WO2014082191A1 - 热解硬炭材料及其制备方法和用途 - Google Patents

热解硬炭材料及其制备方法和用途 Download PDF

Info

Publication number
WO2014082191A1
WO2014082191A1 PCT/CN2012/001609 CN2012001609W WO2014082191A1 WO 2014082191 A1 WO2014082191 A1 WO 2014082191A1 CN 2012001609 W CN2012001609 W CN 2012001609W WO 2014082191 A1 WO2014082191 A1 WO 2014082191A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard carbon
pyrolysis
gas
carbon material
pyrolytic
Prior art date
Application number
PCT/CN2012/001609
Other languages
English (en)
French (fr)
Inventor
董金平
黄学杰
闫勇
Original Assignee
中国科学院物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院物理研究所 filed Critical 中国科学院物理研究所
Priority to PCT/CN2012/001609 priority Critical patent/WO2014082191A1/zh
Publication of WO2014082191A1 publication Critical patent/WO2014082191A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a carbon material and a method of producing the same, and, in particular, to a pyrolysis hard carbon material, a preparation method thereof and use thereof. Background technique
  • Hard carbon refers to hard-graphitizable carbon, which is a pyrolytic carbon of a high molecular polymer.
  • hard carbon materials have attracted wide attention as a negative electrode material for lithium ion batteries due to their high specific capacity, long cycle life, good power performance and low cost. They can also be used as anode materials for sodium ion batteries and electrochemical.
  • the electrode material of the capacitor, the carrier of the chemical and electrochemical reaction catalyst, and the like are applied to a gas sensor or the like.
  • WO 01/98209 discloses a pyrolysis hard carbon material of a sphere or an ellipsoid, which is a hard carbon sphere prepared by a hydrothermal method, which contains micropores and has a spherical morphology as a negative electrode material of a lithium ion battery.
  • the nano-tin-bismuth alloy on the surface thereof can obtain a lithium ion battery anode material with higher specific capacity and excellent cycle performance.
  • the spherical carbonaceous carbonaceous material has the advantages of uniform particle size distribution and high bulk density, the space for further increasing the specific surface area to increase the loading of the nanomaterial is limited.
  • Hard carbon materials prepared by pyrolysis carbonization using hard carbon precursors have more excellent application properties and are gradually recognized in the industry. Taking the application of the negative electrode of a lithium battery as an example, the structure of the hard carbon and the lithium intercalation capacity are considered to have a great relationship with the cracking process.
  • the thickness of the flaky carbon material has a high geometric surface area, which can effectively improve its performance in various practical applications.
  • the present invention also provides a method for preparing the pyrolytic hard carbon material, which is prepared by adjusting a pyrolysis process of a hard carbon precursor to obtain a sheet-like pyrolysis hard carbon material having a shape similar to graphene, and the preparation method It has the advantages of simple process, low cost and easy control.
  • One aspect of the present invention provides a pyrolysis hard carbon material, wherein the hard carbon material is a similar two-dimensional formed by pyrolysis of a hard carbon precursor having an average thickness of from 1 to 200 nm and a geometric surface area of from 10 to 2000 m 2 /g.
  • a planar sheet material having micropores or mesopores inside the pyrolysis hard carbon material.
  • the inventors' research confirmed that the flaky structure of hard carbon has a high geometric surface area, and this graphene-like flaky hard carbon has various properties in practical applications due to its unique topographical features and surface characteristics. Great improvement.
  • the term "sheet material” is understood to mean that the hard carbon material has a substantially sheet-like structure in geometry, and the abutment surface can be used as a thickness and has a significantly small size with respect to a larger surface, by SEM image. It can be seen that the flaky distribution is generally present and has a certain thickness, so it is also considered to be similar or close to a two-dimensional plane (its minimum radial is much larger than the average thickness of the lamella, or the thickness is small compared to the larger surface be ignored) .
  • geometric surface area is understood to mean:
  • the flaky carbonaceous material which can be seen through the SEM image, has a substantially lamellar distribution and a certain thickness, but there may be some overlapping and wrinkled regions, in the present invention
  • the geometric surface area is used to describe and define the flaky carbon material in an approximately ideal state, and the folded and pleated regions are unfolded, that is, the surface area in a planar unfolded state.
  • a flaky hard carbon material is formed by pyrolyzing a hard carbon precursor, the main component of the flaky hard carbon material being carbon, and also containing other elements having a mass fraction of not more than 10% by weight.
  • the flaky hard carbon material proposed by the present invention exhibits excellent performance in practical applications.
  • the present invention also provides a method of preparing the pyrolytic hard carbon material, the method comprising pyrolyzing a hard carbon precursor in a gas atmosphere, wherein The gas atmosphere contains 1-100% of active gas;
  • the hard carbon precursor pyrolysis process comprises at least: controlling a gas flow rate of 0.1-500 mL/min to provide a gas atmosphere, and the hard carbon precursor is sufficiently contacted with the gas to form a pyrolysis system, and the pyrolysis system is 0.5-10
  • the temperature is raised to 400-2000 °C at a rate of °C / min, and the temperature is maintained to 0 °C after cooling for 0-72 hours;
  • the reactive gas includes a gas containing a hydrogen element or a liquid vapor containing a hydrogen element.
  • the gas flow rate is controlled to 10-300 mL/min during the pyrocarbon precursor pyrolysis.
  • the pyrolysis system is controlled to rise to 400-1500 ° C during the pyrocarbon precursor pyrolysis process.
  • the temperature of the pyrolysis system after the temperature of the pyrolysis system is over, the temperature is maintained for 0-20 hours and then cooled to room temperature.
  • the hard carbon precursor is subjected to pyrolysis and carbonization in a gas atmosphere containing an active gas, and the unexpected effect is that the obtained hard carbon product exhibits a sheet appearance similar to graphene, thereby providing Higher geometric surface area, showing superior performance in hard carbon material applications.
  • the flaky carbon material provided by the present invention can be used, for example, as a negative electrode material of a lithium ion battery or a sodium ion battery, an electrode material of an electrochemical capacitor, a carrier of a fuel cell and a metal air battery electrode catalyst, and is used for preparation with a high increase.
  • the technical solution of the present invention has at least the following beneficial effects:
  • the present invention provides a flake-like shape in which a pyrolytic hard carbon material has a nanometer-thickness, and the nano-thickness flake-shaped hard carbon material is compared to a pyrolysis hard carbon material of a sphere or an ellipsoid described in the prior art. With a high geometric surface area, it can effectively improve its performance in practical applications.
  • the method for preparing a pyrolytic hard carbon material provided by the present invention which is controlled by a process for pyrolyzing a hard carbon precursor in a gas atmosphere to obtain a flake-shaped pyrolytic hard carbon material similar in shape to graphene, and
  • the preparation method has the advantages of simple process, low cost and easy control.
  • the pyrolysis hard carbon material having the flaky appearance similar to the shape of the olefin is widely used, and can be used not only as the negative electrode of the current secondary lithium battery or sodium battery, but also as a negative electrode. It is an electrode of an electrochemical capacitor, and can also be used as a key material in the fields of catalysis, medicine and food manufacturing, such as a carrier, an adsorbent material, and the like.
  • Fig. 1 (a) - Fig. 1 (b) is a scanning electron micrograph of a pyrolytic hard carbon material in Example 1 of the present invention.
  • Fig. 2 is a scanning electron micrograph of the pyrolytic hard carbon material in Example 2 of the present invention.
  • Fig. 3 is a scanning electron micrograph of the pyrolysis hard carbon material in Example 3 of the present invention.
  • Figure 4 is a scanning electron micrograph of a pyrolytic hard carbon material in a crucible according to an embodiment of the present invention.
  • Figure 5 is a scanning electron micrograph of a pyrolytic hard carbon material in Example 10 of the present invention.
  • Figure 6 (a) - Figure 6 (b) is a scanning electron micrograph of the pyrolytic hard carbon material in Comparative Example 1.
  • Figure 7 is a scanning electron micrograph of the pyrolysis hard carbon material of Comparative Example 2 of the present invention.
  • Fig. 8 is an X-ray diffraction pattern of the pyrolysis hard carbon material in Example 1 of the present invention.
  • Figure 9 is a Raman spectrum of the pyrolysis hard carbon material in Example 1 of the present invention.
  • Figure 10 is an electron diffraction diagram of a pyrolytic hard carbon material in Example 1 of the present invention.
  • Fig. 1 1 is a graph showing charge and discharge curves of a pyrolytic hard carbon material as a negative electrode material for a lithium battery in Example 1 of the present invention.
  • Figure 12 is a TEM image of a pyrolytic hard carbon material according to Example 1 of the present invention.
  • the present invention provides a flake-shaped pyrolytic hard carbon material having a topography similar to graphene, having an average thickness of 1-200 nm and a geometric surface area of 10-2000 m 2 /g, and micropores are present inside the pyrolysis hard carbon material. Or mesopores.
  • the flaky carbonaceous material has a two-dimensional planar appearance structure, and the ratio of the minimum radial dimension on the larger plane of the sheet material to the average thickness of the material is not less than 100:1, that is, The sheet material is similar to a two-dimensional planar shape, and the minimum radial dimension on the plane is much larger than the nano-scale thickness of the hard carbon sheet material. In the present invention, it is simply referred to as "minimum radial dimension to average thickness ratio".
  • the control of the pyrolysis process provides micropores in the sheet material and Or a mesopores, specifically, the open pores and/or mesopores in the hard carbon material, the pore diameter of the pores may be less than 1 nm, and the pore diameter of the mesopores is generally 2-20 nm.
  • the average thickness of the flaky pyrolysis hard carbon material is 2-50
  • the sheet material has a geometric surface area of 10 to 1000 m 2 /g.
  • the sheet material is a hard carbon precursor in a gas containing hydrogen or a liquid vapor containing hydrogen. Pyrolysis products in a gas atmosphere.
  • the atmosphere may be all from the active
  • the gas composition may also contain a carrier gas.
