WO2014080920A1 - Drilling tool - Google Patents

Drilling tool Download PDF

Info

Publication number
WO2014080920A1
WO2014080920A1 PCT/JP2013/081209 JP2013081209W WO2014080920A1 WO 2014080920 A1 WO2014080920 A1 WO 2014080920A1 JP 2013081209 W JP2013081209 W JP 2013081209W WO 2014080920 A1 WO2014080920 A1 WO 2014080920A1
Authority
WO
WIPO (PCT)
Prior art keywords
excavation
bit
inner device
tool
axis
Prior art date
Application number
PCT/JP2013/081209
Other languages
French (fr)
Japanese (ja)
Inventor
直 小林
央 高遠
Original Assignee
株式会社タンガロイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タンガロイ filed Critical 株式会社タンガロイ
Priority to JP2014548587A priority Critical patent/JP6011637B2/en
Publication of WO2014080920A1 publication Critical patent/WO2014080920A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/20Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/64Drill bits characterised by the whole or part thereof being insertable into or removable from the borehole without withdrawing the drilling pipe

Definitions

  • the present invention relates to a drilling tool, and in particular, to a drilling tool used when reinforcing a weak ground.
  • the injection-type long tip receiving method which is a kind of earth retaining method for preventing the face from collapsing
  • AMF method is often used.
  • a casing pipe that is, for example, a steel pipe is generally placed toward a fragile ground that is obliquely above and ahead of the face.
  • solidifying agents such as mortar, are inject
  • the solidifying agent is infiltrated into the surrounding weak ground through a hole or the like provided in the casing pipe.
  • An example of a tool for placing a casing pipe in the ground is a double-pipe excavation tool.
  • Patent Document 1 discloses an example of such a double-pipe excavation tool.
  • an annular ring bit is fixed to the tip of a cylindrical casing pipe via a casing shoe.
  • An inner bit is inserted into the casing pipe so as to advance and retract along the axis of the casing pipe.
  • the inner bit is advanced through the casing pipe, the casing shoe and the ring bit until the tip portion having the bit portion involved in excavation protrudes from the center tip portion of the ring bit.
  • a plurality of concave portions are formed on the outer peripheral surface of the inner bit at a predetermined distance from the tip thereof, and convex portions corresponding to the concave portions of the inner bit are formed on the inner peripheral surface of the ring bit.
  • the inner bit When the inner bit is rotated in the forward rotation direction with respect to the ring bit at a predetermined position, the concave portion of the inner bit and the convex portion of the ring bit are engaged with each other, and accordingly, the ring bit is also rotated in the forward rotation direction. To do.
  • the concave portion of the inner bit and the convex portion of the ring bit are engaged, the movement of the inner bit in the tool axis direction with respect to the ring bit is restricted.
  • the inner bit has a stepped surface having a surface facing the tip side so that a force in the tip direction along the tool axis, that is, a striking force (or propulsive force) can be transmitted from the inner bit to the ring bit.
  • This step of the inner bit abuts against the end wall facing the rear end of the ring bit when the recess of the inner bit and the projection of the ring bit are substantially or firmly engaged with each other.
  • the inner bit After the casing pipe is driven into the ground, the inner bit is rotated in the reverse direction, released from engagement with the ring bit, and then withdrawn. Thereby, the solidifying agent is injected into the hollow casing pipe. However, the ring bit remains in the ground together with the casing pipe.
  • the ring bit is rotated and pushed forward via the inner bit located inside the radial direction.
  • the inner bit in order to transmit both the rotational force and the striking force to the ring bit, the inner bit is rotated with respect to the ring bit and is engaged with the ring bit firmly to some extent. You need to be.
  • vibrations may occur due to, for example, a large load, which may loosen the engagement between the inner bit and the ring bit.
  • there is a loss in the transmission of the striking force and rotational force from the inner bit to the ring bit and the excavation force may be reduced. Due to such transmission loss, the excavation force is likely to be insufficient particularly in places where the strength of the ground is high.
  • the casing pipe must have a diameter large enough to insert the inner bit. Therefore, the outer diameter of the casing pipe is increased according to the outer diameter of the inner bit, and as a result, the outer diameter of the ring bit is also increased.
  • the larger the outer diameter of the ring bit the wider the excavation space that must be excavated, so the amount of solidifying agent input increases, resulting in an increase in cost. And there exists a relationship that excavation energy increases with the increase in this excavation space. Therefore, there is a demand for reducing the outer diameter or outer shape of the inner bit in order to perform excavation with higher efficiency.
  • a bit for excavation is divided into a ring bit in charge of outer peripheral side excavation and an inner bit in charge of inner peripheral side excavation. For this reason, there is a possibility that at least one of the bits may be damaged when stones or earth and sand are caught in the gap between the two bits.
  • An object of the present invention is to provide an excavation tool that makes it possible to improve at least one of the above problems.
  • an object of the present invention is to provide an excavation tool capable of performing excavation with high efficiency.
  • An inner device that is inserted into a cylindrical casing pipe having a central axis extending from the distal end side to the proximal end side so as to advance and retreat along the axial line;
  • a drilling bit attached to the tip of the casing pipe, the drilling bit being engageable with the inner device,
  • the drill bit has a first part with at least one drill member and a second part proximal to the first part;
  • the excavation bit has a wall surface on which the tip of the inner device can abut in the axial direction,
  • a drilling tool is provided in which the maximum outer diameter of the first portion of the drill bit is greater than the outer diameter of the casing pipe.
  • the excavation bit having a wall surface on which the tip portion of the inner device can abut in the axial direction is positioned at the tip of the excavation tool, and the first of the excavation bit
  • the maximum outer diameter of the part is larger than the outer diameter of the casing pipe. Therefore, the inner device inserted into the casing pipe can directly and firmly apply a striking force to the drill bit in the axial direction, and the casing pipe is led by the drill bit receiving the drilling force from the inner device. You can proceed firmly. Therefore, according to this excavation tool, it is possible to suppress transmission loss of force from the inner device to the excavation bit, and it is possible to excavate with high efficiency.
  • the inner device includes a first engagement element
  • the excavation bit includes a recess that opens in the second portion
  • the recess includes a second engagement element that can be engaged with the first engagement element.
  • the inner device When the inner device is inserted into the recess, the inner device has an engagement position where the first engagement element and the second engagement element engage with each other, and the first engagement element and the second engagement element. And can be moved relative to the excavation bit between release positions released from each other.
  • the first engagement element of the inner device may be concave
  • the second engagement element of the excavation bit may be convex.
  • the first engagement element of the inner device may be convex and the second engagement element of the excavation bit may be concave.
  • the first engagement element may be provided substantially parallel to the axis so as to extend to the tip surface of the inner device.
  • the second engagement element may be provided substantially parallel to the axis in the recess of the excavation bit.
  • the tip surface that can hit the excavation bit in the inner device is preferably formed substantially perpendicular to the axis.
  • the actual area B2 of the tip surface of the inner device is preferably in the range of 0.5 ⁇ B1 ⁇ B2 ⁇ 1.0 ⁇ B1 with respect to the area B1 of the circle circumscribing the tip surface.
  • the excavation bit may be attached to the tip end portion of the casing pipe via a substantially cylindrical casing shoe.
  • the inner device inserted into the casing pipe can reach the excavation bit through the inside of the casing shoe.
  • the length C2 in the axial direction of the portion of the inner device positioned directly inside the casing pipe is 0.3 ⁇ C1 ⁇ C2 ⁇ 0.8 ⁇ C1 with respect to the total length C1 in the axial direction of the inner device. It is good to be in the range.
  • the first portion of the drill bit may include one or more drill members.
  • One or a plurality of excavation members may be provided continuously or intermittently from the intersection with the axis or the vicinity thereof to the outer peripheral surface.
  • a plurality of excavation members are provided radially at substantially equal intervals around the central axis on the tip surface of the first portion of the excavation bit. And in the front end surface of the 1st part of a excavation bit, the intermediate area between adjacent excavation members is good to be formed so that it may recede gradually to the base end side of an excavation bit as it leaves from this excavation member. Further, in the excavation bit, a notch extending in the direction along the axis may be formed on the outer peripheral surface adjacent to the intermediate region.
  • the excavating member may be a cemented carbide tip.
  • FIG. 1 shows a side view of an excavation tool according to an embodiment of the present invention.
  • FIG. 2 shows a perspective view of the excavation tool of FIG.
  • FIG. 3 shows a casing shoe in the excavating tool of FIG. 1, (a) is a perspective view, (b) is a side view, and (c) is a cross-sectional view.
  • 4 shows an inner device in the excavation tool of FIG. 1, (a) is a perspective view, (b) is a side view, (c) is an end view on the tip side, and (d) is (c).
  • FIG. 4 is a sectional view taken along line IV-IV. 5 shows the excavation bit in the excavation tool of FIG.
  • FIG. 6 is a schematic diagram for explaining the engagement and rotation between the inner device and the excavation bit in the excavation tool of FIG. 1.
  • FIG. 7 shows a side view of an excavation tool according to another embodiment.
  • FIG. 8 is a schematic diagram for explaining engagement and rotation between the inner device and the excavation bit in an excavation tool according to still another embodiment.
  • the term “tip” is used with respect to a portion or direction directed to the natural ground side when using the excavating tool
  • proximal end is the side opposite to the natural ground when using the excavating tool. In other words, it is used in relation to the part or direction directed to the excavator side.
  • FIG. 1 shows an appearance of a drilling tool 1 according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of the excavation tool 1.
  • an excavation tool 1 includes a casing shoe 3 that is fixed to the tip of a casing pipe 2 and an inner that is inserted into the casing pipe 2.
