that is allowed to be used by using a bitmap, so that there is no overlapping channel among the relays. Should be.
위의 정보 이외에, RPS IE에 Slot definition, Group/Resource allocation frame indication, Access restricted to paged STA only 등의 정보가 더 포함될 수 있다.In addition to the above information, the RPS IE may further include information such as slot definition, Group / Resource allocation frame indication, Access restricted to paged STA only.
<Option 2 - empty RAW (DRAW)을 사용하는 경우의 예><Option 2-Example when using empty RAW (DRAW)>
Empty RAW(DRAW)을 사용하는 경우 RPS IE는 다음과 같은 정보가 포함될 수 있다.When using Empty RAW (DRAW), the RPS IE may include the following information.
1) RAW Start Time: RAW Start Time은 공유된 RAW의 시작 시간을 나타낸다.1) RAW Start Time: The RAW Start Time represents the start time of the shared RAW.
2) RAW Duration: RAW Duration은 공유된 RAW의 구간(Duration)을 나타낸다.2) RAW Duration: RAW Duration represents the duration of shared RAW.
3) Empty RAW (DRAW) indication: Empty RAW (DRAW) indication은 RAW가 empty RAW (DRAW)로 사용되는지 여부를 나타낸다. Empty RAW (DRAW) indication이 Root AP가 empty RAW (DRAW)를 사용한다고 나타내는 경우에는, Empty RAW (DRAW) allocation field가 존재해야 하고, empty RAW (DRAW) allocation field에 나타난 Relay AP들과 해당 Relay AP들에 연결된 STA 간의 전송만이 공유된 empty RAW에서 허용됨을 나타낸다. Relay AP가 Empty RAW (DRAW) indication 필드를 설정하는 경우라면, empty RAW (DRAW) allocation 필드는 필요 없을 수 있고, 이는 Relay AP와 Root AP 간의 전송만이 허용됨을 나타낼 수 있다. 명확하게 STA의 전송을 금지시키는 경우에만 level 1에서의 empty RAW indication이 사용될 수 있다.3) Empty RAW (DRAW) indication: The Empty RAW (DRAW) indication indicates whether RAW is used as empty RAW (DRAW). If the Empty RAW (DRAW) indication indicates that the Root AP uses empty RAW (DRAW), the Empty RAW (DRAW) allocation field must exist, and the Relay APs and corresponding Relay APs shown in the empty RAW (DRAW) allocation field. Only transmissions between STAs connected to the nodes are allowed in the shared empty RAW. If the relay AP sets the Empty RAW (DRAW) indication field, the empty RAW (DRAW) allocation field may not be necessary, which may indicate that only transmission between the relay AP and the root AP is allowed. Clearly, the empty RAW indication at level 1 may be used only when prohibiting transmission of the STA.
4) Empty RAW (DRAW) allocation: Empty RAW (DRAW) allocation은 Root AP의 RPS IE에만 사용될 수 있다. Empty RAW (DRAW) allocation은 empty RAW (DRAW)에서 연결된 STA들과 전송이 허용되는 Relay AP의 리스트 및 Relay AP가 사용할 수 있는 주파수 서브밴드 정보를 포함할 수 있다. 서브밴드 정보는 주파수 서브밴드를 사용한 RAW sharing이 사용되는 경우에만 포함될 수 있다. 공간적으로 분리된 클러스터들 간의 동시 전송 또는 시간 영역에서 RAW sharing을 할 경우 주파수 서브밴드에 관한 정보는 포함되지 않아도 된다. 예를 들어, 전송이 허용되는 Relay AP의 리스트에는 전송이 허용된 Relay AP 들의 AID, partial AID, BSSID, partial BSSID 등의 정보가 포함될 수 있고, Relay AP가 사용할 수 있는 주파수 서브밴드 정보에는 전송이 허용된 채널 번호 또는 비트맵, 또는 할당된 주파수 서브밴드를 포함한 광대역 전송이 허용되는지의 여부 등이 포함될 수 있다. Root AP와 Relay는 사전에 주파수 서브밴드 정보를 공유하거나 또는 Root Beacon에 밴드 할당 맵이 포함되고 밴드 할당 정보는 포함되지 않게 할 수도 있다. Root AP는 선택한 주파수 서브밴드보다 더 넓은 주파수 서브밴드로의 전송을 허용하는 경우, 비트맵 등을 이용하여 사용이 허용되는 채널 혹은 밴드폭 등을 함께 나타내어 Relay들 간에 중복적으로 사용하는 채널이 없도록 해야한다.4) Empty RAW (DRAW) allocation: Empty RAW (DRAW) allocation can only be used for RPS IE of Root AP. Empty RAW (DRAW) allocation may include a list of relay APs that are allowed to transmit with STAs connected in empty RAW (DRAW) and frequency subband information that may be used by the relay AP. Subband information may be included only when RAW sharing using frequency subbands is used. When performing simultaneous transmission or spatial sharing between spatially separated clusters or RAW sharing in a time domain, information about frequency subbands does not need to be included. For example, the list of relay APs that are allowed to transmit may include information such as AID, partial AID, BSSID, partial BSSID, etc. of the relay APs that are allowed to transmit. Allowed channel number or bitmap, or whether wideband transmission including the assigned frequency subband is allowed or the like. The Root AP and the Relay may share frequency subband information in advance or may include a band allocation map in the root beacon and not include the band allocation information. When the Root AP allows transmission to a wider frequency subband than the selected frequency subband, it indicates the channel or bandwidth that is allowed to be used by using a bitmap, so that there is no overlapping channel among the relays. Should be.
<2. 클러스터들이 공간적으로 분리(Spatially separated)된 경우에 RAW sharing을 수행하는 방법><2. How to perform RAW sharing when clusters are spatially separated>
도 37은 일실시예에 따른 클러스터들이 공간적으로 분리된(spatially separated) 경우의 RAW 공유 방법의 일례를 도시한 도면이다. 도 37의 실시예는 empty RAW를 사용한 경우의 예이며, empty slot을 사용한 경우에도 유사한 방법으로 확장할 수 있다. 영역(3310)은 클러스터들이 공간적으로 분리되어 동시에 전송되는 구간을 나타낸다. 시그널링 방법은 주파수 서브밴드를 이용한 RAW sharing시 시그널링 방법과 유사하다.37 illustrates an example of a RAW sharing method when clusters are spatially separated according to an embodiment. 37 shows an example of using an empty RAW, and can be extended in a similar manner even when using an empty slot. The region 3310 represents a section in which clusters are spatially separated and transmitted simultaneously. The signaling method is similar to the signaling method in RAW sharing using frequency subbands.
<3. 시간 영역(time domain)을 이용하여 RAW sharing을 수행하는 방법><3. How to perform RAW sharing using the time domain>
도 38은 일실시예에 따른 시간 영역을 이용하여 RAW sharing을 수행하는 방법의 일례를 도시한 도면이다. 도 38의 일실시예는 empty RAW를 사용한 경우의 예이며, empty slot을 사용한 경우도 유사한 방법으로 확장할 수 있다. 영역(3410)은 시간 영역에서 순차적으로 전송을 하여 RAW를 공유하는 구간을 나타낸다.38 illustrates an example of a method of performing RAW sharing using a time domain according to an embodiment. 38 illustrates an example of using an empty RAW, and may be extended in a similar manner using an empty slot. The region 3410 represents a section in which RAW is shared by sequentially transmitting in the time domain.
공유된 RAW 또는 slot에서, Relay 또는 STA은 경쟁을 통해 순차적으로 전송을 한다. 시간 영역을 이용하여 RAW sharing을 수행하는 방법은 각 Relay에 연결된 STA의 수가 많지 않거나, 또는 전송량이 많지 않을 경우에 이용할 수 있는 방법이다. 시그널링 방법은 주파수 서브밴드를 이용한 RAW sharing시 시그널링 방법과 유사하다.In a shared RAW or slot, a Relay or STA sequentially transmits through contention. The method of performing RAW sharing using the time domain is a method that can be used when the number of STAs connected to each relay is not large or the transmission amount is not large. The signaling method is similar to the signaling method in RAW sharing using frequency subbands.
DRAW 전송 방식에서 고려할 수 있는 또 다른 방법은, Root AP가 DRAW를 Relay BSS 내의 전송을 위한 구간으로 설정하지 않고, Relay가 Root AP와 UL/DL 전송 구간까지 DRAW로 할당하는 방법이다. 이 방법을 사용할 경우, Relay는 DRAW 범위 안에서 Relay 내에서의 레벨 1 전송뿐만 아니라 Relay에서 Root AP로의 전송까지 Relay가 직접 RAW/slot을 적절히 할당할 수 있다.Another method that can be considered in the DRAW transmission method is a method in which the Root AP does not set the DRAW as a section for transmission in the Relay BSS and allocates the DRAW to the Root AP and the UL / DL transmission section in the DRAW. Using this method, the relay can properly allocate RAW / slots directly from the relay, from the relay to the Root AP, as well as level 1 transmission within the relay within the range of DRAW.
Relay beacon에 Relay에서 Root AP로의 UL/DL 전송 RAW/slot이 표시되며, Root AP로의 전송 slot indication은 RPS IE에 Relay BSS에 속한 STA과 유사한 방법으로 표시될 수 있다. 예를 들어, slot 할당 시 Relay에서 Root AP로의 전송에는 Root AP의 AID가 표시될 수 있고, Root AP로의 UL/DL 전송은 RPS IE에서 해당 Root AP의 AID에 대한 DL/UL 전송 등으로 표시될 수 있다.The UL / DL transmission RAW / slot from the relay to the Root AP is displayed on the relay beacon, and the transmission slot indication to the Root AP may be displayed in a similar manner to the STA belonging to the Relay BSS in the RPS IE. For example, when the slot is allocated, the relay may transmit the AID of the Root AP to the Root AP, and the UL / DL transmission to the Root AP may be indicated as DL / UL transmission for the AID of the Root AP in the RPS IE. Can be.
<(B) Root AP가 Relay 전송 구간, 전송 밴드 등의 자원을 RAW 형태가 아닌 별도의 자원 할당 정보를 사용하여 Root AP의 RAW와는 독립적으로 Relay에게 자원을 할당하는 방법(Relay Resource Allocation IE를 사용하는 방법)><(B) Root AP allocates resources such as relay transmission section and transmission band to relay independently of RAW of Root AP by using resource allocation information other than RAW type (Relay Resource Allocation IE) How to)
위 (A)의 DRAW를 사용하는 방법은 Root AP가 RAW 형태로 설정한 구간을 Relay에 할당하는 것으로, 기존의 RAW 시그널링 방법을 단순하게 확장하여 사용할 수 있고, 전송 구간 보호를 위한 Empty RAW 시그널링을 DRAW를 통해 자원 할당과 동시에 할 수 있는 장점을 가지고 있다. Relay들이 Root AP와 다른 채널을 이용할 경우, Relay들은 자신이 할당된 주파수 서브밴드에서 Root AP와 독립적으로 전송을 할 수 있으므로, Relay의 전송 구간이 Root AP의 RAW에 기초하여 결정될 필요는 없다. (B)의 방법에서는 Root AP가 Root AP의 RAW 할당과는 독립적인 별도의 자원 할당 정보를 이용하여 Relay에게 자원을 할당할 수 있고, 이에 따라 서로 다른 주파수 서브밴드에 있는 Relay, Root AP 들이 서로 독립된 구간에서 전송을 할 수 있다. The method of using DRAW in the above (A) is to allocate the section set by the Root AP to the relay, and it is possible to simply extend the existing RAW signaling method and to use Empty RAW signaling to protect the transmission section. DRAW has the advantage of simultaneous resource allocation. When the relays use a different channel from the root AP, the relays can transmit independently of the root AP in their assigned frequency subbands, so the transmission interval of the relay does not need to be determined based on the RAW of the root AP. In the method of (B), the Root AP can allocate resources to the relay by using separate resource allocation information independent of the RAW allocation of the Root AP, and thus, the Relay and Root APs in different frequency subbands Transmission can be performed in an independent section.
아래에서는 여러 주파수 서브밴드를 이용하는 일반적인 경우에 대해 설명하도록 하며, 이는 싱글 밴드의 경우도 포함하는 방법이다.In the following, a general case of using multiple frequency subbands will be described, which includes a single band case.
Root AP는 Relay과 STA 간의 전송에 필요한 자원 할당 정보를 별개의 Resource allocation IE 형태로 Root Beacon에 포함하여 전송할 수 있다. 멀티 밴드 전송까지 고려한 Relay 동작의 경우, Root AP는 특정 시간에 동일한 주파수 서브밴드에 서로 다른 Relay 클러스터의 전송이 최소화되도록 각 Relay에 대한 자원을 할당할 수 있다. Root AP는 동시 전송을 가능하게 하기 위해 특정 시간에 가능한 한 서로 다른 Relay 들이 서로 다른 주파수 서브밴드를 사용하여 클러스터 내에서의 전송을 하도록 자원을 할당할 수 있다.The Root AP can transmit resource allocation information necessary for transmission between the relay and the STA in the Root Beacon in a separate Resource allocation IE form. In case of relay operation considering multiband transmission, Root AP can allocate resources for each relay to minimize transmission of different relay clusters in the same frequency subband at a specific time. Root APs can allocate resources to allow different relays to transmit within the cluster using different frequency subbands as much as possible at any given time to enable simultaneous transmission.
할당할 자원은 각 Relay의 클러스터 내 전송에 대한 전송 허용 시작 시간 및 전송 구간 길이, 각 Relay가 클러스터 내 전송을 사용할 경우 사용할 채널 정보 등을 포함할 수 있다.The resource to be allocated may include transmission allowable start time and transmission interval length for each relay in the cluster, channel information to be used when each relay uses the intra-cluster transmission.
Relay는 STA로서 Root AP에 연결한 후, Root AP에게 Relay BSS를 셋업(setup)하고 Relay AP로 동작할 것을 요청한 후, Root AP로부터 승인을 받은 경우 Relay AP로서 동작할 수 있다.After connecting to the Root AP as a STA, the Relay may request that the Root AP set up a Relay BSS and operate as a Relay AP, and then, when approved by the Root AP, operate as a Relay AP.
Relay가 STA로서 Root AP에 연결을 요청할 때, 또는 Root AP에게 Relay AP로 동작할 것을 요청할 때, Relay는 Relay가 클러스터 전송에 사용하고자 하는 채널 및 밴드폭, 프라이머리 채널 정보 등의 채널 관련 정보, Relay Beacon interval, 초기 Relay BSS 전송 구간(duration) 등의 자원 할당 요구 사항을 Root AP에 전달할 수 있다. Relay는 다른 Relay BSS에 대한 분리(separation) 정도에 대한 정보도 자원 할당 요구 사항과 함께 Root AP에 전송할 수 있다. Relay는 Root AP로부터 할당받은 채널 및 Relay beacon Interval을 사용하는 Relay BSS를 셋업하고, 정해진 시점에 Relay Beacon을 전송하여 Relay AP로 동작할 수 있다. Relay는 Root AP에 연결될 때, 또는 Root AP에게 Relay AP로 동작할 것을 요청할 때, 또는 그 이후에 필요한 전송 시간을 결정할 수 있는 정보를 Root AP에 전송할 수 있다. 예를 들어, Relay는 Relay에 연결된 STA들의 mean data rate, target wake time, 또는 wake 주기 등의 정보를 Root AP에 전송할 수 있다. Root AP는 Relay로부터 수신한 정보에 기초하여 Relay에 적절한 전송 구간을 할당할 수 있다. Root AP는 Relay로부터 수신한 다른 relay BSS에 대한 분리 정도에 대한 정보에 기초하여 서로 공간적으로 분리된 Relay들에 같은 전송 구간을 할당할 수도 있다. 또한, Relay AP는 주기적 또는 비주기적으로 다른 Relay BSS와의 공간적 분리 정도를 측정하고, 다른 Relay BSS와의 공간적 분리 정도가 미리 설정된 기준 이상 변했을 경우, 변경된 내용을 Root AP에 피드백(feedback)할 수 있다. 예를 들어, Relay AP는 기존에 분리되어 있던 다른 Relay BSS로부터 간섭을 많이 받게 되거나, 또는 그 반대의 경우, 새로운 Relay BSS가 감지되었을 경우, 이에 대해 Root AP에 알릴 수 있다. Root AP는 이러한 Relay들 간의 공간적 분리 정보에 기초하여 새롭게 서로 공간적으로 분리된 Relay들의 전송을 동일 구간에 할당할 수도 있다.When the Relay requests to connect to the Root AP as an STA or requests the Root AP to operate as a Relay AP, the Relay provides channel related information such as channel and bandwidth and primary channel information that the Relay intends to use for cluster transmission, Resource allocation requirements such as a relay beacon interval and an initial relay BSS transmission duration may be transmitted to the root AP. The relay can also transmit information on the degree of separation for other relay BSSs to the Root AP along with resource allocation requirements. The relay can operate as a relay AP by setting up a relay BSS using a channel allocated from the root AP and a relay beacon interval and transmitting a relay beacon at a predetermined time. When the relay is connected to the Root AP, or requests the Root AP to operate as a Relay AP, or after that, it can transmit information to the Root AP to determine the required transmission time. For example, the relay may transmit information such as mean data rate, target wake time, or wake period of STAs connected to the relay to the root AP. The Root AP may allocate an appropriate transmission interval to the relay based on the information received from the relay. Root AP may allocate the same transmission interval to the relays spatially separated from each other based on the information on the degree of separation for the other relay BSS received from the relay. In addition, the relay AP may periodically or aperiodically measure the degree of spatial separation with other relay BSSs, and if the degree of spatial separation with other relay BSSs is changed by more than a preset reference, the relay AP may feed back the changed contents to the root AP. For example, the relay AP may receive a lot of interference from another relay BSS that has been previously separated, or vice versa, when a new relay BSS is detected, it may notify the root AP about this. The Root AP may allocate transmissions of newly spatially separated relays to the same section based on spatial separation information between the relays.
Relay와 Root AP는 Relay에 대한 채널 할당 정보를 서로 알고 있고, 매 Beacon마다 전달하는 자원 할당 정보의 길이를 최소화하기 위해 각 Relay에 대한 채널 할당 정보는 자원 할당 정보에 포함시키지 않고 전송하는 것도 가능하다. 각 Relay에 할당된 채널 정보는 매 Beacon마다 전달하는 자원 할당 정보에 포함될 수 있다. Relay들이 서로 다른 Relay들의 채널 할당 정보를 Root Beacon에 기초하여 식별할 수 있고, 자신과 동일한 채널에 할당된 Relay를 확인할 수 있다.The relay and the root AP know the channel allocation information for the relay, and in order to minimize the length of the resource allocation information delivered to each beacon, the channel allocation information for each relay may be transmitted without being included in the resource allocation information. . Channel information allocated to each relay may be included in resource allocation information delivered for each beacon. The relays can identify channel assignment information of different relays based on the root beacon and check the relays assigned to the same channel as their own.
이러한 자원 할당이 매 (short) Beacon 구간마다 동일한 경우, 매번 자원 할당 정보를 전송하지 않고, Long Beacon 등에 자원 할당에 대한 주기 정보가 포함되어 전송될 수도 있다. 이 경우, 자원 할당이 변경되는 경우에만 변경된 자원 할당 정보가 전송되면 된다.When such resource allocation is the same in every beacon section, the resource allocation information may not be transmitted every time, but may be transmitted by including the period information on resource allocation in the long beacon and the like. In this case, the changed resource allocation information only needs to be transmitted when the resource allocation is changed.
Root AP는 자원 할당 정보를 Root Beacon에 포함시켜 전송할 수 있고, Relay는 Root Beacon에 포함된 자원 할당 정보에 기초하여 클러스터에 대한 전송이 허용된 전송 시간에 대해 RAW를 할당할 수 있다. Relay는 STA에 대한 RAW 할당 정보를 Relay Beacon에 포함시킨 후, 자신에게 연결된 STA들에게 전송할 수 있다. 할당된 자원 내에서 Relay 및 STA 간의 전송이 수행될 수 있다. Relay는 Relay Beacon 전송 채널, 클러스터 내에서 STA과 전송하는 채널은 Root AP와 사전에 협상하여 할당된 채널을 이용할 수 있다. 채널 할당 정보는 Relay 자원 할당 정보를 이용하여 나타내거나 또는 생략될 수도 있다. Relay와 Root AP 간의 전송에는 Root AP에 의해 할당된 채널이 이용될 수 있다. Relay와 Root AP 간의 전송은 Root AP가 Root Beacon에 RAW로 할당한 전송 구간에 기초하여 수행될 수 있다. The Root AP may include resource allocation information in the Root Beacon and transmit it, and the Relay may allocate RAW for the transmission time allowed for transmission to the cluster based on the resource allocation information included in the Root Beacon. The relay may include the RAW allocation information for the STA in the relay beacon and transmit the same to the STAs connected thereto. Transmission between the relay and the STA may be performed in the allocated resource. The relay may use a relay beacon transmission channel and a channel transmitted with an STA in a cluster may negotiate with a root AP in advance and use an allocated channel. Channel allocation information may be indicated or omitted using relay resource allocation information. The channel allocated by the root AP may be used for transmission between the relay and the root AP. Transmission between the relay and the root AP may be performed based on a transmission interval allocated by the root AP to the root beacon in RAW.
위 방법에서도 방법 (A)와 동일하게 leveled 방법이 사용될 수 있다. 즉, Root AP는 Relay 클러스터에 대한 자원만 할당하고, Relay 클러스터 내에서의 Relay에 연결된 STA의 RAW는 할당하지 않을 수 있다. Root AP는 Root AP에 직접 연결된 STA 및 Relay에 대한 RAW만 할당하고, 각 Relay에 연결된 STA에 대한 RAW 할당은 각 Relay가 자신이 할당받은 전송 채널, 전송 구간 등의 자원 내에서 할당할 수 있다.In the above method, the leveled method may be used in the same manner as the method (A). That is, the root AP may allocate only resources for the relay cluster and not allocate RAW of the STA connected to the relay in the relay cluster. The Root AP allocates only RAWs for STAs and relays directly connected to the Root AP, and RAW allocations for STAs connected to each relay can be allocated within resources such as a transmission channel and a transmission interval allocated by each relay.
RAW/slot 할당 정보는 Relay에 연결된 STA은 Relay Beacon에 기초하여 확인될 수 있고, Root AP에 직접 연결된 STA, Relay는 Root Beacon에 기초하여 확인될 수 있다.The RAW / slot allocation information may be identified based on the relay beacon of the STA connected to the relay, and may be confirmed based on the root beacon.
Root AP는 Root AP와 동일한 주파수 서브밴드를 이용하는 Relay 간의 전송시, 해당 Relay 클러스터의 전송을 보호하기 위해, Root Beacon에 방법 (A)와 유사하게 Empty RAW 를 설정할 수 있다. 즉, Root AP가 Root AP와 동일한 주파수 서브밴드를 이용하는 Relay 전송 구간 전체 또는 일부를 Empty RAW로 할당할 수 있고, Root AP에 직접 연결된 STA, Relay는 Root Beacon에 기초하여 Empty RAW에 표시된 시간 구간 동안 전송을 하지 않을 수 있다. 이에 따라, Empty RAW에 표시된 시간 구간에 Root AP와 동일한 주파수 서브밴드에 할당된 Relay 클러스터의 전송이 보호될 수 있다.Root AP can set Empty RAW to Root Beacon similar to the method (A) to protect the transmission of the relay cluster when transmitting between relays using the same frequency subband as Root AP. That is, the Root AP can allocate all or part of the relay transmission section using the same frequency subband as the Root AP to Empty RAW, and STAs and relays connected directly to the Root AP can be assigned to Empty RAW based on the Root Beacon. You may not send it. Accordingly, transmission of a relay cluster allocated to the same frequency subband as that of the Root AP in the time interval indicated by Empty RAW can be protected.
각 Relay 클러스터 내에서 STA들이 명시적으로 할당된 Relay 클러스터 전송 구간 이외에 전송을 하지 않도록 하는 보호 방법에는, 방법 (A)와 동일하게 Empty RAW를 설정하는 방법, 또는 명시적으로 할당된 RAW이외에는 전송을 허용하지 않는 방법이 이용될 수도 있다.A protection method for preventing STAs from transmitting outside of the explicitly allocated relay cluster transmission interval in each relay cluster includes a method of setting empty RAW in the same manner as method (A), or transmitting other than explicitly allocated RAW. Disallowed methods may be used.
<다른 Relay에 할당된 자원에 대한 보호 방법><Protection method for resource assigned to other relay>
Root AP는 Root BSS내에 속한 STA이 동일 채널을 이용하는 다른 Relay BSS 전송 구간에서 충돌이 나는 것을 막기 위해 명시적으로 다른 Relay 전송 구간을 Empty RAW (혹은 AP PM RAW)로 설정하여 STA의 전송을 금지시킬 수 있다. Root AP는 Root BSS와 다른 Relay BSS와의 공간적 분리 여부를 판단하고, 공간적으로 충분히 분리되지 않는다면, 다른 Relay의 전송 구간을 Empty RAW (또는 AP PM RAW)로 설정하여 다른 Relay의 전송 구간에서 자신에게 연결된 STA의 전송을 금지시킬 수 있다. 또는. Root AP는 다른 Relay 전송 구간에 대해 Root BSS 내의 모든 STA의 전송을 금지시키지 않고, Root BSS 내의 STA들 중 다른 Relay BSS와 간섭을 많이 받는 특정 STA에 대해서만 전송을 금지시킬 수도 있다. 이를 위해 Root AP는 전송이 금지된 STA을 나타낼 수 있는 변형된 Empty RAW (또는 변형된 AP PM RAW) 또는 전송이 금지된 STA을 RAW 할당에서 제외하는 RAW 할당 방법 등을 이용할 수 있다.In order to prevent the STA in the Root BSS from colliding with another Relay BSS transmission interval using the same channel, the Root AP explicitly sets another Relay transmission interval to Empty RAW (or AP PM RAW) to prohibit transmission of the STA. Can be. The Root AP determines the spatial separation between the Root BSS and other Relay BSS, and if the space is not sufficiently separated, the Root AP sets the transmission interval of the other Relay to Empty RAW (or AP PM RAW) and is connected to itself in the transmission interval of the other Relay. Transmission of the STA may be prohibited. or. The Root AP may not prohibit transmission of all STAs in the Root BSS for other Relay transmission intervals, and may prohibit transmission only for a specific STA that has much interference with other Relay BSSs among the STAs in the Root BSS. To this end, the Root AP may use a modified Empty RAW (or modified AP PM RAW) that may indicate a STA whose transmission is prohibited, or a RAW allocation method that excludes a STA whose transmission is prohibited from RAW allocation.
Root AP가 Root BSS 내의 특정 STA이 다른 Relay BSS에서 간섭을 받는지의 여부를 식별하는 방법은, "(BB) Relay 간의 공간적 분리(Spatial Separation)를 판단하는 방법"을 이용하여 Root AP가 STA의 간섭 정보를 수신하거나, 또는 STA이 간섭을 주는 다른 Relay BSS 또는 다른 STA에 대한 정보를 간섭을 받는 Root BSS의 STA이 직접 Root AP에 통보하는 방법이 이용될 수 있다.How the Root AP identifies whether a particular STA in the Root BSS is interfered with by another Relay BSS may be determined by the Root AP using the “Method of Determining Spatial Separation Between (BB) Relays”. A method of receiving information or informing the Root AP of a STA of a Root BSS that interferes with information on another Relay BSS or another STA that interferes with the STA may be used.
Relay BSS에 속한 STA이, 동일 채널을 사용하는 다른 Relay BSS의 전송 구간에서 전송하는 것에 의해 충돌이 발생하는 것을 방지하기 위해, Relay AP가 다른 Relay BSS의 전송 구간을 (A)와 유사하게 Empty RAW (또는, AP PM RAW)를 설정하여 전송을 금지시킬 수 있다. Relay는 주기적으로 다른 Relay BSS와의 공간적 분리 여부를 판단하고, 판단 결과 공간적으로 충분히 분리되지 않는다면, 다른 Relay의 전송 구간을 Empty RAW(또는 AP PM RAW)로 설정함으로써 자신에게 연결된 STA의 전송을 금지 시킬 수 있다. 또는, Relay는 다른 Relay 전송 구간에 대해 Relay BSS 내의 모든 STA의 전송을 금지시키지는 않고, Relay BSS 내의 STA들 중 다른 Relay BSS와 간섭을 많이 받는 특정 STA에 대해서만 전송을 금지시킬 수도 있다. 이를 위해, 전송이 금지된 STA을 나타낼 수 있는 변형된 Empty RAW (또는 변형된 AP PM RAW) 또는 전송이 금지된 STA을 RAW 할당에서 제외하는 RAW 할당 방법 등이 이용될 수 있다.In order to prevent a collision occurring due to the STA belonging to the relay BSS transmitting in the transmission interval of another relay BSS using the same channel, the relay AP clears the transmission interval of the other relay BSS similarly to (A). (Or AP PM RAW) can be set to prohibit transmission. The relay periodically decides whether to separate spatially from other relay BSSs, and if the result is not sufficiently spatially separated, the relay may prohibit transmission of the STA connected to itself by setting the transmission interval of another relay to Empty RAW (or AP PM RAW). Can be. Alternatively, the relay does not prohibit transmission of all STAs in the relay BSS with respect to another relay transmission interval, but may also prohibit transmission only for a specific STA that has much interference with other relay BSSs among the STAs in the relay BSS. To this end, a modified Empty RAW (or modified AP PM RAW) that may indicate a STA whose transmission is prohibited, or a RAW allocation method for excluding a STA whose transmission is prohibited from the RAW allocation may be used.
Root AP에서 긴급하게 전송할 프레임이 있는 경우, Root BSS 전송에 할당된 전송 구간의 이외의 구간에서의 전송이 예외적으로 허용될 수 있다. 또한, Level 1 전송에 대해서도, STA은 자신이 속한 Relay에 할당되지 않은 시간 구간이더라도, 다른 Relay BSS 내에서의 전송이 감지되지 않거나, 또는 다른 Relay의 Beacon에 기초하여 판단한 결과, 해당 Relay BSS에 대한 RAW가 할당되어 있지 않은 구간에 대해서는 예외적으로 데이터를 전송할 수 있다.If there is a frame to be urgently transmitted by the Root AP, transmission in an interval other than the transmission interval allocated for Root BSS transmission may be exceptionally allowed. In addition, even for a level 1 transmission, even if the STA is not allocated to the relay to which the relay belongs, the STA does not detect transmission in another relay BSS or based on a beacon of another relay, Data can be transferred exceptionally for sections that are not assigned RAW.
또는, Root AP에 속한 STA, Relay에 속한 STA 모두, AP에 대한 전송이 할당되지 않은 구간에서라도, 기존 OBSS 환경에서의 전송과 같이 경쟁을 통해 데이터를 전송하는 것이 허용될 수도 있다. 하지만, 자신의 BSS에 할당되지 않은 구간에서 데이터를 전송할 경우에는 충돌 확률이 높기 때문에 STA는 RTS/CTS를 데이터 전송 전에 수행하는 것이 바람직하다.Alternatively, both STAs belonging to the Root AP and STAs belonging to the Relay may be allowed to transmit data through contention, such as transmission in an existing OBSS environment, even in a period where transmission to the AP is not allocated. However, when data is transmitted in a section not allocated to its BSS, since the collision probability is high, it is preferable that the STA performs RTS / CTS before data transmission.
Relay나 Root AP는 자신에게 할당되지 않은 전송 구간 중 충돌이나 경쟁이 심할 것으로 예상되는 구간을 Empty RAW로 설정하여 자신에게 연결된 STA들의 전송을 명시적으로 금지시킬 수 있다. 또한, Relay나 Root AP는 Relay와 Root AP 간의 전송이 일어나는 구간을 Empty RAW로 설정하여 Relay와 Root AP 간의 전송이 일어나는 구간에서 STA이 Relay에 전송하는 것을 금지시킬 수 있다.The relay or the root AP may explicitly prohibit transmission of STAs connected to the self by setting an empty RAW period in which a collision or contention is expected to be severe among transmission periods not allocated to the relay or root AP. In addition, the relay or the root AP may prohibit the STA from transmitting to the relay in the period in which the transmission between the relay and the root AP occurs by setting the empty RAW interval between the relay and the root AP.
