WO2014084327A1 - Polycarbonate resin, polycarbonate resin composition and molded article - Google Patents

Polycarbonate resin, polycarbonate resin composition and molded article Download PDF

Info

Publication number
WO2014084327A1
WO2014084327A1 PCT/JP2013/082110 JP2013082110W WO2014084327A1 WO 2014084327 A1 WO2014084327 A1 WO 2014084327A1 JP 2013082110 W JP2013082110 W JP 2013082110W WO 2014084327 A1 WO2014084327 A1 WO 2014084327A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
bis
resin
hydroxyphenyl
mvr
Prior art date
Application number
PCT/JP2013/082110
Other languages
French (fr)
Japanese (ja)
Inventor
貴紀 大和田
菅 浩一
ユミ 中山
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN201380061947.7A priority Critical patent/CN104812796B/en
Publication of WO2014084327A1 publication Critical patent/WO2014084327A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • C08G64/14Aromatic polycarbonates not containing aliphatic unsaturation containing a chain-terminating or -crosslinking agent

Definitions

  • the present invention is a polycarbonate resin and a polycarbonate resin that do not require an additive such as PTFE that causes opacity because the melt tension is improved and the drip resistance is excellent while maintaining molding fluidity even in a high shear region.
  • the present invention relates to a composition and a molded article.
  • a polycarbonate resin produced from bisphenol A or the like is used in a wide range of applications because of its excellent transparency, heat resistance, and mechanical properties.
  • the melt tension is usually low, so that the molded product has uneven thickness or drawdown, which is satisfactory.
  • a molded product cannot be obtained.
  • PTFE polytetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • Patent Document 1 an aromatic polycarbonate resin having a branched structure with a branching ratio exceeding 1.1 mol% and not more than 1.5 mol% in order to obtain a resin composition having excellent transparency and flame retardancy.
  • An aromatic polycarbonate resin composition containing a flame retardant is disclosed, and specific examples using trivalent phenol as a branching agent are shown.
  • Patent Document 2 discloses a low branching agent content of 0.05 to 0.5 mol% in order to solve the problem of moldability degradation caused by uneven thickness and melt viscosity at the time of molding by drawdown.
  • a branched polycarbonate resin satisfying a relationship in which x and melt tension y are expressed by a specific formula and a specific example using trivalent phenol as a branching agent is shown.
  • Patent Document 3 in order to improve thermal stability, moldability, and drawdown property, a low branching agent content x of 0.1 to 0.7 mol% and a melt tension y are expressed by a specific formula.
  • a branched polycarbonate resin having a N content in the resin of 0 to 20 ppm and a Cl content of 0 to 200 ppm is used, and trivalent phenol is used as a branching agent. Specific examples were given.
  • Patent Document 4 a tetraphenol compound represented by a specific formula is used as a branching agent with respect to 1 mol of dihydric phenol in order to obtain a material having good transparency and moldability and high wear resistance.
  • a branched polycarbonate resin having a specific viscosity in the range of 0.20 to 2.0 is used.
  • Patent Document 5 in order to give a molded article having improved moldability and improved appearance and color tone in blow molding or the like, a specific tetrahydric phenol is used as a branching agent, and the branching agent content is 0.01.
  • a branched polycarbonate resin having a low intrinsic viscosity [ ⁇ ] of 0.5 to 0.6 (dl / g) and substantially no cross-linked structure is disclosed.
  • JP 2011-105862 A Japanese Patent No. 3693462 JP 2005-126477 A JP 2001-261808 A Japanese Patent No. 4473446
  • the present invention provides a polycarbonate resin and a polycarbonate resin composition excellent in drip resistance without adding PTFE or the like while maintaining molding fluidity even in a high shear region, and a molded product produced from these. With the goal.
  • this invention relates to the following polycarbonate resin, a polycarbonate resin composition, and a molded article.
  • a melt tension MT [g] at 280 ° C., the relationship between the melt flow MVR [cm 3/10 min] at 280 ° C. has the following formula (1) to (3) Polycarbonate resin satisfying.
  • a polycarbonate resin composition comprising the polycarbonate resin according to any one of 1 to 4 and an additive. 6). 6. The polycarbonate resin composition as described in 5 above, wherein the additive is a flame retardant. 7). 5.
  • a polycarbonate resin that does not require PTFE or the like that causes opacity is included because the melt tension is improved and the drip resistance is excellent while maintaining molding fluidity even in a high shear region, and the like.
  • a polycarbonate resin composition can be provided.
  • the said polycarbonate resin and the polycarbonate resin composition containing this are especially suitable for blow molding from the said characteristic, The molded article which shape
  • the melt tension is improved and excellent drip resistance can be ensured while maintaining the molding fluidity as compared with the existing PC resin.
  • the formula (1) is not satisfied, that is, when MT ⁇ (15.4 / MVR) ⁇ 1.3, the excellent drip resistance achieved by the present invention cannot be exhibited, and the formula (2) is not satisfied.
  • the formula (3) is not satisfied, that is, when MT ⁇ 1, sufficient drip resistance cannot be ensured, and the end portion of the molded product is waved or the thickness varies.
  • the relationship between MT and MVR is From the viewpoint of drip resistance, preferably, MT ⁇ (20.6 / MVR) ⁇ 2.1, MT ⁇ (57.4 / MVR) ⁇ 1.3, MT ⁇ 1, More preferably, from the viewpoint of drip resistance and fluidity during molding, MT ⁇ (20.6 / MVR) ⁇ 2.1, MT ⁇ (57.4 / MVR) ⁇ 1.3, MT ⁇ 1, 1 / MVR ⁇ 0.3, and More preferably, from the viewpoint of drip resistance and fluidity during molding, MT ⁇ (20.6 / MVR) ⁇ 2.1, MT ⁇ (57.4 / MVR) ⁇ 1.3, MT ⁇ 1, 1 / MVR ⁇ 0.25 is satisfied.
  • the melt tension MT and the melt fluidity MVR of the PC resin can be achieved by adjusting the branching agent content and viscosity average molecular weight of the PC resin described later.
  • the melt tension MT in order to increase the melt tension MT, it can be adjusted by increasing the branching agent content described later, and the melt fluidity MVR can be adjusted by the viscosity average molecular weight of the PC resin.
  • the PC resin of the present invention is preferably a PC resin having a branched structure in order to exhibit good melt tension and satisfy the above formulas (1) to (3).
  • a PC resin may be produced using a branching agent. From the viewpoint of improving the melt tension while maintaining good fluidity in a high shear force region, a branching agent having four or more functional groups is used. Further, the content of the tetrafunctional or higher functional branching agent in the PC resin is preferably 0.5 to 2.0 mol%, and more preferably 0.5 to 1.5 mol%.
  • the branching agent content is 0.5 mol% or more, sufficient melt tension can be imparted to the PC resin, and if it is 2.0 mol% or less, there is no possibility that the polymer is crosslinked and gelled. In addition, it has good impact resistance, and further, the surface of the molded product is not cloudy and has excellent transparency.
  • the content of the branching agent refers to a constitutional unit derived from a dihydric phenol used as a raw material, a constitutional unit derived from a terminal terminator, and a tetrafunctional or higher functional branching agent, which is contained in the entire PC resin.
  • Mol% of structural units derived from a tetrafunctional or higher functional branching agent relative to the total number of moles of units, that is, a tetrafunctional or higher functional branching agent content (mol%) [a structural unit derived from a tetrafunctional or higher functional branching agent (mol).
  • the PC resin of the present invention preferably has a branched structure in order to satisfy the formulas (1) to (3).
  • a PC resin having a branched structure is used as the PC resin having the branched structure.
  • PC resin which consists only of PC resin which consists of PC resin which has a branched structure, and linear PC resin may be sufficient. From the viewpoint of having superior flame retardancy, it is preferable to use 30 to 100% by mass of a PC resin having a branched structure, and more preferably one type of PC resin having a branched structure that does not contain a linear PC resin. Or it is PC resin which consists of 2 or more types.
  • the PC resin as a whole satisfies the formulas (1) to (3), and the branching agent content is also included in the PC resin as a whole. It is sufficient that the branching agent content is within the preferred range.
  • the method of blending may be blended after each PC resin to be blended is produced, and may be blended when each PC resin is in a molten state, and is not particularly limited.
  • the viscosity average molecular weight (Mv) of the PC resin of the present invention is preferably 18,000 to 28,000, and more preferably 20,000 to 25,000. A viscosity average molecular weight of 18,000 or more is preferable because drip resistance is sufficient and good flame retardancy can be exhibited. Further, if the viscosity average molecular weight is 28,000 or less, the MVR of the PC resin becomes too low, so that there is no possibility of causing a problem during molding.
  • the present invention also provides a PC resin having a tetrafunctional or higher functional branching agent content of 0.5 to 2.0 mol% and a viscosity average molecular weight of 18,000 to 28,000.
  • a PC resin having excellent drip resistance can be obtained.
  • the branching agent content is outside the range of 0.5 to 2.0 mol%, sufficient melt tension is imparted to the PC resin. It cannot be imparted, and good fluidity cannot be maintained in a high shear force region.
  • the branching agent content is preferably 0.5 to 1.5 mol%.
  • the viscosity average molecular weight is outside the range of 18,000 to 28,000, drip resistance becomes insufficient and molding becomes difficult.
  • the viscosity average molecular weight is preferably 20,000 to 25,000.
  • the tetrafunctional or higher functional branching agent content and the viscosity average molecular weight here are synonymous with those described in the PC resin in which the above MT and MVR satisfy the formulas (1) to (3).
  • the PC resin having a tetrafunctional or higher functional branching agent content and a viscosity average molecular weight within the above ranges may be a PC resin composed only of a PC resin having a branched structure.
  • PC resin which consists of a shape-like PC resin may be sufficient.
  • it is a PC resin composed of one or more kinds of PC resins having a branched structure without containing a linear PC resin.
  • the PC resin having the above-described tetrafunctional or higher functional branching agent content and viscosity average molecular weight within the above ranges preferably satisfies the formulas (1) to (3) showing the relationship between MT and MVR described above. The preferred embodiment of the relationship with MVR is the same as described above.
  • the PC resin of the present invention may be an aromatic PC resin or an aliphatic PC resin, but is preferably an aromatic PC resin from the viewpoint of impact resistance and heat resistance.
  • the aromatic PC resin in the present invention can be produced preferably using a branching agent, a dihydric phenol and a terminal terminator.
  • the manufacturing method is not specifically limited, For example, it can manufacture by the interfacial polymerization method which makes bivalent phenol and a carbonate precursor react directly.
  • an organic solvent is added to an alkaline aqueous solution of a dihydric phenol, and a carbonate precursor such as phosgene is blown into the organic solvent, thereby reactive chloroformate.
  • a polycarbonate oligomer having a group is produced, and at the same time or sequentially with the production of the polycarbonate oligomer, a polycarbonate oligomer, a branching agent, a dihydric phenol and a terminal terminator are subjected to a condensation reaction in the presence of a polymerization catalyst and an aqueous alkali solution.
  • a method of proceeding (polymerization reaction) is employed.
  • the manufacturing method of PC resin of this invention is not limited to the said interfacial polymerization method.
  • a tetrafunctional or higher functional branching agent in the present invention, as described above, it is preferable to use a tetrafunctional or higher functional branching agent from the viewpoint of improving the melt tension while maintaining good fluidity in a high shear force region.
  • the tetrafunctional or higher functional branching agent include phloroglucide, pyromellitic acid, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetrakis (4-hydroxyphenyl).
  • a compound represented by the following chemical formula (A) may be used as a tetrafunctional or more functional branching agent.
  • R 1 and R 2 represent an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 20 carbon atoms.
  • n is an integer of 1 to 100, preferably an integer of 1 to 50.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • the aryl group include a phenyl group.
  • R 1 and R 2 are each independent and may be the same or different.
  • tetra (4-hydroxyphenyl-polymethylsiloxane) silicon in which R 1 and R 2 are methyl groups is preferable.
  • the tetrafunctional or higher functional branching agent may be used alone or in combination of two or more.
  • a trifunctional or lower branching agent can be used in combination as long as the effects of the present invention are not impaired.
  • the trifunctional or lower functional branching agent include 1,1,1-tris (4-hydroxyphenyl) ethane, ⁇ , ⁇ ′, ⁇ ′′ -tris (4-hydroxyphenyl) -1,3,5-triisopropyl Benzene, 1- [ ⁇ -methyl- ⁇ - (4'-hydroxyphenyl) ethyl] -4- [ ⁇ ', ⁇ '-bis (4 "-hydroxyphenyl) ethyl] benzene, phloroglucin, isatin bis (o-cresol) These may be used alone or in combination of two or more.
  • dihydric phenol examples include 1,1-bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) propane, bis ⁇ ( 4-hydroxy-3,5-dimethyl) phenyl ⁇ methane, 2,2-bis ⁇ (4-hydroxy-3-methyl) phenyl ⁇ propane, 2,2-bis ⁇ (4-hydroxy-3,5-dimethyl) Phenyl ⁇ propane, 2,2-bis ⁇ (3-isopropyl-4-hydroxy) phenyl ⁇ propane, 2,2-bis ⁇ (4-hydroxy-3-phenyl) phenyl ⁇ propane, 2,2-bis (4- Hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) -3-methylbutane, 2,2-bis (4-hydroxyphenyl) -3,3-dimethylbutane Bis (2,4-bis (4-hydroxyphenyl) -2-methylbutane, 2,2-bis (4-hydroxyphenyl) -2-methylbutan
  • dihydric phenols 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis ⁇ (4-hydroxy-3-methyl) phenyl ⁇ propane, 2,2-bis (4-hydroxyphenyl) Butane, 2,2-bis (4-hydroxyphenyl) -3-methylbutane, 2,2-bis (4-hydroxyphenyl) -3,3-dimethylbutane, 2,2-bis (4-hydroxyphenyl) -4 It is preferable to use -methylpentane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, ⁇ , ⁇ '-bis (4-hydroxyphenyl) -m-diisopropylbenzene, especially 2 , 2-bis (4-hydroxyphenyl) propane [commonly called bisphenol A] is preferably used.
  • the dihydric phenol may be a homopolymer using one of the above dihydric phenols or a copolymer using two or more.
  • Carbonate precursor examples include carbonyl halide, carbonyl ester, or haloformate, and specific examples include phosgene, dihaloformate of dihydric phenol, diphenyl carbonate, dimethyl carbonate, and diethyl carbonate.
  • the said carbonate precursor may be used individually by 1 type, and may use 2 or more types together.
  • Terminator stopper examples include phenol, o-cresol, m-cresol, p-cresol, p-tert-butylphenol, p-tert-octylphenol, p-cumylphenol, p-nonylphenol, bromophenol, tribromophenol. , Docosylphenol, tetracosylphenol, hexacosylphenol, octacosylphenol, triacontylphenol, dotriacontylphenol, tetratriacontylphenol, and the like.
  • monoterpenes of polyterpenes represented by the following chemical formulas (B) and (C) may be used as a terminal terminator.
  • the said terminal terminator may be used individually by 1 type, and may use 2 or more types together.
  • a phase transfer catalyst is suitable.
  • a tertiary amine or a salt thereof, a quaternary ammonium salt, a quaternary phosphonium salt, or the like can be preferably used.
  • the tertiary amine include triethylamine, tributylamine, N, N-dimethylcyclohexylamine, pyridine, dimethylaniline and the like
  • examples of the tertiary amine salt include hydrochlorides and bromic acid of these tertiary amines. Examples include salts.
  • Examples of the quaternary ammonium salt include trimethylbenzylammonium chloride, triethylbenzylammonium chloride, tributylbenzylammonium chloride, trioctylmethylammonium chloride, tetrabutylammonium chloride, and tetrabutylammonium bromide. Examples thereof include butylphosphonium chloride and tetrabutylphosphonium bromide.
  • the said catalyst may be used individually by 1 type, and may use 2 or more types together. Among the above catalysts, tertiary amines are preferable, and triethylamine is particularly preferable.
  • organic solvent An inert organic solvent is suitable as the organic solvent, and for example, chlorinated hydrocarbons, toluene, acetophenone, and the like can be preferably used.
  • chlorinated hydrocarbon include dichloromethane (methylene chloride), trichloromethane, carbon tetrachloride, 1,1-dichloroethane, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2-trichloroethane, Examples include 1,1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, pentachloroethane, chlorobenzene and the like.
  • the said organic solvent may be used individually by 1 type, and may use 2 or more types together.
  • methylene chloride is particularly preferable.
  • alkali source is a hydroxide of an alkali metal as aqueous alkali solution.
  • alkali metal hydroxide include sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide and the like.
  • sodium hydroxide and potassium hydroxide are preferred.
  • this invention provides the polycarbonate resin composition containing the polycarbonate resin and additive which were mentioned above.
  • the additive it is preferable to use a flame retardant in order to ensure excellent flame retardancy even if the molded product is thinner.
  • the flame retardant examples include organic metal salt flame retardants such as organic alkali metal salts and organic alkaline earth metal salts, silicone flame retardants, phosphorus flame retardants, and phosphazene flame retardants. Among these, it is preferable to use organic metal salt flame retardants of organic alkali metal salts and organic alkaline earth metal salts, silicone flame retardants, and phosphorus flame retardants.
  • a flame retardant may be used individually by 1 type and may use 2 or more types together.
  • the content of the flame retardant is preferably 0.005 to 12 parts by mass, more preferably 0.01 to 10 parts by mass, and further preferably 0.15 to 9 parts by mass with respect to 100 parts by mass of the polycarbonate resin. It is. If the content of the flame retardant is 0.005 parts by mass or more, sufficient flame retardancy can be obtained, and if it is 12 parts by mass or less, sufficient mechanical properties can be obtained.
  • the organometallic salt flame retardant is preferably an organic alkali metal salt or an organic alkaline earth metal salt.
  • organic alkali metal salts and organic alkaline earth metal salts include various kinds of organic alkali metal salts and organic alkaline earth metal salts of organic acids or organic acid esters having at least one carbon atom. it can.
  • the organic acid or the organic acid ester is, for example, an organic sulfonic acid, an organic carboxylic acid, or the like.
  • the alkali metal is lithium, sodium, potassium, cesium or the like, and the alkaline earth metal is magnesium, calcium, strontium, barium or the like. Among these, sodium and potassium salts are preferably used.
  • the salt of the organic acid may be substituted with a halogen such as fluorine, chlorine or bromine.
  • An organic alkali metal salt and an organic alkaline earth metal salt may be used individually by 1 type, and may use 2 or more types together.
  • alkali metal salts and alkaline earth metals of perfluoroalkanesulfonic acid represented by the following general formula (I)
  • a salt is preferably used.
  • e represents an integer of 1 to 10
  • M represents an alkaline metal such as lithium, sodium, potassium or cesium, or an alkaline earth metal such as magnesium, calcium, strontium or barium
  • f represents the valence of M. Show.
  • these compounds for example, those described in Japanese Patent Publication No. 47-40445 correspond to this.
  • examples of the perfluoroalkanesulfonic acid include perfluoromethanesulfonic acid, perfluoroethanesulfonic acid, perfluoropropanesulfonic acid, perfluorobutanesulfonic acid, perfluoromethylbutanesulfonic acid, Fluorohexanesulfonic acid, perfluoroheptanesulfonic acid, perfluorooctanesulfonic acid and the like can be mentioned.
  • these potassium salts are preferably used.
  • alkali metal salts and alkaline earth metal salts of organic sulfonic acids other than the above general formula (I) include 2,5-dichlorobenzenesulfonic acid, 2,4,5-trichlorobenzenesulfonic acid, diphenylsulfone-3- Examples thereof include alkali metal salts and alkaline earth metal salts of organic sulfonic acids such as sulfonic acid, diphenylsulfone-3,3′-disulfonic acid and naphthalenetrisulfonic acid.
  • organic carboxylic acid examples include perfluoroformic acid, perfluoromethanecarboxylic acid, perfluoroethanecarboxylic acid, perfluoropropanecarboxylic acid, perfluorobutanecarboxylic acid, perfluoromethylbutanecarboxylic acid, perfluorohexanecarboxylic acid.
  • Perfluoroheptanecarboxylic acid, perfluorooctanecarboxylic acid, and the like, and alkali metal salts and alkaline earth metal salts of these organic carboxylic acids can be used.
  • examples of the organic alkali metal salt and the organic alkaline earth metal salt include polystyrene sulfonic acid alkali metal salts and alkaline earth metal salts.
  • Z 1 represents a sulfonate group
  • Z 2 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • g is an integer of 1 to 5.
  • h represents a mole fraction, and 0 ⁇ h ⁇ 1.
  • the sulfonate group is an alkali metal salt and / or alkaline earth metal salt of sulfonic acid, and examples of the metal include sodium, potassium, lithium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium and the like. It is done.
  • Z 2 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, preferably a hydrogen atom or a methyl group.
  • g is an integer of 1 to 5, and h has a relationship of 0 ⁇ h ⁇ 1. That is, the sulfonate group (Z 1 ) may be a fully substituted or partially substituted aromatic ring.
  • the substitution ratio of the sulfonate group is determined in consideration of the content of the sulfonate group-containing aromatic vinyl resin, and is generally Is used with 10 to 100% substitution.
  • the sulfonate group-containing aromatic vinyl resin is not limited to the polystyrene resin of the above general formula (II), but a styrene monomer It may be a copolymer with other monomer copolymerizable with.
  • Aromatic vinyl polymer, copolymer of aromatic vinyl monomer and other copolymerizable monomer, or mixed polymer thereof is sulfone. And neutralizing with an alkali metal compound and / or an alkaline earth metal compound.
  • a polystyrene sulfone oxide is produced by adding a mixed solution of concentrated sulfuric acid and acetic anhydride to a 1,2-dichloroethane solution of polystyrene resin, heating and reacting for several hours.
  • polystyrene sulfonate potassium salt or sodium salt can be obtained by neutralizing with sulfonic acid group and equimolar amount of potassium hydroxide or sodium hydroxide.
  • the weight average molecular weight of the sulfonate group-containing aromatic vinyl resin used in the present invention is about 1,000 to 300,000, preferably about 2,000 to 200,000.
  • the weight average molecular weight can be measured by the GPC method.
  • silicone flame retardant examples include silicone oil and silicone resin, and also include silicone compounds having a functional group.
  • the silicone compound having a functional group includes various compounds. Examples thereof include (poly) organosiloxanes having a functional group, and the skeleton thereof has a basic structure represented by the following general formula (III). It is a polymer and copolymer having R 3 aR 4 bSiO (4-ab) / 2 (III) In the above formula (III), R 3 represents a functional group-containing group, R 4 represents a hydrocarbon group having 1 to 12 carbon atoms, and 0 ⁇ a ⁇ 3, 0 ⁇ b ⁇ 3, and 0 ⁇ a + b ⁇ 3.
  • the functional group examples include an alkoxy group, aryloxy, polyoxyalkylene group, hydrogen atom, hydroxyl group, carboxyl group, cyanol group, amino group, mercapto group, and epoxy group.
  • a silicone compound having a plurality of functional groups and a silicone compound having different functional groups can be used in combination.
  • the silicone compound having this functional group has a functional group (R 3 ) / hydrocarbon group (R 4 ) of usually about 0.1 to 3, preferably about 0.3 to 2.
  • These silicone compounds are liquids, powders and the like, but those having good dispersibility in melt kneading are preferred.
  • a liquid having a viscosity of about 10 to 500,000 cst (centistokes) at room temperature can be exemplified.
  • the silicone compound has a functional group, even if the silicone compound is in a liquid state, it is characterized by being uniformly dispersed in the composition and being less likely to bleed during molding or on the surface of the molded product.
  • phosphorus flame retardant a phosphorus flame retardant containing no halogen is preferable. If halogen is contained, harmful gases may be generated during molding, mold corrosion may occur, and harmful substances may be discharged during incineration of molded products, which is not preferable from the viewpoint of environmental pollution and safety.
  • the phosphorus-based flame retardant containing no halogen include a halogen-free organic phosphorus-based flame retardant.
  • the organic phosphorus flame retardant any organic compound having a phosphorus atom and not containing a halogen can be used without particular limitation.
  • phosphate ester compounds having at least one ester oxygen atom directly bonded to a phosphorus atom are preferably used.
  • halogen-free phosphorus flame retardants other than organic phosphorus compounds include red phosphorus.
  • a phosphate ester compound For example, it is a phosphate ester compound represented with the following general formula (IV).
  • R 5 , R 6 , R 7 and R 8 each independently represent a hydrogen atom or an organic group
  • X represents a divalent or higher valent organic group
  • s is 0 or 1
  • t is It is an integer of 1 or more
  • r represents an integer of 0 or more.
  • the organic group is an alkyl group, a cycloalkyl group, an aryl group or the like, which may or may not be substituted. Examples of the substituent when substituted include an alkyl group, an alkoxy group, an aryl group, an aryloxy group, and an arylthio group.
  • an arylalkoxyalkyl group that is a combination of these substituents, or an arylsulfonylaryl group that is a combination of these substituents bonded by an oxygen atom, nitrogen atom, sulfur atom, or the like is used as a substituent.
  • the divalent or higher organic group X means a divalent or higher valent group formed by removing one or more hydrogen atoms bonded to a carbon atom from the above organic group.
  • it is derived from an alkylene group, a (substituted) phenylene group, or a bisphenol that is a polynuclear phenol.
  • Preferable examples include bisphenol A, hydroquinone, resorcinol, diphenylmethane, dihydroxydiphenyl and dihydroxynaphthalene.
  • the phosphate ester compound may be a monomer, dimer, oligomer, polymer or a mixture thereof. Specifically, trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, tri (2-ethylhexyl) phosphate, diisopropyl Phenyl phosphate, trixylenyl phosphate, tris (isopropylphenyl) phosphate, trinaphthyl phosphate, bisphenol A bisphosphate, hydroquinone bisphosphate, resorcin bisphosphate, resorcinol-diphenyl phosphate, trioxybenzene triphosphate, cresyl diphenyl phosphate, or these
  • additives other than flame retardants inorganic fillers, hindered phenols, phosphites and phosphates, antioxidants, benzotriazoles and benzophenones UV stabilizers such as hindered amines, aliphatic carboxylic acid ester and paraffinic external lubricants, coloring agents, flame retardant aids, antistatic agents and the like can be used.
  • the inorganic filler can be used as the inorganic filler, and specifically, glass materials, carbon fibers, and other inorganic fillers can be used.
  • glass material for example, glass fibers, glass beads, glass flakes, glass powder, and the like can be used.
  • a glass fiber used any of an alkali-containing glass, a low alkali glass, and an alkali free glass may be sufficient.
  • the fiber length is about 0.1 to 8 mm, preferably 0.3 to 6 mm, and the fiber diameter is about 0.1 to 30 ⁇ m, preferably 0.5 to 25 ⁇ m.
  • this glass fiber does not have a restriction
  • the glass material was surface-treated with a silane coupling agent such as aminosilane, epoxysilane, vinylsilane, or methacrylsilane, a chromium complex compound, or a boron compound in order to increase the affinity with the resin. It may be a thing.
  • a glass material for example, commercially available MA-409C (average fiber diameter 13 ⁇ m) or TA-409C (average fiber diameter 23 ⁇ m) manufactured by Asahi Fiber Glass Co., Ltd. can be suitably used.
  • the carbon fiber is generally produced by firing using cellulose fiber, acrylic fiber, lignin, petroleum, coal-based pitch or the like as a raw material, and has various flame resistance, carbonaceous, graphite, etc.
  • the fiber length of the carbon fiber is about 0.01 to 10 mm, preferably 0.02 to 8 mm, and the fiber diameter is about 1 to 15 ⁇ m, preferably 5 to 13 ⁇ m.
  • the form of the carbon fiber is not particularly limited, and examples thereof include various types such as roving, milled fiber, chopped strand, and strand. These carbon fibers may be used individually by 1 type, and may use 2 or more types together.
  • the surface of these carbon fibers may be subjected to a surface treatment with an epoxy resin, a urethane resin or the like in order to increase the affinity with the resin.
  • an epoxy resin for example, Besfight (average fiber diameter: 7 ⁇ m) manufactured by Toho Rayon Co., Ltd. can be suitably used as a commercially available product.
  • inorganic fillers include, for example, aluminum fibers, calcium carbonate, magnesium carbonate, dolomite, silica, diatomaceous earth, alumina, titanium oxide, iron oxide, zinc oxide, magnesium oxide, calcium sulfate, magnesium sulfate, calcium sulfite, talc, Clay, mica, asbestos, calcium silicate, montmorillonite, bentonite, carbon black, graphite, iron powder, lead powder, aluminum powder and the like can also be used.
  • the polycarbonate resin composition is a method in which the above-mentioned PC resin and various additives are usually used, for example, a ribbon blender, a Henschel mixer (trade name), a Banbury mixer, a drum tumbler, a single screw extruder, a twin screw. It can be obtained by mixing and kneading by a method using an extruder, a kneader, a multi-screw extruder or the like.
  • the heating temperature at the time of kneading is usually selected in the range of 250 to 300 ° C.
  • this invention provides the molded article which shape
  • blow molding is suitable as a molding method from the characteristics of PC resin that melt tension is improved and drip resistance is excellent while maintaining molding fluidity, and a blow molded molded article is provided.
  • polycarbonate resin or the polycarbonate resin composition various known molding methods such as injection molding, extrusion molding, compression molding, calendar molding, rotational molding and the like can be applied in addition to the above blow molding.
  • molding methods for example, molded articles for various industrial uses such as lighting covers, protective covers for displays, OA equipment, and electrical and electronic fields can be manufactured.
  • the polycarbonate resin of the present invention has improved melt tension and excellent drip resistance while maintaining molding fluidity. Therefore, the polycarbonate resin and the polycarbonate resin composition containing the polycarbonate resin are opaque in order to obtain drip resistance. No additive such as PTFE is required. Therefore, a molded article excellent in transparency and flame retardancy can be provided by using the polycarbonate resin of the present invention and the polycarbonate resin composition containing the polycarbonate resin.
  • Viscosity average molecular weight Mv
  • Viscosity average molecular weight Mv
  • Viscosity average molecular weight Mv
  • -Branching agent content rate Using the JNM-LA500 by JEOL Co., Ltd., 1H-NMR was measured about the obtained flakes, and the branching agent content rate (mol%) of the branching agent used was computed by the following formula.
  • Branching agent content (mol%) [constituent unit derived from branching agent (mol) / [constituent unit derived from dihydric phenol (mol) + constituent unit derived from terminal terminator (mol) + constituent unit derived from branching agent ( mol)]] ⁇ 100 (Melting characteristics) -Melt fluidity: MVR Yasuda Seiki Co., Ltd., using instrument names MFR meter E Unit, at 280 ° C., load 2.16 kg, was measured melt flowability MVR (cm 3/10 min). Melt tension: MT Made by Toyo Seiki Seisakusho Co., Ltd.
  • Example 1 Polycarbonate oligomer synthesis process (linear oligomer) To a 5.6 mass% aqueous sodium hydroxide solution, 2,000 mass ppm of sodium dithionite is added to bisphenol A (hereinafter sometimes abbreviated as BPA) which is dissolved later, and the concentration of bisphenol A is added thereto. Bisphenol A was dissolved to 13.5% by mass to prepare an aqueous sodium hydroxide solution of bisphenol A.
  • BPA bisphenol A
  • aqueous sodium hydroxide solution of 40 L / hr of bisphenol A, 15 L / hr of dichloromethane and 4.0 kg / hr of phosgene were continuously passed through a tubular reactor having an inner diameter of 6 mm and a tube length of 30 m.
  • the tubular reactor had a jacket portion, and the temperature of the reaction solution was kept at 40 ° C. or lower by passing cooling water through the jacket.
  • the reaction solution exiting the tubular reactor was continuously introduced into a 40-liter baffled tank reactor equipped with a receding blade, and bisphenol A aqueous sodium hydroxide solution 2.8 L / hr, 25 mass.
  • the reaction was carried out by adding 0.64 L / hr of 0.07 L / hr of% sodium hydroxide aqueous solution, 17 L / hr of water and 1% by mass triethylamine aqueous solution.
  • the reaction solution overflowing from the tank reactor was continuously extracted and allowed to stand to separate and remove the aqueous phase, and the dichloromethane phase was collected.
  • the polycarbonate oligomer obtained had a concentration of 324 g / L and a chloroformate group concentration of 0.74 mol / L.
  • the dichloromethane solution of the obtained polycarbonate resin was sequentially washed with 15% by volume of 0.03 mol / L / sodium hydroxide aqueous solution and 0.2 mol / L hydrochloric acid, and then the electric conduction in the aqueous phase after washing. The washing was repeated with pure water until the degree became 0.05 ⁇ S / m or less.
  • the dichloromethane solution of the polycarbonate resin obtained by washing was concentrated and pulverized, and the obtained flakes were dried at 100 ° C. under reduced pressure to obtain a polycarbonate resin.
  • Table 1 shows the viscosity average molecular weight, branching agent content, melt tension, and melt fluidity of the obtained polycarbonate resin. Further, FIG. 1 shows a relationship (MT) ⁇ (1 / MVR) between melt tension and melt fluidity.
  • Comparative Example 1 Polycarbonate oligomer synthesis process (branched oligomer) To a 5.6 mass% aqueous sodium hydroxide solution, 2,000 mass ppm of sodium dithionite is added to bisphenol A (hereinafter sometimes abbreviated as BPA) which is dissolved later, and the concentration of bisphenol A is added thereto. Bisphenol A was dissolved to 13.5% by mass to prepare an aqueous sodium hydroxide solution of bisphenol A. In addition, 5,000 mass ppm sodium dithionite was added to a 5.1 mass% aqueous sodium hydroxide solution with respect to the branching agent 1,1,1-tris (4-hydroxyphenyl) ethane (THPE) that was dissolved later.
  • BPA bisphenol A
  • a THPE aqueous solution of sodium hydroxide 40 L / hr of sodium hydroxide aqueous solution of bisphenol A, 1.4 L / hr of sodium hydroxide aqueous solution of THPE, 15 L / hr of dichloromethane and 4.0 kg / hr of phosgene were continuously added to a tubular reactor having an inner diameter of 6 mm and a tube length of 30 m. I passed.
  • the tubular reactor had a jacket portion, and the temperature of the reaction solution was kept at 40 ° C. or lower by passing cooling water through the jacket.
  • the reaction solution exiting the tubular reactor was continuously introduced into a 40-liter baffled tank reactor equipped with a receding blade, and bisphenol A aqueous sodium hydroxide solution 2.8 L / hr, 25 mass.
  • the reaction was carried out by adding 0.64 L / hr of 0.07 L / hr of% sodium hydroxide aqueous solution, 17 L / hr of water and 1% by mass triethylamine aqueous solution.
  • the reaction solution overflowing from the tank reactor was continuously extracted and allowed to stand to separate and remove the aqueous phase, and the dichloromethane phase was collected.
  • the obtained polycarbonate oligomer had a concentration of 354 g / L and a chloroformate group concentration of 0.70 mol / L.
  • the organic phase was separated into an organic phase containing polycarbonate resin and an aqueous phase containing excess BPA and sodium hydroxide, and the organic phase was isolated.
  • the obtained polycarbonate resin solution in dichloromethane was washed successively with 15% by volume of 0.03 mol / L ⁇ NaOH aqueous solution and 0.2 mol / L hydrochloric acid, and the electric conductivity in the aqueous phase after washing was Washing with pure water was repeated until the concentration became 0.05 ⁇ S / m or less.
  • the dichloromethane solution of the polycarbonate resin obtained by washing was concentrated and pulverized, and the obtained flakes were dried at 100 ° C.
  • Table 1 shows the viscosity average molecular weight, branching agent content, melt tension, and melt fluidity of the obtained polycarbonate resin. Further, FIG. 1 shows a relationship (MT) ⁇ (1 / MVR) between melt tension and melt fluidity. Since THPE was continuously charged in the flow reaction system, the amount of branching agent [g] in Table 1 is indicated by “ ⁇ ”.
  • Example 1 shows the viscosity average molecular weight, branching agent content, melt tension, and melt fluidity of the obtained polycarbonate resin. Further, FIG. 1 shows a relationship (MT) ⁇ (1 / MVR) between melt tension and melt fluidity.
  • Comparative Example 2 The same operation as in Comparative Example 1 was performed except that the amount of PTBP was changed according to Table 1 in Comparative Example 1.
  • Table 1 shows the viscosity average molecular weight, branching agent content, melt tension, and melt fluidity of the obtained polycarbonate resin. Further, FIG. 1 shows a relationship (MT) ⁇ (1 / MVR) between melt tension and melt fluidity.
  • the polycarbonate resin of the present invention is excellent in transparency and flame retardancy because the polycarbonate resin and the polycarbonate resin composition containing the polycarbonate resin and the polycarbonate resin composition are excellent in drip resistance because the melt tension is improved while maintaining the molding fluidity.
  • it is suitable for various industrial uses such as lighting covers, protective covers for displays, OA equipment, and electric and electronic fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