  • a device 4 and a drill bit 5 attached to the casing shoe 3 so as to be engageable with the inner device 4 are provided.
  • the excavation tool 1 has a central axis A extending from the distal end side to the proximal end side.
  • the casing pipe 2 is a cylindrical hollow member and has a central axis 2A extending from the distal end side to the proximal end side.
  • the central axis A of the excavating tool 1 follows the central axis 2A of this casing pipe.
  • the casing pipe 2 defines the introduction path of the solidifying agent when it is driven into a natural ground.
  • the casing pipe 2 can be added sequentially as needed.
  • the material of the casing pipe 2 is carbon steel for mechanical structure (JIS G 4051), specifically, any one of S25C to S45C.
  • a plurality of casing pipes 2, for example, 3 to 4 casing pipes 2 may be connected and used.
  • the dimensions, material, number of connections, and the like of the casing pipe 2 can be changed as appropriate according to the application situation.
  • the casing pipe 2 is configured to be connected to each other by a screw mechanism. Therefore, a thread groove is formed in the connecting portion of each casing pipe 2.
  • the casing pipe has a female thread at the distal end and a male thread at the proximal end, but these may be reversed.
  • the excavation tool 1 of FIG. 1 only the casing pipe 2 located at the most distal end is shown, the excavation bit 5 is attached to the distal end portion 2b, and another casing is provided at the base end portion which is the other end (not shown).
  • the pipe 2 is connected.
  • the casing pipe 2 in the following description corresponds to a casing pipe located on the most distal end side.
  • the casing shoe 3 is a substantially cylindrical hollow member as shown in FIG.
  • the casing shoe 3 is directly fixed to the tip of the casing pipe 2.
  • the casing shoe 3 is welded to the casing pipe 2, but may be fixed by other fixing methods or fixing means.
  • the casing shoe 3 may be directly attached to the tip of the casing pipe 2 using a screw mechanism.
  • the casing shoe 3 has a role of connecting the casing pipe 2 and the excavation bit 5.
  • the casing shoe 3 may be omitted in some cases.
  • the excavation bit 5 may be directly connected to the casing pipe 2 like an excavation tool 100 according to another embodiment shown in FIG. it can. In the excavation tool 100 of FIG.
  • the excavation bit 5 may be connected to the casing pipe 2 by a method similar to the connection method of the casing shoe 3 and the excavation bit 5 described later. It is connected to the pipe 2. However, it is preferable to attach the casing shoe 3 because an existing pipe can be used and it can sufficiently cope with an impact force of a certain level or more.
  • the material of the casing shoe 3 is S45C, but the casing shoe 3 may be made of other materials.
  • the casing shoe 3 of the present embodiment has an axis 3A extending from the distal end side to the proximal end side.
  • the axis 3A coincides with or substantially coincides with the central axis A of the excavation tool 1 when the excavation tool 1 is assembled as shown in FIG.
  • the casing shoe 3 includes a first cylindrical portion (large-diameter cylindrical portion) 6 and a second cylindrical portion (small-diameter cylindrical portion) 7 having a smaller diameter than the first cylindrical portion in the direction of the axis 3A of the casing shoe 3. It has a shape connected via the part 8.
  • the axes of the first cylindrical portions 6 coincide with the axis of the second cylindrical portion 7 and become the axis 3A.
  • the second cylindrical portion 7 of the casing shoe 3 is positioned on the proximal end side of the first cylindrical portion 6 and is configured to be inserted inside the casing pipe 2. Thereby, the outer peripheral side surface of the second cylindrical portion 7 can substantially contact the inner peripheral surface of the front end portion 2 b of the casing pipe 2.
  • the first cylindrical portion 6 of the casing shoe 3 is configured such that the excavation bit 5 is partially inserted inside thereof. Thereby, the inner peripheral surface of the first cylindrical portion 6 can substantially come into contact with the outer peripheral surface of the second base end portion of the excavation bit 5 described in detail later.
  • the outer diameter of the second cylindrical portion 7 of the casing shoe 3 is substantially the same as the inner diameter of the casing pipe 2, and the inner diameter of the first cylindrical portion 6 is substantially the same as the outer diameter of the second base end portion of the excavation bit 5. is there. Further, the difference in the radial length between the outer peripheral surface of the second cylindrical portion 7 and the outer peripheral surface of the first cylindrical portion 6 (the radial length of the stepped portion 8) is almost equal to the thickness of the casing pipe 2 in the excavation tool 1. Are the same. Therefore, when the casing shoe 3 is partially inserted into the tip end portion of the casing pipe 2, the joint or connecting portion between the casing pipe 2 and the casing shoe 3 does not have a significant step (see FIGS. 1 and 2). .
  • an inclined surface 6a is formed at the tip of the first cylindrical portion 6 of the casing shoe 3 so that the inner diameter gradually increases toward the tip. Due to the presence of the inclined surface 6a, the excavation bit 5 can be smoothly inserted into the casing shoe 3.
  • annular recess 6b is formed at an intermediate portion in the direction along the axis 3A (see FIG. 3C).
  • a retaining ring 9 (see FIG. 2) used when fixing the excavation bit 5 is fitted into the annular recess 6b.
  • the retaining ring 9 as the first fixing member has a substantially C shape and is generally attached manually. However, the retaining ring may be attached using a machine.
  • the inner device 4 is a rod-like member having an axis 4A extending from the distal end side to the proximal end side. In the assembled excavation tool 1, this axis 4A substantially coincides with, preferably coincides with, the central axis A of the excavation tool 1. As shown in FIG. 4, the inner device 4 is a rod-like member having a substantially circular cross section in a plane orthogonal to the axis 4A. The inner device 4 can be inserted into the casing pipe 2 so as to advance and retract along the axis 2A. The inner device 4 is configured to be able to transmit a rotational force and a striking force from an excavating machine (not shown) to the excavating bit 5.
  • the material of the inner device 4 is SNCM439 which is nickel chrome molybdenum steel defined in alloy steel for machine structure (JIS G 4053), but can be changed as appropriate.
  • the inner device 4 has a shape in which a first portion (small-diameter portion) 10 and a second portion (large-diameter portion) 11 having a larger diameter than the first portion are connected in the direction of the axis 4A.
  • the axis of the first part 10 coincides with the axis of the second part 11 and becomes the axis 4A.
  • the first portion 10 is located on the distal end side of the second portion 11 and is configured to be engageable with the excavation bit 5.
  • the 2nd part 11 is comprised so that engagement with the rod 12 (refer FIG. 2) is possible.
  • the rod 12 is a member that transmits force from the excavating machine (not shown) to the inner device 4.
  • the outer diameter of the second portion 11 of the inner device 4 is substantially the same as the inner diameter of the casing pipe 2, and the outer diameter of the first portion 10 is substantially the same as the inner diameter of the second cylindrical portion 7 of the casing shoe 3.
  • the inner device 4 is located inside the casing pipe 2 and the casing shoe 3 and also on the tip side along the axis A of the excavation tool 1 with respect to the casing pipe 2 and the casing shoe 3. It is also possible to move to the base end side, and it is possible to rotate around this axis A.
  • the outer diameter of the second portion 11 of the inner device 4 is smaller than the inner diameter of the casing pipe 2, and the outer diameter of the first portion 10 is smaller than the inner diameter of the second cylindrical portion 7 of the casing shoe 3.
  • the intersection 10c between the distal end surface 10a and the outer peripheral surface 10b at the distal end portion of the first portion 10 of the inner device 4 is used to facilitate the insertion of the inner device 4 into the excavation bit 5. It is chamfered.
  • the inner device 4 has three recesses 13 arranged at equal intervals in the outer circumferential direction as shown in FIG. Each of these recesses 13 is formed over the entire length of the inner device 4 in parallel with the axis 4A. Therefore, the recess 13 opens on the distal end surface 10 a of the first portion 10 of the inner device 4 and also opens on the proximal end surface 11 a of the second portion 11. Moreover, the recessed part 13 is formed so that it may open to a radial direction outer side.
  • the recess 13 has a first recess portion 14 that is wider than the other region on the proximal end side in a region of a constant distance in the axial direction on the distal end side of the inner device 4.
  • first rotation direction first rotation direction
  • the first concave portion 14 includes an extended portion 14a provided on the opposite side of the forward rotation direction K around the axis 4A of the inner device 4, that is, so as to expand the concave portion 13 in the reverse rotation direction (second rotation direction).
  • the positive rotation direction is a direction for causing the inner device 4 to engage with the excavation bit and rotating the inner device 4 together with the excavation bit 5 as will be apparent from the description to be described later.
  • the reverse rotation direction is a direction for releasing the engagement between the inner device 4 and the excavation bit 5, for example.
  • the extended portion 14a is provided substantially parallel to the axis 4A so as to extend to the front end surface 10a of the inner device 4 in the same manner as the first concave portion 14.
  • the first concave portion 14 of the convex portion 13 is provided as a concave first engaging element, in particular, the expanded portion 14a thereof.
  • the extended portion 14a of the first concave portion 14 is shaped so as to engage with a convex portion (second engagement element) of the excavating bit 5 described later and to push the convex portion in the normal rotation direction K. Yes.
  • the concave portion 13 includes a first concave portion 14 (wide portion) on the distal end side and a second concave portion (narrow portion on the proximal end side) having a narrower width (length in the circumferential direction) than the first concave portion. ) 15 and a different depth.
  • the bottom surface of the first concave portion 14 is positioned on the axis 4 ⁇ / b> A side.
  • the second portion 11 of the inner device 4 is positioned on the base end side of the first portion 10 described above, and the recess 13 extends to the base end surface 11 a of the second portion 11. ing.
  • the distance from the bottom surface 13a of the recess 13 to the axis 4a of the inner device 4 excluding the first recess portion 14 is the portion in the first portion 10 and the second portion 11.
