WO2014061807A1 - Driving tool - Google Patents

Driving tool Download PDF

Info

Publication number
WO2014061807A1
WO2014061807A1 PCT/JP2013/078383 JP2013078383W WO2014061807A1 WO 2014061807 A1 WO2014061807 A1 WO 2014061807A1 JP 2013078383 W JP2013078383 W JP 2013078383W WO 2014061807 A1 WO2014061807 A1 WO 2014061807A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
motor
driving
crank
driving tool
Prior art date
Application number
PCT/JP2013/078383
Other languages
French (fr)
Japanese (ja)
Inventor
瀛 楊
健也 ▲柳▼原
Original Assignee
株式会社マキタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マキタ filed Critical 株式会社マキタ
Publication of WO2014061807A1 publication Critical patent/WO2014061807A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25CHAND-HELD NAILING OR STAPLING TOOLS; MANUALLY OPERATED PORTABLE STAPLING TOOLS
    • B25C1/00Hand-held nailing tools; Nail feeding devices
    • B25C1/04Hand-held nailing tools; Nail feeding devices operated by fluid pressure, e.g. by air pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25CHAND-HELD NAILING OR STAPLING TOOLS; MANUALLY OPERATED PORTABLE STAPLING TOOLS
    • B25C1/00Hand-held nailing tools; Nail feeding devices
    • B25C1/06Hand-held nailing tools; Nail feeding devices operated by electric power