위의 다른 Relay에 할당된 자원에 대한 보호 방법은 (A) DRAW를 사용하는 방법에도 유사하게 적용 가능하다.The protection method for resources allocated to other relays above is similarly applicable to the method using (A) DRAW.
<Relay 자신에게 할당된 자원에 대한 보호 방법><Relay How to Protect Resources Assigned to It>
Relay는 자신에게 할당된 자원에 대한 보호를 Root AP에 명시적으로 요청할 수 있다. Relay의 요청에 대한 응답으로, Root AP는 Relay에게 전송 구간의 할당된 자원에 대해 명시적으로 특정 Relay BSS들 또는 특정 BSS의 일부 STA들(Root BSS의 STA도 포함)의 전송을 금지시킬 수 있다.The relay can explicitly request the Root AP for protection of resources allocated to it. In response to the relay's request, the Root AP may explicitly prohibit the Relay from transmitting certain relay BSSs or some STAs (including STAs of the Root BSS) for the allocated resources of the transmission interval. .
예를 들어, Relay가 다른 Relay BSS, 또는 다른 Relay BSS에 속한 특정 STA, 또는 Root BSS에 직접 연결된 STA들의 전송으로부터 심한 간섭을 받아 자신에게 할당된 전송 구간에서 다른 Relay BSS 전체, 또는 다른 Relay BSS의 일부 STA들, 또는 Root BSS에 직접 연결된 STA들의 전송을 금지시키고자 할 경우, Relay는 이를 Root AP에게 자신이 할당받은 자원에 대한 보호를 요청할 수 있다. Root AP에 보호를 요청할 때, Relay는 간섭을 주고 있는 다른 Relay BSS 또는 특정 STA들의 리스트를 Root AP에게 전송할 수 있다.For example, a relay receives severe interference from transmissions of a specific STA belonging to another Relay BSS, another Relay BSS, or STAs directly connected to a Root BSS, and thus, relays of all other Relay BSSs or all other Relay BSSs in a transmission interval assigned to the relay BSS are allocated to them. If it is desired to prohibit transmission of some STAs or STAs directly connected to the Root BSS, the relay may request protection of a resource allocated thereto from the Root AP. When requesting protection from the root AP, the relay may transmit to the root AP a list of other relay BSSs or specific STAs that are interfering.
또한, Relay BSS 내의 각 STA들도 자신에게 심한 간섭을 주는 Relay BSS 또는 특정 STA에 관한 정보를 Relay AP에게 전달할 수 있고, Relay AP는 STA로부터 전달받은 Relay BSS 및 STA에 관한 정보를 Root AP에 전달할 수 있다. 이 경우, STA들은 802.11k 등에서의 측정 기능이 필요하지 않을 수 있다. STA 들이 802.11k에서의 측정 기능을 가지고 있는 경우, Relay AP는 STA에 측정을 요청하고, 각 STA들로부터의 측정 결과에 기초하여 자신에게 연결된 STA에 간섭을 주는 다른 Relay BSS 및 STA을 판별할 수 있다. Relay AP는 판별한 다른 Relay BSS 및 STA를 Root AP에 통지할 수 있다.In addition, each STA in the relay BSS may also transmit information on the relay BSS or a specific STA that has severe interference to the relay AP, and the relay AP may transmit the relay BSS and the STA information received from the STA to the root AP. Can be. In this case, STAs may not need a measurement function such as 802.11k. When the STAs have a measurement function in 802.11k, the relay AP may request a measurement from the STA and determine other relay BSSs and STAs that interfere with the STA connected to it based on the measurement results from the respective STAs. have. The relay AP may notify the Root AP of other relay BSSs and STAs determined.
Root AP는 Relay로부터 자원 보호 요청을 수신하면, 자원 보호 요청을 한 Relay에 대한 Resource allocation IE에 해당 전송 구간에 전송을 하지 말아야 할 (strictly disallowed) Relay BSS 또는 Relay BSS의 특정 STA 들을 표시할 수 있다.When the Root AP receives a resource protection request from a relay, the Root AP may indicate specific STAs of a Relay BSS or Relay BSS that should not be transmitted in a corresponding transmission interval in a resource allocation IE for a relay that has made a resource protection request. .
Relay는 만약 자신이 다른 Relay BSS의 resource allocation IE의 전송 금지된 Relay 리스트에 포함되어 있으면, 위 다른 Relay BSS의 전송 구간에서 전송을 하지 않는다. Relay는 자신에게 속한 STA에게 empty RAW (또는, AP PM RAW)를 할당하여 명시적으로 STA의 전송을 금지시킴으로써, 자원 보호를 요청한 Relay의 자원을 보호할 수 있다. 만약 Relay BSS 전체가 아니라 Relay BSS 중 일부 STA들에 대한 전송을 금지시키는 것으로 Relay resource allocation IE에 표시되어 있으면, Relay는 해당 Relay BSS 전송 구간에 대해 지정된 특정 STA의 전송만을 금지시킬 수 있다. Relay Resource Allocation IE는 Root AP에 의해 할당된, Relay와 Relay에 연결된 STA 간의 전송을 위한 자원에 관한 자원 할당 정보를 나타낸다. Relay Resource Allocation IE에 기초하여 어느 Relay가 어느 시간 구간에서 STA와 통신이 가능한지가 결정될 수 있다.The relay does not transmit in the transmission interval of the other relay BSS if it is included in the relay prohibited list of the resource allocation IE of the other relay BSS. The relay may protect the resources of the relay requesting resource protection by allocating empty RAW (or AP PM RAW) to the STA belonging to it and explicitly prohibiting transmission of the STA. If it is indicated in the relay resource allocation IE to prohibit transmission of some STAs among the relay BSSs instead of the entire relay BSS, the relay may prohibit transmission of only a specific STA designated for the corresponding relay BSS transmission interval. The relay resource allocation location IE indicates resource allocation information regarding resources for transmission between the relay and the STA connected to the relay, allocated by the root AP. Based on the Relay Resource Allocation IE, which relay can communicate with the STA in which time period may be determined.
Relay BSS 내의 특정 STA의 전송만을 금지시키기 위해 (1) AP PM 혹은 Empty RAW를 변형하여 사용하는 방법 또는 (2) RAW 할당을 사용하는 방법이 이용될 수 있다. (1)의 방법의 경우, Relay는 AP PM RAW 또는 Empty RAW에 특정 구간 동안 전송을 금지시킬 STA의 (partial) AID 리스트를 포함시키고, AP PM RAW 혹은 Empty RAW 구간에는 금지시킬 STA만 명시적으로 전송을 하지 못하게 하며, 나머지 STA들은 경쟁을 통해 전송을 허용하도록 할 수 있다. (2)의 방법의 경우, Relay는 전송을 명시적으로 금지시킬 STA(즉, 다른 Relay에 간섭을 받는 STA)을 RAW에 할당하지 않아 전송을 금지시킬 STA이 전송을 하지 못하도록 할 수 있다.In order to prohibit only transmission of a specific STA in the relay BSS, (1) a method of modifying and using an AP PM or empty RAW or (2) a method of using RAW allocation may be used. In the case of the method (1), the relay includes the (partial) AID list of the STA to prohibit transmission for a certain period in the AP PM RAW or Empty RAW, and only the STA to be prohibited in the AP PM RAW or Empty RAW interval is explicitly stated. The transmission may be prevented and the remaining STAs may allow transmission through contention. In the case of the method (2), the relay may not assign an STA (that is, an STA interfering with another relay) to RAW to prevent the transmission of the STA to prohibit the transmission.
Relay가 Root BSS 내의 특정 STA에게 간섭을 받는다고 요청할 경우, 해당 STA은 Relay Resource Allocation IE에는 포함되지 않을 수 있고, Root AP가 Relay 전송 구간 동안 해당 STA의 전송을 금지시킬 수 있다.When the relay requests that the specific STA in the Root BSS receives interference, the corresponding STA may not be included in the Relay Resource Allocation IE, and the Root AP may prohibit transmission of the STA during the Relay transmission period.
위의 Relay 자신에 할당된 자원에 대한 보호 방법은 (A) DRAW를 사용하는 방법에도 유사하게 적용 가능하다. (A)의 경우, strictly disallow 비트 및 Relay AP, STA 리스트가 DRAW의 필드를 통해 표시될 수 있다.The protection method for resources allocated to the relay itself is similarly applicable to the method using (A) DRAW. In the case of (A), the strictly disallow bit, the relay AP, and the STA list may be displayed through fields of the DRAW.
위와 같이 Relay Resource IE에 strictly disallowed된 STA의 정보까지 모두 나타내는 경우, 비콘의 사이즈가 너무 커질 수 있다. 또 다른 방법으로는, Root AP가 Relay로부터 수신한 strictly disallow할 Relay AP, STA의 정보를 수집하고, 각 Relay BSS별로 strictl disallow할 Relay AP, STA의 정보를 포함하는 메시지를 각 Relay에게 브로드캐스트 또는 유니캐스트로 별도의 프레임을 이용하여 전달하는 방법이 있다. strictly disallow할 Relay AP, STA의 정보를 포함하는 메시지를 수신한 Relay는, 다른 Relay의 전송 구간에서 자신 또는 자신에게 연결된 STA의 strict disallow 여부를 확인하고, 확인 결과 disallow된 것으로 확인된 경우 다른 Relay의 전송 구간에서 전송을 하지 않는다.If all the information of the strictly disallowed STA is displayed in the Relay Resource IE as described above, the size of the beacon may be too large. As another method, the Root AP collects information on the relay AP and STA to be strictly disallowed and received from the relay, and broadcasts a message including the relay AP and STA information to strictl disallow for each Relay BSS to each Relay, or There is a method of delivering using a separate frame in unicast. A relay that receives a message containing information on the relay AP and STA to be strictly disallowed checks whether or not it is strict disallowed by itself or the STA connected to it in the transmission interval of another relay, and when it is confirmed that the relay is disallowed, Do not transmit in the transmission section.
<(B)의 방법에서 주파수 서브밴드의 할당에 대한 보다 구체적인 설명><More detailed description of the allocation of frequency subbands in the method of (B)>
Relay는 초기에 Root AP에 먼저 Root AP에 대한 STA으로서 연결을 시도한다. 그 이후, Relay는 Root AP에게 Relay BSS를 셋업하고 Relay AP로 동작할 것을 요청한 후, Root AP로부터 승인을 받은 경우 Relay AP로서 동작할 수 있다.The relay initially attempts to connect to the Root AP as an STA for the Root AP. After that, the relay may request that the Root AP set up a Relay BSS and operate as a Relay AP, and then operate as a Relay AP if it is approved by the Root AP.
Relay는 자신이 Relay AP로 동작하는데 필요한 자신의 클러스터에 필요한 자원을 연결 요청(Association Request)과 함께 Root AP에 요청하거나, 또는 Root AP에게 Relay AP로 동작할 것을 요청할 때 Relay 셋업 요청(Relay SetUp request)과 함께 Root AP에 요청할 수도 있다. 예를 들어, Relay는 Association Request 또는 Relay SetUp request에 다음과 같은 정보를 포함시키고, Root AP에 전송할 수 있다.The relay requests the Root AP with an association request for the resources necessary for its cluster to operate as a Relay AP, or a Relay SetUp request when the Root AP is requested to operate as a Relay AP. Can be requested to Root AP. For example, a relay may include the following information in an association request or a relay setup request and transmit the following information to a root AP.
1) Relay 클러스터를 위한 채널 할당 요청 관련 정보: Relay BSS 시작 채널 번호(Relay BSS Starting Channel number), Relay 프라이머리 채널 번호(Relay Primary channel number), Relay 밴드폭(Relay BW) 등이 Relay 클러스터를 위한 채널 할당 요청 관련 정보에 포함될 수 있다. Relay는 사용할 채널 후보 리스트를 Root AP에 전송할 수 있다. Root AP는 다른 Relay BSS와 중복되지 않는 채널을 Relay에 할당하고, 만약 동일한 주파수 서브밴드에 복수 개의 Relay를 할당할 경우 동일한 주파수 서브밴드를 이용하는 Relay들을 다른 시간 구간에 할당할 수 있다. Root AP는 현재 Relay가 다른 Relay BSS와 공간적으로 분리된 경우에는, 동일한 시간 구간이라 하더라도 동일한 주파수 서브밴드를 현재 Relay BSS와 다른 Relay BSS에 할당할 수 있다.1) Channel allocation request information for Relay Cluster: Relay BSS Starting Channel Number, Relay Primary Channel Number, Relay Bandwidth (Relay BW) It may be included in the channel allocation request related information. The relay can transmit the channel candidate list to be used to the root AP. Root AP allocates a channel that does not overlap with another relay BSS to the relay, and if a plurality of relays are allocated to the same frequency subband, relays using the same frequency subband can be allocated to different time intervals. When the current relay is spatially separated from other relay BSSs, the root AP may allocate the same frequency subband to the current relay BSS and another relay BSS even in the same time interval.
2) Relay Beacon Interval: Relay Beacon Interval은 Relay Beacon의 전송 주기를 나타내며, Relay는 Relay Beacon Interval에 대해 Root AP와 협상할 수 있다. Relay는 Relay BSS 셋업 이후 Relay Beacon을 주기적으로 전송하고, Root AP는 Relay가 Relay Beacon을 전송하는 시점 및 그 이후의 일정 시간을 해당 Relay에게 할당할 수 있다. Root AP는 Relay 클러스터가 Root AP와 동일한 주파수 서브밴드를 이용하는 경우, Relay 클러스터의 전송 구간을 Empty RAW 등을 이용하여 보호할 수 있다2) Relay Beacon Interval: Relay Beacon Interval indicates the transmission period of Relay Beacon, and Relay can negotiate with Root AP for Relay Beacon Interval. The relay periodically transmits the relay beacon after the relay BSS setup, and the root AP can allocate a time when the relay transmits the relay beacon and a certain time thereafter to the corresponding relay. When the relay cluster uses the same frequency subband as the root AP, the root AP can protect the transmission period of the relay cluster by using an empty RAW.
Relay Beacon은 Relay에 할당된 전송 구간 중 가장 먼저 전송될 수 있다. 혹은 Root AP는 Root Beacon 다음에 Relay Beacon 전송 RAW를 할당할 수 있다. 각 Relay들은 할당된 Relay Beacon 전송 RAW에 기초하여 Relay Beacon을 전송할 수 있다. 이 경우, 각 Relay에 할당된 전송 구간과 Relay Beacon이 전송되는 시점은 바로 이어지지 않을 수 있다.The relay beacon may be transmitted first of the transmission periods allocated to the relay. Alternatively, the Root AP can allocate a relay beacon transmission RAW after the root beacon. Each relay can transmit a relay beacon based on the assigned relay beacon transmission RAW. In this case, the transmission interval allocated to each relay and the time point at which the relay beacon is transmitted may not immediately follow.
이외에, Relay는 Relay 전송 구간(duration)(예를 들어, Root AP의 Full Beacon interval 동안 Relay가 요구하는 전송 시간 등) 등의 요구 사항 또는 Root AP가 Relay 전송 구간을 결정할 수 있도록 하는 전송 구간 관련 정보를 Root AP에 전송할 수 있다. 예를 들어, 전송 구간 관련 정보는 Relay에 연결된 STA 들의 mean data rate, 또는 target wake time, 또는 wake 주기 등을 포함할 수 있다. Root AP는 Relay로부터 수신한 요구 사항 또는 전송 구간 관련 정보에 기초하여 각 Relay 클러스터에 필요한 시간 구간을 할당할 수 있다. Relay는 Relay 전송 구간 관련 정보를 Root AP에 연결 시 또는 Relay 셋업 요청 시에 Root Ap에 전송할 수 있다. 또는, Relay는 Root AP에 연결된 후 추가의 자원 할당 요청 프레임을 이용하여 관련 정보를 교환할 수도 있다. Relay는 다른 Relay BSS에 대한 공간적 분리 정도에 대한 정보도 함께 Root AP에 전송할 수 있다.In addition, the relay has requirements such as a relay transmission duration (for example, a transmission time required by the relay during the full beacon interval of the root AP) or information related to the transmission interval for allowing the root AP to determine the relay transmission interval. Can be transmitted to the Root AP. For example, the transmission interval related information may include a mean data rate, a target wake time, or a wake period of the STAs connected to the relay. The root AP can allocate a time interval required for each relay cluster based on the requirement received from the relay or information on the transmission interval. Relay can transmit relay transmission section related information to Root Ap when connecting to Root AP or relay setup request. Alternatively, the relay may exchange related information by using an additional resource allocation request frame after being connected to the root AP. The relay can also transmit information on the spatial separation degree of other relay BSSs to the root AP.
Root AP는 Relay의 연결 요청(Association Request)에 연결 응답(Association response)으로 응답할 수 있고, 이 때 연결 응답 프레임(association response frame)에 Root AP가 할당한 전송 구간에 관한 정보를 포함하여 전송할 수 있다. 또는, Relay가 별도의 Relay Setup request를 사용하여 Relay 관련 파라미터를 Root AP에 전달하는 경우, Root AP는 이에 대한 응답 프레임에 Root AP가 할당한 전송 구간에 관한 정보를 포함하여 전송할 수 있다. 예를 들어, Root AP는 Relay BSS Starting Channel number, Relay Primary channel number, Relay BW 등의 채널 할당 정보 및 Root AP가 허용한 Relay Beacon Interval 등을 Relay에 알릴 수 있다. 또한, Root AP는 Relay 전송 구간과 관련된 협상 결과를 Relay에 알릴 수도 있다.The Root AP may respond to the Association Request of the Relay with an Association Response, and may transmit information including information on the transmission interval allocated by the Root AP in the Association Response frame. have. Alternatively, when the relay delivers a relay related parameter to the Root AP using a separate Relay Setup request, the Root AP may include information on a transmission interval allocated by the Root AP in a response frame. For example, the Root AP may inform the Relay of channel allocation information such as Relay BSS Starting Channel number, Relay Primary channel number, Relay BW, and Relay Beacon Interval allowed by the Root AP. In addition, the root AP can inform the relay of the negotiation result related to the relay transmission interval.
위와 같이 Root AP가 초기에 Relay에 할당한 정보는 추가의 operation mode change request/response frame, 또는 자원 할당 변경 요청/응답 프레임 등을 이용하여 변경될 수도 있다. Relay에 연결되는 STA들이 많아지거나 감소하는 경우, Relay 클러스터의 전송에 필요한 자원이 변동될 수 있다. Relay는 Relay 클러스터 밴드폭, 릴레이 전송 구간 요구 사항을 Root AP에 연결된 이후에도 요청함으로써 전체 자원이 더욱 효율적으로 활용될 수 있다. 만약 Relay BSS에서 이용되는 채널이 변경된 경우, Relay AP는 기존 802.11규격에서 이용되는 Channel Switch Announcement frame 등을 이용하여 자신에게 연결된 STA들에게 채널 변경을 알릴 수 있다.The information initially allocated to the relay by the Root AP may be changed by using an additional operation mode change request / response frame or a resource allocation change request / response frame. When the number of STAs connected to the relay increases or decreases, resources required for transmission of the relay cluster may vary. The relay can request the relay cluster bandwidth and relay transmission interval requirements even after being connected to the root AP so that the entire resource can be utilized more efficiently. If the channel used in the relay BSS is changed, the relay AP may inform the STAs connected to it by using the channel switch announcement frame used in the existing 802.11 standard.
Root AP는 Relay가 전송한 다른 relay BSS에 대한 공간적 분리 정도에 대한 정보에 기초하여 서로 공간적으로 분리된 Relay들에 동일한 전송 구간을 할당할 수도 있다.Root AP may allocate the same transmission interval to the relays that are spatially separated from each other based on the information about the spatial separation degree for the other relay BSS transmitted by the relay.
또한, Relay AP는 주기적 또는 비주기적으로 다른 Relay BSS와의 공간적 분리 정도를 측정하고, 다른 Relay BSS와의 공간적 분리 정도가 미리 설정된 기준 이상 변했을 경우, 변경된 내용을 Root AP에 피드백할 수 있다. 예를 들어, Relay AP는 기존에 분리되어 있던 다른 Relay BSS로부터 간섭을 많이 받게 되거나, 또는 그 반대의 경우, 새로운 Relay BSS가 감지되었을 경우, 이에 대해 Root AP에 알릴 수 있다. Root AP는 이러한 Relay들 간의 공간적 분리 정보에 기초하여 새롭게 서로 공간적으로 분리된 Relay들의 전송을 동일 구간에 할당할 수도 있다.In addition, the relay AP may periodically or aperiodically measure the degree of spatial separation from other relay BSSs, and if the degree of spatial separation from other relay BSSs is changed by more than a predetermined reference value, the relay AP may feed back the changed contents to the root AP. For example, the relay AP may receive a lot of interference from another relay BSS that has been previously separated, or vice versa, when a new relay BSS is detected, it may notify the root AP about this. The Root AP may allocate transmissions of newly spatially separated relays to the same section based on spatial separation information between the relays.
도 39는 일실시예에 따른 복수의 주파수 서브밴드들을 할당하는 일례를 도시하는 도면이다.39 illustrates an example of allocating a plurality of frequency subbands according to an embodiment.
구체적으로, 도 39는 동시 전송이 가능하도록 여러 Relay들 및 Root AP에 서로 다른 주파수 서브밴드를 할당하는 일례를 나타낸다. 도 39에서, Relay 1와 Relay 1에 연결된 STA 간의 전송, Relay 2와 Relay 2에 연결된 STA 간의 전송, Root AP와 Root AP에 직접 연결된 STA 또는 Relay 간의 전송은 서로 다른 채널을 통해 수행되므로 서로 동시에 수행될 수 있다. 서로 다른 주파수 서브밴드를 이용하는 Relay, Root AP 등은 서로 독립적으로 전송을 수행할 수 있고, 서로 동일한 주파수 서브밴드를 사용하는 Relay (예를 들어, Relay 1, Relay 3)는 서로 다른 전송 구간에서 전송을 수행하여야 한다. STA은 연결된 Relay가 이용하는 주파수 서브밴드를 이용하여 Relay와 통신하고, Relay는 Root AP에 의해 할당된 주파수 서브밴드를 이용하여 Root AP와 통신할 수 있다.Specifically, FIG. 39 shows an example of allocating different frequency subbands to several relays and root APs to enable simultaneous transmission. In FIG. 39, transmission between the STA connected to Relay 1 and Relay 1, the transmission between STA connected to Relay 2 and Relay 2, and the transmission between STA or Relay directly connected to Root AP and Root AP are performed simultaneously through different channels. Can be. Relays and root APs using different frequency subbands can transmit independently, and relays using the same frequency subbands (for example, Relay 1 and Relay 3) transmit in different transmission intervals. Should be performed. The STA may communicate with the relay using the frequency subband used by the connected relay, and the relay may communicate with the root AP using the frequency subband allocated by the root AP.
도 40은 다른 실시예에 따른 복수의 주파수 서브밴드들을 할당하는 일례를 도시하는 도면이다.40 is a diagram illustrating an example of allocating a plurality of frequency subbands according to another embodiment.
구체적으로, 도 40은 동시 전송이 가능하도록 여러 Relay들 및 Root AP에 서로 다른 주파수 서브밴드를 할당하는 일례에서, 도 39에서와 달리 일부 채널이 서로 중복되도록 주파수 서브밴드를 할당한 경우이다. 이러한 오버래핑(overlapping) 채널 할당은 사용 가능한 채널이 많지 않은 경우에 유용할 수 있다. 각 Relay AP 들 및 Root AP의 primary 채널은 중복으로 할당하지 않고, secondary 채널만 중복 할당이 허용될 수 있다. Root AP는 채널이 충분하지 않을 경우, 도 40에서와 같이 일부 채널을 중복적으로 할당할 수 있고, 중복된 채널의 할당까지 포함한 각 Relay에 대한 채널 할당 정보 (이를 'Default 채널 할당 정보'라 칭함)를 Relay에게 전송할 수 있다. 이러한 채널 할당 정보는 Relay와 Root AP가 사전에 공유하고, 이후 Relay resource allocation IE을 통해 명시적으로 알리지 않거나, 또는 Relay resource allocation IE를 통해 명시적으로 알릴 수도 있다. 채널 할당 정보를 Relay resource allocation IE을 통해 명시적으로 알리지 않는 경우, Root AP는 Resource allocation IE 전송 시(즉, 자원 할당 시)에 특정 시간 구간에 중복 할당된 채널을 어느 Relay가 사용하도록 했는지를 알릴 수 있다. Root AP는 자원 할당 시 추가적으로 알려져야 할 정보를 resource allocation IE을 통해 알려줄 수 있다. 추가적으로 알려져야 할 정보는 중복 할당된 채널을 누가 사용할지에 대한 정보를 포함할 수 있다. 만약 resource allocation IE에 추가적인 채널 할당 정보가 없으면 Relay는 중복적으로 할당된 채널을 포함한 자신에게 할당된 채널을 사용할 수 있다. 중복된 채널을 특정 Relay가 사용하도록 하는 경우, Root AP는 채널을 중복적으로 할당받은 다른 Relay에 해당 채널을 사용하지 못하게 할 수 있다. 예를 들어, Root AP는 채널을 중복적으로 할당받은 다른 Relay에 줄어든 밴드폭 또는 사용 금지된 채널 번호를 전달할 수 있다.In detail, FIG. 40 illustrates an example in which different frequency subbands are allocated to various relays and root APs for simultaneous transmission. In contrast to FIG. 39, the frequency subbands are allocated so that some channels overlap each other. Such overlapping channel assignment may be useful when there are not many channels available. Primary channels of each relay AP and root AP may not be allocated redundantly, and only secondary channels may be allowed to be allocated. If the channel is not enough, the Root AP can allocate some channels redundantly, as shown in FIG. 40, and the channel assignment information for each relay including the assignment of the duplicated channel (this is called 'Default channel assignment information'). ) Can be sent to Relay. The channel allocation information is shared in advance by the relay and the root AP, and may not be explicitly informed through the relay resource allocation IE or may be explicitly informed through the relay resource allocation IE. If the channel allocation information is not explicitly communicated through the relay resource allocation IE, the Root AP will inform which relay used the channel allocated in a specific time interval when transmitting the resource allocation IE (ie, resource allocation). Can be. Root AP can inform additional information to be known when resource allocation through resource allocation IE. Additionally, the information to be known may include information on who will use the duplicately allocated channel. If there is no additional channel allocation information in the resource allocation IE, the relay can use the channel allocated to itself including the duplicated channel. If a specific relay is used for a duplicate channel, the Root AP can prevent the channel from being used for another relay that has been assigned a channel. For example, the Root AP can deliver a reduced bandwidth or an unused channel number to another relay that has been assigned a channel.
예를 들어, CH 2는 Relay 5와 Relay 3에 동시 할당되었고, 특정 시점에 Relay 5에 CH 2가 할당된 경우, Root AP는 Relay 3에게 초기 할당한 밴드폭보다 줄어든 밴드폭을 알려주거나, 또는 Relay 3에 중복 할당된 채널을 사용하지 말도록 Resource allocation IE를 통해 알려줄 수 있다. Relay 5에 전달하는 resource allocation IE에는 중복 채널 할당 관련 정보가 포함되지 않을 수 있다. 즉, resource allocation IE에 명시적으로 중복 채널의 할당과 관련된 정보가 존재하지 않으면, Relay는 중복된 채널까지 포함한 자신에게 할당된 모든 채널을 사용할 수 있다. 반대로, resource allocation IE에 중복된 채널을 사용하지 않거나, 또는 중복된 채널을 제외한 줄어든 밴드폭을 이용하도록 채널 할당 정보가 표시된 경우, Relay는 줄어든 밴드폭(즉, 중복 할당된 채널을 제외한 밴드폭)을 이용하여 클러스터에서의 전송을 수행할 수 있다. For example, if CH 2 is assigned to Relay 5 and Relay 3 simultaneously, and CH 2 is assigned to Relay 5 at a specific point in time, the Root AP informs Relay 3 of the reduced bandwidth than the initial allocated bandwidth, or Resource allocation IE can be told not to use duplicate channels allocated to Relay 3. The resource allocation IE delivered to relay 5 may not include duplicate channel allocation related information. In other words, if there is no information related to the allocation of redundant channels explicitly in the resource allocation IE, the relay can use all channels allocated to itself including the duplicated channels. Conversely, if the resource allocation IE does not use a duplicated channel, or if channel allocation information is indicated to use a reduced bandwidth excluding the duplicated channel, then the relay will have a reduced bandwidth (that is, a bandwidth excluding the duplicated allocated channel). Can be used to perform transmission in the cluster.
또한, 특정 Relay의 전송량이 일시적으로 많고 채널에 여유가 있을 경우, Root AP는 초기 할당된 채널 이외에 추가 채널을 해당 Relay를 위해 임시로 할당해 줄 수 있다. Root AP는 해당 Relay에 대한 resource allocation IE에 추가 할당된 채널 정보 (예를 들어, 추가 할당된 채널 번호 등) 또는 늘어난 밴드폭에 관한 정보를 전달할 수 있다. 추가 할당된 채널 정보 또는 늘어난 밴드폭에 관한 정보를 수신한 Relay는 Root AP가 추가적으로 할당한 채널을 사용할 수 있다.In addition, when a certain amount of transmission of a specific relay is temporarily high and there is room in the channel, the Root AP may temporarily allocate an additional channel for the corresponding relay in addition to the initially allocated channel. The Root AP can transmit additionally allocated channel information (eg, additionally allocated channel number) or increased bandwidth in the resource allocation IE for the corresponding relay. A relay that receives additionally allocated channel information or information about increased bandwidth may use a channel additionally allocated by the root AP.
오버래핑 채널의 할당 또는 임시 추가 채널의 할당을 Resource allocation IE로 알리는 방법의 예는 다음과 같다.An example of a method of notifying the overlapping channel allocation or the temporary additional channel allocation to the resource allocation IE is as follows.
(a)Option 1: 채널 번호 + 0/1로 표시한다. '0'은 초기 중복적으로 할당된 채널에 대한 전송 금지를 알릴 때 이용되고, '1'은 전송 허용을 나타낸다. 초기 할당된 overlapped 채널에 전송 허용 시 채널 정보가 생략될 수도 있다. Root Ap가 임시로 추가 채널을 할당하는 경우, 추가 할당된 채널의 번호가 Resource allocation IE에 표시될 수 있다.(a) Option 1: Mark channel number + 0/1. '0' is used to inform transmission prohibition for the initially overlapped allocated channel, and '1' indicates transmission allowance. Channel information may be omitted when allowing transmission to the initially allocated overlapped channel. When Root Ap temporarily allocates additional channels, the number of additional allocated channels may be displayed in the resource allocation IE.