  • the second portion 11 has a larger outer diameter or outer shape than the first portion 10
  • the depth of the recess 13 is larger than the depth of the first portion 10 in the second portion 11. ing.
  • the inner device 4 is formed with a through-hole 4b extending along the axis 4A so as to penetrate the distal end surface 10a and the proximal end surface 11a by the inner peripheral surface thereof.
  • the through hole 4 b includes a first cylindrical space 16 and a second space 17.
  • a first cylindrical space 16 is partitioned and formed along the axis 4A by the inner peripheral surface of the inner device 4 inside the first portion 10.
  • One end of the first cylindrical space 16 opens to the front end surface 10 a of the inner device 4, and the other end extends into the second portion 11.
  • water is supplied to the first cylindrical space 16 from the excavating machine, and the water is discharged from the front end opening 16a positioned on the front end surface 10a of the inner device 4.
  • This water is supplied from the excavating machine to the inner device 4 through a through hole (not shown) provided in the rod 12 disposed in the second space 17. Thereby, crushed grains such as stones generated by excavation can be discharged from the hole.
  • the first cylindrical space 16 extends to the inside of the second portion 11 as well.
  • the first cylindrical space 16 is continuous from the first portion 10 to the second portion 11.
  • the cross-sectional area is further increased from the location away from the base end portion of the first portion 10 to the base end side.
  • Large second space 17 is formed. That is, an internal space in which a part of the first cylindrical space 16 and the second space 17 having a larger cross-sectional area are continuous is formed inside the second portion 11.
  • the axes of both the spaces 16 and 17 coincide with the axis 4A of the inner device 4.
  • the second space 17 is formed as a space for inserting the rod 12.
  • a through hole 18 of a spring pin as a second fixing member for fixing the rod 12 to the second space 17 is formed in a portion on the proximal end side of the second portion 11 of the inner device 4.
  • the rod 12 is configured not to rotate around the axis 4A in the second space 17 of the substantially square cross section of the inner device 4, and more specifically, the cross section thereof is substantially square here.
  • the rod 12 may have a substantially circular cross section.
  • the second space 17 may be formed to have a substantially circular cross section.
  • the tip surface 10 a of the inner device 4 can abut against the excavation bit 5 so as to exert an impact force on the excavation bit 5.
  • the tip surface 10a is formed substantially perpendicular to the axis 4A.
  • the actual area B2 of the front end surface 10a of the first portion 10 of the inner device 4 with respect to the area B1 of the circumscribed circle circumscribing the front end surface 10a (That is, the area of the portion that can contact or contact the end wall surface 20c of the recess of the excavation bit 5 described later) is preferably in the range of 0.5 ⁇ B1 ⁇ B2 ⁇ 1.0 ⁇ B1.
  • the circumscribed circle of the front end surface 10a of the inner device 4 may be determined in the front end view of the inner device in FIG. Further, the axial direction of the second portion 11 of the inner device 4 positioned directly inside the casing pipe 2 as shown in FIG. 2 with respect to the total length (length in the axial direction) C1 of the inner device 4. Is preferably in the range of 0.3 ⁇ C1 ⁇ C2 ⁇ 0.8 ⁇ C1.
  • the drill bit device (hereinafter referred to as a drill bit) 5 includes a first portion (hereinafter referred to as a first tip portion) 19 on the distal end side and a second portion (hereinafter referred to as a second portion) on the proximal end side. And an axis 5A extending so as to pass therethrough.
  • the axis 5A substantially coincides with or coincides with the central axis A of the excavation tool 1 when the excavation tool 1 is assembled.
  • the excavation bit 5 has an opening 20a at the second base end 20 thereof, and is provided with a recess 20b that opens at the second base end at the opening 20a.
  • the recess 20b is formed rotationally symmetrically along the axis 5A, and is generally defined by an inner peripheral surface of the substantially cylindrical side wall and an end wall surface 20c of the tip wall extending in a substantially radial direction.
  • the end wall surface 20c of the recess 20b is configured such that the tip of the inner device 44 can abut in the axial direction.
  • the first tip 19 of the excavation bit 5 is configured as an excavation part of the excavation tool 1.
  • the first tip 19 of the excavation bit 5 has a tip 19a.
  • the distal end surface 19a is an outer surface on the distal end side of the distal end wall having the end wall surface 20c on the opposite side.
  • the distal end surface 19 a extends in the radial direction from the intersecting portion 5 b with the axis 5 ⁇ / b> A of the excavation bit 5 toward the outer peripheral surface 5 c of the excavation bit 5.
  • the distal end surface 19a of the first distal end portion 19 of the excavation bit 5 includes three excavation members (bit members) 21 that are directly involved in excavation of natural ground.
  • the recess 20b of the excavation bit 5 is configured such that the inner device 4 described above can be inserted through the opening 20a.
  • the recess 20a extends to the first tip 19 (see FIG. 2).
  • the second base end portion 20 is formed to have an outer diameter smaller than that of the first tip end portion 19.
  • the distal end surface 19a of the first distal end portion 19 of the excavation bit 5 has a substantially circular shape in FIG.
  • the outer peripheral surface 5c and the second proximal end portion of the excavation bit 5 20 is substantially invisible due to the presence of the tip surface 19a.
  • the maximum outer diameter (the maximum length in the direction perpendicular to the axis A in FIG. 1) D ⁇ b> 2 of the first tip portion 19 is the outer diameter of the casing pipe 2 ( The length in a direction orthogonal to the axis A in FIG. Since the tip surface 19a of the excavation bit 5 extends from the intersection 5b with the axis to the outer peripheral surface 5c, the maximum outer diameter D2 of the first tip 19 is the rotation of the tip surface 19a of the first tip 19.
  • the diameter D4 of the rotation locus of the tip surface 19a of the first tip part 19 is larger than the outer diameter D3 of the casing pipe 2.
  • the diameter D4 of the rotation locus of the distal end surface 19a of the first distal end portion 19 refers to the diameter of the circle when the distal end surface 19 is regarded as a circle in the distal end view of FIG. That is, the front end view (not shown) of the excavation tool 1 substantially corresponds to FIG. 5B.
  • the excavation bit 5 and the casing are disposed inside the front end surface 19a of the excavation bit 5.
  • the excavation member 21 in the end face view (tip view) of the first tip portion 19 of the excavation bit 5, the excavation member 21 has an outer peripheral end 19b (at least from the vicinity of the axis 5A on the tip surface 19a of the first tip portion 19). (Corresponding to 5c) is required to be covered in the radial direction, and in this embodiment, it is continuously provided from the vicinity of the central axis to the outer peripheral end. However, the excavation member 21 may be provided intermittently. One excavation member 21 may extend from the center of the front end surface 19a of the front end portion 19 (intersection with the axis) or from the vicinity thereof to the outer peripheral end. The range from the vicinity to the outer peripheral edge may be covered. As described above, the excavation member 21 is continuously or intermittently provided from the central axis 5A or the vicinity thereof to the outer peripheral end 19b, whereby the inner peripheral side excavation and the outer peripheral side excavation can be performed only by the excavation bit 5.
  • a drilling member region 22 in which the drilling member 21 can be mounted or formed is defined on the distal end surface 19a of the distal end portion 19 of the drilling bit 5.
  • a cemented carbide tip is adopted as the excavation member 21, a tip made of another material may be used.
  • the three excavation member regions 22 are provided in the circumferential direction in the radial direction around the axis 5A in the end surface view of the first tip portion 19 (at intervals of about 120 degrees), each of which is a belt-like shape having a certain width. It is an area. These three belt-like regions meet on the axis 5A.
  • the number of excavation member regions 22 is not limited to this, and may be one or a plurality other than three.
  • all the three excavation member regions 22 extend on the same plane S1 orthogonal to the axis of the excavation bit 5.
  • three excavation members 21 are arranged radially about the axis 5A.
  • a recess (not shown) for inserting a plate-like carbide tip is formed in the belt-shaped excavation member region 22, and the carbide tip is fixed to the recess by brazing.
  • the method of fixing the cemented carbide chip is not limited to this, and can be changed as appropriate.
  • each intermediate region 23 is formed so as to gradually recede toward the base end portion 20 as the distance from the excavation member region 22 increases (see FIG. 5A). This makes it easy for the excavated earth and sand to escape to the base end side, and also has an effect of reducing excavation resistance.
  • One through hole 24 is formed near the center of each intermediate region 23, and this through hole 24 penetrates the tip surface 19a in the direction of the axis 5A.
  • the through hole 24 extends substantially along a circular arc centered on the axis 5A, and has a substantially oval shape along the circular arc.
  • the three through holes 24 are arranged at substantially equal intervals on a single circle centered on the axis 5A.
  • the shape of the through hole 24 can also be referred to as a bean shape.
  • the “bean shape” here refers to a shape obtained by crushing an ellipse from one direction as shown in FIG. In the case of this embodiment, the bean shape is selected as the shape of the through-hole 24 from the ease of processing.
  • the shape of the through hole 24 is not limited to this, and may be another shape.
  • the through-hole 24 may be provided in another position, for example, may be provided in the intersection 5b with the axis 5A.
  • the front end surface 19a of the excavation bit 5 extends from the vicinity of the intersection with the axis 5A toward the outer peripheral surface 5c, while the through-hole 24 is such that the inner device 4 does not protrude from the excavation bit 5 in the excavation tool 1.
  • the through hole 24 forms a passage that connects the outside and the inside (recess 20b) of the excavation bit 5.
  • the through-hole 24 allows the water supplied via the inner device 4 to flow out to the outside, and can serve as an intake for excavated earth and sand.