Definitions

  • the present invention relates to a driving tool for driving a driving tool.
  • US Pat. No. 8,079,504 describes a driving tool for driving a driving tool into a workpiece.
  • the first piston generates compressed air in the first cylinder, and the compressed air is sent to the second cylinder.
  • the compressed air moves the second piston in the second cylinder. Due to the movement of the second piston, the second piston strikes the driving tool. Thereby, the driving tool is driven out toward the workpiece.
  • the driving tool has a sensor that detects the position of the first piston during an operation cycle in which the driving tool is driven.
  • a control apparatus stops electricity supply to a motor according to the position of the 1st piston detected by the said sensor. This stops the first piston in the proper position for the next operating cycle.
  • an object of the present invention is to provide a further improvement technique related to a detection technique in a driving tool.
  • a motor a crank member driven by the motor, a piston driven by the crank member, a controller for controlling the motor, and a first for detecting the state of the crank member.
  • a driving tool having a sensor and a second sensor for detecting the operation state of the motor is configured.
  • the controller is configured to calculate an estimated crank state information value corresponding to the state of the crank member based on the detection result of the second sensor.
  • the controller is configured to stop driving the motor when the difference between the state information value related to the state of the crank member based on the detection result of the first sensor and the estimated crank state information value exceeds a predetermined threshold. Yes.
  • detecting the state of the crank member means detecting the position, speed, or acceleration of the crank member. That is, the estimated crank state information value means a value corresponding to the position, speed, or acceleration of the crank member calculated based on the detection result of the second sensor. “Detecting the operating state of the motor” means the position and rotational speed of the rotating shaft of the motor, the current and voltage supplied to the motor, or the position and rotation of the component connected to the motor and driven by the motor. It preferably includes detecting the speed.
  • the detection is based on the detection results of the first sensor and the second sensor. Whether or not the first sensor is operating normally is detected based on the difference in the state of the crank member. That is, when an abnormality occurs in the first sensor, it is possible to prevent the driving tool from being driven out from the driving tool by stopping the driving of the motor.
  • the controller is configured to calculate the estimated crank angular velocity of the crank member based on the detection result of the second sensor as the estimated crank state information value.
  • the first sensor may detect the angular velocity of the crank member.
  • the first sensor may detect the position or angular acceleration of the crank member, and the controller may calculate the angular acceleration of the crank member.
  • the second sensor is configured to detect a current value and a voltage value supplied to the motor. Then, the controller is configured to calculate an estimated crank angular speed as an estimated crank state information value by calculating the rotational speed of the motor from the current value and the voltage value. Therefore, the second sensor preferably has an ammeter and a voltmeter.
  • the angular speed of the crank is calculated from the rotational speed of the motor based on the detection result of the second sensor.
  • the relationship between the motor current value, voltage value, and rotational speed is determined by the motor configuration as the motor drive characteristics. Therefore, the rotation speed of the motor is calculated by detecting the current value and the voltage value by the second sensor. That is, the angular speed of the crank member can be easily calculated based on the rotational speed of the motor.
  • the controller is configured to calculate the estimated crank position of the crank member based on the detection result of the second sensor as the estimated crank state information value.
  • the first sensor may detect the position of the crank member.
  • the first sensor may detect the angular velocity or angular acceleration of the crank member, and the controller may calculate the position of the crank member.
  • a crank position it is preferable to calculate a crank angle when the initial position of the crank member is 0 degree.
  • the reduction gear is arranged between the motor and the crank member.
  • the second sensor is configured to detect the rotational position of the reduction gear.
  • the rotational speed of the motor is reduced in the reduction gear. Therefore, the rotational position of the reduction gear is accurately detected by the second sensor. Therefore, the position of the crank member is calculated with high accuracy.
  • the controller has an informing means for informing that the driving of the motor has been stopped.
  • the notification means it is preferable to use light emitting means, vibration generating means, sound generating means or the like.
  • the light emitting means typically, an LED, a laser irradiation device, or the like is used.
  • the vibration generating means typically, a means that includes a motor and generates vibration by the rotation of the motor is used.
  • the sound generation means typically, a means that includes a speaker and outputs a stored sound source from the speaker is used.
  • FIG. 1 is an external view showing an overall configuration of an electro-pneumatic nailer.
  • FIG. It is A arrow directional view of FIG. It is sectional drawing which shows the whole structure of the internal mechanism of a nailing machine.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3.
  • FIG. 5 is a sectional view taken along line VV in FIG. 2.
  • FIG. 4 is a cross-sectional view taken along the line VI-VI in FIG. 3 and shows a state where the valve is closed.
  • FIG. 6 shows a nailing state in which the valve is opened and the driving piston is moved forward.
  • FIG. 6 shows a state in which the open state of the valve is maintained, and the driving piston is returned to the vicinity of the rear initial position.
  • It is a block diagram which shows the control system of the nail driver in 1st Embodiment. It is a block diagram which shows the control system of the nail driver in 2nd Embodiment.
  • FIGS. 1 and 2 A first embodiment of the present invention will be described with reference to FIGS.
  • the first embodiment will be described using an electro-pneumatic nailer as an example of a driving tool.
  • the nailing machine 100 is configured mainly by a main body housing 101 and a magazine 105 when viewed generally.
  • the main body housing 101 constitutes a tool main body and forms an outline of the nailing machine 100.
  • the magazine 105 is loaded with nails (not shown) that are driven into the workpiece.
  • the main body housing 101 is formed by joining together a pair of substantially symmetrical housings.
  • the main body housing 101 includes a handle portion 103, a driving mechanism housing portion 101A, a compression device housing portion 101B, and a motor housing portion 101C.
  • the handle portion 103, the driving mechanism housing portion 101A, the compression device housing portion 101B, and the motor housing portion 101C are arranged so as to form a substantially square shape in a side view.
  • the handle portion 103 is a long member extending at a predetermined length.
  • One end side of the handle portion 103 is connected to one end side of the driving mechanism housing portion 101A, and the other end side of the handle portion 103 is connected to one end side of the motor housing portion 101C.
  • the compression device housing portion 101 ⁇ / b> B is disposed so as to extend substantially parallel to the handle portion 103.
  • One end side of the compression device accommodating portion 101B is connected to the other end side of the driving mechanism accommodating portion 101A, and the other end side of the compression device accommodating portion 101B is connected to the other end side of the motor accommodating portion 101C.
  • the nailing machine 100 forms a space S surrounded by the handle portion 103, the driving mechanism housing portion 101A, the compression device housing portion 101B, and the motor housing portion 101C.
  • a driver guide 141 and an LED 107 are arranged at the tip (right end in FIG. 1).
  • the direction toward the right side of FIG. 1 is the nail launch direction.
  • the front end side (the right side in FIG. 1) of the nailing machine 100 is referred to as the front side
  • the opposite side (the left side in FIG. 1) is referred to as the rear side.
  • the connection side (upper side in FIG. 1) of the handle portion 103 with the driving mechanism housing portion 101A is the upper side
  • the connection side (lower side in FIG. 1) of the handle portion 103 with the motor storage portion 101C is down. Called the side.
  • the driving mechanism accommodating portion 101A accommodates the nail driving mechanism 120.
  • the nail driving mechanism 120 is mainly composed of a driving cylinder 121 and a driving piston 123.
  • the driving cylinder 121 accommodates a driving piston 123 for driving a nail so as to be slidable in the front-rear direction (long axis direction).
  • the driving piston 123 has a piston main body 124 and a driver 125.
  • the piston main body 124 is slidably accommodated in the driving cylinder 121.
  • the driver 125 is a long member.
  • the driver 125 is provided integrally with the piston main body 124 and is disposed so as to extend forward.
  • the piston main body 124 and the driver 125 are configured to be driven by compressed air supplied to the cylinder chamber 121a and move linearly in the long axis direction of the cylinder 121.
  • the driver 125 is configured to drive out the nail by moving forward in the driving passage 141a of the driver guide 141.
  • the driving cylinder chamber 121 a is formed as a space surrounded by the inner wall surface of the driving cylinder 121 and the rear surface of the piston main body 124.
  • the driver guide 141 is disposed at the tip of the driving cylinder 121 and includes a driving passage 141a having a nail injection port at the tip.
  • the magazine 105 is disposed in front of the compression device housing portion 101 ⁇ / b> B that is the distal end side of the main body housing 101.
  • the magazine 105 is connected to the driver guide 141, and is configured to supply nails to the driving path 141a.
  • the magazine 105 is provided with a pusher plate 105a for pushing the nail in the supply direction (upward in FIG. 3). By this pusher plate 105a, nails are supplied one by one from the direction intersecting the driving direction into the driving passage 141a of the driver guide 141.
  • the compression device accommodating portion 101 ⁇ / b> B accommodates the compression device 130.
  • the compression device 130 is mainly configured by a compression cylinder 131, a compression piston 133, and a crank mechanism 115.
  • the compression piston 133 is arranged to be slidable in the vertical direction within the compression cylinder 131.
  • This compression piston 133 is an implementation structural example corresponding to the "piston" in this invention.
  • the compression cylinder 131 is disposed along the magazine 105, and the upper end side of the compression cylinder 131 is connected to the front end portion of the driving cylinder 121.
  • the compression piston 133 is arranged so as to slide up and down along the magazine 105.
  • the operation direction of the compression piston 133 is substantially orthogonal to the operation direction of the driving piston 123.
  • the volume of the compression chamber 131a that is the internal space of the compression cylinder 131 changes. That is, the compression piston 133 moves upward to reduce the volume of the compression chamber 131a, thereby compressing the air in the compression chamber 131a.
  • the compression chamber 131 a is formed on the upper side close to the driving cylinder 121.
  • the compression cylinder 131 includes an atmospheric release valve (not shown), and is configured to be able to release the compression chamber 131a to the atmosphere. The air release valve is normally kept closed.
  • the motor housing portion 101 ⁇ / b> C houses the electric motor 111.
  • the electric motor 111 is arranged so that the rotation axis of the motor shaft is substantially parallel to the long axis of the driving cylinder 121. Therefore, the rotation axis of the electric motor 111 is orthogonal to the operation direction of the compression piston 133.
  • a battery mounting area is formed on the lower side of the motor housing 101C, and a rechargeable battery pack 110 that supplies power to the electric motor 111 is detachably mounted.
  • the rotational output of the electric motor 111 is transmitted to the crank mechanism 115 after being decelerated by the planetary gear type reduction mechanism 113.
  • the rotational motion of the electric motor 111 is converted into a linear motion by the crank mechanism 115 and transmitted to the compression piston 133.
  • the speed reduction mechanism 113 and the crank mechanism 115 are accommodated in the inner housing 102.
  • the inner housing 102 is disposed between the compression device housing portion 101B and the motor housing portion 101C.
  • the crank mechanism 115 is mainly composed of a crankshaft 115a, an eccentric pin 115b, and a connecting rod 115c.
  • the crankshaft 115a is connected to a planetary gear type reduction mechanism 113. That is, the crankshaft 115a is rotated by the rotation of the electric motor 111 decelerated by the speed reduction mechanism 113.
  • the eccentric pin 115b is provided at a position eccentric from the rotation center of the crankshaft 115a.
  • One end of the connecting rod 115c is connected to the eccentric pin 115b so as to be relatively rotatable, and the other end is connected to the compression piston 133 so as to be relatively rotatable.
  • the crank mechanism 115 is disposed below the compression cylinder 131.
  • a reciprocating compression device mainly including the compression cylinder 131, the compression piston 133, and the crank mechanism 115 is configured as the compression device 130.
  • This electric motor 111 is an implementation configuration example corresponding to the “motor” in the present invention.
  • the handle portion 103 is provided with a trigger 103a, a trigger switch 103b, and a control device 109.
  • the electric motor 111 is controlled by the control device 109 according to the operation of the trigger 103 a provided in the handle portion 103 and the driver guide 141 provided in the distal end region of the main body housing 101.
  • the trigger switch 103b is turned on.
  • the trigger switch 103b is turned off by releasing the pulling operation of the trigger 103a.
  • the driver guide 141 as a contact arm is disposed in the front end region of the main body housing 101 so as to be movable in the front-rear direction of the nailing machine 100. As shown in FIG. 6, the driver guide 141 is urged forward by an urging spring 142. When the driver guide 141 is positioned forward, the contact arm switch 143 is turned off. On the other hand, when the driver guide 141 is moved to the main body housing 107 side, the contact arm switch 143 is turned on. The electric motor 111 is energized when both the trigger switch 103b and the contact arm switch 143 are switched on, and the electric motor 111 is stopped when either one of the switches is switched off.
  • the nail driver 100 includes an air passage 135 and a valve chamber 137 a that connect the compression chamber 131 a of the compression cylinder 131 and the cylinder chamber 121 a of the driving cylinder 121.
  • the air passage 135 mainly includes a communication port 135a, a communication port 135b, a communication passage 135c, an annular groove 121c, and a valve chamber 137a.
  • the communication port 135 a is formed in the cylinder head 131 b of the compression cylinder 131.
  • the communication port 135a communicates with the compression chamber 131a.
  • the communication port 135 b is formed in the cylinder head 121 b of the driving cylinder 121.
  • the communication port 135b communicates with the valve chamber 137a.
  • the communication path 135c connects the communication port 135a and the communication port 135b.
  • the communication path 135 c extends linearly in the front-rear direction along the driving cylinder 121.
  • the communication port 135b communicates with an annular groove 121c formed in the peripheral surface of the valve chamber 137a.
  • the annular groove 121c communicates with the valve chamber 137a.
  • the valve chamber 137a communicates with the cylinder chamber 121a.
  • the communication port 135b communicates with the cylinder chamber 121a via the annular groove 121c and the valve chamber 137a.
  • An electromagnetic valve 137 that opens and closes the air passage 135 is accommodated in the valve chamber 137a.
  • the electromagnetic valve 137 is a columnar member having substantially the same diameter as the piston main body 124 of the driving piston 123.
  • the electromagnetic valve 137 is disposed so as to be movable in the front-rear direction within the valve chamber 137a.
  • An electromagnet 138 is disposed behind the electromagnetic valve 137.
  • the electromagnetic valve 137 moves in the front-rear direction by switching energization to the electromagnet 138 and switching off the energization.
  • two O-rings 139a and 139b are arranged at a predetermined interval in the front-rear direction.
  • the electromagnetic valve 137 moves rearward to open the annular groove 121c, and moves forward to close the annular groove 121c.
  • the front O-ring 139a contacts the inner wall surface of the valve chamber 137a in front of the annular groove 121c, thereby blocking communication between the annular groove 121c and the cylinder chamber 121a.
  • the annular groove 121c communicates with the cylinder chamber 121a.
  • the rear O-ring 139b prevents the compressed air from leaking outside from the communication port 135b. That is, the O-ring 139b is not involved in opening / closing the annular groove 121c.
  • the electromagnetic valve 137 that opens and closes the air passage 135 is provided in the air passage 135 on the connection side of the driving cylinder 121 with the cylinder chamber 121a.
  • the electromagnetic valve 137 is always disposed in front of the annular groove 121 c closed by the electromagnet 138.
  • the stopper 136 is disposed in front of the electromagnetic valve 137 and restricts the movement of the electromagnetic valve 137 forward.
  • the stopper 136 is formed by a flange-like member protruding in the radial direction in the cylinder chamber 121a. Further, the stopper 136 defines the rear end position of the driving piston 123 that moves rearward.
  • the nailing machine 100 has an initial position in which the driving piston 123 is located at the rear end position (left end position in FIG. 3) and the compression piston 133 is located at the lower end position (bottom dead center). It is defined as. That is, the initial state is defined as a crank angle of 0 degrees (bottom dead center).
  • the nail driver 100 includes a magnetic sensor 150.
  • the magnetic sensor 150 is mainly composed of a magnet 151 and a hall element 152.
  • the magnet 150 is provided on the crankshaft 115a.
  • the hall element 152 is provided at a position facing the magnet 151 of the compression device housing portion 101B.
  • the hall element 152 is electrically connected to the battery pack 110 and further connected to the control device 109. Hall element 152 detects the position of crankshaft 115a.
  • This magnetic sensor 150 is an implementation configuration example corresponding to the “first sensor” in the present invention.
  • the control device 109 is an implementation configuration example corresponding to the “controller” in the present invention.
  • the driver guide 141 is pressed against the workpiece and the contact arm switch 143 (see FIG. 6) is turned on, and the trigger 103a is pulled and the trigger switch 103b is turned on.
  • the electric motor 111 is energized.
  • the crank mechanism 115 is driven via the speed reduction mechanism 113, and the compression piston 133 moves upward.
  • the electromagnetic valve 137 closes the air passage 135, the air in the compression chamber 131a is compressed by the movement of the compression piston 133.
  • the control device 109 controls the electromagnet 138 and moves the electromagnetic valve 137 backward. Move to. That is, when the compressed air in the compression chamber 131a is in the maximum compressed state, the electromagnetic valve 137 is opened. Thereby, the annular groove 121c communicates with the cylinder chamber 121a, and the compressed air in the compression chamber 131a is supplied into the cylinder chamber 121a through the air passage 135.
  • the driving piston 123 is moved forward by the action of the air spring by the compressed air, as shown in FIG. Then, the driver 125 of the driving piston 123 moved forward hits the nail of the driving passage 141a (see FIG. 3). Thereby, a driving operation for driving out the nail is performed.
  • the compression piston 133 moves toward the bottom dead center. At that time, the volume of the compression chamber 131a is increased, and the air in the compression chamber 131a becomes a negative pressure lower than the atmospheric pressure.
  • the negative pressure generated in the compression chamber 131a is driven through the air passage 135 and the cylinder chamber 121a and acts on the piston 123. Thereby, as shown in FIG. 8, the driving piston 123 is sucked and moved rearward.
  • the driving piston 123 is in contact with the stopper 136 and is located at the initial position.
  • the control device 109 controls the electromagnet 138 and moves the electromagnetic valve 137 forward.
  • the air passage 135 is closed. Note that when the compression piston 133 returns to the initial position, even if the trigger switch 103b and the contact arm switch 143 are maintained in the ON state, the power supply to the electric motor 111 is cut off and the electric motor 111 is stopped. In this way, one cycle of the launching operation is completed. During the launching operation, the LED 107 irradiates the tip region of the driver guide 141.
  • the control device 109 performs control so that the nail driver 100 is not driven.
  • the position of the compression piston 133 cannot be accurately detected due to a malfunction of the magnetic sensor 150, a problem may occur in the launching operation. For example, when the compression piston 133 is not stopped at the bottom dead center, when the launching operation is started, the compression amount of the compressed air generated by the compression piston 133 differs depending on the position of the compression piston 133 at the start of the launching operation. . For this reason, the speed of the nail to be launched for each launch operation is not constant, and the amount of nail to be driven into the workpiece is different.
  • a voltage sensor 160 and a current sensor 161 for detecting the voltage value and current value of the electric motor 111 are provided.
  • the relationship between the current value, voltage value, and rotational speed of the electric motor 111 is uniquely determined by the configuration of the electric motor 111 as drive characteristics of the electric motor 111. Therefore, the control device 109 calculates the rotation speed of the electric motor 111 from the voltage value and current value detected by the voltage sensor 160 and the current sensor 161. Furthermore, the control device 109 calculates the estimated angular velocity of the crankshaft 115a from the rotation speed of the electric motor 111 and the reduction ratio of the reduction mechanism 113.
  • This crankshaft 115a is an implementation structural example corresponding to the "crank member" in this invention.
  • the voltage sensor 160 and the current sensor 161 that detect the voltage value and the current value, which are the operating states of the electric motor 111 are implementation configuration examples corresponding to the “second sensor” in the present invention. That is, the “second sensor” has two sensors. Further, the estimated angular velocity of the crankshaft 115a calculated based on the detection results of the voltage sensor 160 and the current sensor 161 is an implementation configuration example corresponding to the “estimated crank state information value” in the present invention.
  • control device 109 calculates the angular velocity of the crankshaft 115a based on the position (detection result) of the crankshaft 115a detected by the magnetic sensor 150 every predetermined time.
  • the angular velocity of the crankshaft 115a calculated based on the detection result of the magnetic sensor 150 is an implementation configuration example corresponding to the “state information value” in the present invention.
  • the control device 109 calculates the difference between the angular velocity of the crankshaft 115a calculated based on the detection result of the magnetic sensor 150 and the estimated angular velocity of the crankshaft 115a calculated based on the detection results of the voltage sensor 160 and the current sensor 161. Is calculated.
  • the control device 109 indicates that any one of the magnetic sensor 150, the voltage sensor 160, and the current sensor 161 has failed. Assuming that the supply of electric current to the electric motor 111 is stopped. That is, the control device 109 stops driving the electric motor 111.
  • the voltage sensor 160 and the current sensor 161 may detect not only the voltage value and current value of the electric motor 111 but also the voltage value and current value of the driving circuit of the nailing machine 100. In such a configuration, not only the failure of the sensor but also the failure of the control device 109 or the like can be detected.
  • the second embodiment differs from the first embodiment in “motor”, “second sensor”, and “state information value” and “estimated crank state information value” calculation methods.
  • the description of the same configuration as in the first embodiment is omitted.
  • a brushless motor 211 is used as a motor.
  • the stator has a stator coil.
  • a position sensor 260 for detecting the position of the rotor is disposed outside the rotor of the brushless motor 211.
  • the position sensor 260 is arranged at three positions at predetermined positions in the circumferential direction of the rotor. Then, the control device 109 controls the drive of the brushless motor 211 by energizing the stator coil in accordance with the position of the rotor detected by the position sensor 260. In FIG. 10, the position sensor 260 is simply illustrated.
  • the control device 109 calculates the estimated position of the crankshaft 115a based on the position of the rotor detected by the position sensor 260. On the other hand, the position of the crankshaft 115 a is detected by the magnetic sensor 150. Then, the control device 109 calculates the difference between the position of the crankshaft 115a based on the detection result of the magnetic sensor 150 and the estimated position of the crankshaft 115a calculated based on the detection result of the position sensor 260. When the difference between the position of the crankshaft 115a and the estimated position exceeds a predetermined threshold value, the control device 109 regards that either the magnetic sensor 150 or the position sensor 260 has failed, and the brushless motor The supply of current to 211 is stopped. That is, the control device 109 stops driving the brushless motor 211.
  • the control device 109 can calculate the estimated position of the crankshaft 115a based on the detection result of the position sensor 260 used to drive the brushless motor 211. Thereby, a failure is detected in either the magnetic sensor 150 or the position sensor 160. That is, the position sensor 260 has both a function for driving the brushless motor 211 and a function for detecting a failure of the magnetic sensor 150.
  • the control device 109 turns on the LEDs 107 and 108 when driving of the electric motor 111 and the brushless motor 211 is stopped. Thereby, it is notified that the driving of the electric motor 111 is stopped.
  • the control device 109 may not only light the LEDs 107 and 108 but also blink them.
  • the control device 109 may be configured to change the color of light emitted by the LEDs 107 and 108. Further, the control device 109 may be configured to turn on or blink only one of the LEDs 107 and 108.
  • the magnetic sensor 150 that directly detects the position and angular velocity of the crankshaft 115a and the position and angular velocity of the crankshaft 115a are indirectly detected.
  • a voltage sensor 160, a current sensor 161, and a position sensor 260 for detection are included. Therefore, the magnetism is determined based on the difference between the position and angular velocity of the crankshaft 115a based on the detection result of the magnetic sensor 150 and the estimated position and angular velocity of the crankshaft 115a based on the detection results of the voltage sensor 160, current sensor 161, and position sensor 260.
  • Whether or not the sensor 150 is operating normally can be detected. Thereby, when abnormality occurs in the magnetic sensor 150, the driving of the nail driver 100 is stopped. That is, in the nailing machine 100, the nail is prevented from being unintentionally driven out.
  • the voltage sensor 160 and the current sensor 161 are provided, but the present invention is not limited to this. If the resistance value of the electric motor 111 is set in advance, only one of the voltage sensor 160 and the current sensor 161 may be provided. That is, the current value and voltage value of the electric motor 111 are detected by calculating the current value or voltage value according to Ohm's law.
  • the position (rotational position) of the rotor of the brushless motor 211 is detected, but the present invention is not limited to this.
  • the rotational position of the speed reduction mechanism 113 that reduces the rotational speed of the motor may be detected.
  • the rotational position of the speed reduction mechanism 113 since the rotational speed of the motor is decelerated, the rotational position of the speed reduction mechanism 113 is detected with higher accuracy than when the position of the rotor is detected.
  • control device 109 is configured to calculate the estimated angular velocity of the crankshaft 115a or the estimated position of the crankshaft 115a, but is not limited thereto.
  • control device 109 may be configured to calculate the estimated angular acceleration of the crankshaft 115a.
  • the control device 109 may be configured to calculate the estimated angular acceleration of the crankshaft 115a from the detection result of the magnetic sensor 150.
  • the LEDs 107 and 108 are provided as notification means. However, only one LED may be provided. Further, a buzzer for generating sound or an actuator for generating vibration may be provided as the notification means.
  • the magnetic sensor 150 for detecting the position of the crankshaft 115a is provided.
  • a sensor such as a photosensor may be provided.
  • each component of this embodiment shows an example of the form for implementing this invention, and this invention is not limited to the structure of this embodiment.
  • the control device 109 is an example of a configuration corresponding to the “controller” of the present invention.
  • the electric motor 111 is an example of a configuration corresponding to the “motor” of the present invention.
  • the crankshaft 115a is an example of a configuration corresponding to the “crank member” of the present invention.
  • the compression piston 133 is an example of a configuration corresponding to the “piston” of the present invention.
  • the magnetic sensor 150 is an example of a configuration corresponding to the “first sensor” of the present invention.
  • the voltage sensor 160 is an example of a configuration corresponding to the “second sensor” of the present invention.
  • the current sensor 161 is an example of a configuration corresponding to the “second sensor” of the present invention.
  • the brushless motor 211 is an example of a configuration corresponding to the “motor” of the present invention.
  • the position sensor 260 is an example of a configuration corresponding to the “second sensor” of the present invention.