  • the reactive gas may be a hydrogen-containing gas or a hydrogen-containing liquid vapor
  • the hydrogen-containing gas may be H 2 NH 3 or a lower hydrocarbon gas such as CH 4 C 2 H 4 C 2
  • a gaseous hydrocarbon such as H 2 or the like, an alkene or an alkyne, the liquid vapor of the hydrogen-containing element, such as a vapor-containing oxygen-containing organic compound such as 3 ⁇ 40 steam, CH 3 COCH 3 vapor or CH 3 CH 2 OH vapor, may also be The mixed gas required above.
  • the pyrolysis atmosphere may introduce a reactive gas by using a carrier gas, which may be various conventional protective gases that do not participate in the reaction, including inert gases (helium, argon, helium, neon, xenon, xenon, etc.).
  • a carrier gas which may be various conventional protective gases that do not participate in the reaction, including inert gases (helium, argon, helium, neon, xenon, xenon, etc.).
  • inert gases helium, argon, helium, neon, xenon, xenon, etc.
  • a combination of one or more of carbon dioxide or nitrogen may, for example, be nitrogen, carbon dioxide, argon or the like as a carrier gas in terms of economy and gas source convenience.
  • the reactive gas content is at least 1% (v/v) of the atmosphere providing the pyrolysis reaction, and generally may be 1-10%.
  • the hard carbon precursor can be introduced into the pyrolysis system in powder or liquid form.
  • the hard carbon precursor is usually ball-milled into a granular or powder having a certain particle size before pyrolysis, and may be used as it is, or may be added to an organic solvent to form a dispersed phase having a relatively uniform particle size, for example, a hard carbon precursor is removed.
  • a solution of a precursor having a concentration of 0.05-10 M is prepared by dissolving the crystal water as a powder or by using an organic solvent. Whether the hard carbon precursor is powdered or the dispersed phase is used to better contact the gas atmosphere, the reaction is completed.
  • the hard carbon precursor is preferably dried before being added to the pyrolysis system, and the gas content added to the pyrolysis system can be accurately determined, or it can be treated with decrystallization water or without decrystallization water.
  • the benefit of drying and decrystallization water treatment is to better control the realization of the pyrolysis process, not necessarily a procedure.
  • Ruoli The pyrolysis is carried out with a hard carbon precursor which has not been dried or dehydrated without sufficient drying. Even if the pyrolysis system is only a carrier gas, it can be observed that there is a very small amount of flake hard in the hard carbon product after pyrolysis. carbon.
  • the present invention defines a pyrolysis atmosphere as an atmosphere containing at least 1% reactive gas, which should normally be intentionally introduced by the operator (especially in the case where the precursor is first dried), Determining that the precursor used itself contains a certain amount of moisture or other components which are vaporized to provide a hydrogen-containing gas, as long as the gas is sufficient to satisfy the requirements of the pyrolysis atmosphere, such a pyrolysis system should also belong to the present invention.
  • a pyrolysis atmosphere as an atmosphere containing at least 1% reactive gas, which should normally be intentionally introduced by the operator (especially in the case where the precursor is first dried), Determining that the precursor used itself contains a certain amount of moisture or other components which are vaporized to provide a hydrogen-containing gas, as long as the gas is sufficient to satisfy the requirements of the pyrolysis atmosphere, such a pyrolysis system should also belong to the present invention.
  • the hard carbon precursor to be used may be not particularly limited, and various hard carbon precursors which are known or commonly used for pyrolysis to obtain hard carbon may be used.
  • the hard carbon precursor may be a combination of one or more of these substances.
  • the precursor may be a carbohydrate, a synthetic resin containing a C, H, 0 element, or a crosslinked product of a soft carbon precursor via an oxygen-containing crosslinking agent.
  • the carbohydrate may be, for example, a monosaccharide or a polysaccharide, and may be, for example, glucose, sucrose, fructose, cellulose or starch or the like.
  • the synthetic resin containing a C, H, O element includes a thermosetting resin, or a product in which a thermoplastic resin is crosslinked by an oxygen-containing crosslinking agent.
  • the synthetic resin containing C, H, O elements may be a thermosetting resin such as a phenol resin, a urea resin, an epoxy resin, a fluororesin, an unsaturated polyester, or a polyurethane, or a polyethylene.
  • a thermoplastic resin such as polypropylene, polystyrene or polyvinyl chloride is crosslinked by an oxygen-containing crosslinking agent to obtain a product.
  • the soft carbon precursor is crosslinked by an oxygen-containing crosslinking agent, for example, the pitch is crosslinked by a diisopropylbenzene crosslinking agent to prepare a hard carbon precursor.
  • the flaky pyrolysis hard carbon material described in the present invention is understood to mean that the pyrolysis product obtained by the method of the present invention satisfies the above-defined flaky hard carbon in a sufficiently large proportion without requiring all of the pyrolysis products.
  • the flaky hard char which occupies a sufficiently large proportion is sufficient to fully exhibit the flake-like hardness when the pyrolytic hard carbon material is applied.
  • the properties imparted by the charcoal are improved, or a relatively pure flake-like material can be completely collected by appropriate separation, whereby the pyrolysis product can be considered to be a desired flake-like hard carbon material.
  • the pyrolysis hard carbon material provided by the invention has a unique morphological structure, a significantly improved specific surface area, can provide excellent adsorption and bearing properties, and can be used in various fields of current hard carbon materials or other porous materials.
  • an electrode (negative electrode) for manufacturing a secondary battery a lithium battery or a sodium battery, etc.
  • an electrode catalyst carrier for a fuel cell or a metal/air battery for manufacturing a capacitor
  • an adsorbent or a discoloration The application of the agent can also be used to prepare composite materials with high toughness, toxic substance adsorbents, special-purpose adsorbents, and decolorant materials in food production.
  • Example 1 Example 1
  • the electron diffraction is shown in Fig. 10. It can be seen from the figure that: The electron diffraction of the sheet hard carbon material with a low degree of graphitization has only two diffused diffraction rings on the SAED pattern corresponding to (002) in the powder XRD language. (100) Diffraction surface.
  • a flaky pyrolysis hard carbon was obtained in the same manner as in Example 1 except that Ar-1%H 2 (H 2 in an amount of 1% by volume of Ar-H gas) was substituted for Ar-8%H 2 .
  • Material, its average thickness The degree is about 5 nm, the geometric surface area is about 405 m 2 /g, and the minimum pore size is about 0.7 nm.
  • the obtained sheet material has a minimum radial dimension to an average thickness ratio of about 3200:1.
  • the SEM photograph of the sheet-like material at a magnification of 2K is shown in Fig. 2. It can be clearly seen from the SEM image that the pyrolytic hard carbon material produced by the above preparation method is in the form of a large amount of flakes, and is appropriately separated. A hard carbon material which is mainly a sheet can be obtained.
  • the pyrolysis hard carbon material was obtained in the same manner as in Example 1 except that Ar-0.5% H 2 (H 2 % by volume of the Ar-H 2 mixed gas was 0.5%) was substituted for Ar-8% 3 ⁇ 4.
  • the sheet product was examined to have an average thickness of about 8 nm, a geometric surface area of about 280 m 2 /g, a minimum pore size of about 0.7 nm, and a minimum radial dimension to average thickness ratio of about 1000:1.
  • a flaky pyrolysis hard carbon material having an average thickness of about 3.8 nm, a geometric surface area of about 520 m 2 /g, and a minimum pore diameter was obtained in the same manner as in Example 1 except that 10 g of a phenolic phenolic resin was substituted for 10 g of the glucose hard carbon precursor. About 0.7 nm, the minimum radial dimension to the average thickness ratio is about 4600:1.
  • the flaky pyrolysis hard carbon material was obtained in the same manner as in Example 1 except that the product was obtained by substituting the pitch with a diisopropylbenzene cross-linking agent to obtain a product, and the average thickness was about the same. 5 nm, geometric surface area of about 401 m 2 /g, minimum pore size of about 0.7 nm, minimum radial dimension to average thickness ratio of about 3800:1.
  • a flaky pyrolysis hard carbon material having an average thickness of about 3.5 nm and a geometric surface area of about 571 m 2 was obtained in the same manner as in Example 1 except that 10 g of the phenolic resin and 5 g of the glucose mixture were substituted for the 10 g of the glucose hard carbon precursor. g, the minimum pore size is about 0.7 nm, and the minimum radial dimension to the average thickness ratio is about 3900:1.
  • the pyrolytic hard carbon material produced by the above preparation method is in the form of a sheet.
  • the flaky pyrolysis hard carbon material was obtained in the same manner as in Example ⁇ except that 10 g of the product obtained by crosslinking the pitch through the diisopropylbenzene cross-linking agent was substituted for 10 g of the glucose hard carbon precursor.
  • 10 g of the product obtained by crosslinking the pitch through the diisopropylbenzene cross-linking agent was substituted for 10 g of the glucose hard carbon precursor.
  • the pyrolytic hard carbon material produced by the above preparation method is in the form of a sheet.
  • a flaky pyrolysis hard carbon material having an average thickness of about 4.1 nm, a geometric surface area of about 485 m 2 /g, and a minimum pore diameter was obtained in the same manner as in Example 10 except that 10 g of a phenolic phenolic resin was substituted for 10 g of the glucose hard carbon precursor. Approximately 0.7 nm, the minimum radial dimension to the average thickness ratio is about 4200:1.
  • the flaky pyrolysis hard carbon material was obtained in the same manner as in Example 10 except that 10 g of the product obtained by crosslinking the pitch through the diisopropylbenzene cross-linking agent was substituted for 10 g of the glucose hard carbon precursor. It is about 4.6 nm, the geometric surface area is about 412 m 2 /g, the minimum pore size is about 0.8 nm, and the minimum radial dimension to the average thickness ratio is about 4100:1.
  • the average thickness is about 4.5 nm
  • the geometric surface area is about 420 m 2 /g
  • the minimum pore size is about 0.7 nm
  • the minimum radial dimension to the average thickness ratio is about 2300:1.