(b) Option 2: 변동된 채널의 밴드폭을 표시한다. Relay의 중복된 채널에서의 전송을 허용하지 않을 경우, 초기 할당된 밴드폭보다 밴드폭이 줄어드는 것이므로, Root AP는 줄어든 밴드폭을 Relay에게 전달한다. Root Ap가 임시로 추가 채널을 할당하는 경우, Root Ap는 늘어난 밴드폭에 관한 정보를 Resource allocation IE를 통해 전달할 수 있다. 이 경우는, 변동되는 밴드폭 정보만 나타내면 되므로, 추가 할당하는 채널이 여러 개라도 allocation IE의 크기는 증가하지 않는다. Relay Resource Allocation IE에 할당된 시작 채널 번호, 프라이머리 채널, 밴드폭 등의 채널 정보를 명시적으로 매번 알려주는 경우, 오버래핑된 채널이 어느 Relay에 할당되는지, 및 임시로 변동된 밴드폭이 무엇인지를 알릴 필요가 없다.(b) Option 2: Displays the bandwidth of the changed channel. If the relay does not allow transmission on the duplicated channel, the bandwidth is reduced from the initial allocated bandwidth, so the root AP delivers the reduced bandwidth to the relay. If the Root Ap temporarily allocates additional channels, the Root Ap can transmit information about the increased bandwidth through the Resource allocation IE. In this case, since only the variable bandwidth information needs to be represented, the size of the allocation IE does not increase even if a number of additional channels are allocated. Relay Resource Allocation In case of explicitly telling channel information such as starting channel number, primary channel, and bandwidth allocated to IE, what relay is overlapped channel assigned, and what is temporarily changed bandwidth? There is no need to inform.
중복된 채널 할당 또는 임시의 추가 채널 할당에 따라 초기 채널 할당에서와 달라진 정보를 Resource allocation IE를 통해 알릴 경우, 1) Relay는 Relay Beacon interval 전체에 대해 밴드폭이 일시적으로 변한 경우에는 Relay Beacon을 통해 BSS 밴드폭을 알릴 수 있다. Relay는 Full beacon으로 Relay BSS 밴드폭을 알릴 수 있으며, 또한 Relay Beacon이 Short Beacon 포맷인 경우에도 Relay Beacon의 FC의 BSS 밴드폭 필드를 이용하여 Relay BSS 밴드폭의 변화를 클러스터의 STA들에게 알릴 수 있다. 또한, 2) Relay는 Relay Beacon interval의 일부 구간에 대해서만 Relay BSS의 밴드폭이 바뀌는 경우에는, 밴드폭이 바뀌는 구간에 대한 RAW에 채널 정보를 표시할 수 있다. 예를 들어, Relay는 밴드폭이 바뀌는 구간을 '중심 주파수 + 채널 밴드폭' 또는 '밴드폭' 으로 표시할 수 있다. 한쪽 방향으로만 secondary 채널이 증가 또는 감소하는 경우, Relay는 변화되는 밴드폭만 알리면 된다. Relay BSS의 secondary 채널에 대해서만 채널 할당의 변경이 허용될 수 있다.In case of notifying information different from initial channel allocation through duplicate channel allocation or temporary additional channel allocation through Resource allocation IE, 1) Relay sends relay relay beacon when the bandwidth is temporarily changed for the entire relay beacon interval. The BSS bandwidth can be reported. The relay can inform the relay BSS bandwidth as a full beacon, and even when the relay beacon is a short beacon format, the relay beacon can inform the STAs of the cluster by using the BSS bandwidth field of the FC of the relay beacon. have. In addition, 2) the relay can display channel information in the RAW for the section where the bandwidth is changed when the bandwidth of the relay BSS is changed only for a section of the relay beacon interval. For example, the relay may indicate a section in which the bandwidth is changed as 'center frequency + channel bandwidth' or 'bandwidth'. If the secondary channel increases or decreases in only one direction, the relay only needs to advertise the changing bandwidth. The channel assignment can be changed only for the secondary channel of the relay BSS.
Root AP도 자신에게 할당한 채널을 일시적으로 변경할 경우, 변경된 시간 구간에 대해서만 RAW에 채널 정보를 표시하는 것에 의해 채널 할당 정보 변경을 알릴 수 있다.When the Root AP temporarily changes the channel allocated to itself, the Root AP can notify the channel allocation information change by displaying the channel information in RAW only for the changed time interval.
<(B) 자원 할당 정보를 이용하여 자원을 할당하는 방법에서의 자원 할당 시그널링(Resource Allocation Signaling) 방법><(B) Resource Allocation Signaling Method in a Resource Allocation Method Using Resource Allocation Information>
자원 할당을 알리기 위해서는 전송이 허용된 Relay의 AID(s), 전송 허용 시작 시간, 전송 구간, 주기적으로 자원이 할당될 경우 자원이 할당되는 주기 정보, 멀티 주파수 서브밴드를 할당할 경우 할당된 주파수 서브밴드 정보, 중복된 채널 할당/임시 채널 할당 등의 추가적인 자원 할당 관련 정보, 할당된 Relay 전송 구간에 대해 다른 Relay/STA의 전송을 금지하는 지의 여부, 전송이 금지된 Relay/STA의 정보 등이 필요할 수 있다. 서브 밴드 할당 정보(디폴트 서브 밴드 할당 정보)는 Relay가 Root Ap에 연결 시 Root Ap와 공유하기 때문에, 중복된 채널 할당/임시 채널 할당 등의 일시적인 변동 사항 이외에는 Resource allocation IE에서 별도의 시그널링이 생략될 수도 있다. 각 Relay에 할당된 채널 정보는 Resource Allocation IE에 명시적으로 포함될 수 있고, Relay들은 서로 다른 Relay들의 채널 할당 정보를 Root Beacon을 통해 식별할 수 있다. Relay들은 Root Beacon을 통해 자신과 같은 채널에 할당된 Relay를 인지할 수 있다. Resource Allocation IE에 할당된 시작 채널 번호, 프라이머리 채널, 밴드폭 등의 채널 정보를 명시적으로 매번 알려주는 경우, 오버래핑된 채널이 어느 Relay에 할당되는지, 및 임시로 변동된 밴드폭이 무엇인지를 알릴 필요가 없다.To inform the resource allocation, the AID (s) of the relay that is allowed to transmit, the transmission allowable start time, the transmission interval, the period information to which the resource is allocated when the resource is periodically allocated, and the frequency sub allocated when the multi-frequency subband is allocated. Additional resource allocation related information such as band information, duplicate channel allocation / temporary channel allocation, information on whether to prohibit transmission of another relay / STA for the assigned relay transmission interval, and information on relay / STA forbidden transmission Can be. Since the subband allocation information (default subband allocation information) is shared with the Root Ap when the Relay connects to the Root Ap, separate signaling is omitted in the resource allocation IE except for temporary changes such as duplicate channel allocation / temporary channel allocation. It may be. Channel information allocated to each relay may be explicitly included in Resource Allocation IE, and relays may identify channel allocation information of different relays through a root beacon. Relays can recognize relays assigned to the same channel through their root beacons. When the channel information such as starting channel number, primary channel, and bandwidth allocated to the Resource Allocation IE is explicitly informed each time, it indicates to which relay the overlapped channel is allocated and what the temporarily changed bandwidth is. There is no need to inform.
또한, Root AP와 Relay는 사전 협상을 통해 Relay Beacon interval에 관한 정보를 공유하고 있고, Root AP는 Relay Beacon interval에 기초하여 Relay Beacon을 전송할 수 있도록 Relay 전송 구간을 할당할 수 있다. Relay Resource allocation IE는 Root AP Beacon 내에 포함되어 전송될 수 있다. Relay Resource allocation IE는 새롭게 정의된 프레임을 통해 전송될 수도 있다.In addition, the Root AP and the Relay share information on the Relay Beacon interval through pre-negotiation, and the Root AP may allocate a Relay transmission interval to transmit the Relay Beacon based on the Relay Beacon interval. The relay resource allocation IE may be included in the root AP beacon and transmitted. The relay resource allocation IE may be transmitted through a newly defined frame.
Resource Allocation IE에 자원 할당 정보를 나타내는 방법은 다음과 같다.Resource allocation information is indicated in the resource allocation IE as follows.
1) Relay AID 별로 자원 할당 정보를 표시하는 방법1) How to Display Resource Allocation Information by Relay AID
Resource Allocation IE에 Root AP의 short beacon interval 동안에 할당된 Relay AID(s), Relay start time, duration, period, 기타 할당 정보가 포함될 수 있다. 예를 들어, 기타 할당 정보는 할당된 채널 정보 또는 strictly disallow된 Relay/STA의 정보 등을 포함할 수 있다.The Resource Allocation IE may include Relay AID (s), Relay start time, duration, period, and other allocation information allocated during the short beacon interval of the Root AP. For example, the other allocation information may include allocated channel information or strictly disallowed relay / STA information.
자원이 주기적으로 할당되는 경우, Relay Resource Allocation IE는 매 Short beacon마다 전송될 필요는 없다. 예를 들어, Long Beacon 전송 시에만 Relay Resource Allocation IE를 포함시키면 된다. When resources are allocated periodically, the Relay Resource Allocation IE does not need to be sent every Short beacon. For example, the Relay Resource Allocation IE needs to be included only when transmitting a long beacon.
아래 표 3은 Relay AID별로 자원 할당 정보를 표시하는 경우의 Resource Allocation IE format의 일례를 나타낸다. 표 3에서 각 필드의 길이(value), 필드 순서 등은 하나의 예를 나타낸 것이며, 다른 유사한 형태로 변경이 가능하다.Table 3 below shows an example of Resource Allocation IE format when resource allocation information is displayed for each Relay AID. In Table 3, each field's value, field order, and the like are shown as an example, and can be changed to other similar forms.
Figure PCTKR2013011012-appb-I000003
Figure PCTKR2013011012-appb-I000003
추가 할당 정보의 주파수 서브채널 정보는 서로 다른 주파수 서브채널을 이용하여 Relay 간의 동시 전송을 사용하는 경우에 포함될 수 있다. 1) 채널 할당 정보가 암시적으로(implicit) 표시되는 경우, 즉 Relay와 Root AP가 서로 사전에 채널 할당 정보를 공유하고 별도의 Relay 정보를 명확하게 명시하지 않는 경우, Relay BW는 초기 할당된 BW에서 변동이 있는 경우에만 Resource Allocation IE에 표시될 수 있다. 예를 들어, 임시 채널의 추가 할당 또는 중첩되게 할당된 채널에서의 전송 금지 등의 경우에 Relay BW가 표시될 수 있다. 2) 채널 할당 정보를 명확하게 나타내는 경우, Relay BSS에 할당된 시작 채널 번호(starting channel number), 밴드폭(bandwidth, BW), 프라이머리 채널(primary channel) 등의 채널 정보가 Resource Allocation IE에 명시적으로 표시될 수 있다. The frequency subchannel information of the additional allocation information may be included in the case of using simultaneous transmission between relays using different frequency subchannels. 1) When the channel allocation information is implicitly displayed, that is, when the relay and the root AP share channel allocation information with each other in advance and do not explicitly specify separate relay information, the relay BW is assigned to the initial allocated BW. Only when there is a change in can be displayed in the Resource Allocation IE. For example, a relay BW may be displayed in case of additional allocation of a temporary channel or prohibition of transmission in an overlapping allocated channel. 2) When channel allocation information is clearly indicated, channel information such as starting channel number, bandwidth (BW), and primary channel allocated to the relay BSS is specified in the Resource Allocation IE. Can be displayed.
공간적으로 분리된 Relay BSS들의 동시 전송이 허용되는 경우에는, 복수의 AID 지정이 가능하고, 두 Relay의 다른 할당 정보가 완전히 동일할 때 복수 AID를 사용하여 IE(Information Elemnet)의 크기를 줄일 수 있다. Relay BSS들이 공간적으로 분리되었더라도 자원 할당 정보 중 서로 다른 것이 있으면 각각의 AID 별로 각각의 할당 정보를 포함할 수 있다.When simultaneous transmission of spatially separated relay BSSs is allowed, a plurality of AIDs can be designated, and the size of IE (Information Elemnet) can be reduced by using a plurality of AIDs when different allocation information of two relays is completely identical. . Even if relay BSSs are spatially separated, if there are different resource allocation information, each allocation information may be included for each AID.
Strictly disallowed bit는 할당된 구간 중 특정 Relay 또는 STA들의 전송을 명시적으로 금지할 지의 여부를 나타내며, Strictly disallowed bit가 1인 경우 strictly disallow된 Relay 및 STA 정보가 IE에 포함될 수 있다. Strictly disallowed bit를 통해 Relay BSS 전체에 대한 disallow 여부 또는 Relay BSS 중 일부 STA에 대한 disallow 여부를 표시할 수 있다.The severely disallowed bit indicates whether to explicitly prohibit transmission of a specific relay or STA among the allocated intervals. When the severely disallowed bit is 1, the strictly disallowed relay and STA information may be included in the IE. Through the strictly disallowed bit, it is possible to indicate whether to disallow the entire relay BSS or to disallow some STAs of the relay BSS.
하나의 (short) Beacon Interval 동안 Relay는 할당된 비연속된 시간 구간을 한꺼번에 리스트로 표시할 수 있기 때문에 한 번만 자원 할당을 표시하면 된다. 이용되는 Relay들 수가 많을 경우, 각 Relay들마다 start time, end time을 표시해야 하기 때문에 Resource Allocation IE의 길이가 길어질 수가 있다.During a single (short) Beacon Interval, a Relay can list all allocated non-contiguous time intervals at a time, so you only need to mark the resource allocation once. When the number of relays is used, the length of Resource Allocation IE may be long because start time and end time must be indicated for each relay.
Relay에 할당된 구간 동안 임시로 밴드폭이 변하는 구간이 있는 경우, 구간은 나누어 표시되어야 한다. 하지만, Root AP가 어느 정도 시간을 정렬(align)하면 구간을 나누어 표시하는 것을 어느 정도 막을 수 있다. 같은 시간 구간이 복수 개의 Relay에 할당될 수도 있다. 이 경우, 동시에 전송할 Relay의 할당 정보에 동일한 시간 정보를 표시하면 된다. 특정 Relay 클러스터에 할당된 시간 구간에서 전송이 완료되지 못했을 경우, 여러 Relay 클러스터에서 동시에 사용하도록 할당된 전송 구간이 전송의 완료를 위해 이용될 수 있다.If there is a section where the bandwidth is temporarily changed during the section assigned to the relay, the section should be divided. However, if the Root AP aligns the time to some extent, it can prevent the display of the intervals to some extent. The same time interval may be allocated to a plurality of relays. In this case, the same time information may be displayed in the allocation information of the relay to be transmitted simultaneously. If transmission is not completed in a time interval allocated to a specific relay cluster, a transmission interval allocated for simultaneous use in multiple relay clusters may be used to complete the transmission.
도 41은 일실시예에 따른 표 3의 Relay Resource Allocation IE에 대한 포맷(format)의 일례를 도시하는 도면이다. Relay Resource Allocation IE에는 여러 Relay에 할당된 자원 할당 정보가 AID 별로 포함될 수 있다. 각 Relay에 대한 자원 할당은 Relay N Allocation 필드에 정의되고, 각 Relay N Allocation 필드에는 Relay가 할당된 시간 구간이 여러 개가 정의될 수 있다. 예를 들어, Relay가 할당된 시간 구간은 하나의 Root Beacon 내에 할당된 시간 구간을 나타낸다.FIG. 41 is a diagram illustrating an example of a format for Relay Resource Allocation IE of Table 3 according to an embodiment. FIG. Relay Resource Allocation IE may include resource allocation information allocated to various relays for each AID. Resource allocation for each relay is defined in the Relay N Allocation field, and a number of time intervals in which a relay is allocated may be defined in each Relay N Allocation field. For example, a time interval in which a relay is assigned represents a time interval allocated in one root beacon.
2) 할당된 Relay가 있는 주파수 서브밴드별로 할당 정보를 표시하는 방법2) How to display allocation information for each frequency subband where an assigned relay is located
예를 들어, Relay Resource Allocation IE에 주파수 서브밴드별로 "{주파수 서브밴드, {주파수 서브밴드에 할당된 Relay AID, Relay start time, duration + period, Strictly disallow, list of strictly disallowed Relay AP 또는 STAs in the Relay BSS} list}"의 형태로 할당 정보가 표시될 수 있다. 각 Relay에 대한 주파수 서브밴드의 할당 정보는 Relay가 Root AP에 초기 연결 시 공유된 상태로서, 각 Relay에 대한 주파수 서브밴드의 할당 정보를 주파수 서브밴드별로 표시할 필요는 없다.For example, in the Relay Resource Allocation IE, for each frequency subband, "{frequency subband, {Relay AID assigned to frequency subband, Relay start time, duration + period, Strictly disallow, list of strictly disallowed Relay AP or STAs in the Relay BSS} list} "may be used to display allocation information. The frequency subband allocation information for each relay is shared when the relay is initially connected to the root AP, and the allocation information of the frequency subbands for each relay need not be displayed for each frequency subband.
3) 시간 구간별로 자원 할당 정보를 표시하는 방법3) How to display resource allocation information for each time interval
도 42는 일실시예에 따른 시간 구간 별로 자원을 할당하는 일례를 도시하는 도면이다. (short) beacon interval을 시간 구간으로 나누고, 시간 구간별로 "{Start Time, Duration + period, {해당 시간 구간에 할당된 Relay AID, 채널 할당 정보 등의 기타 할당 정보, Strictly disallow, list of strictly disallowed Relay AP or STAs in the Relay BSS} list}"를 Relay Resource Allocation IE에 표시할 수 있다. 여기서, 시간 구간은 RAW 보다 긴 시간 구간을 나타낸다.42 is a diagram illustrating an example of allocating resources for each time interval, according to an embodiment. (short) divide the beacon interval into time intervals, and for each time interval "{Start Time, Duration + period, {other assigned information such as relay AID assigned to the time interval, channel assignment information, Strictly disallow, list of strictly disallowed Relay AP or STAs in the Relay BSS} list} "may be displayed in the Relay Resource Allocation IE. Here, the time interval represents a longer time interval than RAW.
다음의 표 4는 시간 구간별로 할당 정보를 표시하는 경우의 Resource Allocation IE의 포맷을 나타낸다.Table 4 below shows a format of Resource Allocation IE in the case of displaying allocation information for each time section.
Figure PCTKR2013011012-appb-I000004
Figure PCTKR2013011012-appb-I000004
시간 구간의 Start Time, end Time을 각 Relay마다 여러 번 표시할 필요는 없고, 같은 구간에 속하는 Relay는 한 번만 표시된다. Resource Allocation IE의 포맷은 RAW 사용 시의 RPS IE와 유사한 형태를 가질 수 있다. 같은 시간 구간대에 전송을 허용하는 Relay 수가 많고 시간 구간이 비슷하면 시간 구간별로 자원 할당 정보를 표시하는 방법이, Relay 수가 적고 각 Relay의 전송 허용 시간 구간이 많이 다른 경우에는 Relay AID 별로 자원 할당 정보를 표시하는 방법이 적합할 수 있다.It is not necessary to display the start time and end time of a time section several times for each relay. Relays belonging to the same section are displayed only once. The format of Resource Allocation IE may have a form similar to that of RPS IE when using RAW. If the number of relays that allow transmission in the same time zone is similar and the time intervals are similar, the method of displaying resource allocation information for each time interval is a method.If the number of relays is small and the transmission allowable time intervals of each relay are different, resource allocation information for each relay AID is used. The method of marking may be suitable.
<(B) 자원 할당 정보를 이용하여 자원을 할당하는 방법에서의 전송 구간 보호 방법><(B) Transmission interval protection method in the method of allocating resources using resource allocation information>
(B) 자원 할당 정보를 이용하여 자원을 할당하는 방법에서도 Relay의 전송 구간 보호는 (A) DRAW를 이용하는 방법과 유사하게 Empty RAW를 이용할 수 있다.(B) In the method of allocating resources by using resource allocation information, the protection of the transmission section of the relay can use Empty RAW similarly to the method of (A) DRAW.
(A) DRAW를 이용하는 방법의 경우, level 0에서 Root AP가 Root AP와 동일한 주파수 서브밴드를 이용하는 Relay 클러스터의 전송을 보호하기 위해 DRAW를 이용하고, DRAW에는 전송 보호 구간에 대한 명확(explicit)한 전송 금지 정보 및 DRAW 구간에 대한 Relay 자원 할당 정보가 포함될 수 있다.(A) In the method using the DRAW, at the level 0, the Root AP uses the DRAW to protect the transmission of the relay cluster using the same frequency subband as the Root AP, and the DRAW has an explicit description of the transmission protection interval. The transmission prohibition information and the relay resource allocation information for the DRAW period may be included.
(B) 자원 할당 정보를 이용하여 자원을 할당하는 방법에서는 Relay 자원 할당 정보가 RAW가 아닌, Relay Resource allocation IE 형태로 전달되며, level 0에서의 자원 보호는 (A) DRAW를 이용하는 방법의 레벨 1과 유사한 Empty RAW가 이용될 수 있다. 다른 예에 따르면, 자원 보호를 위해 Empty RAW가 이용되지 않고, 명시적으로 할당된 구간에서만 전송이 허용되도록 하는 방법이 이용될 수 있다. (B) 자원 할당 정보를 이용하여 자원을 할당하는 방법의 레벨 1에서의 자원 보호 방법은 Empty RAW를 이용하거나, 또는 명시적으로 할당된 구간에서만 전송이 허용되도록 하는 방법이 이용될 수 있다.(B) In the method of allocating resources using the resource allocation information, the relay resource allocation information is transmitted in the form of Relay Resource allocation IE, not RAW, and the resource protection at level 0 is (A) Level 1 of the method using DRAW. Empty RAW similar to the above can be used. According to another example, a method may be used in which empty RAW is not used for resource protection and transmission is allowed only in an explicitly allocated interval. (B) The resource protection method at level 1 of the method of allocating resources by using resource allocation information may use Empty RAW or a method of allowing transmission only in an explicitly allocated section.
다음의 표 5는 AP에 연결된 STA(level 0 또는 1) 또는 Relay(level 0)의 전송이 금지되는 구간을 나타낼 때 이용되는 Empty RAW 시그널링을 위한 포맷을 나타낸다. 표 5에 나타난 정보는 RAW 정보로서 RPS IE에 포함될 수 있다.Table 5 below shows a format for empty RAW signaling used when indicating a section in which transmission of an STA (level 0 or 1) or a relay (level 0) connected to an AP is prohibited. The information shown in Table 5 may be included in the RPS IE as RAW information.
Figure PCTKR2013011012-appb-I000005
Figure PCTKR2013011012-appb-I000005
레벨 0에서, Empty RAW는 Root AP와 동일한 주파수 서브밴드를 사용하는 Relay의 전송 구간에서 Root AP에 연결된 STA, 다른 Relay의 전송이 금지하는 구간을 나타내는데 이용될 수 있다. 레벨 1에서, Empty RAW는 명확하게 할당된 구간 외에 Relay 클러스터 내의 STA 전송이 금지되는 구간을 나타내는데 이용될 수 있다. Empty RAW로 지정된 경우, Empty RAW Start Time에서 시작되어, Empty RAW Duration으로 명시된 기간 동안 전송이 금지된다.At level 0, Empty RAW may be used to indicate a period in which transmission of an STA connected to the Root AP and a transmission of another relay is prohibited in a transmission period of a relay using the same frequency subband as that of the Root AP. At level 1, Empty RAW may be used to indicate a section in which STA transmission in the Relay cluster is prohibited in addition to the explicitly allocated section. If it is set to Empty RAW, the transfer is prohibited for the period specified by Empty RAW Duration, starting at Empty RAW Start Time.
AP가 Power Save에 들어가는 구간을 명시적(explicit)으로 나타낼 수 있는 802.11ah에서, RPS IE의 AP Power Save 비트가 1로 설정되어 있다는 것은, AP가 RAW 구간에서 sleep하는 것을 나타내고, STA은 해당 AP에 전송을 하지 않는다. 이 AP Power Save bit를 이용하여 Empty RAW 시그널링이 수행될 수도 있다. 예를 들어, Empty RAW를 설정할 구간을 RAW로 설정하고, AP Power Save 비트를 1로 설정하면 STA들이 DRAW 혹은 RAW 구간에 전송을 하지 않기 때문에 Empty RAW를 이용하는 것과 동일한 효과가 발생할 수 있다.In 802.11ah, in which the AP may explicitly indicate the interval for entering the power save, that the AP Power Save bit of the RPS IE is set to 1 indicates that the AP sleeps in the RAW interval, and the STA may identify the AP. Do not send to. Empty RAW signaling may be performed using this AP Power Save bit. For example, if the interval for setting Empty RAW is set to RAW and the AP Power Save bit is set to 1, the same effect as using Empty RAW may occur because STAs do not transmit in the DRAW or RAW interval.
반대로, 위의 Empty RAW 시그널링 방법을 확장함으로써 AP Power Save를 명시적으로 나타낼 수 있다. AP가 Power Save를 하는 구간을 Empty RAW로 설정하면, STA이 Empty RAW로 설정된 구간에 전송을 하지 않기 때문에 AP Power Save를 명확하게 나타낼 수 있다. Empty RAW의 정의가 기존 RPS IE 정의보다 훨씬 비트 수가 적기 때문에, AP Power Save의 표시(indication)에 Empty RAW를 활용함으로써 RPS IE의 길이를 보다 줄일 수 있다.On the contrary, AP Power Save can be explicitly indicated by extending the Empty RAW signaling method. If the AP sets the power save section to Empty RAW, the AP does not transmit the section set to Empty RAW, thereby clearly indicating the AP Power Save. Since the definition of Empty RAW is much fewer bits than the existing RPS IE definition, it is possible to further reduce the length of the RPS IE by utilizing Empty RAW for the indication of AP Power Save.
또는, Empty RAW indication 비트와 AP Power Save 비트를 모두 Empty RAW에 표시할 수도 있다. 레벨 1의 구간에서, Empty RAW에서는 Relay에 연결된 STA과 Relay 간의 전송이 허용되지 않지만, Relay는 레벨 1의 구간에서 Root AP와의 전송을 수행하고, 실제로는 Power Save를 하지 않을 수 있다. 따라서, Empty RAW indication 비트와 AP Power Save 비트를 모두 이용할 경우 실제 Relay의 Sleep 여부를 명확하게 나타낼 수 있다. 레벨 0의 구간에서, Power Save 비트를 이용하면 Root AP가 Empty RAW 구간 중 실제로 Sleep하지 않는 구간을 나타낼 수 있고, Root AP는 Root AP에 새롭게 연결하려는 STA 등에 대해 Empty RAW 구간에서 전송을 허용할 수도 있다.Alternatively, both the Empty RAW indication bit and the AP Power Save bit may be displayed in Empty RAW. In the level 1 period, transmission between the STA connected to the relay and the relay is not allowed in the empty RAW, but the relay performs transmission with the root AP in the level 1 period and may not actually perform power save. Therefore, when both the Empty RAW indication bit and the AP Power Save bit are used, whether or not the actual relay sleep can be clearly indicated. In the level 0 section, if the power save bit is used, the Root AP may indicate a section in which the Empty RAW section does not actually sleep, and the Root AP may allow transmission in the Empty RAW section for a STA to newly connect to the Root AP. have.
Empty RAW가 명확하게 주기적으로 할당되는 경우, PRAW 형태가 이용될 수 있다. 만약, PRAW 형태가 이용되는 경우 PRAW 여부를 나타내는 1 비트와 PRAW의 주기 정보가 추가로 제공될 수 있다. 예를 들어, PRAW의 주기는 short Beacon의 몇 배수인지를 나타내는 정수값일 수 있다. 또는, PRAW 여부를 나타내는 1 비트를 생략하고, 표 1의 항목 이외에 PRAW의 주기에 관한 정보만 Root Beacon에 추가로 포함될 수 있다.If Empty RAW is explicitly allocated periodically, the PRAW form may be used. If the PRAW type is used, one bit indicating whether the PRAW is used and period information of the PRAW may be additionally provided. For example, the period of the PRAW may be an integer value indicating how many times the short beacon. Alternatively, one bit indicating whether a PRAW is omitted may be omitted, and only information about a period of the PRAW may be additionally included in the root beacon, in addition to the items in Table 1.
명확하게 RAW 밖에서 클러스터 내의 STA 전송을 금지하는 경우에는, Empty RAW는 이용되지 않고, 레벨 0에서는 Root AP가 Root beacon내에 1 비트를 할당하여 Root AP가 명시적으로 할당하지 않은 RAW에서는 전송이 금지되는지 여부를 나타낼 수 있다. 레벨 1에서는 Relay가 Relay beacon내에 1 비트를 할당하여 Relay AP가 명시적으로 할당하지 않은 RAW에서는 전송이 금지되는지 여부를 나타낼 수 있다. 예를 들어, 할당된 비트가 1이면, STA은 명시적으로 RAW로 설정된 구간 외에는 전송을 할 수가 없다.If you explicitly forbid STA transmission within the cluster outside of RAW, Empty RAW is not used, and at level 0 the Root AP allocates 1 bit in the Root beacon so that transmission is prohibited in RAW that is not explicitly assigned by the Root AP. It can indicate whether or not. In level 1, the relay allocates 1 bit in the relay beacon to indicate whether transmission is prohibited in RAW that is not explicitly assigned by the relay AP. For example, if the allocated bit is 1, the STA cannot transmit other than the period explicitly set to RAW.
802.11ah에서는 AP가 Power Saving에 들어가는 구간을 암시적(implicit)으로 나타낼 수 있다. 예를 들어, Short Beacon, Beacon 등에 AP Power Save 비트가 1로 설정된 경우, STA은 명시적으로 할당된 RAW 구간외에는 AP로의 전송이 금지될 수 있다. In 802.11ah, an AP may implicitly indicate an interval for entering power saving. For example, if the AP Power Save bit is set to 1 in the Short Beacon, Beacon, etc., the STA may be prohibited from transmitting to the AP other than the explicitly allocated RAW period.
레벨 1에서, AP Power Save 비트를 이용하여 Relay가 할당한 RAW 구간 이외의 구간에서 STA의 전송이 금지되는지 여부를 나타낼 수 있다. RAW 구간 이외에 구간에서 STA의 전송을 금지시키고자 경우, Relay가 Relay beacon 내에 AP Power Save 비트를 1로 설정하면 STA들이 DRAW 또는 RAW 구간에서의 전송이 금지될 수 있다. 레벨 0에서, Root AP가 Root beacon내에 AP Power Saving 비트를 1로 설정하는 경우에는, Root AP가 명시적으로 할당한 RAW 이외의 구간에서 Root AP에 직접 연결된 STA 또는 Relay의 전송이 금지될 수 있다.In Level 1, the AP Power Save bit may be used to indicate whether transmission of the STA is prohibited in a section other than the RAW section allocated by the relay. In order to prohibit transmission of the STA in a section other than the RAW section, when the relay sets the AP Power Save bit to 1 in the relay beacon, the STAs may be prohibited from transmitting in the DRAW or the RAW section. At level 0, when the Root AP sets the AP Power Saving bit to 1 in the Root beacon, transmission of an STA or Relay directly connected to the Root AP may be prohibited in a section other than RAW explicitly allocated by the Root AP. .
다음의 표 6은 특정 STA에 대해서만 명시적으로 RAW 구간 동안 전송을 금지시키는 것을 나타내는 변형된 Empty RAW 시그널링 정보를 나타낸다.Table 6 below shows modified Empty RAW signaling information indicating that transmission is explicitly prohibited during a RAW period only for a specific STA.
Figure PCTKR2013011012-appb-I000006
Figure PCTKR2013011012-appb-I000006