  • the outer periphery of the first tip 19 of the excavation bit 5 is formed so that the outer diameter does not change at the tip side portion, and subsequently, an inclined portion 19c in which the outer diameter gradually decreases is formed.
  • a second base end portion 20 having a smaller diameter than the minimum diameter on the base end side of the inclined portion 19c is provided.
  • the second base end portion 20 basically has a constant outer diameter in the direction of the axis 5A, but is provided with a recessed groove portion 25 having a smaller diameter near the base end.
  • the recessed groove portion 25 is an annular groove for inserting the retaining ring 9 used when the excavation bit 5 is coupled to the casing shoe 3.
  • a cutout portion 26 cut out in an arc shape in FIG. 5B is formed on the outer peripheral surface of the excavation bit 5 adjacent to the intermediate region 23 described above.
  • the notch 26 extends on the outer peripheral surface of the excavation bit 5 to the middle of the inclined portion 19c in the direction along the axis 5A.
  • This notch part has a role which makes the excavated earth and sand escape to the base end part 20 direction.
  • the recess 20b of the excavation bit 5 defines a substantially cylindrical space, as particularly shown in FIGS. 5 (c) and 5 (d).
  • three convex portions (second engagement elements) 27 are provided on the inner peripheral surface of the concave portion 20b of the excavation bit 5 at substantially equal intervals.
  • the convex portion 27 is provided over substantially the entire length of the concave portion 20 b of the excavation bit 5. More specifically, the convex portion 27 is provided substantially parallel to the axis 5A so as to extend to the vicinity of the rear edge portion of the excavation bit 5 on the inner peripheral surface of the concave portion 20b.
  • the convex portion 27 is dimensioned to engage with the extended portion 14 a of the first concave portion 14 when engaged with the first concave portion 14 of the inner device 4.
  • first inner concave portion 28 and a second inner concave portion 29 are provided adjacent to the convex portion 27 on the inner peripheral surface that defines the concave portion 20 b of the excavation bit 5.
  • the first inner recess 28 and the second inner recess 29 are formed so as to extend in parallel to the axis 5A.
  • the first inner concave portion 28 is adjacent to the forward rotation direction K side of the related convex portion 27, and the second inner concave portion 29 is adjacent to the reverse rotational direction side of the related convex portion 27. Adjacent.
  • the depth (diameter length) of the first inner recess 28 and the second inner recess 29 is substantially the same, but the width (circumferential length) of the first inner recess 28 is larger than the width of the second inner recess 29. wide.
  • the first inner recess 28 is formed so as to be connected to the associated through hole 24, and partially forms a passage that communicates the inside and outside of the excavation bit 5.
  • the material of the excavation bit 5 is SCM440, which is chromium molybdenum steel, as defined in alloy steel for machine structure (JIS G 4053), but is not limited thereto.
  • the casing pipes 2 are connected to each other, and the casing shoe 3 is attached to the distal end portion 2b of the connected casing pipe 2 by welding.
  • a drill bit 5 is attached to the casing shoe 3 using a retaining ring 9.
  • the inner device 4 to which the rod 12 is connected is inserted into the internal space along the central axis A of the excavation tool 1 formed in this way. As a result, the tip of the inner device 4 passes through the inside of the casing shoe 3 via the casing pipe 2 and reaches the recess 20b of the excavation bit 5.
  • the inner device 4 is inserted into the recess 20b of the excavation bit 5 such that the recess 13 in the first portion 10 thereof is aligned with the projection 27 of the recess 20b of the excavation bit 5. In this way, when the casing pipe 2, the casing shoe 3, the inner device 4, and the excavation bit 5 are assembled together, the axes of these members are generally aligned on the central axis A.
  • the rod 12 is inserted into the second space 17 of the second portion 11 of the inner device 4.
  • the rod 12 is firmly connected to the inner device 4 by a spring pin inserted into the through hole 18.
  • the inner device 4 When the inner device 4 is inserted into the recess 20b of the excavation bit 5 and the inner device 4 is not engaged with the excavation bit 5 in the circumferential direction, the inner device 4 is rotated forward in the first direction with respect to the excavation bit 5. Rotate in direction K. Accordingly, the convex portion 27 that is the second engagement element of the excavation bit 5 enters the extended portion 14 a that is the first engagement element of the first concave portion 14 of the inner device 4, and the extended portion 14 a is engaged with the convex portion 27. Match. Thus, the inner device 4 is positioned at the engagement position where the extended portion 14 a and the convex portion 27 engage with each other with respect to the excavation bit 5.
  • the inner device 4 when the inner device 4 is positioned at the engagement position with respect to the excavation bit 5, the inner device 4 is rotated in the reverse rotation direction, which is the second direction, with respect to the excavation bit 5.
  • the convex portion 27 is separated from or disengaged from the extended portion 14 a of the inner device 4.
  • the inner device 4 is positioned in the release position where the extended portion 14a and the convex portion 27 are released from each other with respect to the excavation bit 5. In this way, the inner device 4 can move relative to the excavation bit 5 between the engagement position and the release position.
  • the inner device 4 By rotating the inner device 4 in the normal rotation direction K with respect to the excavation bit 5, the inner device 4 is moved to the excavation bit 5 in the circumferential direction as schematically shown in FIG. Engage.
  • the side surface 14b of the concave portion 13 of the inner device 4 facing the positive rotation direction K side of the first concave portion 14 becomes convex on the inner periphery of the excavation bit 5.
  • the side surface 27a of the portion 27 facing in the reverse rotation direction is brought into strong contact with the side surface 27a, and the side surface 27a of the convex portion 27 is pushed in the forward rotation direction K.
  • the excavation bit 5 can rotate in the normal rotation direction K with the movement of the inner device 4.
  • the rotational force of the inner device 4 is properly and securely transmitted to the excavation bit 5.
  • the excavation bit 5 since the excavation bit 5 is connected to the casing shoe 3 via the retaining ring 9, the excavation bit 5 can rotate with respect to the casing shoe 3.
  • the casing pipe 2 is hidden in the shadow of the distal end surface 19a of the distal end portion 19 of the excavation bit 5 in the distal end view.
  • the distal end surface 10a of the first portion 10 of the inner device 4 is abutted in the axial direction against the end wall surface 20c on the distal end side inside the recess 20b of the excavation bit 5.
  • the inner device 4 hits the end wall surface 20c. As a result, the striking force is reliably transmitted to the excavation bit 5 through the inner device 4.
  • the inner device 4 is pushed forward with respect to the excavation bit 5 while being rotated with respect to the excavation bit 5 with the tip portion of the excavation bit 5 facing the natural ground. Thereby, a rotational force can be transmitted to the excavation bit 5 and a striking force can be exerted on the excavation bit 5, whereby the casing pipe 2 can be delivered to a predetermined depth.
  • the inner device 4 is rotated in the reverse rotation direction and pulled out, and the excavation bit 5 is left in the ground together with the casing pipe 2. Thereafter, the solidifying agent is supplied to the hollow internal space of the casing pipe 2.
  • the excavation bit 5 has a wall surface on which the tip of the inner device can abut in the axial direction.
  • the maximum outer diameter is larger than the outer diameter of the casing pipe 2, and the excavation member 21 is provided so as to cover from the vicinity of the central axis of the distal end surface of the excavation bit 5 to the outer peripheral surface.
  • the excavation tool of Patent Document 1 employs a configuration in which a bit involved in underground excavation is divided into a ring bit for excavation on the outer peripheral side and an inner bit for excavation on the inner peripheral side.
  • the entire excavation area is covered by the excavation bit 5 integrally provided with the outer peripheral side excavation bit and the inner peripheral side excavation bit. Since the excavation bit is configured in this way, when the inner device 4 is pushed forward with respect to the excavation bit 5, the striking force, which is the axial force, is reliably transmitted from the inner device 4 to the excavation bit 5. The On the other hand, when the first engagement element of the inner device 4 is engaged with the second engagement element of the excavation bit 5, the rotational force, which is a radial force, is transmitted from the inner device 4 to the excavation bit.
  • the transmission mechanism of the rotational force from the inner device 4 to the excavation bit 5 and the transmission mechanism of the striking force from the inner device 4 to the excavation bit 5 are in an independent relationship in the excavation tool 1.
  • the excavation tool 1 at least one of the rotational force and the striking force from the excavating machine, in particular the striking force, can be securely transmitted from the inner device 4 to the excavation bit 5. Therefore, it is possible to reduce the transmission loss of force when the rotational force and the striking force applied to the inner bit are transmitted to the ring bit. Therefore, according to the excavation tool 1 of the present embodiment, it is possible to mitigate or prevent such a decrease in excavation efficiency due to transmission loss, and to perform highly efficient excavation. Furthermore, since the excavation resistance becomes very large at a location where the strength of the ground is high, such a configuration of the present embodiment is particularly effective.
  • the inner device 4 has a first engagement element extending to the tip surface at the tip, and the excavation bit 5 has a second engagement element in the recess.
  • the inner device 4 can be engaged with the excavation bit 5 in the circumferential direction by the engagement of the first and second engagement elements.
  • the first engagement element of the inner device 4 is provided so as to extend to the tip end surface, the radial dimension of the inner device 4 can be relatively easily reduced.
  • the tip portion of the inner bit must protrude from the center portion of the ring bit toward the tip side. Therefore, the inner bit must be provided with an engagement element on its outer peripheral surface that is some distance away from its tip. Therefore, in the excavation tool of patent document 1, there are many restrictions regarding reducing the outer diameter of the inner bit.