  • a flaky pyrolysis hard carbon material having an average thickness of about 4.4 nm, a geometric surface area of about 450 m 2 /g, and a minimum pore diameter of about 0.7 nm was obtained in the same manner as in Example 4 except that the constant temperature was used instead of the constant temperature of 15 h.
  • the minimum radial dimension to the average thickness ratio is about 2100:1.
  • a flaky pyrolysis hard carbon material having an average thickness of about 6 nm, a geometric surface area of about 325 m 2 /g, a minimum pore diameter of about 0.7 nm, and the like was obtained in the same manner as in Example 5 except that the constant temperature was used instead of the constant temperature of 15 h.
  • the ratio of the small radial dimension to the average thickness is about 2000:1.
  • a sheet-like pyrolytic hard carbon material having an average thickness of about 6.5 nm and a geometric surface area was obtained in the same manner as in Example 1 except that the temperature rising rate of 2 ° C /min was replaced by a heating rate of 10 ° C /min. 31 1 m 2 /g, minimum pore size of about 0.7 nm, minimum radial dimension to average thickness ratio of about 2500:1.
  • a sheet-like pyrolytic hard carbon material having an average thickness of about 7.1 nm and a geometric surface area was obtained in the same manner as in Example 4 except that the temperature rising rate of 2 ° C /min was replaced by a heating rate of 10 ° C /min. 301 m 2 /g, minimum pore size of about 0.7 nm, minimum radial dimension to average thickness ratio of about 2600:1.
  • a sheet-like pyrolytic hard carbon material having an average thickness of about 6.5 nm and a geometric surface area was obtained in the same manner as in Example 5 except that the temperature rising rate of 2 ° C /min was replaced by a heating rate of 10 ° C /min. 310 m 2 /g, minimum pore size of about 0.7 nm, minimum radial dimension to average thickness ratio of about 2760:1.
  • a flaky pyrolysis hard carbon material having an average thickness of about 4.2 nm and a geometric surface area of about 462 m was obtained in the same manner as in Example 1 except that the gas flow rate of 50 mL/min was replaced by a gas flow rate of 100 mL/min. 2 / g, the minimum pore size is about 0.7 nm, and the minimum radial dimension to the average thickness ratio is about 2900:1.
  • a flaky pyrolysis hard carbon material having an average thickness of about 4.2 nm and a geometric surface area of about 471 m was obtained in the same manner as in Example 4 except that the gas flow rate of 50 mL/min was replaced by a gas flow rate of 100 mL/min. 2 / g, the minimum pore size is about 0.7 nm, and the minimum radial dimension to the average thickness ratio is about 3100:1.
  • a flaky pyrolysis hard carbon material having an average thickness of about 4.3 nm and a geometric surface area of about 461 m was obtained in the same manner as in Example 5 except that the gas flow rate of 50 mL/min was replaced by a gas flow rate of 100 mL/min. 2 / g, the minimum pore size is about 0.7 nm, and the minimum radial dimension to the average thickness ratio is about 2800:1.
  • Example 1 Except that the temperature was raised to 750 °C instead of 950 °C, the rest was the same as in Example 1.
  • the method results in a flaky pyrolytic hard carbon material having an average thickness of about 6 nm, a geometric surface area of about 325 m 2 /g, a minimum pore size of about 0.8 nm, and a minimum radial dimension to average thickness ratio of about 1900:1.
  • a flaky pyrolysis hard carbon material having an average thickness of about 5.2 nm and a geometric surface area of about 365 m 2 /g was obtained in the same manner as in Example 4 except that the temperature was raised to 750 ° C instead of 750 ° C.
  • the minimum pore size is about 0.7 nm, and the minimum radial dimension to average thickness ratio is about 1950:1.
  • a sheet-like pyrolysis hard carbon material having an average thickness of about 5.3 nm and a geometric surface area of about 360 m 2 /g was obtained in the same manner as in Example 5 except that the temperature was raised to 750 ° C instead of 750 ° C.
  • the minimum pore size is about 0.7 nm, and the minimum radial dimension to the average thickness ratio is about 1860:1.
  • a flaky pyrolysis hard carbon material having an average thickness of about 7 nm, a geometric surface area of about 301 m 2 /g, a minimum pore diameter of about 0.8 nm, and the like was obtained in the same manner as in Example 1 except that the constant temperature Oh was used instead of the constant temperature for 15 hours.
  • the ratio of the small radial dimension to the average thickness is about 1200:1.
  • a flaky pyrolysis hard carbon material having an average thickness of about 7.2 nm, a geometric surface area of about 298 m 2 /g, and a minimum pore diameter of about 0.8 nm was obtained in the same manner as in Example 4 except that the constant temperature of Oh was substituted for 15 h. , the minimum radial dimension to the average thickness ratio is about 1 100: 1.
  • the average thickness is about 7.2 nm
  • the geometric surface area is about 286 m 2 /g
  • the minimum pore diameter is about 0.8 nm
  • the minimum radial dimension to the average thickness ratio is about 1190:1.
  • a flaky pyrolysis hard carbon material having an average thickness of about 4 nm and a geometric surface area of about 501 m 2 /g was obtained in the same manner as in Example 1 except that 10 g of glucose was dissolved in 10 mL of glucose to replace 10 g of glucose.
  • the pore size is about 2.2 nm, and the minimum radial dimension to the average thickness ratio is about 4650:1.
  • the SEM photograph of the material at a magnification of 3K is shown in Fig. 7. It can be clearly seen from the SEM image that the pyrolytic hard carbon material prepared by the above preparation method is mainly granular, and a very small amount is present therein. Flaky product.
  • Comparative Example 1 and Comparative Example 2 show that the unhardened hard carbon precursor is directly added to the pyrolysis system which is only a carrier gas, and the pyrolysis hard carbon contains a small amount of the product having a flaky shape. It should be because during the high temperature pyrolysis process, the moisture of the hard carbon precursor and the hydrogen-containing gas thermally decomposed by the precursor itself are mixed into the carrier gas, resulting in the pyrolysis product of the hard carbon precursor under the SEM display.
  • a small amount of fractured thin carbon hard material is locally present; further, the pyrolysis hard carbon material prepared by pyrolysis of the hard carbon precursor in a gas atmosphere of a carrier gas (Ar or C0 2 ) exhibits a very small amount
  • a carrier gas Ar or C0 2
  • the average thickness is significantly larger than that of the hard carbon flakes obtained by using the pyrolysis atmosphere containing the active gas in the above embodiment, and the geometric surface area and the minimum radial dimension to the average thickness ratio are significantly smaller than those in the embodiment.
  • the hard carbon flakes; at the same time, the flake-like hard carbon is extremely small in the pyrolysis product, but exists as "impurities".
  • Comparative Example 1 is a high-temperature pyrolysis of a hard carbon precursor in a carrier gas-only pyrolysis system.
  • Example 3 - Example 1 is a mixed gas of a hard carbon precursor in a reactive gas and a carrier gas, that is, a gas atmosphere Parallel examples of Ar-0.5% H 2 , Ar-1% H 2 and Ar-8% 3 ⁇ 4, in the gas atmosphere only Ar, until the gas atmosphere is turned into Ar-8% H 2 , only for the load An increasing amount of active gas H 2 was added to the gas Ar.
  • the morphology of the pyrolysis product was changed, that is, a graphene-like sheet hard carbon was obtained. material.
  • the active gas content reaches 1%, the flake-like hard carbon content in the pyrolysis product already accounts for a considerable proportion, and can be directly utilized to exhibit the properties of the sheet-like hard charcoal.
  • the flaky pyrolysis hard carbon material prepared in Example 1 is used as a negative electrode material for a lithium battery, and the specific operation method is as follows:
  • the obtained flaky hard carbon material and the aqueous solution of the binder sodium carboxymethyl cellulose (CMC) are mixed and ground at normal temperature and normal pressure to form a slurry, which is then uniformly coated on a copper foil substrate under vacuum conditions.
  • the film was pressed at a pressure of 20 kg/cm 2 , and then the film electrode was cut into a circular electrode sheet having an area of 1 cm 2 , and a metal battery was used as a counter electrode to assemble a button battery.
  • the mass ratio of the flaky pyrolysis hard carbon to the binder sodium carboxymethyl cellulose (CMC) in the electrode sheet was 9:1.
  • the electrolyte of the simulated battery was dissolved in 1 mol of LiPF 6 in a mixed solvent of 1 L of EC and DMC (volume ratio of 1:1). Assembling the positive electrode, the negative electrode, the electrolyte, and the diaphragm in an argon-protected glove box Into the analog battery.
  • the button cell assembled as described above was tested on a blue electric charge and discharge meter. As shown in Fig. 11, the charge and discharge interval was 0-3 V, and the current was charged and discharged at a constant current of 37 mA/g.
  • the first week discharge capacity is 583mAh/g, and the first week charge capacity is 165 mAh/g, which fully demonstrates that the flaky carbon material has large specific surface characteristics.
  • the flaky hard carbon material taken out in the embodiment 1 is used as a carrier to prepare a SnSb-loaded lithium ion battery anode material, and the specific operation method is as follows:
  • the flaky hard carbon material taken out in the embodiment 7 is used as a carrier to prepare a key material for the resistance hydrogen sensor.
  • the specific operation method is as follows:
  • the hard carbon material was dissolved in benzoquinone, and the Sn0 2 particles were supported by microwave synthesis with SnCl 4 as the precursor, and then H 2 PtCl 6 was reduced by microwave synthesis at 140 ° C with ethylene glycol as a reducing agent. After washing and drying, a Pt-Sn0 2 /C composite material is obtained.
  • a graphene-like flake-like hard carbon material is a good conductive network, and has a higher geometric surface area than a conventional carbon black conductor, and is very suitable as a base material for a gas sensor such as a 3 ⁇ 4.
  • H 2 S0 4 As the electrolyte, the adsorption and desorption curves of H 2 were tested at a sweep speed of 20 mV/s in the range of 0-1.2 V. It is known that at 45 ° C, 0.5 M The H 2 S0 4 and 2M ethanol solutions were electrolytes, and the sterol oxidation reaction was tested at a sweep rate of 20 mV/s. The sterol redox current was 386 mA/mg pt in the presence of a Pt-C fuel cell catalyst.