Abstract

In the present invention, a nailing machine (100) is configured having: an electric motor (111); a crank shaft (115a) driven by the electric motor (111); a piston (133) driven by the crank shaft (115a); a control device (109) that controls the electric motor (111); a magnetic sensor (150) that detects the position of the crank shaft (115a); and a voltage sensor (160) and current sensor (161) for detecting the operational state of the electric motor (111). The control device (109) is configured in a manner so as to calculate the estimated angular velocity of the crank shaft (115a) corresponding to the state of the crank shaft (115a) on the basis of the detection results of the voltage sensor (160) and current sensor (161). Also, the control device (109) halts the driving of the electric motor (111) when the difference between the estimated angular velocity and the angular velocity of the crank shaft (115a) on the basis of the detection results of the magnetic sensor (150) exceeds a predetermined threshold.

Description

打ち込み工具Driving tool
 本発明は、打ち込み具を打ち出す打ち込み工具に関する。 The present invention relates to a driving tool for driving a driving tool.
 米国特許第8,079,504号明細書には、打ち込み具を被加工材に打ち込む打ち込み工具が記載されている。当該打ち込み工具は、第1シリンダ内で第1ピストンが圧縮空気を生成し、圧縮空気が第2シリンダに送られる。そして、圧縮空気が第2シリンダ内の第2ピストンを移動させている。第2ピストンの移動により、第2ピストンが打ち込み具を打撃する。これにより、打ち込み具が被加工材に向かって打ち出される。また、当該打ち込み工具は、打ち込み具を打ち込む作動サイクル中に第1ピストンの位置を検出するセンサを有している。そして、当該センサに検出された第1ピストンの位置に応じて制御装置がモータへの通電を停止する。これにより、第1ピストンを次の作動サイクルのために適切な位置に停止させる。 US Pat. No. 8,079,504 describes a driving tool for driving a driving tool into a workpiece. In the driving tool, the first piston generates compressed air in the first cylinder, and the compressed air is sent to the second cylinder. The compressed air moves the second piston in the second cylinder. Due to the movement of the second piston, the second piston strikes the driving tool. Thereby, the driving tool is driven out toward the workpiece. The driving tool has a sensor that detects the position of the first piston during an operation cycle in which the driving tool is driven. And a control apparatus stops electricity supply to a motor according to the position of the 1st piston detected by the said sensor. This stops the first piston in the proper position for the next operating cycle.
 しかしながら、上記の打ち込み工具は、センサが故障した場合に、空気の圧縮が不足したり、空気を圧縮しすぎたりして打ち込み具の打ち出し動作に不具合が生じる可能性がある。 However, in the above driving tool, when the sensor breaks down, there is a possibility that the driving operation of the driving tool may be defective due to insufficient air compression or excessive air compression.
 そこで、本発明は、打ち込み工具における検出技術に関する更なる改良技術を提供することを目的とする。 Therefore, an object of the present invention is to provide a further improvement technique related to a detection technique in a driving tool.
 上記課題は請求項1の発明によって解決される。本発明に係る打ち込み工具の好ましい形態によれば、モータと、モータに駆動されるクランク部材と、クランク部材に駆動されるピストンと、モータを制御するコントローラと、クランク部材の状態を検出する第1センサと、モータの動作状態を検出するための第2センサと、を有する打ち込み工具が構成される。コントローラは、第2センサの検出結果に基づいて、クランク部材の状態に対応する推定クランク状態情報値を算出するように構成されている。そして、コントローラは、第1センサの検出結果に基づくクランク部材の状態に関する状態情報値と推定クランク状態情報値の差が所定の閾値を超えた場合に、モータの駆動を停止するように構成されている。なお、クランク部材の状態を検出するとは、クランク部材の位置、速度、または加速度を検出することを意味する。すなわち、推定クランク状態情報値とは、第2センサの検出結果に基づいて算出されるクランク部材の位置、速度、または加速度に対応する値を意味する。また、「モータの動作状態を検出する」とは、モータの回転軸の位置、回転速度、モータに供給される電流、電圧、あるいはモータに連結されてモータに駆動される構成要素の位置、回転速度を検出することを好適に包含する。 The above problem is solved by the invention of claim 1. According to a preferred form of the driving tool according to the present invention, a motor, a crank member driven by the motor, a piston driven by the crank member, a controller for controlling the motor, and a first for detecting the state of the crank member. A driving tool having a sensor and a second sensor for detecting the operation state of the motor is configured. The controller is configured to calculate an estimated crank state information value corresponding to the state of the crank member based on the detection result of the second sensor. The controller is configured to stop driving the motor when the difference between the state information value related to the state of the crank member based on the detection result of the first sensor and the estimated crank state information value exceeds a predetermined threshold. Yes. Note that detecting the state of the crank member means detecting the position, speed, or acceleration of the crank member. That is, the estimated crank state information value means a value corresponding to the position, speed, or acceleration of the crank member calculated based on the detection result of the second sensor. “Detecting the operating state of the motor” means the position and rotational speed of the rotating shaft of the motor, the current and voltage supplied to the motor, or the position and rotation of the component connected to the motor and driven by the motor. It preferably includes detecting the speed.
 本発明によれば、直接的にクランク部材の状態を検出する第1センサと、間接的にクランク部材の状態を検出する第2センサを有するため、第1センサと第2センサの検出結果に基づくクランク部材の状態の差異に基づいて第1センサが正常に作動しているか否かが検出される。すなわち、第1センサに異常が生じた場合に、モータの駆動を停止することで、打ち込み工具から打ち込み具が打ち出されることが防止される。 According to the present invention, since the first sensor that directly detects the state of the crank member and the second sensor that indirectly detects the state of the crank member are provided, the detection is based on the detection results of the first sensor and the second sensor. Whether or not the first sensor is operating normally is detected based on the difference in the state of the crank member. That is, when an abnormality occurs in the first sensor, it is possible to prevent the driving tool from being driven out from the driving tool by stopping the driving of the motor.
 本発明に係る打ち込み工具の更なる形態によれば、コントローラは、推定クランク状態情報値として、第2センサの検出結果に基づいてクランク部材の推定クランク角速度を算出するように構成されている。この場合、第1センサは、クランク部材の角速度を検出してもよい。一方で、第1センサがクランク部材の位置、または角加速度を検出し、コントローラがクランク部材の角加速度を算出するように構成されていてもよい。 According to the further form of the driving tool according to the present invention, the controller is configured to calculate the estimated crank angular velocity of the crank member based on the detection result of the second sensor as the estimated crank state information value. In this case, the first sensor may detect the angular velocity of the crank member. On the other hand, the first sensor may detect the position or angular acceleration of the crank member, and the controller may calculate the angular acceleration of the crank member.
 本形態によれば、第1センサおよび第2センサの検出結果から得られるクランク部材の角速度の差に基づいて、第1センサが正常に動作しているか否かが確認される。 According to this embodiment, whether or not the first sensor is operating normally is confirmed based on the difference in the angular velocity of the crank member obtained from the detection results of the first sensor and the second sensor.
 本発明に係る打ち込み工具の更なる形態によれば、第2センサは、モータに供給される電流値と電圧値を検出するように構成されている。そして、コントローラは、電流値と電圧値からモータの回転速度を算出することで、推定クランク状態情報値としての推定クランク角速度を算出するように構成されている。したがって、第2センサは、電流計と電圧計を有していることが好ましい。 According to a further aspect of the driving tool according to the present invention, the second sensor is configured to detect a current value and a voltage value supplied to the motor. Then, the controller is configured to calculate an estimated crank angular speed as an estimated crank state information value by calculating the rotational speed of the motor from the current value and the voltage value. Therefore, the second sensor preferably has an ammeter and a voltmeter.
 本形態によれば、第2センサの検出結果に基づいて、モータの回転速度からクランクの角速度が算出される。モータの電流値、電圧値および回転速度の関係は、モータの駆動特性としてモータの構成によって決まる。したがって、第2センサが電流値と電圧値を検出することで、モータの回転速度が算出される。すなわち、モータの回転速度によって、クランク部材の角速度を容易に算出される。 According to this embodiment, the angular speed of the crank is calculated from the rotational speed of the motor based on the detection result of the second sensor. The relationship between the motor current value, voltage value, and rotational speed is determined by the motor configuration as the motor drive characteristics. Therefore, the rotation speed of the motor is calculated by detecting the current value and the voltage value by the second sensor. That is, the angular speed of the crank member can be easily calculated based on the rotational speed of the motor.
 本発明に係る打ち込み工具の更なる形態によれば、コントローラは、推定クランク状態情報値として、第2センサの検出結果に基づいてクランク部材の推定クランク位置を算出するように構成されている。この場合、第1センサは、クランク部材の位置を検出してもよい。一方で、第1センサがクランク部材の角速度、または角加速度を検出し、コントローラがクランク部材の位置を算出するように構成されていてもよい。クランク位置として、クランク部材の初期位置を0度としたときのクランク角度を算出することが好ましい。 According to the further form of the driving tool according to the present invention, the controller is configured to calculate the estimated crank position of the crank member based on the detection result of the second sensor as the estimated crank state information value. In this case, the first sensor may detect the position of the crank member. On the other hand, the first sensor may detect the angular velocity or angular acceleration of the crank member, and the controller may calculate the position of the crank member. As a crank position, it is preferable to calculate a crank angle when the initial position of the crank member is 0 degree.
 本形態によれば、第1センサおよび第2センサの検出結果から得られるクランク部材の位置の差に基づいて、第1センサが正常に動作しているか否かが確認される。 According to this embodiment, whether or not the first sensor is operating normally is confirmed based on the difference in the position of the crank member obtained from the detection results of the first sensor and the second sensor.
 本発明に係る打ち込み工具の更なる形態によれば、モータとクランク部材の間に減速ギアが配置されている。そして、第2センサは、減速ギアの回転位置を検出するように構成されている。 According to the further form of the driving tool according to the present invention, the reduction gear is arranged between the motor and the crank member. The second sensor is configured to detect the rotational position of the reduction gear.
 本形態によれば、減速ギアにおいてモータの回転速度が減速される。そのため、第2センサが精度よく減速ギアの回転位置が検出される。したがって、クランク部材の位置が精度よく算出される。 According to this embodiment, the rotational speed of the motor is reduced in the reduction gear. Therefore, the rotational position of the reduction gear is accurately detected by the second sensor. Therefore, the position of the crank member is calculated with high accuracy.
 本発明に係る打ち込み工具の更なる形態によれば、コントローラが前記モータの駆動を停止したことを報知する報知手段を有する。報知手段としては、発光手段、振動発生手段、音生成手段等が用いられることが好ましい。発光手段としては、典型的には、LEDやレーザー照射装置などが用いられる。振動発生手段としては、典型的には、モータを備え、モータの回転によって振動を発生する手段が用いられる。また、音生成手段としては、典型的には、スピーカを備え、記憶された音源を当該スピーカから出力する手段が用いられる。 According to a further aspect of the driving tool according to the present invention, the controller has an informing means for informing that the driving of the motor has been stopped. As the notification means, it is preferable to use light emitting means, vibration generating means, sound generating means or the like. As the light emitting means, typically, an LED, a laser irradiation device, or the like is used. As the vibration generating means, typically, a means that includes a motor and generates vibration by the rotation of the motor is used. As the sound generation means, typically, a means that includes a speaker and outputs a stored sound source from the speaker is used.
 本形態によれば、報知手段によって、モータの駆動が停止されていることをユーザに知らせることができる。 According to this embodiment, it is possible to notify the user that the driving of the motor is stopped by the notification means.
 本発明によれば、打ち込み工具において、打ち込み工具における検出技術に関する更なる改良技術を提供することができる。
 本発明の他の特質、作用および効果については、本明細書、特許請求の範囲、添付図面を参照することで直ちに理解可能である。
ADVANTAGE OF THE INVENTION According to this invention, the further improvement technique regarding the detection technique in a driving tool can be provided in a driving tool.
Other features, actions, and advantages of the present invention can be readily understood with reference to the specification, claims, and accompanying drawings.
電気-空圧式の釘打機の全体構成を示す外観図である。1 is an external view showing an overall configuration of an electro-pneumatic nailer. FIG. 図1のA矢視図である。It is A arrow directional view of FIG. 釘打機の内部機構の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the internal mechanism of a nailing machine. 図3のIV-IV線断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. 図2のV-V線断面図である。FIG. 5 is a sectional view taken along line VV in FIG. 2. 図3のVI-VI線断面図であり、バルブが閉止された状態を示す。FIG. 4 is a cross-sectional view taken along the line VI-VI in FIG. 3 and shows a state where the valve is closed. 図6において、バルブが開放され、打ち込みピストンが前方へと移動された釘打ち状態を示す。FIG. 6 shows a nailing state in which the valve is opened and the driving piston is moved forward. 図6において、バルブの開放状態が維持され、打ち込みピストンが後方の初期位置近くに戻された状態を示す。FIG. 6 shows a state in which the open state of the valve is maintained, and the driving piston is returned to the vicinity of the rear initial position. 第1実施形態における釘打機の制御系統を示すブロック図である。It is a block diagram which shows the control system of the nail driver in 1st Embodiment. 第2実施形態における釘打機の制御系統を示すブロック図である。It is a block diagram which shows the control system of the nail driver in 2nd Embodiment.
 以上および以下の記載に係る構成ないし方法は、本発明にかかる「打ち込み工具」の製造および使用、当該「打ち込み工具」の構成要素の使用を実現せしめるべく、他の構成ないし方法と別に、あるいはこれらと組み合わせて用いることができる。本発明の代表的実施形態は、これらの組み合わせも包含し、添付図面を参照しつつ詳細に説明される。以下の詳細な説明は、本発明の好ましい適用例を実施するための詳細情報を当業者に教示するに留まり、本発明の技術的範囲は、当該詳細な説明によって制限されず、特許請求の範囲の記載に基づいて定められる。このため、以下の詳細な説明における構成や方法ステップの組み合わせは、広義の意味において、本発明を実施するのに全て必須であるというものではなく、添付図面の参照番号とともに記載された詳細な説明において、本発明の代表的形態を開示するに留まるものである。
(第1実施形態)
 本発明の第1実施形態につき、図1~図9を参照して説明する。第1実施形態は、打ち込み工具の一例として電気-空圧式釘打機を用いて説明する。図1及び図2に示すように、釘打機100は、概括的に見て、本体ハウジング101と、マガジン105を主体として構成される。本体ハウジング101は、工具本体を構成しており、釘打機100の外郭を形成している。マガジン105には、被加工材に打ち込まれる釘(図示省略)が装填されている。本体ハウジング101は、ほぼ対称形の1対のハウジングを合わせて結合して形成されている。当該本体ハウジング101は、ハンドル部103、打ち込み機構収容部101A、圧縮装置収容部101B、モータ収容部101Cを一体に備えている。