  • the inner device 4 in the excavating tool of this embodiment has an advantage in reducing the radial dimension (width in the direction perpendicular to the axis). Therefore, in this embodiment, only the relatively small-diameter inner device 4 is pulled out, and the excavation bit 5 is left in the ground together with the casing pipe 2. Therefore, according to the excavation tool 1, it is possible to make the casing pipe 2 small in diameter so that the relatively small diameter inner device 4 can pass therethrough. Therefore, according to the excavation tool 1, the energy required for excavation can be reduced. As a result, the amount of the solidifying agent to be introduced into the casing pipe 2 can be greatly reduced as compared with the conventional case. As a result, the cost of the entire construction can be suppressed.
  • the excavation bit 5 and the inner device 4 have a very simple combination of the convex portion 27 in the concave portion of the excavation bit 5 and the concave portion 13 of the first portion 10 on the tip side of the inner device 4. They are connected in the circumferential direction by the engagement relationship. In this engagement relationship, the inner device 4 can be easily pulled out of the casing pipe 2 simply by rotating the inner device 4 in the reverse rotation direction and pulling the inner device 4 backward from the casing pipe 2.
  • the excavation tool 1 of the present embodiment uses the single excavation bit 5 having the above-described configuration, the engagement structure between the inner device and the excavation bit is simplified, and the engagement portions thereof are used. It is also possible to reduce the possibility of problems.
  • the actual area B2 of the tip surface 10a of the first portion 10 of the inner device 4 is 0.5 ⁇ B1 with respect to the area B1 of the circumscribed circle of the tip surface of the first portion 10 of the inner device 4.
  • ⁇ B2 ⁇ 1.0 ⁇ B1 is preferable. Since the actual area B2 of the front end surface of the inner device 4 on the first portion 10 side is within this range, the striking force applied to the inner device 4 by the rod 12 can be most efficiently transmitted to the excavation bit 5. It becomes possible. In the case of B2 ⁇ 0.5 ⁇ B1, the striking surface becomes too small and the strength of the inner device 4 may be lowered, which is not preferable. In addition, it is practically impossible when B2> B1.
  • the length C2 in the axial direction of the second portion 11 of the inner device 4 is 0.3 ⁇ C1 ⁇ C2 ⁇ 0.8 ⁇ C1 with respect to the entire length C1 of the inner device 4. It is preferable to be in the range. By setting the length C2 of the large-diameter portion 11 of the inner device 4 within this range, the life and excavation performance of each member can be maintained at appropriate levels. In the case of C2 ⁇ 0.3 ⁇ C1, the protruding amount of the first portion 10 of the inner device 4 from the casing pipe 2 becomes too large, so that the length of the casing shoe 3 is excessively increased to cover it. There is a need to reinforce.
  • the first engagement element of the inner device 4 may be a convex part 50
  • the second engagement element of the excavation bit 5 may be a concave part 52.
  • the number of the 1st engagement elements of the inner device 4 was made into multiple, and the number of the 2nd engagement elements of the excavation bit 5 was made into multiple, each may be one.
  • the number of the first engaging elements of the inner device 4 is equal to the number of the second engaging elements of the excavating bit 5, and each of them is plural. Yes, they may be arranged rotationally symmetrical around the central axis A of the excavation tool.

Abstract

The present invention provides a drilling tool (1) including: an inner device (4) inserted within a casing pipe (2) in such a way as to be extendable and retractable along the centerline thereof; and a drill bit (5) attached to the distal end part of the casing pipe (2), the drill bit (5) being capable of engaging the inner device (4). The drill bit (5) has a first section (10) provided with at least one drilling member. The drill bit (5) has a wall surface (20c) against which the distal end part of the inner device (4) is capable of abutment in the centerline direction. The maximum outside diameter of a first section (19) of the drill bit (5) is greater than the outside diameter of the casing pipe (2).

Description

掘削工具Drilling tools
 本発明は、掘削工具に関し、特には、脆弱地山の補強を行う際に使用される掘削工具に関する。 The present invention relates to a drilling tool, and in particular, to a drilling tool used when reinforcing a weak ground.
 トンネル掘削の分野においては、切羽面の崩落を防止するための土留め工法の一種である注入式長尺先受工法(AGF工法)がよく利用されている。この工法では、一般に切羽面の前方斜め上方の脆弱地山に向けて、例えば鋼管であるケーシングパイプを打設する。そして、所定位置に配置されたケーシングパイプ内にモルタル等の固化剤を注入する。それにより、ケーシングパイプに設けられた穴等から周囲の脆弱地山に対して固化剤を浸透させる。これによって脆弱地山が強化され、より安全且つ効率的にトンネルの掘削を行うことが可能となる。地中にケーシングパイプを打設するための工具としては、例えば、二重管式掘削工具があげられる。 In the field of tunnel excavation, the injection-type long tip receiving method (AGF method), which is a kind of earth retaining method for preventing the face from collapsing, is often used. In this construction method, a casing pipe that is, for example, a steel pipe is generally placed toward a fragile ground that is obliquely above and ahead of the face. And solidifying agents, such as mortar, are inject | poured in the casing pipe arrange | positioned in the predetermined position. Thereby, the solidifying agent is infiltrated into the surrounding weak ground through a hole or the like provided in the casing pipe. As a result, the fragile ground is strengthened and the tunnel can be excavated more safely and efficiently. An example of a tool for placing a casing pipe in the ground is a double-pipe excavation tool.
 特許文献1には、そのような二重管式掘削工具の一例が開示されている。特許文献1の掘削工具においては、円筒状のケーシングパイプの先端にケーシングシューを介して円環状のリングビットが固定される。ケーシングパイプの中にはインナービットがケーシングパイプの軸線に沿って進退可能に挿入される。このインナービットは、掘削に関与するビット部分を有するその先端部がリングビットの中央先端部から突出するまでケーシングパイプ、ケーシングシュー及びリングビット内を進められる。インナービットの外周面にはその先端から所定の距離はなれて複数の凹部が形成されており、リングビットの内周面にはインナービットの凹部と対応する凸部が形成されていて、これらは互いに対して係合可能に構成されている。所定位置でインナービットをリングビットに対して正回転方向に回転させたとき、インナービットの凹部とリングビットの凸部とは互いに対して係合し、それに伴ってリングビットも正回転方向に回転する。インナービットの凹部とリングビットの凸部とが係合するとき、リングビットに対するインナービットの工具軸線方向の動きは規制される。さらに、インナービットは、工具軸線に沿った先端方向の力つまり打撃力(または推進力)をインナービットからリングビットに伝達することを可能にするように、先端側を向いた面を有する段部を有する。インナービットのこの段部は、インナービットの凹部とリングビットの凸部とが互いに対して実質的にまたはしっかりと係合しているとき、リングビットの後端側を向いた端壁に当接し、打撃力を伝達することができる。したがって、インナービットを正回転方向に回転させつつインナービットに打撃力を与えることによって、インナービット及びリングビットは正回転方向に回転しながら地中を掘削前進することができる。このとき、インナービットは地山の掘削面の内周側の掘削を担当し、リングビットは外周側の掘削を担当する。これによって、ケーシングパイプは前進し地中に打設される。ケーシングパイプが地中に打設された後にインナービットは逆回転方向に回転されて、リングビットとの係合から解放されて、その後引き抜かれる。これにより中空になったケーシングパイプ内に固化剤が注入される。ただし、リングビットはケーシングパイプとともに地中に残される。 Patent Document 1 discloses an example of such a double-pipe excavation tool. In the excavation tool of Patent Document 1, an annular ring bit is fixed to the tip of a cylindrical casing pipe via a casing shoe. An inner bit is inserted into the casing pipe so as to advance and retract along the axis of the casing pipe. The inner bit is advanced through the casing pipe, the casing shoe and the ring bit until the tip portion having the bit portion involved in excavation protrudes from the center tip portion of the ring bit. A plurality of concave portions are formed on the outer peripheral surface of the inner bit at a predetermined distance from the tip thereof, and convex portions corresponding to the concave portions of the inner bit are formed on the inner peripheral surface of the ring bit. It is comprised so that engagement is possible. When the inner bit is rotated in the forward rotation direction with respect to the ring bit at a predetermined position, the concave portion of the inner bit and the convex portion of the ring bit are engaged with each other, and accordingly, the ring bit is also rotated in the forward rotation direction. To do. When the concave portion of the inner bit and the convex portion of the ring bit are engaged, the movement of the inner bit in the tool axis direction with respect to the ring bit is restricted. Furthermore, the inner bit has a stepped surface having a surface facing the tip side so that a force in the tip direction along the tool axis, that is, a striking force (or propulsive force) can be transmitted from the inner bit to the ring bit. Have This step of the inner bit abuts against the end wall facing the rear end of the ring bit when the recess of the inner bit and the projection of the ring bit are substantially or firmly engaged with each other. Can transmit striking force. Therefore, by applying a striking force to the inner bit while rotating the inner bit in the forward rotation direction, the inner bit and the ring bit can be excavated and advanced in the ground while rotating in the forward rotation direction. At this time, the inner bit is in charge of excavation on the inner peripheral side of the excavation surface of the natural ground, and the ring bit is in charge of excavation on the outer peripheral side. As a result, the casing pipe advances and is driven into the ground. After the casing pipe is driven into the ground, the inner bit is rotated in the reverse direction, released from engagement with the ring bit, and then withdrawn. Thereby, the solidifying agent is injected into the hollow casing pipe. However, the ring bit remains in the ground together with the casing pipe.