  • the flaky hard carbon material taken out in Example 5 was used as a carrier to prepare a SnSb-loaded lithium ion battery anode material, and the specific operation method was as follows:
  • the prepared Mn0 2 loaded hard carbon material was mixed with carbon black and polytetrafluoroethylene in a mass ratio of 75:20:5 in ethanol, uniformly spread on a nickel mesh, and baked at 120 ° C for 12 hours.
  • the nickel mesh coated with Mn0 2 -C was used as the working electrode, the platinum electrode was used as the counter electrode, the saturated calomel electrode was used as the reference electrode, and the 1 M sodium gram solution was used as the electrolyte to perform cyclic voltammetry scanning at room temperature. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种热解硬炭材料及其制备方法和用途。该热解硬炭材料为对硬炭前驱体热解形成的、具有平均厚度1-200nm、几何表面积10-2000m2/g的类似二维平面的薄片材料,所述热解硬炭材料内部存在微孔或中孔。本发明还提供了所述的热解硬炭材料的方法。该具有类似石墨烯外形的薄片状形貌的热解硬炭材料用途及其广泛,能够用于锂离子电池或钠离子电池的负极材料、电化学电容器的电极材料、燃料电池和金属空气电池电极催化剂的载体、用来制备具有高度增韧性的复合材料,有毒物质吸附剂、特殊用途的吸附剂、食品生产中的脱色剂和气敏元件。

Description

热解硬炭材料及其制备方法和用途 技术领域 本发明涉及一种碳材料及其制备方法, 尤其涉及一种热解硬炭材料及 其制备方法和用途。 背景技术
硬炭是指难石墨化碳, 是高分子聚合物的热解炭。 一直以来, 硬炭材 料因其高比容量、 循环寿命长、 功率性能好、 低廉的造价等特点作为锂离 子电池负极材料受到人们的广泛关注, 它还可以作为钠离子电池的负极材 料、 电化学电容器的电极材料、 化学和电化学反应催化剂的载体, 应用于 气体传感器等。
硬炭材料的应用以及硬炭材料的结构和形貌特征对应用效果的影响, 始终是该材料研究的重要内容。 众多研究发现, 内部孔结构及表面形貌特 征对于硬炭材料的应用性能具有重要影响。 因此, 探索更加有效的制备方 法得到具有所需要的颗粒结构特征和形貌特征的硬炭材料, 也成为倍受关 注的课题之一。 例如, WO 01/98209公开了球体或椭球体的热解硬炭材料, 是一种通过水热法制备的硬炭球, 其含有微孔, 具有球形形貌, 作为锂离 子电池的负极材料, 有利于改善电池的可逆容量和循环特性, 在其表面负 载纳米锡锑合金可得到比容量更高和循环性能优良的锂离子电池负极材 料。 这种球形形貌的硬炭材料虽然已经具有颗粒粒度分布均勾、 较高的堆 积密度的优点, 但是进一步提高比表面积以增加纳米材料负载量的空间有 限。 利用硬炭前驱物实施热解炭化制备的硬炭材料具有更加优异的应用性 能, 在行业内逐渐被认同。 以锂电池负极的应用为例, 硬炭的结构及嵌锂 容量被认为与裂解工艺关系很大。 所以, 也有一些相关研究报道了通过控 制热解工艺得到的硬炭材料。 研究的关注点更多地放在了热解工艺 (温度 和时间等) 的调整以及热解原料(硬炭前驱体) 的选择, 即, 将硬炭前驱 体置于保护气氛下, 控制相应的热解条件, 以期望对热解形成的硬炭产物 形貌结构及表面进行改善。 发明内容
本发明的目的在于提供一种热解硬炭材料, 所述硬炭材料呈纳米级厚 度的薄片状, 相比于现有技术中记载的球体或椭球体的热解硬炭材料, 该 纳米级厚度的薄片状硬炭材料具有高的几何表面积, 可以有效的提升其在 各种实际应用中的性能。
本发明还提供了一种制备所述热解硬炭材料的方法, 通过对硬炭前驱 体的热解工艺的调整, 制得外形类似石墨烯的薄片状热解硬炭材料, 并且 该制备方法具有工艺简单、 成本低、 易于控制的优点。
本发明的一个方面提供了一种热解硬炭材料, 其中, 该硬炭材料为硬 炭前驱体热解形成的、 具有平均厚度 l-200nm、 几何表面积 10-2000m2/g 的类似二维平面的薄片材料, 所述热解硬炭材料内部存在微孔或中孔。
发明人的研究证实, 薄片状结构的硬炭具有高的几何表面积, 并且这 种类似石墨烯的薄片状硬炭, 由于独特的形貌特征和表面特性, 在实际应 用中的各种性能得到更大的提升。
在本发明中, 术语 "薄片材料" , 应理解为该硬炭材料在几何形状上 呈明显片状结构, 相对于较大的表面, 邻接表面可作为厚度并具有显著小 的尺寸, 通过 SEM 图可以看到大体呈现薄片状分布, 并有一定的厚度, 故而也认为是类似或接近二维平面 (其最小径向远远大于薄片的平均厚 度, 或者说厚度相比于较大表面小到能够被忽略) 。 术语 "几何表面积" 可以理解为: 该薄片状硬炭材料, 通过 SEM 图可以看到大体呈现薄片状 分布, 并有一定的厚度, 但可以同时存在一些重叠和褶皱的区域, 在本发 明中我们利用几何表面积来描述和限定该薄片状硬炭材料在近似理想状 态下, 将其折叠和褶皱的区域展开, 即为平面展开状态下的表面积。
在本发明中, 通过热解硬炭前驱体形成薄片状硬炭材料, 所述薄片状 硬炭材料的主体成分为碳元素, 同时也含有质量分数不超过 10wt%的其它 元素, 可以说明的是, 本发明提出的薄片状硬炭材料在实际应用中都体现 出优异的性能。
本发明还提供了制备所述热解硬炭材料的方法, 该方法包括将硬炭前 驱体在气体氛围中热解, 其中, 所述气体氛围中包含了 1-100%的活性气体;
所述硬炭前驱体热解过程至少包括: 控制气体流量 0.1-500mL/min以 提供气体氛围, 使硬炭前驱体与所述气体充分接触形成热解体系, 且使热 解体系以 0.5-10°C /min的速率升温至 400-2000 °C , 维持该温度 0-72小时 后降温至室温;
所述活性气体包括含氢元素的气体或含氢元素的液体蒸汽。
根据本发明的实施方案, 在硬炭前驱体热解过程中, 控制气体流量 10-300mL/min。
根据本发明的实施方案, 在硬炭前驱体热解过程中, 控制热解体系升 温至 400-1500°C。
根据本发明的实施方案, 在硬炭前驱体热解过程中, 待热解体系升温 结束后, 维持温度 0-20小时后降温至室温。
本发明提供的制备方法, 将硬炭前驱体置于含有活性气体的气体氛围 中实施热解炭化, 意想不到的效果是所得到的硬炭产物表现出类似石墨烯 的薄片形貌, 从而提供的更高几何表面积, 在硬炭材料的应用环境中都能 显示出更优异的性能。
本发明提供的薄片状硬炭材料, 能够用于例如, 锂离子电池或钠离子 电池的负极材料、 电化学电容器的电极材料、 燃料电池和金属空气电池电 极催化剂的载体、用来制备具有高度增韧性的复合材料,有毒物质吸附剂、 特殊用途的吸附剂、 食品生产中的脱色剂和气敏元件。 本发明的技术方案至少具有如下有益效果:
1、 本发明提供一种热解硬炭材料呈纳米级厚度的薄片状, 相比于现 有技术中记载的球体或椭球体的热解硬炭材料, 该纳米级厚度的薄片状硬 炭材料具有高的几何表面积, 可以有效地提升其在实际应用中的性能。
2、 本发明提供的制备热解硬炭材料的方法, 通过对硬炭前驱体在气 体氛围中热解的工艺加以控制, 制得与石墨烯外形类似的薄片状热解硬炭 材料, 并且该制备方法具有工艺简单、 成本低、 易于控制的优点。
3、 本发明所述的具有类似墨烯外形的薄片状形貌的热解硬炭材料用 途十分广泛, 不仅可以作为目前的二次锂电池或钠电池的负极, 还可以作 为电化学电容器的电极, 而且在催化领域、 医药食品制造等领域还可以作 为关键性材料, 例如载体、 吸附材料等。 附图说明
图 1 ( a ) -图 1 ( b ) 为本发明实施例 1中的热解硬炭材料的扫描电镜 照片。
图 2为本发明实施例 2中的热解硬炭材料的扫描电镜照片。
图 3为本发明实施例 3中的热解硬炭材料的扫描电镜照片。
图 4为本发明实施例 Ί中的热解硬炭材料的扫描电镜照片。
图 5为本发明实施例 10中的热解硬炭材料的扫描电镜照片。
图 6 ( a ) -图 6 ( b ) 为本发明对比例 1中的热解硬炭材料的扫描电镜 照片。
图 7为本发明对比例 2中的热解硬炭材料的扫描电镜照片。
图 8为本发明实施例 1中的热解硬炭材料的 X射线衍射图谱。
图 9为本发明实施例 1中的热解硬炭材料的 Raman图谱。
图 10为本发明实施例 1中的热解硬炭材料的电子衍射图。
图 1 1 为本发明实施例 1 中的热解硬炭材料作为锂电池负极材料的充 放电曲线图。
图 12为本发明实施例 1的热解硬炭材料的 TEM图。 具体实施方式 本发明提供了一种形貌结构类似石墨烯的薄片状热解硬炭材料, 平均 厚度 l-200nm、几何表面积 10-2000m2/g, 所述热解硬炭材料内部存在微孔 或中孔。
根据本发明的实施方案, 所述薄片状硬炭材料具有的类似二维平面的 外观结构, 该薄片材料的较大平面上最小径向尺寸与材料的平均厚度之比 不小于 100: 1 , 即, 所述薄片材料为类似二维平面状, 其平面上的最小径 向尺寸远远大于该硬炭薄片材料所具有的纳米级厚度。 本发明中简称为 "最小径向尺寸与平均厚度比" 。
根据本发明的实施方案, 热解过程的控制使薄片材料内具有了微孔和 /或中孔, 具体地, 所述该硬炭材料内的啟孔和 /或中孔, 啟孔孔径可以小 于 lnm, 中孔孔径一般为 2-20nm
根据本发明的实施方案, 所述薄片状热解硬炭材料的平均厚度 2-50
