WO2014084222A1 - Pounding tool - Google Patents

Pounding tool Download PDF

Info

Publication number
WO2014084222A1
WO2014084222A1 PCT/JP2013/081825 JP2013081825W WO2014084222A1 WO 2014084222 A1 WO2014084222 A1 WO 2014084222A1 JP 2013081825 W JP2013081825 W JP 2013081825W WO 2014084222 A1 WO2014084222 A1 WO 2014084222A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
piston
energization angle
driving
dead center
Prior art date
Application number
PCT/JP2013/081825
Other languages
French (fr)
Japanese (ja)
Inventor
瀛 楊
健也 ▲柳▼原
Original Assignee
株式会社マキタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マキタ filed Critical 株式会社マキタ
Publication of WO2014084222A1 publication Critical patent/WO2014084222A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25CHAND-HELD NAILING OR STAPLING TOOLS; MANUALLY OPERATED PORTABLE STAPLING TOOLS
    • B25C1/00Hand-held nailing tools; Nail feeding devices
    • B25C1/04Hand-held nailing tools; Nail feeding devices operated by fluid pressure, e.g. by air pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25CHAND-HELD NAILING OR STAPLING TOOLS; MANUALLY OPERATED PORTABLE STAPLING TOOLS
    • B25C1/00Hand-held nailing tools; Nail feeding devices
    • B25C1/06Hand-held nailing tools; Nail feeding devices operated by electric power