特開2012-26132号公報JP 2012-26132 A
 ケーシングパイプを打設するための掘削作業時、特許文献1の掘削工具において、リングビットはその半径方向内側に位置するインナービットを介して回転させられ、かつ、押し進められる。このとき、この掘削工具では、回転力と打撃力との両方の力をリングビットに伝達するために、インナービットがリングビットに対して回転されて、ある程度以上しっかりとリングビットに係合していることを必要とする。しかし、そのような作業においては、例えば多大な負荷のために振動が生じ、それによりインナービットとリングビットとの間の上記係合が緩む場合がある。これによりインナービットからリングビットへの打撃力及び回転力の伝達に損失が生じ、掘削力が低下することがある。このような伝達損失により、地盤の強度が高い箇所において特に掘削力不足に陥り易い。 During the excavation work for placing the casing pipe, in the excavation tool of Patent Document 1, the ring bit is rotated and pushed forward via the inner bit located inside the radial direction. At this time, in this excavation tool, in order to transmit both the rotational force and the striking force to the ring bit, the inner bit is rotated with respect to the ring bit and is engaged with the ring bit firmly to some extent. You need to be. However, in such operations, vibrations may occur due to, for example, a large load, which may loosen the engagement between the inner bit and the ring bit. As a result, there is a loss in the transmission of the striking force and rotational force from the inner bit to the ring bit, and the excavation force may be reduced. Due to such transmission loss, the excavation force is likely to be insufficient particularly in places where the strength of the ground is high.
 さらに、特許文献1の掘削工具においては、ケーシングパイプはインナービットを挿入することができる程度に径が大きくなければならない。そのため、インナービットの外径に応じてケーシングパイプの外径が大きくなり、その結果リングビットの外径も大きくなる。リングビットの外径が大きいほど掘削しなければならない掘削空間が広がるので、固化剤の投入量も増し、結果としてコストの増大につながる。そして、この掘削空間の増大により掘削エネルギが増大するという関係がある。そこで、より高効率に掘削を行うためにインナービットの外径または外形を小さくすることに対する要求がある。 Furthermore, in the excavation tool of Patent Document 1, the casing pipe must have a diameter large enough to insert the inner bit. Therefore, the outer diameter of the casing pipe is increased according to the outer diameter of the inner bit, and as a result, the outer diameter of the ring bit is also increased. The larger the outer diameter of the ring bit, the wider the excavation space that must be excavated, so the amount of solidifying agent input increases, resulting in an increase in cost. And there exists a relationship that excavation energy increases with the increase in this excavation space. Therefore, there is a demand for reducing the outer diameter or outer shape of the inner bit in order to perform excavation with higher efficiency.
 さらには、特許文献1の工具においては、掘削するためのビットが、外周側掘削を担当するリングビットと、内周側掘削を担当するインナービットとに分割されている。そのため、それら両ビットの隙間に石や土砂が噛みこまれることによって少なくともいずれかのビットが破損するおそれもある。 Furthermore, in the tool of Patent Document 1, a bit for excavation is divided into a ring bit in charge of outer peripheral side excavation and an inner bit in charge of inner peripheral side excavation. For this reason, there is a possibility that at least one of the bits may be damaged when stones or earth and sand are caught in the gap between the two bits.
 本発明は、上記課題の少なくとも1つを改善することを可能にする、掘削工具を提供することを目的とする。 An object of the present invention is to provide an excavation tool that makes it possible to improve at least one of the above problems.
 特に、本発明は、高効率で掘削を行うことが可能な掘削工具を提供することを目的とする。 In particular, an object of the present invention is to provide an excavation tool capable of performing excavation with high efficiency.
 本発明の一態様によれば、
 先端側から基端側に延びる中心軸線を有する円筒状のケーシングパイプ内にその軸線に沿って進退可能に挿入されるインナーディバイスと、
 ケーシングパイプの先端部に取り付けられる掘削ビットであって、インナーディバイスと係合可能な掘削ビットと
を備え、
 掘削ビットは、少なくとも1つの掘削部材を備えた第1部分と、この第1部分の基端側の第2部分とを有し、
 該掘削ビットは、インナーディバイスの先端部が軸線方向において突き当たることが可能な壁面を有し、
 掘削ビットの第1部分の最大外径はケーシングパイプの外径よりも大きい、掘削工具
が提供される。
According to one aspect of the invention,
An inner device that is inserted into a cylindrical casing pipe having a central axis extending from the distal end side to the proximal end side so as to advance and retreat along the axial line;
A drilling bit attached to the tip of the casing pipe, the drilling bit being engageable with the inner device,
The drill bit has a first part with at least one drill member and a second part proximal to the first part;
The excavation bit has a wall surface on which the tip of the inner device can abut in the axial direction,
A drilling tool is provided in which the maximum outer diameter of the first portion of the drill bit is greater than the outer diameter of the casing pipe.
 上記構成を有する本発明の一態様に係る掘削工具によれば、インナーディバイスの先端部が軸線方向において突き当たることが可能な壁面を有する掘削ビットが掘削工具の先端に位置付けられ、掘削ビットの第1部分の最大外径はケーシングパイプの外径よりも大きい。したがって、ケーシングパイプに挿入されたインナーディバイスは軸線方向において掘削ビットに直接的にしっかりと打撃力を付与することができ、インナーディバイスから掘削力を受けた掘削ビットに先導されてケーシングパイプは地中にしっかりと進むことができる。よって、この掘削工具によれば、インナーディバイスから掘削ビットへの力の伝達損失を抑制することができ、高効率の掘削が可能となる。 According to the excavation tool according to one aspect of the present invention having the above-described configuration, the excavation bit having a wall surface on which the tip portion of the inner device can abut in the axial direction is positioned at the tip of the excavation tool, and the first of the excavation bit The maximum outer diameter of the part is larger than the outer diameter of the casing pipe. Therefore, the inner device inserted into the casing pipe can directly and firmly apply a striking force to the drill bit in the axial direction, and the casing pipe is led by the drill bit receiving the drilling force from the inner device. You can proceed firmly. Therefore, according to this excavation tool, it is possible to suppress transmission loss of force from the inner device to the excavation bit, and it is possible to excavate with high efficiency.
 好ましくは、インナーディバイスは第1係合要素を備え、掘削ビットは第2部分で開く凹部を備え、該凹部に第1係合要素と係合可能な第2係合要素を備える。インナーディバイスが凹部に挿入されているとき、インナーディバイスは、第1係合要素と第2係合要素とが互いに対して係合する係合位置と、第1係合要素と第2係合要素とが互いから解放された解放位置との間で、掘削ビットに対して相対的に動くことができるとよい。インナーディバイスの第1係合要素は凹状であり、掘削ビットの第2係合要素は凸状であるとよい。あるいは、インナーディバイスの第1係合要素は凸状であり、掘削ビットの第2係合要素は凹状であってもよい。 Preferably, the inner device includes a first engagement element, and the excavation bit includes a recess that opens in the second portion, and the recess includes a second engagement element that can be engaged with the first engagement element. When the inner device is inserted into the recess, the inner device has an engagement position where the first engagement element and the second engagement element engage with each other, and the first engagement element and the second engagement element. And can be moved relative to the excavation bit between release positions released from each other. The first engagement element of the inner device may be concave, and the second engagement element of the excavation bit may be convex. Alternatively, the first engagement element of the inner device may be convex and the second engagement element of the excavation bit may be concave.
 さらに好ましくは、第1係合要素は、インナーディバイスの先端面にまで延びるように軸線に略平行に設けられているとよい。また、第2係合要素は、掘削ビットの凹部において、軸線に略平行に設けられるとよい。 More preferably, the first engagement element may be provided substantially parallel to the axis so as to extend to the tip surface of the inner device. The second engagement element may be provided substantially parallel to the axis in the recess of the excavation bit.
 インナーディバイスにおける掘削ビットに突き当たることが可能な先端面は軸線に略直角に形成されるとよい。この場合、この先端面に外接する円の面積B1に対して、インナーディバイスの先端面の実面積B2は、0.5×B1≦B2≦1.0×B1の範囲にあるとよい。 The tip surface that can hit the excavation bit in the inner device is preferably formed substantially perpendicular to the axis. In this case, the actual area B2 of the tip surface of the inner device is preferably in the range of 0.5 × B1 ≦ B2 ≦ 1.0 × B1 with respect to the area B1 of the circle circumscribing the tip surface.
 また、掘削ビットは、略円筒状のケーシングシューを介して、ケーシングパイプの先端部に取り付けられてもよい。この場合、前記ケーシングパイプ内に挿入されたインナーディバイスはケーシングシューの内部を通って掘削ビットに達することができる。 Further, the excavation bit may be attached to the tip end portion of the casing pipe via a substantially cylindrical casing shoe. In this case, the inner device inserted into the casing pipe can reach the excavation bit through the inside of the casing shoe.
 インナーディバイスの軸線の方向の全長C1に対して、ケーシングパイプの内部に直接的に位置付けられるインナーディバイスの部分の軸線の方向の長さC2は、0.3×C1≦C2≦0.8×C1の範囲にあるとよい。 The length C2 in the axial direction of the portion of the inner device positioned directly inside the casing pipe is 0.3 × C1 ≦ C2 ≦ 0.8 × C1 with respect to the total length C1 in the axial direction of the inner device. It is good to be in the range.
 掘削ビットの第1部分は、1つまたは複数の掘削部材を備えるとよい。1つまたは複数の掘削部材は、軸線との交差部またはその付近から外周面まで連続的又は断続的に設けられているとよい。 The first portion of the drill bit may include one or more drill members. One or a plurality of excavation members may be provided continuously or intermittently from the intersection with the axis or the vicinity thereof to the outer peripheral surface.
