WO2014083755A1 - Water treatment device - Google Patents

Water treatment device Download PDF

Info

Publication number
WO2014083755A1
WO2014083755A1 PCT/JP2013/006261 JP2013006261W WO2014083755A1 WO 2014083755 A1 WO2014083755 A1 WO 2014083755A1 JP 2013006261 W JP2013006261 W JP 2013006261W WO 2014083755 A1 WO2014083755 A1 WO 2014083755A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
potential
water treatment
electrode
electrodes
Prior art date
Application number
PCT/JP2013/006261
Other languages
French (fr)
Japanese (ja)
Inventor
喜典 田中
泰士 山本
亮子 金永
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014083755A1 publication Critical patent/WO2014083755A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/46135Voltage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4614Current

Definitions

  • the present invention relates to a water treatment device.
  • Patent Document 1 the removal of the dissolved component in the water to be treated is described, but the control technique or the like for achieving the desired amount of dissolution is not defined at all.
  • an object of this invention is to obtain the water treatment apparatus which can control the density
  • the water treatment apparatus of the present invention comprises an electrolytic cell having a plurality of electrodes including at least a pair of anodes and cathodes spaced apart by a separator, and applies an electric potential between the electrodes Thus, the water passed into the electrolytic cell is reformed.
  • control part which controls the application electric potential value applied between the said electrodes.
  • the said control part is controlling the electric current value by controlling the said application electric potential value, and when a predetermined voltage is applied beforehand By measuring the current value, the potential or current to be applied to perform the desired modification is predicted.
  • a water treatment apparatus comprises an electrolytic cell having a plurality of electrodes including at least a pair of anodes and cathodes spaced apart by a separator, and applying an electric potential between the electrodes. It is designed to reform the water passed through.
  • the said water treatment apparatus is provided with the control part which controls the application electric potential value applied between the said electrodes,
  • the said control part is controlling the electric current value by controlling the said application electric potential value, and it is predetermined beforehand. By measuring the current value when a voltage is applied, the potential or current to be applied to perform desired modification is predicted.
  • control unit of the first invention applies in advance one or more types of potentials, measures the current flowing at that time, measures the modification amount at this time as a unit reforming rate, and measures the current value
  • the value of the applied potential is controlled based on the ratio between the desired reforming rate and the unit reforming rate as a current value.
  • control unit controls the applied potential or current by measuring at least the water quality after reforming before and after the reforming.
  • control unit adheres to the electrode surface by controlling a potential applied to each electrode using a plurality of the electrodes. It is what changes the adhesion amount of a kimono.
  • control unit of the fourth invention is to reduce the amount of the deposit on the electrode.
  • control unit of the fourth invention is to increase the adhesion amount of the deposit to the electrode.
  • control unit of the sixth invention passes water in which a desired component is dissolved in advance to the electrolytic unit, and controls the potential applied to each electrode using a plurality of the electrodes.
  • the amount of the attached matter attached to the electrode surface is increased.
  • the water treatment apparatus 1 concerning this embodiment is comprised by accommodating the electrolytic vessel 2, the purification part 3, the water storage tank 8, and various piping in the case 1a.
  • raw water suitable for drinking such as tap water and well water is introduced into the electrolytic cell 2 through the raw water introduction pipe (raw water supply path) 11.
  • the raw water introduction pipe 11 is connected to a water switching device 5 attached to a faucet 4 as a raw water supply unit. And in this embodiment, by operating the lever 5a of the water switching device 5, the tap water as raw water which flows out from the faucet 4 is taken in in the water treatment apparatus 1, and raw water is processed.
  • the raw water which the water treatment apparatus 1 processes is not restricted to a tap water, For example, well water, reservoir water, etc. may be sufficient.
  • the raw water taken into the raw water introduction pipe 11 from the faucet 4 firstly flows into the purification unit 3.
  • the purification unit 3 uses a water purification cartridge in which the activated carbon storage unit 3a is disposed in the front stage (upstream side) and the hollow fiber membrane storage unit 3b is disposed in the rear stage (downstream side).
  • the activated carbon storage unit 3a a process for removing residual chlorine and trihalomethane contained in the raw water is performed, and in the hollow fiber membrane storage unit 3b, removal of fine solid impurities which can not be captured by the activated carbon storage unit 3a A process of removing activated carbon particles leaked from the storage 3a is performed.
  • the water filtered and passed through the purification section 3 flows out to the first water distribution pipe 12 connected to the downstream side of the hollow fiber membrane storage section 3 b and is connected to the downstream side of the first water distribution pipe 12 Is introduced into the electrolytic cell 2.
  • the electrolytic cell 2 includes a housing 2a, and in the housing 2a, a diaphragm 27 serving as a separator, and at least a pair of anode plates (anode: electrode) 25 and a cathode plate An electrolytic unit 2 b formed of the cathode: electrode 26 is accommodated.
  • the electrolytic unit 2 b is provided with a plate-like anode plate 25 on one side (left side in FIG. 2) of the plate-like separator 27, and the other side of the separator 27.
  • the plate-like cathode plate 26 on the right side (FIG. 2), it is formed in a substantially plate shape.
  • FIG. 1 shows the case where a gap is formed between the housing 2a and the electrolytic unit 2b for the sake of convenience, no gap is actually provided and the water introduced into the suction port 20 is After passing through the electrolytic unit 2 b, the fluid flows out from the discharge port 21.
  • FIGS. 4 to 7 described later.
  • activated carbon electrodes are used as the anode plate 25 and the cathode plate 26, and a thin film made of polyester and formed in a cross mesh shape is used as the diaphragm 27.
  • the electrolysis part 2b is formed in 14 cm in height, 10 cm in width, and 0.1 mm in thickness thin plate shape as a whole.
  • the said size and shape of the electrolysis part 2b are only an example, and it is also possible to set it as another size and shape.
  • a diaphragm 27 and a pair of anode plates 25 and cathode plates 26 are shown in FIG. 1, a plurality of diaphragms 27 are provided, and the anode plate 25, diaphragm 27, cathode plate 26, diaphragm 27 and anode plate are provided. It may be arranged to be 25.
  • the water introduced into the suction port 20 of the electrolytic cell 2 passes through a flow path formed between the anode plate 25 and the cathode plate 26 and flows out from the discharge port 21.
  • the electric cords 30 and 31 are connected to the anode plate 25 and the cathode plate 26, and the electric cords 30 and 31 are electrically connected to the control unit 6.
  • the dissolved component contained in the water introduced into the electrolytic cell 2 adheres to the electrode interface of both the electrode plates 25 and 26, and is removed. That is, in the present embodiment, by applying a potential between the anode plate 25 and the cathode plate 26 (between the electrodes), the water passed through the inside of the electrolytic unit 2 b is reformed.
  • an anion component such as a chloride ion, a sulfate ion, a nitrate ion, and a nitrite ion, and an anionic interface having a carboxylic acid and a sulfonic acid structure as a hydrophilic group.
  • an anion component such as a chloride ion, a sulfate ion, a nitrate ion, and a nitrite ion
  • an anionic interface having a carboxylic acid and a sulfonic acid structure as a hydrophilic group.
  • a dissolution component attached to the cathode plate 26 side for example, a cation component such as sodium ion, potassium ion, calcium ion, magnesium ion, metal ion, etc., an anion having an amine salt and a quaternary ammonium salt structure as a hydrophilic group.
  • a surfactant of the system for example, sodium ion, potassium ion, calcium ion, magnesium ion, metal ion, etc., an anion having an amine salt and a quaternary ammonium salt structure as a hydrophilic group.
  • the water from which the dissolved component has been removed by the electrolysis flows out from the discharge port 21 of the electrolytic tank 2 to the second water distribution pipe 13, and the three-way valve 7, the third water distribution pipe It passes 14 and is stored in the reservoir tank 8.
  • the water stored in the water storage tank 8 passes through the fourth water distribution pipe 16, the water discharge pump 9, and the fifth water distribution pipe 17, and is taken out from the discharge port 10a of the water discharge pipe 10 drawn to the outside of the case 1a.
  • a drainage pipe 15 is connected to the three-way valve 7 disposed on the upstream side of the water storage tank 8.
  • the drainage pipe 15 is used at the time of maintenance of the electrolytic cell 2.
  • the anode plate 25 and the cathode plate 26 of the electrolytic cell 2 gradually reach a saturated state as the dissolved component continues to be attached, and the dissolved component is not removed.
  • the potential applied to the anode plate 25 and the cathode plate 26 is disconnected, and water is allowed to flow into the electrolytic cell 2 in the disconnected state.
  • the water which has been passed through takes in the dissolved components adhering to the anode plate 25 and the cathode plate 26 and flows out to the second water distribution pipe 13 and switches the three-way valve 7 to pass the drainage pipe 15 for drainage. It can be discharged out of the system of the water treatment apparatus 1 from the port 18.
  • the controller 6 can control the concentration of the dissolved substance to be a desired value.
  • control unit 6 controls the value of the applied potential applied between the anode plate 25 and the cathode plate 26 (between the electrodes).
  • the potentials applied to the anode plate 25 and the cathode plate 26 are usually applied so that the potentials become substantially constant, as represented by the potential-time plot (a) of FIG. 3 (a). .
  • the electrode surface is clean at the initial stage of application, dissolved substances such as ions are sufficiently adsorbed, and the removal rate is high as shown by the removal rate-time plot (a) in FIG. 3 (b). It has become.
  • the removal rate gradually decreases because the electrode surface is covered with the adsorbing material.
  • the potential is initially set to a low potential, and the potential is increased with time. I did it.
  • the removal rate at the initial application stage is not so high, but after time passes, the potential becomes higher than that at the initial application stage. Since the potential is raised to the lower side, it is possible to suppress the removal rate from falling.
  • the removal rate-time plot (b) of FIG. 3B the removal rate can be made substantially constant until a predetermined elapsed time.
  • the removal rate-time plot (b) of FIG. 3B when the predetermined time or more elapses, the removal rate decreases because the dissolved substance can hardly be removed. .
  • control unit 6 controls the applied potential value applied between the anode plate 25 and the cathode plate 26 (between the electrodes) to control the applied potential value to achieve the desired water quality. Will be able to As a result, it becomes possible to freely control the amount and type of dissolved components, and it is possible to obtain a constant water quality throughout the period of use.
  • control unit 6 controls the current value by controlling the applied potential value. That is, when applying and controlling a potential, the applied potential is controlled based on the value of the flowing current.
  • type of the water to be processed influences large. Then, as described above, by raising the applied potential as the usage time passes, the control is performed only by the control to compensate that the dissolved component adheres to the electrode and the removal rate decreases. It is difficult to cope with the difference in water quality.
  • the electrode surface may overflow with the adsorbed substance at a stage earlier than the predicted use time, and in such a case, it is determined in advance.
  • a control scheme that raises the potential after a lapse of time is not very useful.
  • the application potential can be controlled by the control unit 6 so that the current flowing when the potential is applied has a predetermined value.
  • the quality level can be a desired value.
  • the degree of reforming the water to be treated by the electrolytic unit 2b can be set to a desired value regardless of the water quality difference of the water to be treated. It is possible to As a result, it is possible to further stabilize the discharged water quality.
  • control unit 6 predicts the potential or current to be applied to perform desired modification by measuring the current value when the predetermined voltage is applied in advance.
  • predicting the current or potential means creating a calibration curve in advance and predicting the current or potential from the comparison with the calibration curve.
  • the removal amount (reforming amount) at this time is a unit removal rate (unit reforming rate), and the current value is a unit current value.
  • the desired removal rate (reforming rate) and unit removal The potential is controlled so that the ratio of the current value to the unit current value controlled based on the ratio to the ratio (unit reforming ratio) becomes constant.
  • the desired removal rate is selected at the time of use of the water treatment apparatus 1
  • the desired one is selected from the removal rate stored in the unit removal rate (the removal rate at the current value at the potential applied beforehand). Calculate the current and potential so that the removal rate of Then, the removal rate desired by the user can be achieved by controlling the applied current so as to obtain the calculated current and potential.
  • the potential may be controlled such that the current flowing is half the unit current value.
  • the water treatment apparatus 1 includes the control unit 6 that controls the applied potential value applied between the anode plate 25 and the cathode plate 26 (between the electrodes).
  • the control unit 6 controls the current value by controlling the applied potential value, and applies the voltage to perform desired modification by measuring the current value when a predetermined voltage is applied in advance. It is designed to predict potential or current.
  • the amount of dissolved substances such as ions attracted to the electrode interface while flowing between the electrodes in the electrolytic cell 2 is controlled. can do.
  • the water treatment device 1 capable of controlling the concentration of the dissolved substance to a desired value.
  • the water to be treated is allowed to flow through the water, and the potential is shorted or cut, or is applied to the water to be treated by applying a reverse potential and concentrated ( It is also possible to make water reformate.
  • control for raising the potential with time control for applying the applied potential so that the current flowing when the potential is applied has a predetermined value, and measuring a current value when a predetermined voltage is applied in advance
  • the control for predicting the potential or current to be applied to perform the desired modification may be configured to be able to be performed independently of each other.
  • the water treatment apparatus 1A according to this embodiment basically has the same configuration as that of the first embodiment.
  • the water treatment apparatus 1A is configured by housing the electrolytic cell 2, the purification unit 3, the water storage tank 8, and various pipes in the case 1a.
  • the control unit 6 can control the concentration of the dissolved substance to be a desired value.
  • the point that the water treatment apparatus 1A according to the present embodiment is mainly different from the water treatment apparatus 1 according to the first embodiment is that the water quality before and after treatment (before and after being reformed by the electrolytic cell 2) It is in the point which controls the electric potential or electric current to apply by measuring.
  • conductivity meters 40 and 41 are provided at the front stage (upstream side) of the suction port 20 and the rear stage (downstream side) of the discharge port 21 of the electrolytic cell 2 respectively. Then, the water quality of the water flowing into the electrolytic cell 2 is measured by the conductivity meter 40. Then, the water quality measured at this time is taken as the water quality characteristic before the electrolytic treatment.
  • the water quality after the electrolytic treatment is measured by the conductivity meter 41 at the subsequent stage (downstream side) of the discharge port 21 of the electrolytic cell 2. And the water quality measured at this time is taken as the water quality characteristic after electrolytic treatment.
  • the water quality characteristics before and after the electrolytic treatment are compared, and, for example, a value representing the decrease in conductivity expressed as a percentage of the conductivity of the water to be treated is a removal rate, and the removal rate is a value desired by the user.
  • the value of the applied potential is controlled so that the conductivity of the water after treatment becomes constant.
  • the desired removal rate at the time of use is selected, first, calculation is performed with the conductivity before the electrolytic treatment and the desired removal rate, the appropriate conductivity is derived, and the solution flows out of the electrolytic cell 2 after treatment The current and potential are controlled so that the later conductivity has a selected value.
  • the water quality characteristics before and after the electrolytic treatment are compared, and the potential of the applied voltage is set so that the removal rate becomes a value desired by the user, that is, the conductivity of the treated water becomes constant. Control the value.
  • the water treatment efficiency can be constantly monitored by measuring and comparing the water quality before and after the treatment. Then, by feedback control of the voltage and current, it is possible to control the degree of reforming (the amount of removal or concentration, and the amount and type of dissolved components).
  • a conductivity meter is illustrated as a water quality meter provided in front of the suction port 20 and after the discharge port 21 of the electrolytic cell 2.
  • a current / potential measuring device such as a TDS meter or pH meter, or alkaline ionized water, acid water, hydrogen water, ozone water generating apparatus using conductive electrodes, etc. for functional water generation It is also possible to use a water quality measurement device utilizing an electrolytic cell.
  • the water quality on the upstream side of the suction port 20 and the water quality on the downstream side of the discharge port 21 are measured.
  • the water quality measuring device may be provided only on the downstream side of the discharge port 21.
  • the water quality without electrolytic treatment is measured on the downstream side of the discharge port 21 to be a substitute value of the water quality measurement value before the electrolytic treatment, and when the electrolytic treatment is actually performed, the water quality after the electrolytic treatment Only the measured value is controlled by the applied potential. Also in this case, the removal rate of the dissolved component can be controlled to be substantially constant.
  • the water treatment efficiency can be constantly monitored by measuring and comparing the water quality before and after the treatment. Therefore, the voltage and current can be feedback-controlled, and the degree of reforming (the amount to be removed or concentrated, and the amount and type of dissolved components) can be more reliably controlled.
  • the water treatment apparatus 1B according to the present embodiment basically has the same configuration as that of the first embodiment.
  • the water treatment apparatus 1B is configured by housing the electrolytic cell 2, the purification unit 3, the water storage tank 8, and various pipes in the case 1a.
  • the control unit 6 can control the concentration of the dissolved substance to be a desired value.
  • the point that the water treatment apparatus 1B according to the present embodiment is mainly different from the water treatment apparatus 1 according to the first embodiment is that the electric potential applied in advance to the electrodes before water treatment using a plurality of electrodes Control to reduce (change) the amount of adhesion on the electrode surface.
  • a third electrode 42 is provided in the electrolytic cell 2 in addition to the positive and negative plates 25 and 26.
  • the third electrode 42 and the anode plate 25 or the third electrode 42 and the cathode plate 26 or the third electrode 42 and the positive electrode A potential can be applied to both of the cathode plates 25 and 26.
  • the potential applied at this time is such that the anode plate 25 is at zero potential or negative potential, and the cathode plate 26 is at zero potential or positive potential. That is, unlike the potential applied at the time of water treatment, the potential is applied so as to be zero or the opposite potential, respectively.
  • a potential for example, when a zero potential is applied, the potential difference between water and the surface of the electrode disappears, and a dissolved substance such as ions is not attracted to the surface of the electrode and adheres to the electrode. Substances are easily detached from the electrode surface.
  • the three-way valve 7 is applied. It is preferable to allow the drainage pipe 15 to pass through and switch the drainage port 18 out of the system of the water treatment apparatus 1.
  • the potential applied to the electrodes is controlled in advance before the water treatment by using the plurality of electrodes 25, 26, 42, and the adhesion amount on the electrode surface is reduced. That is, the deposit on the electrode surface can be removed.
  • the third electrode 42 is provided, the third electrode 42 is not provided, and the positive and negative electrode plates 25 and 26 are used to apply the potential on the opposite side to each other.
  • the amount of adhesion on the electrode surface may be reduced by
  • the water treatment apparatus 1C according to this embodiment basically has the same configuration as that of the first embodiment.
  • the water treatment apparatus 1C is configured by housing the electrolytic cell 2, the purification unit 3, the water storage tank 8, and various pipes in the case 1a.
  • the control unit 6 can control the concentration of the dissolved substance to be a desired value.
  • the point that the water treatment apparatus 1C according to the present embodiment is mainly different from the water treatment apparatus 1 according to the first embodiment is that the potential applied in advance to the electrodes before water treatment using a plurality of electrodes Control to increase (change) the amount of adhesion on the electrode surface.
  • a third electrode 42 is provided in the electrolytic cell 2 in addition to the positive and negative plates 25 and 26.
  • the third electrode 42 and the anode plate 25, or the third electrode 42 and the cathode plate 26, or the third electrode 42 and the cathode / cathode plate 25, It is made possible to apply an electric potential to both of them.
  • the anode plate 25 to which the positive potential is applied has a dissolved material such as anions on the surface of the anode plate 25. It is attracted to and adheres to. Further, a dissolved substance such as a cation is attracted to the surface of the cathode plate 26 and adheres to the cathode plate 26 to which the negative potential is applied.
  • the tap water as the raw water flowing out from the faucet 4 is treated with the water treatment device Capture in 1.
  • tap water is introduced into the water treatment apparatus 1C through the raw water introduction pipe 11.
  • the raw water introduced into the water treatment device 1C flows into the purification unit 3. Then, treatment to remove residual chlorine and trihalomethane contained in the raw water is performed in the activated carbon storage unit 3a, removal of fine solid impurities that can not be captured by the activated carbon storage unit 3a in the hollow fiber membrane storage unit 3b, or activated carbon A process of removing activated carbon particles leaked from the storage 3a is performed.
  • the water filtered through the purification unit 3 flows out to the first water distribution pipe 12 connected to the downstream side of the hollow fiber membrane storage 3b, and is connected to the downstream side of the first water distribution pipe 12 Is introduced into the electrolytic cell 2.
  • an electric potential is applied to both the third electrode 42 and the anode plate 25, or the third electrode 42 and the cathode plate 26, or both the third electrode 42 and the positive and negative plates 25 and 26.
  • a potential is applied such that the anode plate 25 is at a positive potential and the cathode plate 26 is at a negative potential.
  • a dissolved material such as anions is attracted to the surface of the anode plate 25 on the anode plate 25 to which the positive potential is applied. Be attached. Further, a dissolved substance such as a cation is attracted to the surface of the cathode plate 26 and adheres to the cathode plate 26 to which the negative potential is applied.
  • a potential is applied to both the third electrode 42 and the anode plate 25, or the third electrode 42 and the cathode plate 25, or the positive / negative plates 25 and 26.
  • the anode plate 25 is set to a zero potential or a negative potential
  • a potential is applied such that the cathode plate 26 is set to a zero potential or a positive potential.
  • a potential for example, when a zero potential is applied, the potential difference between water and the surface of the electrode disappears, and a dissolved substance such as ions is not attracted to the surface of the electrode and adheres to the electrode. Substances are easily detached from the electrode surface.
  • a dissolved substance such as ions attached to the electrode surface is released into the water to be treated, and the concentration of the dissolved substance such as ions in the water to be treated is concentrated.
  • the water to be treated (concentrated water) discharged from the discharge port 21 of the electrolytic tank 2 flows out to the second water distribution pipe 13, passes through the three-way valve 7 and the third water distribution pipe 14, and is stored in the water storage tank 8. It is stored (see the wavy arrow in FIG. 6).
  • the third electrode 42 is provided in the present embodiment, the third electrode 42 is not provided, and the positive and negative electrode plates 25 and 26 are used as respective counter electrodes. Thus, a dissolved substance such as ions may be attached to the electrode surface.
  • the concentration of either anion or cation may be increased. It is possible.
  • the potential applied to the electrodes is controlled in advance before water treatment using the plurality of electrodes 25, 26, 42 to increase the adhesion amount on the electrode surface. That is, the deposit can be attached to the surface of the electrode.
  • the water treatment apparatus 1D according to the present embodiment basically has the same configuration as that of the fourth embodiment.
  • the water treatment apparatus 1D is configured by housing the electrolytic cell 2, the purification unit 3, the water storage tank 8, and various pipes in the case 1a.
  • the control unit 6 can control the concentration of the dissolved substance to be a desired value.
  • a third electrode 42 is provided in addition to the positive and negative plates 25 and 26. Then, using the plurality of electrodes 25, 26, 42, the potential applied to the electrodes is controlled in advance before water treatment to increase the amount of adhesion on the electrode surface.
  • the point that the water treatment apparatus 1D according to the present embodiment is mainly different from the water treatment apparatus 1C according to the fourth embodiment is that the water having the desired dissolved component dissolved in advance in the electrolytic cell 2 is passed through And the adhesion amount of the electrode surface is increased.
  • a third electrode 42 is provided in the electrolytic cell 2 in addition to the positive and negative plates 25 and 26. Further, a concentrated solution tank 50 is accommodated in the case 1 a, and the concentrated solution 51 is stored in the concentrated solution tank 50.
  • a concentrated water supply pipeline 53 is connected to the concentrated solution tank 50, and the other end of the concentrated water supply pipeline 53 is connected to the inlet 54 of the electrolytic cell 2.
  • a pump 52 is provided in the middle of the concentrated water supply pipeline 53.
  • the concentrated liquid 51 in the concentrated liquid tank 50 passes through the concentrated water supply pipe 53 and the inlet of the electrolytic cell 2 It is introduced into the electrolytic cell 2 from 54.
  • an electric potential is applied to both the third electrode 42 and the anode plate 25, or the third electrode 42 and the cathode plate 26, or both the third electrode 42 and the positive and negative plates 25 and 26.
  • a potential is applied such that the anode plate 25 is at a positive potential and the cathode plate 26 is at a negative potential.
  • a dissolved material such as anions is attracted to the surface of the anode plate 25 on the anode plate 25 to which the positive potential is applied. Be attached. Further, a dissolved substance such as a cation is attracted to the surface of the cathode plate 26 and adheres to the cathode plate 26 to which the negative potential is applied.
  • a potential is applied to both the third electrode 42 and the anode plate 25, or the third electrode 42 and the cathode plate 25, or the positive / negative plates 25 and 26.
  • the anode plate 25 is set to a zero potential or a negative potential
  • a potential is applied such that the cathode plate 26 is set to a zero potential or a positive potential.
  • a potential for example, when a zero potential is applied, the potential difference between water and the surface of the electrode disappears, and a dissolved substance such as ions is not attracted to the surface of the electrode and adheres to the electrode. Substances are easily detached from the electrode surface.
  • a dissolved substance such as ions attached to the electrode surface is released into the water to be treated, and the concentration of the dissolved substance such as ions in the water to be treated is concentrated.
  • the treated water discharged from the discharge port 21 of the electrolytic tank 2 flows out to the second water distribution pipe 13, passes through the three-way valve 7 and the third water distribution pipe 14, and is stored in the water storage tank 8 ( See the dashed arrows in FIG. 7).
  • the third electrode 42 is provided, the third electrode 42 is not provided, and the electrode surfaces can be obtained by using the positive and negative electrode plates 25 and 26 as respective counter electrodes.
  • a dissolved substance such as ions may be attached to the
  • the concentration of either anion or cation may be increased. It is possible.
  • dissolved components such as ions from the concentrated solution 51 are adsorbed to the electrode. Then, the desired dissolved component adsorbed to the electrode is released into the water to be treated.
  • the specifications (shape, size, layout, etc.) of the electrolytic cell, the purifier, and other details can be appropriately changed.