Definitions

  • the present invention relates to a driving tool for driving a driving tool.
  • US Pat. No. 8,079,504 discloses a driving tool for driving a driving tool into a workpiece.
  • the first piston generates compressed air in the first cylinder, and the compressed air is sent to the second cylinder.
  • the compressed air then moves the second piston in the second cylinder. Due to the movement of the second piston, the second piston strikes the driving tool. Thereby, the driving tool is driven out toward the workpiece.
  • an object of the present invention is to provide a technique for rationally driving a piston in a driving tool.
  • the driving tool for driving the driving tool out of the injection port is configured.
  • the driving tool controls a cylinder, a piston that can slide in the cylinder, a crank mechanism that drives the piston, a three-phase brushless motor that is supplied with current from a battery and drives the crank mechanism, and a three-phase brushless motor.
  • a controller In the driving tool, the driving tool is driven out by using the pressure fluctuation of the air in the cylinder caused by the sliding of the piston.
  • the controller can selectively set the energization angle for the three-phase brushless motor to the first energization angle and the second energization angle.
  • the first energization angle is an energization angle of 120 degrees or more and 180 degrees or less.
  • the second energization angle is an energization angle of 120 degrees or more and 180 degrees or less, and is an energization angle larger than the first energization angle. Then, the controller determines that the energization angle is the first energization angle and the second energization angle during one cycle of driving of the piston in which the piston passes from the top dead center to the bottom dead center and moves to the bottom dead center again. And the three-phase brushless motor is driven by setting both the first energization angle and the second energization angle.
  • the conduction angle is set to both the first conduction angle and the second conduction angle.
  • the rotational speed and output torque of the three-phase brushless motor can be changed. Therefore, the driving of the piston in one cycle is rationally performed by using two energization angles.
  • a controller is energized when a piston is located in the 1st area
  • the corner is set to the first conduction angle.
  • the energization angle is set to the second energization angle.
  • the output torque is larger than when driven at the second energization angle.
  • the pressure of the air in the cylinder in the compression process increases as the piston approaches the top dead center. Therefore, the output torque can be increased by driving the three-phase brushless motor at the first conduction angle in the first region near the top dead center where the driving force necessary for driving the piston is large. Thereby, the air in a cylinder is compressed appropriately.
  • the piston is close to bottom dead center, the air pressure in the cylinder is low. That is, a large driving force is not required to drive the piston. Therefore, in the second region near the bottom dead center, the rotational speed can be increased by driving the three-phase brushless motor at the second conduction angle. Thereby, the time of 1 cycle in the drive of a piston is shortened.
  • the controller sets the conduction angle in the process other than the compression process to the second conduction angle.
  • the rotational speed can be increased by driving the three-phase brushless motor at the second energization angle. Thereby, the time of 1 cycle in the drive of a piston is shortened.
  • a controller sets the electricity supply angle in the compression process which a piston goes from a bottom dead center to a top dead center to a 1st electricity supply angle, and supplies electricity in processes other than a compression process.
  • the corner is set to the second conduction angle.
  • the output torque can be increased by driving the three-phase brushless motor at the first conduction angle.
  • the pressure in a cylinder is compressed appropriately.
  • a large driving force is not required to drive the piston, so that the rotational speed can be increased by driving the three-phase brushless motor at the second conduction angle.
  • the time of 1 cycle in the drive of a piston is shortened.
  • the controller selects and sets the first energization angle and the second energization angle according to the pressure value of the air in the cylinder.
  • the controller sets the first conduction angle when the pressure value of the air in the cylinder is equal to or greater than the predetermined threshold value, and sets the second pressure value when the pressure value of the air in the cylinder is less than the threshold value. Set to conduction angle.
  • the driving of the piston according to the magnitude of the air pressure in the cylinder is rationally performed in one cycle.
  • the controller sets the timing at which the first energization angle and the second energization angle in one cycle are switched according to the remaining battery level of the battery. Then, at the timing, the first energization angle and the second energization angle are switched, and the three-phase brushless motor is driven.
  • a sensor for detecting the remaining battery level is provided. In the compression process in which the piston moves from the bottom dead center to the top dead center, the controller starts moving the piston from the bottom dead center when the remaining battery level detected by the sensor is equal to or greater than a predetermined threshold.
  • the second energization angle is switched to the first energization angle at the timing when the first time has elapsed.
  • the controller starts from the second energization angle at a timing when a second time longer than the first time elapses after the piston starts moving from the bottom dead center. Switch to 1 conduction angle.
  • the timing at which the energization angle is switched in one cycle is rationally set according to the remaining battery level.
  • the timing of switching between the first energization angle and the second energization angle set within a predetermined cycle of driving the piston is determined by a plurality of piston driving operations thereafter. This applies to the cycle.
  • the timing for switching between the first energization angle and the second energization angle is set similarly for a plurality of cycles. Therefore, the speed at which the driving tool is driven out is constant in a plurality of cycles. Thereby, the driving tool is stably driven out.
  • FIG. 1 is an external view showing an overall configuration of an electro-pneumatic nailer in a first embodiment of the present invention. It is A arrow directional view of FIG. It is sectional drawing which shows the whole structure of the internal mechanism of a nailing machine.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3.
  • FIG. 5 is a sectional view taken along line VV in FIG. 2.
  • FIG. 4 is a cross-sectional view taken along the line VI-VI in FIG. 3 and shows a state where the valve is closed.
  • FIG. 6 shows a nailing state in which the valve is opened and the driving piston is moved forward.
  • FIG. 6 shows a state in which the open state of the valve is maintained, and the driving piston is returned to the vicinity of the rear initial position.
  • FIGS. 1 and 2 A first embodiment of the present invention will be described with reference to FIGS.
  • the nailing machine 100 is configured mainly by a main body housing 101 and a magazine 105 when viewed generally.
  • the main body housing 101 constitutes a tool main body and forms an outline of the nailing machine 100.
  • the magazine 105 is loaded with nails (not shown) as driving tools to be driven into the workpiece.
  • the main body housing 101 is joined together by a pair of substantially symmetrical housings.
  • the main body housing 101 includes a handle portion 103, a driving mechanism housing portion 101A, a compression device housing portion 101B, and a motor housing portion 101C.
  • the handle portion 103, the driving mechanism housing portion 101 ⁇ / b> A, the compression device housing portion 101 ⁇ / b> B, and the motor housing portion 101 ⁇ / b> C are arranged so as to form a substantially rectangular shape in a side view of the nail driver 100.
  • the handle portion 103 is a long member extending at a predetermined length.
  • One end side of the handle portion 103 is connected to one end side of the driving mechanism housing portion 101A, and the other end side of the handle portion 103 is connected to one end side of the motor housing portion 101C.
  • the compression device housing portion 101 ⁇ / b> B is disposed so as to extend substantially parallel to the handle portion 103.
  • One end side of the compression device accommodating portion 101B is connected to the other end side of the driving mechanism accommodating portion 101A, and the other end side of the compression device accommodating portion 101B is connected to the other end side of the motor accommodating portion 101C.
  • the nailing machine 100 forms a space S surrounded by the handle portion 103, the driving mechanism housing portion 101A, the compression device housing portion 101B, and the motor housing portion 101C.
  • a driver guide 141 and an LED 107 are arranged at the tip (right end in FIG. 1).
  • the right direction is the nail launch direction.
  • the front end side (right side in FIG. 1) of the nailing machine 100 is referred to as the front side
  • the opposite side (left side in FIG. 1) is referred to as the rear side.
  • the connection side (upper side in FIG. 1) of the handle portion 103 with the driving mechanism housing portion 101A is the upper side
  • the driving mechanism accommodating portion 101A accommodates the nail driving mechanism 120.
  • the nail driving mechanism 120 is mainly composed of a driving cylinder 121 and a driving piston 123.
  • the driving cylinder 121 accommodates a driving piston 123 for driving a nail so as to be slidable in the front-rear direction (long axis direction).
  • the driving piston 123 has a piston main body 124 and a driver 125.
  • the piston main body 124 is slidably accommodated in the driving cylinder 121.
  • the driver 125 is a long member.
  • the driver 125 is provided integrally with the piston main body 124 and is disposed so as to extend forward.
  • the piston main body 124 and the driver 125 are driven by compressed air supplied to the cylinder chamber 121a and can move linearly in the major axis direction of the cylinder 121. Therefore, the driver 125 moves forward in the driving passage 141a of the driver guide 141, and drives out the nail.
  • the driving cylinder chamber 121 a is formed as a space surrounded by the inner wall surface of the driving cylinder 121 and the rear surface of the piston main body 124.
  • the driver guide 141 is disposed at the tip of the driving cylinder 121 and includes a driving passage 141a having a nail injection port at the tip.
  • the magazine 105 is disposed on the front end side of the main body housing 101, that is, in front of the compression device housing portion 101 ⁇ / b> B.
  • This magazine 105 accommodates nails.
  • the magazine 105 is connected to the driver guide 141, and is configured to supply nails to the driving passage 141a.
  • the magazine 105 is provided with a pusher plate 105a for pushing the nail in the supply direction (upward in FIG. 3). By this pusher plate 105a, nails are supplied one by one from the direction intersecting the driving direction into the driving passage 141a of the driver guide 141.
  • the compression device accommodating portion 101 ⁇ / b> B accommodates the compression device 130.
  • the compression device 130 is mainly configured by a compression cylinder 131, a compression piston 133, and a crank mechanism 115.
  • the compression piston 133 is arranged to be slidable in the vertical direction within the compression cylinder 131.
  • the compression cylinder 131 and the compression piston 133 are implementation configuration examples corresponding to “cylinder” and “piston” in the present invention, respectively.
  • the compression cylinder 131 is disposed along the magazine 105, and the upper end side of the compression cylinder 131 is connected to the front end portion of the driving cylinder 121.
  • the compression piston 133 is disposed so as to slide up and down along the magazine 105.
  • the operation direction of the compression piston 133 is substantially orthogonal to the operation direction of the driving piston 123.
  • the volume of the compression chamber 131a that is the internal space of the compression cylinder 131 changes. That is, the compression piston 133 moves upward to reduce the volume of the compression chamber 131a, thereby compressing the air in the compression chamber 131a.
  • the compression chamber 131 a is formed on the upper side of the compression piston 133 adjacent to the driving cylinder 121.
  • the compression cylinder 131 includes an atmospheric release valve (not shown), and the compression chamber 131a is configured to be released to the atmosphere.
  • the air release valve is normally kept closed.
  • the motor housing portion 101 ⁇ / b> C houses an electric motor 211.
  • the electric motor 211 is configured as a three-phase brushless motor.
  • the electric motor 211 is arranged so that the rotation axis of the motor shaft is substantially parallel to the long axis of the driving cylinder 121. Therefore, the rotation axis of the electric motor 211 is orthogonal to the operation direction of the compression piston 133.
  • a battery mounting area is formed on the lower side of the motor housing 101C, and a rechargeable battery pack 110 that supplies current to the electric motor 211 is detachably mounted.
  • the rotation of the electric motor 211 is transmitted to the crank mechanism 115 after being decelerated by the planetary gear type reduction mechanism 113.
  • the rotation of the electric motor 211 is converted into a linear motion by the crank mechanism 115 and transmitted to the compression piston 133.
  • the speed reduction mechanism 113 and the crank mechanism 115 are accommodated in the inner housing 102.
  • the inner housing 102 is disposed between the compression device housing portion 101B and the motor housing portion 101C.
  • the electric motor 211 is an implementation configuration example corresponding to the “three-phase brushless motor” in the present invention.
  • the crank mechanism 115 is mainly composed of a crankshaft 115a, an eccentric pin 115b, and a connecting rod 115c.
  • the crankshaft 115a is connected to a planetary gear type reduction mechanism 113. That is, the crankshaft 115 a is driven by the rotation of the electric motor 211 decelerated by the speed reduction mechanism 113.
  • the eccentric pin 115b is provided at a position eccentric from the rotation center of the crankshaft 115a.
  • One end of the connecting rod 115c is connected to the eccentric pin 115b so as to be relatively rotatable, and the other end is connected to the compression piston 133 so as to be relatively rotatable.
  • the crank mechanism 115 is disposed below the compression cylinder 131.
  • crank mechanism 115 is an implementation configuration example corresponding to the “crank mechanism” in the present invention.
  • the handle 103 is provided with a trigger 103a and a trigger switch 103b.
  • the electric motor 211 is controlled in accordance with the operation of the trigger 103 a provided on the handle portion 103 and the driver guide 141 provided on the distal end region of the main body housing 101.
  • the trigger switch 103b is turned on.
  • the trigger switch 103b is turned off by releasing the pulling operation of the trigger 103a.
  • the driver guide 141 as a contact arm is disposed in the front end region of the main body housing 101 so as to be movable in the front-rear direction of the nailing machine 100. As shown in FIG. 6, the driver guide 141 is urged forward by an urging spring 142. When the driver guide 141 is positioned forward, the contact arm switch 143 is turned off. On the other hand, when the driver guide 141 is moved to the main body housing 101 side, the contact arm switch 143 is turned on. Further, as shown in FIG. 3, a control device 109 is disposed below the crank mechanism 115.
  • the electric motor 211 is controlled by the control device 109 in accordance with the operation of the trigger 103 a provided on the handle portion 103 and the driver guide 141 provided on the distal end region of the main body housing 101. That is, the electric motor 211 is energized when both the trigger switch 103b and the contact arm switch 143 are switched on, and is stopped when one of the switches is switched off.
  • the nail driver 100 includes an air passage 135 and a valve chamber 137 a that connect the compression chamber 131 a of the compression cylinder 131 and the cylinder chamber 121 a of the driving cylinder 121.
  • the air passage 135 mainly includes a communication port 135a, a communication port 135b, a communication passage 135c, an annular groove 121c, and a valve chamber 137a.
  • the communication port 135 a is formed in the cylinder head 131 b of the compression cylinder 131.
  • the communication port 135a communicates with the compression chamber 131a.
  • the communication port 135 b is formed in the cylinder head 121 b of the driving cylinder 121.
  • the communication port 135b communicates with the valve chamber 137a.
  • the communication path 135c connects the communication port 135a and the communication port 135b.
  • the communication path 135 c extends linearly in the front-rear direction along the driving cylinder 121.
  • the communication port 135b communicates with an annular groove 121c formed in the peripheral surface of the valve chamber 137a.
  • the annular groove 121c communicates with the valve chamber 137a.
  • the valve chamber 137a communicates with the cylinder chamber 121a.
  • the communication port 135b communicates with the cylinder chamber 121a via the annular groove 121c and the valve chamber 137a.
  • An electromagnetic valve 137 that opens and closes the air passage 135 is accommodated in the valve chamber 137a.
  • the electromagnetic valve 137 is a columnar member having substantially the same diameter as the piston main body 124 of the driving piston 123.
  • the electromagnetic valve 137 is disposed so as to be movable in the front-rear direction within the valve chamber 137a.
  • An electromagnet 138 is disposed behind the electromagnetic valve 137. Then, by switching energization to the electromagnet 138, the electromagnetic valve 137 moves in the front-rear direction.
  • two O-rings 139a and 139b are arranged at a predetermined interval in the front-rear direction. The electromagnetic valve 137 moves rearward to open the annular groove 121c, and moves forward to close the annular groove 121c.
  • the front O-ring 139a is in contact with the inner wall surface of the valve chamber 137a in front of the annular groove 121c and blocks communication between the annular groove 121c and the cylinder chamber 121a. Further, as shown in FIG. 7, when the O-ring 139a moves into the region of the annular groove 121c, the annular groove 121c communicates with the cylinder chamber 121a.
  • the rear O-ring 139b prevents the compressed air from leaking outside from the communication port 135b. That is, the O-ring 139b is not involved in opening / closing the annular groove 121c.
  • the electromagnetic valve 137 that opens and closes the air passage 135 is provided in the air passage 135 on the connection side of the driving cylinder 121 with the cylinder chamber 121a.
  • the electromagnetic valve 137 is always disposed in front of the annular groove 121 c closed by the electromagnet 138.
  • the stopper 136 is disposed in front of the electromagnetic valve 137 and restricts the movement of the electromagnetic valve 137 forward.
  • the stopper 136 is formed by a flange-like member protruding in the radial direction in the cylinder chamber 121a. Further, the stopper 136 defines the rear end position of the driving piston 123 that moves rearward.
  • the nailing machine 100 has an initial position in which the driving piston 123 is located at the rear end position (left end position in FIG. 3) and the compression piston 133 is located at the lower end position (bottom dead center). It is defined as. That is, the initial state is when the crank angle is 0 degrees (bottom dead center).
  • the nail driver 100 includes a magnetic sensor 150.
  • the magnetic sensor 150 is mainly composed of a magnet 151 and a hall element 152.
  • the magnet 150 is provided on the crankshaft 115a.
  • the Hall element 152 is provided at a position facing the magnet 151 of the compression device housing portion 101B.
  • the hall element 152 is electrically connected to the battery pack 110 and further connected to the control device 109.
  • the Hall element 152 detects the position of the crankshaft 115a, and the control device 109 defines the state where the compression piston 133 is located at the bottom dead center as the initial state.
  • This control device 109 is an implementation configuration example corresponding to the “controller” in the present invention.
  • the driver guide 141 is pressed against the workpiece and the contact arm switch 143 (see FIG. 6) is turned on, and the trigger 103a is pulled and the trigger switch 103b is turned on.
  • the electric motor 211 is driven.
  • the crank mechanism 115 is driven via the speed reduction mechanism 113, and the compression piston 133 moves upward.
  • the electromagnetic valve 137 closes the air passage 135, the air in the compression chamber 131a is compressed by the movement of the compression piston 133.
  • the control device 109 controls the electromagnet 138 and moves the electromagnetic valve 137 backward. . That is, when the compressed air in the compression chamber 131a is in the maximum compressed state, the electromagnetic valve 137 is opened. Thereby, the annular groove 121c communicates with the cylinder chamber 121a, and the compressed air in the compression chamber 131a is supplied into the cylinder chamber 121a through the air passage 135.
  • the driving piston 123 is moved forward by the action of the air spring by the compressed air, as shown in FIG. Then, the driver 125 of the driving piston 123 moved forward hits the nail waiting in the driving passage 141a (see FIG. 3). Thereby, a driving operation for driving out the nail is performed.
  • the compression piston 133 moves toward the bottom dead center. At that time, the volume of the compression chamber 131a is increased, and the air in the compression chamber 131a becomes a negative pressure lower than the atmospheric pressure.
  • the negative pressure in the compression chamber 131a is driven through the air passage 135 and the cylinder chamber 121a and acts on the piston 123. Thereby, as shown in FIG. 8, the driving piston 123 is sucked and moved rearward.
  • the driving piston 123 is in contact with the stopper 136 and is located at the initial position.
  • the control device 109 controls the electromagnet 138 and moves the electromagnetic valve 137 forward.
  • the air passage 135 is closed.
  • the compression piston 133 returns to the initial position, even if the trigger switch 103b and the contact arm switch 143 are maintained in the ON state, the energization to the electric motor 211 is cut off and the electric motor 211 is stopped. In this way, one cycle of the launching operation is completed.
  • the LED 107 irradiates the tip region of the driver guide 141.
  • the nailing machine 100 is provided with a switching circuit 255 and a position sensor 260 for driving an electric motor 211 that is a three-phase brushless motor.
  • the switching circuit 255 is provided with six switch elements 255a to 255f.
  • Three position sensors 260 are arranged at predetermined positions in the circumferential direction of the rotor so as to detect the position of the rotor of the electric motor 211.
  • the position sensor 260 is arranged, for example, every 120 degrees in the circumferential direction of the rotor.
  • the control device 109 controls the switching circuit 255 based on the position of the rotor detected by the position sensor 260. That is, the control device 109 drives the electric motor 211 by controlling the current to be supplied to the stator coils 211U, 211V, and 211W based on the position of the rotor. That is, the control device 109 drives the electric motor 211 by switching ON / OFF of each switch element as follows. By turning on only the switch elements 255a and 255d, current is supplied from the stator coil 211U to the stator coil 211V. By turning on only the switching elements 255a and 255f, current is supplied from the stator coil 211U to the stator coil 211W.
  • the control device 109 controls the voltages applied to the 212U, 212V, and 212W as the U, V, and W phase terminals 212 so as to change in a rectangular waveform.
  • FIG. 10 is a voltage waveform in a state where the conduction angle is set to 120 degrees.
  • FIG. 11 shows a voltage waveform in a state where the conduction angle is set to 150 degrees.
  • the control device 109 is configured so that the energization angle can be selectively set to 120 degrees and 150 degrees.
  • the horizontal axis represents the mechanical angle of the rotor, and the vertical axis represents the voltage of each phase.
  • This conduction angle of 120 degrees is an implementation configuration example corresponding to the “first conduction angle” in the present invention.
  • the conduction angle of 150 degrees is an implementation configuration example corresponding to the “second conduction angle” in the present invention.
  • the rotation speed of the electric motor 211 increases and the output torque decreases as the energization angle increases. That is, when the electric motor 211 is driven at an energization angle of 150 degrees, the rotational speed is higher (the rotation speed is higher) and the output torque is lower than when the electric motor 211 is driven at an energization angle of 120 degrees. Therefore, in the first embodiment, in one cycle of driving the compression piston 133, the control device 109 performs control so that the energization angle of the electric motor 211 is selectively switched between 120 degrees and 150 degrees.
  • the compression piston 133 moves from the bottom dead center to the top dead center, the air in the compression chamber 131a is compressed and the pressure gradually increases. Therefore, the closer the position of the compression piston 133 is to the bottom dead center, the smaller the driving force required to drive the compression piston 133. On the other hand, the closer the position of the compression piston 133 is to top dead center, the greater the driving force required to drive the compression piston 133. In addition, the driving force required to drive the compression piston 133 is small except for the compression process.
  • the control device 109 when the compression piston 133 starts moving from the bottom dead center to the top dead center in the compression process in which the crank angle is 0 degree to 180 degrees, the control device 109 has the conduction angle. Is set to 150 degrees (A2), and the electric motor 211 is controlled. That is, when the compression piston 133 is located in a region near the bottom dead center, the control device 109 sets the energization angle to 150 degrees and drives the electric motor 211. Note that the horizontal axis in FIG. 12 indicates the crank angle.
  • the control device 109 controls the electric motor 211 by switching the conduction angle from 150 degrees (A2) to 120 degrees (A1). That is, when the compression piston 133 is located in a region close to top dead center, the control device 109 sets the energization angle to 120 degrees and drives the electric motor 211.
  • the predetermined time after the compression piston 133 starts moving from the bottom dead center as the timing at which the conduction angle is switched is set as the time corresponding to the crank angle of 90 degrees from the crank angle of 0 degrees. Has been. Thereby, during the compression process of the compression piston 133, the electric motor 211 is driven by switching the conduction angle from 150 degrees to 120 degrees.
  • the control device 109 controls the electric motor 211 by switching the conduction angle from 120 degrees (A1) to 150 degrees (A2). Then, the control device 109 stops driving the electric motor 211 so that the compression piston 133 is located at the bottom dead center (crank angle 0 degree).
  • the control device 109 controls the energization angle to be increased while the energization start timing is advanced, and then the energization start timing is maintained.
  • the control device 109 performs control so as to reduce the energization angle while maintaining the energization start timing and then delay the energization start timing.
  • the control device 109 of the nailing machine 100 switches the energization angle of the electric motor 211 between 120 degrees and 150 degrees in one cycle of driving the compression piston 133.
  • the switching of the energization angle is set so as to be similarly switched in a plurality of cycles in which the compression piston 133 is driven. That is, in each cycle of the compression piston 133, the conduction angle is switched at the same timing.
  • the control device 109 supplies the electric motor 211 with power.
  • the electric motor 211 is driven with the angle set to 150 degrees. Therefore, the rotational speed of the electric motor 211, that is, the moving speed of the compression piston 133 is increased. As a result, the time required for one cycle in driving the compression piston 133 is shortened. Therefore, when nails are driven out continuously, the number of nails that can be driven out per unit time increases.
  • the control device 109 causes the energization angle of the electric motor 211 to be increased. Is set to 120 degrees to drive the electric motor 211. Therefore, the output torque of the electric motor 211 can be increased. Thereby, the air in the compression chamber 131a is compressed appropriately.
  • the control device 109 sets the energization angle of the electric motor 211 to 150 degrees and drives the electric motor 211. Therefore, the rotational speed of the electric motor 211, that is, the moving speed of the compression piston 133 is increased. As a result, the time required for one cycle in driving the compression piston 133 is shortened.
  • the compression piston 133 of the nail driver 100 is rationalized. Can be driven automatically. In other words, therefore, rational compression of the compression chamber 131a and shortening of the time of one cycle are compatible within one cycle.
  • the control device 109 is configured to switch the conduction angle from 150 degrees to 120 degrees when the compression piston 133 starts moving from the bottom dead center and a predetermined time has elapsed.
  • the control device 109 may be configured to switch the energization angle according to the position of the compression piston 133 detected by the magnetic sensor 150.
  • the energization angle is set to 150 degrees from the crank angle 0 degree (bottom dead center) to the crank angle 90 degrees, and the energization is performed from the crank angle 90 degrees to the crank angle 180 degrees (top dead center).
  • the angle is set to 120 degrees.
  • the timing at which the energization angle is switched is not limited to the crank angle of 90 degrees, and may be, for example, a crank angle of 120 degrees or a crank angle of 150 degrees.
  • the control device 109 is configured to switch the energization angle based on the elapsed time or the crank angle, but is not limited thereto.
  • a sensor that detects the pressure of air in the compression chamber 131a may be provided, and the control device 109 may be configured to switch the conduction angle based on the pressure of air in the compression chamber 131a.
  • the energization angle is switched at the same timing in each of a plurality of cycles of the compression piston 133.
  • the present invention is not limited to this.
  • a sensor that detects the remaining battery level of the battery pack 110 may be provided, and the control device 109 may be configured to switch the energization angle based on the remaining battery level. That is, when the remaining battery level decreases, the voltage value for driving the electric motor 211 decreases. Therefore, the rotation speed of the electric motor 211 is slower than when the battery level is high. In other words, even with the same energization angle, the rotation speed of the electric motor 211 varies depending on the remaining battery level. Therefore, when the remaining battery level is less than the predetermined threshold, the predetermined time from when the compression piston 133 starts moving from the bottom dead center to when the control device 109 switches the energization angle is increased. May be.
  • the control device 109 sets the energization angle of the electric motor 211 to 120 degrees (A1) and drives the electric motor 211.
  • the control device 109 sets the energization angle of the electric motor 211 to 150 degrees (A2) and drives the electric motor 211.
  • the control device 109 drives the electric motor 211 with the energization angle set to 120 degrees. Therefore, the output torque of the electric motor 211 is increased. Thereby, the air in the compression chamber 131a is compressed appropriately.
  • the control device 109 drives the electric motor 211 with the energization angle set to 150 degrees. Therefore, the rotational speed of the electric motor 211, that is, the moving speed of the compression piston 133 is increased. Thereby, the time of 1 cycle in the drive of the compression piston 133 is shortened.
  • the conduction angle is 120 degrees and 150 degrees
  • the present invention is not limited to this. That is, any two energization angles between 120 degrees and 180 degrees may be set as the energization angles.
  • the driving tool according to the present invention can be configured as follows. Each embodiment can be used alone or in combination with the claimed invention.
  • the controller sets the first energization angle when the pressure value of air in the cylinder is equal to or greater than a predetermined threshold, and when the pressure value of air in the cylinder is less than the threshold, A driving tool configured to be set to the second conduction angle.
  • a driving tool configured to be set to the second conduction angle.
  • the controller In the compression process in which the piston moves from the bottom dead center to the top dead center, the controller starts moving the piston from the bottom dead center when the remaining battery level is equal to or greater than a predetermined threshold.
  • the second energization angle is switched to the first energization angle.
  • the driving is characterized in that it is configured to switch from the second energization angle to the first energization angle when a second time longer than the first time has elapsed since the start of movement. tool.
  • the correspondence between each component of the present embodiment and each component of the present invention is shown as follows.
  • this embodiment shows an example of the form for implementing this invention, and this invention is not limited to the structure of this embodiment.
  • the nailing machine 100 is an example of a configuration corresponding to the “driving tool” of the present invention.
  • the control device 109 is an example of a configuration corresponding to the “controller” of the present invention.
  • the crank mechanism 115 is an example of a configuration corresponding to the “crank mechanism” of the present invention.
  • the compression cylinder 131 is an example of a configuration corresponding to the “cylinder” of the present invention.
  • the compression piston 133 is an example of a configuration corresponding to the “piston” of the present invention.
  • the electric motor 211 is an example of a configuration corresponding to the “three-phase brushless motor” of the present invention.
  • the conduction angle of 120 degrees is an example of a configuration corresponding to the “first conduction angle” of the present invention.
  • the conduction angle of 150 degrees is an example of a configuration corresponding to the “second conduction angle” of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Portable Nailing Machines And Staplers (AREA)