 好ましくは、掘削ビットの第1部分の先端面には、複数の掘削部材が中心軸線周りに放射状に略均等の間隔で設けられる。そして、掘削ビットの第1部分の先端面において、隣り合う掘削部材間の中間領域は、該掘削部材から離間するにしたがって掘削ビットの基端側へ漸次後退するように形成されているとよい。さらに、掘削ビットにおいて、中間領域に隣接する外周面には、軸線に沿った方向に伸長した切欠き部が形成されているとよい。なお、掘削部材は超硬チップであるとよい。 Preferably, a plurality of excavation members are provided radially at substantially equal intervals around the central axis on the tip surface of the first portion of the excavation bit. And in the front end surface of the 1st part of a excavation bit, the intermediate area between adjacent excavation members is good to be formed so that it may recede gradually to the base end side of an excavation bit as it leaves from this excavation member. Further, in the excavation bit, a notch extending in the direction along the axis may be formed on the outer peripheral surface adjacent to the intermediate region. The excavating member may be a cemented carbide tip.
図1は、本発明の一実施形態に係る掘削工具の側面図を示す。FIG. 1 shows a side view of an excavation tool according to an embodiment of the present invention. 図2は、図1の掘削工具に関する透視図を示す。FIG. 2 shows a perspective view of the excavation tool of FIG. 図3は、図1の掘削工具におけるケーシングシューを示し、(a)は斜視図を、(b)は側面図を、そして、(c)は断面図を示す。FIG. 3 shows a casing shoe in the excavating tool of FIG. 1, (a) is a perspective view, (b) is a side view, and (c) is a cross-sectional view. 図4は、図1の掘削工具におけるインナーディバイスを示し、(a)は斜視図を、(b)は側面図を、(c)は先端側の端面図を、そして(d)は(c)のIV-IV線に沿った断面図を示す。4 shows an inner device in the excavation tool of FIG. 1, (a) is a perspective view, (b) is a side view, (c) is an end view on the tip side, and (d) is (c). FIG. 4 is a sectional view taken along line IV-IV. 図5は、図1の掘削工具における掘削ビットを示し、(a)は側面図を、(b)は先端側の端面図を、(c)は(a)のP矢視図である基端側の端面図を、そして(d)は斜視図を示す。5 shows the excavation bit in the excavation tool of FIG. 1, (a) is a side view, (b) is an end view on the distal end side, and (c) is a base end view taken in the direction of arrow P in (a). A side end view and (d) shows a perspective view. 図6は、図1の掘削工具における、インナーディバイスと掘削ビットとの係合及び回転を説明するための模式図である。FIG. 6 is a schematic diagram for explaining the engagement and rotation between the inner device and the excavation bit in the excavation tool of FIG. 1. 図7は、別の実施形態に係る掘削工具の側面図を示す。FIG. 7 shows a side view of an excavation tool according to another embodiment. 図8は、さらに別の実施形態に係る掘削工具における、インナーディバイスと掘削ビットとの係合及び回転を説明するための模式図である。FIG. 8 is a schematic diagram for explaining engagement and rotation between the inner device and the excavation bit in an excavation tool according to still another embodiment.
 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、本明細書では、用語「先端」は、掘削工具の使用時において地山側に向けられる部分または方向に関して使用され、用語「基端」は、掘削工具の使用時において地山とは反対側つまり掘削機械側に向けられる部分または方向に関して使用される。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In this specification, the term “tip” is used with respect to a portion or direction directed to the natural ground side when using the excavating tool, and the term “proximal end” is the side opposite to the natural ground when using the excavating tool. In other words, it is used in relation to the part or direction directed to the excavator side.
 本発明の一実施形態に係る掘削工具1を、図1から図6に基づいて説明する。図1は、本発明の一実施形態に係る掘削工具1の外観を表す。図2は、掘削工具1の透視図である。 A drilling tool 1 according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows an appearance of a drilling tool 1 according to an embodiment of the present invention. FIG. 2 is a perspective view of the excavation tool 1.
 図1及び図2に示されているように、本発明の一実施形態である掘削工具1は、ケーシングパイプ2の先端に固定されるケーシングシュー3と、ケーシングパイプ2の内部に挿入されるインナーディバイス4と、インナーディバイス4と係合可能にケーシングシュー3に取り付けられる掘削ビット5とを備える。掘削工具1は、先端側から基端側に延びる中心軸線Aを有する。 As shown in FIGS. 1 and 2, an excavation tool 1 according to an embodiment of the present invention includes a casing shoe 3 that is fixed to the tip of a casing pipe 2 and an inner that is inserted into the casing pipe 2. A device 4 and a drill bit 5 attached to the casing shoe 3 so as to be engageable with the inner device 4 are provided. The excavation tool 1 has a central axis A extending from the distal end side to the proximal end side.
 ケーシングパイプ2は、円筒状の中空部材であり、先端側から基端側に延びる中心軸線2Aを有する。掘削工具1の中心軸線Aは、このケーシングパイプの中心軸線2Aに従う。ケーシングパイプ2は、地山に打設されたときに固化剤の導入路を区画形成する。ケーシングパイプ2は必要に応じて順次継ぎ足されることが可能である。本実施形態の場合、ケーシングパイプ2の材料は、機械構造用炭素鋼(JIS G 4051)であり、具体的にはS25C~S45Cのいずれかである。ケーシングパイプ2は、複数本、例えば3~4本が連結されて使用され得る。しかし、ケーシングパイプ2の寸法、材料、連結本数等は適用される状況に応じて適宜変更することが可能である。なお、ケーシングパイプ2は、たった1本で使用されてもよい。ケーシングパイプ2は、ネジ機構により互いに連結することができるように構成されている。したがって、各ケーシングパイプ2の連結部には、ネジ溝が形成されている。ここでは、ケーシングパイプは、先端部に雌ネジ山を有し、基端部に雄ネジ山を有するが、これらは逆であってもよい。図1の掘削工具1では、最も先端に位置するケーシングパイプ2のみが示され、その先端部2bには掘削ビット5が装着され、他端(不図示)である基端部には別のケーシングパイプ2が連結されている。以下の説明におけるケーシングパイプ2は、最も先端側に位置するケーシングパイプに相当する。 The casing pipe 2 is a cylindrical hollow member and has a central axis 2A extending from the distal end side to the proximal end side. The central axis A of the excavating tool 1 follows the central axis 2A of this casing pipe. The casing pipe 2 defines the introduction path of the solidifying agent when it is driven into a natural ground. The casing pipe 2 can be added sequentially as needed. In the case of the present embodiment, the material of the casing pipe 2 is carbon steel for mechanical structure (JIS G 4051), specifically, any one of S25C to S45C. A plurality of casing pipes 2, for example, 3 to 4 casing pipes 2 may be connected and used. However, the dimensions, material, number of connections, and the like of the casing pipe 2 can be changed as appropriate according to the application situation. Note that only one casing pipe 2 may be used. The casing pipe 2 is configured to be connected to each other by a screw mechanism. Therefore, a thread groove is formed in the connecting portion of each casing pipe 2. Here, the casing pipe has a female thread at the distal end and a male thread at the proximal end, but these may be reversed. In the excavation tool 1 of FIG. 1, only the casing pipe 2 located at the most distal end is shown, the excavation bit 5 is attached to the distal end portion 2b, and another casing is provided at the base end portion which is the other end (not shown). The pipe 2 is connected. The casing pipe 2 in the following description corresponds to a casing pipe located on the most distal end side.
 ケーシングシュー3は、図3に示されているように、略円筒状の中空部材である。ケーシングシュー3は、ケーシングパイプ2の先端部に直接的に固定される。本実施形態の掘削工具1の場合、ケーシングシュー3はケーシングパイプ2に溶接されるが、これ以外の固定方法または固定手段で固定されてもよい。例えば、ネジ機構を利用してケーシングシュー3はケーシングパイプ2の先端部に直接的に取り付けられてもよい。ケーシングシュー3は、ケーシングパイプ2と掘削ビット5とを連結する役割を有している。ケーシングシュー3は場合によっては省略することも可能であり、この場合、図7に示す別の実施形態に係る掘削工具100のようにケーシングパイプ2に掘削ビット5は直接的に連結されることができる。図7の掘削工具100では、後述されるケーシングシュー3と掘削ビット5との連結方法と同様の方法で、掘削ビット5をケーシングパイプ2に連結してもよいが、溶接により掘削ビット5はケーシングパイプ2に連結されている。しかし、既存のパイプを使用することができ、ある程度以上の打撃力に十分に対応することができるという理由から、ケーシングシュー3は装着した方が好ましい。本実施形態において、ケーシングシュー3の材料はS45Cであるが、ケーシングシュー3は他の材料で作られてもよい。 The casing shoe 3 is a substantially cylindrical hollow member as shown in FIG. The casing shoe 3 is directly fixed to the tip of the casing pipe 2. In the case of the excavation tool 1 of the present embodiment, the casing shoe 3 is welded to the casing pipe 2, but may be fixed by other fixing methods or fixing means. For example, the casing shoe 3 may be directly attached to the tip of the casing pipe 2 using a screw mechanism. The casing shoe 3 has a role of connecting the casing pipe 2 and the excavation bit 5. The casing shoe 3 may be omitted in some cases. In this case, the excavation bit 5 may be directly connected to the casing pipe 2 like an excavation tool 100 according to another embodiment shown in FIG. it can. In the excavation tool 100 of FIG. 7, the excavation bit 5 may be connected to the casing pipe 2 by a method similar to the connection method of the casing shoe 3 and the excavation bit 5 described later. It is connected to the pipe 2. However, it is preferable to attach the casing shoe 3 because an existing pipe can be used and it can sufficiently cope with an impact force of a certain level or more. In this embodiment, the material of the casing shoe 3 is S45C, but the casing shoe 3 may be made of other materials.