Empty RAW 구간에서 List of Prohibited STAs에 명시된 STA들의 전송은 금지되며, 다른 명시되지 않은 STA들은 Empty RAW 구간 경쟁을 통해 통신할 수 있다. 또한, 기존 802.11ah의 AP PM RAW에 List of Prohibited STA을 추가하여, List of Prohibited STA에 명시된 STA들의 전송만 금지시킬 수 있다. 위의 예는 (A) DRAW를 사용하는 방법 및 (B) 자원 할당 정보를 이용하여 자원을 할당하는 방법 모두 적용 가능하다.Transmission of STAs specified in the List of Prohibited STAs is prohibited in the Empty RAW interval, and other unspecified STAs may communicate through the Empty RAW interval competition. In addition, by adding a List of Prohibited STA to the AP PM RAW of the existing 802.11ah, only transmission of STAs specified in the List of Prohibited STA may be prohibited. The above example is applicable to both (A) a method of using DRAW and (B) a method of allocating resources by using resource allocation information.
도 43은 일실시예에 따른 싱글 주파수 서브밴드에서 Relay Resource Allocation IE를 이용하여 전송하는 일례를 도시하는 도면이다.FIG. 43 illustrates an example of transmitting using a Relay Resource Allocation IE in a single frequency subband according to an embodiment.
도 43을 참조하면, 자원 할당 정보는 별도의 Relay Resource Allocation IE에 포함되어 전달될 수 있고, 자원이 할당된 구간은 Empty RAW를 통해 명확하게 보호되거나 또는, 암시적인 방법을 통해 보호될 수 있다.Referring to FIG. 43, the resource allocation information may be included in a separate Relay Resource Allocation IE and transmitted, and the section to which the resource is allocated may be clearly protected through Empty RAW or may be protected through an implicit method.
TXOP Sharing를 이용하여 하나의 TXOP 안에 STA-Relay-Root AP 간의 전송을 수행하는 경우, Relay에 할당된 전송 구간 중 특정 STA의 UL slot에 STA이 Relay에게 UL 데이터를 전송하고, slot이 남는 경우 Relay는 바로 UL 데이터를 Root AP로 전송할 수 있다. 이 때, Root AP가 Relay를 위해 할당된 구간을 Empty RAW로 설정하여 다른 Root AP에 속한 STA의 전송을 막을 수 있다.When transmitting between STA-Relay-Root AP in one TXOP by using TXOP Sharing, STA transmits UL data to Relay in UL slot of a specific STA among transmission periods allocated to Relay, and when slot remains Can immediately transmit UL data to the Root AP. At this time, the Root AP may set the interval allocated for the relay to Empty RAW to prevent transmission of STAs belonging to other Root APs.
DL의 경우, Root AP가 DL 구간으로 할당된 구간에 특정 STA에 대한 DL 프레임을 Relay에 전송하고, Relay는 Root AP가 자신에게 할당한 DL 전송 slot이 남아 있고, DL 프레임을 수신할 STA이 깨어있는 경우 바로 STA에 DL 프레임을 전송할 수 있다. In the case of DL, a Root AP transmits a DL frame for a specific STA to a Relay in a section allocated to the DL interval, and the Relay has a DL transmission slot allocated to itself by the Root AP, and the STA to receive the DL frame wakes up. If there is, the DL frame can be immediately transmitted to the STA.
다른 예로, Root AP는 STA이 Relay로부터 DL 프레임을 수신하도록 할당된 slot을 이용하여 Relay에 DL 프레임을 전송할 수 있다. 이 경우, Root AP가 Relay를 위해 할당된 구간을 empty RAW로 설정함으로써 다른 Root AP에 속한 STA의 전송을 막을 수 있다. Relay는 Root AP로부터 STA에 대한 DL 프레임을 수신한 후, 해당 STA에 대한 DL slot (Relay가 할당한 slot)을 통해 DL 프레임을 전송할 수 있다.As another example, the root AP may transmit a DL frame to the relay using a slot allocated to the STA to receive the DL frame from the relay. In this case, transmission of an STA belonging to another root AP can be prevented by setting the interval allocated by the root AP for relay to empty RAW. After receiving the DL frame for the STA from the Root AP, the relay may transmit the DL frame through a DL slot (a slot allocated by the Relay) for the corresponding STA.
도 44는 일실시예에 따른 싱글 주파수 서브밴드에서 Relay Resource Allocation IE를 이용하여 전송하는 다른 예를 도시하는 도면이다.44 illustrates another example of transmitting using a Relay Resource Allocation IE in a single frequency subband according to an embodiment.
도 44에 도시된 실시예는 싱글 주파수 서브밴드에서 Relay Resource Allocation IE를 이용하여 전송하는 다른 예를 나타낸 것으로, DRAW를 사용하는 것과 유사한 형태를 자원 할당에 동일하게 적용한 예이다The embodiment shown in FIG. 44 shows another example of transmitting using a relay resource allocation location IE in a single frequency subband, in which a form similar to using a DRAW is applied to resource allocation in the same manner.
도 45는 일실시예에 따른 멀티 주파수 서브밴드에서 Relay Resource Allocation IE를 이용하여 전송하는 일례를 도시하는 도면이다.45 is a diagram illustrating an example of transmitting using a Relay Resource Allocation IE in a multi-frequency subband according to an embodiment.
도 45를 참조하면, Root AP는 Relay와 다른 주파수 서브밴드에서 독립적으로 전송을 수행할 수 있고, Subband A, B를 각각 사용하는 Relay들도 서로 독립적으로 전송을 수행할 수 있다. 주파수 서브밴드들이 서로 독립적이기 때문에 레벨 1에서 각 Relay가 할당된 시간 구간들은 서로의 시간 구간에 기초하여 정렬(align)될 필요가 없고, Root AP의 RAW와도 정렬될 필요가 없어 DRAW를 이용한 경우보다 유연하고 확장이 용이하다.Referring to FIG. 45, a root AP may independently transmit in a different frequency subband from a relay, and relays using subbands A and B may also independently transmit. Since the frequency subbands are independent of each other, the time intervals assigned to each relay at level 1 do not need to be aligned based on each other's time intervals, and do not need to be aligned with the RAW of the Root AP, as compared to the case of using DRAW. Flexible and easy to expand
DRAW의 예로 설명한 도 23, 도 24, 도 25, 도 26, 도 27, 도 28, 도 31, 및 Relay 클러스터들이 공간적으로 분리된 경우의 동시 전송의 예로 설명한 도 37, 및 시간 영역에서의 동시 전송의 예로 설명한 도 38의 실시예들 모두에 (B) 자원 할당 정보를 이용하는 자원 할당 방법을 적용할 수 있다.23, 24, 25, 26, 27, 28, 31, and FIG. 37 described as an example of simultaneous transmission when the relay clusters are spatially separated, and simultaneous transmission in the time domain described as an example of the DRAW The resource allocation method using the resource allocation information (B) may be applied to all the embodiments of FIG. 38 described as an example of FIG.
<(AA) 레벨 1에서의 Relay 전송 구간 길이를 Root AP가 할당하는 방법><How Root AP Assigns Relay Transmission Section Length at (AA) Level 1>
Relay는 Root AP에 연결된 후, Relay 관련 파라미터에 관해 Root AP와 협상할 때, Relay가 사용할 Beacon Interval, Relay가 Relay BSS 전송에 소요되는 구간(duration)을 Root AP에 요청하고, Root AP로부터 초기 Relay BSS 전송 구간을 할당받을 수 있다. Relay와 STA 간의 전송이 시작된 이후, Relay는 STA과 전송되는 트래픽에 기초하여 Relay BSS를 위한 전송 구간의 할당이 더 필요한지 여부 또는 덜 필요한지 여부를 판단하고, 판단 결과를 Root AP에 피드백할 수 있다. Root AP는 Relay로부터 피드백받은 정보에 기초하여 Relay BSS에 대한 전송 구간을 조정하고, Relay BSS에 재할당할 수 있다. 이 방법은 비교적 트래픽 양과 주기가 일정한 경우에 유용할 수 있다. STA의 전송 트래픽 및 전송 주기가 일정하지 않은 경우에는 Relay BSS의 전송 주기를 보다 정확히 할당하기 위하여 다음과 같은 방법 D, 방법 E가 이용될 수 있다.When the relay connects to the Root AP, and negotiates with the Root AP about relay related parameters, it requests the Root AP for the Beacon Interval to be used by the Relay and the duration required for the Relay BSS transmission, and the initial relay from the Root AP. A BSS transmission interval may be allocated. After the transmission between the relay and the STA is started, the relay may determine whether more or less allocation of a transmission interval for the relay BSS is required based on the traffic transmitted from the STA and may feed back the determination result to the root AP. The Root AP may adjust the transmission interval for the Relay BSS based on the information received from the Relay and reassign it to the Relay BSS. This method can be useful when the traffic volume and period are relatively constant. If the transmission traffic and transmission period of the STA is not constant, the following method D and method E may be used to more accurately allocate the transmission period of the relay BSS.
<방법 D><Method D>
도 46은 일실시예에 따른 Relay 전송 구간을 할당하는 일례를 도시하는 도면이다. Relay는 STA의 Mean Data Rate를 Relay의 다음 DTIM(Delivery Traffic Indication Message) 이전에 Root AP에게 피드백할 수 있다. TWT(Target Wake Time) STA의 경우, Mean Data Rate 이외에 target wake time 정보를 함께 전송할 수 있다.46 illustrates an example of allocating a relay transmission interval according to an embodiment. The relay may feed back a mean data rate of the STA to the root AP before the next delivery traffic indication message (DTIM) of the relay. In the case of a target wake time (TWT) STA, target wake time information may be transmitted together with a mean data rate.
만약, implicit TWT 경우 Wake Interval을 추가로 Root AP에게 피드백할 수 있다. 이 경우, TWT가 주기적으로 전달됨에 따라 Wake Interval이 변하지 않는 범위 안에서는 Relay가 TWT를 매번 피드백하지 않더라도, Root AP는 이전 TWT에 Wake Interval을 더하여 다음 번 TWT를 결정할 수 있다.In case of implicit TWT, Wake Interval can be additionally fed back to Root AP. In this case, the Root AP may determine the next TWT by adding the Wake Interval to the previous TWT even if the Relay does not feed back the TWT every time within the range that the Wake Interval does not change as the TWT is periodically transmitted.
예를 들어, Root AP는 "(Relay Beacon의 다음 TIM(Traffic Indication Message) 또는 DTIM 구간에 대해 TIM=1로 설정할 STA 각각에 대한 DL 버퍼링된 데이터량/각 STA의 Mean Data Rate)의 합+(다음 TIM 또는 DTIM 구간에 깨어나고, 버퍼링된 데이터가 있는 각 TWT STA에게 버퍼링된 데이터량/각 STA의 Mean Data Rate)의 합"에 기초하여 다음 TIM 또는 DTIM 구간의 전체 DL 구간을 대략적으로 결정할 수 있다.For example, the Root AP is sum of "(DL amount of buffered data for each STA to be set to TIM = 1 for the next traffic indication message (TIM) of the relay beacon or DTIM interval / mean data rate of each STA) ( The entire DL interval of the next TIM or DTIM interval may be determined approximately based on the sum of the amount of data buffered / mean data rate of each STA to each TWT STA having the data buffered and awakened in the next TIM or DTIM interval. .
예를 들어, Root AP는 다음의 수학식 1에 기초하여 Relay BSS에 대한 다음 Relay Beacon interval 동안 전송될 DL Duration을 결정할 수 있다.For example, the Root AP may determine the DL Duration to be transmitted during the next Relay Beacon interval for the Relay BSS based on Equation 1 below.
Figure PCTKR2013011012-appb-I000007
Figure PCTKR2013011012-appb-I000007
여기서, DataSizeBufferedForTIMSTA(i)는 Root AP에서 버퍼링된 TIM STA(i)의 데이터 크기(bits)를 나타내고, MeanDLDataRateOfTIMSTA(i)는 TIM STA(i)의 Mean DL Data Rate(bits/s)을 나타낸다. 만일, Relay Beacon에서, TIM STA(i)에 대한 TIM 비트가 1로 설정되면, 다음 Relay Beacon에 대한 TIMbit(i)ForNextRelayBeacon)는 1로 설정되고, 그 외의 경우에는 다음 Relay Beacon에 대한 TIMbit(i)는 0으로 설정된다.Here, DataSizeBufferedForTIMSTA (i) represents the data size (bits) of the TIM STA (i) buffered in the Root AP, and MeanDLDataRateOfTIMSTA (i) represents the Mean DL Data Rate (bits / s) of the TIM STA (i). In the relay beacon, if the TIM bit for the TIM STA (i) is set to 1, the TIMbit (i) ForNextRelayBeacon) for the next relay beacon is set to 1, otherwise, the TIMbit (i) for the next relay beacon is set. ) Is set to zero.
DataSizeBufferedForTWTSTA(j)는 Root AP에서 버퍼링된 TWT STA(j)의 데이터 크기(bits)를 나타내고, MeanDLDataRateOfTWTSTA(j)는 TWT STA(j)의 Mean DL Data Rate(bits/s)을 나타낸다. 만일, TWT STA(j)의 Target Wake UP Time이 다음 Relay Beacon Interval 내에 존재하면, WithinNextRelayBeacon(j) interval의 값은 1로 설정되고, 그 외의 경우에는 WithinNextRelayBeacon(j) interval의 값은 0으로 설정된다.DataSizeBufferedForTWTSTA (j) represents the data size (bits) of the TWT STA (j) buffered at the Root AP, and MeanDLDataRateOfTWTSTA (j) represents the Mean DL Data Rate (bits / s) of the TWT STA (j). If the Target Wake UP Time of the TWT STA (j) exists within the next Relay Beacon Interval, the value of WithinNextRelayBeacon (j) interval is set to 1, and otherwise, the value of WithinNextRelayBeacon (j) interval is set to 0. .
TWT STA의 경우 전송 구간이 인접하지 않을 수 있고, 이 경우 TWT STA의 전송 구간 사이의 시간들을 DL Duration 에 추가로 더하는 것도 가능하다. Relay가 TIM 분할(Segmentation)을 수행하더라도, Relay는 첫 번째 TIM segment 전송에 시간이 부족하면 다음 Relay beacon 전송 후에 나머지 데이터를 전송할 수 있다.In the case of the TWT STA, the transmission interval may not be adjacent, and in this case, it is also possible to further add the time between transmission periods of the TWT STA to the DL Duration. Even if the relay performs TIM segmentation, the relay can transmit the remaining data after the next relay beacon transmission when there is not enough time for the first TIM segment transmission.
Relay는 이전까지의 UL 데이터의 전송 통계에 기초하여 기대(expected) 데이터량을 Root AP에 전송할 수 있다. TIM STA의 경우, 기대 데이터량을 결정하기 위해서는 STA의 Relay에 대한 Mean Data Rate(for UL), 이전까지의 STA의 UL 데이터 전송 통계에 기초하여 계산한 기대 데이터량의 정보가 필요할 수 있다. TWT STA의 경우, 기대 데이터량을 결정하기 위해서는 TWT 정보도 추가적으로 Root AP에 전송할 필요가 있다. Implicit TWT 의 경우에는, Wake Interval 정보도 추가로 Root AP에 전송이 가능하다.The relay may transmit the expected data amount to the Root AP based on the previous transmission statistics of UL data. In the case of a TIM STA, information of an expected data amount calculated based on a Mean Data Rate (for UL) for a relay of an STA and UL data transmission statistics of a previous STA may be needed to determine an expected data amount. In the case of the TWT STA, the TWT information needs to be additionally transmitted to the Root AP in order to determine the expected data amount. In case of Implicit TWT, Wake Interval information can be additionally transmitted to Root AP.
예를 들어, Relay BSS에서 UL 데이터를 전송하기 위해 필요한 시간 구간은 다음의 수학식 2에 기초하여 결정될 수 있다.For example, a time interval required for transmitting UL data in the relay BSS may be determined based on Equation 2 below.
Figure PCTKR2013011012-appb-I000008
Figure PCTKR2013011012-appb-I000008
여기서, MeanULDataSizeForTIMSTA(i)은 TIM STA(i)에 대한 Mean UL Data Size (bits)를 나타내고, MeanULDataRateOfTIMSTA(i)은 TIM STA(i)에 대한 Mean UL Data Rate을 나타낸다. MeanULDataSizeForTWTSTA(j)은 TWT STA(j)에 대한 Mean UL Data Size (bits)를 나타내고, MeanULDataRateOfTWTSTA(j)은 TWT STA(j)에 대한 Mean UL Data Rate을 나타낸다.Here, MeanULDataSizeForTIMSTA (i) represents Mean UL Data Size (bits) for TIM STA (i), and MeanULDataRateOfTIMSTA (i) represents Mean UL Data Rate for TIM STA (i). MeanULDataSizeForTWTSTA (j) represents Mean UL Data Size (bits) for TWT STA (j), and MeanULDataRateOfTWTSTA (j) represents Mean UL Data Rate for TWT STA (j).
만일, TWT STA(j)의 Target Wake UP Time이 다음 Relay Beacon Interval 내에 존재하면, WithinNextRelayBeacon interval의 값은 1이고, 그 외의 경우에는 WithinNextRelayBeacon interval(j)의 값이 0으로 설정된다.If the Target Wake UP Time of the TWT STA (j) exists within the next Relay Beacon Interval, the value of WithinNextRelayBeacon interval is 1, and in other cases, the value of WithinNextRelayBeacon interval (j) is set to 0.
TWT STA의 경우 전송 구간이 인접하지 않을 수 있고, 이 경우 TWT STA의 전송 구간 사이의 시간들을 DL Duration 에 추가로 더하는 것도 가능하다.In the case of the TWT STA, the transmission interval may not be adjacent, and in this case, it is also possible to further add the time between transmission periods of the TWT STA to the DL Duration.
Relay는 Mean UL Data Size for TWT STA, Mean UL Data Rate for TWT STA, Mean UL Data Size for TIM STA, Mean UL Data Rate for TIM STA을 각각 Root AP에게 피드백하지 않고, (Mean UL Data Size for TWT STA)/(Mean UL Data Rate for TWT STA)의 값, (Mean UL Data Size for TIM STA)/(Mean UL Data Rate for TIM STA)의 값을 Relay가 직접 계산하여 Root AP에게 피드백할 수도 있다. The relay does not feed back Mean UL Data Size for TWT STA, Mean UL Data Rate for TWT STA, Mean UL Data Size for TIM STA, Mean UL Data Rate for TIM STA to Root AP, respectively (Mean UL Data Size for TWT STA The relay may directly calculate the value of) / (Mean UL Data Rate for TWT STA) and the value of (Mean UL Data Size for TIM STA) / (Mean UL Data Rate for TIM STA) to feed back to the Root AP.
예를 들어, 다음 Relay beacon interval 동안 예상되는 UL duration은 다음의 수학식 3에 기초하여 결정될 수 있다.For example, the expected UL duration during the next Relay beacon interval may be determined based on Equation 3 below.
Figure PCTKR2013011012-appb-I000009
Figure PCTKR2013011012-appb-I000009
여기서, TWT STA(j)의 Target Wake UP Time이 다음 Relay Beacon Interval 내에 존재하면, WithinNextRelayBeacon interval의 값은 1이고, 그 외의 경우에는 WithinNextRelayBeacon interval(j)의 값이 0으로 설정된다.Here, if the Target Wake UP Time of the TWT STA (j) exists within the next Relay Beacon Interval, the value of WithinNextRelayBeacon interval is 1, and in other cases, the value of WithinNextRelayBeacon interval (j) is set to 0.
MeanULDurationForTIMSTA(i)은 (TIM STA(i)에 대한 Mean UL Data Size (bits)) / (TIM STA(i)에 대한 Mean UL Data Rate (bits/s))를 나타낸다. MeanULDurationForTWTSTA(j)은 (TWT STA(j)에 대한 Mean UL Data Size (bits)) / (TWT STA(j)에 대한 Mean UL Data Rate (bits/s))를 나타낸다.MeanULDurationForTIMSTA (i) represents (Mean UL Data Size (bits) for TIM STA (i)) / (Mean UL Data Rate (bits / s) for TIM STA (i)). MeanULDurationForTWTSTA (j) represents (Mean UL Data Size (bits) for TWT STA (j)) / (Mean UL Data Rate (bits / s) for TWT STA (j)).
위와 같이 계산된 Relay BSS를 위한 UL Duartion 및 DL Duration에 기초하여 전체 Relay BSS의 전송 구간을 다음의 수학식 4와 같이 계산할 수 있다.Based on the UL Duartion and DL Duration for the Relay BSS calculated as described above, the transmission interval of the entire Relay BSS can be calculated as shown in Equation 4 below.
Figure PCTKR2013011012-appb-I000010
Figure PCTKR2013011012-appb-I000010
802.11ah에 정의된 STA Information Announcement frame은 확장되어 이용될 수 있다. 예를 들어, STA Information Announcement frame에 AID update 정보뿐만 아니라 Duration 할당 관련 정보를 포함하도록 STA Information Announcement frame의 추가 엘리먼트를 정의할 수 있다. 또는, Duration 할당 관련 정보를 포함할 수 있는 새로운 프레임을 정의하고, Relay가 새롭게 정의된 프레임을 Root AP에 전송할 수 있다. Relay는 매 DTIM마다 모든 STA 정보를 업데이트할 필요는 없고, 데이터 레이트의 변동이 심한 STA에 대한 정보만 업데이트할 수 있다.The STA Information Announcement frame defined in 802.11ah may be extended and used. For example, an additional element of the STA Information Announcement frame may be defined to include Duration allocation related information as well as AID update information in the STA Information Announcement frame. Alternatively, a new frame that may include duration allocation related information may be defined, and the relay may transmit a newly defined frame to the root AP. The relay does not need to update all the STA information for every DTIM, and can update only the information on the STA whose data rate fluctuates.
<방법 E><Method E>
초기에는 Root AP가 Extended BSS 내의 전체 Relay 수 등에 기초하여 Relay Beacon의 전송 시점 및 초기 전송 구간을 할당할 수 있다. Relay는 초기 전송 구간(initial transmission duration), Relay Beacon Interval 등에 관한 Relay Setup Request를 Root AP에 전달할 수 있다. Root AP는 Relay Setup Request에 응답하여, next Relay TBTT(Target Beacon Transmission Time), Beacon Interval, initial duration에 관한 Relay Setup Response를 Relay에 전달할 수 있다.Initially, the Root AP can allocate the transmission time and the initial transmission interval of the relay beacon based on the total number of relays in the extended BSS. The relay may transmit a relay setup request for an initial transmission duration, a relay beacon interval, etc. to the root AP. In response to the relay setup request, the root AP may transmit a relay setup response regarding a next relay target beacon transmission time (TBTT), beacon interval, and initial duration to the relay.
전송 구간의 업데이트와 관련하여, 다음의 Option 1, Option 2의 방법이 있다.Regarding the update of the transmission interval, there are the following Option 1 and Option 2 methods.
(1) Option 1: Relay에 연결된 STA의 트래픽이 규칙적일 경우, Root AP는 전송 구간을 주기적으로 할당하고, Relay가 명시적으로 전송 구간의 업데이트를 요청할 경우에만 전송 구간을 조정할 수 있다.(1) Option 1: If the traffic of the STA connected to the relay is regular, the Root AP allocates a transmission interval periodically and can adjust the transmission interval only when the relay explicitly requests the update of the transmission interval.
(2) Option 2: Relay에 연결된 STA의 트래픽이 규칙적이지 않을 경우, Root AP는 Relay의 각 STA에 대한 정보에 기초하여 전송 구간을 조정할 수 있다. Relay는 STA이 Relay에 연결 시 STA으로부터 수신한 정보와 추가 정보를 ReachableAddressUpdate 프레임 등을 이용하여 Root AP에 전송할 수 있고, Root AP는 Relay로부터 수신한 정보에 기초하여 Relay 클러스터 내 전송 구간을 조정할 수 있다. Relay는 매 STA이 Relay에 연결되는 시점에 ReachableAddress(STA의 맥(MAC) 주소), Mean Data Rate, STA의 AID , STA Type에 관한 정보를 Root AP에 전송할 수 있다. Mean Data Rate는 STA이 처음 Relay에 연결 시, Relay에 전송하는 초기 값(4 octet)을 이용한다. Relay의 DTIM 전송 시점 직전에, Relay는 Relay의 다음 DTIM 구간의 TIM Segment 수(+TIM Offset, Page Offset), 업데이트된 Mean Data Rate, 재할당된 STA의 AID 에 관한 정보를 Root AP에 전송할 수 있다. 업데이트된 Mean Data Rate와 재할당된 STA의 AID는 STA별로 필요한 경우에 전송될 수 있다.(2) Option 2: If the traffic of the STA connected to the relay is not regular, the Root AP can adjust the transmission interval based on the information on each STA of the relay. The relay can transmit information and additional information received from the STA to the Root AP using the ReachableAddressUpdate frame when the STA connects to the relay, and the Root AP can adjust the transmission interval in the relay cluster based on the information received from the Relay. . The relay may transmit information on the ReachableAddress (MAC address of the STA), the Mean Data Rate, the AID of the STA, and the STA Type to the Root AP when every STA is connected to the relay. Mean Data Rate uses the initial value (4 octet) transmitted to the relay when the STA first connects to the relay. Immediately before the DTIM transmission time of the relay, the relay may transmit information on the number of TIM segments (+ TIM Offset, Page Offset), updated mean data rate, and AID of the reassigned STA to the Root AP. . The updated mean data rate and the AID of the reassigned STA may be transmitted when necessary for each STA.
Root AP는 Relay Beacon에 기초하여, Relay DTIM이 언제 전송되는지를 판단할 수 있다. Root AP는 TIM Segment 수 및 STA의 AID에 기초하여 DTIM 이후의 몇 번째 Beacon에서 특정 STA에 대한 TIM Segment가 전달되는지를 판단할 수 있다. TIM Segment에 Relay가 STA에 대한 DL 전송을 스케쥴하므로, Root AP는 Relay Beacon 구간에서 Relay에서 STA로의 전송을 예측할 수 있다.The root AP may determine when the relay DTIM is transmitted based on the relay beacon. The Root AP may determine the number of Beacons after DTIM based on the number of TIM Segments and the STA's AID to transmit a TIM Segment for a specific STA. Since the relay schedules DL transmission to the STA in the TIM segment, the Root AP can predict the transmission from the relay to the STA in the relay beacon period.
Root AP는 STA에 대한 트래픽양, Mean Data rate, DL 데이터가 전송되는 Relay Beacon Interval에 기초하여 특정 Relay Beacon Interval에서 DL 전송에 필요한 시간을 예측할 수 있다. TWT STA의 경우, Root AP는 TWT, 전송 구간 정보 및 Mean Data Rate 정보에 기초하여 특정 Relay Beacon Interval에서 DL 전송에 필요한 시간을 예측할 수 있다.The Root AP can predict the time required for DL transmission in a specific Relay Beacon Interval based on the traffic amount for the STA, the Mean Data rate, and the Relay Beacon Interval through which DL data is transmitted. In the case of the TWT STA, the Root AP can predict the time required for DL transmission in a specific Relay Beacon Interval based on the TWT, transmission interval information, and Mean Data Rate information.
Root AP는 STA이 Relay에 연결 시 전달하는 STA type 정보 등에 기초하여 UL 전송 구간을 결정할 수 있다. Relay는 할당된 전송 구간을 UL RAW, DL RAW로 세부적으로 할당할 수 있다. 전송 구간이 충분하지 않은 경우, Root AP, Relay, STA는 데이터를 버퍼링한 후 다음 전송 구간에서 전송할 수 있다.The root AP may determine the UL transmission interval based on STA type information transmitted when the STA connects to the relay. The relay can allocate the allocated transmission interval in detail to UL RAW and DL RAW. If the transmission interval is not sufficient, the Root AP, Relay, STA may transmit data in the next transmission interval after buffering the data.
<(BB) Relay 간의 공간적 분리(Spatial Separation)를 판단하는 방법><Method of Determining Spatial Separation between (BB) Relays>
Relay는 초기에 Root AP에 다른 Relay BSS 와의 공간적 분리 여부를 측정하고, 측정 결과를 Root AP에 전달할 수 있다. Root AP는 Relay로부터 수신한 측정 결과에 기초하여 Relay BSS의 전송 구간을 할당할 수 있다. 신규 Relay BSS와 다른 Relay BSS가 공간적으로 충분히 분리되어 있으면 전송 구간을 중복적으로 할당할 수 있다.The relay may initially measure the spatial separation from the other relay BSS to the root AP, and transmit the measurement result to the root AP. The root AP may allocate a transmission period of the relay BSS based on the measurement result received from the relay. If the new relay BSS and the other relay BSS are sufficiently separated from each other, the transmission interval can be overlapped.
또한, Relay BSS는 Relay BSS에 속한 STA이 동일한 채널을 이용하는 다른 Relay BSS 전송 구간에서 데이터를 전송하여 충돌이 발생하는 것을 막기 위해, 명시적으로 다른 Relay BSS의 전송 구간을 Empty RAW (또는, AP PM RAW)로 설정할 수 있다. Relay BSS는 주기적으로 다른 Relay BSS와의 공간적 분리(spatial separation) 여부를 판단하고, 만약 충분히 분리되지 않는다면 다른 Relay 전송 구간을 Empty RAW (또는, AP PM RAW)로 설정하여 자신에게 연결된 STA의 데이터 전송을 금지시킬 수 있다. 또는, Relay BSS는 다른 Relay 전송 구간에 대해 Relay BSS 내 모든 STA의 데이터 전송을 금지시키지는 않고, Relay BSS 내의 STA들 중 다른 Relay BSS의 간섭을 많이 받는 특정 STA에 대해서만 전송을 금지시킬 수도 있다. 이 경우, 명시적으로 전송이 금지된 STA을 나타낼 수 있는 변형된 Empty RAW (또는, 변형된 AP PM RAW)의 사용, 또는 전송이 금지된 STA을 전송 구간 할당 대상에서 제외하는 방법 등이 이용될 수 있다.In addition, the relay BSS explicitly clears the transmission interval of another relay BSS to empty RAW (or AP PM) in order to prevent a collision due to transmission of data in another Relay BSS transmission interval using the same channel. RAW). The relay BSS periodically determines whether there is a spatial separation from another relay BSS, and if it is not separated sufficiently, set another relay transmission interval to Empty RAW (or AP PM RAW) to perform data transmission of the STA connected to it. Can be prohibited. Alternatively, the Relay BSS does not prohibit data transmission of all STAs in the Relay BSS with respect to other Relay transmission intervals, but may also prohibit transmission only for a specific STA that is subject to much interference from other Relay BSSs among the STAs in the Relay BSS. In this case, use of a modified Empty RAW (or modified AP PM RAW) that may indicate an STA that is explicitly prohibited from transmission, or a method of excluding a STA forbidden from transmission interval allocation may be used. Can be.
Root BSS도 위와 유사하게 Root BSS 에 속한 STA이 동일한 채널을 이용하는 다른 Relay BSS 전송 구간에서 데이터를 전송하여 충돌이 발생하는 것을 막기 위해, 명시적으로 다른 Relay BSS의 전송 구간을 Empty RAW (또는 AP PM RAW)로 설정할 수 있다. Root BSS는 Relay BSS와 유사하게 아래에서 기술하는 방법으로 다른 Relay BSS와의 공간적 분리 여부를 판단하고, 만약 충분히 분리되지 않는다면 다른 Relay 전송 구간을 Empty RAW (또는 AP PM RAW)로 설정하여 자신에게 연결된 STA의 데이터 전송을 금지시킬 수 있다. 또는, Root BSS는 다른 Relay 전송 구간에 대해 Root BSS 내 모든 STA의 데이터 전송을 금지시키지는 않고, Root BSS 내의 STA들 중 다른 Relay BSS의 간섭을 많이 받는 특정 STA에 대해서만 전송을 금지시킬 수도 있다. 이 경우, 명시적으로 전송이 금지된 STA을 나타낼 수 있는 변형된 Empty RAW (또는, 변형된 AP PM RAW)의 사용, 또는 전송이 금지된 STA을 전송 구간 할당 대상에서 제외하는 방법 등이 이용될 수 있다.Similarly, in order to prevent a collision due to the transmission of data in another Relay BSS transmission section using the same channel, the STA of the Root BSS similarly uses the Empty RAW (or AP PM) explicitly. RAW). Root BSS, similar to Relay BSS, uses the method described below to determine whether it is spatially separated from other Relay BSS, and if it is not separated enough, set another Relay transmission section to Empty RAW (or AP PM RAW) Can prohibit data transmission. Alternatively, the Root BSS does not prohibit data transmission of all STAs in the Root BSS with respect to other Relay transmission intervals, and may prohibit transmission only for a specific STA that receives much interference from other Relay BSSs among the STAs in the Root BSS. In this case, use of a modified Empty RAW (or modified AP PM RAW) that may indicate an STA that is explicitly prohibited from transmission, or a method of excluding a STA forbidden from transmission interval allocation may be used. Can be.