Abstract

[Problem] To logically drive a piston in a pounding tool. [Solution] A nailing machine (100) is configured so as to have a compression cylinder (131), a compression piston (133), a crank mechanism (115), an electric motor (211), and a control device (109). The control device (109) is configured so as to be capable of selectively setting a conduction angle in relation to the electric motor (211) to a first conduction angle and a second conduction angle. The first conduction angle is a conduction angle of 120 to 180 degrees, inclusive. The second conduction angle is a conduction angle of 120 to 180 degrees, inclusive, and is greater than the first conduction angle. In addition, the control device (109) switches the conduction angle between the first conduction angle and the second conduction angle during one cycle of driving the compression piston (133), in which the compression piston (133) moves again to bottom dead center after passing from bottom dead center to top dead center. In addition, the electric motor (211) is driven by setting the conduction angle to both the first and the second conduction angles.

Description

打ち込み工具Driving tool
 本発明は、打ち込み具を打ち出す打ち込み工具に関する。 The present invention relates to a driving tool for driving a driving tool.
 米国特許第8,079,504号明細書には、打ち込み具を被加工材に打ち込む打ち込み工具が開示されている。当該打ち込み工具は、第1シリンダ内で第1ピストンが圧縮空気を生成し、圧縮空気が第2シリンダに送られる。そして、圧縮空気が第2シリンダ内の第2ピストンを移動させる。第2ピストンの移動により、第2ピストンが打ち込み具を打撃する。これにより、打ち込み具が被加工材に向かって打ち出される。 US Pat. No. 8,079,504 discloses a driving tool for driving a driving tool into a workpiece. In the driving tool, the first piston generates compressed air in the first cylinder, and the compressed air is sent to the second cylinder. The compressed air then moves the second piston in the second cylinder. Due to the movement of the second piston, the second piston strikes the driving tool. Thereby, the driving tool is driven out toward the workpiece.
 しかしながら、上記の打ち込み工具においては、モータによって駆動されるピストンの駆動に関してさらなる改良の余地がある。 However, in the driving tool described above, there is room for further improvement regarding the driving of the piston driven by the motor.
 そこで、本発明は、打ち込み工具におけるピストンを合理的に駆動させる技術を提供することを目的とする。 Therefore, an object of the present invention is to provide a technique for rationally driving a piston in a driving tool.
 上記課題は、請求項1に係る発明によって解決される。本発明に係る打ち込み工具の好ましい形態によれば、打ち込み具を射出口から打ち出す打ち込み工具が構成される。当該打ち込み工具は、シリンダと、シリンダ内を摺動可能なピストンと、ピストンを駆動するクランク機構と、バッテリから電流が供給されてクランク機構を駆動する三相ブラシレスモータと、三相ブラシレスモータを制御するコントローラ、とを有する。当該打ち込み工具は、ピストンが摺動することによって生じるシリンダ内の空気の圧力変動を利用して打ち込み具が打ち出される。コントローラは、三相ブラシレスモータに対する通電角を第1の通電角と第2の通電角に選択的に設定可能である。第1の通電角は、120度以上180度以下の通電角である。また、第2の通電角は、120度以上180度以下の通電角であるとともに、第1の通電角よりも大きい通電角である。そして、コントローラは、ピストンが下死点から上死点を通過して再度下死点に移動する当該ピストンの駆動の1サイクルの間に、通電角が第1の通電角と第2の通電角の間で切り替えて、第1の通電角と第2の通電角の両方の通電角に設定して三相ブラシレスモータを駆動する。 The above problem is solved by the invention according to claim 1. According to the preferable form of the driving tool according to the present invention, the driving tool for driving the driving tool out of the injection port is configured. The driving tool controls a cylinder, a piston that can slide in the cylinder, a crank mechanism that drives the piston, a three-phase brushless motor that is supplied with current from a battery and drives the crank mechanism, and a three-phase brushless motor. And a controller. In the driving tool, the driving tool is driven out by using the pressure fluctuation of the air in the cylinder caused by the sliding of the piston. The controller can selectively set the energization angle for the three-phase brushless motor to the first energization angle and the second energization angle. The first energization angle is an energization angle of 120 degrees or more and 180 degrees or less. The second energization angle is an energization angle of 120 degrees or more and 180 degrees or less, and is an energization angle larger than the first energization angle. Then, the controller determines that the energization angle is the first energization angle and the second energization angle during one cycle of driving of the piston in which the piston passes from the top dead center to the bottom dead center and moves to the bottom dead center again. And the three-phase brushless motor is driven by setting both the first energization angle and the second energization angle.
 本発明によれば、ピストンの駆動の1サイクルの間に、通電角を第1の通電角と第2の通電角の両方の通電角に設定される。通電角を変えることで、三相ブラシレスモータの回転速度と出力トルクを変えることができる。したがって、2つの通電角を用いることで1サイクルにおけるピストンの駆動が合理的に遂行される。 According to the present invention, during one cycle of driving the piston, the conduction angle is set to both the first conduction angle and the second conduction angle. By changing the conduction angle, the rotational speed and output torque of the three-phase brushless motor can be changed. Therefore, the driving of the piston in one cycle is rationally performed by using two energization angles.
 本発明に係る打ち込み工具の更なる形態によれば、コントローラは、ピストンが下死点から上死点に向かう圧縮工程において、ピストンが上死点に近い第1の領域に位置する場合に、通電角を第1の通電角に設定する。一方、ピストンが第1の領域よりも上死点から遠い第2の領域に位置する場合に、通電角を前記第2の通電角に設定する。 According to the further form of the driving tool which concerns on this invention, a controller is energized when a piston is located in the 1st area | region close | similar to a top dead center in the compression process which a piston goes from a bottom dead center to a top dead center. The corner is set to the first conduction angle. On the other hand, when the piston is located in the second region farther from the top dead center than the first region, the energization angle is set to the second energization angle.
 本形態によれば、三相ブラシレスモータは第1の通電角で駆動されると、第2の通電角で駆動される場合に対して、出力トルクが大きい。また、圧縮工程におけるシリンダ内の空気の圧力は、ピストンが上死点に近づくほど高くなる。したがって、ピストンを駆動させるために必要な駆動力が大きい上死点に近い第1の領域において、三相ブラシレスモータを第1の通電角で駆動させることで出力トルクを大きくすることができる。これにより、シリンダ内の空気が適切に圧縮される。一方、ピストンが下死点に近い場合には、シリンダ内の空気の圧力は低い。すなわち、ピストンを駆動させるために大きな駆動力を必要としない。そのため、下死点に近い第2の領域において、三相ブラシレスモータを第2の通電角で駆動させることで回転速度を速くすることができる。これにより、ピストンの駆動における1サイクルの時間が短縮される。 According to this embodiment, when the three-phase brushless motor is driven at the first energization angle, the output torque is larger than when driven at the second energization angle. Further, the pressure of the air in the cylinder in the compression process increases as the piston approaches the top dead center. Therefore, the output torque can be increased by driving the three-phase brushless motor at the first conduction angle in the first region near the top dead center where the driving force necessary for driving the piston is large. Thereby, the air in a cylinder is compressed appropriately. On the other hand, when the piston is close to bottom dead center, the air pressure in the cylinder is low. That is, a large driving force is not required to drive the piston. Therefore, in the second region near the bottom dead center, the rotational speed can be increased by driving the three-phase brushless motor at the second conduction angle. Thereby, the time of 1 cycle in the drive of a piston is shortened.
 本発明に係る打ち込み工具の更なる形態によれば、コントローラは、圧縮工程以外の工程における通電角を第2の通電角に設定する。 According to the further form of the driving tool according to the present invention, the controller sets the conduction angle in the process other than the compression process to the second conduction angle.
 本形態によれば、圧縮工程以外の工程においては、ピストンを駆動するために大きな駆動力を必要としない。そのため、三相ブラシレスモータを第2の通電角で駆動させることで回転速度を速くすることができる。これにより、ピストンの駆動における1サイクルの時間が短縮される。 According to this embodiment, in a process other than the compression process, a large driving force is not required to drive the piston. Therefore, the rotational speed can be increased by driving the three-phase brushless motor at the second energization angle. Thereby, the time of 1 cycle in the drive of a piston is shortened.
 本発明に係る打ち込み工具の更なる形態によれば、コントローラは、ピストンが下死点から上死点に向かう圧縮工程における通電角を第1の通電角に設定し、圧縮工程以外の工程における通電角を第2の通電角に設定する。 According to the further form of the driving tool which concerns on this invention, a controller sets the electricity supply angle in the compression process which a piston goes from a bottom dead center to a top dead center to a 1st electricity supply angle, and supplies electricity in processes other than a compression process. The corner is set to the second conduction angle.
 本形態によれば、圧縮工程においては、ピストンを駆動するために大きな駆動力が必要であるため、三相ブラシレスモータを第1の通電角で駆動させることで出力トルクを大きくすることができる。これにより、圧縮工程において、シリンダ内の圧力が適切に圧縮される。一方、圧縮工程以外の工程においては、ピストンを駆動するために大きな駆動力を必要としないため、三相ブラシレスモータを第2の通電角で駆動させることで回転速度が速くすることができる。これにより、ピストンの駆動における1サイクルの時間が短縮される。 According to the present embodiment, since a large driving force is required to drive the piston in the compression process, the output torque can be increased by driving the three-phase brushless motor at the first conduction angle. Thereby, in a compression process, the pressure in a cylinder is compressed appropriately. On the other hand, in processes other than the compression process, a large driving force is not required to drive the piston, so that the rotational speed can be increased by driving the three-phase brushless motor at the second conduction angle. Thereby, the time of 1 cycle in the drive of a piston is shortened.
 本発明に係る打ち込み工具の更なる形態によれば、コントローラは、シリンダ内の空気の圧力値に応じて、第1の通電角と第2の通電角を選択して設定する。好ましくは、コントローラは、シリンダ内の空気の圧力値が所定の閾値以上である場合は、第1の通電角に設定し、シリンダ内の空気の圧力値が閾値未満である場合は、第2の通電角に設定する。 According to the further form of the driving tool according to the present invention, the controller selects and sets the first energization angle and the second energization angle according to the pressure value of the air in the cylinder. Preferably, the controller sets the first conduction angle when the pressure value of the air in the cylinder is equal to or greater than the predetermined threshold value, and sets the second pressure value when the pressure value of the air in the cylinder is less than the threshold value. Set to conduction angle.
 本形態によれば、2つの通電角を用いることで、1サイクルにおいてシリンダ内の空気の圧力の大きさに応じたピストンの駆動が合理的に遂行される。 According to this embodiment, by using two energization angles, the driving of the piston according to the magnitude of the air pressure in the cylinder is rationally performed in one cycle.
 本発明に係る打ち込み工具の更なる形態によれば、コントローラは、バッテリのバッテリ残量に応じて、1サイクルにおける第1の通電角と第2の通電角が切り替えられるタイミングが設定する。そして、当該タイミングにおいて第1の通電角と第2の通電角が切り替えられて、三相ブラシレスモータが駆動される。好ましくは、バッテリ残量を検出するセンサを有する。そして、コントローラは、ピストンが下死点から上死点に向かう圧縮工程において、センサによって検出されたバッテリ残量が所定の閾値以上である場合は、ピストンが下死点から移動を開始してから第1の時間経過したタイミングで第2の通電角から第1の通電角に切り替える。一方、バッテリ残量が閾値未満である場合は、コントローラは、ピストンが下死点から移動を開始してから第1の時間よりも長い第2の時間経過したタイミングで第2の通電角から第1の通電角に切り替える。 According to the further form of the driving tool according to the present invention, the controller sets the timing at which the first energization angle and the second energization angle in one cycle are switched according to the remaining battery level of the battery. Then, at the timing, the first energization angle and the second energization angle are switched, and the three-phase brushless motor is driven. Preferably, a sensor for detecting the remaining battery level is provided. In the compression process in which the piston moves from the bottom dead center to the top dead center, the controller starts moving the piston from the bottom dead center when the remaining battery level detected by the sensor is equal to or greater than a predetermined threshold. The second energization angle is switched to the first energization angle at the timing when the first time has elapsed. On the other hand, when the remaining battery level is less than the threshold, the controller starts from the second energization angle at a timing when a second time longer than the first time elapses after the piston starts moving from the bottom dead center. Switch to 1 conduction angle.
 本形態によれば、バッテリ残量に応じて、1サイクルにおいて通電角が切替えられるタイミングが合理的に設定される。 According to this embodiment, the timing at which the energization angle is switched in one cycle is rationally set according to the remaining battery level.
 本発明に係る打ち込み工具の更なる形態によれば、ピストンの駆動の所定の1サイクル内において設定された第1の通電角と第2の通電角を切り替えるタイミングが、その後のピストンの駆動の複数のサイクルに対して適用される。 According to the further form of the driving tool according to the present invention, the timing of switching between the first energization angle and the second energization angle set within a predetermined cycle of driving the piston is determined by a plurality of piston driving operations thereafter. This applies to the cycle.
 本形態によれば、複数のサイクルに対して同様に第1の通電角と第2の通電角を切り替えるタイミングが設定される。したがって、複数のサイクルにおいて、打ち込み具が打ち出される速度が一定になる。これにより、安定的に打ち込み具が打ち出される。 According to this embodiment, the timing for switching between the first energization angle and the second energization angle is set similarly for a plurality of cycles. Therefore, the speed at which the driving tool is driven out is constant in a plurality of cycles. Thereby, the driving tool is stably driven out.
 本発明によれば、打ち込み工具において、ピストンの駆動が合理化される。
 本発明の他の特質、作用および効果については、本明細書、特許請求の範囲、添付図面を参照することで直ちに理解可能である。
According to the present invention, the driving of the piston is rationalized in the driving tool.
Other features, actions, and advantages of the present invention can be readily understood with reference to the specification, claims, and accompanying drawings.
本発明の第1実施形態における電気-空圧式の釘打機の全体構成を示す外観図である。1 is an external view showing an overall configuration of an electro-pneumatic nailer in a first embodiment of the present invention. 図1のA矢視図である。It is A arrow directional view of FIG. 釘打機の内部機構の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the internal mechanism of a nailing machine. 図3のIV-IV線断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. 図2のV-V線断面図である。FIG. 5 is a sectional view taken along line VV in FIG. 2. 図3のVI-VI線断面図であり、バルブが閉止された状態を示す。FIG. 4 is a cross-sectional view taken along the line VI-VI in FIG. 3 and shows a state where the valve is closed. 図6において、バルブが開放され、打ち込みピストンが前方へと移動された釘打ち状態を示す。FIG. 6 shows a nailing state in which the valve is opened and the driving piston is moved forward. 図6において、バルブの開放状態が維持され、打ち込みピストンが後方の初期位置近くに戻された状態を示す。FIG. 6 shows a state in which the open state of the valve is maintained, and the driving piston is returned to the vicinity of the rear initial position. 釘打機の制御系統を示す回路図である。It is a circuit diagram which shows the control system of a nailing machine. 通電角120度における各相の電圧のタイムチャートを示す図である。It is a figure which shows the time chart of the voltage of each phase in the conduction angle of 120 degree | times. 通電角150度における各相の電圧のタイムチャートを示す図である。It is a figure which shows the time chart of the voltage of each phase in the conduction angle of 150 degree | times. 圧縮ピストンの駆動の1サイクルにおける通電角のタイムチャートを示す図である。It is a figure which shows the time chart of the conduction angle in 1 cycle of a drive of a compression piston. 本発明の第2実施形態における図12相当のタイムチャートを示す図である。It is a figure which shows the time chart equivalent to FIG. 12 in 2nd Embodiment of this invention.
 以上および以下の記載に係る構成ないし方法は、本発明にかかる「打ち込み工具」の製造および使用、当該「打ち込み工具」の構成要素の使用を実現せしめるべく、他の構成ないし方法と別に、あるいはこれらと組み合わせて用いることができる。本発明の代表的実施形態は、これらの組み合わせも包含し、添付図面を参照しつつ詳細に説明される。以下の詳細な説明は、本発明の好ましい適用例を実施するための詳細情報を当業者に教示するに留まり、本発明の技術的範囲は、当該詳細な説明によって制限されず、特許請求の範囲の記載に基づいて定められる。このため、以下の詳細な説明における構成や方法ステップの組み合わせは、広義の意味において、本発明を実施するのに全て必須であるというものではなく、添付図面の参照番号とともに記載された詳細な説明において、本発明の代表的形態を開示するに留まるものである。
(第1実施形態)
 本発明の第1実施形態につき、図1~図12を参照して説明する。第1実施形態においては、打ち込み工具の一例として電気-空圧式釘打機を用いて説明する。図1及び図2に示すように、釘打機100は、概括的に見て、本体ハウジング101と、マガジン105を主体として構成される。本体ハウジング101は、工具本体を構成しており、釘打機100の外郭を形成している。マガジン105には、被加工材に打ち込まれる打ち込み具としての釘(図示省略)が装填されている。本体ハウジング101は、ほぼ対称形の1対のハウジングを合わせて結合されている。当該本体ハウジング101は、ハンドル部103、打ち込み機構収容部101A、圧縮装置収容部101B、モータ収容部101Cを一体に備えている。
The configurations and methods according to the above and the following description are separately or separately from other configurations or methods in order to realize the manufacture and use of the “driving tool” according to the present invention and the use of the components of the “driving tool”. Can be used in combination. Exemplary embodiments of the present invention include these combinations and will be described in detail with reference to the accompanying drawings. The following detailed description is only to teach those skilled in the art with detailed information to implement preferred embodiments of the invention, and the scope of the invention is not limited by the detailed description, but is limited by the scope of the claims. It is determined based on the description. For this reason, combinations of configurations and method steps in the following detailed description are not all essential to implement the present invention in a broad sense, but are described in detail with reference numerals in the accompanying drawings. However, only representative embodiments of the present invention are disclosed.