The configurations and methods according to the above and the following description are separately or separately from other configurations or methods in order to realize the manufacture and use of the “driving tool” according to the present invention and the use of the components of the “driving tool”. Can be used in combination. Exemplary embodiments of the present invention include these combinations and will be described in detail with reference to the accompanying drawings. The following detailed description is only to teach those skilled in the art with detailed information to implement preferred embodiments of the invention, and the scope of the invention is not limited by the detailed description, but is limited by the scope of the claims. It is determined based on the description. For this reason, combinations of configurations and method steps in the following detailed description are not all essential to implement the present invention in a broad sense, but are described in detail with reference numerals in the accompanying drawings. However, only representative embodiments of the present invention are disclosed.
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS. The first embodiment will be described using an electro-pneumatic nailer as an example of a driving tool. As shown in FIGS. 1 and 2, the nailing machine 100 is configured mainly by a main body housing 101 and a magazine 105 when viewed generally. The main body housing 101 constitutes a tool main body and forms an outline of the nailing machine 100. The magazine 105 is loaded with nails (not shown) that are driven into the workpiece. The main body housing 101 is formed by joining together a pair of substantially symmetrical housings. The main body housing 101 includes a handle portion 103, a driving mechanism housing portion 101A, a compression device housing portion 101B, and a motor housing portion 101C.
 ハンドル部103、打ち込み機構収容部101A、圧縮装置収容部101B及びモータ収容部101Cは、側面視で概ね四角形を形成するように配置されている。ハンドル部103は、所定長さで延在する長尺状の部材である。ハンドル部103の一端側が打ち込み機構収容部101Aの一端側に連接され、ハンドル部103の他端側がモータ収容部101Cの一端側が連接されている。一方、圧縮装置収容部101Bは、ハンドル部103に対して概ね平行に延在するように配置されている。圧縮装置収容部101Bの一端側が打ち込み機構収容部101Aの他端側に連接され、圧縮装置収容部101Bの他端側がモータ収容部101Cの他端側に連接されている。これにより、釘打機100は、ハンドル部103、打ち込み機構収容部101A、圧縮装置収容部101B及びモータ収容部101Cによって囲まれた空間Sを形成している。 The handle portion 103, the driving mechanism housing portion 101A, the compression device housing portion 101B, and the motor housing portion 101C are arranged so as to form a substantially square shape in a side view. The handle portion 103 is a long member extending at a predetermined length. One end side of the handle portion 103 is connected to one end side of the driving mechanism housing portion 101A, and the other end side of the handle portion 103 is connected to one end side of the motor housing portion 101C. On the other hand, the compression device housing portion 101 </ b> B is disposed so as to extend substantially parallel to the handle portion 103. One end side of the compression device accommodating portion 101B is connected to the other end side of the driving mechanism accommodating portion 101A, and the other end side of the compression device accommodating portion 101B is connected to the other end side of the motor accommodating portion 101C. Thus, the nailing machine 100 forms a space S surrounded by the handle portion 103, the driving mechanism housing portion 101A, the compression device housing portion 101B, and the motor housing portion 101C.
 図1に示すように、釘打機100は、先端部(図1の右端)にドライバガイド141とLED107が配置されている。図1の右側に向かう方向が釘の打ち出し方向である。なお、説明の便宜上、釘打機100の先端側(図1の右側)を前側、先端側とは反対側(図1の左側)を後側と称する。また、釘打機100におけるハンドル部103の打ち込み機構収容部101Aとの連接側(図1の上側)を上側、ハンドル部103のモータ収容部101Cとの連接側(図1の下側)を下側と称する。 As shown in FIG. 1, in the nailing machine 100, a driver guide 141 and an LED 107 are arranged at the tip (right end in FIG. 1). The direction toward the right side of FIG. 1 is the nail launch direction. For convenience of explanation, the front end side (the right side in FIG. 1) of the nailing machine 100 is referred to as the front side, and the opposite side (the left side in FIG. 1) is referred to as the rear side. Further, in the nailing machine 100, the connection side (upper side in FIG. 1) of the handle portion 103 with the driving mechanism housing portion 101A is the upper side, and the connection side (lower side in FIG. 1) of the handle portion 103 with the motor storage portion 101C is down. Called the side.
 図3に示すように、打ち込み機構収容部101Aは、釘打ち込み機構120を収容している。釘打ち込み機構120は、打ち込みシリンダ121及び打ち込みピストン123を主体として構成される。 As shown in FIG. 3, the driving mechanism accommodating portion 101A accommodates the nail driving mechanism 120. The nail driving mechanism 120 is mainly composed of a driving cylinder 121 and a driving piston 123.
 打ち込みシリンダ121は、釘を打込む打ち込みピストン123を前後方向(長軸方向)に摺動可能に収容している。打ち込みピストン123は、ピストン本体部124とドライバ125を有する。ピストン本体部124は、打ち込みシリンダ121内に摺動可能に収容されている。ドライバ125は、長尺状の部材である。このドライバ125は、ピストン本体部124に一体状に設けられており、前方へと延在するように配置されている。ピストン本体部124とドライバ125は、シリンダ室121aに供給される圧縮空気によって打ち込みシリンダ121の長軸方向に直線状に移動可能に構成されている。これにより、ドライバ125がドライバガイド141の打ち込み通路141a内を前方に移動することで釘を打ち出すように構成されている。打ち込みシリンダ室121aは、打ち込みシリンダ121の内壁面とピストン本体部124の後側の面とにより囲まれる空間として形成されている。ドライバガイド141は、打ち込みシリンダ121の先端部に配置され、先端に釘の射出口を有する打ち込み通路141aを備えている。 The driving cylinder 121 accommodates a driving piston 123 for driving a nail so as to be slidable in the front-rear direction (long axis direction). The driving piston 123 has a piston main body 124 and a driver 125. The piston main body 124 is slidably accommodated in the driving cylinder 121. The driver 125 is a long member. The driver 125 is provided integrally with the piston main body 124 and is disposed so as to extend forward. The piston main body 124 and the driver 125 are configured to be driven by compressed air supplied to the cylinder chamber 121a and move linearly in the long axis direction of the cylinder 121. Thus, the driver 125 is configured to drive out the nail by moving forward in the driving passage 141a of the driver guide 141. The driving cylinder chamber 121 a is formed as a space surrounded by the inner wall surface of the driving cylinder 121 and the rear surface of the piston main body 124. The driver guide 141 is disposed at the tip of the driving cylinder 121 and includes a driving passage 141a having a nail injection port at the tip.
 図1に示すように、マガジン105は、本体ハウジング101の先端側である圧縮装置収容部101Bの前方に配置されている。マガジン105は、ドライバガイド141に連結されており、打ち込み通路141aに対して、釘を供給するよう構成されている。なお、図3に示すように、マガジン105には、釘を供給方向(図3の上方)に押すためのプッシャプレート105aが設けられている。このプッシャプレート105aによって釘がドライバガイド141の打ち込み通路141aに打ち込み方向と交差する方向から1本ずつ供給される。 As shown in FIG. 1, the magazine 105 is disposed in front of the compression device housing portion 101 </ b> B that is the distal end side of the main body housing 101. The magazine 105 is connected to the driver guide 141, and is configured to supply nails to the driving path 141a. As shown in FIG. 3, the magazine 105 is provided with a pusher plate 105a for pushing the nail in the supply direction (upward in FIG. 3). By this pusher plate 105a, nails are supplied one by one from the direction intersecting the driving direction into the driving passage 141a of the driver guide 141.
 図3に示すように、圧縮装置収容部101Bは、圧縮装置130を収容している。圧縮装置130は、圧縮シリンダ131と、圧縮ピストン133と、クランク機構115を主体として構成される。圧縮ピストン133は、圧縮シリンダ131内を上下方向に摺動可能に配置されている。この圧縮ピストン133が、本発明における「ピストン」に対応する実施構成例である。 As shown in FIG. 3, the compression device accommodating portion 101 </ b> B accommodates the compression device 130. The compression device 130 is mainly configured by a compression cylinder 131, a compression piston 133, and a crank mechanism 115. The compression piston 133 is arranged to be slidable in the vertical direction within the compression cylinder 131. This compression piston 133 is an implementation structural example corresponding to the "piston" in this invention.
 圧縮シリンダ131は、マガジン105に沿って配置され、圧縮シリンダ131の上端側は打ち込みシリンダ121の前側端部に連接されている。そして、圧縮ピストン133がマガジン105に沿って上下方向に摺動するように配置されている。この圧縮ピストン133の動作方向は、打ち込みピストン123の動作方向と概ね直交している。圧縮ピストン133が上下方向に摺動することで、圧縮シリンダ131の内部空間である圧縮室131aの容積が変化する。すなわち、圧縮ピストン133が圧縮室131aの容積を減少する上方側へと移動することで圧縮室131aの空気を圧縮する。この圧縮室131aは、打ち込みシリンダ121と近接する上部側に形成されている。また、圧縮シリンダ131は、大気解放バルブ(図示省略)を備えており、圧縮室131aを大気に解放可能に構成されている。大気開放バルブは、常時は閉状態に保持されている。 The compression cylinder 131 is disposed along the magazine 105, and the upper end side of the compression cylinder 131 is connected to the front end portion of the driving cylinder 121. The compression piston 133 is arranged so as to slide up and down along the magazine 105. The operation direction of the compression piston 133 is substantially orthogonal to the operation direction of the driving piston 123. As the compression piston 133 slides in the vertical direction, the volume of the compression chamber 131a that is the internal space of the compression cylinder 131 changes. That is, the compression piston 133 moves upward to reduce the volume of the compression chamber 131a, thereby compressing the air in the compression chamber 131a. The compression chamber 131 a is formed on the upper side close to the driving cylinder 121. The compression cylinder 131 includes an atmospheric release valve (not shown), and is configured to be able to release the compression chamber 131a to the atmosphere. The air release valve is normally kept closed.
 図3に示すように、モータ収容部101Cは、電動モータ111を収容している。電動モータ111は、モータ軸の回転軸線が打ち込みシリンダ121の長軸線に対して概ね平行になるように配置されている。従って、電動モータ111の回転軸線は、圧縮ピストン133の動作方向に対して直交している。なお、モータ収容部101Cの下部側には、バッテリ装着領域が形成されており、電動モータ111に電力を供給する充電式のバッテリパック110が着脱可能に装着される。 As shown in FIG. 3, the motor housing portion 101 </ b> C houses the electric motor 111. The electric motor 111 is arranged so that the rotation axis of the motor shaft is substantially parallel to the long axis of the driving cylinder 121. Therefore, the rotation axis of the electric motor 111 is orthogonal to the operation direction of the compression piston 133. A battery mounting area is formed on the lower side of the motor housing 101C, and a rechargeable battery pack 110 that supplies power to the electric motor 111 is detachably mounted.
 図3に示すように、電動モータ111の回転出力は、遊星歯車式の減速機構113によって減速された後、クランク機構115に伝達される。そして、電動モータ111の回転運動は、クランク機構115によって直線運動に変換されて圧縮ピストン133に伝達される。減速機構113及びクランク機構115は、内側ハウジング102に収容されている。この内側ハウジング102は、圧縮装置収容部101Bとモータ収容部101Cの間に配置されている。 As shown in FIG. 3, the rotational output of the electric motor 111 is transmitted to the crank mechanism 115 after being decelerated by the planetary gear type reduction mechanism 113. The rotational motion of the electric motor 111 is converted into a linear motion by the crank mechanism 115 and transmitted to the compression piston 133. The speed reduction mechanism 113 and the crank mechanism 115 are accommodated in the inner housing 102. The inner housing 102 is disposed between the compression device housing portion 101B and the motor housing portion 101C.
 クランク機構115は、クランク軸115aと偏心ピン115bと連接ロッド115cを主体として構成されている。クランク軸115aは、遊星歯車式の減速機構113に連接している。すなわち、クランク軸115aは、減速機構113で減速された電動モータ111の回転によって回転される。偏心ピン115bは、クランク軸115aの回転中心から偏心した位置に設けられている。連接ロッド115cは、一端が偏心ピン115bに相対回動可能に連接され、他端が圧縮ピストン133に相対回動可能に連接されている。このクランク機構115は、圧縮シリンダ131の下方に配置されている。以上の構成により、圧縮装置130として、圧縮シリンダ131、圧縮ピストン133及びクランク機構115を主体としたレシプロ式の圧縮装置が構成されている。この電動モータ111が、本発明における「モータ」に対応する実施構成例である。 The crank mechanism 115 is mainly composed of a crankshaft 115a, an eccentric pin 115b, and a connecting rod 115c. The crankshaft 115a is connected to a planetary gear type reduction mechanism 113. That is, the crankshaft 115a is rotated by the rotation of the electric motor 111 decelerated by the speed reduction mechanism 113. The eccentric pin 115b is provided at a position eccentric from the rotation center of the crankshaft 115a. One end of the connecting rod 115c is connected to the eccentric pin 115b so as to be relatively rotatable, and the other end is connected to the compression piston 133 so as to be relatively rotatable. The crank mechanism 115 is disposed below the compression cylinder 131. With the above-described configuration, a reciprocating compression device mainly including the compression cylinder 131, the compression piston 133, and the crank mechanism 115 is configured as the compression device 130. This electric motor 111 is an implementation configuration example corresponding to the “motor” in the present invention.
 ハンドル部103には、トリガ103aとトリガスイッチ103bと制御装置109が設けられている。そして、電動モータ111は、ハンドル部103に設けられたトリガ103aと本体ハウジング101の先端領域に設けられたドライバガイド141の操作に応じて、制御装置109によって制御される。トリガ103aが引き操作されることでトリガスイッチ103bがオン状態となる。一方、トリガ103aの引き操作が解除されることでトリガスイッチ103bがオフ状態となる。 The handle portion 103 is provided with a trigger 103a, a trigger switch 103b, and a control device 109. The electric motor 111 is controlled by the control device 109 according to the operation of the trigger 103 a provided in the handle portion 103 and the driver guide 141 provided in the distal end region of the main body housing 101. When the trigger 103a is pulled, the trigger switch 103b is turned on. On the other hand, the trigger switch 103b is turned off by releasing the pulling operation of the trigger 103a.
 また、コンタクトアームとしてのドライバガイド141は、釘打機100の前後方向に移動可能に本体ハウジング101の先端領域に配置されている。図6に示すように、ドライバガイド141は、付勢ばね142により前方に向かって付勢されている。ドライバガイド141が前方に位置するときには、コンタクトアームスイッチ143がオフ状態となる。一方、ドライバガイド141が本体ハウジング107側に移動されたときには、コンタクトアームスイッチ143がオン状態となる。そして、トリガスイッチ103bとコンタクトアームスイッチ143が共にオン状態に切替えられたときに電動モータ111は通電駆動され、いずれか一方のスイッチがオフ状態に切替えられたときに電動モータ111は停止される。 Further, the driver guide 141 as a contact arm is disposed in the front end region of the main body housing 101 so as to be movable in the front-rear direction of the nailing machine 100. As shown in FIG. 6, the driver guide 141 is urged forward by an urging spring 142. When the driver guide 141 is positioned forward, the contact arm switch 143 is turned off. On the other hand, when the driver guide 141 is moved to the main body housing 107 side, the contact arm switch 143 is turned on. The electric motor 111 is energized when both the trigger switch 103b and the contact arm switch 143 are switched on, and the electric motor 111 is stopped when either one of the switches is switched off.