레벨 1의 전송에서, STA는 자신이 속한 Relay에 할당되지 않은 전송 구간이더라도 명시적으로 Empty RAW로 설정되지 않은 전송 구간에서, 해당 구간에서 다른 Relay BSS의 전송이 감지되지 않은 경우, 또는 해당 Relay BSS의 Beacon에 기초하여 판단한 결과, 해당 Relay BSS의 전송을 위해 할당된 구간 내에 RAW가 설정되어 있지 않은 경우에는 예외적으로 전송할 수 있다.In the level 1 transmission, the STA may transmit a transmission interval that is not explicitly assigned to an empty relay interval even if the transmission interval is not assigned to its own relay, when no transmission of another relay BSS is detected in the interval, or the corresponding relay BSS. As a result of the determination based on the Beacon of, if the RAW is not set within the allocated interval for transmission of the corresponding relay BSS, the transmission may be exceptional.
레벨 0의 전송에서, Root BSS의 STA는 다른 Relay BSS에 할당된 시간 구간이라 하더라도, 해당 구간에서 다른 Relay BSS의 전송이 감지되지 않은 경우, 또는 해당 Relay BSS의 Beacon에 기초하여 판단한 결과, 해당 Relay BSS의 전송을 위해 할당된 구간 내에 RAW가 설정되어 있지 않은 경우에는 예외적으로 전송할 수 있다.In the level 0 transmission, even if the STA of the root BSS is a time interval allocated to another relay BSS, when the transmission of another relay BSS is not detected in the corresponding interval, or as determined based on the beacon of the corresponding relay BSS, the corresponding relay If RAW is not set within the interval allocated for the transmission of the BSS, it can be exceptionally transmitted.
또는, Root AP에 속한 STA, Relay에 속한 STA는, 자신들의 AP에 대한 전송이 할당되지 않은 구간에서라도, 기존 OBSS 환경에서의 전송과 같이 경쟁(contention)을 통해 전송이 허용될 수도 있다. 하지만, 자신의 BSS에 할당되지 않은 구간에서 데이터를 전송할 경우에는 충돌 확률이 높기 때문에 STA는 RTS/CTS를 데이터 전송 전에 수행하는 것이 바람직하다.Alternatively, STAs belonging to the Root AP and STAs belonging to the Relay may be allowed to transmit through contention, such as transmission in an existing OBSS environment, even in a section in which transmissions for their APs are not allocated. However, when transmitting data in a section not allocated to its BSS, the collision probability is high, so the STA preferably performs the RTS / CTS before transmitting the data.
Relay나 Root AP는 자신에게 할당되지 않은 전송 구간 중 충돌이나 경쟁이 심할 것으로 예상되는 구간을 Empty RAW로 설정하여 자신에게 연결된 STA들의 전송을 명시적으로 금지시킬 수 있다. 또한, Relay AP는 Relay와 Root AP 간의 전송이 일어나는 구간을 Empty RAW로 설정하여 Relay와 Root AP 간의 전송이 일어나는 구간에서 STA이 Relay로 전송하는 것을 금지시킬 수 있다. 예를 들어, Relay나 Root AP는 AP PM(power management)=1로 설정하여 특정 구간에서 Relay에 연결된 모든 STA의 전송을 금지시킬 수 있다. AP PM은 스테이션의 절전 모드를 조절하는 파라미터를 나타낸다.The relay or the root AP may explicitly prohibit transmission of STAs connected to the self by setting an empty RAW period in which a collision or contention is expected to be severe among transmission periods not allocated to the relay or root AP. In addition, the relay AP may prohibit the STA from transmitting to the relay in the section in which the transmission between the relay and the root AP occurs by setting the empty RAW interval between the relay and the root AP. For example, a relay or a root AP may prohibit transmission of all STAs connected to a relay in a specific period by setting AP power management (PM PM) = 1. AP PM represents a parameter for adjusting a power saving mode of a station.
<공간적 분리 여부를 판단하는 방법 A><Method A to Determine Spatial Separation>
공간적으로 분리된 정도를 판단하는 첫 번째 방법은, 802.11k에서 정의된 Frame Request/Response frame을 확장하여 자신의 Relay BSS 내에 속한 STA들이 주변 Relay BSS의 Relay 및 주변 Relay BSS에 속한 STA과의 분리 여부를 판단하는 방법이다. 도 47은 일실시예에 따른 Frame Request를 위한 포맷를 도시하는 도면이고, 도 48은 일실시예에 따른 Frame Report를 위한 포맷을 도시하는 도면이다. STA은 다른 Relay BSS에 속하는 STA의 전송 프레임에 관한 RCPI(received channel power indicator), RSNI(received signal to noise indicator)를 감지하고, 감지한 RCPI, RSNI를 보고할 수 있다.The first method to determine the spatial separation degree is to extend the Frame Request / Response frame defined in 802.11k to determine whether STAs in their own relay BSS are separated from the relays in the neighboring relay BSS and the STAs in the neighboring relay BSS. How to judge. FIG. 47 is a diagram illustrating a format for a frame request according to an embodiment, and FIG. 48 is a diagram illustrating a format for a frame report according to one embodiment. The STA may detect a received channel power indicator (RCPI) and a received signal to noise indicator (RSNI) regarding a transmission frame of an STA belonging to another relay BSS, and may report the detected RCPI and RSNI.
Beacon Report를 이용하여 AP에 대한 RCPI, RSNI 값이 식별될 수 있는 반면, Frame Report는 임의의 STA이 전송하는 임의의 프레임 전송을 통해 해당 STA에 대한 평균 RCPI, RSNI 값이 식별될 수 있다.While the RCPI and RSNI values for the AP may be identified using the Beacon Report, the average RCPI and RSNI values for the STA may be identified through any frame transmission transmitted by any STA.
Beacon Request에 특정 MAC address를 대상으로 하는 STA에 대한 프레임 측정의 요청이 포함될 수 있다. 여기서, Wildcard MAC address의 지정이 가능하다.The Beacon Request may include a frame measurement request for an STA targeting a specific MAC address. Here, the Wildcard MAC address can be designated.
Frame Report는 Optional subelement에 Frame Count Report Subelement을 포함할 수 있다. 하나의 Report Entry에 하나의 STA으로부터 전송된 프레임에 대한 카운트(count) 및 average RCPI, RSNI 정보가 포함될 수 있다. 프레임 개수 및 average RCPI, RSNI 정보에 기초하여 특정 STA로부터 공간적으로 어느 정도 분리되었는지가 결정될 수 있다.The frame report may include a frame count report subelement in an optional subelement. One report entry may include a count, average RCPI, and RSNI information about a frame transmitted from one STA. Based on the number of frames, average RCPI, and RSNI information, it may be determined how spatially separated from a specific STA.
- Relay를 고려한 Frame Request/Response frame의 확장 --Extension of Frame Request / Response frame considering Relay-
도 49는 일실시예에 따른 Measurement Request 필드의 포맷의 일례를 도시하는 도면이고, 도 50은 일실시예에 따른 Measurement report 필드의 포맷의 일례를 도시하는 도면이다.49 is a diagram illustrating an example of a format of a Measurement Request field according to an embodiment, and FIG. 50 is a diagram illustrating an example of a format of a Measurement report field according to an embodiment.
특정 Relay와 STA의 분리 여부 판단을 위해, 특정 BSSID로부터 또는 특정 BSSID로 전송되는 프레임을 측정하도록 Frame Request/Response frame이 확장된다. 기존 포맷의 Optional sub-element에 BSSID를 추가할 수 있도록 Frame Request/Response frame이 확장된다.In order to determine whether a particular relay and a STA are separated, a Frame Request / Response frame is extended to measure a frame transmitted from a specific BSSID or to a specific BSSID. Frame Request / Response frame is extended to add BSSID to Optional sub-element of existing format.
MAC address가 wildcard이고, sub-element에 BSSID가 지정되어 있으면, 해당 BSSID로부터 전송되는 프레임 및 해당 BSSID로 전송되는 프레임을 측정하도록 Frame Request/Response frame이 확장될 수 있다If the MAC address is wildcard and the BSSID is assigned to the sub-element, the Frame Request / Response frame can be extended to measure the frame transmitted from the BSSID and the frame transmitted to the BSSID.
확장된 Frame Request/Response frame에서는 측정 구간(Measurement Duration) 이외에 측정 시작 시점(Measurement Start time)을 지정할 수 있다. Frame report 요청 시, 측정 시작 시점을 측정할 Relay BSS에 할당된 전송 구간 시작 시점으로 설정할 수 있다. 다른 Relay의 전송을 방해하지 않도록, STA들은 다른 Relay 전송 구간에서는 측정만 하고, 측정 보고(measurement report)는 나중에 전송할 수 있다. 측정 보고의 전송을 위한 RAW가 할당될 수 있다.In the extended frame request / response frame, a measurement start time may be specified in addition to the measurement duration. When requesting a frame report, it is possible to set the start point of the transmission interval allocated to the relay BSS to be measured. In order not to disturb transmission of other relays, STAs may measure only in another relay transmission interval and transmit a measurement report later. RAW may be allocated for the transmission of measurement reports.
Relay BSS의 전송 구간 중 STA들에게 broadcast/groupcast로 측정 보고를 요청하고, STA들 중 802.11k 기능을 지원하는 STA들은 지정된 시작 시점/전송 구간 동안 지정된 Relay에 대한 측정을 하여 자신이 연결된 Relay에 측정 결과를 전송할 수 있다. 측정 결과를 수신한 Relay는 측정 결과에 기초하여 주변 Relay와의 분리 여부를 판단할 수 있다.During the transmission period of the relay BSS, the STA requests broadcast / groupcast measurement report, and the STAs supporting the 802.11k function measure the designated relay during the designated start time / transmission period and measure the relay to which they are connected. You can send the result. The relay receiving the measurement result may determine whether the relay is separated from the neighboring relay based on the measurement result.
트래픽양을 줄이기 위해 Relay에 속한 임의의 802.11k를 지원하는 STA을 선택하는 방법도 이용될 수 있다. Relay에 속한 모든 STA들로부터 측정 보고를 수신하면 트래픽양이 너무 많아질 수 있기 때문이다. 예를 들어, Relay는 802.11k를 지원하는 STA들 중 임의의 STA을 선택하고, 선택된 STA에게 측정 보고를 요청할 수 있다. In order to reduce the amount of traffic, a method of selecting an STA supporting any 802.11k belonging to a relay may also be used. This is because when the measurement report is received from all the STAs belonging to the relay, the traffic amount may be too large. For example, the relay may select any of the STAs supporting 802.11k and request a measurement report from the selected STA.
Relay는 측정(measurement)를 수행하는 STA에게 각 TA address별이 아닌, 특정 BSS 전체 전송에 대한 RCPI, RSNI 평균 값 또는 최대치 등의 정보를 보내도록 요청할 수도 있다. Relay는 측정 보고되는 크기를 줄이기 위해, 각 STA에 대한 RCPI, RSNI이 아닌, RCPI, RSNI의 평균값, 또는 해당 Relay에 가장 영향을 많이 미치는 외부 STA의 RCPI, RSNI 값(즉, RCPI, RSNI 최대값)만을 전송하도록 STA에게 요청할 수 있다.The relay may request an STA that performs measurement to send information such as RCPI, RSNI average value or maximum value for a specific BSS total transmission, not for each TA address. In order to reduce the reported size of the relay, the relay is the average value of RCPI, RSNI, or RCPI and RSNI for each STA, or the RCPI and RSNI value of the external STA that most affects the corresponding relay (ie, RCPI, RSNI maximum). ) Can be requested to send only STA.
BSS 전체 정보를 나타내기 위해 기존 Frame Report Entry를 변형한 BSS Frame Count Report를 정의할 수도 있다. 즉, 기존의 Frame count Report를 더 짧게 만들어 BSSID, BSSID 내의 평균 전송 Frame Count, Average RCPI, RSNI 만을 포함하는 BSS Frame Count Report를 정의할 수 있다.A BSS Frame Count Report can be defined that transforms an existing Frame Report Entry to represent the entire BSS information. That is, by making the existing frame count report shorter, it is possible to define a BSS Frame Count Report including only the BSSID, the average transmission frame count in the BSSID, Average RCPI, and RSNI.
각 Relay는 자신에 속한 STA들에게 Frame Report를 요청할 수 있고, Frame Report에 기초하여 STA들과 주변 Relay BSS 간의 분리 여부를 측정할 수 있다. Root AP도 자신에 속한 STA들에게 Frame Report를 요청할 수 있고, 각 Root BSS의 각 STA들과 주변 Relay BSS 간의 분리 여부를 측정할 수 있다.Each relay may request a frame report from the STAs belonging to the relay, and may measure whether the STAs are separated from the neighbor relay BSS based on the frame report. The Root AP can also request a Frame Report from STAs belonging to the Root AP, and can measure whether the STA is separated between each STA of each Root BSS and the neighboring Relay BSS.
Relay AP 또는 Root AP는 자신의 BSS와 특정 Relay BSS 간의 분리 여부를 판단할 수 있고, 다른 Relay BSS의 전송 구간을 Empty RAW로 설정할지 여부를 결정할 수 있다. Relay AP 또는 Root AP는 자신의 BSS와 특정 Relay BSS가 충분히 분리되지 않았다고 판단한 경우, 다른 Relay BSS의 전송 구간을 Empty RAW로 설정하거나 또는 AP PM=1로 설정함으로써 다른 Relay 전송 구간에서 자신의 BSS에 속한 STA이 데이터를 전송하는 것을 막을 수 있다.The relay AP or the root AP may determine whether to separate the BSS from the specific relay BSS and determine whether to set the transmission interval of another relay BSS to Empty RAW. If the relay AP or the root AP determines that the BSS and the specific relay BSS are not sufficiently separated, the relay AP or the Root AP sets the transmission interval of the other relay BSS to Empty RAW or sets AP PM = 1 to the BSS in another relay transmission interval. The belonging STA may be prevented from transmitting data.
다른 실시예에 따르면, Relay AP 또는 Root AP는 자신에게 속한 STA으로부터의 측정 보고에 기초하여 다른 Relay와 충분히 분리되지 않는 STA들을 식별할 수 있다. Relay AP 또는 Root AP는 다른 Relay의 전송 구간에 다른 Relay와 충분히 분리되지 않는 STA들에 대해서만 전송을 금지시킬 수 있다. 즉, Relay AP 또는 Root AP는 자신의 BSS의 전체 STA에 대해 전송을 금지시키는 것이 아니라, 특정 Relay BSS의 간섭을 받는 일부 STA의 전송만을 금지시킬 수 있다. 이 경우, Root BSS 또는 Relay BSS 내의 특정 STA의 전송만을 금지시키기 위해 (1) AP PM 또는 Empty RAW를 변형하여 사용하는 방법 (2) 기존 RAW 할당을 사용하는 방법의 두 가지의 방법이 이용될 수 있다. (1) AP PM 또는 Empty RAW를 변형하여 사용하는 방법은, AP PM RAW 또는 Empty RAW에 전송 구간 동안 전송을 금지시킬 STA의 (partial) AID list를 포함시키고, AP PM RAW 또는 Empty RAW 구간에는 (partial) AID list에 포함된 STA만 명시적으로 전송을 하지 못하게 하고, 나머지 STA들은 경쟁을 통해 전송을 허용하도록 하는 방법이다. (2) 기존 RAW 할당을 사용하는 방법은, 다른 Relay 전송 구간에 대한 RAW를 할당할 때, 전송을 명시적으로 금지시킬 STA을 RAW에 할당하지 않아 해당 STA이 전송하지 못하도록 하는 방법이다.According to another embodiment, the relay AP or the root AP may identify STAs that are not sufficiently separated from other relays based on the measurement report from the STA belonging to the relay AP or the root AP. The relay AP or the root AP may prohibit transmission only for STAs that are not sufficiently separated from other relays in the transmission period of another relay. That is, the relay AP or the root AP may prohibit transmission of only some STAs that are interfered with by a specific relay BSS, not prohibit transmission of all STAs of its BSS. In this case, in order to prohibit only transmission of a specific STA in the root BSS or relay BSS, two methods may be used: (1) a method of modifying AP PM or empty RAW and (2) a method of using an existing RAW allocation. have. (1) A method of modifying and using AP PM or Empty RAW includes a (partial) AID list of STAs to be prohibited during transmission in AP PM RAW or Empty RAW, and in AP PM RAW or Empty RAW ( partial) This is a method of preventing only the STAs included in the AID list from transmitting explicitly and allowing the remaining STAs to transmit through the contention. (2) The method of using the existing RAW allocation is a method of preventing the STA from transmitting when the RAW for another Relay transmission interval is not allocated to RAW, the STA to explicitly prohibit transmission.
Relay가 초기에 Root AP에 BSS establish 요청 할 때, Relay는 주변 Relay와의 분리 여부에 관한 정보를 Root AP에 전송할 수 있고, Root AP는 Relay로부터 수신한 정보에 기초하여 서로 공간적으로 분리된 Relay BSS에 동일한 전송 구간을 할당할 수 있다. When a relay initially requests a BSS establishment from a Root AP, the Relay can transmit information on whether or not it is separated from a neighboring relay to the Root AP, and the Root AP sends a relay BSS that is spatially separated from each other based on the information received from the Relay. The same transmission interval can be allocated.
또한, Relay는 주기적 또는 비주기적으로 다른 Relay BSS와의 공간적 분리 정도를 측정하고, 다른 Relay BSS와의 공간적 분리 정도가 미리 설정된 기준 이상 변했을 경우, 변경된 내용을 Root AP에 피드백할 수 있다. 예를 들어, Relay는 기존에 분리되어 있던 다른 Relay BSS로부터 간섭을 많이 받게 되거나, 또는 그 반대의 경우, 새로운 Relay BSS가 감지되었을 경우, 이에 대해 Root AP에 알릴 수 있다. Root AP는 이러한 Relay들 간의 공간적 분리 정보에 기초하여 새롭게 서로 공간적으로 분리된 Relay들의 전송을 동일 구간에 할당할 수도 있다.In addition, the relay periodically or aperiodically measures the degree of spatial separation with other relay BSS, and when the degree of spatial separation with other relay BSS changes more than a preset reference, it may feed back the changed contents to the Root AP. For example, a relay may receive a lot of interference from another relay BSS that is previously separated, or vice versa, when a new relay BSS is detected, the relay AP may be notified about this. The Root AP may allocate transmissions of newly spatially separated relays to the same section based on spatial separation information between the relays.
측정 보고의 크기를 줄이기 위해 Beacon Report와 유사한 reporting option이 Frame Request에 추가될 수 있다. 예를 들어, 특정 RCPI, RSNI 값 이상/이하에 대해서만 측정 보고에 포함되도록 reporting option이 설정될 수 있다.To reduce the size of the measurement report, a reporting option similar to the Beacon Report can be added to the Frame Request. For example, the reporting option may be set to include in the measurement report only for the specific RCPI, RSNI above or below.
<공간적 분리 여부를 판단하는 방법 B><Method B to Determine Spatial Separation>
공간적으로 분리된 정도를 판단하는 두 번째 방법은, 802.11k에서 정의된 beacon request/response를 이용하는 방법이다. 도 47은 일실시예에 따른 Frame Request를 위한 포맷를 도시하는 도면이고, 도 48은 일실시예에 따른 Frame Report를 위한 포맷을 도시하는 도면이다The second method for determining spatial separation is to use beacon request / response defined in 802.11k. FIG. 47 is a diagram illustrating a format for a frame request according to an embodiment, and FIG. 48 is a diagram illustrating a format for a frame report according to one embodiment.
Root AP는 Root AP에 연결된 STA, Relay에 Beacon Request 프레임을 전송할 수 있다. Beacon request/report를 통해 STA는 다른 STA에게 수신 가능한 Beacon을 전송하는 AP의 리스트를 요청할 수 있다. Relay들은 Root AP와 동일한 SSID(service set identification)를 이용하기 때문에, Root AP는 새로운 STA로부터 Beacon Report를 수신하기 위한 optional sub-element 내의 Root AP의 SSID를 포함할 수 있다. BSSID는wildcard BSSID로 설정될 수 있다.The Root AP can transmit a Beacon Request frame to the STA and Relay connected to the Root AP. The STA may request a list of APs transmitting beacons that can be received from other STAs through a beacon request / report. Since the relays use the same service set identification (SSID) as the Root AP, the Root AP may include the SSID of the Root AP in an optional sub-element for receiving a Beacon Report from a new STA. The BSSID may be set to wildcard BSSID.
새로 성립(establish)되는 Relay는 Root AP로부터 Beacon Request를 수신한 후, 다른 Relay의 Beacon, probe response을 측정하고, 측정 결과를 Root AP에 beacon report를 통해 전달할 수 있다. Root AP는 새로 성립되는 Relay와 다른 Relay AP 간의 RCPI, RSNI 등에 기초하여 새로 성립되는 Relay에 대한 전송 구간을 할당할 수 있다.The newly established relay can receive a beacon request from the root AP, measure the beacon and probe response of another relay, and transmit the measurement result to the root AP through a beacon report. The root AP may allocate a transmission interval for newly established relays based on RCPI, RSNI, etc. between newly established relays and other relay APs.
Root AP는 Relay가 새로이 성립(establish)되는 시점 이후에도 Beacon Request를 전달할 수 있고, 공간적으로 분리된 정도에 기초하여 자원 할당을 업데이트할 수 있다.The Root AP can send a Beacon Request even after a newly established Relay, and can update the resource allocation based on the spatial separation.
각 Relay는 Relay BSS에 STA 들이 연결된 후, 측정 기능을 구비한 STA들 중 일부 STA를 랜덤하게 선택하고, 선택된 STA들에 Beacon Request를 전달할 수 있다. 이 때, Beacon Request의 BSSID는 wildcard BSSID로, optional subelement의 SSID는 Root AP의 SSID로 설정될 수 있다.After the STAs are connected to the relay BSS, each relay may randomly select some STAs among the STAs having a measurement function and may transmit a beacon request to the selected STAs. At this time, the BSSID of the Beacon Request may be set to the wildcard BSSID and the SSID of the optional subelement to the SSID of the Root AP.
Relay는 Beacon Request의 보고 조건(reporting condition)을 설정하여 특정 RCPI level, RSNI level 이상 또는 이하가 될 경우에 Beacon Report가 전송되도록 할 수 있다.The relay may set a reporting condition of the Beacon Request so that the Beacon Report is transmitted when the RCPI level, RSNI level is above or below.
Relay는 주기적 또는 비주기적으로 STA들로부터 수신한 Beacon report에 기초하여 STA와 다른 Relay 간의 공간적 분리 여부를 판단할 수 있다. Relay는 STA와 다른 Relay가 공간적으로 인접해 있다고 판단되면, 해당 다른 Relay의 전송 시점을 Empty RAW로 설정하여 해당 STA의 전송을 금지시킬 수 있다.The relay may determine whether or not the spatial separation between the STA and another relay is based on the beacon report received from the STAs periodically or aperiodically. When the relay determines that the STA and another relay are spatially adjacent to each other, the relay may prohibit transmission of the corresponding STA by setting the transmission time of the corresponding other relay to Empty RAW.
각 Relay는 자신에 속한 STA들로부터 수신한 Beacon Report에 기초하여 각 STA들과 주변 Relay 간의 공간적 분리 여부를 판단할 수 있다. Root AP도 자신에 속한 STA들로부터 수신한 Beacon Report에 기초하여 Root BSS에 직접 연결된 각 STA들과 주변 Relay 간의 공간적 분리 여부를 판단할 수 있다.Each relay can determine whether the spatial separation between the STAs and the neighboring relay based on the Beacon Report received from the STAs belonging to it. Root AP can also determine whether the spatial separation between each STA directly connected to the root BSS and the peripheral relay based on the Beacon Report received from the STAs belonging to it.
Relay AP 또는 Root AP는 자신의 BSS와 다른 Relay 간의 공간적 분리 여부를 판단할 수 있고, 다른 Relay 전송 구간을 Empty RAW(또는 AP PM RAW)로 설정할지 여부를 결정할 수 있다. Relay AP 또는 Root AP는, 자신의 BSS와 다른 Relay가 공간적으로 충분히 분리되지 않은 경우, Empty RAW를 설정하거나 또는 AP PM=1로 설정할 수 있고, 이를 통해 다른 Relay 전송 구간에서 자신의 BSS에 속한 STA이 전송하는 것을 금지시킬 수 있다.The relay AP or the root AP can determine whether to spatially separate between its BSS and other relays, and determine whether to set another relay transmission interval to Empty RAW (or AP PM RAW). Relay AP or Root AP can set Empty RAW or AP PM = 1 when its BSS and other relays are not sufficiently separated spatially, so that STA belonging to its BSS in another Relay transmission interval can be set. You can prohibit this from sending.
다른 실시예에 따르면, Relay AP 또는 Root AP는 자신에게 속한 STA으로부터의 측정 보고에 기초하여 다른 Relay와 충분히 분리되지 않는 STA들을 식별할 수 있다. Relay AP 또는 Root AP는 다른 Relay의 전송 구간에 다른 Relay와 충분히 분리되지 않는 STA들에 대해서만 전송을 금지시킬 수 있다. 즉, Relay AP 또는 Root AP는 자신의 BSS의 전체 STA에 대해 전송을 금지시키는 것이 아니라, 특정 Relay BSS의 간섭을 받는 일부 STA의 전송만을 금지시킬 수 있다. 이 경우, Root BSS 또는 Relay BSS 내의 특정 STA의 전송만을 금지시키기 위해 (1) AP PM 또는 Empty RAW를 변형하여 사용하는 방법 (2) 기존 RAW 할당을 사용하는 방법의 두 가지의 방법이 이용될 수 있다. (1) AP PM 또는 Empty RAW를 변형하여 사용하는 방법은, AP PM RAW 또는 Empty RAW에 전송 구간 동안 전송을 금지시킬 STA의 (partial) AID list를 포함시키고, AP PM RAW 또는 Empty RAW 구간에는 (partial) AID list에 포함된 STA만 명시적으로 전송을 하지 못하게 하고, 나머지 STA들은 경쟁을 통해 전송을 허용하도록 하는 방법이다. (2) 기존 RAW 할당을 사용하는 방법은, 다른 Relay 전송 구간에 대한 RAW를 할당할 때, 전송을 명시적으로 금지시킬 STA을 RAW에 할당하지 않아 해당 STA이 전송하지 못하도록 하는 방법이다.According to another embodiment, the relay AP or the root AP may identify STAs that are not sufficiently separated from other relays based on the measurement report from the STA belonging to the relay AP or the root AP. The relay AP or the root AP may prohibit transmission only for STAs that are not sufficiently separated from other relays in the transmission period of another relay. That is, the relay AP or the root AP may prohibit transmission of only some STAs that are interfered with by a specific relay BSS, not prohibit transmission of all STAs of its BSS. In this case, in order to prohibit only transmission of a specific STA in the root BSS or relay BSS, two methods may be used: (1) a method of modifying AP PM or empty RAW and (2) a method of using an existing RAW allocation. have. (1) A method of modifying and using AP PM or Empty RAW includes a (partial) AID list of STAs to be prohibited during transmission in AP PM RAW or Empty RAW, and in AP PM RAW or Empty RAW ( partial) This is a method of preventing only the STAs included in the AID list from transmitting explicitly and allowing the remaining STAs to transmit through the contention. (2) The method of using the existing RAW allocation is a method of preventing the STA from transmitting when the RAW for another Relay transmission interval is not allocated to RAW, the STA to explicitly prohibit transmission.
Relay가 초기에 Root AP에 BSS establish 요청 할 때, Relay는 주변 Relay와의 분리 여부에 관한 정보를 Root AP에 전송할 수 있고, Root AP는 Relay로부터 수신한 정보에 기초하여 서로 공간적으로 분리된 Relay BSS에 동일한 전송 구간을 할당할 수 있다. When a relay initially requests a BSS establishment from a Root AP, the Relay can transmit information on whether or not it is separated from a neighboring relay to the Root AP, and the Root AP sends a relay BSS that is spatially separated from each other based on information received from the Relay. The same transmission interval can be allocated.
또한, Relay는 주기적 또는 비주기적으로 다른 Relay BSS와의 공간적 분리 정도를 측정하고, 다른 Relay BSS와의 공간적 분리 정도가 미리 설정된 기준 이상 변했을 경우, 변경된 내용을 Root AP에 피드백할 수 있다. 예를 들어, Relay는 기존에 분리되어 있던 다른 Relay BSS로부터 간섭을 많이 받게 되거나, 또는 그 반대의 경우, 새로운 Relay BSS가 감지되었을 경우, 이에 대해 Root AP에 알릴 수 있다. Root AP는 이러한 Relay들 간의 공간적 분리 정보에 기초하여 새롭게 서로 공간적으로 분리된 Relay들의 전송을 동일 구간에 할당할 수도 있다.In addition, the relay periodically or aperiodically measures the degree of spatial separation with other relay BSS, and when the degree of spatial separation with other relay BSS changes more than a preset reference, it may feed back the changed contents to the Root AP. For example, a relay may receive a lot of interference from another relay BSS that is previously separated, or vice versa, when a new relay BSS is detected, the relay AP may be notified about this. The Root AP may allocate transmissions of newly spatially separated relays to the same section based on spatial separation information between the relays.
위의 Relay BSS들 간의 간섭 여부를 측정하는 방법은 Relay뿐만 아니라 무선 랜에서 Multi BSS들 간의 간섭 여부를 측정하는 방법에도 적용이 가능하다The above method of measuring the interference between the relay BSS is applicable to the method of measuring the interference between the Multi BSS in the wireless LAN as well as the relay.
도 51은 일실시예에 따른 Frame Request/Response를 이용하여 주변 Relay 또는 주변 Relay BSS에 대한 간섭을 측정하는 방법을 설명하기 위한 도면이다.FIG. 51 is a diagram illustrating a method of measuring interference on a neighbor relay or a neighbor relay BSS using a frame request / response according to an embodiment.
도 51을 참조하면, Relay AP(또는, 일반 AP) R1은 자신에게 연결된 STA들 중 측정을 수행할 STA들을 선택하고, 선택된 STA들에게 Frame Request를 전송할 수 있다. Frame Request를 수신한 R1 BSS 내의 각 STA들은 R2 등을 AP로 하는 주변 Relay BSS (또는, 일반 BSS)에 대한 분리 정보를 측정하고, 그 측정 결과를 Frame Report의 형태로 R1에 전송할 수 있다. Frame Request를 수신한 R1 BSS 내의 STA들은, 측정 시간 동안 R2 등의 주변 BSS 내의 STA들로부터 전송되는 프레임을 측정할 수 있다. 예를 들어, 분리 정보는 STA 자신과 AP인 R2 간, 또는 STA 자신과 R2에 연결된 STA들 간의 분리 정도를 나타낼 수 있다. R1은 각 STA으로부터 전달받은 Frame Report에 포함된 RCPI, RSNI 정보 등에 기초하여 주변 BSS로부터의 간섭 정도를 판단할 수 있다.Referring to FIG. 51, a relay AP (or a general AP) R1 may select STAs to perform measurement among STAs connected thereto and transmit a frame request to the selected STAs. Each STA in the R1 BSS that receives the frame request may measure separation information about the neighboring relay BSS (or general BSS) having R2 as an AP and transmit the measurement result to R1 in the form of a frame report. STAs in the R1 BSS that receive the Frame Request may measure a frame transmitted from STAs in the neighboring BSS such as R2 during the measurement time. For example, the separation information may indicate a degree of separation between the STA itself and the AP R2 or between the STA itself and the STAs connected to R2. R1 may determine the degree of interference from the surrounding BSS based on RCPI, RSNI information, etc. included in the Frame Report received from each STA.