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS. In the first embodiment, an electro-pneumatic nailer will be described as an example of a driving tool. As shown in FIGS. 1 and 2, the nailing machine 100 is configured mainly by a main body housing 101 and a magazine 105 when viewed generally. The main body housing 101 constitutes a tool main body and forms an outline of the nailing machine 100. The magazine 105 is loaded with nails (not shown) as driving tools to be driven into the workpiece. The main body housing 101 is joined together by a pair of substantially symmetrical housings. The main body housing 101 includes a handle portion 103, a driving mechanism housing portion 101A, a compression device housing portion 101B, and a motor housing portion 101C.
 ハンドル部103、打ち込み機構収容部101A、圧縮装置収容部101B及びモータ収容部101Cは、釘打機100の側面視において概ね矩形を形成するように配置されている。ハンドル部103は、所定長さで延在する長尺状の部材である。ハンドル部103の一端側が打ち込み機構収容部101Aの一端側に連接され、ハンドル部103の他端側がモータ収容部101Cの一端側が連接されている。一方、圧縮装置収容部101Bは、ハンドル部103に対して概ね平行に延在するように配置されている。圧縮装置収容部101Bの一端側が打ち込み機構収容部101Aの他端側に連接され、圧縮装置収容部101Bの他端側がモータ収容部101Cの他端側に連接されている。これにより釘打機100は、ハンドル部103、打ち込み機構収容部101A、圧縮装置収容部101B及びモータ収容部101Cによって囲まれた空間Sを形成している。 The handle portion 103, the driving mechanism housing portion 101 </ b> A, the compression device housing portion 101 </ b> B, and the motor housing portion 101 </ b> C are arranged so as to form a substantially rectangular shape in a side view of the nail driver 100. The handle portion 103 is a long member extending at a predetermined length. One end side of the handle portion 103 is connected to one end side of the driving mechanism housing portion 101A, and the other end side of the handle portion 103 is connected to one end side of the motor housing portion 101C. On the other hand, the compression device housing portion 101 </ b> B is disposed so as to extend substantially parallel to the handle portion 103. One end side of the compression device accommodating portion 101B is connected to the other end side of the driving mechanism accommodating portion 101A, and the other end side of the compression device accommodating portion 101B is connected to the other end side of the motor accommodating portion 101C. Thus, the nailing machine 100 forms a space S surrounded by the handle portion 103, the driving mechanism housing portion 101A, the compression device housing portion 101B, and the motor housing portion 101C.
 図1に示すように、釘打機100は、先端部(図1の右端)にドライバガイド141とLED107が配置されている。図1において右方向が釘の打ち出し方向である。なお、説明の便宜上、釘打機100の先端側(図1の右側)を前側、その反対側(図1の左側)を後側という。また、釘打機100におけるハンドル部103の打ち込み機構収容部101Aとの連接側(図1の上側)を上側、ハンドル部103のモータ収容部101Cとの連接側(図1の下側)を下側という。 As shown in FIG. 1, in the nailing machine 100, a driver guide 141 and an LED 107 are arranged at the tip (right end in FIG. 1). In FIG. 1, the right direction is the nail launch direction. For convenience of explanation, the front end side (right side in FIG. 1) of the nailing machine 100 is referred to as the front side, and the opposite side (left side in FIG. 1) is referred to as the rear side. Further, in the nailing machine 100, the connection side (upper side in FIG. 1) of the handle portion 103 with the driving mechanism housing portion 101A is the upper side, and the connection side (lower side in FIG. The side.
 図3に示すように、打ち込み機構収容部101Aは、釘打ち込み機構120を収容している。釘打ち込み機構120は、打ち込みシリンダ121及び打ち込みピストン123を主体として構成される。 As shown in FIG. 3, the driving mechanism accommodating portion 101A accommodates the nail driving mechanism 120. The nail driving mechanism 120 is mainly composed of a driving cylinder 121 and a driving piston 123.
 打ち込みシリンダ121は、釘を打込む打ち込みピストン123を前後方向(長軸方向)に摺動可能に収容している。打ち込みピストン123は、ピストン本体部124とドライバ125を有する。ピストン本体部124は、打ち込みシリンダ121内に摺動可能に収容されている。ドライバ125は、長尺状の部材である。このドライバ125は、ピストン本体部124に一体状に設けられており、前方へと延在するように配置されている。ピストン本体部124とドライバ125は、シリンダ室121aに供給される圧縮空気によって打ち込みシリンダ121の長軸方向に直線状に移動可能である。したがって、ドライバ125がドライバガイド141の打ち込み通路141a内を前方に移動することで釘を打ち出す。打ち込みシリンダ室121aは、打ち込みシリンダ121の内壁面とピストン本体部124の後側の面とにより囲まれる空間として形成されている。ドライバガイド141は、打ち込みシリンダ121の先端部に配置され、先端に釘の射出口を有する打ち込み通路141aを備えている。 The driving cylinder 121 accommodates a driving piston 123 for driving a nail so as to be slidable in the front-rear direction (long axis direction). The driving piston 123 has a piston main body 124 and a driver 125. The piston main body 124 is slidably accommodated in the driving cylinder 121. The driver 125 is a long member. The driver 125 is provided integrally with the piston main body 124 and is disposed so as to extend forward. The piston main body 124 and the driver 125 are driven by compressed air supplied to the cylinder chamber 121a and can move linearly in the major axis direction of the cylinder 121. Therefore, the driver 125 moves forward in the driving passage 141a of the driver guide 141, and drives out the nail. The driving cylinder chamber 121 a is formed as a space surrounded by the inner wall surface of the driving cylinder 121 and the rear surface of the piston main body 124. The driver guide 141 is disposed at the tip of the driving cylinder 121 and includes a driving passage 141a having a nail injection port at the tip.
 図1に示すように、マガジン105は、本体ハウジング101の先端側、すなわち、圧縮装置収容部101Bの前方に配置されている。このマガジン105は、釘を収容している。また、マガジン105は、ドライバガイド141に連結されており、打ち込み通路141aに対して、釘を供給するよう構成されている。なお、図3に示すように、マガジン105には、釘を供給方向(図3の上方)に押すためのプッシャプレート105aが設けられている。このプッシャプレート105aによって釘がドライバガイド141の打ち込み通路141aに打ち込み方向と交差する方向から1本ずつ供給される。 As shown in FIG. 1, the magazine 105 is disposed on the front end side of the main body housing 101, that is, in front of the compression device housing portion 101 </ b> B. This magazine 105 accommodates nails. Further, the magazine 105 is connected to the driver guide 141, and is configured to supply nails to the driving passage 141a. As shown in FIG. 3, the magazine 105 is provided with a pusher plate 105a for pushing the nail in the supply direction (upward in FIG. 3). By this pusher plate 105a, nails are supplied one by one from the direction intersecting the driving direction into the driving passage 141a of the driver guide 141.
 図3に示すように、圧縮装置収容部101Bは、圧縮装置130を収容している。圧縮装置130は、圧縮シリンダ131と、圧縮ピストン133と、クランク機構115を主体として構成される。圧縮ピストン133は、圧縮シリンダ131内を上下方向に摺動可能に配置されている。この圧縮シリンダ131および圧縮ピストン133がそれぞれ、本発明における「シリンダ」「ピストン」に対応する実施構成例である。 As shown in FIG. 3, the compression device accommodating portion 101 </ b> B accommodates the compression device 130. The compression device 130 is mainly configured by a compression cylinder 131, a compression piston 133, and a crank mechanism 115. The compression piston 133 is arranged to be slidable in the vertical direction within the compression cylinder 131. The compression cylinder 131 and the compression piston 133 are implementation configuration examples corresponding to “cylinder” and “piston” in the present invention, respectively.
 圧縮シリンダ131は、マガジン105に沿って配置され、圧縮シリンダ131の上端側は打ち込みシリンダ121の前側端部に連接されている。そして、圧縮ピストン133がマガジン105に沿って上下方向に摺動動作するように配置されている。この圧縮ピストン133の動作方向は、打ち込みピストン123の動作方向と概ね直交している。圧縮ピストン133が上下方向に摺動することで、圧縮シリンダ131の内部空間である圧縮室131aの容積が変化する。すなわち、圧縮ピストン133が圧縮室131aの容積を減少する上方側へと移動することで圧縮室131aの空気を圧縮する。この圧縮室131aは、打ち込みシリンダ121に近接する圧縮ピストン133の上部側に形成されている。また、圧縮シリンダ131は、大気解放バルブ(図示省略)を備えており、圧縮室131aが大気に解放可能に構成されている。大気開放バルブは、常時は閉状態に保持されている。 The compression cylinder 131 is disposed along the magazine 105, and the upper end side of the compression cylinder 131 is connected to the front end portion of the driving cylinder 121. The compression piston 133 is disposed so as to slide up and down along the magazine 105. The operation direction of the compression piston 133 is substantially orthogonal to the operation direction of the driving piston 123. As the compression piston 133 slides in the vertical direction, the volume of the compression chamber 131a that is the internal space of the compression cylinder 131 changes. That is, the compression piston 133 moves upward to reduce the volume of the compression chamber 131a, thereby compressing the air in the compression chamber 131a. The compression chamber 131 a is formed on the upper side of the compression piston 133 adjacent to the driving cylinder 121. The compression cylinder 131 includes an atmospheric release valve (not shown), and the compression chamber 131a is configured to be released to the atmosphere. The air release valve is normally kept closed.
 図3に示すように、モータ収容部101Cは、電動モータ211を収容している。この電動モータ211は、三相ブラシレスモータとして構成されている。電動モータ211は、モータ軸の回転軸線が打ち込みシリンダ121の長軸線に対して概ね平行となるように配置されている。従って、電動モータ211の回転軸線は、圧縮ピストン133の動作方向に対して直交している。なお、モータ収容部101Cの下部側には、バッテリ装着領域が形成されており、電動モータ211に電流を供給する充電式のバッテリパック110が着脱可能に装着される。 As shown in FIG. 3, the motor housing portion 101 </ b> C houses an electric motor 211. The electric motor 211 is configured as a three-phase brushless motor. The electric motor 211 is arranged so that the rotation axis of the motor shaft is substantially parallel to the long axis of the driving cylinder 121. Therefore, the rotation axis of the electric motor 211 is orthogonal to the operation direction of the compression piston 133. A battery mounting area is formed on the lower side of the motor housing 101C, and a rechargeable battery pack 110 that supplies current to the electric motor 211 is detachably mounted.
 図3に示すように、電動モータ211の回転は、遊星歯車式の減速機構113によって減速された後、クランク機構115に伝達される。そして、電動モータ211の回転は、クランク機構115によって直線運動に変換されて圧縮ピストン133に伝達される。減速機構113及びクランク機構115は、内側ハウジング102に収容されている。この内側ハウジング102は、圧縮装置収容部101Bとモータ収容部101Cの間に配置されている。この電動モータ211が、本発明における「三相ブラシレスモータ」に対応する実施構成例である。 As shown in FIG. 3, the rotation of the electric motor 211 is transmitted to the crank mechanism 115 after being decelerated by the planetary gear type reduction mechanism 113. The rotation of the electric motor 211 is converted into a linear motion by the crank mechanism 115 and transmitted to the compression piston 133. The speed reduction mechanism 113 and the crank mechanism 115 are accommodated in the inner housing 102. The inner housing 102 is disposed between the compression device housing portion 101B and the motor housing portion 101C. The electric motor 211 is an implementation configuration example corresponding to the “three-phase brushless motor” in the present invention.
 クランク機構115は、クランク軸115aと偏心ピン115bと連接ロッド115cを主体として構成されている。クランク軸115aは、遊星歯車式の減速機構113に連接している。すなわち、クランク軸115aは、減速機構113で減速された電動モータ211の回転によって駆動される。偏心ピン115bは、クランク軸115aの回転中心から偏心した位置に設けられている。連接ロッド115cは、一端が偏心ピン115bに相対回動可能に連接され、他端が圧縮ピストン133に相対回動可能に連接されている。このクランク機構115は、圧縮シリンダ131の下方に配置されている。以上の構成により、圧縮装置130として、圧縮シリンダ131、圧縮ピストン133及びクランク機構115を主体としたレシプロ式の圧縮装置が構成されている。このクランク機構115が、本発明における「クランク機構」に対応する実施構成例である。 The crank mechanism 115 is mainly composed of a crankshaft 115a, an eccentric pin 115b, and a connecting rod 115c. The crankshaft 115a is connected to a planetary gear type reduction mechanism 113. That is, the crankshaft 115 a is driven by the rotation of the electric motor 211 decelerated by the speed reduction mechanism 113. The eccentric pin 115b is provided at a position eccentric from the rotation center of the crankshaft 115a. One end of the connecting rod 115c is connected to the eccentric pin 115b so as to be relatively rotatable, and the other end is connected to the compression piston 133 so as to be relatively rotatable. The crank mechanism 115 is disposed below the compression cylinder 131. With the above-described configuration, a reciprocating compression device mainly including the compression cylinder 131, the compression piston 133, and the crank mechanism 115 is configured as the compression device 130. This crank mechanism 115 is an implementation configuration example corresponding to the “crank mechanism” in the present invention.
 ハンドル部103には、トリガ103aとトリガスイッチ103bが設けられている。そして、電動モータ211は、ハンドル部103に設けられたトリガ103aと本体ハウジング101の先端領域に設けられたドライバガイド141の操作に応じて、制御される。トリガ103aが引き操作されることでトリガスイッチ103bがオン状態となる。一方、トリガ103aの引き操作が解除されることでトリガスイッチ103bがオフ状態となる。 The handle 103 is provided with a trigger 103a and a trigger switch 103b. The electric motor 211 is controlled in accordance with the operation of the trigger 103 a provided on the handle portion 103 and the driver guide 141 provided on the distal end region of the main body housing 101. When the trigger 103a is pulled, the trigger switch 103b is turned on. On the other hand, the trigger switch 103b is turned off by releasing the pulling operation of the trigger 103a.
 また、コンタクトアームとしてのドライバガイド141は、釘打機100の前後方向に移動可能に本体ハウジング101の先端領域に配置されている。図6に示すように、ドライバガイド141は、付勢ばね142により前方に向かって付勢されている。ドライバガイド141が前方に位置するときには、コンタクトアームスイッチ143がオフ状態となる。一方、ドライバガイド141が本体ハウジング101側に移動されたときには、コンタクトアームスイッチ143がオン状態となる。さらに、図3に示すように、クランク機構115の下方には制御装置109が配置されている。そして、電動モータ211は、ハンドル部103に設けられたトリガ103aと本体ハウジング101の先端領域に設けられたドライバガイド141の操作に応じて、制御装置109によって制御される。すなわち、電動モータ211は、トリガスイッチ103bとコンタクトアームスイッチ143が共にオン状態に切替えられたときに通電駆動され、いずれか一方がオフ状態に切替えられたときに停止される。 Further, the driver guide 141 as a contact arm is disposed in the front end region of the main body housing 101 so as to be movable in the front-rear direction of the nailing machine 100. As shown in FIG. 6, the driver guide 141 is urged forward by an urging spring 142. When the driver guide 141 is positioned forward, the contact arm switch 143 is turned off. On the other hand, when the driver guide 141 is moved to the main body housing 101 side, the contact arm switch 143 is turned on. Further, as shown in FIG. 3, a control device 109 is disposed below the crank mechanism 115. The electric motor 211 is controlled by the control device 109 in accordance with the operation of the trigger 103 a provided on the handle portion 103 and the driver guide 141 provided on the distal end region of the main body housing 101. That is, the electric motor 211 is energized when both the trigger switch 103b and the contact arm switch 143 are switched on, and is stopped when one of the switches is switched off.
 図5に示すように、釘打機100は、圧縮シリンダ131の圧縮室131aと打ち込みシリンダ121のシリンダ室121aとを連通する空気通路135およびバルブ室137aを備えている。空気通路135は、連通ポート135a、連通ポート135b、連通路135c、環状溝121cおよびバルブ室137aを主体として構成されている。図4に示すように、連通ポート135aは、圧縮シリンダ131のシリンダヘッド131bに形成されている。この連通ポート135aは、圧縮室131aに連通している。また、図5に示すように、連通ポート135bは、打ち込み用シリンダ121のシリンダヘッド121bに形成されている。この連通ポート135bは、バルブ室137aに連通している。連通路135cは、連通ポート135aと連通ポート135bを連通させている。この連通路135cは、打ち込みシリンダ121に沿って前後方向に直線状に延在している。 As shown in FIG. 5, the nail driver 100 includes an air passage 135 and a valve chamber 137 a that connect the compression chamber 131 a of the compression cylinder 131 and the cylinder chamber 121 a of the driving cylinder 121. The air passage 135 mainly includes a communication port 135a, a communication port 135b, a communication passage 135c, an annular groove 121c, and a valve chamber 137a. As shown in FIG. 4, the communication port 135 a is formed in the cylinder head 131 b of the compression cylinder 131. The communication port 135a communicates with the compression chamber 131a. As shown in FIG. 5, the communication port 135 b is formed in the cylinder head 121 b of the driving cylinder 121. The communication port 135b communicates with the valve chamber 137a. The communication path 135c connects the communication port 135a and the communication port 135b. The communication path 135 c extends linearly in the front-rear direction along the driving cylinder 121.
 図5に示すように、連通ポート135bは、バルブ室137aの周面に形成された環状溝121cに連通している。この環状溝121cは、バルブ室137aに連通している。さらに、バルブ室137aは、シリンダ室121aに連通している。これにより、連通ポート135bは、環状溝121cおよびバルブ室137aを介してシリンダ室121aに連通している。バルブ室137aには、空気通路135を開閉する電磁バルブ137が収容されている。 As shown in FIG. 5, the communication port 135b communicates with an annular groove 121c formed in the peripheral surface of the valve chamber 137a. The annular groove 121c communicates with the valve chamber 137a. Further, the valve chamber 137a communicates with the cylinder chamber 121a. Thus, the communication port 135b communicates with the cylinder chamber 121a via the annular groove 121c and the valve chamber 137a. An electromagnetic valve 137 that opens and closes the air passage 135 is accommodated in the valve chamber 137a.
