WO2014084541A1 - Communal denitrification system for multiple engines - Google Patents

Communal denitrification system for multiple engines Download PDF

Info

Publication number
WO2014084541A1
WO2014084541A1 PCT/KR2013/010536 KR2013010536W WO2014084541A1 WO 2014084541 A1 WO2014084541 A1 WO 2014084541A1 KR 2013010536 W KR2013010536 W KR 2013010536W WO 2014084541 A1 WO2014084541 A1 WO 2014084541A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
exhaust
joint
exhaust pipe
reaction body
Prior art date
Application number
PCT/KR2013/010536
Other languages
French (fr)
Korean (ko)
Inventor
이수태
송옥렬
송민제
Original Assignee
주식회사 파나시아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 파나시아 filed Critical 주식회사 파나시아
Publication of WO2014084541A1 publication Critical patent/WO2014084541A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/06Exhaust treating devices having provisions not otherwise provided for for improving exhaust evacuation or circulation, or reducing back-pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/10Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for stationary applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an SCR denitrification system for denitrification of exhaust gas, and more particularly, exhaust gas of a plurality of exhaust pipes by using a joint reaction body which connects a plurality of exhaust pipes inducing exhaust gas respectively discharged from a plurality of engines into one.
  • a joint reaction body which connects a plurality of exhaust pipes inducing exhaust gas respectively discharged from a plurality of engines into one.
  • a separator that separates and prevents flow to other exhaust pipes prevents back pressure from forming inside the joint reaction body that connects multiple exhaust pipes into one, and lengthens them in the vertical length direction to induce exhaust gas in the vertical direction.
  • NOx nitrogen oxides
  • the SCR denitrification system uses a spray nozzle with a reducing agent, urea water (which becomes ammonia when urea water is vaporized), used to denitrify nitrogen oxides (NOx) in the exhaust gas discharged from the engine 91. 951) is introduced into the reactor 94 containing the SCR catalyst 944 by injecting the mixed gas in which the exhaust gas and the reducing agent are mixed into the mixing chamber 93 through the exhaust gas and the reducing agent in the reactor 94.
  • urea water which becomes ammonia when urea water is vaporized
  • NOx nitrogen oxides
  • the SCR catalyst 944 As the mixed gas passes through the SCR catalyst 944, it denitrates (denitrates) the nitrogen oxide (NOx) component contained in the exhaust gas to obtain an optimum denitrification efficiency and to reduce environmental pollution caused by nitrogen oxide (NOx) component or ammonia. It adopts the structure which prevents efficiently.
  • NOx nitrogen oxide
  • the conventional SCR denitrification system since the conventional SCR denitrification system only takes an independent structure in which the exhaust gas discharged from one engine is connected to and treated with one reactor 94, it is necessary to treat the exhaust gas emitted from a plurality of engines.
  • the exhaust pipe 92 through which the exhaust gas discharged from one engine 91 flows is connected to one reactor 94 to denitrify and discharge the other engine.
  • the exhaust pipe 92 through which the exhaust gas discharged from the 91 flows is arranged in parallel with the number of the engines 91 so that the exhaust pipe 92 connected to the other reactor 94 to be denitrated and discharged is installed. As the number of systems increases, the installed space (the occupied space) becomes large.
  • the installation space of the denitrification system can be minimized, especially when the SCR denitrification system for treating the exhaust gas from several engines is to be installed, especially in places where the space for the installation of the SCR denitrification system, such as ships, is restricted. There is a growing need for more structure.
  • the present invention has been made to solve the above problems,
  • Another object of the present invention is that the exhaust gas flowing from each exhaust pipe is mixed with the exhaust gas of the other exhaust pipe or flows into the other exhaust pipe inside the joint reaction main body which connects the multiple exhaust pipes which respectively induce exhaust gas discharged from the multiple engines into one. It is to provide a joint denitrification system for a number of engines that can fundamentally prevent the formation of back pressure in the joint reaction body that connects a plurality of exhaust pipes through a separator that separates them.
  • Still another object of the present invention is that the separator isolating the interior of the joint reaction body is extended in the vertical longitudinal direction to guide the exhaust gas flowing from each exhaust pipe in the vertical direction, so that the exhaust pipe in the front, rear, left and right of the joint reaction body It provides a joint denitrification system for a number of engines that can be connected to minimize the space taken by the denitrification system.
  • Still another object of the present invention is to provide a plurality of engines capable of preventing engine damage caused by backflow of exhaust gas through back pressure through a backflow prevention valve that prevents backflow of exhaust gas at a portion where the respective exhaust pipes are connected in the joint reaction body. It is to provide a joint denitrification system.
  • Still another object of the present invention may further include a rupture plate that is opened upon occurrence of a reverse flow of exhaust gas above a predetermined pressure on each line of a plurality of exhaust pipes to prevent backflow of the exhaust gas, thereby preventing engine damage due to the reverse flow of exhaust gas. It is to provide a joint denitrification system for many engines.
  • Joint denitrification system for a number of engines for achieving the above object of the present invention includes the following configuration.
  • the joint denitrification system for a plurality of engines includes: a joint reaction body connected with a plurality of exhaust pipes for inducing exhaust gases respectively discharged from the plurality of engines; A separator for separating and separating the inside of the joint reaction body by the number of connected exhaust pipes so that the exhaust gas introduced from each exhaust pipe in the joint reaction body does not mix with the exhaust gas of the other exhaust pipe or flow to the other exhaust pipe; An SCR catalyst installed separately in each compartment separated by the separator; It includes a plurality of outlets for discharging the exhaust gas denitrified by the SCR catalyst; to prevent the formation of back pressure through the isolation structure while minimizing the space occupied by bundling the exhaust gas of the plurality of exhaust pipes and jointly denitrification It features.
  • the joint denitrification system for a plurality of engines further comprising a non-return valve for preventing backflow of exhaust gas at a portion where the respective exhaust pipes are connected in the joint reaction body.
  • the separator in the joint denitrification system for a plurality of engines according to the present invention, extends in the vertical lengthwise direction to guide the exhaust gas flowing from each exhaust pipe in the vertical direction.
  • exhaust pipes By partitioning the interior of the joint reaction main body, exhaust pipes can be connected to the front, rear, left and right sides of the joint reaction main body, and the space occupied by the denitrification system can be minimized.
  • a rupture plate is opened to prevent the reverse flow of exhaust gas by opening when a reverse flow of the exhaust gas exceeds a predetermined pressure. It is characterized by including.
  • the present invention can obtain the following effects by the configuration, combination, and use relationship described above with the present embodiment.
  • the present invention has the effect of minimizing the space occupied by bundling the exhaust gases of a plurality of exhaust pipes jointly by denitrification by using a joint reaction body that connects a plurality of exhaust pipes inducing exhaust gas discharged from a plurality of engines into one.
  • the present invention is to separate the compartment so that the exhaust gas flowing from each exhaust pipe does not mix with the exhaust gas of the other exhaust pipe or flow into the other exhaust pipe inside the joint reaction body which connects the plurality of exhaust pipes respectively inducing exhaust gas discharged from the multiple engines into one. It is possible to fundamentally prevent the formation of back pressure in the joint reaction body that connects a plurality of exhaust pipes through a separator.
  • the present invention is such that the separator isolating the interior of the joint reaction body is extended in the vertical longitudinal direction to guide the exhaust gas flowing from each exhaust pipe in the vertical direction, so that the exhaust pipe can be connected in front, rear, left and right of the joint reaction body. It has the effect of minimizing the space occupied by the denitrification system.
  • the present invention has an effect that can prevent the engine damage due to the back flow of the exhaust gas through the back pressure through the back flow prevention valve to prevent the back flow of the exhaust gas to the site where the respective exhaust pipes are connected in the joint reaction body.
  • the present invention further includes a rupture plate that is opened upon occurrence of a reverse flow of exhaust gas above a predetermined pressure on each line of the plurality of exhaust pipes to prevent the reverse flow of exhaust gas, thereby preventing the engine damage due to the reverse flow of exhaust gas.
  • Figure 1 is a schematic diagram showing the structure of a conventional SCR denitrification system
  • FIG. 2 is an installation diagram of an SCR denitrification system installed to process exhaust gas from a plurality of conventional engines.
  • FIG. 3 is an installation diagram of a joint denitrification system for multiple engines according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional plan view of the co-reaction main body of FIG.
  • FIG. 5 is a cross-sectional view taken along the line AA ′ of FIG. 4;
  • FIG. 6 is a cross-sectional view taken along the line BB ′ in FIG. 4.
  • FIG. 7 is a reference diagram illustrating a process in which the rupture plate is operated.
  • a joint SCR (Selective Catalytic Reduction) method for a plurality of exhaust pipes 12 for treating exhaust gases emitted from a plurality of engines 11.
  • the denitrification system includes a common reaction body 15 to which a plurality of exhaust pipes 12 for inducing exhaust gas respectively discharged from the plurality of engines 11 are connected; An exhaust pipe connected inside the joint reaction body 15 such that the exhaust gas flowing from each exhaust pipe 12 in the joint reaction body 15 does not mix with the exhaust gas of the other exhaust pipe 12 or flow to the other exhaust pipe 12.
  • a separator 153 which is partitioned and separated by the number of 12); An SCR catalyst 154 separately installed in each compartment separated by the separator 153; Including a plurality of outlets 152 for discharging the exhaust gas denitrified by the SCR catalyst 154, including the exhaust gas of the plurality of exhaust pipes 12 to bundle and denitrification jointly to minimize the space occupied It is characterized by preventing the formation of back pressure through the structure.
  • SCR Selective Catalytic Reduction
  • urea ammonia
  • reductant particularly for the removal of NOx from exhaust gases
  • a reducing agent that is, urea water (which becomes ammonia when urea water is vaporized) is injected through the injection nozzle 951 to denitrate NOx in the exhaust gas.
  • the mixed gas is introduced into the reactor 94 including the SCR catalyst 944, and the mixed gas in which the exhaust gas and the reducing agent are mixed in the reactor 94 is the SCR catalyst ( While passing through 944, denitrification (denitrification reaction) of nitrogen oxide (NOx) contained in the exhaust gas achieves optimum denitrification efficiency and effectively prevents environmental pollution caused by nitrogen oxide (NOx) component or ammonia. It has adopted a structure.
  • the conventional SCR denitrification system has an independent structure in which the exhaust gas discharged from one engine 91 is connected to and treated with one reactor 94, the exhaust gas discharged from a plurality of engines is removed. Even when the SCR denitrification system is installed for treatment, as illustrated in FIG.
  • the exhaust pipe 92 through which the exhaust gas discharged from one engine 91 flows is connected to one reactor 94 to denitrify and discharged.
  • the exhaust pipe 92 through which the exhaust gas discharged from the other engine 91 flows is arranged in parallel with the number of engines 91 so as to be arranged in parallel with the number of the engines 91 so as to be connected to the other reactor 94 for denitrification and installation. Due to the increase in the space (charged space) that is directly proportional to the number of SCR denitrification systems, in particular, it is subject to spatial constraints on the installation site of the SCR denitrification system, such as ships. There is a problem that can not be installed in place.
  • the joint denitrification system for a plurality of engines uses a plurality of joint reaction bodies 15 which connect a plurality of exhaust pipes 12 which lead exhaust gases respectively discharged from the plurality of engines 11 into one.
  • the space occupied can be minimized, and the inside of the common reaction body 15 through which the plurality of exhaust pipes 12 are connected together is separated from each exhaust pipe 12.
  • Co-reaction main body 15 connecting the plurality of exhaust pipes 12 together through a separator 153 which separates and separates the incoming exhaust gas from the exhaust gas of the other exhaust pipe 12 or flows into the other exhaust pipe 12. It is possible to fundamentally prevent the formation of back pressure in the interior.
  • the co-reaction main body 15 connects a plurality of exhaust pipes 12 into one and causes denitrification reaction by contacting the SCR catalyst 253 installed therein with the exhaust gas introduced from the various exhaust pipes 12 inside. It is the part that forms the overall skeleton of the reactor that allows oxides to be removed.
  • the co-reaction base 15 used in the present invention forms a plurality of inlet 151 in one co-reaction base 15 and a plurality of exhaust pipes 12 for exhausting the exhaust gas from the engine 11 By connecting them to each inlet 151, structurally solve the problem (see Fig. 2) that takes up a lot of space generated by having to install a number of reactors individually according to the number of engines as in the prior art, As shown in FIG.
  • the exhaust gas flowing from the plurality of exhaust pipes 12 can be treated with only the space occupied by the joint reaction body 15. As such, if the area occupied by the reactor used in the denitrification system can be reduced, the flexibility of the denitrification system installation can be exerted, especially in places where many places are restricted in the installation place such as ships. Installation or dismantling also has the advantage of being easy.
  • the separator 153 has a joint reaction body such that the exhaust gas flowing from each exhaust pipe 12 in the joint reaction body 15 does not mix with the exhaust gas of the other exhaust pipe 12 or flow to the other exhaust pipe 12. 15) It is the structure which isolates and divides the inside as many as the number of the exhaust pipe 12 connected.
  • the space in the joint reaction body 15 to which the plurality of exhaust pipes 12 are connected is introduced from each exhaust pipe 12 by using the separator 153.
  • the interior of the reaction chamber 15 is separated and separated by the number of connected exhaust pipes 12.
  • the co-reaction main body 15 according to the present invention has a space in which an internal space is connected to one exhaust pipe 12 by the separator 153 and another exhaust pipe 12 is connected.
  • the separator 153 has a joint reaction body within the joint reaction body 15 so as to induce exhaust gas introduced from each exhaust pipe 12 in a vertical direction.
  • 15 extends in the vertical longitudinal direction connecting the lower surface 156 and the upper surface 157 and is formed to compartmentally separate the inside of the joint reaction body 15, and the exhaust pipe 12 connected to the joint reaction body 15.
  • Exhaust gas flowing from the ⁇ is vertically lifted by the separator 153 and is finally discharged through the outlet 152 after nitrogen oxide is removed while contacting the SCR catalyst 154 having a layered layer disposed in the vertical direction. do.
  • the outlet portion 152 is also in the vertical longitudinal direction connecting the lower surface 156 and the upper surface 157 of the joint reaction body 15 in the joint reaction body 15 by the separator 153.
  • the upper surface 157 of the joint reaction body 15 is formed in a straight line so as to coincide with the flow direction of the induced exhaust gas, so that the exhaust gas is quickly discharged without stagnation in the joint reaction body 15, thereby allowing the cavity. It helps to reduce the volume in the reaction base (15). Therefore, the exhaust pipes 12 connected to the joint reaction body 15 discharge exhaust gas vertically in the joint reaction body 15, so that the exhaust pipes 12 are disposed on the front, rear, left, and right sides of the joint reaction body 15.
  • the exhaust gas introduced into the joint reaction body 15 is returned to the engine through the exhaust pipe 12 at the site where the respective exhaust pipes 12 are connected to each other in the joint reaction body 15. It may further include a non-return valve 155 to prevent the back flow.
  • a non-return valve 155 to prevent the back flow.
  • the inlet part 151 which blocks the back pressure formation through the separator 153 partitioning the inside of the joint reaction body 15 and additionally connects the joint reaction body 15 and the exhaust pipe 12.
  • the non-return valve 155 may be formed as an electronic control control valve to prevent the reverse flow by blocking the valve when the reverse flow is detected in the inlet 151 or the exhaust pipe 12.
  • each of the exhaust pipes 12 connected to the joint reaction body 15 may be opened when the reverse flow of the exhaust gas of a predetermined pressure or more may be opened to prevent the reverse flow of the exhaust gas. It may further include.
  • the rupture plate 121 is installed at a specific site or branched from a specific site on the line of the exhaust pipe 12. When applied to the rupture plate 121, the rupture plate 121 is ruptured so that the exhaust gas flowing in the opposite direction to the exhaust pipe 12 due to the reverse flow is discharged to the outside air through the opening formed by the rupture of the rupture plate 121.
  • the engine may be affected by causing the engine trouble.
  • the bursting plate 121 formed in the exhaust pipe 12 is ruptured so that an opening communicating with the outside in the exhaust pipe 12 is formed so that the exhaust gas flows backward. It is an additional configuration that allows the engine to be released to the outside before entering the engine to protect the engine from the backflow of exhaust gases. As illustrated in FIG.
  • the rupture plate 121 is installed in a pipe branched so as to protrude obliquely in a direction in which exhaust gas flows back from the exhaust pipe 12, that is, in a direction in which the exhaust gas flows toward the engine 11.
  • the back pressure due to the reverse flow of the exhaust gas can be transmitted to the rupture plate 121 well, and the exhaust gas flowing back when the rupture of the rupture plate 121 is easily discharged to the outside through the opening formed by the rupture of the rupture plate 121. do.
  • the joint denitrification system for a plurality of engines uses a plurality of exhaust pipes by using a common reaction body 15 for connecting a plurality of exhaust pipes 12 for inducing exhaust gas respectively discharged from the plurality of engines.
  • Co-reaction base unit 15 which connects a plurality of exhaust pipes 12 which induce exhaust gas discharged from a plurality of engines as one, while minimizing the space occupied by binding and exhausting the exhaust gas of (12).
  • the backflow prevention valve 155 which detects and blocks the reverse flow of the exhaust gas at the inlet 151, or exhaust gas of a certain degree or more on the line of each exhaust pipe 12 Back pressure formation within the joint reaction body 15 connecting the plurality of exhaust pipes 12 through the configuration of a rupture plate 121 that bursts when the pressure is generated due to the reverse flow of the exhaust gas to the outside, and the resulting exhaust gas It is to fundamentally prevent the problem caused by reverse flow.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