도 52는 일실시예에 따른 액세스 포인트(5200)의 구성을 도시한 도면이다.52 is a diagram illustrating a configuration of an access point 5200 according to an embodiment.
도 52를 참조하면, 액세스 포인트(5200)는 자원 할당부(5210) 및 통신부(5220)를 포함할 수 있다.Referring to FIG. 52, the access point 5200 may include a resource allocator 5210 and a communication unit 5220.
자원 할당부(5210)는 릴레이와 릴레이에 연결된 스테이션 간의 통신을 위한 자원을 할당할 수 있다. 자원 할당부(5210)는 릴레이와 릴레이에 연결된 스테이션 간의 통신을 위한 전송 시간 또는 주파수 서브밴드 등을 할당할 수 있다.The resource allocator 5210 may allocate a resource for communication between the relay and the station connected to the relay. The resource allocator 5210 may allocate a transmission time or frequency subband for communication between the relay and the station connected to the relay.
자원 할당부(5210)는 릴레이에 연결된 스테이션들에 대한 세부적인 자원 할당을 릴레이에 위임할 수 있다. 예를 들어, 자원 할당부(5210)는 릴레이와 릴레이여 연결된 스테이션 간의 통신을 위한 전송 구간을 할당하고, 릴레이가 할당받은 전송 구간을 각각의 스테이션들에 대한 세부적인 전송 구간으로 분할할 수 있다. 릴레이는 Relay BSS에 포함되는 스테이션들에 대한 자원을 할당할 수 있다.The resource allocator 5210 may delegate detailed resource allocation for the stations connected to the relay to the relay. For example, the resource allocator 5210 may allocate a transmission section for communication between a relay and a station connected to the relay, and divide the transmission section allocated by the relay into detailed transmission sections for each station. The relay may allocate resources for stations included in the relay BSS.
또한, 자원 할당부(5210)는 릴레이를 경유하지 않고, 액세스 포인트(5200)에 직접 연결된 스테이션과의 통신을 위한 자원을 할당할 수 있다. 자원 할당부(5210)는 릴레이와 릴레이에 연결된 스테이션 간의 통신을 위해 할당된 전송 시간 동안 액세스 포인트(5200)에 직접 연결된 스테이션이 통신하지 못하도록 제어할 수 있다.In addition, the resource allocator 5210 may allocate a resource for communication with a station directly connected to the access point 5200 without passing through a relay. The resource allocator 5210 may control the station directly connected to the access point 5200 not to communicate during the allocated transmission time for communication between the relay and the station connected to the relay.
다른 실시예에 따르면, 자원 할당부(5210)는 Root AP BSS에 포함되는 전체 스테이션들에 대해 직접 자원을 할당할 수 있다. 즉, 자원 할당부(5210)는 액세스 포인트(5200)에 직접 연결된 스테이션뿐만 아니라 릴레이에 연결된 스테이션에 대한 자원을 할당할 수도 있다. 예를 들어, 자원 할당부(5210)는 Root AP BSS에 포함되는 각 스테이션들을 위한 제한된 접속 윈도우 또는 슬롯을 할당할 수 있다. 자원 할당부(5210)는 액세스 포인트(5200)와 릴레이 간의 통신, 액세스 포인트(5200)와 액세스 포인트(5200)에 연결된 스테이션 간의 통신뿐만 아니라 릴레이와 릴레이에 연결된 스테이션 간의 통신을 위한 제한된 접속 윈도우 또는 슬롯을 할당할 수 있다. 제한된 접속 윈도우 또는 슬롯은 시간 영역에서의 전송 구간을 나타내고, 제한된 접속 윈도우 또는 슬롯에 기초하여 통신이 허용되는 시간 영역이 결정될 수 있다. 제한된 접속 윈도우 또는 슬롯은 다운링크 전송 구간 또는 업링크 전송 구간을 포함할 수 있다.According to another embodiment, the resource allocator 5210 may directly allocate resources to all stations included in the root AP BSS. That is, the resource allocator 5210 may allocate resources for the station connected to the relay as well as the station directly connected to the access point 5200. For example, the resource allocator 5210 may allocate a limited access window or slot for each station included in the root AP BSS. The resource allocator 5210 is a limited access window or slot for communication between the access point 5200 and the relay, communication between the access point 5200 and the station connected to the access point 5200, as well as communication between the relay and the station connected to the relay. Can be assigned. The restricted access window or slot represents a transmission interval in the time domain, and a time domain in which communication is allowed may be determined based on the limited access window or slot. The restricted access window or slot may include a downlink transmission interval or an uplink transmission interval.
자원 할당부(5210)는 릴레이들 간의 공간적 분리 정도에 기초하여 릴레이와 릴레이에 연결된 스테이션 간의 통신을 위한 자원을 할당할 수 있다. 자원 할당부(5210)는 릴레이가 다른 릴레이와 공간적으로 분리된 정도를 판단하고, 판단 결과에 기초하여 자원을 할당할 수 있다. 예를 들어, 자원 할당부(5210)는 릴레이가 공간적으로 미리 설정된 거리 이상으로 다른 릴레이와 떨어져 있다고 판단한 경우, 릴레이들에 서로 동일하거나 또는 중첩되는 전송 구간을 할당할 수 있다.The resource allocator 5210 may allocate a resource for communication between the relay and the station connected to the relay based on the degree of spatial separation between the relays. The resource allocator 5210 may determine the degree to which the relay is spatially separated from other relays, and allocate resources based on the determination result. For example, when the resource allocator 5210 determines that the relay is separated from other relays by more than a predetermined distance spatially, the resource allocator 5210 may allocate the same or overlapping transmission intervals to the relays.
자원 할당부(5210)는 릴레이와 릴레이에 연결된 스테이션 간의 통신을 위한 주파수 서브밴드, 및 액세스 포인트(5200)와 릴레이 간의 통신을 위한 주파수 서브밴드에 기초하여 자원을 할당할 수 있다. 예를 들어, 자원 할당부(5210)는 릴레이와 릴레이에 연결된 스테이션 간의 통신에 이용되는 주파수 서브밴드와 액세스 포인트(5200)와 릴레이 간의 통신에 이용되는 주파수 서브밴드가 중첩되지 않으면, 상기 양 통신을 위해 동일하거나 또는 중첩되는 전송 구간을 할당할 수 있다.The resource allocator 5210 may allocate resources based on a frequency subband for communication between the relay and a station connected to the relay, and a frequency subband for communication between the access point 5200 and the relay. For example, the resource allocator 5210 may perform both communications if the frequency subband used for communication between the relay and the station connected to the relay and the frequency subband used for communication between the access point 5200 and the relay do not overlap. The same or overlapping transmission intervals may be allocated.
통신부(5220)는 자원 할당부(5210)에 의해 할당된 자원에 관한 자원 할당 정보를 릴레이에 전송할 수 있다. 통신부(5220)는 릴레이와 릴레이에 연결된 스테이션 간의 통신을 위한 자원의 할당에 관한 정보를 자원 할당 정보를 릴레이에 전송할 수 있다. 예를 들어, 자원 할당 정보는 릴레이와 릴레이에 연결된 스테이션 간의 통신을 위한 전송 구간 정보, 할당된 주파수 서브밴드 정보, 할당된 채널에 관한 정보, 또는 특정 구간에서 통신이 금지된 릴레이 또는 스테이션의 정보 등을 포함할 수 있다. 자원 할당 정보는 Resource Allocation IE의 형태로 전송될 수 있다. 자원 할당 정보는 릴레이의 식별 정보, 주파수 서브밴드, 또는 시간 구간을 기준으로 표시될 수 있다. 통신부(5220)는 자원 할당 정보를 포함하는 비콘을 주기적 또는 비주기적으로 전송할 수 있다.The communicator 5220 may transmit resource allocation information about a resource allocated by the resource allocator 5210 to the relay. The communication unit 5220 may transmit resource allocation information to the relay for information on allocation of resources for communication between the relay and the station connected to the relay. For example, the resource allocation information may include transmission section information for communication between a relay and a station connected to the relay, allocated frequency subband information, information about an assigned channel, or information about a relay or station for which communication is prohibited in a specific section. It may include. Resource allocation information may be transmitted in the form of Resource Allocation IE. The resource allocation information may be displayed on the basis of identification information of the relay, frequency subbands, or time intervals. The communicator 5220 may periodically transmit a beacon including resource allocation information periodically or aperiodically.
자원 할당부(5210)는 릴레이로부터 수신한 간섭 정보 또는 스테이션 정보에 기초하여 이미 할당된 자원을 조정할 수 있다. 스테이션 정보는 스테이션과 릴레이 간의 통신에 이용되는 데이터 레이트, 또는 스테이션과 릴레이 간에 전송되는 데이터의 크기 등에 관한 정보를 포함할 수 있다. 통신부(5220)는 조정된 자원에 관한 정보를 릴레이에 전송할 수 있다.The resource allocator 5210 may adjust an already allocated resource based on the interference information or the station information received from the relay. The station information may include information about a data rate used for communication between the station and the relay, or the size of data transmitted between the station and the relay. The communication unit 5220 may transmit information about the adjusted resource to the relay.
릴레이는 스테이션으로부터 수신한 전력절감 조사(Power Save Poll, PS-Poll) 정보 및 업링크 데이터 인디케이션(Uplink Data Indication, UDI) 정보를 액세스 포인트(5200)에 전송할 수 있다. 자원 할당부(5210)는 릴레이로부터 수신한 PS-Poll 정보 및 UDI 정보에 기초하여 할당된 제한된 접속 윈도우 또는 슬롯을 조정할 수 있다. UDI 정보는 스테이션이 릴레이에 전송하는 데이터량 정보를 포함할 수 있다. PS-Poll 정보는 스테이션이 절전 모드에서 해제된 후, 절전 모드 동안 버퍼링된 프레임을 전달받기 위해 릴레이 또는 액세스 포인트(5200)로 전송하는 정보를 나타낸다.The relay may transmit power save poll (PS-Poll) information and uplink data indication (UDI) information received from the station to the access point 5200. The resource allocator 5210 may adjust the allocated limited access window or slot based on the PS-Poll information and the UDI information received from the relay. The UDI information may include data amount information that the station transmits to the relay. The PS-Poll information indicates information transmitted to the relay or the access point 5200 to receive a buffered frame during the power saving mode after the station is released from the power saving mode.
도 53은 일실시예에 따른 릴레이(5300)의 구성을 도시한 도면이다.53 is a diagram illustrating a configuration of a relay 5300 according to an embodiment.
도 53을 참조하면, 릴레이(5300)는 자원 할당부(5310) 및 통신부(5320)를 포함할 수 있다.Referring to FIG. 53, the relay 5300 may include a resource allocator 5310 and a communication unit 5320.
자원 할당부(5310)는 액세스 포인트로부터 수신한 자원 할당 정보에 기초하여 릴레이(5300)와 릴레이(5300)에 연결된 스테이션 간의 통신을 위한 자원을 할당할 수 있다. 예를 들어, 자원 할당부(5310)는 채널 상황 정보, 스테이션이 지원하는 MCS(Modulation and Coding Schemes) 정보, 이용 가능한 주파수 서브밴드 정보, 또는 스테이션의 안테나의 개수 등에 기초하여 스테이션과의 통신을 위한 접속 윈도우 또는 슬롯을 할당할 수 있다. The resource allocator 5310 may allocate a resource for communication between the relay 5300 and a station connected to the relay 5300 based on the resource allocation information received from the access point. For example, the resource allocator 5310 is configured to communicate with the station based on channel condition information, Modulation and Coding Schemes (MCS) information supported by the station, available frequency subband information, or the number of antennas of the station. You can assign a connection window or slot.
자원 할당부(5310)는 자원 할당 정보에 기초하여 릴레이(5300)와 릴레이(5300)에 연결된 스테이션 간의 통신을 위한 제한된 접속 윈도우 또는 슬롯을 할당할 수 있다. 예를 들어, 자원 할당 정보는 릴레이(5300)와 릴레이(5300)에 연결된 스테이션 간의 통신을 위한 전송 구간을 포함할 수 있고, 자원 할당부(5310)는 자원 할당 정보로부터 식별된 전송 구간을 각각의 스테이션들을 위한 세부적인 제한된 접속 윈도우로 분할할 수 있다. The resource allocator 5310 may allocate a limited access window or slot for communication between the relay 5300 and the station connected to the relay 5300 based on the resource allocation information. For example, the resource allocation information may include a transmission interval for communication between the relay 5300 and a station connected to the relay 5300, and the resource allocation unit 5310 may identify each transmission interval identified from the resource allocation information. It can be divided into detailed limited access windows for stations.
자원 할당부(5310)는 릴레이(5300)에 연결된 스테이션 다른 Relay BSS와 간섭을 일으키는 경우, 다른 Relay BSS에 할당된 전송 구간에서 릴레이(5300)에 연결된 전체 스테이션들 또는 일부 스테이션들의 전송을 금지시킬 수 있다. 예를 들어, 자원 할당부(5310)는 액세스 포인트와 액세스 포인트에 직접 연결된 스테이션 간의 통신 구간 및 다른 릴레이의 통신 구간에서 자기의 릴레이(5300)에 연결된 스테이션이 통신하지 못하도록 일부 통신 구간을 Empty Raw(또는, AP PM RAW)로 설정할 수 있다.The resource allocator 5310 may prohibit transmission of all stations or some stations connected to the relay 5300 in a transmission interval allocated to another relay BSS when it interferes with another relay BSS connected to the relay 5300. have. For example, the resource allocator 5310 may empty some of the communication intervals to prevent a station connected to its relay 5300 from communicating in the communication interval between the access point and the station directly connected to the access point and the communication interval of another relay. Or AP PM RAW).
릴레이(5300)는 스테이션에 특정 BSSID(basic service set identification)로부터 전송되는 프레임 또는 특정 BSSID로 전송되는 프레임을 측정하도록 하는 측정 요청(Measurement Request)을 전송할 수 있다. 스테이션은 측정 요청에 대한 응답으로 측정 보고를 릴레이(5300)에 전송할 수 있다. 측정 보고는 특정 BSSID로부터 전송되는 프레임 또는 특정 BSSID로 전송되는 프레임에 관한 정보를 포함할 수 있다. 예를 들어, 측정 보고는 다른 릴레이로부터 전송되는 프레임 개수, 다른 릴레이로 전송되는 프레임 개수, 또는 다른 릴레이에 연결된 스테이션의 전송 프레임에 관한 RCPI(received channel power indicator) 및 RSNI(received signal to noise indicator)에 관한 정보를 포함할 수 있다. 자원 할당부(5310)는 스테이션으로부터 수신한 측정 보고에 기초하여 다른 릴레이와의 공간적 분리 여부를 판단하고, 판단 결과에 기초하여 스테이션에 대한 자원을 할당할 수 있다.The relay 5300 may transmit a measurement request to the station to measure a frame transmitted from a specific basic service set identification (BSSID) or a frame transmitted to a specific BSSID. The station may send a measurement report to the relay 5300 in response to the measurement request. The measurement report may include information about a frame transmitted from a specific BSSID or a frame transmitted to a specific BSSID. For example, measurement reports can include received channel power indicators (RCPIs) and received signal to noise indicators (RSPI) for the number of frames transmitted from another relay, the number of frames transmitted to another relay, or the transmission frame of a station connected to another relay. It may contain information about. The resource allocator 5310 may determine whether to spatially separate from the other relay based on the measurement report received from the station, and allocate a resource for the station based on the determination result.
통신부(5320)는 액세스 포인트로부터 자원 할당 정보를 수신할 수 있다. 통신부(5320)는 자원 할당부(5310)에 의해 할당된 자원에 관한 정보를 스테이션에 전송할 수 있다. 통신부(5320)는 할당된 자원에 관한 정보를 포함하는 비콘을 주기적 또는 비주기적으로 스테이션에 전송할 수 있다. 예를 들어, 통신부(5320)는 자원 할당 정보에 표시된 릴레이 전송 구간의 시작 시점에서 비콘을 전송할 수 있다.The communicator 5320 may receive resource allocation information from the access point. The communicator 5320 may transmit information about a resource allocated by the resource allocator 5310 to the station. The communicator 5320 may transmit a beacon including information about the allocated resource to the station periodically or aperiodically. For example, the communication unit 5320 may transmit a beacon at the start of the relay transmission interval indicated in the resource allocation information.
비콘은 릴레이(5300)와 릴레이(5300)에 연결된 스테이션 간의 통신을 위한 제한된 접속 윈도우 또는 슬롯에 관한 정보를 포함할 수 있다. 통신부(5320)가 전송하는 비콘에는 액세스 포인트와 릴레이(5300) 간의 통신을 위한 제한된 접속 윈도우 또는 슬롯에 관한 정보가 포함되지 않을 수 있다. 통신부(5320)는 릴레이(5300)에 연결된 스테이션에 관한 스테이션 정보를 액세스 포인트에 전송할 수 있다.The beacon may include information about a restricted access window or slot for communication between the relay 5300 and a station connected to the relay 5300. The beacon transmitted by the communication unit 5320 may not include information regarding a limited access window or slot for communication between the access point and the relay 5300. The communicator 5320 may transmit station information about a station connected to the relay 5300 to the access point.
도 54는 일실시예에 따른 스테이션(5400)의 구성을 도시한 도면이다.54 is a diagram illustrating a configuration of a station 5400 according to an embodiment.
도 54를 참조하면, 스테이션(5400)은 제어부(5410) 및 통신부(5420)를 포함할 수 있다.Referring to FIG. 54, the station 5400 may include a controller 5410 and a communicator 5520.
통신부(5420)는 릴레이로부터 비콘을 수신할 수 있고, 제어부(5410)는 릴레이로부터 수신한 비콘에 기초하여 스테이션(5400)에 할당된 자원을 식별할 수 있다. 릴레이로부터 수신한 비콘은 릴레이에 의해 할당된 자원에 관한 정보를 포함할 수 있다.The communicator 5520 may receive a beacon from the relay, and the controller 5410 may identify a resource allocated to the station 5400 based on the beacon received from the relay. The beacon received from the relay may include information about resources allocated by the relay.
제어부(5410)는 릴레이로부터 수신한 비콘으로부터 시간 영역에서의 통신 구간을 나타내는 제한된 접속 윈도우 또는 슬롯, 주파수 영역에서의 통신 구간을 나타내는 주파수 서브밴드에 관한 정보를 식별할 수 있다.The controller 5410 may identify, from the beacon received from the relay, the limited access window or the slot indicating the communication section in the time domain and the information about the frequency subband indicating the communication section in the frequency domain.
통신부(5420)는 식별된 자원에 기초하여 릴레이와 통신할 수 있다. 통신부(5420)는 식별된 제한된 접속 윈도우 또는 슬롯, 주파수 서브밴드에 기초하여 릴레이와 통신할 수 있다. 예를 들어, 통신부(5420)는 다운링크 전송이 허용되는 RAW 구간에서 데이터를 릴레이로부터 수신하고, 업링크 전송이 허용되는 RAW 구간에서 데이터를 릴레이에 전송할 수 있다.The communicator 5520 may communicate with the relay based on the identified resource. The communicator 5520 may communicate with the relay based on the identified restricted access window or slot, frequency subband. For example, the communication unit 5520 may receive data from a relay in a RAW section in which downlink transmission is allowed, and transmit data to the relay in a RAW section in which uplink transmission is allowed.
도 55는 일실시예에 따른 액세스 포인트가 수행하는 자원 할당 방법의 동작을 설명하기 위한 흐름도이다.55 is a flowchart illustrating an operation of a resource allocation method performed by an access point according to an embodiment.
단계(5510)에서, 액세스 포인트는 액세스 포인트와 릴레이 간의 통신, 및 액세스 포인트와 액세스 포인트에 연결된 스테이션 간의 통신을 위한 자원을 할당할 수 있다. 액세스 포인트는 액세스 포인트와 릴레이 간의 통신, 및 액세스 포인트와 상기 액세스 포인트에 연결된 스테이션 간의 통신을 위한 제한된 접속 윈도우 또는 슬롯을 할당할 수 있다. 제한된 접속 윈도우 또는 슬롯은 통신이 허용되는 시간 영역을 결정할 수 있다. 제한된 접속 윈도우 또는 슬롯은 다운링크 전송 구간 및 업링크 전송 구간을 포함할 수 있다.In step 5510, the access point may allocate resources for communication between the access point and the relay, and for communication between the access point and a station connected to the access point. The access point may allocate a limited access window or slot for communication between the access point and the relay and between the access point and the station connected to the access point. The restricted access window or slot may determine the time domain in which communication is allowed. The restricted access window or slot may include a downlink transmission interval and an uplink transmission interval.
단계(5520)에서, 액세스 포인트는 릴레이와 릴레이에 연결된 스테이션 간의 통신을 위한 제2 자원을 할당할 수 있다. 액세스 포인트는 릴레이와 릴레이에 연결된 스테이션 간의 통신을 위한 전송 시간 및 주파수 서브밴드 중 적어도 하나를 할당할 수 있다. 액세스 포인트는 릴레이와 릴레이에 연결된 스테이션 간의 통신을 위한 제한된 접속 윈도우 또는 슬롯을 할당할 수 있다.At step 5520, the access point may allocate a second resource for communication between the relay and the station connected to the relay. The access point may allocate at least one of a transmission time and a frequency subband for communication between the relay and the station connected to the relay. The access point may allocate a limited access window or slot for communication between the relay and the stations connected to the relay.
단계(5530)에서, 액세스 포인트는 할당된 제2 자원에 관한 자원 할당 정보를 릴레이에 전송할 수 있다. 자원 할당 정보는 릴레이의 식별 정보, 전송 허용 시작 시간, 전송 구간, 자원이 할당되는 주기, 할당된 채널, 할당된 주파수 서브밴드, 또는 특정 전송 구간에서 통신이 금지된 릴레이 또는 스테이션 등에 관한 정보를 포함할 수 있다. 예를 들어, 릴레이의 식별 정보는 릴레이의 AID(Allocation identifier), partial AID, 또는 partial BSSID 등을 포함할 수 있다. 액세스 포인트는 할당된 제1 자원 및 할당된 제2 자원에 관한 정보를 포함하는 비콘을 릴레이에 전송할 수 있다.In step 5530, the access point may transmit resource allocation information about the allocated second resource to the relay. The resource allocation information includes identification information of a relay, a transmission allowable start time, a transmission interval, a period in which resources are allocated, an allocated channel, an assigned frequency subband, or a relay or station for which communication is prohibited in a specific transmission interval. can do. For example, the identification information of the relay may include an Allocation Identifier (AID), partial AID, or partial BSSID of the relay. The access point may transmit a beacon to the relay that includes information about the allocated first resource and the allocated second resource.
단계(5540)에서, 액세스 포인트는 릴레이로부터 수신한 간섭 정보 또는 스테이션 정보에 기초하여 할당된 제2 자원을 조정할 수 있다. 스테이션 정보는 릴레이와 릴레이에 연결된 스테이션 간의 통신에 이용되는 데이터 레이트 및 상기 릴레이와 릴레이에 연결된 스테이션 간에 전송되는 데이터의 크기 중 적어도 하나에 관한 정보를 포함할 수 있다.At step 5540, the access point may adjust the allocated second resource based on the interference information or station information received from the relay. The station information may include information regarding at least one of a data rate used for communication between a relay and a station connected to the relay, and a size of data transmitted between the relay and the station connected to the relay.
또는, 액세스 포인트는 릴레이로부터 수신한 스테이션의 전력절감 조사 정보 및 업링크 데이터 인디케이션 정보에 기초하여 릴레이와 릴레이에 연결된 스테이션 간의 통신을 위해 할당된 자원을 조정할 수 있다.Alternatively, the access point may adjust resources allocated for communication between the relay and the station connected to the relay based on power saving survey information and uplink data indication information of the station received from the relay.
도 56은 일실시예에 따른 릴레이가 수행하는 자원 할당 방법의 동작을 설명하기 위한 흐름도이다.56 is a flowchart illustrating an operation of a resource allocation method performed by a relay, according to an embodiment.
단계(5610)에서, 릴레이는 액세스 포인트로부터 자원 할당 정보를 수신할 수 있다. 자원 할당 정보는 릴레이와 릴레이에 연결된 스테이션 간의 통신을 위한 전송 구간, 이용 가능한 주파수 서브밴드, 및 이용 가능한 채널 중 적어도 하나에 관한 정보를 포함할 수 있다.In step 5610, the relay may receive resource allocation information from the access point. The resource allocation information may include information on at least one of a transmission interval, a usable frequency subband, and an available channel for communication between the relay and the station connected to the relay.
단계(5620)에서, 릴레이는 자원 할당 정보에 기초하여 릴레이와 릴레이에 연결된 스테이션 간의 통신을 위한 자원을 할당할 수 있다. 릴레이는 자원 할당 정보에 기초하여 릴레이와 릴레이에 연결된 스테이션 간의 통신을 위한 제한된 접속 윈도우 또는 슬롯을 할당할 수 있다. 제한된 접속 윈도우 또는 슬롯은 릴레이와 스테이션 간의 통신이 허용되는 시간 영역을 결정할 수 있다. In step 5620, the relay may allocate resources for communication between the relay and a station connected to the relay based on the resource allocation information. The relay may allocate a limited access window or slot for communication between the relay and a station connected to the relay based on the resource allocation information. The restricted access window or slot may determine the time domain in which communication between the relay and the station is allowed.
다른 실시예에 따르면, 릴레이는 다른 릴레이로부터 전송되는 프레임 개수, 다른 릴레이로 전송되는 프레임 개수, 또는 다른 릴레이에 연결된 스테이션의 전송 프레임에 관한 RCPI 및 RSNI 등에 관한 측정을 스테이션에 요청할 수 있다. 스테이션은 측정 요청에 대한 응답으로 측정 보고를 릴레이에 전송할 수 있다. 릴레이는 스테이션으로부터 수신한 측정 보고에 기초하여 다른 릴레이와의 공간적 분리 여부를 판단할 수 있고, 판단 결과에 기초하여 릴레이와 릴레이에 연결된 스테이션 간의 통신을 위한 자원을 할당할 수 있다.According to another embodiment, the relay may request the station to measure the number of frames transmitted from another relay, the number of frames transmitted to another relay, or the RCPI and RSNI for the transmission frame of the station connected to the other relay. The station may send a measurement report to the relay in response to the measurement request. The relay may determine whether it is spatially separated from other relays based on the measurement report received from the station, and may allocate resources for communication between the relay and the station connected to the relay based on the determination result.
단계(5630)에서, 릴레이는 할당된 자원에 관한 정보를 포함하는 비콘을 스테이션에 전송할 수 있다. 릴레이는 비콘을 주기적 또는 비주기적으로 스테이션에 전송할 수 있다. 비콘은 릴레이와 릴레이에 연결된 스테이션 간의 통신을 위한 제한된 접속 윈도우 또는 슬롯에 관한 정보를 포함할 수 있다. 릴레이가 전송하는 비콘에는 액세스 포인트와 릴레이 간의 통신을 위한 제한된 접속 윈도우 또는 슬롯에 관한 정보가 포함되지 않을 수 있다.At step 5630, the relay may transmit a beacon to the station that includes information about the allocated resource. The relay may send beacons to the station periodically or aperiodically. The beacon may include information about a restricted access window or slot for communication between the relay and a station connected to the relay. The beacons transmitted by the relays may not include information about restricted access windows or slots for communication between the access point and the relays.
도 57은 일실시예에 따른 스테이션이 수행하는 통신 방법의 동작을 설명하기 위한 흐름도이다.57 is a flowchart illustrating an operation of a communication method performed by a station, according to an embodiment.
단계(5710)에서, 스테이션은 릴레이로부터 수신한 비콘에 기초하여 스테이션에 할당된 자원을 식별할 수 있다. 릴레이로부터 수신한 비콘은 릴레이에 의해 할당된 자원에 관한 정보를 포함할 수 있다. 스테이션은 비콘으로부터 제한된 접속 윈도우, 슬롯, 및 주파수 서브 밴드 중 적어도 하나에 관한 정보를 식별할 수 있다.In step 5710, the station may identify the resource allocated to the station based on the beacon received from the relay. The beacon received from the relay may include information about resources allocated by the relay. The station may identify information about at least one of the restricted access window, slots, and frequency subbands from the beacon.
단계(5720)에서, 스테이션은 식별된 자원에 기초하여 릴레이와 통신할 수 있다. 스테이션은 제한된 접속 윈도우 또는 슬롯, 주파수 서브밴드에 기초하여 릴레이와 통신할 수 있다. 예를 들어, 스테이션은 다운링크 전송이 허용되는 RAW 구간에서 데이터를 릴레이로부터 수신하고, 업링크 전송이 허용되는 RAW 구간에서 데이터를 릴레이에 전송할 수 있다.At step 5720, the station may communicate with the relay based on the identified resource. The station may communicate with the relay based on a limited access window or slot, frequency subbands. For example, the station may receive data from a relay in a RAW period in which downlink transmission is allowed, and transmit data to the relay in a RAW period in which uplink transmission is allowed.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.The method according to the embodiment may be embodied in the form of program instructions that can be executed by various computer means and recorded in a computer readable medium. The computer readable medium may include program instructions, data files, data structures, etc. alone or in combination. The program instructions recorded on the media may be those specially designed and constructed for the purposes of the embodiments, or they may be of the kind well-known and available to those having skill in the computer software arts. Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tape, optical media such as CD-ROMs, DVDs, and magnetic disks, such as floppy disks. Magneto-optical media, and hardware devices specifically configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like. Examples of program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like. The hardware device described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.Although the embodiments have been described by the limited embodiments and the drawings as described above, various modifications and variations are possible to those skilled in the art from the above description. For example, the described techniques may be performed in a different order than the described method, or the components of the described system, structure, device, circuit, etc. may be combined or combined in a different form from the described method, or other components or equivalents. Appropriate results can be achieved even if replaced or substituted by water.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.Therefore, other implementations, other embodiments, and equivalents to the claims are within the scope of the claims that follow.