Abstract

A water treatment device (1) comprising an electrolytic cell (2) which has a plurality of electrodes that include at least a pair of a positive electrode (26) and a negative electrode (25) arranged so as to be separated by a separator (27). By applying electric potential between the electrodes (25, 26), said device reforms water that passes through the interior of the electrolytic cell (2). Furthermore, the water treatment device (1) comprises a regulation unit (6) that regulates the applied electric potential value applied between the electrodes. The regulation unit (6) regulates a current value by controlling the applied electric potential value, and by measuring the current value when a voltage, which is prescribed in advance, is applied, predicts the current or the electric potential to be applied for implementing the desired reform.

Description

水処理装置Water treatment equipment
 本発明は、水処理装置に関する。 The present invention relates to a water treatment device.
 従来、水処理装置として、電気二重層を形成できる電極を有する電解槽に被処理水を流入させるようにしたものが知られている(例えば、特許文献1参照)。 DESCRIPTION OF RELATED ART Conventionally, what was made to make a to-be-processed water flow in into the electrolytic vessel which has an electrode which can form an electric double layer as a water treatment apparatus is known (for example, refer patent document 1).
 この特許文献1では、電気二重層を形成できる電極に電圧を印加することで、被処理水と電極界面において水中のイオンなどの溶解成分を整列、付着させて、被処理水中の溶解成分を減少させるようにしている。 In this patent document 1, by applying a voltage to an electrode capable of forming an electric double layer, dissolved components such as ions in the water are aligned and adhered at the interface between the treated water and the electrode, reducing the dissolved components in the treated water I am trying to
特開2000-091169号公報Japanese Patent Laid-Open No. 2000-091169
 しかしながら、上記特許文献1では、被処理水中の溶解成分の除去については記載されているが、所望の溶解量を達成させるためのコントロール技術等については、何ら規定されていない。 However, in Patent Document 1 described above, the removal of the dissolved component in the water to be treated is described, but the control technique or the like for achieving the desired amount of dissolution is not defined at all.
 そこで、本発明は、溶解物質の濃度を所望の値となるようにコントロールすることのできる水処理装置を得ることを目的とする。 Then, an object of this invention is to obtain the water treatment apparatus which can control the density | concentration of a dissolved material to a desired value.
 前記従来の課題を解決するために、本発明の水処理装置は、セパレータによって離間配置された一対の陽極および陰極を少なくとも含む複数の電極を有する電解槽を備え、前記電極間に電位を印加することで電解槽内に通水される水を改質するものである。 In order to solve the above-mentioned conventional problems, the water treatment apparatus of the present invention comprises an electrolytic cell having a plurality of electrodes including at least a pair of anodes and cathodes spaced apart by a separator, and applies an electric potential between the electrodes Thus, the water passed into the electrolytic cell is reformed.
 そして、前記電極間に印加する印加電位値を制御する制御部を備え、前記制御部は、前記印加電位値をコントロールすることで電流値を制御しており、予め所定の電圧を印加した場合の電流値を計測することで、所望の改質を行うために印加する電位もしくは電流を予測するものである。 And the control part which controls the application electric potential value applied between the said electrodes is provided, The said control part is controlling the electric current value by controlling the said application electric potential value, and when a predetermined voltage is applied beforehand By measuring the current value, the potential or current to be applied to perform the desired modification is predicted.
 本発明によれば、溶解物質の濃度を所望の値となるようにコントロールすることのできる水処理装置を得ることができる。 According to the present invention, it is possible to obtain a water treatment apparatus capable of controlling the concentration of the dissolved substance to a desired value.
本発明の第1実施形態にかかる水処理装置を模式的に示す図である。It is a figure which shows typically the water treatment apparatus concerning 1st Embodiment of this invention. 本発明の第1実施形態にかかる電極を模式的に示す斜視図である。It is a perspective view which shows typically the electrode concerning 1st Embodiment of this invention. 印加電位および除去率の経時変化を模式的に示すグラフであって、(a)は、印加電位と時間との関係を示すグラフ、(b)は、除去率と時間との関係を示すグラフである。It is a graph which shows the time-dependent change of an applied potential and a removal rate typically, Comprising: (a) is a graph which shows the relationship between applied potential and time, (b) is a graph which shows the relationship between a removal rate and time. is there. 本発明の第2実施形態にかかる水処理装置を模式的に示す図である。It is a figure which shows typically the water treatment apparatus concerning 2nd Embodiment of this invention. 本発明の第3実施形態にかかる水処理装置を模式的に示す図である。It is a figure which shows typically the water treatment apparatus concerning 3rd Embodiment of this invention. 本発明の第4実施形態にかかる水処理装置を模式的に示す図である。It is a figure which shows typically the water treatment apparatus concerning 4th Embodiment of this invention. 本発明の第5実施形態にかかる水処理装置を模式的に示す図である。It is a figure which shows typically the water treatment apparatus concerning 5th Embodiment of this invention.
 第1の発明は、水処理装置が、セパレータによって離間配置された一対の陽極および陰極を少なくとも含む複数の電極を有する電解槽を備えており、前記電極間に電位を印加することで電解槽内に通水される水を改質するようになっている。 According to a first aspect of the present invention, a water treatment apparatus comprises an electrolytic cell having a plurality of electrodes including at least a pair of anodes and cathodes spaced apart by a separator, and applying an electric potential between the electrodes. It is designed to reform the water passed through.
 そして、前記水処理装置が、前記電極間に印加する印加電位値を制御する制御部を備え、前記制御部は、前記印加電位値をコントロールすることで電流値を制御しており、予め所定の電圧を印加した場合の電流値を計測することで、所望の改質を行うために印加する電位もしくは電流を予測するものである。 And the said water treatment apparatus is provided with the control part which controls the application electric potential value applied between the said electrodes, The said control part is controlling the electric current value by controlling the said application electric potential value, and it is predetermined beforehand. By measuring the current value when a voltage is applied, the potential or current to be applied to perform desired modification is predicted.
 これにより、電解槽内の電極間を流れる間に電極界面に誘引されるイオンなどの溶解物質の量を制御することができる。すなわち、電解槽内で流水中から除去される溶解物質の量を制御することが可能となり、電解槽から吐水される水に含まれる溶解物質の量をコントロールできるようになる。 This makes it possible to control the amount of dissolved material such as ions attracted to the electrode interface while flowing between the electrodes in the electrolytic cell. That is, it is possible to control the amount of the dissolved substance removed from the flowing water in the electrolytic cell, and to control the amount of the dissolved substance contained in the water discharged from the electrolytic cell.
 したがって、溶解物質の濃度を所望の値となるようにコントロールすることのできる水処理装置を得ることができる。 Therefore, a water treatment apparatus capable of controlling the concentration of the dissolved substance to a desired value can be obtained.
 第2の発明は、特に第1の発明の前記制御部は、予め1種類以上の電位を印加し、その時に流れる電流を計測し、この時の改質量を単位改質率、電流値を単位電流値とし、所望の改質率と単位改質率との比に基づいて前記印加電位値をコントロールするものである。 In the second invention, in particular, the control unit of the first invention applies in advance one or more types of potentials, measures the current flowing at that time, measures the modification amount at this time as a unit reforming rate, and measures the current value The value of the applied potential is controlled based on the ratio between the desired reforming rate and the unit reforming rate as a current value.
 これにより、電解槽から吐水される水に含まれる溶解物質の量をより容易にコントロールできるようになる。 This makes it possible to more easily control the amount of dissolved substance contained in the water discharged from the electrolytic cell.
 第3の発明は、特に第1の発明の前記制御部は、改質の前後のうち少なくとも改質後の水質を測定することで、印加する電位もしくは電流を制御するものである。 According to a third invention, in particular, the control unit according to the first invention controls the applied potential or current by measuring at least the water quality after reforming before and after the reforming.
 これにより、電位、電流をフィードバック制御することができるようになり、改質する度合いをより確実にコントロールできるようになる。 As a result, potential and current can be feedback-controlled, and the degree of reforming can be more reliably controlled.
 第4の発明は、特に第1~第3のうちいずれか1つの発明の前記制御部は、複数の前記電極を用いて各電極に印加する電位を制御することで、電極表面に付着する付着物の付着量を変化させるものである。 According to a fourth invention, in particular, the control unit according to any one of the first to third inventions adheres to the electrode surface by controlling a potential applied to each electrode using a plurality of the electrodes. It is what changes the adhesion amount of a kimono.
 これにより、通常の水処理時に、電極表面でイオンなどの溶解物質をより効率的に吸着させて除去したり、より効率的に放出させて濃縮したりすることが可能となる。 This makes it possible to more efficiently adsorb and remove dissolved substances such as ions on the electrode surface, and more efficiently release and concentrate it at the time of normal water treatment.
 第5の発明は、特に第4の発明の前記制御部は、前記電極への付着物の付着量を減少させるものである。 According to a fifth invention, in particular, the control unit of the fourth invention is to reduce the amount of the deposit on the electrode.
 これにより、通常の水処理時に、電極表面でイオンなどの溶解物質をより効率的に吸着させて除去することが可能となる。 This makes it possible to more efficiently adsorb and remove dissolved substances such as ions on the electrode surface during normal water treatment.
 第6の発明は、特に第4の発明の前記制御部は、前記電極への付着物の付着量を増加させるものである。 According to a sixth invention, in particular, the control unit of the fourth invention is to increase the adhesion amount of the deposit to the electrode.
 これにより、通常の水処理時に、イオンなどの溶解物質をより効率的に放出させて濃縮することが可能となる。 This makes it possible to more efficiently release and concentrate dissolved substances such as ions during normal water treatment.
 第7の発明は、特に第6の発明の前記制御部は、予め所望の成分が溶解した水を前記電解部に通水し、複数の前記電極を用いて各電極に印加する電位を制御することで、電極表面に付着する付着物の付着量を増加させるものである。 In the seventh invention, in particular, the control unit of the sixth invention passes water in which a desired component is dissolved in advance to the electrolytic unit, and controls the potential applied to each electrode using a plurality of the electrodes. Thus, the amount of the attached matter attached to the electrode surface is increased.
 これにより、被処理水に含まれない成分の濃度を増大させることが可能となる。また、所望の成分のみ抽出して被処理水に加えることも可能となるため、不要な水分を加えることなくより効率的にイオン濃度を増大させることができる。 This makes it possible to increase the concentration of components not contained in the water to be treated. Moreover, since it becomes possible to extract only a desired component and add to treated water, the ion concentration can be more efficiently increased without adding unnecessary water.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited by the embodiment.
 また、以下の複数の実施形態およびその変形例には、同様の構成要素が含まれている。よって、以下では、それら同様の構成要素には共通の符号を付与するとともに、重複する説明を省略する。 Moreover, the same component is contained in the following several embodiment and its modification. Therefore, in the following, those similar components are given the same reference numerals, and redundant explanations are omitted.
 (第1実施形態)
 本実施形態にかかる水処理装置1は、電解槽2と浄化部3と貯水タンク8および各種配管をケース1a内に収納することで構成されている。
First Embodiment
The water treatment apparatus 1 concerning this embodiment is comprised by accommodating the electrolytic vessel 2, the purification part 3, the water storage tank 8, and various piping in the case 1a.
 そして、電解槽2には、原水導入管(原水供給経路)11を介して水道水や井戸水などの飲用に適した原水が導入される。 Then, raw water suitable for drinking such as tap water and well water is introduced into the electrolytic cell 2 through the raw water introduction pipe (raw water supply path) 11.
 この原水導入管11は、原水供給部としての蛇口4に取り付けられた水切替器5に接続されている。そして、本実施形態では、水切替器5のレバー5aを操作することにより、蛇口4から流出する原水としての水道水を水処理装置1内に取り込み、原水を処理するようになっている。 The raw water introduction pipe 11 is connected to a water switching device 5 attached to a faucet 4 as a raw water supply unit. And in this embodiment, by operating the lever 5a of the water switching device 5, the tap water as raw water which flows out from the faucet 4 is taken in in the water treatment apparatus 1, and raw water is processed.
 なお、水処理装置1が処理する原水は、水道水に限られるものではなく、例えば井戸水や溜め水などであってもよい。 In addition, the raw water which the water treatment apparatus 1 processes is not restricted to a tap water, For example, well water, reservoir water, etc. may be sufficient.
 本実施形態では、蛇口4から原水導入管11に取り込まれた原水は、まずは浄化部3に流入するようにしている。 In the present embodiment, the raw water taken into the raw water introduction pipe 11 from the faucet 4 firstly flows into the purification unit 3.
 浄化部3は、前段(上流側)に活性炭収納部3aを配置し、後段(下流側)に中空糸膜収納部3bを配置した浄水カートリッジが用いられている。 The purification unit 3 uses a water purification cartridge in which the activated carbon storage unit 3a is disposed in the front stage (upstream side) and the hollow fiber membrane storage unit 3b is disposed in the rear stage (downstream side).
 そして、活性炭収納部3aでは原水中に含まれる残留塩素やトリハロメタンなどを除去する処理が行われ、中空糸膜収納部3bでは活性炭収納部3aで捕捉しきれない微細な固形不純物の除去や、活性炭収納部3aから漏出した活性炭粒子を除去する処理が行われる。 Then, in the activated carbon storage unit 3a, a process for removing residual chlorine and trihalomethane contained in the raw water is performed, and in the hollow fiber membrane storage unit 3b, removal of fine solid impurities which can not be captured by the activated carbon storage unit 3a A process of removing activated carbon particles leaked from the storage 3a is performed.