The present invention relates to a selective catalytic reduction (SCR) denitrification system for denitrifying exhaust gas, and more specifically, to a communal denitrification system for multiple engines, wherein exhaust gas of multiple exhaust pipes is denitrified communally by using a communal reactor body which connects the multiple exhaust pipes guiding the exhaust gas discharged from the multiple engines, respectively, thereby minimizing a space occupied by a reactor (denitrification system) and preventing back pressure in the communal reactor body for connecting the multiple exhaust pipes as one through a separation plate which partitions and isolates the inside of the communal reactor body for connecting the multiple exhaust pipes as one so as to prevent the exhaust gas entering from each exhaust pipe from mixing with the exhaust gas of another exhaust pipe or flowing into the other exhaust pipes.

Description

다수 엔진을 위한 공동 탈질시스템Joint denitrification system for multiple engines
본 발명은 배기가스의 탈질을 위한 SCR 탈질시스템에 관한 것으로, 보다 상세하게는 다수의 엔진으로부터 각각 배출되는 배기가스를 유도하는 다수의 배기관들을 하나로 연결하는 공동반응기본체를 이용하여 다수의 배기관의 배기가스를 묶어 공동으로 탈질처리함으로써 반응기(탈질시스템)가 차지하는 공간을 최소화할 수 있으면서, 다수의 배기관들을 하나로 연결하는 공동반응기본체 내부를 각 배기관으로부터 유입되는 배기가스가 다른 배기관의 배기가스와 혼합되거나 다른 배기관으로 흐르지 않도록 구획격리시키는 격리판을 통해 다수의 배기관들을 하나로 연결하는 공동반응기본체 내부에서의 배압형성을 방지하며, 상기 격리판이 배기가스를 수직방향으로 유도할 수 있도록 수직의 길이 방향으로 길게 연장되어 공동반응기본체의 전후좌우에서 배기관이 연결될 수 있도록 하여 탈질시스템이 차지하는 공간을 최소화하고, 각 배기관들이 공동반응기본체에 연결되는 부위에 배기가스의 역류를 방지하는 역류방지밸브를 통해 배압 등에 의한 배기가스의 역류로 인한 엔진 피해를 방지할 수 있는 다수 엔진을 위한 공동 탈질시스템에 관한 것이다. The present invention relates to an SCR denitrification system for denitrification of exhaust gas, and more particularly, exhaust gas of a plurality of exhaust pipes by using a joint reaction body which connects a plurality of exhaust pipes inducing exhaust gas respectively discharged from a plurality of engines into one. By enclosing the gas and jointly denitrifying, the space occupied by the reactor (denitrification system) can be minimized, and the exhaust gas flowing from each exhaust pipe is mixed with the exhaust gas of the other exhaust pipe inside the common reaction body that connects the multiple exhaust pipes together. A separator that separates and prevents flow to other exhaust pipes prevents back pressure from forming inside the joint reaction body that connects multiple exhaust pipes into one, and lengthens them in the vertical length direction to induce exhaust gas in the vertical direction. Prolonged front, rear, left and right Engine damage due to backflow of exhaust gas through back pressure through a backflow prevention valve that minimizes the space occupied by the denitrification system by allowing exhaust pipes to be connected to the exhaust pipe and prevents backflow of exhaust gas to the areas where each exhaust pipe is connected to the joint reaction body. It relates to a joint denitrification system for a number of engines that can prevent.
화석연료를 엔진에서 연소하여 열원 및 동력을 얻는 과정을 통해 배출되는 배기가스 내에는 불가피하게 광스모그, 산성비 및 호흡기 질환의 원인물질로 밝혀진 질소산화물(NOx) 성분이 포함되어 있어 이로 인한 환경문제가 심각하게 지적되고 있다. 따라서, 최근 이러한 질소산화물(NOx) 성분 배출규제가 강화되고 있으며, 이에 대응하여 여러 가지 배기가스에서의 질소산화물(NOx) 제거 기술이 활용되고 있는데, 그 중 특히 암모니아를 환원제로 하는 SCR(Selective Catalytic Reduction, 선택적 환원촉매법)기술이 다양하게 적용되고 있다. Emissions from the combustion of fossil fuels from engines to obtain heat sources and power inevitably contain nitrogen oxides (NOx), which have been found to cause light smog, acid rain and respiratory diseases. It is seriously pointed out. Therefore, recently, NOx emission control has been strengthened, and in response to this, NOx removal technology has been utilized in various exhaust gases. Among them, SCR (Selective Catalytic) using ammonia as a reducing agent is particularly used. Reduction (selective reduction catalyst) technology has been applied in various ways.
이러한 SCR 탈질시스템은 도 1을 참조하면, 엔진(91)으로부터 배출되는 배기가스 중의 질소산화물(NOx)을 탈질시키기 위해 사용되는 환원제 즉, 요소수(요소수가 기화되면 암모니아가 됨)를 분사노즐(951)을 통해 혼합챔버(93) 내에 분사시켜 배기가스와 환원제를 혼합시킨 혼합가스를 SCR촉매(944)를 포함하고 있는 반응기(94)에 유입시켜 상기 반응기(94) 내에서 배기가스와 환원제가 혼합된 혼합가스가 SCR촉매(944)를 통과하면서 배기가스에 포함된 질소산화물(NOx) 성분을 탈질(탈질반응)시켜 최적의 탈질효율을 얻고 질소산화물(NOx) 성분이나 암모니아로 인한 환경오염을 효율적으로 방지하는 구조를 채택하고 있다. Referring to FIG. 1, the SCR denitrification system uses a spray nozzle with a reducing agent, urea water (which becomes ammonia when urea water is vaporized), used to denitrify nitrogen oxides (NOx) in the exhaust gas discharged from the engine 91. 951) is introduced into the reactor 94 containing the SCR catalyst 944 by injecting the mixed gas in which the exhaust gas and the reducing agent are mixed into the mixing chamber 93 through the exhaust gas and the reducing agent in the reactor 94. As the mixed gas passes through the SCR catalyst 944, it denitrates (denitrates) the nitrogen oxide (NOx) component contained in the exhaust gas to obtain an optimum denitrification efficiency and to reduce environmental pollution caused by nitrogen oxide (NOx) component or ammonia. It adopts the structure which prevents efficiently.
그러나, 위와 같은 종래의 SCR 탈질시스템은 엔진 하나에서 배출되는 배기가스를 반응기(94) 하나에 연결시켜 처리하는 독립적인 구조를 취하는 것에 불과하기 때문에, 다수의 엔진에서 배출되는 배기가스를 처리하기 위해 SCR 탈질시스템을 설치하는 경우에는 도 2에 도시된 바와 같이, 하나의 엔진(91)에서 배출되는 배기가스가 흐르는 배기관(92)을 하나의 반응기(94)에 연결시켜 탈질시켜 배출시키고, 다른 엔진(91)에서 배출되는 배기가스가 흐르는 배기관(92)은 다른 반응기(94)에 연결시켜 탈질시켜 배출시키는 구조를 엔진(91)의 수에 맞추어 병렬적으로 나열하게 될 뿐이므로, 설치되는 SCR 탈질시스템의 수만큼 정비례로 설치되는 공간(차지하는 공간)이 커지게 된다. 그러나, 특히 선박 등과 같이 SCR 탈질시스템의 설치 장소에 대한 공간적 제약을 받는 곳에서 여러 대의 엔진에서 배출되는 배기가스를 처리하기 위한 SCR 탈질시스템을 설치해야하는 경우에 있어서는 탈질시스템의 설치공간을 최소화시킬 수 있는 구조에 대한 필요성이 더욱 증대되고 있다. However, since the conventional SCR denitrification system only takes an independent structure in which the exhaust gas discharged from one engine is connected to and treated with one reactor 94, it is necessary to treat the exhaust gas emitted from a plurality of engines. In the case of installing the SCR denitrification system, as illustrated in FIG. 2, the exhaust pipe 92 through which the exhaust gas discharged from one engine 91 flows is connected to one reactor 94 to denitrify and discharge the other engine. The exhaust pipe 92 through which the exhaust gas discharged from the 91 flows is arranged in parallel with the number of the engines 91 so that the exhaust pipe 92 connected to the other reactor 94 to be denitrated and discharged is installed. As the number of systems increases, the installed space (the occupied space) becomes large. However, the installation space of the denitrification system can be minimized, especially when the SCR denitrification system for treating the exhaust gas from several engines is to be installed, especially in places where the space for the installation of the SCR denitrification system, such as ships, is restricted. There is a growing need for more structure.
다만, 단순히 반응기의 용량만을 크게 하여 다수의 배기관을 동시에 하나의 반응기에 연결시키게 되면, 서로 다른 엔진의 로드(load)로 인한 반응기 내에서의 배압 형성으로 인해 오히려 다른 여러 문제들이 발생될 수 있다. However, if a plurality of exhaust pipes are connected to one reactor at the same time by simply increasing the capacity of the reactor, various other problems may occur due to the formation of back pressure in the reactor due to loads of different engines.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로,The present invention has been made to solve the above problems,
본 발명의 목적은 다수의 엔진으로부터 각각 배출되는 배기가스를 유도하는 다수의 배기관들을 하나로 연결하는 공동반응기본체를 이용하여 다수의 배기관의 배기가스를 묶어 공동으로 탈질처리함으로써 차지하는 공간을 최소화할 수 있는 다수 엔진을 위한 공동 탈질시스템을 제공하는 것이다. It is an object of the present invention to minimize the space occupied by tying exhaust gases from a plurality of exhaust pipes by jointly denitrifying them using a joint reaction body that connects a plurality of exhaust pipes inducing exhaust gas discharged from a plurality of engines into one. It is to provide a joint denitrification system for many engines.