A polycarbonate resin wherein a relation between the melt tension [MT (g)] at 280°C and melt volume rate [MVR (cm3/10 min)] at 280°C satisfies the requirements represented by formulae (1) to (3), and a polycarbonate resin composition and a molded article containing the same. Formula (1): MT≥(15.4/MVR)-1.3 Formula (2): MT≤(57.4/MVR)-1.3 Formula (3): MT≥1

Description

ポリカーボネート樹脂、ポリカーボネート樹脂組成物及び成形品Polycarbonate resin, polycarbonate resin composition and molded product
 本発明は、高せん断領域においても成形流動性を保持しつつ、溶融張力が向上し、耐ドリップ性に優れることから、不透明の原因となるPTFE等の添加剤を必要としないポリカーボネート樹脂、ポリカーボネート樹脂組成物及び成形品に関する。 The present invention is a polycarbonate resin and a polycarbonate resin that do not require an additive such as PTFE that causes opacity because the melt tension is improved and the drip resistance is excellent while maintaining molding fluidity even in a high shear region. The present invention relates to a composition and a molded article.
 一般に、ビスフェノールA等から製造されるポリカーボネート樹脂は、透明性、耐熱性、機械特性に優れることから、幅広い用途で使用されている。しかし、該ポリカーボネート樹脂については、ブロー成形、押出成形、真空成形等の用途に用いた場合、通常、溶融張力が低いため、成形品に厚みむらが生じたり、ドローダウンを生じたりして満足な成形品が得られないという欠点がある。
 一方、ドリップを抑制して難燃性を付与するためにフィブリル形成能を有するポリテトラフルオロエチレン(PTFE)を使用することが知られているが、PTFEはポリカーボネート樹脂との相容性が悪く成形品の不透明の原因となる。
 そこで溶融張力を向上させることでPTFEを使用せずに耐ドリップ性を付与し、透明性、難燃性及び成形流動性等の特性を優れさせる方法として、ポリカーボネート樹脂に分岐構造を含有させることが検討されている。
Generally, a polycarbonate resin produced from bisphenol A or the like is used in a wide range of applications because of its excellent transparency, heat resistance, and mechanical properties. However, when the polycarbonate resin is used for blow molding, extrusion molding, vacuum molding, and the like, the melt tension is usually low, so that the molded product has uneven thickness or drawdown, which is satisfactory. There is a disadvantage that a molded product cannot be obtained.
On the other hand, it is known to use polytetrafluoroethylene (PTFE) having fibril forming ability to suppress drip and impart flame retardancy, but PTFE is molded with poor compatibility with polycarbonate resin. Causes the product to become opaque.
Therefore, as a method for improving the melt tension to impart drip resistance without using PTFE and to improve the properties such as transparency, flame retardancy and molding fluidity, a polycarbonate resin may contain a branched structure. It is being considered.
 例えば、特許文献1では、優れた透明性及び難燃性を有する樹脂組成物とするために、分岐率が1.1mol%を超え1.5mol%以下の範囲で分岐構造を有する芳香族ポリカーボネート樹脂及び難燃剤を含有する芳香族ポリカーボネート樹脂組成物が開示されており、分岐剤として3価のフェノールを用いた具体例が示されている。
 また、特許文献2では、ドローダウンによる成形時の偏肉や溶融粘度が高すぎることによって生じる成形性の低下の問題を解決すために、0.05~0.5mol%の低い分岐剤含有率xと、溶融張力yとが特定の式で表される関係を満足する分岐状ポリカーボネート樹脂とすることが開示されており、分岐剤として3価のフェノールを用いた具体例が示されている。
 また、特許文献3として、熱安定性、成形性及びドローダウン性を改善するために、0.1~0.7mol%の低い分岐剤含有率xと、溶融張力yとが特定の式で表される関係を満足し、かつ樹脂中のN量が0~20ppmであり、Cl量が0~200ppmである分岐状ポリカーボネート樹脂とすることが開示されており、分岐剤として3価のフェノールを用いた具体例が示されている。
 また、特許文献4では、透明性及び成形性が良好で、高い耐磨耗性を有する材料とするために、分岐剤として特定の式で表されるテトラフェノール化合物を、二価フェノール1molに対して0.0001~0.05mol用い、かつ比粘度が0.20~2.0の範囲である分岐ポリカーボネート樹脂とすることが開示されている。
 また、特許文献5として、ブロー成形等において成形性が改善され、外観、色調の改善された成形品を与えるために、特定の4価フェノールを分岐剤として用い、分岐剤含有率が0.01~0.4mol%と低く、極限粘度[η]が0.5~0.6(dl/g)である実質上架橋構造を持たない分岐状ポリカーボネート樹脂が開示されている。
For example, in Patent Document 1, an aromatic polycarbonate resin having a branched structure with a branching ratio exceeding 1.1 mol% and not more than 1.5 mol% in order to obtain a resin composition having excellent transparency and flame retardancy. An aromatic polycarbonate resin composition containing a flame retardant is disclosed, and specific examples using trivalent phenol as a branching agent are shown.
Patent Document 2 discloses a low branching agent content of 0.05 to 0.5 mol% in order to solve the problem of moldability degradation caused by uneven thickness and melt viscosity at the time of molding by drawdown. It is disclosed that a branched polycarbonate resin satisfying a relationship in which x and melt tension y are expressed by a specific formula, and a specific example using trivalent phenol as a branching agent is shown.
Further, as Patent Document 3, in order to improve thermal stability, moldability, and drawdown property, a low branching agent content x of 0.1 to 0.7 mol% and a melt tension y are expressed by a specific formula. It is disclosed that a branched polycarbonate resin having a N content in the resin of 0 to 20 ppm and a Cl content of 0 to 200 ppm is used, and trivalent phenol is used as a branching agent. Specific examples were given.
In Patent Document 4, a tetraphenol compound represented by a specific formula is used as a branching agent with respect to 1 mol of dihydric phenol in order to obtain a material having good transparency and moldability and high wear resistance. In other words, it is disclosed that a branched polycarbonate resin having a specific viscosity in the range of 0.20 to 2.0 is used.
Further, as Patent Document 5, in order to give a molded article having improved moldability and improved appearance and color tone in blow molding or the like, a specific tetrahydric phenol is used as a branching agent, and the branching agent content is 0.01. A branched polycarbonate resin having a low intrinsic viscosity [η] of 0.5 to 0.6 (dl / g) and substantially no cross-linked structure is disclosed.
特開2011-105862号公報JP 2011-105862 A 特許3693462号公報Japanese Patent No. 3693462 特開2005-126477号公報JP 2005-126477 A 特開2001-261808号公報JP 2001-261808 A 特許4473446号公報Japanese Patent No. 4473446
 しかしながら、分岐剤として3官能の分岐剤や4官能の分岐剤を用いても、高せん断領域において優れた成形流動性を有するポリカーボネート樹脂が得られていない。
 そこで本発明は、高せん断領域においても成形流動性を保持しつつ、PTFE等を添加せずとも耐ドリップ性に優れたポリカーボネート樹脂、ポリカーボネート樹脂組成物、これらにより製造された成形品を提供することを目的とする。
However, even if a trifunctional branching agent or a tetrafunctional branching agent is used as the branching agent, a polycarbonate resin having excellent molding fluidity in a high shear region has not been obtained.
Accordingly, the present invention provides a polycarbonate resin and a polycarbonate resin composition excellent in drip resistance without adding PTFE or the like while maintaining molding fluidity even in a high shear region, and a molded product produced from these. With the goal.
 本発明者らは、鋭意研究を重ねた結果、溶融張力と溶融流動性とが特定の関係式を満たすポリカーボネート樹脂とすることにより、又は4官能以上の分岐剤含有率及び粘度平均分子量が特定範囲であることにより、上記課題を解決し得ることを見出した。
 すなわち、本発明は、下記ポリカーボネート樹脂、ポリカーボネート樹脂組成物及び成形品に関する。
As a result of intensive studies, the present inventors have determined that a polycarbonate resin satisfying a specific relational expression between melt tension and melt flowability, or a tetrafunctional or higher functional branching agent content and a viscosity average molecular weight within a specific range. Thus, it has been found that the above problems can be solved.
That is, this invention relates to the following polycarbonate resin, a polycarbonate resin composition, and a molded article.
1. 280℃における溶融張力MT[g]と、280℃における溶融流動性MVR[cm3/10分]との関係が、次の式(1)~(3)を満たすポリカーボネート樹脂。
  式(1):MT≧(15.4/MVR)-1.3
  式(2):MT≦(57.4/MVR)-1.3
  式(3):MT≧1
2. 分岐構造を有するポリカーボネート樹脂からなる、前記1に記載のポリカーボネート樹脂。
3. 分岐構造を有するポリカーボネート樹脂と直鎖状のポリカーボネート樹脂とからなる、前記1に記載のポリカーボネート樹脂。
4. 4官能以上の分岐剤含有率が0.5~2.0mol%であり、粘度平均分子量が18,000~28,000であるポリカーボネート樹脂。
5. 前記1~4のいずれかに記載のポリカーボネート樹脂及び添加剤を含有する、ポリカーボネート樹脂組成物。
6. 前記添加剤が難燃剤である、前記5に記載のポリカーボネート樹脂組成物。
7. 前記1~4のいずれかに記載のポリカーボネート樹脂、あるいは前記5又は6に記載のポリカーボネート樹脂組成物を成形した成形品。
8. ブロー成形した前記7に記載の成形品。
1. A melt tension MT [g] at 280 ° C., the relationship between the melt flow MVR [cm 3/10 min] at 280 ° C. has the following formula (1) to (3) Polycarbonate resin satisfying.
Formula (1): MT ≧ (15.4 / MVR) −1.3
Formula (2): MT ≦ (57.4 / MVR) −1.3
Formula (3): MT ≧ 1
2. 2. The polycarbonate resin according to 1 above, comprising a polycarbonate resin having a branched structure.
3. 2. The polycarbonate resin according to 1 above, comprising a polycarbonate resin having a branched structure and a linear polycarbonate resin.
4). A polycarbonate resin having a tetrafunctional or higher functional branching agent content of 0.5 to 2.0 mol% and a viscosity average molecular weight of 18,000 to 28,000.
5. 5. A polycarbonate resin composition comprising the polycarbonate resin according to any one of 1 to 4 and an additive.
6). 6. The polycarbonate resin composition as described in 5 above, wherein the additive is a flame retardant.
7). 5. A molded article obtained by molding the polycarbonate resin according to any one of 1 to 4 above or the polycarbonate resin composition according to 5 or 6 above.
8). 8. The molded product according to 7 above, which is blow molded.
 本発明によれば、高せん断領域においても成形流動性を保持しつつ、溶融張力が向上し、耐ドリップ性に優れることから、不透明の原因となるPTFE等を必要としないポリカーボネート樹脂及びこれを含むポリカーボネート樹脂組成物を提供することができる。
 また、上記ポリカーボネート樹脂及びこれを含むポリカーボネート樹脂組成物は、上記特性から特にブロー成形に好適であり、上記ポリカーボネート樹脂及びこれを含むポリカーボネート樹脂組成物を成形した成形品を提供することができる。
According to the present invention, a polycarbonate resin that does not require PTFE or the like that causes opacity is included because the melt tension is improved and the drip resistance is excellent while maintaining molding fluidity even in a high shear region, and the like. A polycarbonate resin composition can be provided.
Moreover, the said polycarbonate resin and the polycarbonate resin composition containing this are especially suitable for blow molding from the said characteristic, The molded article which shape | molded the said polycarbonate resin and the polycarbonate resin composition containing this can be provided.
実施例及び比較例における溶融張力MT[g]と溶融流動性MVR[cm3/10分]との関係(MT)×(1/MVR)を示したグラフである。Is a graph showing relationship (MT) × (1 / MVR ) and melt tension MT [g] and the melt flowability MVR [cm 3/10 min] in Examples and Comparative Examples.
[ポリカーボネート樹脂の物性等]
(溶融張力MT及び溶融流動性MVR)
 本発明のポリカーボネート樹脂(以下、「PC樹脂」と略記することがある。)は、280℃における溶融張力MT[g]と、280℃における溶融流動性MVR[cm3/10分]との関係が、次の式(1)~(3)を満たすものである。
  式(1):MT≧(15.4/MVR)-1.3
  式(2):MT≦(57.4/MVR)-1.3
  式(3):MT≧1
[Physical properties of polycarbonate resin]
(Melting tension MT and melt flowability MVR)
Polycarbonate resins of the present invention (hereinafter sometimes abbreviated as "PC resin".) Has a melt tension MT [g] at 280 ° C., the relationship between the melt flowability MVR at 280 ℃ [cm 3/10 min] However, the following expressions (1) to (3) are satisfied.
Formula (1): MT ≧ (15.4 / MVR) −1.3
Formula (2): MT ≦ (57.4 / MVR) −1.3
Formula (3): MT ≧ 1
 本発明において式(1)~(3)を満たすことにより、既存のPC樹脂に比べ、成形流動性を保持しつつ、溶融張力が向上し、優れた耐ドリップ性を確保することができる。
 式(1)を満たさない場合、すなわちMT<(15.4/MVR)-1.3の場合、本発明の奏する優れた耐ドリップ性を示すことができず、また式(2)を満たさない場合、すなわちMT>(57.14/MVR)-1.3の場合、高せん断力領域において良好な流動性を示すことができない。また、重合時に分離不良が起き、製造面においても課題となる。また、式(3)を満たさない場合、すなわちMT<1の場合においても十分な耐ドリップ性は確保できず、かつ成形品の端部がウエービングしたり、厚みにばらつきが生じたりする。
By satisfying the formulas (1) to (3) in the present invention, the melt tension is improved and excellent drip resistance can be ensured while maintaining the molding fluidity as compared with the existing PC resin.
When the formula (1) is not satisfied, that is, when MT <(15.4 / MVR) −1.3, the excellent drip resistance achieved by the present invention cannot be exhibited, and the formula (2) is not satisfied. In this case, that is, when MT> (57.14 / MVR) -1.3, good fluidity cannot be exhibited in a high shear force region. Further, poor separation occurs at the time of polymerization, which is also a problem in production. Further, when the formula (3) is not satisfied, that is, when MT <1, sufficient drip resistance cannot be ensured, and the end portion of the molded product is waved or the thickness varies.
 さらにMTとMVRとの関係は、
 耐ドリップ性の観点から好ましくは、MT≧(20.6/MVR)-2.1、MT≦(57.4/MVR)-1.3、MT≧1、を満足することであり、
 耐ドリップ性と成形時流動性の観点からより好ましくは、MT≧(20.6/MVR)-2.1、MT≦(57.4/MVR)-1.3、MT≧1、1/MVR≦0.3、を満足することであり、
 耐ドリップ性と成形時流動性の観点からさらに好ましくは、MT≧(20.6/MVR)-2.1、MT≦(57.4/MVR)-1.3、MT≧1、1/MVR≦0.25、を満足することである。
Furthermore, the relationship between MT and MVR is
From the viewpoint of drip resistance, preferably, MT ≧ (20.6 / MVR) −2.1, MT ≦ (57.4 / MVR) −1.3, MT ≧ 1,
More preferably, from the viewpoint of drip resistance and fluidity during molding, MT ≧ (20.6 / MVR) −2.1, MT ≦ (57.4 / MVR) −1.3, MT ≧ 1, 1 / MVR ≦ 0.3, and
More preferably, from the viewpoint of drip resistance and fluidity during molding, MT ≧ (20.6 / MVR) −2.1, MT ≦ (57.4 / MVR) −1.3, MT ≧ 1, 1 / MVR ≦ 0.25 is satisfied.
 上記溶融張力MT[g]は、280℃、オリフィス径L/D=8/2.095mm、押出速度10mm/分、引取速度3.1m/分で測定して得られた値である。また、上記溶融流動性MVR[cm3/10分]は、280℃、荷重2.16kgで測定した単位時間当たりの溶融流動体積である。 The melt tension MT [g] is a value obtained by measurement at 280 ° C., orifice diameter L / D = 8 / 2.095 mm, extrusion speed 10 mm / min, take-up speed 3.1 m / min. Furthermore, the melt flowability MVR [cm 3/10 min] is, 280 ° C., a melt flow volume per unit time measured under a load 2.16 kg.
 PC樹脂の溶融張力MT及び溶融流動性MVRが、上記式(1)~(3)を満たすには、後述するPC樹脂の分岐剤含有量、粘度平均分子量を調整することにより達成することができる。例えば、溶融張力MTを上げるためには後述する分岐剤含有率を上げることで調整でき、また溶融流動性MVRはPC樹脂の粘度平均分子量により調整することができる。 In order to satisfy the above formulas (1) to (3), the melt tension MT and the melt fluidity MVR of the PC resin can be achieved by adjusting the branching agent content and viscosity average molecular weight of the PC resin described later. . For example, in order to increase the melt tension MT, it can be adjusted by increasing the branching agent content described later, and the melt fluidity MVR can be adjusted by the viscosity average molecular weight of the PC resin.
(分岐剤含有率)
 本発明のPC樹脂は、良好な溶融張力を示し、また前記式(1)~(3)を満たすために、分岐構造を有するPC樹脂であることが好ましい。
 分岐構造を有するためには分岐剤を用いてPC樹脂を製造すればよいが、高せん断力領域において良好な流動性を保持したまま溶融張力を向上させる観点から、4官能以上の分岐剤を用いることが好ましく、さらにPC樹脂における4官能以上の分岐剤含有率が0.5~2.0mol%であることが好ましく、0.5~1.5mol%であることがより好ましい。
 上記分岐剤含有率が0.5mol%以上であれば、PC樹脂に十分な溶融張力を付与することができ、また2.0mol%以下であれば、ポリマーが架橋してゲル化するおそれがなく、また良好な耐衝撃性を有するものになり、さらに成形品の表面にくもりが生じず、優れた透明性を有するものになる。
(Branching agent content)
The PC resin of the present invention is preferably a PC resin having a branched structure in order to exhibit good melt tension and satisfy the above formulas (1) to (3).
In order to have a branched structure, a PC resin may be produced using a branching agent. From the viewpoint of improving the melt tension while maintaining good fluidity in a high shear force region, a branching agent having four or more functional groups is used. Further, the content of the tetrafunctional or higher functional branching agent in the PC resin is preferably 0.5 to 2.0 mol%, and more preferably 0.5 to 1.5 mol%.
If the branching agent content is 0.5 mol% or more, sufficient melt tension can be imparted to the PC resin, and if it is 2.0 mol% or less, there is no possibility that the polymer is crosslinked and gelled. In addition, it has good impact resistance, and further, the surface of the molded product is not cloudy and has excellent transparency.
 なお本発明において上記分岐剤含有率とは、PC樹脂の全体に含まれる、原料として用いた二価フェノール由来の構成単位、末端停止剤由来の構成単位、及び4官能以上の分岐剤由来の構成単位の総mol数に対する、4官能以上の分岐剤由来の構成単位のmol%、すなわち、4官能以上の分岐剤含有率(mol%)=[4官能以上の分岐剤由来の構成単位(mol)/〔二価フェノール由来の構成単位(mol)+末端停止剤由来の構成単位(mol)+4官能以上の分岐剤由来の構成単位(mol)〕]×100を意味する。
 上記各構成単位(mol)は、1H-NMRにより測定することができる。