 そして、浄化部3を通過して濾過された水は、中空糸膜収納部3bの下流側に接続された第1の配水管12に流出し、第1の配水管12の下流側に接続された電解槽2に導入される。 And the water filtered and passed through the purification section 3 flows out to the first water distribution pipe 12 connected to the downstream side of the hollow fiber membrane storage section 3 b and is connected to the downstream side of the first water distribution pipe 12 Is introduced into the electrolytic cell 2.
 電解槽2は、ハウジング2aを備えており、当該ハウジング2a内には、セパレータとなる隔膜27と、隔膜27を挟んで対向配置される少なくとも一対の陽極板(陽極:電極)25および陰極板(陰極:電極)26とで形成された電解部2bが収容されている。 The electrolytic cell 2 includes a housing 2a, and in the housing 2a, a diaphragm 27 serving as a separator, and at least a pair of anode plates (anode: electrode) 25 and a cathode plate An electrolytic unit 2 b formed of the cathode: electrode 26 is accommodated.
 本実施形態では、電解部2bは、図2に示すように、板状のセパレータ27の一方の面側(図2の左側)に板状の陽極板25を設け、セパレータ27の他方の面側(図2の右側)に板状の陰極板26を設けることで、略板状に形成されている。 In the present embodiment, as shown in FIG. 2, the electrolytic unit 2 b is provided with a plate-like anode plate 25 on one side (left side in FIG. 2) of the plate-like separator 27, and the other side of the separator 27. By providing the plate-like cathode plate 26 on the right side (FIG. 2), it is formed in a substantially plate shape.
 なお、図1では、便宜上ハウジング2aと電解部2bとの間に隙間が形成されたものを示しているが、実際には、隙間は設けられておらず、吸入口20に導入された水は、電解部2bを通過した後に吐出口21から流出するようになっている。後述する図4~図7も同様である。 Although FIG. 1 shows the case where a gap is formed between the housing 2a and the electrolytic unit 2b for the sake of convenience, no gap is actually provided and the water introduced into the suction port 20 is After passing through the electrolytic unit 2 b, the fluid flows out from the discharge port 21. The same applies to FIGS. 4 to 7 described later.
 本実施形態では、陽極板25および陰極板26として活性炭電極を用いており、隔膜27としてポリエステル製でクロスメッシュ状に形成された薄膜を用いている。そして、電解部2bは全体として、高さ14cm、幅10cm、厚さ0.1mmの薄板状に形成されている。 In this embodiment, activated carbon electrodes are used as the anode plate 25 and the cathode plate 26, and a thin film made of polyester and formed in a cross mesh shape is used as the diaphragm 27. And the electrolysis part 2b is formed in 14 cm in height, 10 cm in width, and 0.1 mm in thickness thin plate shape as a whole.
 なお、電解部2bの上記サイズや形状は一例に過ぎず、他のサイズや形状とすることも可能である。また、図1では、1つの隔膜27と一対の陽極板25および陰極板26のみを図示しているが、隔膜27を複数設け、陽極板25、隔膜27、陰極板26、隔膜27、陽極板25・・・となるように配置してもよい。 In addition, the said size and shape of the electrolysis part 2b are only an example, and it is also possible to set it as another size and shape. Although only one diaphragm 27 and a pair of anode plates 25 and cathode plates 26 are shown in FIG. 1, a plurality of diaphragms 27 are provided, and the anode plate 25, diaphragm 27, cathode plate 26, diaphragm 27 and anode plate are provided. It may be arranged to be 25.
 そして、電解槽2の吸入口20に導入された水は、陽極板25と陰極板26との間に形成された流路を通過して吐出口21から流出するようになっている。このとき、陽極板25および陰極板26には電気コード30、31が接続されており、この電気コード30、31は制御部6に電気的に接続されている。 The water introduced into the suction port 20 of the electrolytic cell 2 passes through a flow path formed between the anode plate 25 and the cathode plate 26 and flows out from the discharge port 21. At this time, the electric cords 30 and 31 are connected to the anode plate 25 and the cathode plate 26, and the electric cords 30 and 31 are electrically connected to the control unit 6.
 また、この制御部6には図示せぬ電源供給部から電気が供給されるようになっている。そして、制御部6から陽極板25に正電位が印加され、陰極板26に負電位が印加されることで、水(被処理水)と電極界面において水中のイオンなどの溶解成分を整列、付着させる。 Further, electricity is supplied to the control unit 6 from a power supply unit (not shown). Then, a positive potential is applied from the control unit 6 to the anode plate 25 and a negative potential is applied to the cathode plate 26 to align and adhere water (water to be treated) and dissolved components such as ions in water at the electrode interface. Let
 これにより、電解槽2に導入された水に含まれる溶解成分が両電極板25、26の電極界面に付着して除去される。すなわち、本実施形態では、陽極板25と陰極板26との間(電極間)に電位を印加することで電解部2b内に通水される水を改質するようにしている。 Thereby, the dissolved component contained in the water introduced into the electrolytic cell 2 adheres to the electrode interface of both the electrode plates 25 and 26, and is removed. That is, in the present embodiment, by applying a potential between the anode plate 25 and the cathode plate 26 (between the electrodes), the water passed through the inside of the electrolytic unit 2 b is reformed.
 なお、陽極板25側に付着する溶解成分としては、例えば、塩化物イオン、硫酸イオン、硝酸イオン、亜硝酸イオンのようなアニオン成分、親水基としてカルボン酸、スルホン酸構造を持つアニオン系の界面活性剤などがある。 In addition, as a dissolution component attached to the anode plate 25 side, for example, an anion component such as a chloride ion, a sulfate ion, a nitrate ion, and a nitrite ion, and an anionic interface having a carboxylic acid and a sulfonic acid structure as a hydrophilic group. There are activators etc.
 また、陰極板26側に付着する溶解成分としては、例えば、ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン、金属イオンなどのカチオン成分、親水基としてアミン塩と第4級アンモニウム塩構造を持つアニオン系の界面活性剤などがある。 Further, as a dissolution component attached to the cathode plate 26 side, for example, a cation component such as sodium ion, potassium ion, calcium ion, magnesium ion, metal ion, etc., an anion having an amine salt and a quaternary ammonium salt structure as a hydrophilic group. There is a surfactant of the system.
 このように、電気分解によって溶解成分が除去された水(改質された水)は、電解槽2の吐出口21から第2の配水管13に流出し、三方弁7、第3の配水管14を通過して貯水タンク8に貯留されるようになっている。 Thus, the water from which the dissolved component has been removed by the electrolysis (reformed water) flows out from the discharge port 21 of the electrolytic tank 2 to the second water distribution pipe 13, and the three-way valve 7, the third water distribution pipe It passes 14 and is stored in the reservoir tank 8.
 そして、貯水タンク8に貯留された水は、第4の配水管16、吐水ポンプ9、第5の配水管17を通過し、ケース1aの外部に引き出された吐水管10の吐出口10aから取り出される。 Then, the water stored in the water storage tank 8 passes through the fourth water distribution pipe 16, the water discharge pump 9, and the fifth water distribution pipe 17, and is taken out from the discharge port 10a of the water discharge pipe 10 drawn to the outside of the case 1a. Be
 また、貯水タンク8の上流側に配置された三方弁7には、第2の配水管13と第3の配水管14とに加えて排水管15が接続されている。 In addition to the second water distribution pipe 13 and the third water distribution pipe 14, a drainage pipe 15 is connected to the three-way valve 7 disposed on the upstream side of the water storage tank 8.
 排水管15は、電解槽2のメンテナンス時に使用されるものである。電解槽2の陽極板25および陰極板26は、溶解成分が付着し続けると次第に飽和状態に達し、溶解成分が除去されなくなる。このような場合、例えば陽極板25と陰極板26とに印加されていた電位を切断し、その切断した状態で電解槽2内に通水させる。 The drainage pipe 15 is used at the time of maintenance of the electrolytic cell 2. The anode plate 25 and the cathode plate 26 of the electrolytic cell 2 gradually reach a saturated state as the dissolved component continues to be attached, and the dissolved component is not removed. In such a case, for example, the potential applied to the anode plate 25 and the cathode plate 26 is disconnected, and water is allowed to flow into the electrolytic cell 2 in the disconnected state.
 これにより、通水された水が陽極板25と陰極板26とに付着した溶解成分を取り込んで第2の配水管13に流出し、三方弁7を切り替えることで排水管15を通過させて排水口18から水処理装置1の系外に排出させることができる。 Thereby, the water which has been passed through takes in the dissolved components adhering to the anode plate 25 and the cathode plate 26 and flows out to the second water distribution pipe 13 and switches the three-way valve 7 to pass the drainage pipe 15 for drainage. It can be discharged out of the system of the water treatment apparatus 1 from the port 18.
 ここで、本実施形態では、制御部6によって、溶解物質の濃度を所望の値となるようにコントロールできるようにした。 Here, in the present embodiment, the controller 6 can control the concentration of the dissolved substance to be a desired value.
 具体的には、制御部6によって陽極板25と陰極板26との間(電極間)に印加する印加電位値を制御するようにした。 Specifically, the control unit 6 controls the value of the applied potential applied between the anode plate 25 and the cathode plate 26 (between the electrodes).
 ところで、陽極板25および陰極板26に印加される電位は、通常では、図3(a)の電位-時間プロット(a)で表されるように、電位がほぼ一定となるように印加される。この場合、印加初期においては、電極表面が清浄であるためイオンなどの溶解物質が十分に吸着され、図3(b)の除去率-時間プロット(a)で表されるように除去率が高くなっている。 By the way, the potentials applied to the anode plate 25 and the cathode plate 26 are usually applied so that the potentials become substantially constant, as represented by the potential-time plot (a) of FIG. 3 (a). . In this case, since the electrode surface is clean at the initial stage of application, dissolved substances such as ions are sufficiently adsorbed, and the removal rate is high as shown by the removal rate-time plot (a) in FIG. 3 (b). It has become.
 しかしながら、経時後には、電極表面が吸着物質で覆われるため、除去率は徐々に低下してしまう。 However, after the passage of time, the removal rate gradually decreases because the electrode surface is covered with the adsorbing material.
 そこで、本実施形態では、印加する電圧を一定にするのではなく、図3(a)の電位-時間プロット(b)で表されるように、初期に低電位とし、経時によって電位を上昇させるようにした。 Therefore, in the present embodiment, instead of making the applied voltage constant, as shown in the potential-time plot (b) of FIG. 3A, the potential is initially set to a low potential, and the potential is increased with time. I did it.
 こうすれば、図3(b)の除去率-時間プロット(b)で表されるように、印加初期の除去率はさほど高くはないが、経時後には、印加初期よりも高電位となるように電位を上昇させているため、除去率が下がってしまうのが抑制される。 By doing this, as shown in the removal rate-time plot (b) of FIG. 3B, the removal rate at the initial application stage is not so high, but after time passes, the potential becomes higher than that at the initial application stage. Since the potential is raised to the lower side, it is possible to suppress the removal rate from falling.
 そのため、図3(b)の除去率-時間プロット(b)で表されるように、所定の経過時間までは、除去率をほぼ一定となるようにすることができる。ただし、図3(b)の除去率-時間プロット(b)で表されるように、所定時間以上経過した場合には、溶解物質を除去することがほとんどできなくなるため、除去率は下がってくる。 Therefore, as shown by the removal rate-time plot (b) of FIG. 3B, the removal rate can be made substantially constant until a predetermined elapsed time. However, as shown in the removal rate-time plot (b) of FIG. 3B, when the predetermined time or more elapses, the removal rate decreases because the dissolved substance can hardly be removed. .
 このように、制御部6によって陽極板25と陰極板26との間(電極間)に印加する印加電位値を制御することで、所望の濃度の水質となるように印加する電位値を制御することができるようになる。その結果、溶解成分の量と種類を自由にコントロールすることが可能となり、使用期間を通して一定の水質を得ることが可能となる。 As described above, the control unit 6 controls the applied potential value applied between the anode plate 25 and the cathode plate 26 (between the electrodes) to control the applied potential value to achieve the desired water quality. Will be able to As a result, it becomes possible to freely control the amount and type of dissolved components, and it is possible to obtain a constant water quality throughout the period of use.
 さらに、本実施形態では、制御部6は、印加電位値をコントロールすることで電流値を制御するようにしている。すなわち、電位を印加してコントロールする際に、流れる電流値に基づいて印加する電位をコントロールするようにしている。 Furthermore, in the present embodiment, the control unit 6 controls the current value by controlling the applied potential value. That is, when applying and controlling a potential, the applied potential is controlled based on the value of the flowing current.
 ところで、印加する電位をコントロールする際には、処理される水の水質の違いが大きく影響する。そして、上述したように、使用時間を経るにしたがい印加電位を上昇させるようにすることで、溶解成分が電極に付着して除去率が下がってしまう事を補う制御だけでは、処理される水の水質の違いに対応し難いものである。 By the way, when controlling the electric potential to apply, the difference in the water quality | type of the water to be processed influences large. Then, as described above, by raising the applied potential as the usage time passes, the control is performed only by the control to compensate that the dissolved component adheres to the electrode and the removal rate decreases. It is difficult to cope with the difference in water quality.
 すなわち、イオンなどの溶解物質の濃度が高い場合には、予測された使用時間よりも早い段階で電極表面が吸着された物質であふれてしまう場合があり、このような場合には、予め定められた時間の経過後に電位を上昇させるというコントロールスキームはあまり役に立たない。 That is, when the concentration of dissolved substances such as ions is high, the electrode surface may overflow with the adsorbed substance at a stage earlier than the predicted use time, and in such a case, it is determined in advance. A control scheme that raises the potential after a lapse of time is not very useful.
 一方、イオンなどの溶解物質の濃度が低い場合には、予測された使用時間を過ぎても電極表面に吸着する余裕があるが、かかる場合であっても、予め定められた時間の経過後には、印加電位が上昇してしまい、除去率が上昇し水質が変化してしまう。 On the other hand, when the concentration of dissolved substances such as ions is low, there is still room for adsorption on the electrode surface even after the predicted use time, but even in such a case, after a predetermined time has elapsed The applied potential rises, the removal rate rises, and the water quality changes.
 このように、イオンなどの溶解物質の濃度が高い場合であっても、低い場合であっても、使用時間を経るにしたがい印加電位を上昇させるようにするだけでは、使用期間を通して一定の水質をより確実に得ることができない。 As described above, even if the concentration of dissolved substances such as ions is high or low, only by increasing the applied potential as the usage time passes, constant water quality can be obtained throughout the usage period. It can not be obtained more reliably.