 図5に示すように、釘打機100は、圧縮シリンダ131の圧縮室131aと打ち込みシリンダ121のシリンダ室121aとを連通する空気通路135およびバルブ室137aを備えている。空気通路135は、連通ポート135a、連通ポート135b、連通路135c、環状溝121cおよびバルブ室137aを主体として構成されている。図4に示すように、連通ポート135aは、圧縮シリンダ131のシリンダヘッド131bに形成されている。この連通ポート135aは、圧縮室131aに連通している。また、図5に示すように、連通ポート135bは、打ち込み用シリンダ121のシリンダヘッド121bに形成されている。この連通ポート135bは、バルブ室137aに連通している。連通路135cは、連通ポート135aと連通ポート135bを連通させている。この連通路135cは、打ち込みシリンダ121に沿って前後方向に直線状に延在している。 As shown in FIG. 5, the nail driver 100 includes an air passage 135 and a valve chamber 137 a that connect the compression chamber 131 a of the compression cylinder 131 and the cylinder chamber 121 a of the driving cylinder 121. The air passage 135 mainly includes a communication port 135a, a communication port 135b, a communication passage 135c, an annular groove 121c, and a valve chamber 137a. As shown in FIG. 4, the communication port 135 a is formed in the cylinder head 131 b of the compression cylinder 131. The communication port 135a communicates with the compression chamber 131a. As shown in FIG. 5, the communication port 135 b is formed in the cylinder head 121 b of the driving cylinder 121. The communication port 135b communicates with the valve chamber 137a. The communication path 135c connects the communication port 135a and the communication port 135b. The communication path 135 c extends linearly in the front-rear direction along the driving cylinder 121.
 図5に示すように、連通ポート135bは、バルブ室137aの周面に形成された環状溝121cに連通している。この環状溝121cは、バルブ室137aに連通している。さらに、バルブ室137aは、シリンダ室121aに連通している。これにより、連通ポート135bは、環状溝121cおよびバルブ室137aを介してシリンダ室121aに連通している。バルブ室137aには、空気通路135を開閉する電磁バルブ137が収容されている。 As shown in FIG. 5, the communication port 135b communicates with an annular groove 121c formed in the peripheral surface of the valve chamber 137a. The annular groove 121c communicates with the valve chamber 137a. Further, the valve chamber 137a communicates with the cylinder chamber 121a. Thus, the communication port 135b communicates with the cylinder chamber 121a via the annular groove 121c and the valve chamber 137a. An electromagnetic valve 137 that opens and closes the air passage 135 is accommodated in the valve chamber 137a.
 電磁バルブ137は、打ち込みピストン123のピストン本体部124とほぼ同じ直径を有する円柱状部材である。電磁バルブ137は、バルブ室137a内を前後方向に移動可能に配置されている。電磁バルブ137の後方には、電磁石138が配置されている。電磁石138に対する通電と通電の遮断が切り替えられることで、電磁バルブ137は前後方向に移動する。電磁バルブ137の外周には、前後方向に所定間隔で2個のOリング139a,139bが配置されている。電磁バルブ137は、後方へ移動することで環状溝121cを開放し、前方へ移動することで環状溝121cを閉じる。 The electromagnetic valve 137 is a columnar member having substantially the same diameter as the piston main body 124 of the driving piston 123. The electromagnetic valve 137 is disposed so as to be movable in the front-rear direction within the valve chamber 137a. An electromagnet 138 is disposed behind the electromagnetic valve 137. The electromagnetic valve 137 moves in the front-rear direction by switching energization to the electromagnet 138 and switching off the energization. On the outer periphery of the electromagnetic valve 137, two O- rings 139a and 139b are arranged at a predetermined interval in the front-rear direction. The electromagnetic valve 137 moves rearward to open the annular groove 121c, and moves forward to close the annular groove 121c.
 具体的には、図6に示すように、前側のOリング139aは、環状溝121cの前方においてバルブ室137aの内壁面と接触することで、環状溝121cとシリンダ室121aとの連通を遮断する。また、図7に示すように、Oリング139aが、環状溝121cの領域内へ移動したときに、環状溝121cがシリンダ室121aと連通する。なお、後側のOリング139bは、圧縮空気が連通ポート135bから外側へ漏れ出ることを防止する。すなわち、Oリング139bは、環状溝121cの開閉には関与しない。このように、空気通路135を開閉する電磁バルブ137は、空気通路135のうち、打ち込みシリンダ121のシリンダ室121aとの接続側に設けられている。 Specifically, as shown in FIG. 6, the front O-ring 139a contacts the inner wall surface of the valve chamber 137a in front of the annular groove 121c, thereby blocking communication between the annular groove 121c and the cylinder chamber 121a. . Further, as shown in FIG. 7, when the O-ring 139a moves into the region of the annular groove 121c, the annular groove 121c communicates with the cylinder chamber 121a. The rear O-ring 139b prevents the compressed air from leaking outside from the communication port 135b. That is, the O-ring 139b is not involved in opening / closing the annular groove 121c. Thus, the electromagnetic valve 137 that opens and closes the air passage 135 is provided in the air passage 135 on the connection side of the driving cylinder 121 with the cylinder chamber 121a.
 電磁バルブ137は、図6に示すように、常時には電磁石138によって環状溝121cを閉じる前方に配置されている。また、ストッパ136は、電磁バルブ137の前方に配置され、電磁バルブ137の前方への移動を規制している。このストッパ136は、シリンダ室121a内に径方向に突出するフランジ状の部材によって形成されている。さらに、ストッパ136は、後方へ移動する打ち込みピストン123の後端位置を規定している。 As shown in FIG. 6, the electromagnetic valve 137 is always disposed in front of the annular groove 121 c closed by the electromagnet 138. The stopper 136 is disposed in front of the electromagnetic valve 137 and restricts the movement of the electromagnetic valve 137 forward. The stopper 136 is formed by a flange-like member protruding in the radial direction in the cylinder chamber 121a. Further, the stopper 136 defines the rear end position of the driving piston 123 that moves rearward.
 次に、釘打機100の動作について説明する。釘打機100は、図3に示すように、打ち込みピストン123が後端位置(図3の左端位置)に位置し、かつ圧縮ピストン133が下端位置(下死点)に位置した状態が初期位置として定められている。すなわち、クランク角度0度(下死点)のときが初期状態と定義されている。 Next, the operation of the nailing machine 100 will be described. As shown in FIG. 3, the nailing machine 100 has an initial position in which the driving piston 123 is located at the rear end position (left end position in FIG. 3) and the compression piston 133 is located at the lower end position (bottom dead center). It is defined as. That is, the initial state is defined as a crank angle of 0 degrees (bottom dead center).
 具体的には、図3に示すように、釘打機100は、磁気センサ150を備えている。磁気センサ150は、磁石151、ホール素子152を主体として構成されている。磁石150は、クランク軸115aに設けられている。一方、ホール素子152は、圧縮装置収容部101Bの磁石151に対向する位置に設けられている。ホール素子152は、バッテリパック110と電気的に接続されており、さらに、制御装置109に接続されている。ホール素子152がクランク軸115aの位置を検出する。この磁気センサ150が、本発明における「第1センサ」に対応する実施構成例である。また、制御装置109が、本発明における「コントローラ」に対応する実施構成例である。 Specifically, as shown in FIG. 3, the nail driver 100 includes a magnetic sensor 150. The magnetic sensor 150 is mainly composed of a magnet 151 and a hall element 152. The magnet 150 is provided on the crankshaft 115a. On the other hand, the hall element 152 is provided at a position facing the magnet 151 of the compression device housing portion 101B. The hall element 152 is electrically connected to the battery pack 110 and further connected to the control device 109. Hall element 152 detects the position of crankshaft 115a. This magnetic sensor 150 is an implementation configuration example corresponding to the “first sensor” in the present invention. The control device 109 is an implementation configuration example corresponding to the “controller” in the present invention.
 図3に示す初期状態において、ドライバガイド141が被加工材に押し当てられてコンタクトアームスイッチ143(図6参照)がオン状態とされるとともに、トリガ103aが引き操作されてトリガスイッチ103bがオン状態に切替えられると、電動モータ111が通電駆動される。これによって減速機構113を介してクランク機構115が駆動され、圧縮ピストン133が上方へと移動する。このとき、電磁バルブ137は、空気通路135を閉鎖しているため、圧縮ピストン133の移動によって、圧縮室131a内の空気が圧縮される。 In the initial state shown in FIG. 3, the driver guide 141 is pressed against the workpiece and the contact arm switch 143 (see FIG. 6) is turned on, and the trigger 103a is pulled and the trigger switch 103b is turned on. When switched to, the electric motor 111 is energized. As a result, the crank mechanism 115 is driven via the speed reduction mechanism 113, and the compression piston 133 moves upward. At this time, since the electromagnetic valve 137 closes the air passage 135, the air in the compression chamber 131a is compressed by the movement of the compression piston 133.
 磁気センサ150が、圧縮ピストン133の位置がクランク角度180度である上端位置(上死点)に位置することが検出されると、制御装置109は、電磁石138を制御し、電磁バルブ137を後方に移動させる。すなわち、圧縮室131a内の圧縮空気が最大圧縮状態とされたとき、電磁バルブ137が開弁される。これにより、環状溝121cがシリンダ室121aに連通し、圧縮室131a内の圧縮空気が空気通路135を経てシリンダ室121a内へと供給される。シリンダ室121a内に圧縮空気が供給されると、当該圧縮空気による空気ばねの作用によって、図7に示すように、打ち込みピストン123が前方へ移動される。そして、前方へ移動された打ち込みピストン123のドライバ125が打ち込み通路141a(図3参照)の釘を打撃する。これにより、釘を打ち出す打ち出し動作が行われる。 When the magnetic sensor 150 detects that the compression piston 133 is positioned at the upper end position (top dead center) where the crank angle is 180 degrees, the control device 109 controls the electromagnet 138 and moves the electromagnetic valve 137 backward. Move to. That is, when the compressed air in the compression chamber 131a is in the maximum compressed state, the electromagnetic valve 137 is opened. Thereby, the annular groove 121c communicates with the cylinder chamber 121a, and the compressed air in the compression chamber 131a is supplied into the cylinder chamber 121a through the air passage 135. When compressed air is supplied into the cylinder chamber 121a, the driving piston 123 is moved forward by the action of the air spring by the compressed air, as shown in FIG. Then, the driver 125 of the driving piston 123 moved forward hits the nail of the driving passage 141a (see FIG. 3). Thereby, a driving operation for driving out the nail is performed.
 打ち出し動作後、圧縮ピストン133は下死点へ向かって移動する。そのとき、圧縮室131aの容積が増加されて当該圧縮室131a内の空気が大気圧よりも低い負圧となる。圧縮室131a内に発生した負圧は、空気通路135及びシリンダ室121aを通じて打ち込みピストン123に作用する。これにより、図8に示すように、打ち込みピストン123が吸引されて後方へと移動される。そして、打ち込みピストン123は、ストッパ136と当接して初期位置に位置する。磁気センサ150が、圧縮ピストン133の位置がクランク角度0度である下死点であることを検出すると、制御装置109は、電磁石138を制御し、電磁バルブ137を前方に移動させる。これにより、空気通路135を閉じる。なお、圧縮ピストン133が初期位置に復帰すると、トリガスイッチ103b及びコンタクトアームスイッチ143がオン状態に維持されていても、電動モータ111に対する通電が遮断され、電動モータ111が停止される。このように、打ち出し動作の1サイクルが終了する。なお、打ち出し動作中には、LED107が、ドライバガイド141の先端領域を照射している。 After the launch operation, the compression piston 133 moves toward the bottom dead center. At that time, the volume of the compression chamber 131a is increased, and the air in the compression chamber 131a becomes a negative pressure lower than the atmospheric pressure. The negative pressure generated in the compression chamber 131a is driven through the air passage 135 and the cylinder chamber 121a and acts on the piston 123. Thereby, as shown in FIG. 8, the driving piston 123 is sucked and moved rearward. The driving piston 123 is in contact with the stopper 136 and is located at the initial position. When the magnetic sensor 150 detects that the position of the compression piston 133 is a bottom dead center with a crank angle of 0 degrees, the control device 109 controls the electromagnet 138 and moves the electromagnetic valve 137 forward. As a result, the air passage 135 is closed. Note that when the compression piston 133 returns to the initial position, even if the trigger switch 103b and the contact arm switch 143 are maintained in the ON state, the power supply to the electric motor 111 is cut off and the electric motor 111 is stopped. In this way, one cycle of the launching operation is completed. During the launching operation, the LED 107 irradiates the tip region of the driver guide 141.
 以上の釘打機100においては、磁気センサ150が故障すると、圧縮ピストン133の位置を検出できない場合と、圧縮ピストン133の位置を正確に検出できない場合がある。圧縮ピストン133の位置を検出できない場合には、制御装置109は、釘打機100が駆動しないように制御する。一方、磁気センサ150の誤動作により圧縮ピストン133の位置を正確に検出できない場合には、打ち出し動作に不具合が生じる可能性がある。例えば、圧縮ピストン133が下死点に停止していない場合において、打ち出し動作を開始すると、打ち出し動作開始時の圧縮ピストン133の位置に応じて、圧縮ピストン133が生成する圧縮空気の圧縮量が異なる。そのため、打ち出し動作毎に打ち出される釘のスピードが一定とならず、被加工材に対する釘の打ち込み量が異なる。 In the nailing machine 100 described above, if the magnetic sensor 150 fails, the position of the compression piston 133 may not be detected or the position of the compression piston 133 may not be detected accurately. When the position of the compression piston 133 cannot be detected, the control device 109 performs control so that the nail driver 100 is not driven. On the other hand, if the position of the compression piston 133 cannot be accurately detected due to a malfunction of the magnetic sensor 150, a problem may occur in the launching operation. For example, when the compression piston 133 is not stopped at the bottom dead center, when the launching operation is started, the compression amount of the compressed air generated by the compression piston 133 differs depending on the position of the compression piston 133 at the start of the launching operation. . For this reason, the speed of the nail to be launched for each launch operation is not constant, and the amount of nail to be driven into the workpiece is different.
 したがって、第1実施形態においては、図9に示すように、電動モータ111の電圧値および電流値をそれぞれ検出する電圧センサ160および電流センサ161が設けられている。電動モータ111の電流値、電圧値および回転速度の関係は、電動モータ111の駆動特性として電動モータ111の構成によって一義的に決まる。したがって、制御装置109は、電圧センサ160および電流センサ161によって検出された電圧値、電流値から電動モータ111の回転速度を算出する。さらに、制御装置109は、電動モータ111の回転速度と減速機構113の減速比からクランク軸115aの推定角速度を算出する。このクランク軸115aが、本発明における「クランク部材」に対応する実施構成例である。また、電動モータ111の動作状態である、電圧値および電流値をそれぞれ検出する電圧センサ160と電流センサ161が、本発明における「第2センサ」に対応する実施構成例である。すなわち、「第2センサ」は2つのセンサを有する。また、電圧センサ160および電流センサ161の検出結果に基づいて算出されたクランク軸115aの推定角速度が、本発明における「推定クランク状態情報値」に対応する実施構成例である。 Therefore, in the first embodiment, as shown in FIG. 9, a voltage sensor 160 and a current sensor 161 for detecting the voltage value and current value of the electric motor 111 are provided. The relationship between the current value, voltage value, and rotational speed of the electric motor 111 is uniquely determined by the configuration of the electric motor 111 as drive characteristics of the electric motor 111. Therefore, the control device 109 calculates the rotation speed of the electric motor 111 from the voltage value and current value detected by the voltage sensor 160 and the current sensor 161. Furthermore, the control device 109 calculates the estimated angular velocity of the crankshaft 115a from the rotation speed of the electric motor 111 and the reduction ratio of the reduction mechanism 113. This crankshaft 115a is an implementation structural example corresponding to the "crank member" in this invention. In addition, the voltage sensor 160 and the current sensor 161 that detect the voltage value and the current value, which are the operating states of the electric motor 111, are implementation configuration examples corresponding to the “second sensor” in the present invention. That is, the “second sensor” has two sensors. Further, the estimated angular velocity of the crankshaft 115a calculated based on the detection results of the voltage sensor 160 and the current sensor 161 is an implementation configuration example corresponding to the “estimated crank state information value” in the present invention.