In the present invention, the content of the branching agent refers to a constitutional unit derived from a dihydric phenol used as a raw material, a constitutional unit derived from a terminal terminator, and a tetrafunctional or higher functional branching agent, which is contained in the entire PC resin. Mol% of structural units derived from a tetrafunctional or higher functional branching agent relative to the total number of moles of units, that is, a tetrafunctional or higher functional branching agent content (mol%) = [a structural unit derived from a tetrafunctional or higher functional branching agent (mol). / [Constituent unit derived from dihydric phenol (mol) + constituent unit derived from terminal terminator (mol) + constituent unit derived from tetrafunctional or higher branching agent (mol)]] × 100.
Each of the structural units (mol) can be measured by 1 H-NMR.
 また、本発明のPC樹脂は、前述したように式(1)~(3)を満たすために分岐構造を有することが好ましいが、該分岐構造を有するPC樹脂としては、分岐構造を有するPC樹脂のみからなるPC樹脂であってもよく、分岐構造を有するPC樹脂と直鎖状のPC樹脂とからなるPC樹脂であってもよい。より優れた難燃性を有する観点から、分岐構造を有するPC樹脂を30~100質量%用いることが好ましく、より好ましくは直鎖状のPC樹脂を含まず、分岐構造を有するPC樹脂の1種又は2種以上からなるPC樹脂である。
 複数のPC樹脂をブレンドして本発明のPC樹脂とする場合、PC樹脂全体として式(1)~(3)を満たしていればよく、上記分岐剤含有率についても同様にPC樹脂全体に含まれる分岐剤含有率が上記好ましい範囲となればよい。ブレンドの方法は、ブレンドする各PC樹脂を製造した後にブレンドしてもよく、各PC樹脂が溶融状態の段階でブレンドしてもよく、特に制限はない。
Further, as described above, the PC resin of the present invention preferably has a branched structure in order to satisfy the formulas (1) to (3). As the PC resin having the branched structure, a PC resin having a branched structure is used. PC resin which consists only of PC resin which consists of PC resin which has a branched structure, and linear PC resin may be sufficient. From the viewpoint of having superior flame retardancy, it is preferable to use 30 to 100% by mass of a PC resin having a branched structure, and more preferably one type of PC resin having a branched structure that does not contain a linear PC resin. Or it is PC resin which consists of 2 or more types.
When blending a plurality of PC resins to make the PC resin of the present invention, it is sufficient that the PC resin as a whole satisfies the formulas (1) to (3), and the branching agent content is also included in the PC resin as a whole. It is sufficient that the branching agent content is within the preferred range. The method of blending may be blended after each PC resin to be blended is produced, and may be blended when each PC resin is in a molten state, and is not particularly limited.
(粘度平均分子量)
 本発明のPC樹脂の粘度平均分子量(Mv)は18,000~28,000であることが好ましく、20,000~25,000であることがより好ましい。
 粘度平均分子量が18,000以上であれば、耐ドリップ性が十分となり良好な難燃性を発現することができ好ましい。また粘度平均分子量が28,000以下であれば、PC樹脂のMVRが低くなりすぎて成形時に問題が生じるおそれがない点から好ましい。
 本発明において粘度平均分子量(Mv)は、ウベローデ型粘度計を用いて、20℃における塩化メチレン溶液の粘度を測定し、これより極限粘度[η]を求め、次式にて算出したものである。
         [η]=1.23×10-5Mv0.83
(Viscosity average molecular weight)
The viscosity average molecular weight (Mv) of the PC resin of the present invention is preferably 18,000 to 28,000, and more preferably 20,000 to 25,000.
A viscosity average molecular weight of 18,000 or more is preferable because drip resistance is sufficient and good flame retardancy can be exhibited. Further, if the viscosity average molecular weight is 28,000 or less, the MVR of the PC resin becomes too low, so that there is no possibility of causing a problem during molding.
In the present invention, the viscosity average molecular weight (Mv) is obtained by measuring the viscosity of a methylene chloride solution at 20 ° C. using an Ubbelohde viscometer, obtaining the intrinsic viscosity [η] from this, and calculating by the following equation. .
[η] = 1.23 × 10 −5 Mv 0.83
 また本発明は、4官能以上の分岐剤含有率が0.5~2.0mol%であり、粘度平均分子量が18,000~28,000であるPC樹脂を提供する。
 4官能以上の分岐剤含有率及び粘度平均分子量が上記範囲であることにより、耐ドリップ性に優れるPC樹脂とすることができる。4官能以上の分岐剤含有率及び粘度平均分子量が上記範囲であるPC樹脂において、上記分岐剤含有率が0.5~2.0mol%の範囲外であると、PC樹脂に十分な溶融張力を付与することができず、高せん断力領域において良好な流動性を保持することができない。またポリマーが架橋してゲル化し、耐衝撃性及び透明性が低下するおそれがある。上記分岐剤含有率は、好ましくは0.5~1.5mol%である。また、上記粘度平均分子量が18,000~28,000の範囲外であると、耐ドリップ性が不十分となり、成形が困難となる。上記粘度平均分子量は、好ましくは20,000~25,000である。
 なお、ここでいう4官能以上の分岐剤含有率及び粘度平均分子量とは、上述のMTとMVRとが式(1)~(3)を満たすPC樹脂において説明したものと同義である。
The present invention also provides a PC resin having a tetrafunctional or higher functional branching agent content of 0.5 to 2.0 mol% and a viscosity average molecular weight of 18,000 to 28,000.
When the tetrafunctional or higher functional branching agent content and the viscosity average molecular weight are within the above ranges, a PC resin having excellent drip resistance can be obtained. In the PC resin having a branching agent content of 4 or more functionalities and a viscosity average molecular weight within the above ranges, if the branching agent content is outside the range of 0.5 to 2.0 mol%, sufficient melt tension is imparted to the PC resin. It cannot be imparted, and good fluidity cannot be maintained in a high shear force region. Moreover, there exists a possibility that a polymer may bridge | crosslink and gelatinize and impact resistance and transparency may fall. The branching agent content is preferably 0.5 to 1.5 mol%. On the other hand, if the viscosity average molecular weight is outside the range of 18,000 to 28,000, drip resistance becomes insufficient and molding becomes difficult. The viscosity average molecular weight is preferably 20,000 to 25,000.
The tetrafunctional or higher functional branching agent content and the viscosity average molecular weight here are synonymous with those described in the PC resin in which the above MT and MVR satisfy the formulas (1) to (3).
 さらに、上記4官能以上の分岐剤含有率及び粘度平均分子量が上記範囲であるPC樹脂は、分岐構造を有するPC樹脂のみからなるPC樹脂であってもよく、分岐構造を有するPC樹脂と直鎖状のPC樹脂とからなるPC樹脂であってもよい。好ましくは直鎖状のPC樹脂を含まず、分岐構造を有するPC樹脂の1種又は2種以上からなるPC樹脂である。
 また、上記4官能以上の分岐剤含有率及び粘度平均分子量が上記範囲であるPC樹脂は、上述のMTとMVRとの関係を示す式(1)~(3)を満たすことが好ましく、MTとMVRとの関係の好ましい態様についても上述のものと同様である。
Further, the PC resin having a tetrafunctional or higher functional branching agent content and a viscosity average molecular weight within the above ranges may be a PC resin composed only of a PC resin having a branched structure. PC resin which consists of a shape-like PC resin may be sufficient. Preferably, it is a PC resin composed of one or more kinds of PC resins having a branched structure without containing a linear PC resin.
Further, the PC resin having the above-described tetrafunctional or higher functional branching agent content and viscosity average molecular weight within the above ranges preferably satisfies the formulas (1) to (3) showing the relationship between MT and MVR described above. The preferred embodiment of the relationship with MVR is the same as described above.
[ポリカーボネート樹脂の原料]
 本発明のPC樹脂は、芳香族PC樹脂であっても脂肪族PC樹脂であってもよいが、耐衝撃性と耐熱性の観点から、芳香族PC樹脂であることが好ましい。本発明における芳香族PC樹脂は、好ましくは分岐剤、二価フェノール及び末端停止剤を用いて製造することができる。またその製造方法は特に限定されないが、例えば、二価フェノールとカーボネート前駆体とを直接反応させる界面重合法により製造することができる。
 界面重合法による分岐構造を有するPC樹脂の工業的な製造方法としては、例えば、二価フェノールのアルカリ水溶液に有機溶媒を加え、そこへホスゲン等のカーボネート前駆体を吹き込んで反応性のクロロホルメート基を有するポリカーボネートオリゴマーを生成させ、該ポリカーボネートオリゴマーの生成と同時に又は逐次的に、さらにポリカーボネートオリゴマーと、分岐剤、二価フェノール及び末端停止剤とを、重合触媒及びアルカリ水溶液の存在下、縮合反応(重合反応)を進める方法が採用されている。なお、本発明のPC樹脂の製造方法は、上記界面重合法に限定されない。
[Raw material of polycarbonate resin]
The PC resin of the present invention may be an aromatic PC resin or an aliphatic PC resin, but is preferably an aromatic PC resin from the viewpoint of impact resistance and heat resistance. The aromatic PC resin in the present invention can be produced preferably using a branching agent, a dihydric phenol and a terminal terminator. Moreover, although the manufacturing method is not specifically limited, For example, it can manufacture by the interfacial polymerization method which makes bivalent phenol and a carbonate precursor react directly.
As an industrial method for producing a PC resin having a branched structure by an interfacial polymerization method, for example, an organic solvent is added to an alkaline aqueous solution of a dihydric phenol, and a carbonate precursor such as phosgene is blown into the organic solvent, thereby reactive chloroformate. A polycarbonate oligomer having a group is produced, and at the same time or sequentially with the production of the polycarbonate oligomer, a polycarbonate oligomer, a branching agent, a dihydric phenol and a terminal terminator are subjected to a condensation reaction in the presence of a polymerization catalyst and an aqueous alkali solution. A method of proceeding (polymerization reaction) is employed. In addition, the manufacturing method of PC resin of this invention is not limited to the said interfacial polymerization method.
(分岐剤)
 本発明において、前述のとおり高せん断力領域において良好な流動性を保持したまま溶融張力を向上させる観点から、4官能以上の分岐剤を用いることが好ましい。
 4官能以上の分岐剤としては、例えば、フロログルシド、ピロメリット酸、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、α,α,α’,α’-テトラキス(4-ヒドロキシフェニル)-p-キシレン、α,α,α’,α’-テトラキス(2-メチル-4-ヒドロキシフェニル)-p-キシレン、α,α,α’,α’-テトラキス(2,5-ジメチル-4-ヒドロキシフェニル)-p-キシレン、α,α,α’,α’-テトラキス(2,6-ジメチル-4-ヒドロキシフェニル)-p-キシレン、α,α’-ジメチル-α,α,α’,α’-テトラキス(4-ヒドロキシフェニル)-p-キシレン、α,α’-ジメチル-α,α,α’,α’-テトラキス(3-メチル-4-ヒドロキシフェニル)-m-キシレン、ビス[4,4-ビス(4-ヒドロキシフェニル)シクロヘキサン]、ビス[4,4-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン]、ビス[4,4-ビス(3,5-ジメチル-4-ヒドロキシフェニル)シクロヘキサン]、ビス[4,4-ビス(4-ヒドロキシフェニル)シクロヘキシル]メタン、ビス[4,4-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキシル]メタン、ビス[4,4-ビス(3,5-ジメチル-4-ヒドロキシフェニル)シクロヘキシル]メタン、1,1-ビス[4,4-ビス(4-ヒドロキシフェニル)シクロヘキシル]エタン、1,1-ビス[4,4-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキシル]エタン、1,1-ビス[4,4-ビス(3,5-ジメチル-4-ヒドロキシフェニル)シクロヘキシル]エタン、2,2-ビス[4,4-ビス(4-ヒドロキシフェニル)シクロヘキシル]プロパン、2,2-ビス[4,4-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキシル]プロパン、2,2-ビス[4,4-ビス(3,5-ジメチル-4-ヒドロキシフェニル)シクロヘキシル]プロパン、2,2-ビス[4,4-ビス(4-ヒドロキシフェニル)シクロヘキシル]ブタン、2,2-ビス[4,4-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキシル]ブタン、2,2-ビス[4,4-ビス(3,5-ジメチル-4-ヒドロキシフェニル)シクロヘキシル]ブタン、1,1-ビス[4,4-ビス(4-ヒドロキシフェニル)シクロヘキシル]シクロヘキサン、1,1-ビス[4,4-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキシル]シクロヘキサン、1,1-ビス[4,4-ビス(3,5-ジメチル-4-ヒドロキシフェニル)シクロヘキシル]シクロヘキサン、1,1-ビス[4,4-ビス(4-ヒドロキシフェニル)シクロヘキシル]-1-フェニルエタン、1,1-ビス[4,4-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキシル]-1-フェニルエタン、1,1-ビス[4,4-ビス(3,5-ジメチル-4-ヒドロキシフェニル)シクロヘキシル]-1-フェニルエタン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,3,4,4’-テトラヒドロキシベンゾフェノン、2,2-ビス(2,4-ジヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジヒドロキシフェニル)プロパン等が挙げられる。
(Branching agent)
In the present invention, as described above, it is preferable to use a tetrafunctional or higher functional branching agent from the viewpoint of improving the melt tension while maintaining good fluidity in a high shear force region.
Examples of the tetrafunctional or higher functional branching agent include phloroglucide, pyromellitic acid, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, α, α, α ′, α′-tetrakis (4-hydroxyphenyl). ) -P-xylene, α, α, α ′, α′-tetrakis (2-methyl-4-hydroxyphenyl) -p-xylene, α, α, α ′, α′-tetrakis (2,5-dimethyl-) 4-hydroxyphenyl) -p-xylene, α, α, α ', α'-tetrakis (2,6-dimethyl-4-hydroxyphenyl) -p-xylene, α, α'-dimethyl-α, α, α ', Α'-tetrakis (4-hydroxyphenyl) -p-xylene, α, α'-dimethyl-α, α, α', α'-tetrakis (3-methyl-4-hydroxyphenyl) -m-xylene, Bis [4,4-bis (4-hydroxyphenyl) Cyclohexane], bis [4,4-bis (4-hydroxy-3-methylphenyl) cyclohexane], bis [4,4-bis (3,5-dimethyl-4-hydroxyphenyl) cyclohexane], bis [4,4 -Bis (4-hydroxyphenyl) cyclohexyl] methane, bis [4,4-bis (4-hydroxy-3-methylphenyl) cyclohexyl] methane, bis [4,4-bis (3,5-dimethyl-4-hydroxy) Phenyl) cyclohexyl] methane, 1,1-bis [4,4-bis (4-hydroxyphenyl) cyclohexyl] ethane, 1,1-bis [4,4-bis (4-hydroxy-3-methylphenyl) cyclohexyl] Ethane, 1,1-bis [4,4-bis (3,5-dimethyl-4-hydroxyphenyl) cyclohexyl] ethane, 2 2-bis [4,4-bis (4-hydroxyphenyl) cyclohexyl] propane, 2,2-bis [4,4-bis (4-hydroxy-3-methylphenyl) cyclohexyl] propane, 2,2-bis [ 4,4-bis (3,5-dimethyl-4-hydroxyphenyl) cyclohexyl] propane, 2,2-bis [4,4-bis (4-hydroxyphenyl) cyclohexyl] butane, 2,2-bis [4 4-bis (4-hydroxy-3-methylphenyl) cyclohexyl] butane, 2,2-bis [4,4-bis (3,5-dimethyl-4-hydroxyphenyl) cyclohexyl] butane, 1,1-bis [ 4,4-bis (4-hydroxyphenyl) cyclohexyl] cyclohexane, 1,1-bis [4,4-bis (4-hydroxy-3-methylphenyl) Cyclohexyl] cyclohexane, 1,1-bis [4,4-bis (3,5-dimethyl-4-hydroxyphenyl) cyclohexyl] cyclohexane, 1,1-bis [4,4-bis (4-hydroxyphenyl) cyclohexyl] -1-phenylethane, 1,1-bis [4,4-bis (4-hydroxy-3-methylphenyl) cyclohexyl] -1-phenylethane, 1,1-bis [4,4-bis (3,5 -Dimethyl-4-hydroxyphenyl) cyclohexyl] -1-phenylethane, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2,2-bis (2 , 4-dihydroxyphenyl) propane, 2,2-bis (3,5-dihydroxyphenyl) propane, and the like.
 また、下記の化学式(A)で表される化合物を4官能以上の分岐剤として用いてもよい。 Further, a compound represented by the following chemical formula (A) may be used as a tetrafunctional or more functional branching agent.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(A)中、R1及びR2は、炭素数1~8のアルキル基又は炭素数6~20のアリール基を示す。nは1~100の整数であり、好ましくは1~50の整数である。上記アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等が挙げられ、上記アリール基としては、例えば、フェニル基等が挙げられる。R1及びR2はそれぞれ独立であり、同一でも異なっていてもよい。上記式(A)で表される化合物の中でも、R1及びR2がメチル基である、テトラ(4-ヒドロキシフェニル-ポリメチルシロキサン)シリコンが好適である。 In the above formula (A), R 1 and R 2 represent an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 20 carbon atoms. n is an integer of 1 to 100, preferably an integer of 1 to 50. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, and a butyl group. Examples of the aryl group include a phenyl group. R 1 and R 2 are each independent and may be the same or different. Among the compounds represented by the above formula (A), tetra (4-hydroxyphenyl-polymethylsiloxane) silicon in which R 1 and R 2 are methyl groups is preferable.
 上記4官能以上の分岐剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
 上記4官能以上の分岐剤の中でも、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、2,2-ビス[4,4-ビス(4-ヒドロキシフェニル)シクロヘキシル]プロパン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,2-ビス(2,4-ジヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジヒドロキシフェニル)プロパン及び上記の化学式(A)で表される化合物を用いることが好ましい。
The tetrafunctional or higher functional branching agent may be used alone or in combination of two or more.
Among the above tetrafunctional or higher functional branching agents, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, 2,2-bis [4,4-bis (4-hydroxyphenyl) cyclohexyl] propane, 2, 2 ′, 4,4′-tetrahydroxybenzophenone, 2,2-bis (2,4-dihydroxyphenyl) propane, 2,2-bis (3,5-dihydroxyphenyl) propane and the above formula (A) It is preferable to use the compound.
 また、本発明の効果を損なわない範囲で、3官能以下の分岐剤を併用することができる。3官能以下の分岐剤としては、例えば、1,1,1-トリス(4-ヒドロキシフェニル)エタン、α,α’,α”-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン、1-〔α-メチル-α-(4’-ヒドロキシフェニル)エチル〕-4-〔α’,α’-ビス(4”-ヒドロキシフェニル)エチル〕ベンゼン、フロログルシン、イサチンビス(o-クレゾール)等を挙げることができ、これらは1種を単独で使用してもよく、2種以上を併用してもよい。 In addition, a trifunctional or lower branching agent can be used in combination as long as the effects of the present invention are not impaired. Examples of the trifunctional or lower functional branching agent include 1,1,1-tris (4-hydroxyphenyl) ethane, α, α ′, α ″ -tris (4-hydroxyphenyl) -1,3,5-triisopropyl Benzene, 1- [α-methyl-α- (4'-hydroxyphenyl) ethyl] -4- [α ', α'-bis (4 "-hydroxyphenyl) ethyl] benzene, phloroglucin, isatin bis (o-cresol) These may be used alone or in combination of two or more.
(二価フェノール)