본 발명의 다른 목적은 다수의 엔진으로부터 각각 배출되는 배기가스를 유도하는 다수의 배기관들을 하나로 연결하는 공동반응기본체 내부를 각 배기관으로부터 유입되는 배기가스가 다른 배기관의 배기가스와 혼합되거나 다른 배기관으로 흐르지 않도록 구획격리시키는 격리판을 통해 다수의 배기관들을 하나로 연결하는 공동반응기본체 내부에서의 배압형성을 근본적으로 방지할 수 있는 다수 엔진을 위한 공동 탈질시스템을 제공하는 것이다. Another object of the present invention is that the exhaust gas flowing from each exhaust pipe is mixed with the exhaust gas of the other exhaust pipe or flows into the other exhaust pipe inside the joint reaction main body which connects the multiple exhaust pipes which respectively induce exhaust gas discharged from the multiple engines into one. It is to provide a joint denitrification system for a number of engines that can fundamentally prevent the formation of back pressure in the joint reaction body that connects a plurality of exhaust pipes through a separator that separates them.
본 발명의 또 다른 목적은 공동반응기본체 내부를 격리시키는 격리판이 각 배기관에서 유입되는 배기가스를 수직방향으로 유도할 수 있도록 수직의 길이 방향으로 길게 연장되도록 함으로써, 공동반응기본체의 전후좌우에서 배기관이 연결될 수 있도록 하여 탈질시스템이 차지하는 공간을 최소화할 수 있는 다수 엔진을 위한 공동 탈질시스템을 제공하는 것이다. Still another object of the present invention is that the separator isolating the interior of the joint reaction body is extended in the vertical longitudinal direction to guide the exhaust gas flowing from each exhaust pipe in the vertical direction, so that the exhaust pipe in the front, rear, left and right of the joint reaction body It provides a joint denitrification system for a number of engines that can be connected to minimize the space taken by the denitrification system.
본 발명의 또 다른 목적은 공동반응기본체에서 각 배기관들이 연결되는 부위에 배기가스의 역류를 방지하는 역류방지밸브를 통해 배압 등에 의한 배기가스의 역류로 인한 엔진 피해를 방지할 수 있는 다수 엔진을 위한 공동 탈질시스템을 제공하는 것이다. Still another object of the present invention is to provide a plurality of engines capable of preventing engine damage caused by backflow of exhaust gas through back pressure through a backflow prevention valve that prevents backflow of exhaust gas at a portion where the respective exhaust pipes are connected in the joint reaction body. It is to provide a joint denitrification system.
본 발명의 또 다른 목적은 다수 배기관들의 각 라인 상에 일정 압력 이상의 배기가스의 역류 발생시 개방되어 배기가스의 역류를 방지하는 파열판을 추가로 포함하여 배기가스의 역류로 인한 엔진 피해를 방지할 수 있는 다수 엔진을 위한 공동 탈질시스템을 제공하는 것이다. Still another object of the present invention may further include a rupture plate that is opened upon occurrence of a reverse flow of exhaust gas above a predetermined pressure on each line of a plurality of exhaust pipes to prevent backflow of the exhaust gas, thereby preventing engine damage due to the reverse flow of exhaust gas. It is to provide a joint denitrification system for many engines.
상술한 본 발명의 목적을 달성하기 위한 다수 엔진을 위한 공동 탈질시스템은 다음과 같은 구성을 포함한다. Joint denitrification system for a number of engines for achieving the above object of the present invention includes the following configuration.
본 발명의 일 실시예에 따른 다수 엔진을 위한 공동 탈질시스템은 다수의 엔진으로부터 각각 배출되는 배기가스를 유도하는 다수의 배기관들이 연결되는 공동반응기본체와; 상기 공동반응기본체 내에서 각 배기관으로부터 유입되는 배기가스가 다른 배기관의 배기가스와 혼합되거나 다른 배기관으로 흐르지 않도록 공동반응기본체 내부를 연결된 배기관의 수만큼 구획격리시키는 격리판과; 상기 격리판에 의해 격리된 각 구획마다 별도로 설치되는 SCR촉매와; 상기 SCR촉매에 의해 탈질처리된 배기가스를 배출하는 다수의 유출부;을 포함하여, 다수의 배기관의 배기가스를 묶어 공동으로 탈질처리함으로써 차지하는 공간을 최소화하면서 격리구조를 통해 배압형성을 방지하는 것을 특징으로 한다. The joint denitrification system for a plurality of engines according to an embodiment of the present invention includes: a joint reaction body connected with a plurality of exhaust pipes for inducing exhaust gases respectively discharged from the plurality of engines; A separator for separating and separating the inside of the joint reaction body by the number of connected exhaust pipes so that the exhaust gas introduced from each exhaust pipe in the joint reaction body does not mix with the exhaust gas of the other exhaust pipe or flow to the other exhaust pipe; An SCR catalyst installed separately in each compartment separated by the separator; It includes a plurality of outlets for discharging the exhaust gas denitrified by the SCR catalyst; to prevent the formation of back pressure through the isolation structure while minimizing the space occupied by bundling the exhaust gas of the plurality of exhaust pipes and jointly denitrification It features.
본 발명의 다른 실시예에 따르면, 본 발명에 따른 다수 엔진을 위한 공동 탈질시스템에 있어서 상기 공동반응기본체에서 각 배기관들이 연결되는 부위에 배기가스의 역류를 방지하는 역류방지밸브를 추가로 포함하는 것을 특징으로 한다. According to another embodiment of the present invention, in the joint denitrification system for a plurality of engines according to the present invention, further comprising a non-return valve for preventing backflow of exhaust gas at a portion where the respective exhaust pipes are connected in the joint reaction body. It features.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 다수 엔진을 위한 공동 탈질시스템에 있어서 상기 격리판은 각 배기관에서 유입되는 배기가스를 수직방향으로 유도할 수 있도록 수직의 길이 방향으로 길게 연장되면서 상기 공동반응기본체 내부를 구획격리하여, 상기 공동반응기본체의 전후좌우에서 배기관이 연결될 수 있어 탈질시스템이 차지하는 공간을 최소화할 수 있는 것을 특징으로 한다. According to another embodiment of the present invention, in the joint denitrification system for a plurality of engines according to the present invention, the separator extends in the vertical lengthwise direction to guide the exhaust gas flowing from each exhaust pipe in the vertical direction. By partitioning the interior of the joint reaction main body, exhaust pipes can be connected to the front, rear, left and right sides of the joint reaction main body, and the space occupied by the denitrification system can be minimized.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 다수 엔진을 위한 공동 탈질시스템에 있어서 상기 배기관들의 각 라인 상에는 일정 압력 이상의 배기가스의 역류 발생시 개방되어 배기가스의 역류를 방지하는 파열판을 추가로 포함하는 것을 특징으로 한다. According to another embodiment of the present invention, in the joint denitrification system for a plurality of engines according to the present invention, on each line of the exhaust pipes, a rupture plate is opened to prevent the reverse flow of exhaust gas by opening when a reverse flow of the exhaust gas exceeds a predetermined pressure. It is characterized by including.
본 발명은 앞서 본 실시예와 하기에 설명할 구성과 결합, 사용관계에 의해 다음과 같은 효과를 얻을 수 있다. The present invention can obtain the following effects by the configuration, combination, and use relationship described above with the present embodiment.
본 발명은 다수의 엔진으로부터 각각 배출되는 배기가스를 유도하는 다수의 배기관들을 하나로 연결하는 공동반응기본체를 이용하여 다수의 배기관의 배기가스를 묶어 공동으로 탈질처리함으로써 차지하는 공간을 최소화할 수 있는 효과를 갖는다. The present invention has the effect of minimizing the space occupied by bundling the exhaust gases of a plurality of exhaust pipes jointly by denitrification by using a joint reaction body that connects a plurality of exhaust pipes inducing exhaust gas discharged from a plurality of engines into one. Have
본 발명은 다수의 엔진으로부터 각각 배출되는 배기가스를 유도하는 다수의 배기관들을 하나로 연결하는 공동반응기본체 내부를 각 배기관으로부터 유입되는 배기가스가 다른 배기관의 배기가스와 혼합되거나 다른 배기관으로 흐르지 않도록 구획격리시키는 격리판을 통해 다수의 배기관들을 하나로 연결하는 공동반응기본체 내부에서의 배압형성을 근본적으로 방지할 수 있는 효과를 갖는다. The present invention is to separate the compartment so that the exhaust gas flowing from each exhaust pipe does not mix with the exhaust gas of the other exhaust pipe or flow into the other exhaust pipe inside the joint reaction body which connects the plurality of exhaust pipes respectively inducing exhaust gas discharged from the multiple engines into one. It is possible to fundamentally prevent the formation of back pressure in the joint reaction body that connects a plurality of exhaust pipes through a separator.
본 발명은 공동반응기본체 내부를 격리시키는 격리판이 각 배기관에서 유입되는 배기가스를 수직방향으로 유도할 수 있도록 수직의 길이 방향으로 길게 연장되도록 함으로써, 공동반응기본체의 전후좌우에서 배기관이 연결될 수 있도록 하여 탈질시스템이 차지하는 공간을 최소화할 수 있는 효과를 갖는다. The present invention is such that the separator isolating the interior of the joint reaction body is extended in the vertical longitudinal direction to guide the exhaust gas flowing from each exhaust pipe in the vertical direction, so that the exhaust pipe can be connected in front, rear, left and right of the joint reaction body. It has the effect of minimizing the space occupied by the denitrification system.
본 발명은 공동반응기본체에서 각 배기관들이 연결되는 부위에 배기가스의 역류를 방지하는 역류방지밸브를 통해 배압 등에 의한 배기가스의 역류로 인한 엔진 피해를 방지할 수 있는 효과를 갖는다. The present invention has an effect that can prevent the engine damage due to the back flow of the exhaust gas through the back pressure through the back flow prevention valve to prevent the back flow of the exhaust gas to the site where the respective exhaust pipes are connected in the joint reaction body.