 一方、制御装置109は、所定時間ごとに磁気センサ150が検出したクランク軸115aの位置(検出結果)に基づいて、クランク軸115aの角速度を算出する。この磁気センサ150の検出結果に基づいて算出されたクランク軸115aの角速度が、本発明における「状態情報値」に対応する実施構成例である。 Meanwhile, the control device 109 calculates the angular velocity of the crankshaft 115a based on the position (detection result) of the crankshaft 115a detected by the magnetic sensor 150 every predetermined time. The angular velocity of the crankshaft 115a calculated based on the detection result of the magnetic sensor 150 is an implementation configuration example corresponding to the “state information value” in the present invention.
 そして、制御装置109は、磁気センサ150の検出結果に基づいて算出されたクランク軸115aの角速度と、電圧センサ160および電流センサ161の検出結果に基づいて算出されたクランク軸115aの推定角速度の差を算出する。クランク軸115aの角速度と推定角速度の差が所定の閾値を超えている場合には、制御装置109は、磁気センサ150、電圧センサ160、電流センサ161のいずれかのセンサに故障が生じているとみなし、電動モータ111への電流の供給を停止する。すなわち、制御装置109は、電動モータ111の駆動を停止する。 Then, the control device 109 calculates the difference between the angular velocity of the crankshaft 115a calculated based on the detection result of the magnetic sensor 150 and the estimated angular velocity of the crankshaft 115a calculated based on the detection results of the voltage sensor 160 and the current sensor 161. Is calculated. When the difference between the angular velocity of the crankshaft 115a and the estimated angular velocity exceeds a predetermined threshold, the control device 109 indicates that any one of the magnetic sensor 150, the voltage sensor 160, and the current sensor 161 has failed. Assuming that the supply of electric current to the electric motor 111 is stopped. That is, the control device 109 stops driving the electric motor 111.
 電圧センサ160および電流センサ161は、電動モータ111の電圧値および電流値を検出するだけでなく、釘打機100の駆動回路の電圧値および電流値を検出してもよい。そのような構成においては、センサの故障を検出するだけでなく、制御装置109等の故障も検出することができる。 The voltage sensor 160 and the current sensor 161 may detect not only the voltage value and current value of the electric motor 111 but also the voltage value and current value of the driving circuit of the nailing machine 100. In such a configuration, not only the failure of the sensor but also the failure of the control device 109 or the like can be detected.
(第2実施形態)
 次に、図10を参照して、第2実施形態について説明する。第2実施形態は、第1実施形態とは、「モータ」、「第2センサ」および「状態情報値」と「推定クランク状態情報値」の算出方法が異なる。なお、第2実施形態では、第1実施形態と同一の構成については、その説明を省略する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIG. The second embodiment differs from the first embodiment in “motor”, “second sensor”, and “state information value” and “estimated crank state information value” calculation methods. In the second embodiment, the description of the same configuration as in the first embodiment is omitted.
 図10に示すように、第2実施形態においては、モータとしてブラシレスモータ211が用いられている。ブラシレスモータ211において、ステータはステータコイルを有している。また、ブラシレスモータ211のロータの外側には、ロータの位置を検出するための位置センサ260が配置されている。この位置センサ260は、ロータの周方向において所定の位置に3か所配置されている。そして、制御装置109が、位置センサ260によって検出されたロータの位置に応じて、ステータコイルに通電させることで、ブラシレスモータ211の駆動を制御する。なお、図10においては、位置センサ260を簡易的に図示している。 As shown in FIG. 10, in the second embodiment, a brushless motor 211 is used as a motor. In the brushless motor 211, the stator has a stator coil. A position sensor 260 for detecting the position of the rotor is disposed outside the rotor of the brushless motor 211. The position sensor 260 is arranged at three positions at predetermined positions in the circumferential direction of the rotor. Then, the control device 109 controls the drive of the brushless motor 211 by energizing the stator coil in accordance with the position of the rotor detected by the position sensor 260. In FIG. 10, the position sensor 260 is simply illustrated.
 制御装置109は、位置センサ260によって検出されたロータの位置に基づいて、クランク軸115aの推定位置を算出する。一方、クランク軸115aの位置は、磁気センサ150によって検出される。そして、制御装置109は、磁気センサ150の検出結果に基づくクランク軸115aの位置と、位置センサ260の検出結果に基づいて算出されたクランク軸115aの推定位置の差を算出する。クランク軸115aの位置と推定位置の差が所定の閾値を超えている場合には、制御装置109は、磁気センサ150、位置センサ260のいずれかのセンサに故障が生じているとみなし、ブラシレスモータ211への電流の供給を停止する。すなわち、制御装置109は、ブラシレスモータ211の駆動を停止する。 The control device 109 calculates the estimated position of the crankshaft 115a based on the position of the rotor detected by the position sensor 260. On the other hand, the position of the crankshaft 115 a is detected by the magnetic sensor 150. Then, the control device 109 calculates the difference between the position of the crankshaft 115a based on the detection result of the magnetic sensor 150 and the estimated position of the crankshaft 115a calculated based on the detection result of the position sensor 260. When the difference between the position of the crankshaft 115a and the estimated position exceeds a predetermined threshold value, the control device 109 regards that either the magnetic sensor 150 or the position sensor 260 has failed, and the brushless motor The supply of current to 211 is stopped. That is, the control device 109 stops driving the brushless motor 211.
 したがって、制御装置109は、ブラシレスモータ211を駆動させるために使用される位置センサ260の検出結果に基づいて、クランク軸115aの推定位置を算出することができる。これにより、磁気センサ150、位置センサ160のいずれかに故障が検出される。すなわち、位置センサ260は、ブラシレスモータ211を駆動させるための機能と、磁気センサ150の故障を検知するための機能を兼用する。 Therefore, the control device 109 can calculate the estimated position of the crankshaft 115a based on the detection result of the position sensor 260 used to drive the brushless motor 211. Thereby, a failure is detected in either the magnetic sensor 150 or the position sensor 160. That is, the position sensor 260 has both a function for driving the brushless motor 211 and a function for detecting a failure of the magnetic sensor 150.
 以上の第1実施形態および第2実施形態においては、制御装置109は、電動モータ111、ブラシレスモータ211の駆動を停止した場合には、LED107,108を点灯させる。これにより、電動モータ111の駆動が停止されていることが報知される。なお、制御装置109は、LED107,108を点灯させるだけでなく、点滅させてもよい。また、制御装置109は、LED107,108が発光する光の色を変えるように構成されていてもよい。また、制御装置109がいずれか一方のLED107,108のみを点灯、あるいは点滅させるように構成されていてもよい。 In the first embodiment and the second embodiment described above, the control device 109 turns on the LEDs 107 and 108 when driving of the electric motor 111 and the brushless motor 211 is stopped. Thereby, it is notified that the driving of the electric motor 111 is stopped. Note that the control device 109 may not only light the LEDs 107 and 108 but also blink them. The control device 109 may be configured to change the color of light emitted by the LEDs 107 and 108. Further, the control device 109 may be configured to turn on or blink only one of the LEDs 107 and 108.
 以上の第1実施形態および第2実施形態によれば、クランク軸115aの状態である位置や角速度を直接的に検出する磁気センサ150と、クランク軸115aの状態である位置や角速度を間接的に検出するための電圧センサ160、電流センサ161、位置センサ260を有する。そのため、磁気センサ150の検出結果によるクランク軸115aの位置や角速度と、電圧センサ160、電流センサ161、位置センサ260との検出結果に基づくクランク軸115aの推定位置や推定角速度の差異に基づいて磁気センサ150が正常に作動しているか否かを検出することができる。これにより、磁気センサ150に異常が生じた場合に、釘打機100の駆動が停止される。すなわち、釘打機100において、意図せず釘が打ち出されることが防止される。 According to the first and second embodiments described above, the magnetic sensor 150 that directly detects the position and angular velocity of the crankshaft 115a and the position and angular velocity of the crankshaft 115a are indirectly detected. A voltage sensor 160, a current sensor 161, and a position sensor 260 for detection are included. Therefore, the magnetism is determined based on the difference between the position and angular velocity of the crankshaft 115a based on the detection result of the magnetic sensor 150 and the estimated position and angular velocity of the crankshaft 115a based on the detection results of the voltage sensor 160, current sensor 161, and position sensor 260. Whether or not the sensor 150 is operating normally can be detected. Thereby, when abnormality occurs in the magnetic sensor 150, the driving of the nail driver 100 is stopped. That is, in the nailing machine 100, the nail is prevented from being unintentionally driven out.
 以上の第1実施形態においては、電圧センサ160および電流センサ161が設けられていたが、これには限られない。電動モータ111の抵抗値が予め設定されていれば、電圧センサ160および電流センサ161のいずれか一方のみが設けられていてもよい。すなわち、オームの法則により、電流値あるいは電圧値を算出することで、電動モータ111の電流値および電圧値が検出される。 In the above first embodiment, the voltage sensor 160 and the current sensor 161 are provided, but the present invention is not limited to this. If the resistance value of the electric motor 111 is set in advance, only one of the voltage sensor 160 and the current sensor 161 may be provided. That is, the current value and voltage value of the electric motor 111 are detected by calculating the current value or voltage value according to Ohm's law.
 以上の第2実施形態においては、ブラシレスモータ211のロータの位置(回転位置)を検出するように構成されていたが、これには限られない。例えば、モータの回転速度を減速する減速機構113の回転位置を検出するように構成されていてもよい。減速機構113においては、モータの回転速度が減速されているため、ロータの位置を検出する場合に比べて、減速機構113の回転位置が精度よく検出される。 In the second embodiment described above, the position (rotational position) of the rotor of the brushless motor 211 is detected, but the present invention is not limited to this. For example, the rotational position of the speed reduction mechanism 113 that reduces the rotational speed of the motor may be detected. In the speed reduction mechanism 113, since the rotational speed of the motor is decelerated, the rotational position of the speed reduction mechanism 113 is detected with higher accuracy than when the position of the rotor is detected.
 以上においては、制御装置109が、クランク軸115aの推定角速度あるいは、クランク軸115aの推定位置を算出するように構成されていたが、これには限られない。例えば、制御装置109が、クランク軸115aの推定角加速度を算出するように構成されていてもよい。また、制御装置109は、磁気センサ150の検出結果から、クランク軸115aの推定角加速度を算出するように構成されていてもよい。 In the above, the control device 109 is configured to calculate the estimated angular velocity of the crankshaft 115a or the estimated position of the crankshaft 115a, but is not limited thereto. For example, the control device 109 may be configured to calculate the estimated angular acceleration of the crankshaft 115a. The control device 109 may be configured to calculate the estimated angular acceleration of the crankshaft 115a from the detection result of the magnetic sensor 150.
 また、以上においては、報知手段としてLED107,108が設けられていたが、LEDは1つのみであってもよい。また、報知手段として、音を生成するブザーや、振動を発生するアクチュエータが設けられていてもよい。 In the above description, the LEDs 107 and 108 are provided as notification means. However, only one LED may be provided. Further, a buzzer for generating sound or an actuator for generating vibration may be provided as the notification means.
 また、以上においては、クランク軸115aの位置を検出する磁気センサ150が設けられていたが、フォトセンサなどのセンサを設けてもよい。また、クランク軸115aの位置を検出する構成に限られず、クランク機構のうち、偏心ピン115bや連接ロッド115cの位置を検出するように構成されていてもよい。 In the above description, the magnetic sensor 150 for detecting the position of the crankshaft 115a is provided. However, a sensor such as a photosensor may be provided. Moreover, it is not restricted to the structure which detects the position of the crankshaft 115a, You may be comprised so that the position of the eccentric pin 115b and the connecting rod 115c may be detected among crank mechanisms.
(本実施形態の各構成要素と本発明の各構成要素の対応関係)
 本実施形態の各構成要素と本発明の各構成要素の対応関係を以下の通りである。なお、本実施形態は、本発明を実施するための形態の一例を示すものであり、本発明は、本実施形態の構成に限定されるものではない。
 制御装置109は、本発明の「コントローラ」に対応する構成の一例である。
 電動モータ111は、本発明の「モータ」に対応する構成の一例である。
 クランク軸115aは、本発明の「クランク部材」に対応する構成の一例である。
 圧縮ピストン133は、本発明の「ピストン」に対応する構成の一例である。
 磁気センサ150は、本発明の「第1センサ」に対応する構成の一例である。
 電圧センサ160は、本発明の「第2センサ」に対応する構成の一例である。
 電流センサ161は、本発明の「第2センサ」に対応する構成の一例である。
 ブラシレスモータ211は、本発明の「モータ」に対応する構成の一例である。
 位置センサ260は、本発明の「第2センサ」に対応する構成の一例である。
(Correspondence between each component of this embodiment and each component of the present invention)
The correspondence between each component of the present embodiment and each component of the present invention is as follows. In addition, this embodiment shows an example of the form for implementing this invention, and this invention is not limited to the structure of this embodiment.
The control device 109 is an example of a configuration corresponding to the “controller” of the present invention.
The electric motor 111 is an example of a configuration corresponding to the “motor” of the present invention.
The crankshaft 115a is an example of a configuration corresponding to the “crank member” of the present invention.
The compression piston 133 is an example of a configuration corresponding to the “piston” of the present invention.
The magnetic sensor 150 is an example of a configuration corresponding to the “first sensor” of the present invention.
The voltage sensor 160 is an example of a configuration corresponding to the “second sensor” of the present invention.
The current sensor 161 is an example of a configuration corresponding to the “second sensor” of the present invention.
The brushless motor 211 is an example of a configuration corresponding to the “motor” of the present invention.
The position sensor 260 is an example of a configuration corresponding to the “second sensor” of the present invention.
100 釘打機
101 本体ハウジング
101A 打ち込み機構収容部
101B 圧縮装置収容部
101C モータ収容部
102 内側ハウジング
103 ハンドル部
103a トリガ
103b トリガスイッチ
105 マガジン
105a プッシャプレート
107 LED
108 LED
109 制御装置
110 バッテリパック
111 電動モータ
113 遊星歯車式減速機構
115 クランク機構
115a クランク軸
115b 偏心ピン
115c 連接ロッド
120 釘打ち込み機構
121 打ち込みシリンダ
121a シリンダ室
121b シリンダヘッド
121c 環状溝
123 打ち込みピストン
124 ピストン本体部
125 ドライバ
130 圧縮装置
131 圧縮シリンダ
131a 圧縮室
131b シリンダヘッド
133 圧縮ピストン
135 空気通路
135a 連通ポート
135b 連通ポート
135c 連通路
136 ストッパ
137 電磁バルブ
137a バルブ室
138 電磁石
139a Oリング
139b Oリング
141 ドライバガイド
141a 打ち込み通路
142 付勢ばね
143 コンタクトアームスイッチ
150 磁気センサ
151 磁石
152 ホール素子
160 電圧センサ
161 電流センサ
211 ブラシレスモータ
260 位置センサ
DESCRIPTION OF SYMBOLS 100 Nailing machine 101 Main body housing 101A Driving mechanism accommodating part 101B Compressor accommodating part 101C Motor accommodating part 102 Inner housing 103 Handle part 103a Trigger 103b Trigger switch 105 Magazine 105a Pusher plate 107 LED
108 LED
109 Control device 110 Battery pack 111 Electric motor 113 Planetary gear type reduction mechanism 115 Crank mechanism 115a Crank shaft 115b Eccentric pin 115c Connecting rod 120 Nail driving mechanism 121 Driving cylinder 121a Cylinder chamber 121b Cylinder head 121c Annular groove 123 Driving piston 124 Piston main body 125 Driver 130 Compressor 131 Compression cylinder 131a Compression chamber 131b Cylinder head 133 Compression piston 135 Air passage 135a Communication port 135b Communication port 135c Communication passage 136 Stopper 137 Electromagnetic valve 137a Valve chamber 138 Electromagnet 139a O-ring 139b O-ring 141 Driver guide 141a Driving Passage 142 Energizing spring 143 Contact arm switch 150 Magnetic sensor 151 Magnet 152 Hall element 160 Voltage sensor 161 Current sensor 211 Brushless motor 260 Position sensor