 そこで、本実施形態では、電位を印加した場合に流れる電流が所定の値となるように印加電位を制御部6によってコントロールできるようにした。 Therefore, in the present embodiment, the application potential can be controlled by the control unit 6 so that the current flowing when the potential is applied has a predetermined value.
 なお、除去される溶解物質の量は電極に流れる電流に比例するため、電極に流れる電流値がほぼ一定となるように印加電位を制御するようにすれば、電解部2bによる被処理水の改質度合いを所望の値とすることができる。 Since the amount of dissolved substance to be removed is proportional to the current flowing to the electrode, if the applied potential is controlled so that the value of the current flowing to the electrode becomes substantially constant, the modification of the water to be treated by electrolytic unit 2b The quality level can be a desired value.
 このように、電極に流れる電流値がほぼ一定となるように印加電位を制御することで、被処理水の水質差によらず、電解部2bによる被処理水の改質度合いを所望の値とすることが可能となる。その結果、吐水される水質をより安定させることができるようになる。 As described above, by controlling the applied potential so that the value of the current flowing to the electrode is substantially constant, the degree of reforming the water to be treated by the electrolytic unit 2b can be set to a desired value regardless of the water quality difference of the water to be treated. It is possible to As a result, it is possible to further stabilize the discharged water quality.
 さらに、本実施形態では、制御部6は、予め所定の電圧を印加した場合の電流値を計測することで、所望の改質を行うために印加する電位もしくは電流を予測するようにしている。 Furthermore, in the present embodiment, the control unit 6 predicts the potential or current to be applied to perform desired modification by measuring the current value when the predetermined voltage is applied in advance.
 すなわち、予め所定の電圧を印加した場合の電流値を計測することにより、除去または濃縮する量、溶解成分の種類をコントロールするための電流または電位を予測するようにしている。なお、電流または電位を予測するとは、予め検量線を作成しておき、当該検量線との対比から電流または電位を予測することを意味するものである。 That is, by measuring the current value when a predetermined voltage is applied in advance, the amount to be removed or concentrated and the current or potential for controlling the type of the dissolved component are predicted. Note that predicting the current or potential means creating a calibration curve in advance and predicting the current or potential from the comparison with the calibration curve.
 具体的には、予め1種類以上の電位を印加し、その時に流れる電流を計測し、この時の除去量(改質量)を単位除去率(単位改質率)、電流値を単位電流値とする。 Specifically, one or more types of potentials are applied in advance, the current flowing at that time is measured, and the removal amount (reforming amount) at this time is a unit removal rate (unit reforming rate), and the current value is a unit current value. Do.
 そして、使用者が単位除去率より増大した除去率での水処理を求める場合や単位除去率より減少した除去率での水処理を求める場合に、所望の除去率(改質率)と単位除去率(単位改質率)との比を元にコントロールする電流値と単位電流値の比が一定になるように電位をコントロールする。 Then, when the user seeks water treatment with a removal rate that is higher than the unit removal rate, or when it asks for water treatment with a removal rate that is decreased from the unit removal rate, the desired removal rate (reforming rate) and unit removal The potential is controlled so that the ratio of the current value to the unit current value controlled based on the ratio to the ratio (unit reforming ratio) becomes constant.
 そして、水処理装置1の使用時に、所望の除去率を選択した場合には、単位除去率として記憶されている除去率(予め印加した電位での電流値における除去率)から、選択された所望の除去率となるように電流と電位を計算する。そして、計算された電流や電位となるように印加する電位を制御することで、使用者が所望する除去率を達成できるようにしている。 And when the desired removal rate is selected at the time of use of the water treatment apparatus 1, the desired one is selected from the removal rate stored in the unit removal rate (the removal rate at the current value at the potential applied beforehand). Calculate the current and potential so that the removal rate of Then, the removal rate desired by the user can be achieved by controlling the applied current so as to obtain the calculated current and potential.
 例えば、除去率が単位除去率の半分となるようにするためには、流れる電流が単位電流値の半分となるように電位をコントロールするようにすればよい。 For example, in order for the removal rate to be half the unit removal rate, the potential may be controlled such that the current flowing is half the unit current value.
 以上説明したように、本実施形態では、水処理装置1は、陽極板25と陰極板26との間(電極間)に印加する印加電位値を制御する制御部6を備えている。 As described above, in the present embodiment, the water treatment apparatus 1 includes the control unit 6 that controls the applied potential value applied between the anode plate 25 and the cathode plate 26 (between the electrodes).
 そして、制御部6は、印加電位値をコントロールすることで電流値を制御しており、予め所定の電圧を印加した場合の電流値を計測することで、所望の改質を行うために印加する電位もしくは電流を予測するようにしている。 The control unit 6 controls the current value by controlling the applied potential value, and applies the voltage to perform desired modification by measuring the current value when a predetermined voltage is applied in advance. It is designed to predict potential or current.
 このように、陽極板25および陰極板26(電極)に印加する電位をコントロールすることで、電解槽2内の電極間を流れる間に電極界面に誘引されるイオンなどの溶解物質の量を制御することができる。 As described above, by controlling the potential applied to the anode plate 25 and the cathode plate 26 (electrodes), the amount of dissolved substances such as ions attracted to the electrode interface while flowing between the electrodes in the electrolytic cell 2 is controlled. can do.
 すなわち、電解槽2内で流水中から除去される溶解物質の量を制御することが可能となり、電解槽2から吐水される水に含まれる溶解物質の量をコントロールできるようになる。 That is, it is possible to control the amount of the dissolved substance to be removed from the flowing water in the electrolytic cell 2 and to control the amount of the dissolved substance contained in the water discharged from the electrolytic cell 2.
 したがって、本実施形態によれば、溶解物質の濃度を所望の値となるようにコントロールすることのできる水処理装置1を得ることができる。 Therefore, according to the present embodiment, it is possible to obtain the water treatment device 1 capable of controlling the concentration of the dissolved substance to a desired value.
 なお、上記実施形態では、電極間に電位を印加することで電極間、及び電極またはセパレータの表面及び内部を通水する水に含まれる溶解成分を水中から電極表面まで誘引させ、荷電した電極表面または近辺に配位または付着させることで、水に含まれる溶解成分を除去(水を改質)するようにしたものを例示している。 In the above embodiment, by applying a potential between the electrodes, a dissolved component contained in water flowing between the electrodes and between the surface of the electrode or the separator and the inside of the electrode is attracted from the water to the electrode surface to charge the electrode surface Or what is made to remove the dissolved component contained in water (modification of water) by making it coordinate or attach in the vicinity is shown.
 しかしながら、水に含まれる溶解成分を配位または付着させたのちに被処理水を通水させ、電位を短絡、または切断、あるいは逆の電位を印加することによって被処理水中に放出して濃縮(水を改質)させるようにすることも可能である。 However, after the dissolved components contained in the water are coordinated or attached, the water to be treated is allowed to flow through the water, and the potential is shorted or cut, or is applied to the water to be treated by applying a reverse potential and concentrated ( It is also possible to make water reformate.
 なお、経時によって電位を上昇させる制御、電位を印加した場合に流れる電流が所定の値となるように印加電位を印加する制御、および、予め所定の電圧を印加した場合の電流値を計測することで、所望の改質を行うために印加する電位もしくは電流を予測する制御は、それぞれ別個独立して行うことができる構成としてもよい。 Note that control for raising the potential with time, control for applying the applied potential so that the current flowing when the potential is applied has a predetermined value, and measuring a current value when a predetermined voltage is applied in advance The control for predicting the potential or current to be applied to perform the desired modification may be configured to be able to be performed independently of each other.
 (第2実施形態)
 本実施形態にかかる水処理装置1Aは、基本的に上記第1実施形態と同様の構成をしている。
Second Embodiment
The water treatment apparatus 1A according to this embodiment basically has the same configuration as that of the first embodiment.
 すなわち、本実施形態にあっても、水処理装置1Aは、電解槽2と浄化部3と貯水タンク8および各種配管をケース1a内に収納することで構成されている。 That is, even in the present embodiment, the water treatment apparatus 1A is configured by housing the electrolytic cell 2, the purification unit 3, the water storage tank 8, and various pipes in the case 1a.
 そして、制御部6によって、溶解物質の濃度を所望の値となるようにコントロールできるようにしている。 The control unit 6 can control the concentration of the dissolved substance to be a desired value.
 ここで、本実施形態にかかる水処理装置1Aが、上記第1実施形態の水処理装置1と主に異なっている点は、処理前後(電解槽2にて改質される前後)の水質を測定することで、印加する電位もしくは電流を制御する点にある。 Here, the point that the water treatment apparatus 1A according to the present embodiment is mainly different from the water treatment apparatus 1 according to the first embodiment is that the water quality before and after treatment (before and after being reformed by the electrolytic cell 2) It is in the point which controls the electric potential or electric current to apply by measuring.
 具体的には、図4に示すように、電解槽2の吸入口20の前段(上流側)および吐出口21の後段(下流側)にそれぞれ導電率計40、41を設けている。そして、電解槽2に流入する水は導電率計40にてその水質が測定される。そして、このときに測定された水質を電解処理前の水質特性とする。 Specifically, as shown in FIG. 4, conductivity meters 40 and 41 are provided at the front stage (upstream side) of the suction port 20 and the rear stage (downstream side) of the discharge port 21 of the electrolytic cell 2 respectively. Then, the water quality of the water flowing into the electrolytic cell 2 is measured by the conductivity meter 40. Then, the water quality measured at this time is taken as the water quality characteristic before the electrolytic treatment.
 また、電解槽2の吐出口21の後段(下流側)の導電率計41によって電解処理後の水質を測定するようにしている。そして、このときに測定された水質を電解処理後の水質特性とする。 In addition, the water quality after the electrolytic treatment is measured by the conductivity meter 41 at the subsequent stage (downstream side) of the discharge port 21 of the electrolytic cell 2. And the water quality measured at this time is taken as the water quality characteristic after electrolytic treatment.
 そして、電解処理前と電解処理後の水質特性を比較し、例えば、導電率の低下分を被処理水の導電率の百分率で表現した値を除去率とし、除去率が使用者の所望する値となるように、すなわち、処理後の水の導電率が一定となるように、印加する電位の値をコントロールする。 Then, the water quality characteristics before and after the electrolytic treatment are compared, and, for example, a value representing the decrease in conductivity expressed as a percentage of the conductivity of the water to be treated is a removal rate, and the removal rate is a value desired by the user. The value of the applied potential is controlled so that the conductivity of the water after treatment becomes constant.
 例えば、使用時に所望する除去率を選択した場合には、まず、電解処理前の導電率と所望除去率で演算を行い、適切な導電率を導き出し、処理後である電解槽2から流出された後の導電率が選択した値となるように電流と電位を制御する。 For example, when the desired removal rate at the time of use is selected, first, calculation is performed with the conductivity before the electrolytic treatment and the desired removal rate, the appropriate conductivity is derived, and the solution flows out of the electrolytic cell 2 after treatment The current and potential are controlled so that the later conductivity has a selected value.
 その後、電解処理前と電解処理後の水質特性を比較し、除去率が使用者の所望する値となるように、すなわち、処理後の水の導電率が一定となるように、印加する電位の値をコントロールする。 Thereafter, the water quality characteristics before and after the electrolytic treatment are compared, and the potential of the applied voltage is set so that the removal rate becomes a value desired by the user, that is, the conductivity of the treated water becomes constant. Control the value.
 このように、処理前後の水質を測定して比較することにより、水処理効率を常時モニタリングすることができるようになる。そして、電圧、電流をフィードバック制御することにより、改質する度合い(除去または濃縮する量や、溶解成分の量と種類)をコントロールできるようになる。 Thus, the water treatment efficiency can be constantly monitored by measuring and comparing the water quality before and after the treatment. Then, by feedback control of the voltage and current, it is possible to control the degree of reforming (the amount of removal or concentration, and the amount and type of dissolved components).
 なお、本実施形態では、電解槽2の吸入口20の前と吐出口21の後に設ける水質測定器として導電率計を例示した。 In the present embodiment, a conductivity meter is illustrated as a water quality meter provided in front of the suction port 20 and after the discharge port 21 of the electrolytic cell 2.
 しかしながら、導電率計に限らず、TDS計、pH計のような電流・電位測定機器、また、導電性電極を用いたアルカリイオン水、酸性水、水素水、オゾン水生成装置など機能水生成用電解槽を活用した水質測定機器などを用いることも可能である。 However, not only the conductivity meter, but also a current / potential measuring device such as a TDS meter or pH meter, or alkaline ionized water, acid water, hydrogen water, ozone water generating apparatus using conductive electrodes, etc. for functional water generation It is also possible to use a water quality measurement device utilizing an electrolytic cell.
 また、本実施形態では、吸入口20より上流側の水質と吐出口21より下流側の水質を測定するようにしたものを例示している。しかしながら、例えば、被処理水の水質が一定である場合等には、吐出口21より下流側のみに水質測定器を設けるようにしてもよい。 Further, in the present embodiment, the water quality on the upstream side of the suction port 20 and the water quality on the downstream side of the discharge port 21 are measured. However, for example, when the water quality of the water to be treated is constant, the water quality measuring device may be provided only on the downstream side of the discharge port 21.