 電磁バルブ137は、打ち込みピストン123のピストン本体部124とほぼ同じ直径を有する円柱状部材である。電磁バルブ137は、バルブ室137a内を前後方向に移動可能に配置されている。電磁バルブ137の後方には、電磁石138が配置されている。そして、電磁石138に対する通電を切り替えることで、電磁バルブ137が前後方向に移動する。電磁バルブ137の外周には、前後方向に所定間隔で2個のOリング139a,139bが配置されている。電磁バルブ137は、後方へ移動することで環状溝121cを開放し、前方へ移動することで環状溝121cを閉じる。 The electromagnetic valve 137 is a columnar member having substantially the same diameter as the piston main body 124 of the driving piston 123. The electromagnetic valve 137 is disposed so as to be movable in the front-rear direction within the valve chamber 137a. An electromagnet 138 is disposed behind the electromagnetic valve 137. Then, by switching energization to the electromagnet 138, the electromagnetic valve 137 moves in the front-rear direction. On the outer periphery of the electromagnetic valve 137, two O- rings 139a and 139b are arranged at a predetermined interval in the front-rear direction. The electromagnetic valve 137 moves rearward to open the annular groove 121c, and moves forward to close the annular groove 121c.
 具体的には、図6に示すように、前側のOリング139aは、環状溝121cの前方においてバルブ室137aの内壁面と接触して、環状溝121cとシリンダ室121aとの連通を遮断する。また、図7に示すように、Oリング139aが、環状溝121cの領域内へ移動すると、環状溝121cがシリンダ室121aと連通する。なお、後側のOリング139bは、圧縮空気が連通ポート135bから外側へ漏れ出ることを防止する。すなわち、Oリング139bは、環状溝121cの開閉には関与しない。このように、空気通路135を開閉する電磁バルブ137は、空気通路135のうち、打ち込みシリンダ121のシリンダ室121aとの接続側に設けられている。 Specifically, as shown in FIG. 6, the front O-ring 139a is in contact with the inner wall surface of the valve chamber 137a in front of the annular groove 121c and blocks communication between the annular groove 121c and the cylinder chamber 121a. Further, as shown in FIG. 7, when the O-ring 139a moves into the region of the annular groove 121c, the annular groove 121c communicates with the cylinder chamber 121a. The rear O-ring 139b prevents the compressed air from leaking outside from the communication port 135b. That is, the O-ring 139b is not involved in opening / closing the annular groove 121c. Thus, the electromagnetic valve 137 that opens and closes the air passage 135 is provided in the air passage 135 on the connection side of the driving cylinder 121 with the cylinder chamber 121a.
 電磁バルブ137は、図6に示すように、常時には電磁石138によって環状溝121cを閉じる前方に配置されている。また、ストッパ136は、電磁バルブ137の前方に配置され、電磁バルブ137の前方への移動を規制している。このストッパ136は、シリンダ室121a内に径方向に突出するフランジ状の部材によって形成されている。さらに、ストッパ136は、後方へ移動する打ち込みピストン123の後端位置を規定している。 As shown in FIG. 6, the electromagnetic valve 137 is always disposed in front of the annular groove 121 c closed by the electromagnet 138. The stopper 136 is disposed in front of the electromagnetic valve 137 and restricts the movement of the electromagnetic valve 137 forward. The stopper 136 is formed by a flange-like member protruding in the radial direction in the cylinder chamber 121a. Further, the stopper 136 defines the rear end position of the driving piston 123 that moves rearward.
 次に、釘打機100の動作について説明する。釘打機100は、図3に示すように、打ち込みピストン123が後端位置(図3の左端位置)に位置し、かつ圧縮ピストン133が下端位置(下死点)に位置した状態が初期位置として定められている。すなわち、クランク角度0度(下死点)のときを初期状態としている。 Next, the operation of the nailing machine 100 will be described. As shown in FIG. 3, the nailing machine 100 has an initial position in which the driving piston 123 is located at the rear end position (left end position in FIG. 3) and the compression piston 133 is located at the lower end position (bottom dead center). It is defined as. That is, the initial state is when the crank angle is 0 degrees (bottom dead center).
 具体的には、図3に示すように、釘打機100は、磁気センサ150を備えている。磁気センサ150は、磁石151、ホール素子152を主体として構成されている。磁石150は、クランク軸115aに設けられている。一方、ホール素子152は、圧縮装置収容部101Bの磁石151と対向する位置に設けられている。ホール素子152は、バッテリパック110と電気的に接続されており、さらに、制御装置109に接続されている。ホール素子152がクランク軸115aの位置を検出し、制御装置109は、圧縮ピストン133が下死点に位置している状態を初期状態と規定している。この制御装置109が、本発明における「コントローラ」に対応する実施構成例である。 Specifically, as shown in FIG. 3, the nail driver 100 includes a magnetic sensor 150. The magnetic sensor 150 is mainly composed of a magnet 151 and a hall element 152. The magnet 150 is provided on the crankshaft 115a. On the other hand, the Hall element 152 is provided at a position facing the magnet 151 of the compression device housing portion 101B. The hall element 152 is electrically connected to the battery pack 110 and further connected to the control device 109. The Hall element 152 detects the position of the crankshaft 115a, and the control device 109 defines the state where the compression piston 133 is located at the bottom dead center as the initial state. This control device 109 is an implementation configuration example corresponding to the “controller” in the present invention.
 図3に示す初期状態において、ドライバガイド141が被加工材に押し当てられてコンタクトアームスイッチ143(図6参照)がオン状態とされるとともに、トリガ103aが引き操作されてトリガスイッチ103bがオン状態に切替えられると、電動モータ211が駆動される。これにより、減速機構113を介してクランク機構115が駆動され、圧縮ピストン133が上方へと移動する。このとき、電磁バルブ137は、空気通路135を閉鎖しているため、圧縮ピストン133の移動によって、圧縮室131a内の空気が圧縮される。 In the initial state shown in FIG. 3, the driver guide 141 is pressed against the workpiece and the contact arm switch 143 (see FIG. 6) is turned on, and the trigger 103a is pulled and the trigger switch 103b is turned on. When switched to, the electric motor 211 is driven. Thereby, the crank mechanism 115 is driven via the speed reduction mechanism 113, and the compression piston 133 moves upward. At this time, since the electromagnetic valve 137 closes the air passage 135, the air in the compression chamber 131a is compressed by the movement of the compression piston 133.
 磁気センサ150が、圧縮ピストン133の位置がクランク角度180度である上端位置(上死点)であることを検出すると、制御装置109は、電磁石138を制御し、電磁バルブ137を後方に移動させる。すなわち、圧縮室131a内の圧縮空気が最大圧縮状態とされたとき、電磁バルブ137が開弁される。これにより、環状溝121cがシリンダ室121aに連通し、圧縮室131a内の圧縮空気が空気通路135を経てシリンダ室121a内へと供給される。シリンダ室121a内に圧縮空気が供給されると、当該圧縮空気による空気ばねの作用によって、図7に示すように、打ち込みピストン123が前方へ移動される。そして、前方へと移動された打ち込みピストン123のドライバ125が打ち込み通路141a(図3参照)に待機している釘を打撃する。これにより、釘を打ち出す打ち出し動作が行われる。 When the magnetic sensor 150 detects that the compression piston 133 is at the upper end position (top dead center) at a crank angle of 180 degrees, the control device 109 controls the electromagnet 138 and moves the electromagnetic valve 137 backward. . That is, when the compressed air in the compression chamber 131a is in the maximum compressed state, the electromagnetic valve 137 is opened. Thereby, the annular groove 121c communicates with the cylinder chamber 121a, and the compressed air in the compression chamber 131a is supplied into the cylinder chamber 121a through the air passage 135. When compressed air is supplied into the cylinder chamber 121a, the driving piston 123 is moved forward by the action of the air spring by the compressed air, as shown in FIG. Then, the driver 125 of the driving piston 123 moved forward hits the nail waiting in the driving passage 141a (see FIG. 3). Thereby, a driving operation for driving out the nail is performed.
 打ち出し動作後、圧縮ピストン133は下死点へ向かって移動する。そのとき、圧縮室131aの容積が増加されて当該圧縮室131a内の空気が大気圧よりも低い負圧となる。圧縮室131a内の負圧は、空気通路135及びシリンダ室121aを通じて打ち込みピストン123に作用する。これにより、図8に示すように、打ち込みピストン123が吸引されて後方へと移動される。そして、打ち込みピストン123は、ストッパ136と当接して初期位置に位置する。磁気センサ150が、圧縮ピストン133の位置がクランク角度0度である下死点であることを検出すると、制御装置109は、電磁石138を制御し、電磁バルブ137を前方に移動させる。これにより、空気通路135を閉じる。なお、圧縮ピストン133が初期位置に戻ると、トリガスイッチ103b及びコンタクトアームスイッチ143がオン状態に維持されていても、電動モータ211に対する通電が遮断され、電動モータ211が停止される。このように、打ち出し動作の1サイクルが終了する。なお、打ち出し動作中には、LED107が、ドライバガイド141の先端領域を照射している。 After the launch operation, the compression piston 133 moves toward the bottom dead center. At that time, the volume of the compression chamber 131a is increased, and the air in the compression chamber 131a becomes a negative pressure lower than the atmospheric pressure. The negative pressure in the compression chamber 131a is driven through the air passage 135 and the cylinder chamber 121a and acts on the piston 123. Thereby, as shown in FIG. 8, the driving piston 123 is sucked and moved rearward. The driving piston 123 is in contact with the stopper 136 and is located at the initial position. When the magnetic sensor 150 detects that the position of the compression piston 133 is a bottom dead center with a crank angle of 0 degrees, the control device 109 controls the electromagnet 138 and moves the electromagnetic valve 137 forward. As a result, the air passage 135 is closed. When the compression piston 133 returns to the initial position, even if the trigger switch 103b and the contact arm switch 143 are maintained in the ON state, the energization to the electric motor 211 is cut off and the electric motor 211 is stopped. In this way, one cycle of the launching operation is completed. During the launching operation, the LED 107 irradiates the tip region of the driver guide 141.
 図9に示すように、釘打機100には、三相ブラシレスモータである電動モータ211を駆動するためのスイッチング回路255、位置センサ260が設けられている。スイッチング回路255には、6つのスイッチ素子255a~255fが設けられている。位置センサ260は、電動モータ211のロータの位置を検出するように、ロータの周方向において所定の位置に3か所配置されている。この位置センサ260は、例えばロータの周方向における120度毎に配置されている。 As shown in FIG. 9, the nailing machine 100 is provided with a switching circuit 255 and a position sensor 260 for driving an electric motor 211 that is a three-phase brushless motor. The switching circuit 255 is provided with six switch elements 255a to 255f. Three position sensors 260 are arranged at predetermined positions in the circumferential direction of the rotor so as to detect the position of the rotor of the electric motor 211. The position sensor 260 is arranged, for example, every 120 degrees in the circumferential direction of the rotor.
 電動モータ211を駆動する際には、位置センサ260によって検出されたロータの位置に基づいて、制御装置109がスイッチング回路255を制御する。すなわち、制御装置109は、ロータの位置に基づいて、ステータコイル211U,211V,211Wに対してそれぞれ電流が供給されるように制御することで、電動モータ211を駆動する。すなわち、制御装置109は、以下の通り各スイッチ素子のON/OFFを切り替えることで、電動モータ211を駆動する。スイッチ素子255a,255dのみをONにすることで、ステータコイル211Uからステータコイル211Vに電流を供給する。スイッチ素子255a,255fのみをONにすることで、ステータコイル211Uからステータコイル211Wに電流を供給する。スイッチ素子255c,255fのみをONにすることで、ステータコイル211Vからステータコイル211Wに電流を供給する。スイッチ素子255c,255bのみをONにすることで、ステータコイル211Vからステータコイル211Uに電流を供給する。スイッチ素子255e,255bのみをONにすることで、ステータコイル211Wからステータコイル211Uに電流を供給する。スイッチ素子255e,255dのみをONにすることで、ステータコイル211Wからステータコイル211Vに電流を供給する。 When driving the electric motor 211, the control device 109 controls the switching circuit 255 based on the position of the rotor detected by the position sensor 260. That is, the control device 109 drives the electric motor 211 by controlling the current to be supplied to the stator coils 211U, 211V, and 211W based on the position of the rotor. That is, the control device 109 drives the electric motor 211 by switching ON / OFF of each switch element as follows. By turning on only the switch elements 255a and 255d, current is supplied from the stator coil 211U to the stator coil 211V. By turning on only the switching elements 255a and 255f, current is supplied from the stator coil 211U to the stator coil 211W. By turning on only the switch elements 255c and 255f, current is supplied from the stator coil 211V to the stator coil 211W. By turning on only the switching elements 255c and 255b, a current is supplied from the stator coil 211V to the stator coil 211U. By turning on only the switching elements 255e and 255b, a current is supplied from the stator coil 211W to the stator coil 211U. By turning on only the switch elements 255e and 255d, current is supplied from the stator coil 211W to the stator coil 211V.
 図10および図11に示すように、制御装置109は、U,V,W相の端子212として212U、212V、212Wにそれぞれ印加される電圧が矩形波状に変化するように制御している。図10は通電角が120度に設定された状態の電圧波形である。また、図11は通電角が150度に設定された状態の電圧波形である。制御装置109は、通電角を120度と150度に選択的に設定することができるように構成されている。なお、図10、図11における横軸は、ロータの機械的角度を示しており、縦軸は、各相の電圧を示している。この通電角120度が、本発明における「第1の通電角」に対応する実施構成例である。また、通電角150度が、本発明における「第2の通電角」に対応する実施構成例である。 As shown in FIGS. 10 and 11, the control device 109 controls the voltages applied to the 212U, 212V, and 212W as the U, V, and W phase terminals 212 so as to change in a rectangular waveform. FIG. 10 is a voltage waveform in a state where the conduction angle is set to 120 degrees. FIG. 11 shows a voltage waveform in a state where the conduction angle is set to 150 degrees. The control device 109 is configured so that the energization angle can be selectively set to 120 degrees and 150 degrees. 10 and 11, the horizontal axis represents the mechanical angle of the rotor, and the vertical axis represents the voltage of each phase. This conduction angle of 120 degrees is an implementation configuration example corresponding to the “first conduction angle” in the present invention. Further, the conduction angle of 150 degrees is an implementation configuration example corresponding to the “second conduction angle” in the present invention.
 電動モータ211は、通電角が大きくなると回転速度が速くなり出力トルクが低くなる。すなわち、電動モータ211は、通電角150度で駆動した場合は、通電角120度で駆動した場合に比べて、回転速度が速く(回転数が高く)出力トルクが低くなる。そこで第1実施形態においては、圧縮ピストン133の駆動の1サイクルにおいて、制御装置109が電動モータ211の通電角を120度と150度に選択的に切り替えるように制御する。 The rotation speed of the electric motor 211 increases and the output torque decreases as the energization angle increases. That is, when the electric motor 211 is driven at an energization angle of 150 degrees, the rotational speed is higher (the rotation speed is higher) and the output torque is lower than when the electric motor 211 is driven at an energization angle of 120 degrees. Therefore, in the first embodiment, in one cycle of driving the compression piston 133, the control device 109 performs control so that the energization angle of the electric motor 211 is selectively switched between 120 degrees and 150 degrees.
 圧縮ピストン133が下死点から上死点に移動する圧縮工程においては、圧縮室131a内の空気が圧縮されて、圧力が徐々に高くなる。したがって、圧縮ピストン133の位置が下死点に近いほど、圧縮ピストン133を駆動するために必要な駆動力が小さい。一方、圧縮ピストン133の位置が上死点に近いほど、圧縮ピストン133を駆動するために必要な駆動力が大きい。なお、圧縮工程以外においては、圧縮ピストン133を駆動するために必要な駆動力は小さい。 In the compression process in which the compression piston 133 moves from the bottom dead center to the top dead center, the air in the compression chamber 131a is compressed and the pressure gradually increases. Therefore, the closer the position of the compression piston 133 is to the bottom dead center, the smaller the driving force required to drive the compression piston 133. On the other hand, the closer the position of the compression piston 133 is to top dead center, the greater the driving force required to drive the compression piston 133. In addition, the driving force required to drive the compression piston 133 is small except for the compression process.
 そのため、図12に示すように、クランク角度0度から180度である圧縮工程において、圧縮ピストン133が下死点から上死点に向かって移動を開始する際には、制御装置109は通電角を150度(A2)に設定して電動モータ211を制御する。すなわち、圧縮ピストン133が下死点に近い領域に位置する場合には、制御装置109は通電角を150度に設定して電動モータ211を駆動する。なお、図12における横軸は、クランク角度を示している。 Therefore, as shown in FIG. 12, when the compression piston 133 starts moving from the bottom dead center to the top dead center in the compression process in which the crank angle is 0 degree to 180 degrees, the control device 109 has the conduction angle. Is set to 150 degrees (A2), and the electric motor 211 is controlled. That is, when the compression piston 133 is located in a region near the bottom dead center, the control device 109 sets the energization angle to 150 degrees and drives the electric motor 211. Note that the horizontal axis in FIG. 12 indicates the crank angle.
 圧縮ピストン133が移動を開始して所定時間が経過すると、制御装置109は通電角を150度(A2)から120度(A1)に切り替えて電動モータ211を制御する。すなわち、圧縮ピストン133が上死点に近い領域に位置する場合には、制御装置109は通電角を120度に設定して電動モータ211を駆動する。第1実施形態においては、通電角が切り替えられるタイミングとしての、圧縮ピストン133が下死点から移動を開始してからの所定時間は、クランク角度0度からクランク角度90度に対応する時間として設定されている。これにより、圧縮ピストン133の圧縮工程の間に、電動モータ211は、通電角が150度から120度に切り替えられて駆動される。 When the compression piston 133 starts moving and a predetermined time elapses, the control device 109 controls the electric motor 211 by switching the conduction angle from 150 degrees (A2) to 120 degrees (A1). That is, when the compression piston 133 is located in a region close to top dead center, the control device 109 sets the energization angle to 120 degrees and drives the electric motor 211. In the first embodiment, the predetermined time after the compression piston 133 starts moving from the bottom dead center as the timing at which the conduction angle is switched is set as the time corresponding to the crank angle of 90 degrees from the crank angle of 0 degrees. Has been. Thereby, during the compression process of the compression piston 133, the electric motor 211 is driven by switching the conduction angle from 150 degrees to 120 degrees.