Claims (42)

  1. 액세스 포인트(Access Point, AP), 릴레이(Relay), 및 스테이션(Station)을 포함하는 무선랜 시스템에 있어서, 상기 액세스 포인트가 수행하는 자원 할당 방법은,In a wireless LAN system including an access point (AP), a relay, and a station, a resource allocation method performed by the access point includes:
    상기 액세스 포인트와 상기 릴레이 간의 통신, 및 상기 액세스 포인트와 상기 액세스 포인트에 연결(association)된 스테이션 간의 통신을 위한 제1 자원을 할당하는 단계; 및Allocating a first resource for communication between the access point and the relay and communication between the access point and a station associated with the access point; And
    상기 릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위한 제2 자원을 할당하는 단계Allocating a second resource for communication between the relay and a station connected to the relay
    를 포함하는 것을 특징으로 하는 자원 할당 방법.Resource allocation method comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 제2 자원을 할당하는 단계는,Allocating the second resource,
    상기 릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위한 전송 시간(transmission period) 및 주파수 서브밴드 중 적어도 하나를 할당하는 단계Allocating at least one of a transmission period and a frequency subband for communication between the relay and a station connected to the relay
    를 포함하는 것을 특징으로 하는 자원 할당 방법.Resource allocation method comprising a.
  3. 제1항에 있어서,The method of claim 1,
    상기 할당된 제2 자원에 관한 자원 할당 정보를 상기 릴레이에 전송하는 단계Transmitting resource allocation information about the allocated second resource to the relay;
    를 더 포함하는 것을 특징으로 하는 자원 할당 방법.The resource allocation method further comprises.
  4. 제3항에 있어서,The method of claim 3,
    상기 자원 할당 정보는,The resource allocation information,
    릴레이의 식별 정보, 전송 허용 시작 시간, 전송 구간, 자원이 할당되는 주기, 할당된 주파수 서브밴드, 및 특정 전송 구간에서 통신이 금지된 릴레이 또는 스테이션 중 적어도 하나에 관한 정보를 포함하는 것을 특징으로 하는 자원 할당 방법.And identification information of the relay, transmission allowable start time, transmission interval, resource allocation period, allocated frequency subband, and information on at least one of a relay or a station for which communication is prohibited in a specific transmission interval. Resource allocation method.
  5. 제1항에 있어서,The method of claim 1,
    상기 릴레이로부터 수신한 간섭 정보에 기초하여 상기 할당된 제2 자원을 조정하는 단계Adjusting the allocated second resource based on the interference information received from the relay;
    를 더 포함하는 것을 특징으로 하는 자원 할당 방법.The resource allocation method further comprises.
  6. 제1항에 있어서,The method of claim 1,
    상기 릴레이로부터 수신한 스테이션 정보에 기초하여 상기 할당된 제2 자원을 조정하는 단계Adjusting the allocated second resource based on the station information received from the relay
    를 더 포함하고,More,
    상기 스테이션 정보는,The station information,
    릴레이와 상기 릴레이에 연결된 스테이션 간의 통신에 이용되는 데이터 레이트(data rate) 및 상기 릴레이와 상기 릴레이에 연결된 스테이션 간에 전송되는 데이터의 크기 중 적어도 하나에 관한 정보를 포함하는 것을 특징으로 하는 자원 할당 방법.And at least one of a data rate used for communication between a relay and a station connected to the relay, and at least one of a size of data transmitted between the relay and a station connected to the relay.
  7. 제1항에 있어서,The method of claim 1,
    상기 제2 자원은,The second resource,
    상기 릴레이에 의해 상기 릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위한 제한된 접속 윈도우(Restricted Access Window, RAW) 또는 슬롯(slot)으로 할당되는 것을 특징으로 하는 자원 할당 방법.And assigning by the relay a restricted access window or a slot for communication between the relay and a station connected to the relay.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 제한된 접속 윈도우 또는 슬롯은,The limited access window or slot,
    다운링크(downlink) 전송 구간 또는 업링크(uplink) 전송 구간을 포함하는 것을 특징으로 하는 자원 할당 방법.A resource allocation method comprising a downlink transmission period or an uplink transmission period.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 제한된 접속 윈도우 또는 슬롯은,The limited access window or slot,
    통신이 허용되는 시간 영역을 결정하는 것을 특징으로 하는 자원 할당 방법.Determining a time domain in which communication is allowed.
  10. 제1항에 있어서,The method of claim 1,
    상기 릴레이로부터 수신한 스테이션의 전력절감 조사(Power Save Poll, PS-Poll) 정보 및 업링크 데이터 인디케이션(Uplink Data Indication, UDI) 정보에 기초하여 릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위해 할당된 자원을 조정하는 단계Based on the power save poll (PS-Poll) information and uplink data indication (UDI) information of the station received from the relay is allocated for communication between the relay and the station connected to the relay Steps to tune your resources
    를 더 포함하는 것을 특징으로 하는 자원 할당 방법.The resource allocation method further comprises.
  11. 제1항에 있어서,The method of claim 1,
    상기 제1 자원을 할당하는 단계는,Allocating the first resource,
    상기 액세스 포인트와 상기 릴레이 간의 통신, 및 상기 액세스 포인트와 상기 액세스 포인트에 연결된 스테이션 간의 통신을 위한 제한된 접속 윈도우 또는 슬롯을 할당하는 단계를 포함하고,Allocating a restricted access window or slot for communication between the access point and the relay, and communication between the access point and a station connected to the access point,
    상기 제2 자원을 할당하는 단계는,Allocating the second resource,
    상기 릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위한 제한된 접속 윈도우 또는 슬롯을 할당하는 단계를 포함하는 것을 특징으로 하는 자원 할당 방법.Allocating a restricted access window or slot for communication between the relay and a station connected to the relay.
  12. 제1항에 있어서,The method of claim 1,
    상기 할당된 제1 자원 및 상기 할당된 제2 자원에 관한 정보를 포함하는 비콘(Beacon)을 상기 릴레이에 전송하는 단계Transmitting a beacon including information about the allocated first resource and the allocated second resource to the relay;
    를 더 포함하는 것을 특징으로 하는 자원 할당 방법.The resource allocation method further comprises.
  13. 액세스 포인트, 릴레이, 및 스테이션을 포함하는 무선랜 시스템에 있어서, 상기 릴레이가 수행하는 자원 할당 방법은,In a WLAN system including an access point, a relay, and a station, a resource allocation method performed by the relay may include:
    상기 액세스 포인트로부터 자원 할당 정보를 수신하는 단계; 및Receiving resource allocation information from the access point; And
    상기 수신한 자원 할당 정보에 기초하여 상기 릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위한 자원을 할당하는 단계Allocating resources for communication between the relay and a station connected to the relay based on the received resource allocation information;
    를 포함하는 것을 특징으로 하는 자원 할당 방법.Resource allocation method comprising a.
  14. 제13항에 있어서,The method of claim 13,
    상기 자원을 할당하는 단계는,Allocating the resource,
    상기 수신한 자원 할당 정보에 기초하여 상기 릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위한 제한된 접속 윈도우 또는 슬롯을 할당하는 단계Allocating a restricted access window or slot for communication between the relay and a station connected to the relay based on the received resource allocation information;
    를 포함하는 것을 특징으로 하는 자원 할당 방법.Resource allocation method comprising a.
  15. 제13항에 있어서,The method of claim 13,
    상기 자원을 할당하는 단계는,Allocating the resource,
    상기 스테이션으로부터 수신한 측정 보고(measurement report)에 기초하여 다른 릴레이와의 공간적 분리 여부를 판단하는 단계; 및Determining spatial separation from other relays based on a measurement report received from the station; And
    상기 판단 결과에 기초하여 상기 릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위한 자원을 할당하는 단계를 포함하고,Allocating resources for communication between the relay and the station connected to the relay based on the determination result;
    상기 측정 보고는, 상기 다른 릴레이로부터 전송되는 프레임 개수, 상기 다른 릴레이로 전송되는 프레임 개수, 상기 다른 릴레이에 연결된 스테이션의 전송 프레임에 관한 RCPI(received channel power indicator) 및 RSNI(received signal to noise indicator) 중 적어도 하나에 관한 정보를 포함하는 것을 특징으로 하는 자원 할당 방법.The measurement report may include a number of frames transmitted from the other relay, a number of frames transmitted to the other relay, a received channel power indicator (RCPI) and a received signal to noise indicator (RSNI) related to a transmission frame of a station connected to the other relay. Resource allocation method comprising the information on at least one of.
  16. 제13항에 있어서,The method of claim 13,
    상기 자원 할당 정보는,The resource allocation information,
    릴레이의 식별 정보, 전송 허용 시작 시간, 전송 구간, 자원이 할당되는 주기, 할당된 주파수 서브밴드, 및 특정 전송 구간에서 통신이 금지된 릴레이 또는 스테이션 중 적어도 하나에 관한 정보를 포함하는 것을 특징으로 하는 자원 할당 방법.And identification information of the relay, transmission allowable start time, transmission interval, resource allocation period, allocated frequency subband, and information on at least one of a relay or a station for which communication is prohibited in a specific transmission interval. Resource allocation method.
  17. 제13항에 있어서,The method of claim 13,
    상기 할당된 자원에 관한 정보를 포함하는 비콘을 상기 스테이션에 전송하는 단계Transmitting a beacon to the station including information about the allocated resource;
    를 더 포함하는 것을 특징으로 하는 자원 할당 방법.The resource allocation method further comprises.
  18. 액세스 포인트, 릴레이, 및 스테이션을 포함하는 무선랜 시스템에 있어서, 상기 스테이션이 수행하는 통신 방법은,In a WLAN system including an access point, a relay, and a station, the communication method performed by the station includes:
    상기 릴레이로부터 수신한 비콘에 기초하여 상기 스테이션에 할당된 자원을 식별하는 단계; 및Identifying resources allocated to the station based on the beacons received from the relays; And
    상기 식별된 자원에 기초하여 상기 릴레이와 통신하는 단계를 포함하고,Communicating with the relay based on the identified resource,
    상기 비콘은, 상기 릴레이에 의해 할당된 자원에 관한 정보를 포함하는 것을 특징으로 하는 통신 방법.The beacon, the communication method characterized in that it comprises information about the resources allocated by the relay.
  19. 제18항에 있어서,The method of claim 18,
    상기 식별하는 단계는,The identifying step,
    상기 비콘으로부터 제한된 접속 윈도우, 슬롯, 및 주파수 서브 밴드 중 적어도 하나를 식별하는 단계Identifying at least one of a restricted access window, a slot, and a frequency subband from the beacon
    를 포함하는 것을 특징으로 하는 통신 방법.Communication method comprising a.
  20. 릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위한 자원을 할당하는 액세스 포인트;An access point for allocating resources for communication between a relay and a station connected to the relay;
    상기 할당된 자원에 기초하여 상기 스테이션과의 통신을 위한 제한된 접속 윈도우 또는 슬롯을 할당하는 릴레이; 및A relay for allocating a restricted access window or slot for communication with the station based on the allocated resources; And
    상기 할당된 제한된 접속 윈도우 또는 슬롯에 기초하여 상기 릴레이와 통신하는 스테이션A station communicating with the relay based on the assigned restricted access window or slot
    을 포함하는 것을 특징으로 하는 무선랜 시스템.Wireless LAN system comprising a.
  21. 제20항에 있어서,The method of claim 20,
    상기 액세스 포인트는,The access point is,
    릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위한 전송 시간(transmission period) 및 주파수 서브밴드 중 적어도 하나를 할당하는 것을 특징으로 하는 무선랜 시스템.And at least one of a transmission period and a frequency subband for communication between a relay and a station connected to the relay.
  22. 제20항에 있어서,The method of claim 20,
    상기 액세스 포인트는,The access point is,
    릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위한 자원의 할당에 관한 정보를 나타내는 자원 할당 정보를 상기 릴레이에 전송하는 것을 특징으로 하는 무선랜 시스템.And transmitting resource allocation information indicating the allocation of resources for communication between the relay and the station connected to the relay to the relay.
  23. 제22항에 있어서,The method of claim 22,
    상기 자원 할당 정보는,The resource allocation information,
    릴레이의 식별 정보, 전송 허용 시작 시간, 전송 구간, 자원이 할당되는 주기, 할당된 주파수 서브밴드, 및 특정 전송 구간에서 통신이 금지된 릴레이 및 스테이션 중 적어도 하나에 관한 정보를 포함하는 것을 특징으로 하는 무선랜 시스템.And identification information of the relay, transmission allowable start time, transmission interval, resource allocation period, allocated frequency subband, and information on at least one of a relay and a station for which communication is prohibited in a specific transmission interval. WLAN system.
  24. 제20항에 있어서,The method of claim 20,
    상기 액세스 포인트는,The access point is,
    릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위한 주파수 서브밴드, 및 액세스 포인트와 상기 릴레이 간의 통신을 위한 주파수 서브밴드에 기초하여 상기 자원을 할당하는 것을 특징으로 하는 무선랜 시스템.And allocating the resource based on a frequency subband for communication between a relay and a station connected to the relay, and a frequency subband for communication between an access point and the relay.
  25. 제20항에 있어서,The method of claim 20,
    상기 액세스 포인트는,The access point is,
    상기 할당된 전송 시간 동안 상기 액세스 포인트에 직접 연결된 스테이션이 통신하지 못하도록 제어하는 것을 특징으로 하는 무선랜 시스템.And controlling a station connected directly to the access point to communicate during the allocated transmission time.
  26. 제20항에 있어서,The method of claim 20,
    상기 액세스 포인트는,The access point is,
    상기 릴레이가 다른 릴레이와 공간적으로 분리된 정도를 판단하고, 상기 판단 결과에 기초하여 릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위한 자원을 할당하는 것을 특징으로 하는 무선랜 시스템.And determining the degree of spatial separation of the relay from other relays, and allocating resources for communication between the relay and the station connected to the relay based on the determination result.
  27. 제20항에 있어서,The method of claim 20,
    상기 액세스 포인트는,The access point is,
    상기 릴레이로부터 수신한 간섭 정보에 기초하여 상기 할당된 자원을 조정하는 것을 특징으로 하는 무선랜 시스템.And adjusting the allocated resource based on the interference information received from the relay.
  28. 제20항에 있어서,The method of claim 20,
    상기 릴레이는,The relay,
    상기 릴레이에 연결된 스테이션에 관한 스테이션 정보를 상기 액세스 포인트에 전송하고,Transmit station information about the station connected to the relay to the access point,
    상기 액세스 포인트는,The access point is,
    상기 릴레이로부터 수신한 스테이션 정보에 기초하여 상기 릴레이와 상기 스테이션 간의 통신을 위한 자원을 조정하는 것을 특징으로 하는 무선랜 시스템.And a resource for communication between the relay and the station based on the station information received from the relay.
  29. 제28항에 있어서,The method of claim 28,
    상기 스테이션 정보는,The station information,
    상기 스테이션과 상기 릴레이 간의 통신에 이용되는 데이터 레이트(data rate) 및 상기 스테이션과 상기 릴레이 간에 전송되는 데이터의 크기 중 적어도 하나에 관한 정보를 포함하는 것을 특징으로 하는 무선랜 시스템.And at least one of a data rate used for communication between the station and the relay and a size of data transmitted between the station and the relay.
  30. 제20항에 있어서,The method of claim 20,
    상기 액세스 포인트는,The access point is,
    상기 릴레이로부터 수신한 스테이션의 전력절감 조사 정보 및 업링크 데이터 인디케이션 정보에 기초하여 릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위해 할당된 자원을 조정하는 것을 특징으로 하는 무선랜 시스템.And adjusting resources allocated for communication between the relay and the station connected to the relay based on power saving survey information and uplink data indication information of the station received from the relay.
  31. 제20항에 있어서,The method of claim 20,
    상기 릴레이는,The relay,
    채널 상황 정보, 상기 스테이션이 지원하는 MCS(Modulation and Coding Schemes), 이용 가능한 주파수 서브밴드, 및 상기 스테이션의 안테나의 개수 중 적어도 하나에 기초하여 상기 스테이션과의 통신을 위한 접속 윈도우 또는 슬롯을 할당하는 것을 특징으로 하는 무선랜 시스템.Allocating an access window or slot for communication with the station based on at least one of channel condition information, Modulation and Coding Schemes (MCS) supported by the station, available frequency subbands, and the number of antennas of the station Wireless LAN system, characterized in that.
  32. 제20항에 있어서,The method of claim 20,
    상기 릴레이는,The relay,
    상기 액세스 포인트와 상기 액세스 포인트에 직접 연결된 스테이션 간의 통신 구간 및 다른 릴레이의 통신 구간에서, 상기 릴레이에 연결된 스테이션이 통신하지 못하도록 상기 스테이션을 제어하는 것을 특징으로 하는 무선랜 시스템.And controlling the station so that the station connected to the relay does not communicate in a communication section between the access point and a station directly connected to the access point and a communication section of another relay.
  33. 제20항에 있어서,The method of claim 20,
    상기 릴레이는,The relay,
    상기 할당된 제한된 접속 윈도우 또는 슬롯에 관한 정보를 포함하는 비콘을 상기 스테이션에 전송하는 것을 특징으로 하는 무선랜 시스템.And transmitting a beacon including information about the assigned restricted access window or slot to the station.
  34. 릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위한 자원을 할당하는 자원 할당부; 및A resource allocator for allocating resources for communication between a relay and a station connected to the relay; And
    상기 할당된 자원에 관한 자원 할당 정보를 상기 릴레이에 전송하는 통신부Communication unit for transmitting the resource allocation information about the allocated resources to the relay
    를 포함하는 것을 특징으로 하는 액세스 포인트.Access point comprising a.
  35. 제34항에 있어서,The method of claim 34, wherein
    상기 자원 할당부는,The resource allocation unit,
    릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위한 전송 시간 및 주파수 서브밴드 중 적어도 하나를 할당하는 것을 특징으로 하는 액세스 포인트.Allocating at least one of a transmission time and a frequency subband for communication between a relay and a station connected to the relay.
  36. 제34항에 있어서,The method of claim 34, wherein
    상기 자원 할당부는,The resource allocation unit,
    상기 릴레이로부터 수신한 간섭 정보 또는 스테이션 정보에 기초하여 상기 할당된 자원을 조정하고,Adjust the allocated resource based on the interference information or the station information received from the relay,
    상기 통신부는,The communication unit,
    상기 조정된 자원에 관한 정보를 상기 릴레이에 전송하는 것을 특징으로 하는 액세스 포인트.And transmit information about the adjusted resource to the relay.
  37. 제34항에 있어서,The method of claim 34, wherein
    상기 자원 할당 정보는,The resource allocation information,
    릴레이의 식별 정보, 주파수 서브밴드, 및 시간 구간 중 적어도 하나에 기초하여 표시되는 것을 특징으로 하는 액세스 포인트.And is displayed based on at least one of identification information, a frequency subband, and a time interval of the relay.
  38. 액세스 포인트로부터 수신한 자원 할당 정보에 기초하여 릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위한 자원을 할당하는 자원 할당부; 및A resource allocator for allocating resources for communication between the relay and the station connected to the relay based on the resource allocation information received from the access point; And
    상기 할당된 자원에 관한 정보를 상기 스테이션에 전송하는 통신부Communication unit for transmitting the information about the allocated resources to the station
    를 포함하는 것을 특징으로 하는 릴레이.Relay comprising a.
  39. 제38항에 있어서,The method of claim 38,
    상기 자원 할당 정보는,The resource allocation information,
    릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위한 전송 구간, 이용 가능한 주파수 서브밴드, 및 이용 가능한 채널 중 적어도 하나에 관한 정보를 포함하는 것을 특징으로 하는 릴레이.And at least one of a transmission interval, a usable frequency subband, and an available channel for communication between the relay and the station connected to the relay.
  40. 제38항에 있어서,The method of claim 38,
    상기 자원 할당부는,The resource allocation unit,
    상기 수신한 자원 할당 정보에 기초하여 상기 릴레이와 상기 릴레이에 연결된 스테이션 간의 통신을 위한 제한된 접속 윈도우 또는 슬롯을 할당하는 것을 특징으로 하는 릴레이.And a limited access window or slot for communication between the relay and the station connected to the relay based on the received resource allocation information.
  41. 릴레이로부터 수신한 비콘에 기초하여 스테이션에 할당된 자원을 식별하는 제어부; 및A controller for identifying a resource allocated to a station based on a beacon received from the relay; And
    상기 식별된 자원에 기초하여 상기 릴레이와 통신하는 통신부A communication unit communicating with the relay based on the identified resource
    를 포함하는 것을 특징으로 하는 스테이션.Station comprising a.
  42. 제41항에 있어서,The method of claim 41, wherein
    상기 제어부는,The control unit,
    상기 비콘으로부터 제한된 접속 윈도우, 슬롯, 및 주파수 서브 밴드 중 적어도 하나에 관한 정보를 식별하는 것을 특징으로 하는 스테이션.Identify from said beacon information about at least one of a restricted access window, a slot, and a frequency subband.
PCT/KR2013/011012 2012-11-30 2013-11-29 Method for allocating resources in wireless lan system and wireless lan system WO2014084665A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/648,206 US9693362B2 (en) 2012-11-30 2013-11-29 Method for allocating resources in wireless LAN system and wireless LAN system
US15/603,260 US10070448B2 (en) 2012-11-30 2017-05-23 Method for allocating resources in wireless LAN system and wireless LAN system
US16/046,846 US10499405B2 (en) 2012-11-30 2018-07-26 Method for allocating resources in wireless LAN system and wireless LAN system
US16/669,074 US10939452B2 (en) 2012-11-30 2019-10-30 Method for allocating resources in wireless LAN system and wireless LAN system