 二価フェノールとしては、例えば、1,1-ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、ビス{(4-ヒドロキシ-3,5-ジメチル)フェニル}メタン、2,2-ビス{(4-ヒドロキシ-3-メチル)フェニル}プロパン、2,2-ビス{(4-ヒドロキシ-3,5-ジメチル)フェニル}プロパン、2,2-ビス{(3-イソプロピル-4-ヒドロキシ)フェニル}プロパン、2,2-ビス{(4-ヒドロキシ-3-フェニル)フェニル}プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)-3,3-ジメチルブタン、2,4-ビス(4-ヒドロキシフェニル)-2-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン等のビス(4-ヒドロキシフェニル)アルカン;1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-4-イソプロピルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン等のビス(4-ヒドロキシフェニル)シクロアルカン;ハイドロキノン、レゾルシノール、4,4’-ジヒドロキシジフェニル、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス{(4-ヒドロキシ-3-メチル)フェニル}フルオレン、α,α’-ビス(4-ヒドロキシフェニル)-o-ジイソプロピルベンゼン、α,α’-ビス(4-ヒドロキシフェニル)-m-ジイソプロピルベンゼン、α,α’-ビス(4-ヒドロキシフェニル)-p-ジイソプロピルベンゼン、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン、ビス(4-ヒドロキシフェニル)オキシド、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)ケトン、4,4’-ジヒドロキシジフェニルエーテル及び4,4’-ジヒドロキシジフェニルエステル等が挙げられる。
(Dihydric phenol)
Examples of the dihydric phenol include 1,1-bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) propane, bis {( 4-hydroxy-3,5-dimethyl) phenyl} methane, 2,2-bis {(4-hydroxy-3-methyl) phenyl} propane, 2,2-bis {(4-hydroxy-3,5-dimethyl) Phenyl} propane, 2,2-bis {(3-isopropyl-4-hydroxy) phenyl} propane, 2,2-bis {(4-hydroxy-3-phenyl) phenyl} propane, 2,2-bis (4- Hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) -3-methylbutane, 2,2-bis (4-hydroxyphenyl) -3,3-dimethylbutane Bis (2,4-bis (4-hydroxyphenyl) -2-methylbutane, 2,2-bis (4-hydroxyphenyl) pentane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, etc. 4-hydroxyphenyl) alkane; 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -4-isopropylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3 Bis (4-hydroxyphenyl) cycloalkane such as 3,5-trimethylcyclohexane, hydroquinone, resorcinol, 4,4′-dihydroxydiphenyl, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 9, 9-bis (4-hydroxyphenyl) fluorene, 9,9-bis {(4-hydroxy -3-methyl) phenyl} fluorene, α, α'-bis (4-hydroxyphenyl) -o-diisopropylbenzene, α, α'-bis (4-hydroxyphenyl) -m-diisopropylbenzene, α, α'- Bis (4-hydroxyphenyl) -p-diisopropylbenzene, 1,3-bis (4-hydroxyphenyl) -5,7-dimethyladamantane, bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) sulfide, Examples thereof include bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) ketone, 4,4′-dihydroxydiphenyl ether, and 4,4′-dihydroxydiphenyl ester.
 上記二価フェノールの中でも、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス{(4-ヒドロキシ-3-メチル)フェニル}プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)-3,3-ジメチルブタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、α,α’-ビス(4-ヒドロキシフェニル)-m-ジイソプロピルベンゼンを用いることが好ましく、特に2,2-ビス(4-ヒドロキシフェニル)プロパン〔通称ビスフェノールA〕を用いることが好ましい。また二価フェノールとしては、上記二価フェノール1種を用いたホモポリマーでも、2種以上を用いたコポリマーであってもよい。 Among the above dihydric phenols, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis {(4-hydroxy-3-methyl) phenyl} propane, 2,2-bis (4-hydroxyphenyl) Butane, 2,2-bis (4-hydroxyphenyl) -3-methylbutane, 2,2-bis (4-hydroxyphenyl) -3,3-dimethylbutane, 2,2-bis (4-hydroxyphenyl) -4 It is preferable to use -methylpentane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, α, α'-bis (4-hydroxyphenyl) -m-diisopropylbenzene, especially 2 , 2-bis (4-hydroxyphenyl) propane [commonly called bisphenol A] is preferably used. The dihydric phenol may be a homopolymer using one of the above dihydric phenols or a copolymer using two or more.
(カーボネート前駆体)
 カーボネート前駆体としては、カルボニルハライド、カルボニルエステル、又はハロホルメート等であり、具体的にはホスゲン、2価フェノールのジハロホーメート、ジフェニルカーボネート、ジメチルカーボネート、ジエチルカーボネート等が挙げられる。上記カーボネート前駆体は、1種を単独で使用してもよく、2種以上を併用してもよい。
(Carbonate precursor)
Examples of the carbonate precursor include carbonyl halide, carbonyl ester, or haloformate, and specific examples include phosgene, dihaloformate of dihydric phenol, diphenyl carbonate, dimethyl carbonate, and diethyl carbonate. The said carbonate precursor may be used individually by 1 type, and may use 2 or more types together.
(末端停止剤)
 末端停止剤としては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、p-tert-ブチルフェノール、p-tert-オクチルフェノール、p-クミルフェノール、p-ノニルフェノール、ブロモフェノール、トリブロモフェノール、ドコシルフェノール、テトラコシルフェノール、ヘキサコシルフェノール、オクタコシルフェノール、トリアコンチルフェノール、ドトリアコンチルフェノール、テトラトリアコンチルフェノール等を挙げることができる。また、下記の化学式(B)や(C)で表されるポリテルペンのモノフェノール〔式(B)及び(C)中、pは0~4の整数を示す〕を末端停止剤として用いてもよい。上記末端停止剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
 上記末端停止剤の中でも、p-tert-ブチルフェノール、p-クミルフェノールを用いることが好ましい。
(Terminal stopper)
Examples of the terminator include phenol, o-cresol, m-cresol, p-cresol, p-tert-butylphenol, p-tert-octylphenol, p-cumylphenol, p-nonylphenol, bromophenol, tribromophenol. , Docosylphenol, tetracosylphenol, hexacosylphenol, octacosylphenol, triacontylphenol, dotriacontylphenol, tetratriacontylphenol, and the like. In addition, monoterpenes of polyterpenes represented by the following chemical formulas (B) and (C) (in formulas (B) and (C), p represents an integer of 0 to 4) may be used as a terminal terminator. . The said terminal terminator may be used individually by 1 type, and may use 2 or more types together.
Among the above terminators, it is preferable to use p-tert-butylphenol and p-cumylphenol.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(触媒)
 触媒としては相間移動触媒が好適であり、例えば、三級アミン又はその塩、四級アンモニウム塩、四級ホスホニウム塩等を好ましく用いることができる。
 三級アミンとしては、例えば、トリエチルアミン、トリブチルアミン、N,N-ジメチルシクロヘキシルアミン、ピリジン、ジメチルアニリン等が挙げられ、また三級アミン塩としては、例えばこれらの三級アミンの塩酸塩、臭素酸塩等が挙げられる。四級アンモニウム塩としては、例えばトリメチルベンジルアンモニウムクロリド、トリエチルベンジルアンモニウムクロリド、トリブチルベンジルアンモニウムクロリド、トリオクチルメチルアンモニウムクロリド、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムブロミド等が、四級ホスホニウム塩としては、例えばテトラブチルホスホニウムクロリド、テトラブチルホスホニウムブロミド等が挙げられる。上記触媒は、1種を単独で使用してもよく、2種以上を併用してもよい。
 上記触媒の中では、三級アミンが好ましく、特にトリエチルアミンが好適である。
(catalyst)
As the catalyst, a phase transfer catalyst is suitable. For example, a tertiary amine or a salt thereof, a quaternary ammonium salt, a quaternary phosphonium salt, or the like can be preferably used.
Examples of the tertiary amine include triethylamine, tributylamine, N, N-dimethylcyclohexylamine, pyridine, dimethylaniline and the like, and examples of the tertiary amine salt include hydrochlorides and bromic acid of these tertiary amines. Examples include salts. Examples of the quaternary ammonium salt include trimethylbenzylammonium chloride, triethylbenzylammonium chloride, tributylbenzylammonium chloride, trioctylmethylammonium chloride, tetrabutylammonium chloride, and tetrabutylammonium bromide. Examples thereof include butylphosphonium chloride and tetrabutylphosphonium bromide. The said catalyst may be used individually by 1 type, and may use 2 or more types together.
Among the above catalysts, tertiary amines are preferable, and triethylamine is particularly preferable.
(有機溶媒)
 有機溶媒としては不活性有機溶剤が好適であり、例えば、塩素化炭化水素や、トルエン、アセトフェノン等を好ましく用いることができる。
 塩素化炭化水素としては、例えば、ジクロロメタン(塩化メチレン)、トリクロロメタン、四塩化炭素、1,1-ジクロロエタン、1,2-ジクロロエタン、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、1,1,1,2-テトラクロロエタン、1,1,2,2-テトラクロロエタン、ペンタクロロエタン、クロロベンゼン等が挙げられる。上記有機溶媒は、1種を単独で使用してもよく、2種以上を併用してもよい。上記有機溶媒の中では、特に塩化メチレンが好適である。
(Organic solvent)
An inert organic solvent is suitable as the organic solvent, and for example, chlorinated hydrocarbons, toluene, acetophenone, and the like can be preferably used.
Examples of the chlorinated hydrocarbon include dichloromethane (methylene chloride), trichloromethane, carbon tetrachloride, 1,1-dichloroethane, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2-trichloroethane, Examples include 1,1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, pentachloroethane, chlorobenzene and the like. The said organic solvent may be used individually by 1 type, and may use 2 or more types together. Among the organic solvents, methylene chloride is particularly preferable.
(アルカリ水溶液)
 アルカリ水溶液としては、アルカリ源が、アルカリ金属の水酸化物であるものを用いればよい。アルカリ金属の水酸化物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム等が挙げられる。上記アルカリ金属の水酸化物の中では、水酸化ナトリウムと水酸化カリウムが好適である。
(Alkaline aqueous solution)
What is necessary is just to use what an alkali source is a hydroxide of an alkali metal as aqueous alkali solution. Examples of the alkali metal hydroxide include sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide and the like. Of the alkali metal hydroxides, sodium hydroxide and potassium hydroxide are preferred.
[ポリカーボネート樹脂組成物]
 また本発明は、前述したポリカーボネート樹脂及び添加剤を含有するポリカーボネート樹脂組成物を提供する。
 上記添加剤としては、より厚さが薄い成形品であっても優れた難燃性を確保するため、難燃剤を用いることが好ましい。
[Polycarbonate resin composition]
Moreover, this invention provides the polycarbonate resin composition containing the polycarbonate resin and additive which were mentioned above.
As the additive, it is preferable to use a flame retardant in order to ensure excellent flame retardancy even if the molded product is thinner.
(難燃剤)
 難燃剤としては、例えば、有機アルカリ金属塩、有機アルカリ土類金属塩等の有機金属塩系難燃剤、シリコーン系難燃剤、リン系難燃剤、ホスファゼン系難燃剤等を用いることができるが、これらの中でも有機アルカリ金属塩及び有機アルカリ土類金属塩の有機金属塩系難燃剤、シリコーン系難燃剤並びにリン系難燃剤を用いることが好ましい。難燃剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
 難燃剤の含有量は、ポリカーボネート樹脂100質量部に対して好ましくは0.005~12質量部であり、より好ましくは0.01~10質量部であり、さらに好ましくは0.15~9質量部である。難燃剤の含有量が0.005質量部以上であれば十分な難燃性が得ることができ、12質量部以下であれば十分な機械物性を得ることができる。
(Flame retardants)
Examples of the flame retardant include organic metal salt flame retardants such as organic alkali metal salts and organic alkaline earth metal salts, silicone flame retardants, phosphorus flame retardants, and phosphazene flame retardants. Among these, it is preferable to use organic metal salt flame retardants of organic alkali metal salts and organic alkaline earth metal salts, silicone flame retardants, and phosphorus flame retardants. A flame retardant may be used individually by 1 type and may use 2 or more types together.
The content of the flame retardant is preferably 0.005 to 12 parts by mass, more preferably 0.01 to 10 parts by mass, and further preferably 0.15 to 9 parts by mass with respect to 100 parts by mass of the polycarbonate resin. It is. If the content of the flame retardant is 0.005 parts by mass or more, sufficient flame retardancy can be obtained, and if it is 12 parts by mass or less, sufficient mechanical properties can be obtained.
〈有機金属塩系難燃剤〉
 上記有機金属塩系難燃剤は、好ましくは有機アルカリ金属塩及び有機アルカリ土類金属塩である。
 有機アルカリ金属塩及び有機アルカリ土類金属塩としては種々のものが挙げられるが、少なくとも一つの炭素原子を有する有機酸又は有機酸エステルのアルカリ金属塩及び有機アルカリ土類金属塩を使用することができる。
 ここで、有機酸又は有機酸エステルは、例えば、有機スルホン酸、有機カルボン酸等である。また、アルカリ金属は、リチウム、ナトリウム、カリウム、セシウム等、アルカリ土類金属は、マグネシウム、カルシウム、ストロンチウム、バリウム等であり、この中で、ナトリウム、カリウムの塩が好ましく用いられる。また、その有機酸の塩は、フッ素、塩素、臭素のようなハロゲンが置換されていてもよい。有機アルカリ金属塩及び有機アルカリ土類金属塩は、1種を単独で使用してもよく、2種以上を併用してもよい。
<Organic metal salt flame retardant>
The organometallic salt flame retardant is preferably an organic alkali metal salt or an organic alkaline earth metal salt.
Examples of organic alkali metal salts and organic alkaline earth metal salts include various kinds of organic alkali metal salts and organic alkaline earth metal salts of organic acids or organic acid esters having at least one carbon atom. it can.
Here, the organic acid or the organic acid ester is, for example, an organic sulfonic acid, an organic carboxylic acid, or the like. The alkali metal is lithium, sodium, potassium, cesium or the like, and the alkaline earth metal is magnesium, calcium, strontium, barium or the like. Among these, sodium and potassium salts are preferably used. The salt of the organic acid may be substituted with a halogen such as fluorine, chlorine or bromine. An organic alkali metal salt and an organic alkaline earth metal salt may be used individually by 1 type, and may use 2 or more types together.
 上記各種の有機アルカリ金属塩及び有機アルカリ土類金属塩の中で、例えば、有機スルホン酸の場合、下記一般式(I)で表されるパーフルオロアルカンスルホン酸のアルカリ金属塩及びアルカリ土類金属塩が好ましく用いられる。
     (Ce2e+1SO3f M    (I)
 式中、eは1~10の整数を示し、Mはリチウム、ナトリウム、カリウム、セシウム等のアリカリ金属、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属を示し、fはMの原子価を示す。
 これらの化合物としては、例えば、特公昭47-40445号公報に記載されているものがこれに該当する。
Among the various organic alkali metal salts and organic alkaline earth metal salts, for example, in the case of organic sulfonic acid, alkali metal salts and alkaline earth metals of perfluoroalkanesulfonic acid represented by the following general formula (I) A salt is preferably used.
(C e F 2e + 1 SO 3 ) f M (I)
In the formula, e represents an integer of 1 to 10, M represents an alkaline metal such as lithium, sodium, potassium or cesium, or an alkaline earth metal such as magnesium, calcium, strontium or barium, and f represents the valence of M. Show.
As these compounds, for example, those described in Japanese Patent Publication No. 47-40445 correspond to this.
 上記一般式(I)において、パーフルオロアルカンスルホン酸としては、例えば、パーフルオロメタンスルホン酸、パーフルオロエタンスルホン酸、パーフルオロプロパンスルホン酸、パーフルオロブタンスルホン酸、パーフルオロメチルブタンスルホン酸、パーフルオロヘキサンスルホン酸、パーフルオロヘプタンスルホン酸、パーフルオロオクタンスルホン酸等を挙げることができる。特に、これらのカリウム塩が好ましく用いられる。 In the general formula (I), examples of the perfluoroalkanesulfonic acid include perfluoromethanesulfonic acid, perfluoroethanesulfonic acid, perfluoropropanesulfonic acid, perfluorobutanesulfonic acid, perfluoromethylbutanesulfonic acid, Fluorohexanesulfonic acid, perfluoroheptanesulfonic acid, perfluorooctanesulfonic acid and the like can be mentioned. In particular, these potassium salts are preferably used.
 上記一般式(I)以外の有機スルホン酸のアルカリ金属塩及びアルカリ土類金属塩として、例えば、2,5-ジクロロベンゼンスルホン酸、2,4,5-トリクロロベンゼンスルホン酸、ジフェニルスルホン-3-スルホン酸、ジフェニルスルホン-3,3’-ジスルホン酸、ナフタレントリスルホン酸等の有機スルホン酸のアルカリ金属塩及びアルカリ土類金属塩等を挙げることができる。 Examples of alkali metal salts and alkaline earth metal salts of organic sulfonic acids other than the above general formula (I) include 2,5-dichlorobenzenesulfonic acid, 2,4,5-trichlorobenzenesulfonic acid, diphenylsulfone-3- Examples thereof include alkali metal salts and alkaline earth metal salts of organic sulfonic acids such as sulfonic acid, diphenylsulfone-3,3′-disulfonic acid and naphthalenetrisulfonic acid.
 また、有機カルボン酸としては、例えば、パーフルオロ蟻酸、パーフルオロメタンカルボン酸、パーフルオロエタンカルボン酸、パーフルオロプロパンカルボン酸、パーフルオロブタンカルボン酸、パーフルオロメチルブタンカルボン酸、パーフルオロヘキサンカルボン酸、パーフルオロヘプタンカルボン酸、パーフルオロオクタンカルボン酸等を挙げることができ、これら有機カルボン酸のアルカリ金属塩及びアルカリ土類金属塩を用いることができる。 Examples of the organic carboxylic acid include perfluoroformic acid, perfluoromethanecarboxylic acid, perfluoroethanecarboxylic acid, perfluoropropanecarboxylic acid, perfluorobutanecarboxylic acid, perfluoromethylbutanecarboxylic acid, perfluorohexanecarboxylic acid. Perfluoroheptanecarboxylic acid, perfluorooctanecarboxylic acid, and the like, and alkali metal salts and alkaline earth metal salts of these organic carboxylic acids can be used.
 次に、有機アルカリ金属塩及び有機アルカリ土類金属塩として、ポリスチレンスルホン酸のアルカリ金属塩及びアルカリ土類金属塩を挙げることができ、例えば、下記一般式(II)で表わされるスルホン酸塩基含有芳香族ビニル系樹脂を用いることができる。 Next, examples of the organic alkali metal salt and the organic alkaline earth metal salt include polystyrene sulfonic acid alkali metal salts and alkaline earth metal salts. For example, sulfonate group-containing compounds represented by the following general formula (II): Aromatic vinyl resins can be used.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(II)中、Z1はスルホン酸塩基、Z2は水素原子又は炭素数1~10の炭化水素基を示す。gは1~5の整数である。hはモル分率を表し、0<h≦1である。
 ここで、スルホン酸塩基はスルホン酸のアルカリ金属塩及び/又はアルカリ土類金属塩であり、金属としては、ナトリウム、カリウム、リチウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられる。
 式中、Z2は水素原子又は炭素数1~10の炭化水素基であり、好ましくは水素原子又はメチル基である。また、gは1~5の整数であり、hは、0<h≦1の関係である。すなわち、スルホン酸塩基(Z1)は、芳香環に対して、全置換したものであっても、部分置換したものであってもよい。
In the above formula (II), Z 1 represents a sulfonate group, Z 2 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms. g is an integer of 1 to 5. h represents a mole fraction, and 0 <h ≦ 1.
Here, the sulfonate group is an alkali metal salt and / or alkaline earth metal salt of sulfonic acid, and examples of the metal include sodium, potassium, lithium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium and the like. It is done.