根据本发明的实施方案, 所述薄片材料的几何表面积 10-1000m2/g 根据本发明的实施方案, 所述薄片材料为硬炭前驱体在含有氢元素的 气体或含氢元素的液体蒸汽的气体氛围中的热解产物。
根据本发明的实施方案, 为了得到具有所述特征的薄片状硬炭材料, 使硬炭前驱体在包含了活性气体的气氛内热解是必要条件, 所述的气氛可 以是全部由所述活性气体组成, 也可以包含载气。
所述活性气体可以是含氢元素的气体或含氢元素的液体蒸汽, 其中, 所述含氢元素的气体可以是 H2 NH3、 或低级烃类气体, 例如 CH4 C2H4 C2H2等气态的烷烃、 烯烃、 炔烃, 所述含氢元素的液体蒸汽, 例如 ¾0 蒸汽、 CH3COCH3蒸汽或 CH3CH2OH蒸汽等易汽化的含氧有机化合物, 也 可以是符合上述要求的混合气体。
热解气氛可以通过使用载气引入活性气体, 所述载气可以是各种不参 与反应的常规保护气体, 包括惰性气体(氦气、 氩气、 氖气、 氪气、 氙气、 氡气等) 、 二氧化碳或氮气中的一种或多种的组合, 从经济和气源便利方 面, 可以选择例如氮气、 二氧化碳、 氩气等作为载气。
为得到薄片状的热解硬炭, 活性气体的含量至少占提供热解反应的气 氛的 1% ( ν/ν ) , 一般可以为 1-10%
本发明的具体实施方案中, 硬炭前驱体可以为粉末材料或液态形式引 入热解体系中。 硬炭前驱体在热解前通常先球磨成具有一定粒度的颗粒状 或粉末, 可以直接使用, 也可以将其加入有机溶剂中, 形成粒度较为均一 的分散相, 例如, 硬炭前驱体经脱除结晶水制成粉末、 或以有机溶剂配制 成前驱体浓度为 0.05-10M 的溶液。 无论将硬炭前驱体制成粉末还是利用 分散相都是为了更好的使其与气体氛围充分接触, 达到反应完全的目的。
硬炭前驱体加入热解体系前最好先干燥, 可以准确测定加入热解体系 中的气体含量, 也可以经过脱结晶水处理或不进行脱结晶水处理。 干燥和 脱结晶水处理的好处是更好地控制热解过程的实现, 并非必须程序。 若利 用未经干燥处理或未经充分干燥脱水的硬炭前驱体进行所述热解, 即使热 解体系仅为载气, 可以观察到热解后的硬炭产物中会存在极少量呈薄片状 硬炭。 对该现象分析的结论应该是, 在高温热解过程中, 硬炭前驱体所带 的水分会被气化以及前驱体本身热分解出的含氢元素气体混入了载气中, 致使硬炭前驱体的热解产物在 SEM的显示下, 局部有极少量的破碎状薄 片硬炭材料出现。 为表述的清楚和便利, 本发明对热解气氛定义为至少含 有 1%活性气体的气氛, 该活性气体通常应该是操作者特意引入的 (特别 是对前驱体先进行干燥的情况下) , 当确定所使用前驱体自身含有一定的 水分或其它遇热会气化而提供含氢气体的成分时, 只要这部分气体足以满 足所述热解气氛的要求, 这样的热解体系也应该属于本发明权利要求所定 义的范围。
在本发明的方案中, 对所使用的硬炭前驱体可以不作特殊限定, 可以 使用已经公知或常用的各种供热解得到硬炭的硬炭前驱体。 具体实施方案 中, 所述硬炭前驱体可以为这些物质的一种或多种的组合。 该前驱体可以 是碳水化合物、 含有 C、 H、 0元素的合成树脂、 或软炭前驱体经由含氧 元素交联剂作用下的交联产物。
所述碳水化合物例如可以是单糖或多糖, 例如, 可以是葡萄糖、蔗糖、 果糖、 纤维素或淀粉等。
根据本发明的实施方式, 所述含有 C、 H、 O元素的合成树脂包括热 固性树脂、 或热塑性树脂经含氧交联剂交联的产物。
根据本发明的具体实施方式, 所述含有 C、 H、 O元素的合成树脂可 以是酚醛树脂、 脲醛树脂、 环氧树脂、 氟树脂、 不饱和聚酯、 聚氨酯等热 固性树脂, 或者是聚乙烯、 聚丙烯、 聚苯乙烯、 聚氯乙烯等热塑性树脂经 含氧交联剂交联所得产物。
所述软炭前驱体经由含氧元素交联剂作用下的交联产物, 例如, 沥青 经过氧化二异丙苯交联剂交联制得硬炭前驱体等。
本发明中所描述的薄片状热解硬炭材料, 应该理解为按照本发明方法 得到的热解产物中, 满足以上限定的薄片状硬炭占据了足够大的比例, 而 不要求热解产物全部为所定义的薄片状, 但是, 该占据了足够大比例的薄 片状硬炭足以在所述热解硬炭材料被应用时已经能充分体现出薄片状硬 炭所赋予的性能提高, 或者完全能够通过适当的分离而收集到较纯的薄片 状材料, 据此可以认为热解产物为所需要的薄片状硬炭材料。
本发明提供的热解硬炭材料, 具有独特的形貌结构, 显著提升的比表 面积, 能提供优异的吸附和承载性能, 可以用于目前硬炭材料或其它多孔 材料所能应用的各领域和场合, 例如, 用于制造二次电池(锂电池或钠电 池等)的电极(负极),作为燃料电池或金属 /空气电池的电极催化剂载体, 用于制造电容器的电极, 以及作为吸附剂或脱色剂的应用, 还可以用来制 备具有高度增韧性的复合材料, 有毒物质吸附剂、 特殊用途的吸附剂、 食 品生产中的脱色剂原料等。 实施例 1
将 10g 葡萄糖经洗涤、 烘干、 球磨处理后置于热解反应器中, 以 50 mL/min 的气体流量通入 Ar-8%H2 ( ¾ 占 Ar-H2混合气的体积百分比为 8% ) ,并以 2 °C /min的速率使反应器内温度升至 750 °C , 维持基本恒温 15h 后, 自然冷却至室温, 得到平均厚度约 3nm, 几何表面积约 623m2/g , 最 小孔径约 0.7nm, 最小径向尺寸与平均厚度比约 5200: 1的薄片状热解硬 炭材料。
该薄片状材料在放大倍数分别为 5K和 10K下的 SEM照片如图 1 ( a ) 和图 1 ( b ) 显示, 从该 SEM图可以清楚的看到: 经过上述制备方法制成 的热解硬炭材料形貌以薄片状为主。
X射线衍射图语如图 8所示, doQ2= 3.72; Raman图语如图 9所示, La=23nm 。
电子衍射如图 10所示, 从该图可以得知: 石墨化程度不高的薄片硬 炭材料的电子衍射 SAED 花样上只有两个弥散的衍射环分别对应于粉末 XRD语中的(002)和(100)衍射面。
TEM如图 12所示, 从该图可以清楚地看出薄片堆积的情况。 实施例 2
除了以 Ar-1 %H2(H2占 Ar-H^合气的体积百分比为 1%)取代 Ar-8%H2 外, 其余按照与实施例 1同样的方法得到薄片状热解硬炭材料, 其平均厚 度约为 5nm, 几何表面积约 405m2/g, 最小孔径约 0.7nm, 取所得到的薄 片材料, 其最小径向尺寸与平均厚度比约 3200: 1。
该薄片状材料在放大倍数为 2K的 SEM照片如图 2所示, 从该 SEM 图可以清楚的看到: 经过上述制备方法制成的热解硬炭材料呈现为大量的 薄片状, 经适当分离可以得到主要为薄片的硬炭材料。
根据 X射线衍射图语, d002= 3.72; Raman图语, La=20nm 。 实施例 3
除了以 Ar-0.5%H2(H2 占 Ar-H2混合气的体积百分比为 0.5%)取代 Ar-8%¾外, 其余按照与实施例 1同样的方法得到热解硬炭材料, 取其中 的片状产物检测, 其平均厚度约为 8nm, 几何表面积约 280m2/g, 最小孔 径约 0.7nm, 最小径向尺寸与平均厚度比约 1000: 1。
该薄片状材料在放大倍数为 1K的 SEM照片如图 3所示, 从该 SEM 图可以清楚的看到: 经过上述制备方法制成的热解硬炭材料呈现一定量的 薄片状, 较难分离收集。
根据 X射线衍射图语, d002= 3.72; Raman图语, La=20nm 。 实施例 4
除了以 10g酚醛树脂取代 10g葡萄糖硬炭前驱体外, 其余按照与实施 例 1同样的方法得到薄片状热解硬炭材料, 其平均厚度约为 3.8nm, 几何 表面积约 520 m2/g, 最小孔径约 0.7nm, 最小径向尺寸与平均厚度比约 4600: 1。
根据 X射线衍射图谱, d002= 3.71 ; Raman图谱, La=23.1nm 。 实施例 5
除了以将沥青经过氧化二异丙苯交联剂交联处理制得产物取代 10g葡 萄糖硬炭前驱体外, 其余按照与实施例 1同样的方法得到薄片状热解硬炭 材料, 其平均厚度约为 5nm, 几何表面积约 401 m2/g, 最小孔径约 0.7nm, 最小径向尺寸与平均厚度比约 3800: 1。
根据 X射线衍射图语, d002= 3.75; Raman图语, La=23nm 。 实施例 6
除了以 5g酚醛树脂和 5g葡萄糖混合物取代 10g葡萄糖硬炭前驱体外, 其余按照与实施例 1同样的方法得到薄片状热解硬炭材料, 其平均厚度约 为 3.5nm, 几何表面积约 571 m2/g, 最小孔径约 0.7nm, 最小径向尺寸与 平均厚度比约 3900: 1。
根据 X射线衍射图语, d002= 3.75; Raman图语, La=24nm 。 实施例 7
将 10g 葡萄糖经洗涤、 烘干、 球磨处理后置于热解反应器中, 以 50 mL/min 的气体流量通入 CH4气体, 并以 2 °C /min的速率使反应器内温度 升至 750°C , 维持基本恒温 15h后, 自然冷却至室温, 得到平均厚度约为 3.2nm, 几何表面积约 601 m2/g , 最小孔径约 0.7nm, 最小径向尺寸与平 均厚度比约 5800: 1的薄片状热解硬炭材料。
该薄片状材料在放大倍数分别为 2K的 SEM照片如图 4所示, 从该
SEM图可以清楚的看到:经过上述制备方法制成的热解硬炭材料呈现薄片 状。
根据 X射线衍射图谱, d002= 3.71 ; Raman图谱, La=22.1nm 。 实施例 8
除了以 10g酚醛树脂取代 10g葡萄糖硬炭前驱体外, 其余按照与实施 例 7同样的方法得到薄片状热解硬炭材料, 其平均厚度约为 3.9nm, 几何 表面积约 511 m2/g, 最小孔径约 0.7nm, , 最小径向尺寸与平均厚度比约 4200: 1。
根据 X射线衍射图语, d002= 3.71 ; Raman图语, La=23nm 。 实施例 9
除了以 10g将沥青经过氧化二异丙苯交联剂交联处理制得的产物取代 10g葡萄糖硬炭前驱体外, 其余按照与实施例 Ί同样的方法得到薄片状热 解硬炭材料, 其平均厚度约为 4nm, 几何表面积约 495 m2/g, 最小孔径约 0.7nm, , 最小径向尺寸与平均厚度比约 4100: 1。
根据 X射线衍射图语, d002= 3.73 ; Raman图语, La=23nm 。 实施例 10