 この場合、電解処理しない場合の水質を吐出口21よりも下流側で測定することで、電解処理前の水質測定値の代替値とし、実際に電解処理を行う際には、電解処理後の水質測定値のみを印加電位によりコントロールする。こうすることでも、溶解成分の除去率がほぼ一定となるようにコントロールすることができる。 In this case, the water quality without electrolytic treatment is measured on the downstream side of the discharge port 21 to be a substitute value of the water quality measurement value before the electrolytic treatment, and when the electrolytic treatment is actually performed, the water quality after the electrolytic treatment Only the measured value is controlled by the applied potential. Also in this case, the removal rate of the dissolved component can be controlled to be substantially constant.
 以上の本実施形態によっても、上記第1実施形態と同様の作用、効果を奏することができる。 According to the above-described embodiment, the same operation and effect as those of the first embodiment can be achieved.
 また、本実施形態によれば、処理前後の水質を測定して比較することにより、水処理効率を常時モニタリングすることができるようにしている。そのため、電圧、電流をフィードバック制御することができるようになり、改質する度合い(除去または濃縮する量や、溶解成分の量と種類)をより確実にコントロールできるようになる。 Further, according to the present embodiment, the water treatment efficiency can be constantly monitored by measuring and comparing the water quality before and after the treatment. Therefore, the voltage and current can be feedback-controlled, and the degree of reforming (the amount to be removed or concentrated, and the amount and type of dissolved components) can be more reliably controlled.
 (第3実施形態)
 本実施形態にかかる水処理装置1Bは、基本的に上記第1実施形態と同様の構成をしている。
Third Embodiment
The water treatment apparatus 1B according to the present embodiment basically has the same configuration as that of the first embodiment.
 すなわち、本実施形態にあっても、水処理装置1Bは、電解槽2と浄化部3と貯水タンク8および各種配管をケース1a内に収納することで構成されている。 That is, even in the present embodiment, the water treatment apparatus 1B is configured by housing the electrolytic cell 2, the purification unit 3, the water storage tank 8, and various pipes in the case 1a.
 そして、制御部6によって、溶解物質の濃度を所望の値となるようにコントロールできるようにしている。 The control unit 6 can control the concentration of the dissolved substance to be a desired value.
 ここで、本実施形態にかかる水処理装置1Bが、上記第1実施形態の水処理装置1と主に異なっている点は、複数の電極を用いて、水処理前に予め電極に印加する電位を制御し、電極表面の付着量を減少させる(変化させる)ようにした点にある。 Here, the point that the water treatment apparatus 1B according to the present embodiment is mainly different from the water treatment apparatus 1 according to the first embodiment is that the electric potential applied in advance to the electrodes before water treatment using a plurality of electrodes Control to reduce (change) the amount of adhesion on the electrode surface.
 具体的には、図5に示すように、電解槽2内に陽・陰極板25,26以外に第三の電極42を設けている。 Specifically, as shown in FIG. 5, a third electrode 42 is provided in the electrolytic cell 2 in addition to the positive and negative plates 25 and 26.
 そして、水処理を行う前や水処理した後、または、水処理の途中において、第三の電極42と陽極板25、または第三の電極42と陰極板26、または第三の電極42と陽・陰極板25,26の双方に電位を印加することができるようにしている。 Then, before or after the water treatment, or in the middle of the water treatment, the third electrode 42 and the anode plate 25 or the third electrode 42 and the cathode plate 26 or the third electrode 42 and the positive electrode A potential can be applied to both of the cathode plates 25 and 26.
 このとき印加する電位は、陽極板25がゼロ電位または陰電位となるようにし、陰極板26がゼロ電位または陽電位となるようにする。すなわち、水処理時に印加される電位とは異なり、それぞれ、ゼロまたは反対の電位となるように電位を印加する。 The potential applied at this time is such that the anode plate 25 is at zero potential or negative potential, and the cathode plate 26 is at zero potential or positive potential. That is, unlike the potential applied at the time of water treatment, the potential is applied so as to be zero or the opposite potential, respectively.
 このように、電位を印加することで、例えば、ゼロ電位が印加された場合には、水と電極表面の電位差がなくなってイオンなどの溶解物質が電極表面に引き付けられないため電極に付着している物質が電極表面から外れやすくなる。 Thus, by applying a potential, for example, when a zero potential is applied, the potential difference between water and the surface of the electrode disappears, and a dissolved substance such as ions is not attracted to the surface of the electrode and adheres to the electrode. Substances are easily detached from the electrode surface.
 また、各々反対の電位を印加した場合には、水と電極表面の電位差が水処理時の電位と反対になり、既に電極表面に付着しているイオンが電極の電位と反発を起こすため、より剥がれやすくなる。 In addition, when opposite potentials are applied, the potential difference between the water and the electrode surface is opposite to the potential during water treatment, and ions already attached to the electrode surface cause repulsion with the electrode potential. It becomes easy to peel off.
 このように、各電極に印加する電位を適宜制御することで、電極表面に付着している付着物質の付着量を減少させることができる。 As described above, by appropriately controlling the potential applied to each electrode, it is possible to reduce the adhesion amount of the adhesion substance adhering to the electrode surface.
 なお、水処理を行う前や水処理した後、または水処理の途中において、電極に水処理時の電位とは異なる電位、すなわち、ゼロまたは反対の電位を印加するようにした場合、三方弁7を切り替えることで排水管15を通過させて排水口18から水処理装置1の系外に排出させるようにするのが好ましい。 If a potential different from the potential at the time of water treatment is applied to the electrode before the water treatment, after the water treatment, or during the water treatment, the three-way valve 7 is applied. It is preferable to allow the drainage pipe 15 to pass through and switch the drainage port 18 out of the system of the water treatment apparatus 1.
 以上の本実施形態によっても、上記第1実施形態と同様の作用、効果を奏することができる。 According to the above-described embodiment, the same operation and effect as those of the first embodiment can be achieved.
 また、本実施形態によれば、複数の電極25,26,42を用いて、水処理前に予め電極に印加する電位を制御し、電極表面の付着量を減少させるようにしている。すなわち、電極表面の付着物を除去することができるようにしている。 Further, according to the present embodiment, the potential applied to the electrodes is controlled in advance before the water treatment by using the plurality of electrodes 25, 26, 42, and the adhesion amount on the electrode surface is reduced. That is, the deposit on the electrode surface can be removed.
 このように、電極表面の付着物を除去することで、通常の水処理時に、電極表面でイオンなどの溶解物質をより効率的に吸着させて除去することが可能となる。 Thus, by removing the deposit on the surface of the electrode, it becomes possible to more efficiently adsorb and remove dissolved substances such as ions on the surface of the electrode at the time of ordinary water treatment.
 なお、本実施形態では、第三の電極42を設けたものを例示したが、第三の電極42を設けず、陽陰極板25,26を活用して各々に反対側の電位を印加させるようにすることで、電極表面の付着量を減少させるようにしてもよい。 In the present embodiment, although the third electrode 42 is provided, the third electrode 42 is not provided, and the positive and negative electrode plates 25 and 26 are used to apply the potential on the opposite side to each other. The amount of adhesion on the electrode surface may be reduced by
 (第4実施形態)
 本実施形態にかかる水処理装置1Cは、基本的に上記第1実施形態と同様の構成をしている。
Fourth Embodiment
The water treatment apparatus 1C according to this embodiment basically has the same configuration as that of the first embodiment.
 すなわち、本実施形態にあっても、水処理装置1Cは、電解槽2と浄化部3と貯水タンク8および各種配管をケース1a内に収納することで構成されている。 That is, even in the present embodiment, the water treatment apparatus 1C is configured by housing the electrolytic cell 2, the purification unit 3, the water storage tank 8, and various pipes in the case 1a.
 そして、制御部6によって、溶解物質の濃度を所望の値となるようにコントロールできるようにしている。 The control unit 6 can control the concentration of the dissolved substance to be a desired value.
 ここで、本実施形態にかかる水処理装置1Cが、上記第1実施形態の水処理装置1と主に異なっている点は、複数の電極を用いて、水処理前に予め電極に印加する電位を制御し、電極表面の付着量を増加させる(変化させる)ようにした点にある。 Here, the point that the water treatment apparatus 1C according to the present embodiment is mainly different from the water treatment apparatus 1 according to the first embodiment is that the potential applied in advance to the electrodes before water treatment using a plurality of electrodes Control to increase (change) the amount of adhesion on the electrode surface.
 具体的には、図6に示すように、電解槽2内に陽・陰極板25,26以外に第三の電極42を設けている。 Specifically, as shown in FIG. 6, a third electrode 42 is provided in the electrolytic cell 2 in addition to the positive and negative plates 25 and 26.
 そして、水処理した後や水処理と水処理の間において、第三の電極42と陽極板25、または第三の電極42と陰極板26、または第三の電極42と陽・陰極板25,26の双方に電位を印加することができるようにしている。 Then, after the water treatment or between the water treatment and the water treatment, the third electrode 42 and the anode plate 25, or the third electrode 42 and the cathode plate 26, or the third electrode 42 and the cathode / cathode plate 25, It is made possible to apply an electric potential to both of them.
 このとき、陽極板25が陽電位、陰極板26が陰電位となるように電位を印加すると、例えば、陽電位が印加された陽極板25には、陰イオンなどの溶解物質が陽極板25表面に引き付けられて付着する。また、陰電位が印加された陰極板26には陽イオンなどの溶解物質が陰極板26表面に引き付けられて付着する。 At this time, when a potential is applied so that the anode plate 25 has a positive potential and the cathode plate 26 has a negative potential, for example, the anode plate 25 to which the positive potential is applied has a dissolved material such as anions on the surface of the anode plate 25. It is attracted to and adheres to. Further, a dissolved substance such as a cation is attracted to the surface of the cathode plate 26 and adheres to the cathode plate 26 to which the negative potential is applied.
 このように、陽極板25が陽電位、陰極板26が陰電位となるように電位を印加することで、水処理前に電極表面にイオンなどの溶解物質を付着させることができるようになる。 As described above, by applying a potential such that the anode plate 25 has a positive potential and the cathode plate 26 has a negative potential, dissolved substances such as ions can be attached to the electrode surface before water treatment.
 ここで、本実施形態にかかる水処理装置1Cの作用を説明する。 Here, the operation of the water treatment apparatus 1C according to the present embodiment will be described.
 まず、水処理の後、または水処理と水処理の間に、蛇口4に取り付けられた水切替器5のレバー5aを操作することで、蛇口4から流出する原水としての水道水を水処理装置1内に取り込む。このとき、水道水は原水導入管11を通って水処理装置1C内に導入される。 First, after the water treatment, or between the water treatment and the water treatment, by operating the lever 5a of the water switching device 5 attached to the faucet 4, the tap water as the raw water flowing out from the faucet 4 is treated with the water treatment device Capture in 1. At this time, tap water is introduced into the water treatment apparatus 1C through the raw water introduction pipe 11.
 そして、水処理装置1C内に導入された原水が浄化部3に流入する。そして、活性炭収納部3aで原水中に含まれる残留塩素やトリハロメタンなどを除去する処理が行われ、中空糸膜収納部3bで活性炭収納部3aで捕捉しきれない微細な固形不純物の除去や、活性炭収納部3aから漏出した活性炭粒子を除去する処理が行われる。 Then, the raw water introduced into the water treatment device 1C flows into the purification unit 3. Then, treatment to remove residual chlorine and trihalomethane contained in the raw water is performed in the activated carbon storage unit 3a, removal of fine solid impurities that can not be captured by the activated carbon storage unit 3a in the hollow fiber membrane storage unit 3b, or activated carbon A process of removing activated carbon particles leaked from the storage 3a is performed.
 その後、浄化部3を通過して濾過された水は、中空糸膜収納部3bの下流側に接続された第1の配水管12に流出し、第1の配水管12の下流側に接続された電解槽2に導入される。 Thereafter, the water filtered through the purification unit 3 flows out to the first water distribution pipe 12 connected to the downstream side of the hollow fiber membrane storage 3b, and is connected to the downstream side of the first water distribution pipe 12 Is introduced into the electrolytic cell 2.
 このとき、第三の電極42と陽極板25、または第三の電極42と陰極板26、または第三の電極42と陽・陰極板25,26の双方に電位を印加する。具体的には、陽極板25が陽電位に、陰極板26が陰電位となるように電位を印加する。 At this time, an electric potential is applied to both the third electrode 42 and the anode plate 25, or the third electrode 42 and the cathode plate 26, or both the third electrode 42 and the positive and negative plates 25 and 26. Specifically, a potential is applied such that the anode plate 25 is at a positive potential and the cathode plate 26 is at a negative potential.
 ここで、陽極板25が陽電位、陰極板26が陰電位となるように電位を印加すると、陽電位が印加された陽極板25には、陰イオンなどの溶解物質が陽極板25表面に引き付けられて付着する。また、陰電位が印加された陰極板26には陽イオンなどの溶解物質が陰極板26表面に引き付けられて付着する。 Here, when a potential is applied so that the anode plate 25 has a positive potential and the cathode plate 26 has a negative potential, a dissolved material such as anions is attracted to the surface of the anode plate 25 on the anode plate 25 to which the positive potential is applied. Be attached. Further, a dissolved substance such as a cation is attracted to the surface of the cathode plate 26 and adheres to the cathode plate 26 to which the negative potential is applied.
 そして、電解槽2の吐出口21から吐出された水は、第2の配水管13に流出し、三方弁7により切り替えられて、排水管15を通過させて排水口18から水処理装置1の系外に排出される(図6の実線矢印参照)。 Then, the water discharged from the discharge port 21 of the electrolytic tank 2 flows out to the second water distribution pipe 13, is switched by the three-way valve 7, passes through the drainage pipe 15, and the water outlet 18 of the water treatment apparatus 1 It is discharged out of the system (see the solid arrow in FIG. 6).
 一方、通常の水処理時には、第三の電極42と陽極板25、または第三の電極42と陰極板25、または陽・陰極板25,26の双方に電位を印加する。具体的には、陽極板25がゼロ電位または陰電位となるようにし、陰極板26がゼロ電位または陽電位となるように電位を印加する。 On the other hand, at the time of normal water treatment, a potential is applied to both the third electrode 42 and the anode plate 25, or the third electrode 42 and the cathode plate 25, or the positive / negative plates 25 and 26. Specifically, the anode plate 25 is set to a zero potential or a negative potential, and a potential is applied such that the cathode plate 26 is set to a zero potential or a positive potential.