본 발명은 다수 배기관들의 각 라인 상에 일정 압력 이상의 배기가스의 역류 발생시 개방되어 배기가스의 역류를 방지하는 파열판을 추가로 포함하여 배기가스의 역류로 인한 엔진 피해를 방지할 수 있는 효과를 갖는다. The present invention further includes a rupture plate that is opened upon occurrence of a reverse flow of exhaust gas above a predetermined pressure on each line of the plurality of exhaust pipes to prevent the reverse flow of exhaust gas, thereby preventing the engine damage due to the reverse flow of exhaust gas.
도 1은 종래 SCR 탈질시스템의 구조를 도시한 개략도Figure 1 is a schematic diagram showing the structure of a conventional SCR denitrification system
도 2는 종래 다수 엔진으로부터의 배기가스를 처리하기 위해 설치되는 SCR 탈질시스템의 설치도2 is an installation diagram of an SCR denitrification system installed to process exhaust gas from a plurality of conventional engines.
도 3은 본 발명의 일 실시예에 따른 다수 엔진을 위한 공동 탈질시스템의 설치도3 is an installation diagram of a joint denitrification system for multiple engines according to an embodiment of the present invention.
도 4는 도 3의 공동반응기본체의 평단면도4 is a cross-sectional plan view of the co-reaction main body of FIG.
도 5는 도 4에서의 A-A'방향의 단면도5 is a cross-sectional view taken along the line AA ′ of FIG. 4;
도 6은 도 4에서의 B-B'방향의 단면도FIG. 6 is a cross-sectional view taken along the line BB ′ in FIG. 4.
도 7은 파열판이 작동하는 과정을 도시한 참고도7 is a reference diagram illustrating a process in which the rupture plate is operated.
이하에서는 본 발명에 따른 다수 엔진을 위한 공동 탈질시스템의 바람직한 실시예들을 첨부된 도면을 참조하여 상세히 설명한다. 하기에서 본 발명을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하도록 한다. Hereinafter, preferred embodiments of a joint denitrification system for a plurality of engines according to the present invention will be described in detail with reference to the accompanying drawings. In the following description of the present invention, if it is determined that a detailed description of a known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
도 3 내지 7을 참조하면, 다수의 엔진(11)으로부터 배출되는 배기가스를 처리하기 위한 본 발명의 일 실시예에 따른 다수 배기관(12)을 위한 공동 SCR(Selective Catalytic Reduction, 선택적 환원촉매법) 탈질시스템은 다수의 엔진(11)으로부터 각각 배출되는 배기가스를 유도하는 다수의 배기관(12)들이 연결되는 공동반응기본체(15)와; 상기 공동반응기본체(15) 내에서 각 배기관(12)으로부터 유입되는 배기가스가 다른 배기관(12)의 배기가스와 혼합되거나 다른 배기관(12)으로 흐르지 않도록 공동반응기본체(15) 내부를 연결된 배기관(12)의 수만큼 구획격리시키는 격리판(153)과; 상기 격리판(153)에 의해 격리된 각 구획마다 별도로 설치되는 SCR촉매(154)와; 상기 SCR촉매(154)에 의해 탈질처리된 배기가스를 배출하는 다수의 유출부(152);을 포함하여, 다수의 배기관(12)의 배기가스를 묶어 공동으로 탈질처리함으로써 차지하는 공간을 최소화하면서 격리구조를 통해 배압형성을 방지하는 것을 특징으로 한다. 3 to 7, a joint SCR (Selective Catalytic Reduction) method for a plurality of exhaust pipes 12 according to an embodiment of the present invention for treating exhaust gases emitted from a plurality of engines 11. The denitrification system includes a common reaction body 15 to which a plurality of exhaust pipes 12 for inducing exhaust gas respectively discharged from the plurality of engines 11 are connected; An exhaust pipe connected inside the joint reaction body 15 such that the exhaust gas flowing from each exhaust pipe 12 in the joint reaction body 15 does not mix with the exhaust gas of the other exhaust pipe 12 or flow to the other exhaust pipe 12. A separator 153 which is partitioned and separated by the number of 12); An SCR catalyst 154 separately installed in each compartment separated by the separator 153; Including a plurality of outlets 152 for discharging the exhaust gas denitrified by the SCR catalyst 154, including the exhaust gas of the plurality of exhaust pipes 12 to bundle and denitrification jointly to minimize the space occupied It is characterized by preventing the formation of back pressure through the structure.
앞서 종래기술에서 설명한 바와 같이, 배기가스에서의 질소산화물(NOx) 제거를 위해 특히 요소(암모니아)를 환원제로 하는 SCR(Selective Catalytic Reduction, 선택적 환원촉매법) 탈질시스템은 엔진(91)에서 배출되는 배기가스 중의 질소산화물(NOx)을 탈질시키기 위해 배기가스가 흐르는 혼합챔버(93) 내로 환원제 즉, 요소수(요소수가 기화되면 암모니아가 됨)를 분사노즐(951)을 통해 분사시켜 배기가스와 환원제가 혼합된 혼합가스를 생성한 후, 해당 혼합가스를 SCR촉매(944)를 포함하고 있는 반응기(94)에 유입시켜 상기 반응기(94) 내에서 배기가스와 환원제가 혼합된 혼합가스가 SCR촉매(944)를 통과하면서 배기가스에 포함된 질소산화물(NOx) 성분을 탈질(탈질반응)시켜 최적의 탈질효율을 얻고 질소산화물(NOx) 성분이나 암모니아로 인한 환경오염을 효율적으로 방지하는 구조를 채택하고 있다. 그러나, 위와 같은 종래의 SCR 탈질시스템은 엔진(91) 하나에서 배출되는 배기가스를 반응기(94) 하나에 연결시켜 처리하는 독립적인 구조를 취하는 것에 불과하기 때문에, 다수의 엔진에서 배출되는 배기가스를 처리하기 위해 SCR 탈질시스템을 설치하는 경우에도 도 2에 도시된 바와 같이, 하나의 엔진(91)에서 배출되는 배기가스가 흐르는 배기관(92)을 하나의 반응기(94)에 연결시켜 탈질시켜 배출시키고, 다른 엔진(91)에서 배출되는 배기가스가 흐르는 배기관(92)은 다른 반응기(94)에 연결시켜 탈질시켜 배출시키는 구조를 엔진(91)의 수에 맞추어 병렬적으로 나열하게 될 뿐이므로, 설치되는 SCR 탈질시스템의 수만큼 정비례로 설치되는 공간(차지하는 공간)이 커지게 됨으로 인해 특히, 선박 등과 같이 SCR 탈질시스템의 설치 장소에 대한 공간적 제약을 받는 곳에서는 설치가 불가능하게 되는 문제가 발생하게 된다. 또한, 단순히 반응기의 용량만을 크게 하여 다수의 배기관을 동시에 하나의 반응기에 연결시키는 구조를 상정해보면, 서로 다른 엔진의 로드(load)들로 인한 반응기 내에서의 배압 형성으로 인해 오히려 다른 여러 문제들(반응기 내에서의 배압으로 배기가스가 엔진으로 역류되어 엔진에 트러블을 생성시키는 문제 등)이 발생될 수 있게 된다. As previously described in the prior art, SCR (Selective Catalytic Reduction) denitrification systems using urea (ammonia) as a reductant, particularly for the removal of NOx from exhaust gases, are discharged from the engine 91. In order to denitrify the nitrogen oxides (NOx) in the exhaust gas, a reducing agent, that is, urea water (which becomes ammonia when urea water is vaporized) is injected through the injection nozzle 951 to denitrate NOx in the exhaust gas. After the mixed gas is mixed, the mixed gas is introduced into the reactor 94 including the SCR catalyst 944, and the mixed gas in which the exhaust gas and the reducing agent are mixed in the reactor 94 is the SCR catalyst ( While passing through 944, denitrification (denitrification reaction) of nitrogen oxide (NOx) contained in the exhaust gas achieves optimum denitrification efficiency and effectively prevents environmental pollution caused by nitrogen oxide (NOx) component or ammonia. It has adopted a structure. However, since the conventional SCR denitrification system has an independent structure in which the exhaust gas discharged from one engine 91 is connected to and treated with one reactor 94, the exhaust gas discharged from a plurality of engines is removed. Even when the SCR denitrification system is installed for treatment, as illustrated in FIG. 2, the exhaust pipe 92 through which the exhaust gas discharged from one engine 91 flows is connected to one reactor 94 to denitrify and discharged. The exhaust pipe 92 through which the exhaust gas discharged from the other engine 91 flows is arranged in parallel with the number of engines 91 so as to be arranged in parallel with the number of the engines 91 so as to be connected to the other reactor 94 for denitrification and installation. Due to the increase in the space (charged space) that is directly proportional to the number of SCR denitrification systems, in particular, it is subject to spatial constraints on the installation site of the SCR denitrification system, such as ships. There is a problem that can not be installed in place. In addition, a structure in which a plurality of exhaust pipes are connected to one reactor at the same time by simply increasing the capacity of the reactor may be considered. Various other problems may be caused by the formation of back pressure in the reactor due to loads of different engines. Back pressure in the reactor may cause the exhaust gas to flow back to the engine, causing problems in the engine, and the like.
따라서, 본 발명에 따른 다수 엔진을 위한 공동 탈질시스템은 다수의 엔진(11)으로부터 각각 배출되는 배기가스를 유도하는 다수의 배기관(12)들을 하나로 연결하는 공동반응기본체(15)를 이용하여 다수의 배기관(12)의 배기가스를 묶어 공동으로 탈질처리함으로써 차지하는 공간을 최소화할 수 있게 함은 물론, 다수의 배기관(12)들이 하나로 연결하는 상기 공동반응기본체(15) 내부를 각 배기관(12)으로부터 유입되는 배기가스가 다른 배기관(12)의 배기가스와 혼합되거나 다른 배기관(12)으로 흐르지 않도록 구획격리시키는 격리판(153)을 통해 다수의 배기관(12)들을 하나로 연결하는 공동반응기본체(15) 내부에서의 배압형성을 근본적으로 방지할 수 있게 한다. Therefore, the joint denitrification system for a plurality of engines according to the present invention uses a plurality of joint reaction bodies 15 which connect a plurality of exhaust pipes 12 which lead exhaust gases respectively discharged from the plurality of engines 11 into one. By enclosing the exhaust gas of the exhaust pipe 12 in a joint denitrification process, the space occupied can be minimized, and the inside of the common reaction body 15 through which the plurality of exhaust pipes 12 are connected together is separated from each exhaust pipe 12. Co-reaction main body 15 connecting the plurality of exhaust pipes 12 together through a separator 153 which separates and separates the incoming exhaust gas from the exhaust gas of the other exhaust pipe 12 or flows into the other exhaust pipe 12. It is possible to fundamentally prevent the formation of back pressure in the interior.