将 10g 葡萄糖经洗涤、 烘干、 球磨处理后置于热解反应器中, 以 50 mL/min 的气体流量通入 ¾0蒸汽, 并以 2°C /min的速率使反应器内温度 升至 750°C , 维持基本恒温 10h后, 自然冷却至室温, 得到平均厚度约为 3.2nm, 几何表面积约 601 m2/g , 最小孔径约 0.7nm, 最小径向尺寸与平 均厚度比约 5200: 1的薄片状热解硬炭材料。
该薄片状材料在放大倍数分别为 5K的 SEM照片如图 5所示, 从该
SEM图可以清楚的看到:经过上述制备方法制成的热解硬炭材料呈现薄片 状。
根据 X射线衍射图谱, d002= 3.72; Raman图谱, La=21.0nm 。 实施例 11
除了以 10g酚醛树脂取代 10g葡萄糖硬炭前驱体外, 其余按照与实施 例 10同样的方法得到薄片状热解硬炭材料, 其平均厚度约为 4.1nm, 几何 表面积约 485 m2/g, 最小孔径约 0.7nm, 最小径向尺寸与平均厚度比约 4200: 1。
根据 X射线衍射图语, d002= 3.71 ; Raman图语, La=21.2nm 。 实施例 12
除了以 10g将沥青经过氧化二异丙苯交联剂交联处理制得的产物取代 10g葡萄糖硬炭前驱体外,其余按照与实施例 10同样的方法得到薄片状热 解硬炭材料, 其平均厚度约为 4.6nm, 几何表面积约 412 m2/g最小孔径约 0.8nm, , 最小径向尺寸与平均厚度比约 4100: 1。
根据 X射线衍射图语, d002= 3.68; Raman图语, La=22nm 。 实施例 13
除了以恒温 lh取代恒温 15h夕卜, 其余按照与实施例 1 同样的方法得 到薄片状热解硬炭材料,其平均厚度约为 4.5 nm,几何表面积约 420 m2/g, 最小孔径约 0.7nm, 最小径向尺寸与平均厚度比约 2300: 1。
根据 X射线衍射图谱, d。。2= 3.71 ; Raman图语, La=18.5nm 。 实施例 14
除了以恒温 lh取代恒温 15h外, 其余按照与实施例 4同样的方法得 到薄片状热解硬炭材料, 其平均厚度约为 4.4nm, 几何表面积约 450 m2/g, 最小孔径约 0.7nm, 最小径向尺寸与平均厚度比约 2100: 1。
根据 X射线衍射图谱, d002= 3.68; Raman图谱, La=18.2nm 。 实施例 15
除了以恒温 lh取代恒温 15h外, 其余按照与实施例 5同样的方法得 到薄片状热解硬炭材料, 其平均厚度约为 6nm, 几何表面积约 325 m2/g, 最小孔径约 0.7nm, 最小径向尺寸与平均厚度比约 2000: 1。
根据 X射线衍射图语, d002= 3.76; Raman图语, La=17.5nm 。 实施例 16
除了以 10 °C /min的升温速率取代 2 °C /min的升温速率外,其余按照与 实施例 1 同样的方法得到薄片状热解硬炭材料, 其平均厚度约为 6.5nm, 几何表面积约 31 1 m2/g, 最小孔径约 0.7nm, 最小径向尺寸与平均厚度比 约 2500: 1。
根据 X射线衍射图谱, d002= 3.71 ; Raman图语, La=15.5nm 。 实施例 17
除了以 10 °C /min的升温速率取代 2 °C /min的升温速率外,其余按照与 实施例 4同样的方法得到薄片状热解硬炭材料, 其平均厚度约为 7.1nm, 几何表面积约 301 m2/g, 最小孔径约 0.7nm, 最小径向尺寸与平均厚度比 约 2600: 1。
根据 X射线衍射图谱, d002= 3.71 ; Raman图谱, La=15.6nm 。 实施例 18
除了以 10 °C /min的升温速率取代 2°C /min的升温速率外,其余按照与 实施例 5同样的方法得到薄片状热解硬炭材料, 其平均厚度约为 6.5nm, 几何表面积约 310 m2/g, 最小孔径约 0.7nm, 最小径向尺寸与平均厚度比 约 2760: 1。
根据 X射线衍射图谱, d002= 3.75; Raman图谱, La=15.3nm 。 实施例 19
除了以 100 mL/min的气体流量取代 50 mL/min的气体流量外, 其余 按照与实施例 1 同样的方法得到薄片状热解硬炭材料, 其平均厚度约为 4.2nm, 几何表面积约 462 m2/g, 最小孔径约 0.7nm, 最小径向尺寸与平均 厚度比约 2900: 1。
根据 X射线衍射图谱, d002= 3.75; Raman图谱, La=18.5nm 。 实施例 20
除了以 100 mL/min的气体流量取代 50 mL/min的气体流量外, 其余 按照与实施例 4 同样的方法得到薄片状热解硬炭材料, 其平均厚度约为 4.2nm, 几何表面积约 471 m2/g, 最小孔径约 0.7nm, , 最小径向尺寸与平 均厚度比约 3100: 1。
根据 X射线衍射图语, d002= 3.71 ; Raman图语, La=18.1nm 。 实施例 21
除了以 100 mL/min的气体流量取代 50 mL/min的气体流量外, 其余 按照与实施例 5 同样的方法得到薄片状热解硬炭材料, 其平均厚度约为 4.3nm, 几何表面积约 461 m2/g, 最小孔径约 0.7nm, , 最小径向尺寸与平 均厚度比约 2800: 1。
根据 X射线衍射图谱, d002= 3.72; Raman图谱, La=18.2nm 。 实施例 22
除了以升温至 950 °C取代升温至 750°C外, 其余按照与实施例 1 同样 的方法得到薄片状热解硬炭材料,其平均厚度约为 6nm,几何表面积约 325 m2/g, 最小孔径约 0.8nm, , 最小径向尺寸与平均厚度比约 1900: 1。
根据 X射线衍射图谱, d。。2= 3.71 ; Raman图谱, La=24nm 。 实施例 23
除了以升温至 950 °C取代升温至 750 °C外, 其余按照与实施例 4同样 的方法得到薄片状热解硬炭材料, 其平均厚度约为 5.2nm, 几何表面积约 365 m2/g, 最小孔径约 0.7nm, 最小径向尺寸与平均厚度比约 1950: 1。
根据 X射线衍射图谱, d002= 3.75 ; Raman图谱, La=24.1nm 。 实施例 24
除了以升温至 950 °C取代升温至 750 °C外, 其余按照与实施例 5 同样 的方法得到薄片状热解硬炭材料, 其平均厚度约为 5.3nm, 几何表面积约 360 m2/g, 最小孔径约 0.7nm, , 最小径向尺寸与平均厚度比约 1860: 1。
根据 X射线衍射图语, d002= 3.72; Raman图语, La=24.6nm 。 实施例 25
除了以恒温 Oh取代恒温 15h夕卜, 其余按照与实施例 1 同样的方法得 到薄片状热解硬炭材料, 其平均厚度约为 7nm, 几何表面积约 301m2/g , 最小孔径约 0.8nm, 最小径向尺寸与平均厚度比约 1200: 1。
根据 X射线衍射图谱, d002= 3.72; Raman图谱, La=15.4nm 。 实施例 26
除了以恒温 Oh取代恒温 15h夕卜, 其余按照与实施例 4同样的方法得 到薄片状热解硬炭材料, 其平均厚度约为 7.2nm, 几何表面积约 298 m2/g, 最小孔径约 0.8nm, 最小径向尺寸与平均厚度比约 1 100: 1。
根据 X射线衍射图谱, d002= 3.69; Raman图谱, La= 15.6nm 。 实施例 27
除了以恒温 Oh取代恒温 15h夕卜, 其余按照与实施例 5同样的方法得 到薄片状热解硬炭材料, 其平均厚度约为 7.2nm, 几何表面积约 286 m2/g, 最小孔径约 0.8nm, 最小径向尺寸与平均厚度比约 1190: 1。
根据 X射线衍射图谱, d002= 3.71 ; Raman图谱, La=15.3nm 。 实施例 28
除了用 lOOmL 乙醇溶解 10g葡萄糖配成溶液取代 10g葡萄糖外, 其 余按照与实施例 1同样的方法得到薄片状热解硬炭材料, 其平均厚度约为 4nm, 几何表面积约 501 m2/g, 最小孔径约 2.2nm, 最小径向尺寸与平均 厚度比约 4650: 1。
根据 X射线衍射图语, d002= 3.70; Raman图语, La=23.2nm 。 对比例 1
将 10g葡萄糖置于热解反应器中, 以 50 mL/min 的气体流量通入 Ar, 并以 2°C /min的速率使反应器内温度升至 750 °C , 维持基本恒温 15h后, 自然冷却至室温, 收集所得到的热解硬炭材料。
该材料在放大倍数分别为 300, 1K的 SEM照片如图 6 ( a )和图 6 ( b ) 所示, 从该 SEM 图可以清楚的看到: 经过上述制备方法制成的热解硬炭 材料以颗粒状为主, 其中存在极少量呈薄片状产物。
根据 X射线衍射图谱, d002= 3.71 ; Raman图谱, La=20.1nm 。 对比例 2
将 10g葡萄糖置于热解反应器中,以 50 mL/min 的气体流量通入 C02, 并以 2°C /min的速率使反应器内温度升至 750 °C , 维持基本恒温 15h后, 自然冷却至室温, 收集所得到的热解硬炭材料。
该材料在放大倍数分别为 3K的 SEM照片如图 7所示, 从该 SEM图 可以清楚的看到: 经过上述制备方法制成的热解硬炭材料以颗粒状为主, 其中存在极少量呈薄片状产物。
根据 X射线衍射图谱, d002= 3.70; Raman图谱, La=21.1nm 。 从上述实施例与对比例可知: 1、 比较例 1和比较例 2显示: 将未经干燥处理的硬炭前驱体直接加 入到仅为载气的热解体系中, 热解硬炭中会包含了少量形貌呈薄片状的产 物, 应该是由于在高温热解过程中, 硬炭前驱体所带的水分以及前驱体本 身热分解出的含氢元素气体混入载气中, 致使硬炭前驱体的热解产物在 SEM的显示下, 局部存在极少量的破碎状薄片硬炭材料; 进一步地, 当硬 炭前驱体在载气( Ar或 C02 )的气体氛围中进行热解反应制成的热解硬炭 材料呈现极少量的薄片状, 经相关检测发现, 其平均厚度显著大于上述实 施例中使用含有活性气体的热解气氛所得到的硬炭薄片, 其几何表面积和 最小径向尺寸与平均厚度比均显著小于实施例中的硬炭薄片; 同时, 薄片 状硬炭在热解产物中含量极少, 只是以 "杂质" 存在。
2、 实施例 1-实施例 3以及对比例 1