In the formula, Z 2 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, preferably a hydrogen atom or a methyl group. Further, g is an integer of 1 to 5, and h has a relationship of 0 <h ≦ 1. That is, the sulfonate group (Z 1 ) may be a fully substituted or partially substituted aromatic ring.
 本発明のポリカーボネート樹脂組成物の難燃性の効果をより高めるために、スルホン酸塩基の置換比率は、スルホン酸塩基含有芳香族ビニル系樹脂の含有量等を考慮して決定され、一般的には10~100%置換のものが用いられる。
 なお、ポリスチレンスルホン酸のアルカリ金属塩及びアルカリ土類金属塩において、スルホン酸塩基含有芳香族ビニル系樹脂は、上記一般式(II)のポリスチレン樹脂に限定されるものではなく、スチレン系単量体と共重合可能な他の単量体との共重合体であってもよい。
In order to further enhance the flame retardancy effect of the polycarbonate resin composition of the present invention, the substitution ratio of the sulfonate group is determined in consideration of the content of the sulfonate group-containing aromatic vinyl resin, and is generally Is used with 10 to 100% substitution.
In addition, in the alkali metal salt and alkaline earth metal salt of polystyrene sulfonic acid, the sulfonate group-containing aromatic vinyl resin is not limited to the polystyrene resin of the above general formula (II), but a styrene monomer It may be a copolymer with other monomer copolymerizable with.
 ここで、スルホン酸塩基含有芳香族ビニル系樹脂の製造方法としては、(1)上記のスルホン酸基等を有する芳香族ビニル系単量体、又はこれらと共重合可能な他の単量体とを重合又は共重合する方法、(2)芳香族ビニル系重合体、又は芳香族ビニル系単量体と他の共重合可能な単量体との共重合体、又はこれらの混合重合体をスルホン化し、アルカリ金属化合物及び/又アルカリ土類金属化合物で中和する方法、等がある。
 例えば、上記(2)の方法としては、ポリスチレン樹脂の1,2-ジクロロエタン溶液に濃硫酸と無水酢酸の混合液を加えて加熱し、数時間反応することにより、ポリスチレンスルホン酸化物を製造する。次いで、スルホン酸基と当モル量の水酸化カリウム又は水酸化ナトリウムで中和することによりポリスチレンスルホン酸カリウム塩又はナトリウム塩を得ることができる。
 本発明で用いる、スルホン酸塩基含有芳香族ビニル系樹脂の重量平均分子量としては、1,000~300,000程度、好ましくは2,000~200,000程度である。なお、重量平均分子量は、GPC法で測定することができる。
Here, as a method for producing a sulfonate group-containing aromatic vinyl resin, (1) the above aromatic vinyl monomer having a sulfonic acid group or the like, or another monomer copolymerizable therewith (2) Aromatic vinyl polymer, copolymer of aromatic vinyl monomer and other copolymerizable monomer, or mixed polymer thereof is sulfone. And neutralizing with an alkali metal compound and / or an alkaline earth metal compound.
For example, in the above method (2), a polystyrene sulfone oxide is produced by adding a mixed solution of concentrated sulfuric acid and acetic anhydride to a 1,2-dichloroethane solution of polystyrene resin, heating and reacting for several hours. Then, polystyrene sulfonate potassium salt or sodium salt can be obtained by neutralizing with sulfonic acid group and equimolar amount of potassium hydroxide or sodium hydroxide.
The weight average molecular weight of the sulfonate group-containing aromatic vinyl resin used in the present invention is about 1,000 to 300,000, preferably about 2,000 to 200,000. The weight average molecular weight can be measured by the GPC method.
〈シリコーン系難燃剤〉
 上記シリコーン系難燃剤としては、例えば、シリコーン油、シリコーン樹脂等が挙げられ、また官能基を有するシリコーン化合物等が挙げられる。
 上記官能基を有するシリコーン化合物としては、種々の化合物があるが、例えば、官能基を有する(ポリ)オルガノシロキサン類が挙げられ、その骨格としては、下記一般式(III)で表される基本構造を有する重合体、共重合体である。
     R3aR4bSiO(4-a-b)/2      (III)
 上記式(III)中、R3は官能基含有基、R4は炭素数1~12の炭化水素基を示し、0<a≦3、0≦b<3、0<a+b≦3である。
 また、官能基としては、アルコキシ基、アリールオキシ、ポリオキシアルキレン基、水素原子、水酸基、カルボキシル基、シアノール基、アミノ基、メルカプト基、エポキシ基等が挙げられる。
 これら官能基としては、複数の官能基を有するシリコーン化合物、異なる官能基を有するシリコーン化合物を併用することもできる。この官能基を有するシリコーン化合物は、その官能基(R3)/炭化水素基(R4)が、通常0.1~3、好ましくは0.3~2程度のものである。これらシリコーン化合物は液状物、パウダー等であるが、溶融混練において分散性の良好なものが好ましい。たとえば、室温での粘度が10~500,000cst(センチストークス)程度の液状のものを例示できる。シリコーン化合物が官能基を有する場合には、シリコーン化合物が液状であっても、組成物に均一に分散するとともに、成形時や成形品の表面にブリードすることが少ない特徴がある。
<Silicone flame retardant>
Examples of the silicone flame retardant include silicone oil and silicone resin, and also include silicone compounds having a functional group.
The silicone compound having a functional group includes various compounds. Examples thereof include (poly) organosiloxanes having a functional group, and the skeleton thereof has a basic structure represented by the following general formula (III). It is a polymer and copolymer having
R 3 aR 4 bSiO (4-ab) / 2 (III)
In the above formula (III), R 3 represents a functional group-containing group, R 4 represents a hydrocarbon group having 1 to 12 carbon atoms, and 0 <a ≦ 3, 0 ≦ b <3, and 0 <a + b ≦ 3.
Examples of the functional group include an alkoxy group, aryloxy, polyoxyalkylene group, hydrogen atom, hydroxyl group, carboxyl group, cyanol group, amino group, mercapto group, and epoxy group.
As these functional groups, a silicone compound having a plurality of functional groups and a silicone compound having different functional groups can be used in combination. The silicone compound having this functional group has a functional group (R 3 ) / hydrocarbon group (R 4 ) of usually about 0.1 to 3, preferably about 0.3 to 2. These silicone compounds are liquids, powders and the like, but those having good dispersibility in melt kneading are preferred. For example, a liquid having a viscosity of about 10 to 500,000 cst (centistokes) at room temperature can be exemplified. When the silicone compound has a functional group, even if the silicone compound is in a liquid state, it is characterized by being uniformly dispersed in the composition and being less likely to bleed during molding or on the surface of the molded product.
〈リン系難燃剤〉
 上記リン系難燃剤としては、ハロゲンを含まないリン系難燃剤が好ましい。ハロゲンを含むと、成形時の有害ガスの発生、金型腐食の恐れや成形品の焼却時に有害物質を排出する恐れがあり、環境汚染、安全性の観点から好ましくない。
 ハロゲンを含まないリン系難燃剤としては、ハロゲン非含有有機リン系難燃剤がある。有機リン系難燃剤としては、リン原子を有し、ハロゲンを含まない有機化合物であれば特に制限なく用いることができる。中でも、リン原子に直接結合するエステル性酸素原子を1つ以上有するリン酸エステル化合物が好ましく用いられる。有機リン系化合物以外のハロゲン非含有リン系難燃剤としては、赤リン等がある。
 リン酸エステル化合物としては、特に制限はなく、例えば、下記一般式(IV)で表されるリン酸エステル化合物である。
<Phosphorus flame retardant>
As the phosphorus flame retardant, a phosphorus flame retardant containing no halogen is preferable. If halogen is contained, harmful gases may be generated during molding, mold corrosion may occur, and harmful substances may be discharged during incineration of molded products, which is not preferable from the viewpoint of environmental pollution and safety.
Examples of the phosphorus-based flame retardant containing no halogen include a halogen-free organic phosphorus-based flame retardant. As the organic phosphorus flame retardant, any organic compound having a phosphorus atom and not containing a halogen can be used without particular limitation. Of these, phosphate ester compounds having at least one ester oxygen atom directly bonded to a phosphorus atom are preferably used. Examples of halogen-free phosphorus flame retardants other than organic phosphorus compounds include red phosphorus.
There is no restriction | limiting in particular as a phosphate ester compound, For example, it is a phosphate ester compound represented with the following general formula (IV).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式中、R5、R6、R7及びR8は、それぞれ独立して、水素原子又は有機基を示し、Xは2価以上の有機基を示し、sは0又は1であり、tは1以上の整数であり、rは0以上の整数を示す。
 上記式(IV)において、有機基とは、置換されていても、いなくてもよいアルキル基、シクロアルキル基、アリール基等である。また置換されている場合の置換基としては、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールチオ基等がある。さらに、これらの置換基を組み合わせた基であるアリールアルコキシアルキル基等、又はこれらの置換基を酸素原子、窒素原子、イオウ原子等により結合して組み合わせたアリールスルホニルアリール基等を置換基としたもの等がある。
In the formula, R 5 , R 6 , R 7 and R 8 each independently represent a hydrogen atom or an organic group, X represents a divalent or higher valent organic group, s is 0 or 1, and t is It is an integer of 1 or more, and r represents an integer of 0 or more.
In the above formula (IV), the organic group is an alkyl group, a cycloalkyl group, an aryl group or the like, which may or may not be substituted. Examples of the substituent when substituted include an alkyl group, an alkoxy group, an aryl group, an aryloxy group, and an arylthio group. Further, an arylalkoxyalkyl group that is a combination of these substituents, or an arylsulfonylaryl group that is a combination of these substituents bonded by an oxygen atom, nitrogen atom, sulfur atom, or the like is used as a substituent. Etc.
 また、式(IV)において、2価以上の有機基Xとしては、上記した有機基から、炭素原子に結合している水素原子の1個以上を除いてできる2価以上の基を意味する。例えば、アルキレン基、(置換)フェニレン基、多核フェノール類であるビスフェノール類から誘導されるものである。好ましいものとしては、ビスフェノールA、ヒドロキノン、レゾルシノール、ジフェニルメタン、ジヒドロキシジフェニル及びジヒドロキシナフタレン等が挙げられる。 In the formula (IV), the divalent or higher organic group X means a divalent or higher valent group formed by removing one or more hydrogen atoms bonded to a carbon atom from the above organic group. For example, it is derived from an alkylene group, a (substituted) phenylene group, or a bisphenol that is a polynuclear phenol. Preferable examples include bisphenol A, hydroquinone, resorcinol, diphenylmethane, dihydroxydiphenyl and dihydroxynaphthalene.
 リン酸エステル化合物は、モノマー、ダイマー、オリゴマー、ポリマーあるいはこれらの混合物であってもよい。具体的には、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、トリ(2-エチルヘキシル)ホスフェート、ジイソプロピルフェニルホスフェート、トリキシレニルホスフェート、トリス(イソプロピルフェニル)ホスフェート、トリナフチルホスフェート、ビスフェノールAビスホスフェート、ヒドロキノンビスホスフェート、レゾルシンビスホスフェート、レゾルシノール-ジフェニルホスフェート、トリオキシベンゼントリホスフェート、クレジルジフェニルホスフェート、あるいはこれらの置換体、縮合物等が挙げられる。 The phosphate ester compound may be a monomer, dimer, oligomer, polymer or a mixture thereof. Specifically, trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, tri (2-ethylhexyl) phosphate, diisopropyl Phenyl phosphate, trixylenyl phosphate, tris (isopropylphenyl) phosphate, trinaphthyl phosphate, bisphenol A bisphosphate, hydroquinone bisphosphate, resorcin bisphosphate, resorcinol-diphenyl phosphate, trioxybenzene triphosphate, cresyl diphenyl phosphate, or these Substitutes, condensates, etc. It is below.
(難燃剤以外の添加剤)
 本発明のポリカーボネート樹脂組成物には、上記難燃剤以外の添加剤として、無機充填材、ヒンダードフェノール系、亜リン酸エステル系及びリン酸エステル系等の酸化防止剤、ベンゾトリアゾール系やベンゾフェノン系等の紫外線吸収剤、ヒンダードアミン系等の光安定剤、脂肪族カルボン酸エステル系やパラフィン系等の外部滑剤、着色剤、難燃助剤、帯電防止剤等を用いることができる。
(Additives other than flame retardants)
In the polycarbonate resin composition of the present invention, as additives other than the above flame retardants, inorganic fillers, hindered phenols, phosphites and phosphates, antioxidants, benzotriazoles and benzophenones UV stabilizers such as hindered amines, aliphatic carboxylic acid ester and paraffinic external lubricants, coloring agents, flame retardant aids, antistatic agents and the like can be used.
 上記無機充填材としては、様々なものを用いることができ、具体的には、ガラス材、炭素繊維、その他の無機充填材を用いることができる。
 先ず、ガラス材としては、例えば、ガラス繊維、ガラスビーズ、ガラスフレーク、ガラスパウダー等を用いることができる。ここで、用いられるガラス繊維としては、含アルカリガラス、低アルカリガラス、無アルカリガラスのいずれであってもよい。その繊維長は0.1~8mm程度、好ましくは0.3~6mmであって、また、繊維径は0.1~30μm程度、好ましくは0.5~25μmである。そして、このガラス繊維の形態は、特に制限はなく、例えば、ロービング、ミルドファイバー、チョップドストランド等各種のものが挙げられる。これらのガラス繊維は1種を単独で使用してもよく、2種以上を併用してもよい。
 また、ガラス材には、樹脂との親和性を高めるために、アミノシラン系、エポキシシラン系、ビニルシラン系、メタクリルシラン系等のシラン系カップリング剤、クロム錯化合物あるいはホウ素化合物等で表面処理されたものであってもよい。このようなガラス材としては、例えば、市販のものとして旭ファイバーグラス株式会社製のMA-409C(平均繊維径13μm)又はTA-409C(平均繊維径23μm)等を好適に用いることができる。
Various materials can be used as the inorganic filler, and specifically, glass materials, carbon fibers, and other inorganic fillers can be used.
First, as the glass material, for example, glass fibers, glass beads, glass flakes, glass powder, and the like can be used. Here, as a glass fiber used, any of an alkali-containing glass, a low alkali glass, and an alkali free glass may be sufficient. The fiber length is about 0.1 to 8 mm, preferably 0.3 to 6 mm, and the fiber diameter is about 0.1 to 30 μm, preferably 0.5 to 25 μm. And the form of this glass fiber does not have a restriction | limiting in particular, For example, various things, such as roving, a milled fiber, a chopped strand, are mentioned. These glass fibers may be used individually by 1 type, and may use 2 or more types together.
The glass material was surface-treated with a silane coupling agent such as aminosilane, epoxysilane, vinylsilane, or methacrylsilane, a chromium complex compound, or a boron compound in order to increase the affinity with the resin. It may be a thing. As such a glass material, for example, commercially available MA-409C (average fiber diameter 13 μm) or TA-409C (average fiber diameter 23 μm) manufactured by Asahi Fiber Glass Co., Ltd. can be suitably used.
 次に、炭素繊維としては、一般にセルロース繊維、アクリル繊維、リグニン、石油あるいは石炭系ピッチ等を原料として、焼成することによって製造されるものであって、耐炎質、炭素質あるいは黒鉛質等の種々のタイプのものがある。炭素繊維の繊維長は、0.01~10mm程度、好ましくは0.02~8mmの範囲にあり、また繊維径は1~15μm程度、好ましくは5~13μmである。そして、この炭素繊維の形態は、特に制限はなく、例えば、ロービング、ミルドファイバー、チョップドストランド、ストランド等各種のものが挙げられる。これらの炭素繊維は1種を単独で使用してもよく、2種以上を併用してもよい。
 また、これらの炭素繊維の表面は、樹脂との親和性を高めるために、エポキシ樹脂やウレタン樹脂等で表面処理が施されたものであってもよい。このような炭素繊維としては、例えば、市販のものとして東邦レーヨン株式会社製のベスファイト(平均繊維径7μm)等を好適に用いることができる。
Next, the carbon fiber is generally produced by firing using cellulose fiber, acrylic fiber, lignin, petroleum, coal-based pitch or the like as a raw material, and has various flame resistance, carbonaceous, graphite, etc. There are several types. The fiber length of the carbon fiber is about 0.01 to 10 mm, preferably 0.02 to 8 mm, and the fiber diameter is about 1 to 15 μm, preferably 5 to 13 μm. The form of the carbon fiber is not particularly limited, and examples thereof include various types such as roving, milled fiber, chopped strand, and strand. These carbon fibers may be used individually by 1 type, and may use 2 or more types together.
Further, the surface of these carbon fibers may be subjected to a surface treatment with an epoxy resin, a urethane resin or the like in order to increase the affinity with the resin. As such a carbon fiber, for example, Besfight (average fiber diameter: 7 μm) manufactured by Toho Rayon Co., Ltd. can be suitably used as a commercially available product.
 その他の無機充填材としては、例えば、アルミニウム繊維、炭酸カルシウム、炭酸マグネシウム、ドロマイト、シリカ、珪藻土、アルミナ、酸化チタン、酸化鉄、酸化亜鉛、酸化マグネシウム、硫酸カルシウム、硫酸マグネシウム、亜硫酸カルシウム、タルク、クレー、マイカ、アスベスト、珪酸カルシウム、モンモリロナイト、ベントナイト、カーボンブラック、グラファイト、鉄粉、鉛粉、アルミニウム粉等を用いることもできる。 Other inorganic fillers include, for example, aluminum fibers, calcium carbonate, magnesium carbonate, dolomite, silica, diatomaceous earth, alumina, titanium oxide, iron oxide, zinc oxide, magnesium oxide, calcium sulfate, magnesium sulfate, calcium sulfite, talc, Clay, mica, asbestos, calcium silicate, montmorillonite, bentonite, carbon black, graphite, iron powder, lead powder, aluminum powder and the like can also be used.
 ポリカーボネート樹脂組成物は、前述のPC樹脂及び各種添加剤を、通常用いられている方法、例えば、リボンブレンダー、ヘンシェルミキサー(商品名)、バンバリーミキサー、ドラムタンブラー、単軸スクリュー押出機、二軸スクリュー押出機、コニーダ、多軸スクリュー押出機等を用いる方法により配合し混練を行うことで得られる。混練に際しての加熱温度は、通常250~300℃の範囲で選ばれる。 The polycarbonate resin composition is a method in which the above-mentioned PC resin and various additives are usually used, for example, a ribbon blender, a Henschel mixer (trade name), a Banbury mixer, a drum tumbler, a single screw extruder, a twin screw. It can be obtained by mixing and kneading by a method using an extruder, a kneader, a multi-screw extruder or the like. The heating temperature at the time of kneading is usually selected in the range of 250 to 300 ° C.
[成形品]
 また、本発明は前述のポリカーボネート樹脂又は前述のポリカーボネート樹脂組成物を成形した成形品を提供する。とりわけ成形流動性を保持しつつ、溶融張力が向上し、耐ドリップ性に優れるというPC樹脂の特性から、成形法としてブロー成形が好適であり、ブロー成形した成形品を提供する。
[Molding]
Moreover, this invention provides the molded article which shape | molded the above-mentioned polycarbonate resin or the above-mentioned polycarbonate resin composition. In particular, blow molding is suitable as a molding method from the characteristics of PC resin that melt tension is improved and drip resistance is excellent while maintaining molding fluidity, and a blow molded molded article is provided.