상기 공동반응기본체(15)는 종래와 달리 다수의 배기관(12)들을 하나로 연결하여 여러 배기관(12)에서 내부로 유입되는 배기가스가 내부에 설치된 SCR촉매(253)와 접촉하여 탈질반응을 일으켜 질소산화물이 제거되도록 하는 반응기의 전체적인 골격을 형성하는 부분이다. 특히, 본 발명에 사용되는 상기 공동반응기본체(15)는 하나의 공동반응기본체(15)에 여러 유입부(151)를 형성하고 엔진(11)에서 나오는 배기가스를 배출시키는 다수의 배기관(12)들이 각 유입부(151)에 연결되도록 함으로써, 종래와 같이 엔진의 개수에 따라 수많은 반응기를 개별적으로 설치하여야 함에 따라 발생하는 많은 공간을 차지하게 되는 문제(도 2 참조)를 구조적으로 해결하고, 도 3에 도시된 바와 같이 상기 공동반응기본체(15) 하나가 차지하는 공간만으로도 다수의 배기관(12)들로부터 유입되는 배기가스를 처리할 수 있게 된다. 이와 같이 탈질시스템에 사용되는 반응기가 차지하는 면적을 줄일 수 있게 되면, 특히 선박 등과 같이 그 설치장소에 많은 장소적 제약이 따르게 되는 곳에서의 탈질시스템 설치에 큰 융통성을 발휘할 수 있게 되어 제품의 경제성 및 설치나 해체 작업 또한 용이하게 되는 장점을 갖게 된다. Unlike the related art, the co-reaction main body 15 connects a plurality of exhaust pipes 12 into one and causes denitrification reaction by contacting the SCR catalyst 253 installed therein with the exhaust gas introduced from the various exhaust pipes 12 inside. It is the part that forms the overall skeleton of the reactor that allows oxides to be removed. In particular, the co-reaction base 15 used in the present invention forms a plurality of inlet 151 in one co-reaction base 15 and a plurality of exhaust pipes 12 for exhausting the exhaust gas from the engine 11 By connecting them to each inlet 151, structurally solve the problem (see Fig. 2) that takes up a lot of space generated by having to install a number of reactors individually according to the number of engines as in the prior art, As shown in FIG. 3, the exhaust gas flowing from the plurality of exhaust pipes 12 can be treated with only the space occupied by the joint reaction body 15. As such, if the area occupied by the reactor used in the denitrification system can be reduced, the flexibility of the denitrification system installation can be exerted, especially in places where many places are restricted in the installation place such as ships. Installation or dismantling also has the advantage of being easy.
상기 격리판(153)은 상기 공동반응기본체(15) 내에서 각 배기관(12)으로부터 유입되는 배기가스가 다른 배기관(12)의 배기가스와 혼합되거나 다른 배기관(12)으로 흐르지 않도록 공동반응기본체(15) 내부를 연결된 배기관(12)의 수만큼 구획격리시키는 구성이다. The separator 153 has a joint reaction body such that the exhaust gas flowing from each exhaust pipe 12 in the joint reaction body 15 does not mix with the exhaust gas of the other exhaust pipe 12 or flow to the other exhaust pipe 12. 15) It is the structure which isolates and divides the inside as many as the number of the exhaust pipe 12 connected.
앞서 언급한 바와 같이 만약, 단순히 종래 반응기의 용량만을 크게 하여(즉, 반응기의 부피만을 키워) 여러 엔진들의 다수의 배기관을 모두 반응기에 연결시키는 단순한 구조를 상정해보면, 이때의 반응기 내에서는 다수의 배기관들로부터 유입되는 배기가스들이 모두 섞이게 되고 이때, 각각의 배기관에서 반응기 내로 배기가스가 유입되는 압력은 각 배기관들에 연결된 엔진의 로드(load)에 따라 서로 차이가 나게 되므로, 만약 특정 엔진의 로드가 상대적으로 다른 엔진들에 비해 많이 약해지는 경우에는 반응기 내의 압력(즉, 배압)에 비해 로드가 약해진 해당 특정 엔진과 연결된 배기관으로부터 배기가스가 유입되는 압력이 낮게 되어 오히려 반응기 내의 배기가스가 해당 배기관을 통해 로드가 약해진 엔진으로 역류되어 엔진에 트러블을 생성시키는 문제를 발생시킬 수 있게 된다. As mentioned above, a simple structure in which a large number of exhaust pipes of several engines are connected to the reactor by simply increasing the capacity of the conventional reactor (that is, increasing the volume of the reactor), in the reactor at this time, Of the exhaust gases from each of the exhaust pipes, and the pressure of the exhaust gases from each exhaust pipe into the reactor is different depending on the load of the engines connected to the exhaust pipes. If it is relatively weak compared to other engines, the pressure of the exhaust gas from the exhaust pipe connected to the specific engine in which the load is weak compared to the pressure in the reactor (that is, the back pressure) is lowered. To reverse the load to the engine, It can cause problems.
따라서, 본 발명에서는 다수의 배기관(12)들이 연결되는 상기 공동반응기본체(15) 내 공간을 상기 격리판(153)을 활용하여 도 4 내지 6에 도시된 바와 같이, 각 배기관(12)으로부터 유입되는 배기가스가 다른 배기관(12)의 배기가스와 혼합되거나 다른 배기관(12)으로 흐르지 않도록 공동반응기본체(15) 내부를 연결된 배기관(12)의 수만큼 구획격리시키게 된다. 도 4에 도시된 바와 같이, 본 발명에서의 상기 공동반응기본체(15)는 내부 공간이 상기 격리판(153)에 의해 일 배기관(12)이 연결되는 공간과 다른 배기관(12)이 연결되는 공간이 평면상으로도 전후좌우 모두 구획 격리됨은 물론, 도 5 및 6에 도시된 바와 같이 단면상으로도 역시 일 배기관(12)이 연결되는 공간과 다른 배기관(12)이 연결되는 공간이 완전히 구획 격리되는 구조를 갖기 때문에, 상기 공동반응기본체(15) 내부에서는 일 배기관(12)으로부터 유입되는 배기가스와 타 배기관(12)으로부터 유입되는 배기가스 사이에 서로 혼합될 우려가 없을뿐더러, 일 배기관(12)으로부터 배기가스가 유입되는 압력과 타 배기관(12)으로부터 배기가스가 유입되는 압력이 서로 다르더라도 서로 다른 압력 차이에 의해 공동반응기본체(15) 내에서 배압이 형성될 우려가 근본적으로 차단(즉, 공동반응기본체(15) 내에서 구획격리된 공간들 간의 서로 다른 압력 차이가 서로 간에 전혀 영향을 미칠 수 없기 때문)되어 배압에 의해 배기가스가 공동반응기본체(15) 내에서 특정 배기관(12)으로 역류될 가능성도 없어지게 된다. Therefore, in the present invention, as shown in FIGS. 4 to 6, the space in the joint reaction body 15 to which the plurality of exhaust pipes 12 are connected is introduced from each exhaust pipe 12 by using the separator 153. In order to prevent the exhaust gas from being mixed with the exhaust gas of the other exhaust pipe 12 or flowing to the other exhaust pipe 12, the interior of the reaction chamber 15 is separated and separated by the number of connected exhaust pipes 12. As shown in FIG. 4, the co-reaction main body 15 according to the present invention has a space in which an internal space is connected to one exhaust pipe 12 by the separator 153 and another exhaust pipe 12 is connected. In this plane as well as the front, rear, left, and right of the compartment is separated, as shown in Figures 5 and 6 also in the cross-sectional view also the space in which the work exhaust pipe 12 is connected and the space where the other exhaust pipe 12 is connected is completely partitioned isolated Because of the structure, there is no fear of mixing between the exhaust gas flowing from the work exhaust pipe 12 and the exhaust gas flowing from the other exhaust pipe 12 inside the joint reaction body 15, and the work exhaust pipe 12. Even though the pressure at which the exhaust gas is introduced from the exhaust gas and the pressure at which the exhaust gas is introduced from the other exhaust pipe 12 are different from each other, there is a concern that back pressure is formed in the joint reaction body 15 due to the different pressure difference. Shut off (ie, because different pressure differences between the compartments segregated within the co-reaction body 15 can not affect each other at all), so that the exhaust gas is discharged within the co-reaction body 15 by back pressure. The possibility of backflow to the specific exhaust pipe 12 is also eliminated.
또한, 상기 격리판(153)은 도 5 및 6에 도시된 바와 같이, 각 배기관(12)에서 유입되는 배기가스를 수직방향으로 유도할 수 있도록 상기 공동반응기본체(15) 내에서 공동반응기본체(15)의 하면(156)과 상면(157)을 연결하는 수직의 길이 방향으로 길게 연장되면서 상기 공동반응기본체(15) 내부를 구획격리하도록 형성되어, 상기 공동반응기본체(15)에 연결된 배기관(12)으로부터 유입되는 배기가스는 상기 격리판(153)에 의해 수직으로 상승되면서 수직방향으로 층층이 배치된 SCR촉매(154)와 접촉하면서 질소산화물이 제거된 후 상기 유출부(152)를 통해 최종 배출되게 된다. 또한, 상기 유출부(152) 역시 상기 격리판(153)에 의해 상기 공동반응기본체(15) 내에서 공동반응기본체(15)의 하면(156)과 상면(157)을 연결하는 수직의 길이 방향으로 유도되는 배기가스의 흐름방향과 일치하도록 상기 공동반응기본체(15)의 상면(157)에서 상향 일직선으로 형성되어, 배기가스가 상기 공동반응기본체(15) 내에서 정체되지 않고 빠르게 배출되게 하여 상기 공동반응기본체(15) 내 부피를 줄이도록 하는데 일조하게 된다. 따라서, 상기 공동반응기본체(15)에 연결되는 배기관(12)들은 배기가스를 공동반응기본체(15) 내에서 모두 수직으로 배출시키게 되므로 상기 공동반응기본체(15)의 전후좌우 모두에 상기 배기관(12)을 연결시킬 수 있게 되어, 공동반응기본체(15) 하나 당 연결시킬 수 있는 배기관(12)의 수 즉, 엔진(11)의 수를 늘릴 수 있게 되고 그 결과, 보다 많은 수의 엔진(11)으로부터 배출되는 배기가스를 하나의 공동반응기본체(15)를 이용하여 탈질시킬 수 있게 되므로 탈질시스템이 차지하는 공간을 최소화할 수 있는 효과를 발휘하게 된다. In addition, as shown in FIGS. 5 and 6, the separator 153 has a joint reaction body within the joint reaction body 15 so as to induce exhaust gas introduced from each exhaust pipe 12 in a vertical direction. 