对比例 1为硬炭前驱体在仅为载气的热解体系中进行高温热解, 实施 例 3-实施例 1为硬炭前驱体在活性气体和载气的混合气体, 即气体氛围分 别为 Ar-0.5%H2、 Ar-1%H2和 Ar-8%¾的平行实施例,在气体氛围仅为 Ar, 直至气体氛围递变成 Ar-8%H2的过程中, 仅对载气 Ar中加入了含量递增 的活性气体 H2, 在此过程中我们意想不到的发现: 因活性气体的引入, 引 起了热解产物形貌的变化,即得到了类似石墨烯状的薄片硬炭材料。并且, 当活性气体含量达到 1%, 热解产物中的薄片状硬炭含量已经占相当大比 例, 可以直接利用而显示出薄片形貌硬炭的性能。 应用实例 1 锂电池
A、 将实施例 1制成的薄片状热解硬炭材料用作锂电池负极材料, 其 具体操作方法如下:
将得到的薄片状硬炭材料与粘结剂羧曱基纤维素钠(CMC )的水溶液 在常温常压下混合研磨形成浆料,再均勾涂敷在铜.箔衬底上,在真空条件, 温度 105 °C下烘干 6h, 在 20kg/cm2的压力下压紧, 再将薄膜电极裁成面积 为 1cm2的圓形电极片, 并以金属锂为对电极组装成扣式电池, 其中, 电 极片中薄片状热解硬炭与粘结剂羧曱基纤维素钠(CMC )的质量比为 9: 1。
模拟电池的电解液为 lmol LiPF6溶于 1L EC和 DMC的混合溶剂 (体 积比 1 : 1 ) 中。 将正极、 负极、 电解液, 隔膜在氩气保护的手套箱内组装 成模拟电池。
将上述组装成的扣式电池在蓝电充放电仪上进行测试, 如图 11所示, 充放电区间在 0-3 V , 以 37mA/g 的电流恒流充放电。 首周放电容量 583mAh/g, 首周充电容量 165 mAh/g, 充分表现出该薄片状硬炭材料具有 大比表面特性。
B、 以实施例 1制取出的薄片状硬炭材料为载体, 制取 SnSb负载的锂 离子电池负极材料, 具体操作方法如下:
首先, 用 1L乙二醇溶解 22.8g SbCl3 和 22.6g SnCl2'2H20的混合物, 然后加入 56g上述制成的硬炭材料后置于冰水中, 緩慢加入 16.3g辞粉反 应 2h后抽滤、 洗涤, 直至滤液遇 AgN03不变浑浊。 将得到的滤饼在真空 60°C下加热 12h, 即得到 Sb和 Sn 负载量分别为 16.5%、 16.2%的硬炭复 合材料。 对此硬炭复合材料实施 A中所述的方式进行组装电池, 其可逆容 量高达 550mAh/g。 应用实例 2 传感器
以实施例 7制取出的薄片状硬炭材料为载体, 制取电阻氢传感器关键 材料, 具体操作方法如下:
将硬炭材料溶在苯曱醇里, 以 SnCl4为前驱体用微波合成法负载 Sn02 颗粒,然后在 140°C下,用微波合成法以乙二醇为还原剂还原 H2PtCl6 5min 后洗涤、 烘干, 即得到 Pt-Sn02/C复合材料。
通过化学分析 (ICP ) 可知 Pt-Sn02/C复合材料中的 Pt、 Sn02、 C质 量百分比分别为 20%、 60%、 20%。 Sn02颗粒为 4nm, Pt颗粒为 3nm。 由 于 Pt-Sn02/C复合材料可以敏感的与氢分子接触触发金属的解离, 从而在 低浓度 H2 ( 0.1%-3% )环境下有极其敏感的响应, 其响应时间 2-6s, 恢复 时间 l-5s。 在此复合材料中, 类似石墨烯薄片状硬炭材料为良好的导电网 络, 且相比传统的炭黑导电体, 还具有较高的几何表面积, 非常适合用作 ¾等气体传感器的基底材料。 应用实例 3 Pt-C燃料电池催化剂载体
以实施例 10制取出的薄片状硬炭材料为载体, 制取 Pt-C燃料电池催 化剂关键材料, 具体操作方法如下:
将 50mg硬炭材料、 10mL 0.0096M的 H2PtCl6、25mL乙二醇、4mL 0.05M KOH在 135 °C下充分搅拌反应 3h后, 降至室温, 用乙醇充分洗涤、 烘干, 即得到 Pt-C燃料电池催化剂, 其 Pt负载质量百分比 30%。
称取 10mg Pt-C燃料电池催化剂 , 加入 5%质量百分比的 Nafion溶液 和异丙醇溶液, 超声 30min, 其催化剂与 Nafion的质量比为 3: 1 , 待成墨 水状后, 喷涂在抛光玻璃碳上作为工作电极。
在 30°C下, 以 0.5M的 H2S04为电解质, 以 20mV/s的扫速在 0-1.2V 区间测试 H2的吸附与脱附曲线可知: 在 45 °C下, 以 0.5M的 H2S04和 2M 的乙醇溶液为电解质, 以 20mV/s的扫速测试曱醇氧化反应可知: 在 Pt-C 燃料电池催化剂存在下, 曱醇氧化还原的电流为 386mA/mgpt。 由于薄片状 硬炭材料具有较高的几何表面积,故当一定量的 Pt负载在此硬炭薄片上能 得到相比其他碳材料而言, 分布更加均勾, 具有更大有效反应界面的催化 剂材料。 应用实例 4 MnQ2-C超级电容器
以实施例 5制取出的薄片状硬炭材料为载体, 制取 SnSb负载的锂离 子电池负极材料, 具体操作方法如下:
取 1.5mg/mL的硬炭水溶液 lOOmL超声 lh后,加入 0.95g高锰酸钾在 搅拌下微波加热 5min, 然后依次用去离子、 乙醇充分洗涤, 在真空 120°C 下烘 12h, 即得到 Mn02负载硬炭薄片材料, 其 Mn02的负载量为 80%。
将所制得的 Mn02负载硬炭材料与炭黑、 聚四氟乙烯, 以 75:20:5 的 质量比在乙醇中混匀, 并均匀涂抹在镍网上, 在真空 120°C烘 12h。 将涂 有 Mn02-C的镍网作为工作电极, 以铂电极为对电极, 以饱和甘汞电极为 参比电极, 以 1M的石克酸钠溶液为电解质, 在室温下做循环伏安扫描。
其结果显示: 在 -0.1至 0.9V之间以 2mV/s的扫速做循环伏安测试, 得到材料单位电容为 402F/g。 由于此薄片状的硬炭材料比石墨烯具有更好 的强度, 且内部存在缺陷, 使得负载氧化物能够更稳定地负载上碳片上, 且高的几何表面积不仅提供了整个材料的导电网络, 同时也提供了极大的 反应面积, 故用在催化剂中, 此硬炭材料是不可多得的碳载体。 应用实例 5 C-脱色剂
以头犯 1夕1 j L \ ί¾日 / '寻
色性能 具体操作方法如下:
取 5杯味精水(每杯 lOOmL ) , 分别加入 0.2、 0.5、 0.8、 1.0g、 1.3g 的上述硬炭材料。通过对上述 5杯加入硬炭材料的味精水进行透光率测量, 结果显示: 加入 l.Og硬炭材料的味精水透光率最高, 达到 85%, 相比现有 的碳材料高出大约 5%, 薄片状硬炭材料显示出较强的脱色性能。 最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不 使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求 书
1、 一种热解硬炭材料, 其特征在于, 其为对硬炭前驱体热解形成的、 具有平均厚度 l-200nm、 几何表面积 10-2000m2/g的类似二维平面的薄片 材料, 所述热解硬炭材料内部存在微孔或中孔。
2、 根据权利要求 1 所述的热解硬炭材料, 所述薄片材料的类似二维 平面的最小径向尺寸与其平均厚度之比不小于 100: 1。
3、 根据权利要求 1 所述的热解硬炭材料, 所述硬炭材料内部存在微 孔和 /或中孔, 微孔孔径小于 lnm, 中孔孔径为 2-20nm。
4、 根据权利要求 1或 2所述的热解硬炭材料, 所述薄片材料的平均 厚度 2-50nm。
5、 根据权利要求 1 所述的热解硬炭材料, 所述薄片材料的几何表面 积 10-1000m2/g。
6、根据权利要求 1-5中任一项所述的热解硬炭材料, 所述薄片材料为 硬炭前驱体在含有氢元素的气体或含氢元素的液体蒸汽的气体氛围中的 热解产物。
7、一种制备如权利要求 1-6任一项所述的热解硬炭材料的方法,该方 法包括将硬炭前驱体在气体氛围中热解, 其中,
所述气体氛围中包含了 1-100%的活性气体;
所述硬炭前驱体热解过程至少包括: 控制气体流量 0.1-500mL/min以 提供气体氛围, 使硬炭前驱体与气体充分接触形成热解体系, 且使热解体 系以 0.5-10 °C /min的速率升温至 400-2000°C , 维持该温度 0-72小时后降 温至室温;
所述活性气体包括含氢元素的气体或含氢元素的液体蒸汽。
8、 根据权利要求 7 所述的方法, 在硬炭前驱体热解过程中, 控制气 体流量 10-300mL/min。
9、 根据权利要求 7 所述的方法, 在硬炭前驱体热解过程中, 控制热 解体系升温至 400-1500 °C。
10、根据权利要求 7-9任一项所述的方法,在硬炭前驱体热解过程中, 待热解体系升温结束后, 维持温度 0-20小时。
11、 根据权利要求 7所述的方法, 硬炭前驱体为粉末材料或液态形式 存在于热解体系中。
12、 根据权利要求 7所述的方法, 硬炭前驱体加入热解体系前经过脱 结晶水处理或不进行脱结晶水处理。
13、 根据权利要求 12所述的方法, 硬炭前驱体经脱除结晶水制成粉 末、 或以有机溶剂配制成前驱体浓度为 0.05-10M的溶液。
14、 根据权利要求 7所述的方法, 所述硬炭前驱体为碳水化合物、 含 有 C、 H、 0元素的合成树脂、 软炭前驱体在含氧元素交联剂作用下的交 联产物、 或其任意组合。
15、 根据权利要求 14所述的方法, 所述碳水化合物单糖或多糖。
16、 根据权利要求 15 所述的方法, 所述碳水化合物包括葡萄糖、 蔗 糖、 果糖、 纤维素或淀粉。
17、 根据权利要求 14所述的方法, 所述含有 H、 0元素的合成树 脂包括热固性树脂、 或热塑性树脂经含氧交联剂交联的产物。
18、 根据权利要求 14-17任一项所述的方法, 所述含有 C、 H、 0元 素的合成树脂包括酚醛树脂、 脲醛树脂、 环氧树脂、 氟树脂、 不饱和聚酯、 聚氨酯, 或者聚乙烯、 聚丙烯、 聚苯乙烯、 聚氯乙烯经含氧交联剂交联所 得产物。
19、 根据权利要求 7所述的方法, 所述气体氛围为活性气体或活性气 体与载气的混合气体, 所述载气包括惰性气体、 氮气或二氧化碳中的一种 或多种的组合。
20、根据权利要求 7所述的方法, 所述含氢元素的气体包括 H2、 NH3、 或烷烃、 烯烃、 炔烃类气体, 所述含氢元素的液体蒸汽包括 H20 蒸汽、 CH3COCH3蒸汽或 CH3CH2OH蒸汽。
21、根据权利要求 7-19任一项所述的方法, 所述气体氛围中活性气体 的含量为 1-10%。