Claims (6)

  1.  打ち込み具を射出口から打ち出す打ち込み工具であって、
     モータと、
     前記モータに駆動されるクランク部材と、
     前記クランク部材に駆動されるピストンと、
     前記モータを制御するコントローラと、
     前記クランク部材の状態を検出する第1センサと、
     前記モータの動作状態を検出するための第2センサと、を有し、
     前記コントローラは、前記第2センサの検出結果に基づいて、前記クランク部材の状態に対応する推定クランク状態情報値を算出するように構成されており、
     前記コントローラは、前記第1センサの検出結果に基づく前記クランク部材の状態に関する状態情報値と前記推定クランク状態情報値の差が所定の閾値を超えた場合に、前記モータの駆動を停止するように構成されていることを特徴とする打ち込み工具。
    A driving tool for driving a driving tool from an injection port,
    A motor,
    A crank member driven by the motor;
    A piston driven by the crank member;
    A controller for controlling the motor;
    A first sensor for detecting a state of the crank member;
    A second sensor for detecting an operating state of the motor,
    The controller is configured to calculate an estimated crank state information value corresponding to the state of the crank member based on a detection result of the second sensor,
    The controller stops driving the motor when the difference between the state information value related to the state of the crank member based on the detection result of the first sensor and the estimated crank state information value exceeds a predetermined threshold value. A driving tool characterized by comprising.
  2.  請求項1に記載の打ち込み工具であって、
     前記コントローラは、前記推定クランク状態情報値として、前記第2センサの検出結果に基づいて前記クランク部材の推定クランク角速度を算出するように構成されていることを特徴とする打ち込み工具。
    The driving tool according to claim 1,
    The driving tool is configured to calculate an estimated crank angular velocity of the crank member based on a detection result of the second sensor as the estimated crank state information value.
  3.  請求項2に記載の打ち込み工具であって、
     前記第2センサは、前記モータに供給される電流値と電圧値を検出するように構成されており、
     前記コントローラは、前記電流値と前記電圧値から前記モータの回転速度を算出することで、前記推定クランク状態情報値としての前記推定クランク角速度を算出するように構成されていることを特徴とする打ち込み工具。
    The driving tool according to claim 2,
    The second sensor is configured to detect a current value and a voltage value supplied to the motor,
    The controller is configured to calculate the estimated crank angular speed as the estimated crank state information value by calculating a rotation speed of the motor from the current value and the voltage value. tool.
  4.  請求項1に記載の打ち込み工具であって、
     前記コントローラは、前記推定クランク状態情報値として、前記第2センサの検出結果に基づいて前記クランク部材の推定クランク位置を算出するように構成されていることを特徴とする打ち込み工具。
    The driving tool according to claim 1,
    The driving tool is configured to calculate an estimated crank position of the crank member based on a detection result of the second sensor as the estimated crank state information value.
  5.  請求項4に記載の打ち込み工具であって、
     前記モータと前記クランク部材の間に減速ギアが配置されており、
     前記第2センサは、前記減速ギアの回転位置を検出するように構成されていることを特徴とする打ち込み工具。
    The driving tool according to claim 4,
    A reduction gear is disposed between the motor and the crank member,
    The driving tool according to claim 2, wherein the second sensor is configured to detect a rotational position of the reduction gear.
  6.  請求項1~5のいずれか1項に記載の打ち込み工具であって、
     前記コントローラが前記モータの駆動を停止したことを報知する報知手段を有することを特徴とする打ち込み工具。
    The driving tool according to any one of claims 1 to 5,
    A driving tool comprising notification means for notifying that the controller has stopped driving the motor.
PCT/JP2013/078383 2012-10-19 2013-10-18 Driving tool WO2014061807A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012231559A JP2014083601A (en) 2012-10-19 2012-10-19 Driving tool
JP2012-231559 2012-10-19