 このように、電位を印加することで、例えば、ゼロ電位が印加された場合には、水と電極表面の電位差がなくなってイオンなどの溶解物質が電極表面に引き付けられないため電極に付着している物質が電極表面から外れやすくなる。 Thus, by applying a potential, for example, when a zero potential is applied, the potential difference between water and the surface of the electrode disappears, and a dissolved substance such as ions is not attracted to the surface of the electrode and adheres to the electrode. Substances are easily detached from the electrode surface.
 また、各々反対の電位を印加した場合には、水と電極表面の電位差が水処理時の電位と反対になり、既に電極表面に付着しているイオンが電極の電位と反発を起こすため、より剥がれやすくなる。 In addition, when opposite potentials are applied, the potential difference between the water and the electrode surface is opposite to the potential during water treatment, and ions already attached to the electrode surface cause repulsion with the electrode potential. It becomes easy to peel off.
 こうして、被処理水中に、電極表面に付着させたイオンなどの溶解物質が放出されることとなり、被処理水中のイオンなどの溶解物質の濃度が濃縮される。 Thus, a dissolved substance such as ions attached to the electrode surface is released into the water to be treated, and the concentration of the dissolved substance such as ions in the water to be treated is concentrated.
 そして、電解槽2の吐出口21から吐出された被処理水(濃縮水)は、第2の配水管13に流出し、三方弁7、第3の配水管14を通過して貯水タンク8に貯留される(図6の波線矢印参照)。 Then, the water to be treated (concentrated water) discharged from the discharge port 21 of the electrolytic tank 2 flows out to the second water distribution pipe 13, passes through the three-way valve 7 and the third water distribution pipe 14, and is stored in the water storage tank 8. It is stored (see the wavy arrow in FIG. 6).
 こうして、被処理水中のイオンなどの溶解物質の濃度を濃縮することが可能となる。 In this way, it is possible to concentrate the concentration of dissolved substances such as ions in the water to be treated.
 なお、本実施形態では、本実施形態では、第三の電極42を設けたものを例示したが、第三の電極42を設けず、陽陰極板25,26を活用して各々の対極として用いることによって、電極表面にイオンなどの溶解物質を付着させるようにしてもよい。 In the present embodiment, although the third electrode 42 is provided in the present embodiment, the third electrode 42 is not provided, and the positive and negative electrode plates 25 and 26 are used as respective counter electrodes. Thus, a dissolved substance such as ions may be attached to the electrode surface.
 また、第三の電極42を用い、陰極板26のみ、または陽極板25のみから付着物質を放出させることで、陰・陽イオンのうちいずれか一方のイオンの濃度を増大させるようにすることも可能である。 In addition, by using the third electrode 42 and releasing the attached substance from only the cathode plate 26 or only the anode plate 25, the concentration of either anion or cation may be increased. It is possible.
 以上の本実施形態によっても、上記第1実施形態と同様の作用、効果を奏することができる。 According to the above-described embodiment, the same operation and effect as those of the first embodiment can be achieved.
 また、本実施形態によれば、複数の電極25,26,42を用いて、水処理前に予め電極に印加する電位を制御し、電極表面の付着量を増加させるようにしている。すなわち、電極表面に付着物を付着させることができるようにしている。 Further, according to the present embodiment, the potential applied to the electrodes is controlled in advance before water treatment using the plurality of electrodes 25, 26, 42 to increase the adhesion amount on the electrode surface. That is, the deposit can be attached to the surface of the electrode.
 このように、電極表面に付着物を付着させることで、通常の水処理時に、イオンなどの溶解物質をより効率的に放出させて濃縮することが可能となる。 As described above, by adhering the deposit to the electrode surface, it becomes possible to more efficiently release and concentrate dissolved substances such as ions during normal water treatment.
 (第5実施形態)
 本実施形態にかかる水処理装置1Dは、基本的に上記第4実施形態と同様の構成をしている。
Fifth Embodiment
The water treatment apparatus 1D according to the present embodiment basically has the same configuration as that of the fourth embodiment.
 すなわち、本実施形態にあっても、水処理装置1Dは、電解槽2と浄化部3と貯水タンク8および各種配管をケース1a内に収納することで構成されている。 That is, even in the present embodiment, the water treatment apparatus 1D is configured by housing the electrolytic cell 2, the purification unit 3, the water storage tank 8, and various pipes in the case 1a.
 そして、制御部6によって、溶解物質の濃度を所望の値となるようにコントロールできるようにしている。 The control unit 6 can control the concentration of the dissolved substance to be a desired value.
 また、電解槽2内に陽・陰極板25,26以外に第三の電極42を設けている。そして、複数の電極25,26,42を用いて、水処理前に予め電極に印加する電位を制御し、電極表面の付着量を増加させるようにしている。 Further, in the electrolytic cell 2, a third electrode 42 is provided in addition to the positive and negative plates 25 and 26. Then, using the plurality of electrodes 25, 26, 42, the potential applied to the electrodes is controlled in advance before water treatment to increase the amount of adhesion on the electrode surface.
 ここで、本実施形態にかかる水処理装置1Dが、上記第4実施形態の水処理装置1Cと主に異なっている点は、電解槽2に予め所望する溶解成分を溶解させた水を通水し、電極表面の付着量を増加させるようにした点にある。 Here, the point that the water treatment apparatus 1D according to the present embodiment is mainly different from the water treatment apparatus 1C according to the fourth embodiment is that the water having the desired dissolved component dissolved in advance in the electrolytic cell 2 is passed through And the adhesion amount of the electrode surface is increased.
 具体的には、図7に示すように、電解槽2内に陽・陰極板25,26以外に第三の電極42を設けている。さらに、ケース1a内には、濃縮液タンク50が収容されており、この濃縮液タンク50内には濃縮液51が貯留されている。 Specifically, as shown in FIG. 7, a third electrode 42 is provided in the electrolytic cell 2 in addition to the positive and negative plates 25 and 26. Further, a concentrated solution tank 50 is accommodated in the case 1 a, and the concentrated solution 51 is stored in the concentrated solution tank 50.
 そして、濃縮液タンク50には、濃縮水供給管路53の一端が接続されており、濃縮水供給管路53の他端は、電解槽2の導入口54に接続されている。また、濃縮水供給管路53の途中にはポンプ52が設けられている。 Further, one end of a concentrated water supply pipeline 53 is connected to the concentrated solution tank 50, and the other end of the concentrated water supply pipeline 53 is connected to the inlet 54 of the electrolytic cell 2. In addition, a pump 52 is provided in the middle of the concentrated water supply pipeline 53.
 ここで、本実施形態にかかる水処理装置1Dの作用を説明する。 Here, the operation of the water treatment apparatus 1D according to the present embodiment will be described.
 まず、水処理の後、または水処理と水処理の間に、ポンプ52を駆動することで、濃縮液タンク50内の濃縮液51が濃縮水供給管路53を通って電解槽2の導入口54から電解槽2内に導入される。 First, after the water treatment or by driving the pump 52 between the water treatment and the water treatment, the concentrated liquid 51 in the concentrated liquid tank 50 passes through the concentrated water supply pipe 53 and the inlet of the electrolytic cell 2 It is introduced into the electrolytic cell 2 from 54.
 このとき、第三の電極42と陽極板25、または第三の電極42と陰極板26、または第三の電極42と陽・陰極板25,26の双方に電位を印加する。具体的には、陽極板25が陽電位に、陰極板26が陰電位となるように電位を印加する。 At this time, an electric potential is applied to both the third electrode 42 and the anode plate 25, or the third electrode 42 and the cathode plate 26, or both the third electrode 42 and the positive and negative plates 25 and 26. Specifically, a potential is applied such that the anode plate 25 is at a positive potential and the cathode plate 26 is at a negative potential.
 ここで、陽極板25が陽電位、陰極板26が陰電位となるように電位を印加すると、陽電位が印加された陽極板25には、陰イオンなどの溶解物質が陽極板25表面に引き付けられて付着する。また、陰電位が印加された陰極板26には陽イオンなどの溶解物質が陰極板26表面に引き付けられて付着する。 Here, when a potential is applied so that the anode plate 25 has a positive potential and the cathode plate 26 has a negative potential, a dissolved material such as anions is attracted to the surface of the anode plate 25 on the anode plate 25 to which the positive potential is applied. Be attached. Further, a dissolved substance such as a cation is attracted to the surface of the cathode plate 26 and adheres to the cathode plate 26 to which the negative potential is applied.
 そして、電解槽2の吐出口21から吐出された濃縮液51は、第2の配水管13に流出し、三方弁7により切り替えられて、排水管15を通過させて排水口18から水処理装置1の系外に排出される(図7の実線矢印参照)。 Then, the concentrated solution 51 discharged from the discharge port 21 of the electrolytic cell 2 flows out to the second water distribution pipe 13, is switched by the three-way valve 7, passes through the drainage pipe 15, and the water treatment device from the drainage port 18 It is discharged out of system 1 (see the solid arrow in FIG. 7).
 一方、通常の水処理時には、第三の電極42と陽極板25、または第三の電極42と陰極板25、または陽・陰極板25,26の双方に電位を印加する。具体的には、陽極板25がゼロ電位または陰電位となるようにし、陰極板26がゼロ電位または陽電位となるように電位を印加する。 On the other hand, at the time of normal water treatment, a potential is applied to both the third electrode 42 and the anode plate 25, or the third electrode 42 and the cathode plate 25, or the positive / negative plates 25 and 26. Specifically, the anode plate 25 is set to a zero potential or a negative potential, and a potential is applied such that the cathode plate 26 is set to a zero potential or a positive potential.
 このように、電位を印加することで、例えば、ゼロ電位が印加された場合には、水と電極表面の電位差がなくなってイオンなどの溶解物質が電極表面に引き付けられないため電極に付着している物質が電極表面から外れやすくなる。 Thus, by applying a potential, for example, when a zero potential is applied, the potential difference between water and the surface of the electrode disappears, and a dissolved substance such as ions is not attracted to the surface of the electrode and adheres to the electrode. Substances are easily detached from the electrode surface.
 また、各々反対の電位を印加した場合には、水と電極表面の電位差が水処理時の電位と反対になり、既に電極表面に付着しているイオンが電極の電位と反発を起こすため、より剥がれやすくなる。 In addition, when opposite potentials are applied, the potential difference between the water and the electrode surface is opposite to the potential during water treatment, and ions already attached to the electrode surface cause repulsion with the electrode potential. It becomes easy to peel off.
 こうして、被処理水中に、電極表面に付着させたイオンなどの溶解物質が放出されることとなり、被処理水中のイオンなどの溶解物質の濃度が濃縮される。 Thus, a dissolved substance such as ions attached to the electrode surface is released into the water to be treated, and the concentration of the dissolved substance such as ions in the water to be treated is concentrated.
 そして、電解槽2の吐出口21から吐出された被処理水は、第2の配水管13に流出し、三方弁7、第3の配水管14を通過して貯水タンク8に貯留される(図7の波線矢印参照)。 The treated water discharged from the discharge port 21 of the electrolytic tank 2 flows out to the second water distribution pipe 13, passes through the three-way valve 7 and the third water distribution pipe 14, and is stored in the water storage tank 8 ( See the dashed arrows in FIG. 7).
 こうして、被処理水中のイオンなどの所望の溶解物質の濃度を濃縮することが可能となる。 In this way, it is possible to concentrate the concentration of the desired dissolved substance such as ions in the water to be treated.
 なお、本実施形態では、第三の電極42を設けたものを例示したが、第三の電極42を設けず、陽陰極板25,26を活用して各々の対極として用いることによって、電極表面にイオンなどの溶解物質を付着させるようにしてもよい。 In the present embodiment, although the third electrode 42 is provided, the third electrode 42 is not provided, and the electrode surfaces can be obtained by using the positive and negative electrode plates 25 and 26 as respective counter electrodes. A dissolved substance such as ions may be attached to the
 また、第三の電極42を用い、陰極板26のみ、または陽極板25のみから付着物質を放出させることで、陰・陽イオンのうちいずれか一方のイオンの濃度を増大させるようにすることも可能である。 In addition, by using the third electrode 42 and releasing the attached substance from only the cathode plate 26 or only the anode plate 25, the concentration of either anion or cation may be increased. It is possible.
 以上の本実施形態によっても、上記第4実施形態と同様の作用、効果を奏することができる。 According to the above-described embodiment, the same operation and effect as those of the fourth embodiment can be achieved.
 また、本実施形態によれば、予め所望する溶解成分を溶解させた濃縮液51を通水することで、当該濃縮液51からイオンなどの溶解成分を電極に吸着させている。そして、電極に吸着させた所望の溶解成分を被処理水中に放出させるようにしている。 Further, according to the present embodiment, by flowing water through the concentrated solution 51 in which a desired dissolved component is dissolved, dissolved components such as ions from the concentrated solution 51 are adsorbed to the electrode. Then, the desired dissolved component adsorbed to the electrode is released into the water to be treated.
 そのため、被処理水に含まれないイオンの濃度を増大させることも可能となる。また、濃縮液51からイオンのみ抽出して被処理水に加えることも可能となるため、不要な水分を加えることなくより効率的にイオン濃度を増大させることができる。 Therefore, it is also possible to increase the concentration of ions not contained in the water to be treated. In addition, only ions can be extracted from the concentrated solution 51 and added to the water to be treated, so that the ion concentration can be more efficiently increased without adding unnecessary water.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態には限定されず、種々の変形が可能である。 As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to the said embodiment, A various deformation | transformation is possible.
 例えば、電解槽や浄化部、その他細部のスペック(形状、大きさ、レイアウト等)も適宜に変更可能である。 For example, the specifications (shape, size, layout, etc.) of the electrolytic cell, the purifier, and other details can be appropriately changed.
 本発明によれば、溶解物質の濃度を所望の値となるようにコントロールすることのできる水処理装置を得ることができる。 According to the present invention, it is possible to obtain a water treatment apparatus capable of controlling the concentration of the dissolved substance to a desired value.