 ポリカーボネート樹脂又はポリカーボネート樹脂組成物は、上記ブロー成形の他に既知の種々の成形法、例えば、射出成形、押出成形、圧縮成形、カレンダー成形、回転成形等を適用することができる。これら成形法により、例えば、照明カバーやディスプレイ用保護カバー、OA機器、電気電子分野等の各種工業用途の成形品を製造することができる。 For the polycarbonate resin or the polycarbonate resin composition, various known molding methods such as injection molding, extrusion molding, compression molding, calendar molding, rotational molding and the like can be applied in addition to the above blow molding. By these molding methods, for example, molded articles for various industrial uses such as lighting covers, protective covers for displays, OA equipment, and electrical and electronic fields can be manufactured.
 本発明のポリカーボネート樹脂は、成形流動性を保持しつつ、溶融張力が向上し、耐ドリップ性に優れることから、該ポリカーボネート樹脂及びこれを含むポリカーボネート樹脂組成物は、耐ドリップ性を得るために不透明の原因となるPTFE等の添加剤を必要としない。そのため、本発明のポリカーボネート樹脂及びこれを含むポリカーボネート樹脂組成物を用いることにより透明性及び難燃性に優れた成形品を与えることができる。 The polycarbonate resin of the present invention has improved melt tension and excellent drip resistance while maintaining molding fluidity. Therefore, the polycarbonate resin and the polycarbonate resin composition containing the polycarbonate resin are opaque in order to obtain drip resistance. No additive such as PTFE is required. Therefore, a molded article excellent in transparency and flame retardancy can be provided by using the polycarbonate resin of the present invention and the polycarbonate resin composition containing the polycarbonate resin.
 以下の実施例により、本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 The following examples further illustrate the present invention, but the present invention is not limited to these examples.
[物性測定方法]
(一次構造)
・粘度平均分子量:Mv
 ウベローデ型粘度計を用いて、20℃における塩化メチレン溶液の粘度を測定し、これより極限粘度[η]を求め、[η]=1.23×10-5Mv0.83の式により、粘度平均分子量(Mv)を算出した。
・分岐剤含有率
 得られたフレークについて日本電子株式会社製、JNM-LA500を用い、1H-NMRを測定し、次の式により使用した分岐剤の分岐剤含有率(mol%)を算出した。
分岐剤含有率(mol%)=[分岐剤由来の構成単位(mol)/〔二価フェノール由来の構成単位(mol)+末端停止剤由来の構成単位(mol)+分岐剤由来の構成単位(mol)〕]×100
(溶融特性)
・溶融流動性:MVR
 安田精機株式会社製、機器名MFR計 E号機を用い、280℃、荷重2.16 kgで、溶融流動性MVR(cm3/10分)を測定した。
・溶融張力:MT
 株式会社東洋精機製作所製、機器名 キャピログラフ1Cを用い、280℃、オリフィス径L/D=8/2.095mm、押出速度10mm/分、引取速度3.1m/分で、溶融張力MT(g)を測定した。
[Physical property measurement method]
(Primary structure)
Viscosity average molecular weight: Mv
Using an Ubbelohde viscometer, the viscosity of a methylene chloride solution at 20 ° C. obtained by determining the intrinsic viscosity [eta], the equation [η] = 1.23 × 10 -5 Mv 0.83, viscosity average molecular weight (Mv) was calculated.
-Branching agent content rate Using the JNM-LA500 by JEOL Co., Ltd., 1H-NMR was measured about the obtained flakes, and the branching agent content rate (mol%) of the branching agent used was computed by the following formula.
Branching agent content (mol%) = [constituent unit derived from branching agent (mol) / [constituent unit derived from dihydric phenol (mol) + constituent unit derived from terminal terminator (mol) + constituent unit derived from branching agent ( mol)]] × 100
(Melting characteristics)
-Melt fluidity: MVR
Yasuda Seiki Co., Ltd., using instrument names MFR meter E Unit, at 280 ° C., load 2.16 kg, was measured melt flowability MVR (cm 3/10 min).
Melt tension: MT
Made by Toyo Seiki Seisakusho Co., Ltd. Equipment name Capillograph 1C is used, 280 ° C., orifice diameter L / D = 8 / 2.095 mm, extrusion speed 10 mm / min, take-up speed 3.1 m / min, melt tension MT (g) Was measured.
実施例1
(1)ポリカーボネートオリゴマー合成工程(リニアオリゴマー)
 5.6質量%水酸化ナトリウム水溶液に、後に溶解するビスフェノールA(以下、BPAと略記することがある)に対して2,000質量ppmの亜二チオン酸ナトリウムを加え、これにビスフェノールA濃度が13.5質量%になるようにビスフェノールAを溶解し、ビスフェノールAの水酸化ナトリウム水溶液を調製した。
 ビスフェノールAの水酸化ナトリウム水溶液40L/hrとジクロロメタン15L/hr及びホスゲン4.0kg/hrを、内径6mm、管長30mの管型反応器に連続的に通した。管型反応器はジャケット部分を有しており、ジャケットに冷却水を通して反応液の温度を40℃以下に保った。
 管型反応器を出た反応液は後退翼を備えた内容積40Lのバッフル付き槽型反応器へ連続的に導入し、これにさらにビスフェノールAの水酸化ナトリウム水溶液2.8L/hr、25質量%水酸化ナトリウム水溶液0.07L/hr、水17L/hr及び1質量%トリエチルアミン水溶液を0.64L/hrを添加して反応を行なった。
 槽型反応器から溢れる反応液を連続的に抜出し、静置することで水相を分離除去し、ジクロロメタン相を採取した。得られたポリカーボネートオリゴマーは濃度324g/L、クロロホーメート基濃度は0.74mol/Lであった。
Example 1
(1) Polycarbonate oligomer synthesis process (linear oligomer)
To a 5.6 mass% aqueous sodium hydroxide solution, 2,000 mass ppm of sodium dithionite is added to bisphenol A (hereinafter sometimes abbreviated as BPA) which is dissolved later, and the concentration of bisphenol A is added thereto. Bisphenol A was dissolved to 13.5% by mass to prepare an aqueous sodium hydroxide solution of bisphenol A.
An aqueous sodium hydroxide solution of 40 L / hr of bisphenol A, 15 L / hr of dichloromethane and 4.0 kg / hr of phosgene were continuously passed through a tubular reactor having an inner diameter of 6 mm and a tube length of 30 m. The tubular reactor had a jacket portion, and the temperature of the reaction solution was kept at 40 ° C. or lower by passing cooling water through the jacket.
The reaction solution exiting the tubular reactor was continuously introduced into a 40-liter baffled tank reactor equipped with a receding blade, and bisphenol A aqueous sodium hydroxide solution 2.8 L / hr, 25 mass. The reaction was carried out by adding 0.64 L / hr of 0.07 L / hr of% sodium hydroxide aqueous solution, 17 L / hr of water and 1% by mass triethylamine aqueous solution.
The reaction solution overflowing from the tank reactor was continuously extracted and allowed to stand to separate and remove the aqueous phase, and the dichloromethane phase was collected. The polycarbonate oligomer obtained had a concentration of 324 g / L and a chloroformate group concentration of 0.74 mol / L.
(2)ポリカーボネートの重合工程
 邪魔板、パドル型攪拌翼を備えた1L槽型反応器に、オリゴマー溶液340mL、ジクロロメタン180mL、トリエチルアミン70μLを投入した。
 ここに、分岐剤2,2’,4,4’-テトラヒドロキシベンゾフェノン(THBP)の水酸化ナトリウム水溶液(水酸化ナトリウム2.35gを水34mLに溶解した水溶液に、THBP1.30gを溶解した)を添加し、10分間重合反応を実施した。
 続けて、ジクロロメタン30mLにp-tert-ブチルフェノール(PTBP)4.92gを溶解した溶液とBPAの水酸化ナトリウム水溶液(水酸化ナトリウム13.1gを水190mLに溶解し、亜二チオン酸ナトリウム50mg、BPA25.2gを溶解させたもの)を添加し50分間重合反応を実施した。
 希釈のためジクロロメタン200mLを加えた後、ポリカーボネート樹脂を含む有機相と過剰のBPA及び水酸化ナトリウムを含む水相に分離し、有機相を単離した。得られたポリカーボネート樹脂のジクロロメタン溶液を、その溶液に対し順次15容量%の0.03mol/L・水酸化ナトリウム水溶液と0.2mol/L塩酸で洗浄し、次いで洗浄後の水相中の電気伝導度が0.05μS/m以下になるまで純水で洗浄を繰り返した。洗浄により得られたポリカーボネート樹脂のジクロロメタン溶液を濃縮・粉砕し、得られたフレークを減圧下、100℃で乾燥し、ポリカーボネート樹脂を得た。
 得られたポリカーボネート樹脂について、前記の方法で行った粘度平均分子量、分岐剤含有率、溶融張力、溶融流動性を表1に示す。さらに、図1に溶融張力と溶融流動性との関係(MT)×(1/MVR)を示す。
(2) Polycarbonate polymerization step Into a 1 L tank reactor equipped with baffle plates and paddle type stirring blades, 340 mL of oligomer solution, 180 mL of dichloromethane, and 70 μL of triethylamine were charged.
Here, a sodium hydroxide aqueous solution of branching agent 2,2 ′, 4,4′-tetrahydroxybenzophenone (THBP) (THBP 1.30 g was dissolved in an aqueous solution in which 2.35 g of sodium hydroxide was dissolved in 34 mL of water) was added. The polymerization reaction was carried out for 10 minutes.
Subsequently, a solution obtained by dissolving 4.92 g of p-tert-butylphenol (PTBP) in 30 mL of dichloromethane and an aqueous sodium hydroxide solution of BPA (13.1 g of sodium hydroxide were dissolved in 190 mL of water, 50 mg of sodium dithionite, BPA 25 (2 g dissolved) was added and the polymerization reaction was carried out for 50 minutes.
After adding 200 mL of dichloromethane for dilution, the organic phase was separated into an organic phase containing polycarbonate resin and an aqueous phase containing excess BPA and sodium hydroxide, and the organic phase was isolated. The dichloromethane solution of the obtained polycarbonate resin was sequentially washed with 15% by volume of 0.03 mol / L / sodium hydroxide aqueous solution and 0.2 mol / L hydrochloric acid, and then the electric conduction in the aqueous phase after washing. The washing was repeated with pure water until the degree became 0.05 μS / m or less. The dichloromethane solution of the polycarbonate resin obtained by washing was concentrated and pulverized, and the obtained flakes were dried at 100 ° C. under reduced pressure to obtain a polycarbonate resin.
Table 1 shows the viscosity average molecular weight, branching agent content, melt tension, and melt fluidity of the obtained polycarbonate resin. Further, FIG. 1 shows a relationship (MT) × (1 / MVR) between melt tension and melt fluidity.
比較例1
(1)ポリカーボネートオリゴマー合成工程(分岐オリゴマー)
 5.6質量%水酸化ナトリウム水溶液に、後に溶解するビスフェノールA(以下、BPAと略記することがある)に対して2,000質量ppmの亜二チオン酸ナトリウムを加え、これにビスフェノールA濃度が13.5質量%になるようにビスフェノールAを溶解し、ビスフェノールAの水酸化ナトリウム水溶液を調製した。また5.1質量%水酸化ナトリウム水溶液に、後に溶解する分岐剤1,1,1-トリス(4-ヒドロキシフェニル)エタン(THPE)に対して4,000質量ppmの亜二チオン酸ナトリウムを加え、これにTHPE濃度が11.3質量%になるように溶解し、THPEの水酸化ナトリウム水溶液を調製した。
 ビスフェノールAの水酸化ナトリウム水溶液40L/hrとTHPEの水酸化ナトリウム水溶液1.4L/hr、ジクロロメタン15L/hr及びホスゲン4.0kg/hrを、内径6mm、管長30mの管型反応器に連続的に通した。管型反応器はジャケット部分を有しており、ジャケットに冷却水を通して反応液の温度を40℃以下に保った。
 管型反応器を出た反応液は後退翼を備えた内容積40Lのバッフル付き槽型反応器へ連続的に導入し、これにさらにビスフェノールAの水酸化ナトリウム水溶液2.8L/hr、25質量%水酸化ナトリウム水溶液0.07L/hr、水17L/hr及び1質量%トリエチルアミン水溶液を0.64L/hrを添加して反応を行なった。
 槽型反応器から溢れる反応液を連続的に抜出し、静置することで水相を分離除去し、ジクロロメタン相を採取した。得られたポリカーボネートオリゴマーは濃度354g/L、クロロホーメート基濃度は0.70mol/Lであった。
Comparative Example 1
(1) Polycarbonate oligomer synthesis process (branched oligomer)
To a 5.6 mass% aqueous sodium hydroxide solution, 2,000 mass ppm of sodium dithionite is added to bisphenol A (hereinafter sometimes abbreviated as BPA) which is dissolved later, and the concentration of bisphenol A is added thereto. Bisphenol A was dissolved to 13.5% by mass to prepare an aqueous sodium hydroxide solution of bisphenol A. In addition, 5,000 mass ppm sodium dithionite was added to a 5.1 mass% aqueous sodium hydroxide solution with respect to the branching agent 1,1,1-tris (4-hydroxyphenyl) ethane (THPE) that was dissolved later. This was dissolved in a THPE concentration of 11.3% by mass to prepare a THPE aqueous solution of sodium hydroxide.
40 L / hr of sodium hydroxide aqueous solution of bisphenol A, 1.4 L / hr of sodium hydroxide aqueous solution of THPE, 15 L / hr of dichloromethane and 4.0 kg / hr of phosgene were continuously added to a tubular reactor having an inner diameter of 6 mm and a tube length of 30 m. I passed. The tubular reactor had a jacket portion, and the temperature of the reaction solution was kept at 40 ° C. or lower by passing cooling water through the jacket.
The reaction solution exiting the tubular reactor was continuously introduced into a 40-liter baffled tank reactor equipped with a receding blade, and bisphenol A aqueous sodium hydroxide solution 2.8 L / hr, 25 mass. The reaction was carried out by adding 0.64 L / hr of 0.07 L / hr of% sodium hydroxide aqueous solution, 17 L / hr of water and 1% by mass triethylamine aqueous solution.
The reaction solution overflowing from the tank reactor was continuously extracted and allowed to stand to separate and remove the aqueous phase, and the dichloromethane phase was collected. The obtained polycarbonate oligomer had a concentration of 354 g / L and a chloroformate group concentration of 0.70 mol / L.
(2)ポリカーボネートの重合工程
 邪魔板、パドル型攪拌翼を備えた1L槽型反応器に、オリゴマー溶液310mL、ジクロロメタン210mL、p-tert-ブチルフェノール(PTBP)3.66g、トリエチルアミン60μLを投入した。
 ここに、BPAの水酸化ナトリウム水溶液(水酸化ナトリウム11.3gを水165mLに溶解し、亜二チオン酸ナトリウム50mg、BPA21.8gを溶解させたもの)を添加し60分間重合反応を実施した。
 希釈のためジクロロメタン200mLを加えた後、ポリカーボネート樹脂を含む有機相と過剰のBPA及び水酸化ナトリウムを含む水相に分離し、有機相を単離した。得られたポリカーボネート樹脂のジクロロメタン溶液を、その溶液に対し順次15容量%の0.03mol/L・NaOH水溶液と0.2mol/L塩酸で洗浄し、次いで洗浄後の水相中の電気伝導度が0.05μS/m以下になるまで純水で洗浄を繰り返した。洗浄により得られたポリカーボネート樹脂のジクロロメタン溶液を濃縮・粉砕し、得られたフレークを減圧下、100℃で乾燥し、ポリカーボネート樹脂を得た。
 得られたポリカーボネート樹脂について、前記の方法で行った粘度平均分子量、分岐剤含有率、溶融張力、溶融流動性を表1に示す。さらに、図1に溶融張力と溶融流動性との関係(MT)×(1/MVR)を示す。なお、THPEは流通反応系にて連続投入したことから、表1において分岐剤量[g]は「-」で示した。
(2) Polycarbonate polymerization step A 1 L tank reactor equipped with baffle plates and paddle type stirring blades was charged with 310 mL of oligomer solution, 210 mL of dichloromethane, 3.66 g of p-tert-butylphenol (PTBP), and 60 μL of triethylamine.
A sodium hydroxide aqueous solution of BPA (11.3 g of sodium hydroxide dissolved in 165 mL of water and 50 mg of sodium dithionite and 21.8 g of BPA) was added thereto, and a polymerization reaction was carried out for 60 minutes.
After adding 200 mL of dichloromethane for dilution, the organic phase was separated into an organic phase containing polycarbonate resin and an aqueous phase containing excess BPA and sodium hydroxide, and the organic phase was isolated. The obtained polycarbonate resin solution in dichloromethane was washed successively with 15% by volume of 0.03 mol / L · NaOH aqueous solution and 0.2 mol / L hydrochloric acid, and the electric conductivity in the aqueous phase after washing was Washing with pure water was repeated until the concentration became 0.05 μS / m or less. The dichloromethane solution of the polycarbonate resin obtained by washing was concentrated and pulverized, and the obtained flakes were dried at 100 ° C. under reduced pressure to obtain a polycarbonate resin.
Table 1 shows the viscosity average molecular weight, branching agent content, melt tension, and melt fluidity of the obtained polycarbonate resin. Further, FIG. 1 shows a relationship (MT) × (1 / MVR) between melt tension and melt fluidity. Since THPE was continuously charged in the flow reaction system, the amount of branching agent [g] in Table 1 is indicated by “−”.
実施例2~15及び比較例3~10
 実施例1において、分岐剤種、分岐剤量、PTBP量をそれぞれ表1に従って変更した以外は、実施例1と同様に実施した。
 得られたポリカーボネート樹脂について、前記の方法で行った粘度平均分子量、分岐剤含有率、溶融張力、溶融流動性を表1に示す。さらに、図1に溶融張力と溶融流動性との関係(MT)×(1/MVR)を示す。
Examples 2 to 15 and Comparative Examples 3 to 10
In Example 1, it carried out like Example 1 except having changed the branching agent seed | species, the amount of branching agents, and the amount of PTBP according to Table 1, respectively.
Table 1 shows the viscosity average molecular weight, branching agent content, melt tension, and melt fluidity of the obtained polycarbonate resin. Further, FIG. 1 shows a relationship (MT) × (1 / MVR) between melt tension and melt fluidity.
比較例2
 比較例1において、PTBP量を表1に従って変更した以外は、比較例1と同様に実施した。
 得られたポリカーボネート樹脂について、前記の方法で行った粘度平均分子量、分岐剤含有率、溶融張力、溶融流動性を表1に示す。さらに、図1に溶融張力と溶融流動性との関係(MT)×(1/MVR)を示す。
Comparative Example 2
The same operation as in Comparative Example 1 was performed except that the amount of PTBP was changed according to Table 1 in Comparative Example 1.
Table 1 shows the viscosity average molecular weight, branching agent content, melt tension, and melt fluidity of the obtained polycarbonate resin. Further, FIG. 1 shows a relationship (MT) × (1 / MVR) between melt tension and melt fluidity.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明のポリカーボネート樹脂は、成形流動性を保持しつつ、溶融張力が向上し、耐ドリップ性に優れることから、該ポリカーボネート樹脂及びこれを含むポリカーボネート樹脂組成物は、透明性及び難燃性に優れた成形品を与えることができ、例えば、照明カバーやディスプレイ用保護カバー、OA機器、電気電子分野等の各種工業用途に好適である。 The polycarbonate resin of the present invention is excellent in transparency and flame retardancy because the polycarbonate resin and the polycarbonate resin composition containing the polycarbonate resin and the polycarbonate resin composition are excellent in drip resistance because the melt tension is improved while maintaining the molding fluidity. For example, it is suitable for various industrial uses such as lighting covers, protective covers for displays, OA equipment, and electric and electronic fields.
1 MT=(15.4/MVR)-1.3 の直線
2 MT=(57.14/MVR)-1.3 の直線
3 MT=(20.6/MVR)-2.1 の直線
1 MT = (15.4 / MVR) −1.3 straight line 2 MT = (57.14 / MVR) −1.3 straight line 3 MT = (20.6 / MVR) −2.1 straight line