 圧縮ピストン133が上死点(クランク角度180度)を通過した後は、制御装置109は通電角を120度(A1)から150度(A2)に切り替えて電動モータ211を制御する。そして、圧縮ピストン133が下死点(クランク角度0度)に位置するように、制御装置109は、電動モータ211の駆動を停止する。 After the compression piston 133 passes the top dead center (crank angle 180 degrees), the control device 109 controls the electric motor 211 by switching the conduction angle from 120 degrees (A1) to 150 degrees (A2). Then, the control device 109 stops driving the electric motor 211 so that the compression piston 133 is located at the bottom dead center (crank angle 0 degree).
 電動モータ211の通電角を120度から150度に切り替える場合には、制御装置109は、通電開始タイミングを早め、その後、通電開始タイミングを維持しながら、通電角を大きくするように制御する。一方、電動モータ211の通電角を150度から120度に切り替える場合には、制御装置109は、通電開始タイミングを維持しながら通電角を小さくし、その後、通電開始タイミングを遅らせるように制御する。 When switching the energization angle of the electric motor 211 from 120 degrees to 150 degrees, the control device 109 controls the energization angle to be increased while the energization start timing is advanced, and then the energization start timing is maintained. On the other hand, when switching the energization angle of the electric motor 211 from 150 degrees to 120 degrees, the control device 109 performs control so as to reduce the energization angle while maintaining the energization start timing and then delay the energization start timing.
 以上の通り、釘打機100の制御装置109は、圧縮ピストン133の駆動の1サイクルにおいて電動モータ211の通電角を120度と150度の間で切り換える。この通電角の切り換えは、圧縮ピストン133が駆動する複数のサイクルにおいて同様に切り替えられるように設定されている。すなわち、圧縮ピストン133の各サイクルにおいて、同じタイミングで通電角が切り替えられる。 As described above, the control device 109 of the nailing machine 100 switches the energization angle of the electric motor 211 between 120 degrees and 150 degrees in one cycle of driving the compression piston 133. The switching of the energization angle is set so as to be similarly switched in a plurality of cycles in which the compression piston 133 is driven. That is, in each cycle of the compression piston 133, the conduction angle is switched at the same timing.
 以上の第1実施形態によれば、圧縮ピストン133を駆動させるために必要な駆動力が小さい下死点に近い領域に圧縮ピストン133が位置する場合には、制御装置109が電動モータ211の通電角を150度に設定して電動モータ211を駆動する。そのため、電動モータ211の回転速度、すなわち圧縮ピストン133の移動速度が速くなる。これにより、圧縮ピストン133の駆動における1サイクルにかかる時間が短縮される。したがって、釘を連続して打ち出すような場合には、単位時間当たりに打ち出すことができる釘の数が多くなる。 According to the first embodiment described above, when the compression piston 133 is located in a region near the bottom dead center where the driving force necessary to drive the compression piston 133 is small, the control device 109 supplies the electric motor 211 with power. The electric motor 211 is driven with the angle set to 150 degrees. Therefore, the rotational speed of the electric motor 211, that is, the moving speed of the compression piston 133 is increased. As a result, the time required for one cycle in driving the compression piston 133 is shortened. Therefore, when nails are driven out continuously, the number of nails that can be driven out per unit time increases.
 また、第1実施形態によれば、圧縮ピストン133を駆動するために必要な駆動力が大きい上死点に近い領域に圧縮ピストン133が位置する場合に、制御装置109が電動モータ211の通電角を120度に設定して電動モータ211を駆動する。そのため、電動モータ211の出力トルクを高くすることができる。これにより、圧縮室131a内の空気が適切に圧縮される。 In addition, according to the first embodiment, when the compression piston 133 is located in a region near the top dead center where the driving force necessary for driving the compression piston 133 is large, the control device 109 causes the energization angle of the electric motor 211 to be increased. Is set to 120 degrees to drive the electric motor 211. Therefore, the output torque of the electric motor 211 can be increased. Thereby, the air in the compression chamber 131a is compressed appropriately.
 また、第1実施形態によれば、圧縮ピストン133の圧縮工程以外の工程においては、制御装置109は電動モータ211の通電角を150度に設定して電動モータ211を駆動する。そのため、電動モータ211の回転速度、すなわち圧縮ピストン133の移動速度が速くなる。これにより、圧縮ピストン133の駆動における1サイクルにかかる時間が短縮される。 Further, according to the first embodiment, in a process other than the compression process of the compression piston 133, the control device 109 sets the energization angle of the electric motor 211 to 150 degrees and drives the electric motor 211. Therefore, the rotational speed of the electric motor 211, that is, the moving speed of the compression piston 133 is increased. As a result, the time required for one cycle in driving the compression piston 133 is shortened.
 以上の通り、第1実施形態においては、圧縮ピストン133の1サイクルにおける空気の圧力に対応して、制御装置109が電動モータ211の通電角を切り替えるため、釘打機100の圧縮ピストン133を合理的に駆動させることができる。換言すると、したがって、1サイクル内において、圧縮室131aの合理的な圧縮と、1サイクルの時間の短縮が両立される。 As described above, in the first embodiment, since the control device 109 switches the conduction angle of the electric motor 211 in accordance with the air pressure in one cycle of the compression piston 133, the compression piston 133 of the nail driver 100 is rationalized. Can be driven automatically. In other words, therefore, rational compression of the compression chamber 131a and shortening of the time of one cycle are compatible within one cycle.
 以上の第1実施形態においては、圧縮ピストン133が下死点から移動を開始して所定時間が経過したときに、制御装置109が通電角を150度から120度に切り替えるように構成されていたが、これには限られない。例えば、磁気センサ150によって検出される圧縮ピストン133の位置に応じて、制御装置109が通電角を切り替えるように構成されていてもよい。この場合、例えばクランク角度0度(下死点)からクランク角度90度までの間は、通電角を150度に設定し、クランク角度90度からクランク角度180度(上死点)の間を通電角120度に設定される。なお、以上においては、通電角が切り替えられるタイミングは、クランク角度90度に限られず、例えば、クランク角度120度やクランク角度150度であってもよい。また、以上においては、制御装置109が経過時間やクランク角度に基づいて、通電角を切り替えるように構成されていたが、これには限られない。例えば、圧縮室131a内の空気の圧力を検出するセンサが設けられており、圧縮室131a内の空気の圧力に基づいて、制御装置109が通電角を切り替えるように構成されていてもよい。 In the first embodiment described above, the control device 109 is configured to switch the conduction angle from 150 degrees to 120 degrees when the compression piston 133 starts moving from the bottom dead center and a predetermined time has elapsed. However, it is not limited to this. For example, the control device 109 may be configured to switch the energization angle according to the position of the compression piston 133 detected by the magnetic sensor 150. In this case, for example, the energization angle is set to 150 degrees from the crank angle 0 degree (bottom dead center) to the crank angle 90 degrees, and the energization is performed from the crank angle 90 degrees to the crank angle 180 degrees (top dead center). The angle is set to 120 degrees. In the above, the timing at which the energization angle is switched is not limited to the crank angle of 90 degrees, and may be, for example, a crank angle of 120 degrees or a crank angle of 150 degrees. In the above description, the control device 109 is configured to switch the energization angle based on the elapsed time or the crank angle, but is not limited thereto. For example, a sensor that detects the pressure of air in the compression chamber 131a may be provided, and the control device 109 may be configured to switch the conduction angle based on the pressure of air in the compression chamber 131a.
 また、第1実施形態においては、圧縮ピストン133の複数のサイクルの各サイクルにおいて、同じタイミングで通電角が切り替えられるように構成されていたが、これには限られない。例えば、バッテリパック110のバッテリ残量を検出するセンサが設けられており、バッテリ残量に基づいて、制御装置109が通電角を切り替えるように構成されていてもよい。すなわち、バッテリ残量が少なくなると電動モータ211を駆動する電圧値が下がる。そのため、バッテリ残量が多い場合に比べて、電動モータ211の回転速度が遅くなる。換言すると、同じ通電角であっても、バッテリ残量によって電動モータ211の回転速度が異なる。そこで、バッテリ残量が所定の閾値よりも少ない場合には、圧縮ピストン133が下死点から移動を開始してから制御装置109が通電角を切り替えるまでの所定時間を長くするように構成されていてもよい。 In the first embodiment, the energization angle is switched at the same timing in each of a plurality of cycles of the compression piston 133. However, the present invention is not limited to this. For example, a sensor that detects the remaining battery level of the battery pack 110 may be provided, and the control device 109 may be configured to switch the energization angle based on the remaining battery level. That is, when the remaining battery level decreases, the voltage value for driving the electric motor 211 decreases. Therefore, the rotation speed of the electric motor 211 is slower than when the battery level is high. In other words, even with the same energization angle, the rotation speed of the electric motor 211 varies depending on the remaining battery level. Therefore, when the remaining battery level is less than the predetermined threshold, the predetermined time from when the compression piston 133 starts moving from the bottom dead center to when the control device 109 switches the energization angle is increased. May be.
(第2実施形態)
 次に、図13を参照して本発明の第2実施形態について説明する。第2実施形態においては、第1実施形態と制御装置109が電動モータ211の通電角を切り替えるタイミングが異なる。なお、第1実施形態と同一の構成については、その説明を省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. In the second embodiment, the timing at which the control device 109 switches the energization angle of the electric motor 211 is different from that in the first embodiment. The description of the same configuration as that of the first embodiment is omitted.
 図13に示すように、第2実施形態では、圧縮工程において、制御装置109が電動モータ211の通電角を120度(A1)に設定して電動モータ211を駆動する。一方、圧縮ピストン133が上死点を通過した後は、制御装置109が電動モータ211の通電角を150度(A2)に設定して電動モータ211を駆動する。 As shown in FIG. 13, in the second embodiment, in the compression process, the control device 109 sets the energization angle of the electric motor 211 to 120 degrees (A1) and drives the electric motor 211. On the other hand, after the compression piston 133 passes the top dead center, the control device 109 sets the energization angle of the electric motor 211 to 150 degrees (A2) and drives the electric motor 211.
 以上の第2実施形態によれば、圧縮ピストン133の圧縮工程において、制御装置109が電動モータ211の通電角を120度に設定して駆動する。そのため、電動モータ211の出力トルクが高くなる。これにより、圧縮室131a内の空気が適切に圧縮される。 According to the second embodiment described above, in the compression step of the compression piston 133, the control device 109 drives the electric motor 211 with the energization angle set to 120 degrees. Therefore, the output torque of the electric motor 211 is increased. Thereby, the air in the compression chamber 131a is compressed appropriately.
 また、第2実施形態によれば、圧縮ピストン133の圧縮工程以外の工程においては、制御装置109は電動モータ211の通電角を150度に設定して駆動する。そのため、電動モータ211の回転速度、すなわち圧縮ピストン133の移動速度が速くなる。これにより、圧縮ピストン133の駆動における1サイクルの時間が短縮される。 Further, according to the second embodiment, in a process other than the compression process of the compression piston 133, the control device 109 drives the electric motor 211 with the energization angle set to 150 degrees. Therefore, the rotational speed of the electric motor 211, that is, the moving speed of the compression piston 133 is increased. Thereby, the time of 1 cycle in the drive of the compression piston 133 is shortened.
 以上においては、通電角が120度と150度の場合について説明したが、これには限られない。すなわち、通電角として120度以上180度以下の間の任意の2つの通電角を設定すればよい。 In the above, the case where the conduction angle is 120 degrees and 150 degrees has been described, but the present invention is not limited to this. That is, any two energization angles between 120 degrees and 180 degrees may be set as the energization angles.
 また、以上においては、圧縮ピストン133の駆動における1サイクルにおいて、圧縮室131a内の空気の圧力に基づいて、合理的に通電角を設定することが可能であり、上記の実施形態に限られるものではない。 In the above description, it is possible to rationally set the conduction angle based on the pressure of air in the compression chamber 131a in one cycle of driving the compression piston 133, which is limited to the above embodiment. is not.
 以上の発明の趣旨に鑑み、本発明に係る打ち込み工具は、下記の態様が構成可能である。各態様は、単独で用いるか、あるいはクレームされた発明と組み合わせて用いることができる。
(態様1)
 前記コントローラは、前記シリンダ内の空気の圧力値が所定の閾値以上である場合は、前記第1の通電角に設定し、前記シリンダ内の空気の圧力値が前記閾値未満である場合は、前記第2の通電角に設定するように構成されていることを特徴とする打ち込み工具。
(態様2)
 前記コントローラは、前記ピストンが前記下死点から前記上死点に向かう圧縮工程において、前記バッテリ残量が所定の閾値以上である場合は、前記ピストンが前記下死点から移動を開始してから第1の時間経過したときに前記第2の通電角から前記第1の通電角に切り替えるように構成されており、前記バッテリ残量が前記閾値未満である場合は、前記ピストンが前記下死点から移動を開始してから前記第1の時間よりも長い第2の時間経過したときに前記第2の通電角から前記第1の通電角に切り替えるように構成されていることを特徴とする打ち込み工具。
In view of the gist of the above invention, the driving tool according to the present invention can be configured as follows. Each embodiment can be used alone or in combination with the claimed invention.
(Aspect 1)
The controller sets the first energization angle when the pressure value of air in the cylinder is equal to or greater than a predetermined threshold, and when the pressure value of air in the cylinder is less than the threshold, A driving tool configured to be set to the second conduction angle.
(Aspect 2)
In the compression process in which the piston moves from the bottom dead center to the top dead center, the controller starts moving the piston from the bottom dead center when the remaining battery level is equal to or greater than a predetermined threshold. When the first time elapses, the second energization angle is switched to the first energization angle. When the remaining battery level is less than the threshold, the piston is at the bottom dead center. The driving is characterized in that it is configured to switch from the second energization angle to the first energization angle when a second time longer than the first time has elapsed since the start of movement. tool.
(本実施形態の各構成要素と本発明の各構成要素の対応関係)
 本実施形態の各構成要素と本発明の各構成要素の対応関係を以下の通り示す。なお、本実施形態は、本発明を実施するための形態の一例を示すものであり、本発明は、本実施形態の構成に限定されるものではない。
 釘打機100は、本発明の「打ち込み工具」に対応する構成の一例である。
 制御装置109は、本発明の「コントローラ」に対応する構成の一例である。
 クランク機構115は、本発明の「クランク機構」に対応する構成の一例である。
 圧縮シリンダ131は、本発明の「シリンダ」に対応する構成の一例である。
 圧縮ピストン133は、本発明の「ピストン」に対応する構成の一例である。
 電動モータ211は、本発明の「三相ブラシレスモータ」に対応する構成の一例である。
 通電角120度は、本発明の「第1の通電角」に対応する構成の一例である。
 通電角150度は、本発明の「第2の通電角」に対応する構成の一例である。
(Correspondence between each component of this embodiment and each component of the present invention)
The correspondence between each component of the present embodiment and each component of the present invention is shown as follows. In addition, this embodiment shows an example of the form for implementing this invention, and this invention is not limited to the structure of this embodiment.
The nailing machine 100 is an example of a configuration corresponding to the “driving tool” of the present invention.
The control device 109 is an example of a configuration corresponding to the “controller” of the present invention.
The crank mechanism 115 is an example of a configuration corresponding to the “crank mechanism” of the present invention.
The compression cylinder 131 is an example of a configuration corresponding to the “cylinder” of the present invention.
The compression piston 133 is an example of a configuration corresponding to the “piston” of the present invention.
The electric motor 211 is an example of a configuration corresponding to the “three-phase brushless motor” of the present invention.
The conduction angle of 120 degrees is an example of a configuration corresponding to the “first conduction angle” of the present invention.
The conduction angle of 150 degrees is an example of a configuration corresponding to the “second conduction angle” of the present invention.
100 釘打機
101 本体ハウジング
101A 打ち込み機構収容部
101B 圧縮装置収容部
101C モータ収容部
102 内側ハウジング
103 ハンドル部
103a トリガ
103b トリガスイッチ
105 マガジン
105a プッシャプレート
107 LED
108 LED
109 制御装置
110 バッテリパック
113 遊星歯車式減速機構
115 クランク機構
115a クランク軸
115b 偏心ピン
115c 連接ロッド
120 釘打ち込み機構
121 打ち込みシリンダ
121a シリンダ室
121b シリンダヘッド
121c 環状溝
123 打ち込みピストン
124 ピストン本体部
125 ドライバ
130 圧縮装置
131 圧縮シリンダ
131a 圧縮室
131b シリンダヘッド
133 圧縮ピストン
135 空気通路
135a 連通ポート
135b 連通ポート
135c 連通路
136 ストッパ
137 電磁バルブ
137a バルブ室
138 電磁石
139a Oリング
139b Oリング
141 ドライバガイド
141a 打ち込み通路
142 付勢ばね
143 コンタクトアームスイッチ
150 磁気センサ
151 磁石
152 ホール素子
211 電動モータ
212 端子
212U,212V,212W 各端子
255 スイッチング回路
255a~255f スイッチ素子
260 位置センサ
A1 通電角120度
A2 通電角150度
DESCRIPTION OF SYMBOLS 100 Nailing machine 101 Main body housing 101A Driving mechanism accommodating part 101B Compressor accommodating part 101C Motor accommodating part 102 Inner housing 103 Handle part 103a Trigger 103b Trigger switch 105 Magazine 105a Pusher plate 107 LED
108 LED
109 Control device 110 Battery pack 113 Planetary gear type reduction mechanism 115 Crank mechanism 115a Crank shaft 115b Eccentric pin 115c Connecting rod 120 Nail driving mechanism 121 Driving cylinder 121a Cylinder chamber 121b Cylinder head 121c Annular groove 123 Driving piston 124 Piston body 125 Driver 130 Compression device 131 Compression cylinder 131a Compression chamber 131b Cylinder head 133 Compression piston 135 Air passage 135a Communication port 135b Communication port 135c Communication passage 136 Stopper 137 Electromagnetic valve 137a Valve chamber 138 Electromagnet 139a O-ring 139b O-ring 141 Driver guide 141a With drive-in passage 142 Force spring 143 Contact arm switch 150 Magnetic sensor 151 Magnet 152 Hall Element 211 Electric motor 212 Terminals 212U, 212V, 212W Terminals 255 Switching circuits 255a to 255f Switch element 260 Position sensor A1 Energization angle 120 degrees A2 Energization angle 150 degrees