22、 权利要求 1-6任一项所述的热解硬炭材料在制造二次电池的电极 中的应用。
23、 权利要求 1-6 任一项所述的热解硬炭材料作为燃料电池或金属 / 空气电池的电极催化剂载体的应用。
24、 权利要求 1-6任一项所述的热解硬炭材料在制造电容器电极中的 应用。
25、 权利要求 1-6任一项所述的热解硬炭材料作为吸附剂或脱色剂的 用途。
PCT/CN2012/001609 2012-11-30 2012-11-30 热解硬炭材料及其制备方法和用途 WO2014082191A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/001609 WO2014082191A1 (zh) 2012-11-30 2012-11-30 热解硬炭材料及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/001609 WO2014082191A1 (zh) 2012-11-30 2012-11-30 热解硬炭材料及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2014082191A1 true WO2014082191A1 (zh) 2014-06-05

Family

ID=50827006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001609 WO2014082191A1 (zh) 2012-11-30 2012-11-30 热解硬炭材料及其制备方法和用途

Country Status (1)

Country Link
WO (1) WO2014082191A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110182785A (zh) * 2019-05-24 2019-08-30 陕西科技大学 一种孔径可调的氮掺杂脲醛树脂基碳的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1422235A (zh) * 2000-04-27 2003-06-04 中国科学院物理研究所 热解硬碳材料及其制备方法和用途
CN101916845A (zh) * 2010-08-05 2010-12-15 深圳市贝特瑞新能源材料股份有限公司 适合于动力与储能电池用的硬碳材料及其制备方法
CN102956876A (zh) * 2012-11-30 2013-03-06 中国科学院物理研究所 热解硬炭材料及其制备方法和用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1422235A (zh) * 2000-04-27 2003-06-04 中国科学院物理研究所 热解硬碳材料及其制备方法和用途
CN101916845A (zh) * 2010-08-05 2010-12-15 深圳市贝特瑞新能源材料股份有限公司 适合于动力与储能电池用的硬碳材料及其制备方法
CN102956876A (zh) * 2012-11-30 2013-03-06 中国科学院物理研究所 热解硬炭材料及其制备方法和用途

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110182785A (zh) * 2019-05-24 2019-08-30 陕西科技大学 一种孔径可调的氮掺杂脲醛树脂基碳的制备方法

Similar Documents

Publication Publication Date Title
Xiu et al. Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting
Morishita et al. A review of the control of pore structure in MgO-templated nanoporous carbons
EP3299337B1 (en) Method for preparing graphene using coal as raw material
Bathula et al. Highly efficient solid-state synthesis of Co3O4 on multiwalled carbon nanotubes for supercapacitors
Kirubasankar et al. Hydrothermal assisted in situ growth of CoSe onto graphene nanosheets as a nanohybrid positive electrode for asymmetric supercapacitors
Jiang et al. Facile synthesis of carbon nanofibers-bridged porous carbon nanosheets for high-performance supercapacitors
Yu et al. Sustainable application of biomass by-products: Corn straw-derived porous carbon nanospheres using as anode materials for lithium ion batteries
CA2899131C (en) Carbon material for catalyst support use
Tian et al. Exploration of the active center structure of nitrogen-doped graphene for control over the growth of Co3O4 for a high-performance supercapacitor
US10193156B2 (en) High-density and high-hardness graphene-based porous carbon material, method for making the same, and applications using the same
Nagaraju et al. Ultrathin nickel hydroxide nanosheet arrays grafted biomass-derived honeycomb-like porous carbon with improved electrochemical performance as a supercapacitive material
CN102956876B (zh) 热解硬炭材料及其制备方法和用途
Kim et al. Introduction of MnO2 nanoneedles to activated carbon to fabricate high-performance electrodes as electrochemical supercapacitors
Yang et al. Design of ZIF-based CNTs wrapped porous carbon with hierarchical pores as electrode materials for supercapacitors
US20110017493A1 (en) Carbon Microbeads with Hierarchical Structure
WO2013132388A1 (en) Aerogel based on doped graphene
Chen et al. Deep eutectic solvent promoted tunable synthesis of nitrogen-doped nanoporous carbons from enzymatic hydrolysis lignin for supercapacitors
Illa et al. Catalytic graphitization of bacterial cellulose–derived carbon nanofibers for stable and enhanced anodic performance of lithium-ion batteries
Chao et al. Ordinary filter paper-derived hierarchical pore structure carbon materials for supercapacitor
CN106024424A (zh) 一种氢氧化镍/石墨烯卷-碳纳米管复合碳气凝胶及其制备和应用
Pramanik et al. Efficient energy storage in mustard husk derived porous spherical carbon nanostructures
CN111072018A (zh) 一种负载金属的氮掺杂褶皱石墨烯的制备方法及应用
Ge et al. Nitrogen-and-sulfur-enriched interconnected hierarchical porous carbon derived from green radish for high-mass-loading supercapacitors
Jana et al. Investigation of the capacitive performance of tobacco solution reduced graphene oxide
Shi et al. Facile synthesis of structure-controllable, N-doped graphene aerogels and their application in supercapacitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889030

Country of ref document: EP

Kind code of ref document: A1