Claims (8)

  1.  280℃における溶融張力MT[g]と、280℃における溶融流動性MVR[cm3/10分]との関係が、次の式(1)~(3)を満たすポリカーボネート樹脂。
      式(1):MT≧(15.4/MVR)-1.3
      式(2):MT≦(57.4/MVR)-1.3
      式(3):MT≧1
    A melt tension MT [g] at 280 ° C., the relationship between the melt flow MVR [cm 3/10 min] at 280 ° C. has the following formula (1) to (3) Polycarbonate resin satisfying.
    Formula (1): MT ≧ (15.4 / MVR) −1.3
    Formula (2): MT ≦ (57.4 / MVR) −1.3
    Formula (3): MT ≧ 1
  2.  分岐構造を有するポリカーボネート樹脂からなる、請求項1に記載のポリカーボネート樹脂。 The polycarbonate resin according to claim 1, comprising a polycarbonate resin having a branched structure.
  3.  分岐構造を有するポリカーボネート樹脂と直鎖状のポリカーボネート樹脂とからなる、請求項1に記載のポリカーボネート樹脂。 The polycarbonate resin according to claim 1, comprising a polycarbonate resin having a branched structure and a linear polycarbonate resin.
  4.  4官能以上の分岐剤含有率が0.5~2.0mol%であり、粘度平均分子量が18,000~28,000であるポリカーボネート樹脂。 Polycarbonate resin having a tetrafunctional or higher functional branching agent content of 0.5 to 2.0 mol% and a viscosity average molecular weight of 18,000 to 28,000.
  5.  請求項1~4のいずれかに記載のポリカーボネート樹脂及び添加剤を含有する、ポリカーボネート樹脂組成物。 A polycarbonate resin composition comprising the polycarbonate resin according to any one of claims 1 to 4 and an additive.
  6.  前記添加剤が難燃剤である、請求項5に記載のポリカーボネート樹脂組成物。 The polycarbonate resin composition according to claim 5, wherein the additive is a flame retardant.
  7.  請求項1~4のいずれかに記載のポリカーボネート樹脂、あるいは請求項5又は6に記載のポリカーボネート樹脂組成物を成形した成形品。 A molded product obtained by molding the polycarbonate resin according to any one of claims 1 to 4 or the polycarbonate resin composition according to claim 5 or 6.
  8.  ブロー成形した請求項7に記載の成形品。 The molded product according to claim 7, which is blow-molded.
PCT/JP2013/082110 2012-11-30 2013-11-28 Polycarbonate resin, polycarbonate resin composition and molded article WO2014084327A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380061947.7A CN104812796B (en) 2012-11-30 2013-11-28 Polycarbonate resin, polycarbonate resin composition, and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012263447A JP6163297B2 (en) 2012-11-30 2012-11-30 Polycarbonate resin, polycarbonate resin composition and molded product
JP2012-263447 2012-11-30