15 extends in the vertical longitudinal direction connecting the lower surface 156 and the upper surface 157 and is formed to compartmentally separate the inside of the joint reaction body 15, and the exhaust pipe 12 connected to the joint reaction body 15. Exhaust gas flowing from the γ is vertically lifted by the separator 153 and is finally discharged through the outlet 152 after nitrogen oxide is removed while contacting the SCR catalyst 154 having a layered layer disposed in the vertical direction. do. In addition, the outlet portion 152 is also in the vertical longitudinal direction connecting the lower surface 156 and the upper surface 157 of the joint reaction body 15 in the joint reaction body 15 by the separator 153. The upper surface 157 of the joint reaction body 15 is formed in a straight line so as to coincide with the flow direction of the induced exhaust gas, so that the exhaust gas is quickly discharged without stagnation in the joint reaction body 15, thereby allowing the cavity. It helps to reduce the volume in the reaction base (15). Therefore, the exhaust pipes 12 connected to the joint reaction body 15 discharge exhaust gas vertically in the joint reaction body 15, so that the exhaust pipes 12 are disposed on the front, rear, left, and right sides of the joint reaction body 15. ), So that the number of exhaust pipes 12 that can be connected per one co-reaction body 15, that is, the number of engines 11, can be increased, resulting in a greater number of engines 11 Since the exhaust gas discharged from the denitrification system can be denitrated using a single joint reaction body 15, the space occupied by the denitrification system can be minimized.
또한, 상기 공동반응기본체(15)에서 각 배기관(12)들이 연결되는 부위 즉, 유입부(151)에는 공동반응기본체(15) 내로 유입된 배기가스가 다시 배기관(12)을 통해 엔진으로 되돌아가는 역류를 방지하는 역류방지밸브(155)를 추가로 포함할 수 있다. 앞서 언급한 바와 같이, 엔진으로부터 배출되어 나간 배기가스가 탈질시스템 내에서 형성되는 배압(back pressure)에 의해 다시 엔진으로 역류하게 되면 엔진에 영향을 줘 엔진 트러블(trouble)을 일으키게 되므로, 본 발명에서는 앞서 설명한 바와 같이 상기 공동반응기본체(15) 내를 구획격리시키는 상기 격리판(153)을 통해 배압형성을 차단하면서도 추가적으로 공동반응기본체(15)와 배기관(12)의 연결부위인 상기 유입부(151) 부위에 별도의 역류방지밸브(155)를 설치하여 이중으로 차단하는 구조를 취하게 된다. 상기 역류방지밸브(155)는 상기 유입부(151) 또는 배기관(12)에서의 역류가 감지되는 경우 밸브를 차단하여 역류를 방지하는 전자제어 컨트롤밸브로 형성될 수 있다. In addition, the exhaust gas introduced into the joint reaction body 15 is returned to the engine through the exhaust pipe 12 at the site where the respective exhaust pipes 12 are connected to each other in the joint reaction body 15. It may further include a non-return valve 155 to prevent the back flow. As mentioned above, when the exhaust gas discharged from the engine flows back to the engine by the back pressure generated in the denitrification system, it affects the engine and causes engine trouble. As described above, the inlet part 151 which blocks the back pressure formation through the separator 153 partitioning the inside of the joint reaction body 15 and additionally connects the joint reaction body 15 and the exhaust pipe 12. By installing a separate non-return valve (155) to the part to take a structure to block the double. The non-return valve 155 may be formed as an electronic control control valve to prevent the reverse flow by blocking the valve when the reverse flow is detected in the inlet 151 or the exhaust pipe 12.
또한, 도 7에 도시된 바와 같이, 상기 공동반응기본체(15)에 연결되는 상기 배기관(12)들의 각 라인 상에는 일정 압력 이상의 배기가스의 역류 발생시 개방되어 배기가스의 역류를 방지하는 파열판(121)을 추가로 포함할 수 있다. 상기 파열판(121)은 도 7에 도시된 바와 같이 상기 배기관(12)의 라인 상에서 특정 부위에 또는 특정 부위에서 분기되어 설치되는 구성으로, 일정 이상의 압력 특히, 일정 이상의 배기가스의 역류에 의한 배압이 상기 파열판(121)에 가해지는 경우 상기 파열판(121)이 파열됨으로써 역류에 의해 배기관(12)을 반대 방향으로 흐르던 배기가스가 상기 파열판(121)의 파열에 의해 형성된 개구부를 통해 외기로 방출되게 된다. 즉 앞서 언급한 바와 같이, 엔진으로부터 배출되어 나간 배기가스가 탈질시스템 내에서 형성되는 배압(back pressure)에 의해 다시 엔진으로 역류하게 되면 엔진에 영향을 줘 엔진 트러블(trouble)을 일으키게 되므로, 만약에 상기 배기관(12)에서 배압에 의한 배기가스의 역류가 감지되는 경우 상기 배기관(12)에 형성된 상기 파열판(121)이 파열되어 배기관(12) 내 외부와 연통되는 개구부가 형성되도록 함으로써 역류하던 배기가스가 엔진으로 들어가기 전에 이미 외부로 방출되게 하여 배기가스의 역류로부터 엔진을 보호할 수 있게 하는 추가적 구성이라 할 것이다. 도 7에 도시된 바와 같이, 상기 파열판(121)은 상기 배기관(12)에서 배기가스가 역류하는 방향 즉, 배기가스가 엔진(11)을 향해 흘러가는 방향으로 경사지게 돌출되도록 분기된 관에 설치되어, 배기가스의 역류에 의한 배압이 상기 파열판(121)에 잘 전달될 수 있게 함은 물론 파열판(121) 파열시 역류하던 배기가스가 파열판(121)의 파열에 의해 형성된 개구부를 통해 쉽게 외기로 방출되게 한다. In addition, as illustrated in FIG. 7, each of the exhaust pipes 12 connected to the joint reaction body 15 may be opened when the reverse flow of the exhaust gas of a predetermined pressure or more may be opened to prevent the reverse flow of the exhaust gas. It may further include. As illustrated in FIG. 7, the rupture plate 121 is installed at a specific site or branched from a specific site on the line of the exhaust pipe 12. When applied to the rupture plate 121, the rupture plate 121 is ruptured so that the exhaust gas flowing in the opposite direction to the exhaust pipe 12 due to the reverse flow is discharged to the outside air through the opening formed by the rupture of the rupture plate 121. . That is, as mentioned above, if the exhaust gas discharged from the engine flows back to the engine by the back pressure generated in the denitrification system, the engine may be affected by causing the engine trouble. When the reverse flow of the exhaust gas by the back pressure is detected in the exhaust pipe 12, the bursting plate 121 formed in the exhaust pipe 12 is ruptured so that an opening communicating with the outside in the exhaust pipe 12 is formed so that the exhaust gas flows backward. It is an additional configuration that allows the engine to be released to the outside before entering the engine to protect the engine from the backflow of exhaust gases. As illustrated in FIG. 7, the rupture plate 121 is installed in a pipe branched so as to protrude obliquely in a direction in which exhaust gas flows back from the exhaust pipe 12, that is, in a direction in which the exhaust gas flows toward the engine 11. In addition, the back pressure due to the reverse flow of the exhaust gas can be transmitted to the rupture plate 121 well, and the exhaust gas flowing back when the rupture of the rupture plate 121 is easily discharged to the outside through the opening formed by the rupture of the rupture plate 121. do.
이와 같이, 본 발명에 따른 다수 엔진을 위한 공동 탈질시스템은, 다수의 엔진으로부터 각각 배출되는 배기가스를 유도하는 다수의 배기관(12)들을 하나로 연결하는 공동반응기본체(15)를 이용하여 다수의 배기관(12)의 배기가스를 묶어 공동으로 탈질처리함으로써 차지하는 공간을 최소화할 수 있게 하면서 아울러, 다수의 엔진으로부터 각각 배출되는 배기가스를 유도하는 다수의 배기관(12)들을 하나로 연결하는 공동반응기본체(15) 내부를 각 배기관(12)으로부터 유입되는 배기가스가 다른 배기관(12)의 배기가스와 혼합되거나 다른 배기관(12)으로 흐르지 않도록 구획격리시키는 격리판(153), 또는 공동반응기본체(15)의 유입부(151)에서 배기가스의 역류를 감지하여 차단하는 역류방지밸브(155), 또는 각 배기관(12)들의 라인 상에서 일정 정도 이상의 배기가스의 역류에 의한 압력 발생시 파열되어 배기가스를 외부로 방출시키는 파열판(121) 등의 구성을 통해 다수의 배기관(12)들을 하나로 연결하는 공동반응기본체(15) 내부에서의 배압형성 및 그로 인한 배기가스의 역류로 인한 문제를 근본적으로 방지할 수 있도록 한다. As described above, the joint denitrification system for a plurality of engines according to the present invention uses a plurality of exhaust pipes by using a common reaction body 15 for connecting a plurality of exhaust pipes 12 for inducing exhaust gas respectively discharged from the plurality of engines. Co-reaction base unit 15 which connects a plurality of exhaust pipes 12 which induce exhaust gas discharged from a plurality of engines as one, while minimizing the space occupied by binding and exhausting the exhaust gas of (12). ) Isolating the inside of the separator plate 153 or the joint reaction body 15 to separate the exhaust gas flowing from each exhaust pipe 12 so as not to mix with the exhaust gas of the other exhaust pipe 12 or flow into the other exhaust pipe 12. The backflow prevention valve 155 which detects and blocks the reverse flow of the exhaust gas at the inlet 151, or exhaust gas of a certain degree or more on the line of each exhaust pipe 12 Back pressure formation within the joint reaction body 15 connecting the plurality of exhaust pipes 12 through the configuration of a rupture plate 121 that bursts when the pressure is generated due to the reverse flow of the exhaust gas to the outside, and the resulting exhaust gas It is to fundamentally prevent the problem caused by reverse flow.
이상에서, 출원인은 본 발명의 바람직한 실시예들을 설명하였지만, 이와 같은 실시예들은 본 발명의 기술적 사상을 구현하는 일 실시예일 뿐이며 본 발명의 기술적 사상을 구현하는 한 어떠한 변경예 또는 수정예도 본 발명의 범위에 속하는 것으로 해석되어야 한다. In the above, the Applicant has described preferred embodiments of the present invention, but these embodiments are merely one embodiment for implementing the technical idea of the present invention, and any changes or modifications may be made as long as the technical idea of the present invention is implemented. Should be interpreted as being within the scope.