Publications (1)

Publication Number Publication Date
WO2014061807A1 true WO2014061807A1 (en) 2014-04-24

Family

ID=50488362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078383 WO2014061807A1 (en) 2012-10-19 2013-10-18 Driving tool

Country Status (2)

Country Link
JP (1) JP2014083601A (en)
WO (1) WO2014061807A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015169170A1 (en) * 2014-05-05 2015-11-12 北京大风时代科技有限责任公司 Electromagnetic nail gun
CN105082061A (en) * 2014-05-05 2015-11-25 北京大风时代科技有限责任公司 Electromagnetic nail gun
CN105082062A (en) * 2014-05-05 2015-11-25 北京大风时代科技有限责任公司 Electromagnetic nailing gun
US9943952B2 (en) 2013-12-11 2018-04-17 Makita Corporation Driving tool
US10131047B2 (en) 2012-05-08 2018-11-20 Makita Corporation Driving tool
US10272553B2 (en) 2012-11-05 2019-04-30 Makita Corporation Driving tool
EP3476543A1 (en) * 2017-10-26 2019-05-01 Max Co., Ltd. Tool and electric tool
US10286534B2 (en) 2014-04-16 2019-05-14 Makita Corporation Driving tool
US11110577B2 (en) 2017-11-16 2021-09-07 Milwaukee Electric Tool Corporation Pneumatic fastener driver
US20220355453A1 (en) * 2021-05-10 2022-11-10 Max Co., Ltd. Driving tool
US11819989B2 (en) 2020-07-07 2023-11-21 Techtronic Cordless Gp Powered fastener driver
US11850714B2 (en) 2021-07-16 2023-12-26 Techtronic Cordless Gp Powered fastener driver

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018103291A (en) * 2016-12-26 2018-07-05 日立工機株式会社 Driving machine
US11623335B2 (en) * 2017-11-15 2023-04-11 Defond Components Limited Control assembly for use in operation of an electric device
JP7413856B2 (en) 2020-03-16 2024-01-16 工機ホールディングス株式会社 work equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229728A (en) * 2007-03-16 2008-10-02 Makita Corp Hammering work tool
JP2009208178A (en) * 2008-03-03 2009-09-17 Hitachi Koki Co Ltd Driver machine
JP2009279682A (en) * 2008-05-20 2009-12-03 Max Co Ltd Tool and information processing device
JP2012148346A (en) * 2009-07-24 2012-08-09 Makita Corp Hammering tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229728A (en) * 2007-03-16 2008-10-02 Makita Corp Hammering work tool
JP2009208178A (en) * 2008-03-03 2009-09-17 Hitachi Koki Co Ltd Driver machine
JP2009279682A (en) * 2008-05-20 2009-12-03 Max Co Ltd Tool and information processing device
JP2012148346A (en) * 2009-07-24 2012-08-09 Makita Corp Hammering tool

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10131047B2 (en) 2012-05-08 2018-11-20 Makita Corporation Driving tool
US10272553B2 (en) 2012-11-05 2019-04-30 Makita Corporation Driving tool
US9943952B2 (en) 2013-12-11 2018-04-17 Makita Corporation Driving tool
US10286534B2 (en) 2014-04-16 2019-05-14 Makita Corporation Driving tool
CN105082065A (en) * 2014-05-05 2015-11-25 北京大风时代科技有限责任公司 Electromagnetic nailing gun
WO2015169170A1 (en) * 2014-05-05 2015-11-12 北京大风时代科技有限责任公司 Electromagnetic nail gun
CN105082062A (en) * 2014-05-05 2015-11-25 北京大风时代科技有限责任公司 Electromagnetic nailing gun
CN105082061A (en) * 2014-05-05 2015-11-25 北京大风时代科技有限责任公司 Electromagnetic nail gun
EP3476543A1 (en) * 2017-10-26 2019-05-01 Max Co., Ltd. Tool and electric tool
US11011031B2 (en) 2017-10-26 2021-05-18 Max Co., Ltd. Tool and electric tool
US11110577B2 (en) 2017-11-16 2021-09-07 Milwaukee Electric Tool Corporation Pneumatic fastener driver
US11897106B2 (en) 2017-11-16 2024-02-13 Milwaukee Electric Tool Corporation Pneumatic fastener driver
US11819989B2 (en) 2020-07-07 2023-11-21 Techtronic Cordless Gp Powered fastener driver
US20220355453A1 (en) * 2021-05-10 2022-11-10 Max Co., Ltd. Driving tool
US11850714B2 (en) 2021-07-16 2023-12-26 Techtronic Cordless Gp Powered fastener driver

Also Published As

Publication number Publication date
JP2014083601A (en) 2014-05-12

Similar Documents

Publication Publication Date Title
WO2014061807A1 (en) Driving tool
WO2014069648A1 (en) Fastening tool
JP6100680B2 (en) Driving tool
JP5758841B2 (en) Driving tool
JP6284417B2 (en) Driving tool
JP6481751B2 (en) Driving machine
US9662777B2 (en) Pneumatic fastener driver
WO2014084221A1 (en) Pounding tool
WO2013154032A1 (en) Driver tool
WO2011010512A1 (en) Hammering tool
JP2011025362A (en) Driving tool
WO2013168719A1 (en) Driving tool
WO2014084222A1 (en) Pounding tool
JP5859372B2 (en) Driving tool
WO2014073669A1 (en) Pounding tool
WO2014087934A1 (en) Driving tool
JPWO2020008768A1 (en) Driving machine
JP2014083660A (en) Driving tool
TWI759578B (en) nailing machine
US20140096987A1 (en) Power tool
JP6992551B2 (en) Driving machine
JP2012148347A (en) Hammering tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847920

Country of ref document: EP

Kind code of ref document: A1