Publications (1)

Publication Number Publication Date
WO2014084327A1 true WO2014084327A1 (en) 2014-06-05

Family

ID=50827956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082110 WO2014084327A1 (en) 2012-11-30 2013-11-28 Polycarbonate resin, polycarbonate resin composition and molded article

Country Status (4)

Country Link
JP (1) JP6163297B2 (en)
CN (1) CN104812796B (en)
TW (1) TWI600678B (en)
WO (1) WO2014084327A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230951A1 (en) * 2018-06-01 2019-12-05 出光興産株式会社 Polycarbonate-based resin, production method therefor, and polycarbonate-based resin composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000063275A1 (en) * 1999-04-19 2000-10-26 Teijin Limited Branched aromatic polycarbonate, process for producing the same, and blow-molded article thereof
JP2001261808A (en) * 2000-03-21 2001-09-26 Teijin Chem Ltd Branched polycarbonate resin
WO2003089495A1 (en) * 2002-04-22 2003-10-30 Mitsubishi Chemical Corporation Aromatic polycarbonate, process for producing the same, polycarbonate composition and hollow container therefrom
JP2005126494A (en) * 2003-10-21 2005-05-19 Mitsubishi Chemicals Corp Aromatic polycarbonate
JP2012229451A (en) * 2002-04-22 2012-11-22 Mitsubishi Chemicals Corp Method for producing aromatic polycarbonate composition
JP2012236956A (en) * 2011-05-13 2012-12-06 Teijin Chem Ltd Branched polycarbonate resin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415725A (en) * 1982-03-19 1983-11-15 General Electric Co. Aromatic branched polycarbonate from tetraphenol
US5710238A (en) * 1995-12-29 1998-01-20 General Electric Company Process for preparing branched polycarbonates by solid state polymerization

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000063275A1 (en) * 1999-04-19 2000-10-26 Teijin Limited Branched aromatic polycarbonate, process for producing the same, and blow-molded article thereof
EP1179556A1 (en) * 1999-04-19 2002-02-13 Teijin Limited Branched aromatic polycarbonate, process for producing the same, and blow-molded article thereof
US6423813B1 (en) * 1999-04-19 2002-07-23 Teijin Limited Branched aromatic polycarbonate, and production method and blow-molded article thereof
JP4598958B2 (en) * 1999-04-19 2010-12-15 帝人株式会社 Process for producing branched aromatic polycarbonate
JP2001261808A (en) * 2000-03-21 2001-09-26 Teijin Chem Ltd Branched polycarbonate resin
WO2003089495A1 (en) * 2002-04-22 2003-10-30 Mitsubishi Chemical Corporation Aromatic polycarbonate, process for producing the same, polycarbonate composition and hollow container therefrom
US20040260049A1 (en) * 2002-04-22 2004-12-23 Mitsubishi Chemical Corporation Aromatic polycarbonate, process for producing the same, polycarbonate composition, and hollow container obtained from the same
EP2248841A1 (en) * 2002-04-22 2010-11-10 Mitsubishi Chemical Corporation Aromatic polycarbonate composition and hollow container therefrom
JP2012229451A (en) * 2002-04-22 2012-11-22 Mitsubishi Chemicals Corp Method for producing aromatic polycarbonate composition
JP2005126494A (en) * 2003-10-21 2005-05-19 Mitsubishi Chemicals Corp Aromatic polycarbonate
JP2012236956A (en) * 2011-05-13 2012-12-06 Teijin Chem Ltd Branched polycarbonate resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230951A1 (en) * 2018-06-01 2019-12-05 出光興産株式会社 Polycarbonate-based resin, production method therefor, and polycarbonate-based resin composition
JP2019210350A (en) * 2018-06-01 2019-12-12 出光興産株式会社 Polycarbonate resin and method for producing the same, and polycarbonate resin composition
JP7181006B2 (en) 2018-06-01 2022-11-30 出光興産株式会社 Polycarbonate resin, method for producing the same, and polycarbonate resin composition

Also Published As

Publication number Publication date
JP2014108981A (en) 2014-06-12
JP6163297B2 (en) 2017-07-12
TW201428023A (en) 2014-07-16
TWI600678B (en) 2017-10-01
CN104812796B (en) 2019-07-12
CN104812796A (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP6259065B2 (en) Polycarbonate resin composition and polycarbonate resin molded body
JP5819587B2 (en) Polycarbonate-polydiorganosiloxane copolymer
JP5466445B2 (en) Transparent flame retardant aromatic polycarbonate resin composition and molded article thereof
CN101155876B (en) Aromatic polycarbonate resin composition and molded article using same
JPH07258532A (en) Flame-retardant polycarbonate resin composition
JP2020094137A (en) Thermally conductive polycarbonate resin composition
US8450403B2 (en) Branched polycarbonate resin composition, and branched polycarbonate resin and molded product made using the same
JP5997903B2 (en) Terminal modified polycarbonate resin
JP6163297B2 (en) Polycarbonate resin, polycarbonate resin composition and molded product
JP2619576B2 (en) Polycarbonate resin composition
WO2016089028A1 (en) Polycarbonate resin composition
JP2011137060A (en) Flame-retardant polycarbonate resin composition excellent in light reflection and molded product obtained therefrom
JP2015189906A (en) aromatic polycarbonate resin composition
JPH06279668A (en) Polycarbonate resin composition
JP5044535B2 (en) Polycarbonate resin composition and molded body thereof
JP2001072846A (en) Polycarbonate resin composition
JPH07268197A (en) Polycarbonate resin composition
JP5638876B2 (en) Highly flame retardant aromatic polycarbonate copolymer and aromatic polycarbonate resin composition
JP2002146194A (en) Polycarbonate resin composition
JP5507396B2 (en) Polycarbonate resin composition
JP3420841B2 (en) Polycarbonate resin composition
WO2016089171A1 (en) Copolycarbonate and composition comprising same
JPH06313087A (en) Polycarbonate resin composition
JPH06313101A (en) Polycarbonate resin composition
WO2022215657A1 (en) Polycarbonate resin composition and molded articles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859447

Country of ref document: EP

Kind code of ref document: A1