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
KR10-2012-0137861 2012-11-30
KR20120137861 2012-11-30
KR20130001796 2013-01-07
KR10-2013-0001796 2013-01-07
KR20130025865 2013-03-11
KR10-2013-0025865 2013-03-11
KR10-2013-0044361 2013-04-22
KR20130044361 2013-04-22
KR20130068655 2013-06-14
KR10-2013-0068655 2013-06-14
KR10-2013-0069392 2013-06-18
KR20130069392 2013-06-18
KR10-2013-0080605 2013-07-09
KR20130080605 2013-07-09
KR10-2013-0146441 2013-11-28
KR1020130146441A KR102166184B1 (en) 2012-11-30 2013-11-28 Method and for allocating resource in wireless local area netork system, wireless local area netork system

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/648,206 A-371-Of-International US9693362B2 (en) 2012-11-30 2013-11-29 Method for allocating resources in wireless LAN system and wireless LAN system
US15/603,260 Continuation US10070448B2 (en) 2012-11-30 2017-05-23 Method for allocating resources in wireless LAN system and wireless LAN system

Publications (1)

Publication Number Publication Date
WO2014084665A1 true WO2014084665A1 (en) 2014-06-05

Family

ID=50828208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011012 WO2014084665A1 (en) 2012-11-30 2013-11-29 Method for allocating resources in wireless lan system and wireless lan system

Country Status (1)

Country Link
WO (1) WO2014084665A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170052508A (en) * 2015-11-03 2017-05-12 한국전자통신연구원 loT BROADCASTING NETWORK FOR LOW POWER WIRELESS SENSOR NETWORK
WO2018044056A1 (en) * 2016-08-31 2018-03-08 엘지전자 주식회사 Method for reducing power consumption through random access resource indicator
WO2018062739A1 (en) * 2016-09-30 2018-04-05 엘지전자 주식회사 Method for transmitting or receiving wake-up signal in wireless lan system and device therefor
CN111669830A (en) * 2020-05-19 2020-09-15 武汉领芯智能科技有限公司 WLAN communication method and device
US20210144804A1 (en) * 2019-11-13 2021-05-13 University Of Oulu Method for establishing relay connectivity in etsi smartban
US20220201533A1 (en) * 2020-12-18 2022-06-23 Samsung Electronics Co., Ltd. Adaptive adjustment for target wake time duration configuration

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110035969A (en) * 2009-09-29 2011-04-06 한국전자통신연구원 Relay link setup method and apparatus in wireless communication system
WO2011102652A2 (en) * 2010-02-17 2011-08-25 엘지전자 주식회사 Method and apparatus for channel access by a station in a wlan system
KR20110102847A (en) * 2010-03-11 2011-09-19 한국전자통신연구원 Frame structure and communication method of coordinator, source station and relay station in a wireless network system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110035969A (en) * 2009-09-29 2011-04-06 한국전자통신연구원 Relay link setup method and apparatus in wireless communication system
WO2011102652A2 (en) * 2010-02-17 2011-08-25 엘지전자 주식회사 Method and apparatus for channel access by a station in a wlan system
KR20110102847A (en) * 2010-03-11 2011-09-19 한국전자통신연구원 Frame structure and communication method of coordinator, source station and relay station in a wireless network system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. K. CHOI ET AL.: "Review on QoS issues in IEEE 802.11 W-LAN", ADVANCED COMMUNICATION TECHNOLOGY, 2006 , ICACT 2006 . THE 8TH INTERNATIONAL CONFERENCE, vol. 3, 20 February 2006 (2006-02-20) *
XUELI AN ET AL.: "Extending WPANs to Support Multi-hop Communication with QoS Provisioning", CONSUMER COMMUNICATIONS AND NETWORKING CONFERENCE (CCNC), 2010 7TH IEEE, 9 January 2010 (2010-01-09) *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170052508A (en) * 2015-11-03 2017-05-12 한국전자통신연구원 loT BROADCASTING NETWORK FOR LOW POWER WIRELESS SENSOR NETWORK
KR102539161B1 (en) 2015-11-03 2023-06-02 한국전자통신연구원 loT BROADCASTING NETWORK FOR LOW POWER WIRELESS SENSOR NETWORK
WO2018044056A1 (en) * 2016-08-31 2018-03-08 엘지전자 주식회사 Method for reducing power consumption through random access resource indicator
US10694464B2 (en) 2016-08-31 2020-06-23 Lg Electronics Inc. Method for reducing power consumption through random access resource indicator
WO2018062739A1 (en) * 2016-09-30 2018-04-05 엘지전자 주식회사 Method for transmitting or receiving wake-up signal in wireless lan system and device therefor
US10904053B2 (en) 2016-09-30 2021-01-26 Lg Electronics Inc. Method for transmitting or receiving wake-up signal in wireless lan system device therefor
US20210144804A1 (en) * 2019-11-13 2021-05-13 University Of Oulu Method for establishing relay connectivity in etsi smartban
US12010763B2 (en) * 2019-11-13 2024-06-11 University Of Oulu Method for establishing relay connectivity in ETSI smartBAN
CN111669830A (en) * 2020-05-19 2020-09-15 武汉领芯智能科技有限公司 WLAN communication method and device
CN111669830B (en) * 2020-05-19 2023-07-25 上海芯袖微电子科技有限公司 WLAN communication method and device
US20220201533A1 (en) * 2020-12-18 2022-06-23 Samsung Electronics Co., Ltd. Adaptive adjustment for target wake time duration configuration
US11910225B2 (en) * 2020-12-18 2024-02-20 Samsung Electronics Co., Ltd. Adaptive adjustment for target wake time duration configuration

Similar Documents

Publication Publication Date Title
WO2021060936A1 (en) Resource allocation and a power control method for sidelink communication system
WO2022075821A1 (en) Method and wireless communication terminal for transmitting/receiving frame in wireless communication system
WO2017150956A1 (en) V2x transmission resource selecting method implemented by terminal in wireless communication system and terminal using same
WO2020032580A1 (en) Operation method of node in wireless communication system and apparatus using same method
WO2018009045A1 (en) Method and apparatus for associating between a station and an access point in a wireless communication system
WO2018203650A1 (en) Method and device for allocating resources in wireless communication system
WO2020032666A1 (en) Method and apparatus for measuring remote cross-link interference
WO2017123060A1 (en) System, method, and apparatus of beam-tracking and beam feedback operation in a beam-forming based system
WO2018004322A1 (en) Method for transmitting and receiving data in wireless communication system, and apparatus therefor
WO2014084665A1 (en) Method for allocating resources in wireless lan system and wireless lan system
WO2016122202A2 (en) Method for transmitting d2d discovery signal by terminal in wireless communication system and terminal using same method
WO2016175603A1 (en) Method and appratus for controlling communication of a portable terminal in a wireless communication system
WO2016048067A2 (en) Synchronization procedure and resource control method and apparatus for communication in d2d system
WO2020167007A1 (en) Method and apparatus for performing user equipment capability procedure for supporting vehicle communication in next generation mobile communication system
WO2020184954A1 (en) Method for controlling access of terminal in communication system
EP3387756A1 (en) System, method, and apparatus of beam-tracking and beam feedback operation in a beam-forming based system
WO2019098662A1 (en) Device and method for determining radio resource in wireless communication system
WO2017164687A1 (en) Method for power management in wireless lan system and wireless terminal using same
WO2014109580A2 (en) Method for enhancing small cell
WO2020032704A1 (en) Method and device for performing synchronization procedure for nr v2x system
WO2021162397A1 (en) Method and device for determining resources to be sensed for device-to-device communication in wireless communication system
WO2016021994A1 (en) Wireless communication method and wireless communication terminal
WO2022019480A1 (en) Partial sensing method and device for device-to-device communication in wireless communication system
WO2024010315A1 (en) Method and apparatus for supporting layer-2 mobility
WO2018016784A1 (en) Method for channel access in wireless lan system, and wireless terminal using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859027

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14648206

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859027

Country of ref document: EP

Kind code of ref document: A1