Claims (4)

  1. 다수의 엔진으로부터 각각 배출되는 배기가스를 유도하는 다수의 배기관들이 연결되는 공동반응기본체와; A joint reaction body to which a plurality of exhaust pipes for inducing exhaust gas respectively discharged from the plurality of engines are connected;
    상기 공동반응기본체 내에서 각 배기관으로부터 유입되는 배기가스가 다른 배기관의 배기가스와 혼합되거나 다른 배기관으로 흐르지 않도록 공동반응기본체 내부를 연결된 배기관의 수만큼 구획격리시키는 격리판과; A separator for separating and separating the inside of the joint reaction body by the number of connected exhaust pipes so that the exhaust gas introduced from each exhaust pipe in the joint reaction body does not mix with the exhaust gas of the other exhaust pipe or flow to the other exhaust pipe;
    상기 격리판에 의해 격리된 각 구획마다 별도로 설치되는 SCR촉매와; An SCR catalyst installed separately in each compartment separated by the separator;
    상기 SCR촉매에 의해 탈질처리된 배기가스를 배출하는 다수의 유출부;을 포함하여, 다수의 배기관의 배기가스를 묶어 공동으로 탈질처리함으로써 차지하는 공간을 최소화하면서 격리구조를 통해 배압형성을 방지하는 것을 특징으로 하는 다수 엔진을 위한 공동 탈질시스템. It includes a plurality of outlets for discharging the exhaust gas denitrified by the SCR catalyst; to prevent the formation of back pressure through the isolation structure while minimizing the space occupied by bundling the exhaust gas of the plurality of exhaust pipes and jointly denitrification Joint denitrification system for multiple engines characterized by.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 공동반응기본체에서 각 배기관들이 연결되는 부위에 배기가스의 역류를 방지하는 역류방지밸브를 추가로 포함하는 것을 특징으로 하는 다수 엔진을 위한 공동 탈질시스템. Joint denitrification system for a plurality of engines, characterized in that further comprising a non-return valve for preventing the back flow of exhaust gas to the portion of the joint reaction body connected to each exhaust pipe.
  3. 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2,
    상기 격리판은 각 배기관에서 유입되는 배기가스를 수직방향으로 유도할 수 있도록 수직의 길이 방향으로 길게 연장되면서 상기 공동반응기본체 내부를 구획격리하여, 상기 공동반응기본체의 전후좌우에서 배기관이 연결될 수 있어 탈질시스템이 차지하는 공간을 최소화할 수 있는 것을 특징으로 하는 다수 엔진을 위한 공동 탈질시스템. The separator plate is elongated in the vertical longitudinal direction so as to guide the exhaust gas flowing from each exhaust pipe in the vertical direction, and compartmentally isolates the inside of the joint reaction body, the exhaust pipe can be connected in front, rear, left and right of the joint reaction body. A joint denitrification system for multiple engines, characterized by minimizing the space occupied by the denitrification system.
  4. 제 3 항에 있어서, The method of claim 3, wherein
    상기 배기관들의 각 라인 상에는 일정 압력 이상의 배기가스의 역류 발생시 개방되어 배기가스의 역류를 방지하는 파열판을 추가로 포함하는 것을 특징으로 하는 다수 엔진을 위한 공동 탈질시스템. On each line of the exhaust pipes further comprises a bursting plate which is opened in the event of a backflow of exhaust gas above a certain pressure to prevent backflow of the exhaust gas.
PCT/KR2013/010536 2012-11-27 2013-11-20 Communal denitrification system for multiple engines WO2014084541A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120135126A KR101335308B1 (en) 2012-11-27 2012-11-27 A common scr system for multi engine
KR10-2012-0135126 2012-11-27