Claims (9)

  1.  打ち込み具を射出口から打ち出す打ち込み工具であって、
     シリンダと、
     前記シリンダ内を摺動可能なピストンと、
     前記ピストンを駆動するクランク機構と、
     バッテリから電流が供給されて前記クランク機構を駆動する三相ブラシレスモータと、
     前記三相ブラシレスモータを制御するコントローラ、とを有し、
     前記ピストンが摺動することによって生じる前記シリンダ内の空気の圧力変動を利用して前記打ち込み具を打ち出すように構成されており、
     前記コントローラは、前記三相ブラシレスモータに対する通電角を第1の通電角と第2の通電角に選択的に設定可能であり、
     前記第1の通電角は、120度以上180度以下の通電角であり、
     前記第2の通電角は、120度以上180度以下の通電角であるとともに、前記第1の通電角よりも大きい通電角であり、
     前記コントローラは、前記ピストンが下死点から上死点を通過して再度下死点に移動する当該ピストンの駆動の1サイクルの間に、前記通電角を前記第1の通電角と前記第2の通電角の間で切り替えて、前記第1の通電角と前記第2の通電角の両方の通電角に設定して前記三相ブラシレスモータを駆動するように構成されていることを特徴とする打ち込み工具。
    A driving tool for driving a driving tool from an injection port,
    A cylinder,
    A piston slidable in the cylinder;
    A crank mechanism for driving the piston;
    A three-phase brushless motor that is supplied with current from a battery and drives the crank mechanism;
    A controller for controlling the three-phase brushless motor,
    It is configured to drive out the driving tool by utilizing the pressure fluctuation of the air in the cylinder caused by the sliding of the piston,
    The controller can selectively set the energization angle for the three-phase brushless motor to a first energization angle and a second energization angle,
    The first conduction angle is a conduction angle of 120 degrees or more and 180 degrees or less,
    The second energization angle is an energization angle of 120 degrees or more and 180 degrees or less, and an energization angle larger than the first energization angle,
    The controller changes the conduction angle between the first conduction angle and the second conduction during one cycle of driving of the piston, in which the piston passes from the top dead center to the bottom dead center and moves to the bottom dead center again. The three-phase brushless motor is driven by switching between the first conduction angle and the second conduction angle and switching between the first conduction angle and the second conduction angle. Driving tool.
  2.  請求項1に記載の打ち込み工具であって、
     前記コントローラは、前記ピストンが前記下死点から前記上死点に向かう圧縮工程において、前記ピストンが前記上死点に近い第1の領域に位置する場合に、前記通電角を前記第1の通電角に設定し、前記ピストンが前記第1の領域よりも前記上死点から遠い第2の領域に位置する場合に、前記通電角を前記第2の通電角に設定するように構成されていることを特徴とする打ち込み工具。
    The driving tool according to claim 1,
    In the compression process in which the piston moves from the bottom dead center to the top dead center, the controller sets the conduction angle to the first conduction when the piston is located in a first region close to the top dead center. When the piston is located in a second region farther from the top dead center than the first region, the conduction angle is set to the second conduction angle. A driving tool characterized by that.
  3.  請求項2に記載の打ち込み工具であって、
     前記コントローラは、前記圧縮工程以外の工程における前記通電角を前記第2の通電角に設定するように構成されていることを特徴とする打ち込み工具。
    The driving tool according to claim 2,
    The controller is configured to set the energization angle in a process other than the compression process to the second energization angle.
  4.  請求項1に記載の打ち込み工具であって、
     前記コントローラは、前記ピストンが前記下死点から前記上死点に向かう圧縮工程における前記通電角を前記第1の通電角に設定し、前記圧縮工程以外の工程における前記通電角を前記第2の通電角に設定するように構成されていることを特徴とする打ち込み工具。
    The driving tool according to claim 1,
    The controller sets the energization angle in the compression process in which the piston moves from the bottom dead center to the top dead center as the first energization angle, and sets the energization angle in a process other than the compression process to the second energization angle. A driving tool configured to be set to a conduction angle.
  5.  請求項1~4のいずれか1項に記載の打ち込み工具であって、
     前記コントローラは、前記シリンダ内の空気の圧力値に応じて、前記第1の通電角と前記第2の通電角を選択して設定するように構成されていることを特徴とする打ち込み工具。
    The driving tool according to any one of claims 1 to 4,
    The driving tool is configured to select and set the first energization angle and the second energization angle according to a pressure value of air in the cylinder.
  6.  請求項5に記載の打ち込み工具であって、
     前記コントローラは、前記シリンダ内の空気の圧力値が所定の閾値以上である場合は、前記第1の通電角に設定し、前記シリンダ内の空気の圧力値が前記閾値未満である場合は、前記第2の通電角に設定するように構成されていることを特徴とする打ち込み工具。
    The driving tool according to claim 5,
    The controller sets the first energization angle when the pressure value of air in the cylinder is equal to or greater than a predetermined threshold, and when the pressure value of air in the cylinder is less than the threshold, A driving tool configured to be set to the second conduction angle.
  7.  請求項1~6のいずれか1項に記載の打ち込み工具であって、
     前記コントローラは、前記バッテリのバッテリ残量に応じて、前記1サイクルにおける前記第1の通電角と前記第2の通電角が切り替えられるタイミングが設定されるように構成され、
     前記タイミングにおいて前記第1の通電角と前記第2の通電角が切り替えられて、前記三相ブラシレスモータが駆動されるように構成されていることを特徴とする打ち込み工具。
    The driving tool according to any one of claims 1 to 6,
    The controller is configured to set a timing at which the first energization angle and the second energization angle in the one cycle are switched in accordance with a remaining battery level of the battery.
    The driving tool configured to drive the three-phase brushless motor by switching the first energization angle and the second energization angle at the timing.
  8.  請求項7に記載の打ち込み工具であって、
     前記バッテリ残量を検出するセンサを有し、
     前記コントローラは、前記ピストンが前記下死点から前記上死点に向かう圧縮工程において、前記センサによって検出された前記バッテリ残量が所定の閾値以上である場合は、前記ピストンが前記下死点から移動を開始してから第1の時間経過したタイミングで前記第2の通電角から前記第1の通電角に切り替えるように構成されており、前記バッテリ残量が前記閾値未満である場合は、前記ピストンが前記下死点から移動を開始してから前記第1の時間よりも長い第2の時間経過したタイミングで前記第2の通電角から前記第1の通電角に切り替えるように構成されていることを特徴とする打ち込み工具。
    The driving tool according to claim 7,
    A sensor for detecting the remaining battery capacity;
    In the compression process in which the piston moves from the bottom dead center to the top dead center, the controller determines that the piston is moved from the bottom dead center when the remaining battery level detected by the sensor is equal to or greater than a predetermined threshold. When the first energization angle is switched from the second energization angle to the first energization angle at a timing when a first time has elapsed since the start of movement, and when the remaining battery level is less than the threshold, The second energization angle is switched from the second energization angle to the first energization angle at a timing when a second time longer than the first time elapses after the piston starts moving from the bottom dead center. A driving tool characterized by that.
  9.  請求項1~8のいずれか1項に記載の打ち込み工具であって、
     前記ピストンの駆動の所定の1サイクル内において設定された前記第1の通電角と前記第2の通電角を切り替えるタイミングが、その後の前記ピストンの駆動の複数のサイクルに対して適用されるように構成されていることを特徴とする打ち込み工具。
    The driving tool according to any one of claims 1 to 8,
    The timing for switching the first energization angle and the second energization angle set within a predetermined cycle of driving the piston is applied to a plurality of subsequent cycles of driving the piston. A driving tool characterized by comprising.
PCT/JP2013/081825 2012-11-27 2013-11-26 Pounding tool WO2014084222A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012258542A JP2014104534A (en) 2012-11-27 2012-11-27 Driving tool
JP2012-258542 2012-11-27