Claims (7)

  1.  セパレータによって離間配置された一対の陽極および陰極を少なくとも含む複数の電極を有する電解槽を備え、前記電極間に電位を印加することで電解槽内に通水される水を改質する水処理装置であって、
     前記電極間に印加する印加電位値を制御する制御部を備え、
     前記制御部は、
     前記印加電位値をコントロールすることで電流値を制御しており、
     予め所定の電圧を印加した場合の電流値を計測することで、所望の改質を行うために印加する電位もしくは電流を予測することを特徴とする水処理装置。
    A water treatment apparatus comprising: an electrolytic cell having a plurality of electrodes including at least a pair of anodes and cathodes spaced apart by a separator, and applying electric potential between the electrodes to reform water passed through the electrolytic cell And
    A controller configured to control an applied potential value applied between the electrodes;
    The control unit
    The current value is controlled by controlling the applied potential value,
    What is claimed is: 1. A water treatment apparatus characterized in that a potential or a current to be applied to perform desired modification is predicted by measuring a current value when a predetermined voltage is applied in advance.
  2.  前記制御部は、予め1種類以上の電位を印加し、その時に流れる電流を計測し、この時の改質量を単位改質率、電流値を単位電流値とし、所望の改質率と単位改質率との比に基づいて前記印加電位値をコントロールすることを特徴とする請求項1に記載の水処理装置。 The control unit applies one or more potentials in advance, measures the current flowing at that time, sets the modification amount at this time as the unit reforming rate, and the current value as the unit current value, and changes the desired reforming rate and unit breakup. The water treatment apparatus according to claim 1, wherein the applied potential value is controlled based on a ratio to a mass ratio.
  3.  前記制御部は、改質の前後のうち少なくとも改質後の水質を測定することで、印加する電位もしくは電流を制御することを特徴とする請求項1に記載の水処理装置。 The water treatment apparatus according to claim 1, wherein the control unit controls an applied potential or current by measuring at least water quality after reforming before and after reforming.
  4.  前記制御部は、複数の前記電極を用いて各電極に印加する電位を制御することで、電極表面に付着する付着物の付着量を変化させることを特徴とする請求項1~3のうちいずれか1項に記載の水処理装置。 4. The controller according to any one of claims 1 to 3, wherein the controller controls the potential applied to each of the electrodes using a plurality of the electrodes, thereby changing the adhesion amount of the adherent adhering to the electrode surface. The water treatment apparatus according to any one of the preceding claims.
  5.  前記制御部は、前記電極への付着物の付着量を減少させることを特徴とする請求項4に記載の水処理装置。 The said control part reduces the adhesion amount of the deposit | attachment to the said electrode, The water treatment apparatus of Claim 4 characterized by the above-mentioned.
  6.  前記制御部は、前記電極への付着物の付着量を増加させることを特徴とする請求項4に記載の水処理装置。 The said control part makes the adhesion amount of the adhering matter to the said electrode increase, The water treatment apparatus of Claim 4 characterized by the above-mentioned.
  7.  前記制御部は、予め所望の成分が溶解した水を前記電解部に通水し、複数の前記電極を用いて各電極に印加する電位を制御することで、電極表面に付着する付着物の付着量を増加させることを特徴とする請求項6に記載の水処理装置。 The control unit passes water in which a desired component is dissolved in advance to the electrolytic unit, and controls the potential applied to each electrode using a plurality of the electrodes, thereby adhering the adhesion to the electrode surface. The water treatment device according to claim 6, characterized in that the amount is increased.
PCT/JP2013/006261 2012-11-30 2013-10-23 Water treatment device WO2014083755A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-263318 2012-11-30
JP2012263318A JP2014108377A (en) 2012-11-30 2012-11-30 Water treatment equipment