Publications (1)

Publication Number Publication Date
WO2014084541A1 true WO2014084541A1 (en) 2014-06-05

Family

ID=49986892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010536 WO2014084541A1 (en) 2012-11-27 2013-11-20 Communal denitrification system for multiple engines

Country Status (2)

Country Link
KR (1) KR101335308B1 (en)
WO (1) WO2014084541A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014005515A1 (en) * 2014-04-15 2015-10-15 Man Diesel & Turbo Se Combustion engine system and method and controller for operating the same
GB2572986B (en) 2018-04-18 2021-01-20 Caterpillar Inc Combined engine systems
KR102098231B1 (en) * 2018-04-23 2020-04-07 현대머티리얼 주식회사 Integrated apparatus for cleaning exhaust gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661416B2 (en) * 1991-02-25 1994-08-17 日本碍子株式会社 Exhaust gas treatment device
JPH0758046B2 (en) * 1991-03-22 1995-06-21 日本碍子株式会社 Exhaust gas treatment device
JP3427043B2 (en) * 1999-09-17 2003-07-14 三菱重工業株式会社 Black smoke removal device
KR100959469B1 (en) * 2007-12-27 2010-05-25 현대제철 주식회사 apparatus and method for indoor-gas separation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348904A (en) 2005-06-20 2006-12-28 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661416B2 (en) * 1991-02-25 1994-08-17 日本碍子株式会社 Exhaust gas treatment device
JPH0758046B2 (en) * 1991-03-22 1995-06-21 日本碍子株式会社 Exhaust gas treatment device
JP3427043B2 (en) * 1999-09-17 2003-07-14 三菱重工業株式会社 Black smoke removal device
KR100959469B1 (en) * 2007-12-27 2010-05-25 현대제철 주식회사 apparatus and method for indoor-gas separation

Also Published As

Publication number Publication date
KR101335308B1 (en) 2013-12-02

Similar Documents

Publication Publication Date Title
WO2013094938A1 (en) Denitrification apparatus for smoke
WO2014084537A1 (en) Scr reactor having structure for minimizing volume thereof
WO2011034240A1 (en) Scr system having bypass system
WO2014084541A1 (en) Communal denitrification system for multiple engines
CN105003326B (en) Marine exhaust denitrating system
US8302389B2 (en) Urea SCR diesel aftertreatment system
US10914218B1 (en) Exhaust gas aftertreatment system with mixing features
CN205361063U (en) Low temperature SCR reactor deNOx systems that connects in parallel
KR20120130597A (en) Exhaust gas aftertreatment system
KR20110049152A (en) Exhaust system
CN102168596A (en) Device for reducing nox emission in a diesel engine system
WO2011034237A1 (en) Scr system
WO2011034238A1 (en) Scr system
US9551255B2 (en) Mixing plate as stabilizer for ammonia gas injector
US20140369898A1 (en) Cross style (4 port) ammonia gas injector
CN205055814U (en) A SCR deNOx systems and boiler combustion system that is used for oxygen boosting to burn and air burning
WO2017155150A1 (en) Reductant mixing device
KR20140087867A (en) Exhaust gas after-treatment device for vehicle
WO2014084540A1 (en) Denitrification system having temperature compensation structure and method therefor
WO2011052823A1 (en) Scr system
KR102197385B1 (en) Selective catalytic reduction system corresponding to multiple turbo chargers
WO2014084533A1 (en) Reactor having double casing structure and having bypass and preheating functions
US9174167B2 (en) Mixing plate providing reductant distribution
KR20160107786A (en) Exhaust Gas After treatment Device and Combine including the same
CN102373997B (en) SCR (selective catalytic reduction) catalytic converter for diesel engine tail gas treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/10/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13857982

Country of ref document: EP

Kind code of ref document: A1