Publications (1)

Publication Number Publication Date
WO2014084222A1 true WO2014084222A1 (en) 2014-06-05

Family

ID=50827858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081825 WO2014084222A1 (en) 2012-11-27 2013-11-26 Pounding tool

Country Status (2)

Country Link
JP (1) JP2014104534A (en)
WO (1) WO2014084222A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11110577B2 (en) 2017-11-16 2021-09-07 Milwaukee Electric Tool Corporation Pneumatic fastener driver
US11819989B2 (en) 2020-07-07 2023-11-21 Techtronic Cordless Gp Powered fastener driver
US11850714B2 (en) 2021-07-16 2023-12-26 Techtronic Cordless Gp Powered fastener driver

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6794663B2 (en) * 2016-06-02 2020-12-02 工機ホールディングス株式会社 Driving machine
WO2018003370A1 (en) * 2016-06-30 2018-01-04 日立工機株式会社 Driving device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003189671A (en) * 2001-12-19 2003-07-04 Matsushita Electric Ind Co Ltd Motor drive
CN1531186A (en) * 2003-02-28 2004-09-22 松下电器产业株式会社 Motor driving controlling apparatus
US8079504B1 (en) * 2010-11-04 2011-12-20 Tricord Solutions, Inc. Fastener driving apparatus
WO2012061295A2 (en) * 2010-11-04 2012-05-10 Christopher Pedicini Fastener driving apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003189671A (en) * 2001-12-19 2003-07-04 Matsushita Electric Ind Co Ltd Motor drive
CN1531186A (en) * 2003-02-28 2004-09-22 松下电器产业株式会社 Motor driving controlling apparatus
JP2004266904A (en) * 2003-02-28 2004-09-24 Matsushita Electric Ind Co Ltd Operation controller for motor
US8079504B1 (en) * 2010-11-04 2011-12-20 Tricord Solutions, Inc. Fastener driving apparatus
WO2012061295A2 (en) * 2010-11-04 2012-05-10 Christopher Pedicini Fastener driving apparatus
EP2635408A2 (en) * 2010-11-04 2013-09-11 Christopher Pedicini Fastener driving apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11110577B2 (en) 2017-11-16 2021-09-07 Milwaukee Electric Tool Corporation Pneumatic fastener driver
US11897106B2 (en) 2017-11-16 2024-02-13 Milwaukee Electric Tool Corporation Pneumatic fastener driver
US11819989B2 (en) 2020-07-07 2023-11-21 Techtronic Cordless Gp Powered fastener driver
US11850714B2 (en) 2021-07-16 2023-12-26 Techtronic Cordless Gp Powered fastener driver

Also Published As

Publication number Publication date
JP2014104534A (en) 2014-06-09

Similar Documents

Publication Publication Date Title
JP6100680B2 (en) Driving tool
US10272553B2 (en) Driving tool
WO2014061807A1 (en) Driving tool
JP6481751B2 (en) Driving machine
US9844865B2 (en) Driver tool
WO2014084222A1 (en) Pounding tool
JP6284417B2 (en) Driving tool
JP5758841B2 (en) Driving tool
WO2014084221A1 (en) Pounding tool
WO2013154033A1 (en) Driver tool
WO2011010512A1 (en) Hammering tool
JP7095698B2 (en) Driving machine
JP2011025362A (en) Driving tool
JP5921037B2 (en) Driving tool
WO2013168719A1 (en) Driving tool
WO2014087934A1 (en) Driving tool
US20230025226A1 (en) Driving device
CN210616409U (en) Electric hammer
WO2018056325A1 (en) Power tool
CN111727106A (en) Driving machine
JP2014083660A (en) Driving tool
JP2012148347A (en) Hammering tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13858008

Country of ref document: EP

Kind code of ref document: A1