Publications (1)

Publication Number Publication Date
WO2014083755A1 true WO2014083755A1 (en) 2014-06-05

Family

ID=50827420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006261 WO2014083755A1 (en) 2012-11-30 2013-10-23 Water treatment device

Country Status (2)

Country Link
JP (1) JP2014108377A (en)
WO (1) WO2014083755A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022075340A (en) * 2020-11-06 2022-05-18 大同メタル工業株式会社 CDI device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671258A (en) * 1992-08-26 1994-03-15 Matsushita Electric Works Ltd Alkali ionized water adjuster
JPH0679279A (en) * 1992-09-03 1994-03-22 Sanyo Electric Co Ltd Alkaline ionized water generator
JPH09150152A (en) * 1995-12-01 1997-06-10 Furontetsuku:Kk Electrolytically ionized water producer and production
JPH10235378A (en) * 1997-02-27 1998-09-08 Sharp Corp Mineral water adjusting apparatus
JP2005219045A (en) * 2004-01-09 2005-08-18 Air Water Inc Method and apparatus for controlling liquid quantity of solution
JP2005219046A (en) * 2004-01-09 2005-08-18 Air Water Inc Method and apparatus for controlling liquid quantity of solution
JP2006247640A (en) * 2005-02-08 2006-09-21 Air Water Inc Apparatus for adjusting concentration of electrified substance in liquid, and apparatus and method for controlling quality of solution
JP4203547B2 (en) * 2006-05-12 2009-01-07 有限会社ターナープロセス Ion supply source and manufacturing method thereof
WO2009060867A1 (en) * 2007-11-08 2009-05-14 Hoshizaki Denki Kabushiki Kaisha Electrolysis water generator
WO2012160914A1 (en) * 2011-05-24 2012-11-29 パナソニック株式会社 Electrolyzed water-generating device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671258A (en) * 1992-08-26 1994-03-15 Matsushita Electric Works Ltd Alkali ionized water adjuster
JPH0679279A (en) * 1992-09-03 1994-03-22 Sanyo Electric Co Ltd Alkaline ionized water generator
JPH09150152A (en) * 1995-12-01 1997-06-10 Furontetsuku:Kk Electrolytically ionized water producer and production
JPH10235378A (en) * 1997-02-27 1998-09-08 Sharp Corp Mineral water adjusting apparatus
JP2005219045A (en) * 2004-01-09 2005-08-18 Air Water Inc Method and apparatus for controlling liquid quantity of solution
JP2005219046A (en) * 2004-01-09 2005-08-18 Air Water Inc Method and apparatus for controlling liquid quantity of solution
JP2006247640A (en) * 2005-02-08 2006-09-21 Air Water Inc Apparatus for adjusting concentration of electrified substance in liquid, and apparatus and method for controlling quality of solution
JP4203547B2 (en) * 2006-05-12 2009-01-07 有限会社ターナープロセス Ion supply source and manufacturing method thereof
WO2009060867A1 (en) * 2007-11-08 2009-05-14 Hoshizaki Denki Kabushiki Kaisha Electrolysis water generator
AU2008325701A1 (en) * 2007-11-08 2009-05-14 Hoshizaki Denki Kabushiki Kaisha Electrolysis water generator
EP2233441A1 (en) * 2007-11-08 2010-09-29 Hoshizaki Denki Kabushiki Kaisha Electrolysis water generator
WO2012160914A1 (en) * 2011-05-24 2012-11-29 パナソニック株式会社 Electrolyzed water-generating device
JP2012240026A (en) * 2011-05-24 2012-12-10 Panasonic Corp Electrolyzed water producing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022075340A (en) * 2020-11-06 2022-05-18 大同メタル工業株式会社 CDI device
JP7089570B2 (en) 2020-11-06 2022-06-22 大同メタル工業株式会社 CDI device

Also Published As

Publication number Publication date
JP2014108377A (en) 2014-06-12

Similar Documents

Publication Publication Date Title
TW200516054A (en) Water treatment system and method
JP3994417B2 (en) Liquid pH adjusting method and pH adjusting device
AU2014212394B2 (en) Rechargeable electrochemical cells
US20130277222A1 (en) Water treatment apparatus and water treatment method using the same
JP3163188U (en) Apparatus and method for acid and base production
TW200815294A (en) Non-faraday based systems, devices and methods for removing ionic species from liquid
JP2007511348A (en) Water treatment system and method
JP6395952B1 (en) Water treatment apparatus and water treatment method
WO2012039127A1 (en) Porous ion exchanger, water treatment device, hot-water supply device, and process for producing porous ion exchanger
JP5678388B1 (en) Apparatus and method for reducing ion concentration of aqueous liquid held in system, and apparatus including the apparatus
CN105050963A (en) Water reclamation system and desalination treatment device, and water reclamation method
WO2014083755A1 (en) Water treatment device
JP2012196632A (en) Water treatment method and water treatment system
WO2020039676A1 (en) Water treatment device and ion concentration adjusted water manufacturing method
KR101745568B1 (en) Ionic water generator
KR102220165B1 (en) Electro deionization-type water treatment apparatus
Choi New operation method of a membrane capacitive deionization system with a dual-solution mode for improving the desorption rate
JP2010209370A (en) Production apparatus of ozone water and production method of ozone water
JP4006389B2 (en) Electrostatic deionization apparatus and electrostatic deionization method
JP5492612B2 (en) Electric deionized water production equipment
JP2004313977A (en) Water reformer
JP2003033766A (en) Apparatus for generating electrolytic water
RU2238909C1 (en) Apparatus for producing of washing and disinfecting solutions
JP2007301477A (en) Electric softening system, softening system, and soft water manufacturing method
JP2014108378A (en) Water treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859555

Country of ref document: EP

Kind code of ref document: A1