 本実施形態のケーシングシュー3はその先端側から基端側に延びる軸線3Aを有する。この軸線3Aは、図1に示すように掘削工具1が組み立てられたときに、掘削工具1における上記中心軸線Aに一致するまたは略一致する。ケーシングシュー3は、第1円筒部分(大径円筒部分)6と、この第1の円筒部分よりも小径の第2円筒部分(小径円筒部分)7とがケーシングシュー3の軸線3Aの方向において段部8を介して接続した形状を有している。それら第1円筒部分6における軸線は第2円筒部分7における軸線に一致し、上記軸線3Aとなる。ケーシングシュー3の第2円筒部分7は、第1円筒部分6の基端側に位置し、ケーシングパイプ2の内側に挿入されるように構成されている。これにより第2円筒部分7の外周側面はケーシングパイプ2の先端部2bの内周面と実質的に接することができる。ケーシングシュー3の第1円筒部分6は、その内側に、掘削ビット5が部分的に挿入されるように構成されている。これにより第1円筒部分6の内周面は後で詳述される掘削ビット5の第2基端部の外周面と実質的に接することができる。したがって、ケーシングシュー3の第2円筒部分7の外径はケーシングパイプ2の内径とほぼ同一であり、第1円筒部分6の内径は掘削ビット5の第2基端部の外径とほぼ同一である。また、第2円筒部分7の外周面と 第1円筒部分6の外周面との半径方向長さの差(段部8の半径方向長さ)は、掘削工具1ではケーシングパイプ2の厚さとほぼ同一である。したがって、ケーシングパイプ2の先端部にケーシングシュー3が部分的に挿入されたとき、ケーシングパイプ2とケーシングシュー3とのつなぎ目または連結部は、顕著な段差を有さない(図1及び2参照)。 The casing shoe 3 of the present embodiment has an axis 3A extending from the distal end side to the proximal end side. The axis 3A coincides with or substantially coincides with the central axis A of the excavation tool 1 when the excavation tool 1 is assembled as shown in FIG. The casing shoe 3 includes a first cylindrical portion (large-diameter cylindrical portion) 6 and a second cylindrical portion (small-diameter cylindrical portion) 7 having a smaller diameter than the first cylindrical portion in the direction of the axis 3A of the casing shoe 3. It has a shape connected via the part 8. The axes of the first cylindrical portions 6 coincide with the axis of the second cylindrical portion 7 and become the axis 3A. The second cylindrical portion 7 of the casing shoe 3 is positioned on the proximal end side of the first cylindrical portion 6 and is configured to be inserted inside the casing pipe 2. Thereby, the outer peripheral side surface of the second cylindrical portion 7 can substantially contact the inner peripheral surface of the front end portion 2 b of the casing pipe 2. The first cylindrical portion 6 of the casing shoe 3 is configured such that the excavation bit 5 is partially inserted inside thereof. Thereby, the inner peripheral surface of the first cylindrical portion 6 can substantially come into contact with the outer peripheral surface of the second base end portion of the excavation bit 5 described in detail later. Accordingly, the outer diameter of the second cylindrical portion 7 of the casing shoe 3 is substantially the same as the inner diameter of the casing pipe 2, and the inner diameter of the first cylindrical portion 6 is substantially the same as the outer diameter of the second base end portion of the excavation bit 5. is there. Further, the difference in the radial length between the outer peripheral surface of the second cylindrical portion 7 and the outer peripheral surface of the first cylindrical portion 6 (the radial length of the stepped portion 8) is almost equal to the thickness of the casing pipe 2 in the excavation tool 1. Are the same. Therefore, when the casing shoe 3 is partially inserted into the tip end portion of the casing pipe 2, the joint or connecting portion between the casing pipe 2 and the casing shoe 3 does not have a significant step (see FIGS. 1 and 2). .
 また、ケーシングシュー3の第1円筒部分6の先端には、先端側に向けて内径が漸次拡大する傾斜面6aが形成されている。この傾斜面6aの存在のために掘削ビット5をケーシングシュー3内に円滑に挿入することができる。 Also, an inclined surface 6a is formed at the tip of the first cylindrical portion 6 of the casing shoe 3 so that the inner diameter gradually increases toward the tip. Due to the presence of the inclined surface 6a, the excavation bit 5 can be smoothly inserted into the casing shoe 3.
 さらに、ケーシングシュー3の第1円筒部分6の内周面には、軸線3Aに沿った方向における中間部分に環状の凹部6bが形成されている(図3(c)参照)。この環状の凹部6bには、掘削ビット5を固定する際に使用される止め輪9(図2参照)が嵌め込まれる。第1固定部材としての止め輪9は、略C形状を有し、一般に手作業で取り付けられる。しかし、止め輪は機械を用いて取り付けられてもよい。 Furthermore, on the inner peripheral surface of the first cylindrical portion 6 of the casing shoe 3, an annular recess 6b is formed at an intermediate portion in the direction along the axis 3A (see FIG. 3C). A retaining ring 9 (see FIG. 2) used when fixing the excavation bit 5 is fitted into the annular recess 6b. The retaining ring 9 as the first fixing member has a substantially C shape and is generally attached manually. However, the retaining ring may be attached using a machine.
 インナーディバイス4は、その先端側から基端側に延びる軸線4Aを有する、棒状部材である。この軸線4Aは、組み立てられた掘削工具1において、掘削工具1における上記中心軸線Aに略一致し、好ましくは一致する。図4に示されているように、インナーディバイス4は、その軸線4Aに直交する面での横断面が略円形の棒状部材である。インナーディバイス4は、ケーシングパイプ2内に軸線2Aに沿って進退可能に挿入されることができる。インナーディバイス4は、掘削ビット5に、掘削機械(不図示)からの回転力及び打撃力を伝達することができるように構成されている。本実施形態の場合、インナーディバイス4の材料は、機械構造用合金鋼鋼材(JIS G 4053)に規定のある、ニッケルクロムモリブデン鋼であるSNCM439であるが、適宜変更することが可能である。 The inner device 4 is a rod-like member having an axis 4A extending from the distal end side to the proximal end side. In the assembled excavation tool 1, this axis 4A substantially coincides with, preferably coincides with, the central axis A of the excavation tool 1. As shown in FIG. 4, the inner device 4 is a rod-like member having a substantially circular cross section in a plane orthogonal to the axis 4A. The inner device 4 can be inserted into the casing pipe 2 so as to advance and retract along the axis 2A. The inner device 4 is configured to be able to transmit a rotational force and a striking force from an excavating machine (not shown) to the excavating bit 5. In the case of the present embodiment, the material of the inner device 4 is SNCM439 which is nickel chrome molybdenum steel defined in alloy steel for machine structure (JIS G 4053), but can be changed as appropriate.
 インナーディバイス4は、第1部分(小径部分)10と、該第1部分よりも大径の第2部分(大径部分)11とが軸線4Aの方向において接続した形状を有している。第1部分10における軸線は第2部分11における軸線に一致し、軸線4Aとなる。第1部分10は第2部分11の先端側に位置し、掘削ビット5と係合可能に構成される。第2部分11はロッド12(図2参照)と係合可能に構成される。ロッド12はインナーディバイス4に対して掘削機械(不図示)からの力を伝達する部材である。また、インナーディバイス4の第2部分11の外径はケーシングパイプ2の内径とほぼ同一であり、第1部分10の外径はケーシングシュー3の第2円筒部分7の内径とほぼ同一である。ただし、図1の掘削工具1において、インナーディバイス4は、ケーシングパイプ2及びケーシングシュー3の内側で、ケーシングパイプ2及びケーシングシュー3に対して、掘削工具1の軸線Aに沿って先端側にも基端側にも動くことが可能であり、かつ、この軸線A周りに回転することが可能である。したがって、インナーディバイス4の第2部分11の外径はケーシングパイプ2の内径より小さく、第1部分10の外径はケーシングシュー3の第2円筒部分7の内径よりも小さい。また、本実施形態においては、インナーディバイス4の第1部分10の先端部における先端面10aと外周面10bとの交差部10cは、インナーディバイス4の掘削ビット5への挿入を容易にするために面取りされている。 The inner device 4 has a shape in which a first portion (small-diameter portion) 10 and a second portion (large-diameter portion) 11 having a larger diameter than the first portion are connected in the direction of the axis 4A. The axis of the first part 10 coincides with the axis of the second part 11 and becomes the axis 4A. The first portion 10 is located on the distal end side of the second portion 11 and is configured to be engageable with the excavation bit 5. The 2nd part 11 is comprised so that engagement with the rod 12 (refer FIG. 2) is possible. The rod 12 is a member that transmits force from the excavating machine (not shown) to the inner device 4. The outer diameter of the second portion 11 of the inner device 4 is substantially the same as the inner diameter of the casing pipe 2, and the outer diameter of the first portion 10 is substantially the same as the inner diameter of the second cylindrical portion 7 of the casing shoe 3. However, in the excavation tool 1 of FIG. 1, the inner device 4 is located inside the casing pipe 2 and the casing shoe 3 and also on the tip side along the axis A of the excavation tool 1 with respect to the casing pipe 2 and the casing shoe 3. It is also possible to move to the base end side, and it is possible to rotate around this axis A. Therefore, the outer diameter of the second portion 11 of the inner device 4 is smaller than the inner diameter of the casing pipe 2, and the outer diameter of the first portion 10 is smaller than the inner diameter of the second cylindrical portion 7 of the casing shoe 3. In the present embodiment, the intersection 10c between the distal end surface 10a and the outer peripheral surface 10b at the distal end portion of the first portion 10 of the inner device 4 is used to facilitate the insertion of the inner device 4 into the excavation bit 5. It is chamfered.
 インナーディバイス4は、図4に示されているように外周方向に均等間隔で配置された3つの凹部13を有している。これらの凹部13は、それぞれ、軸線4Aに平行にインナーディバイス4の全長にわたって形成されている。したがって、凹部13は、インナーディバイス4の第1部分10の先端面10aに開くと共に、その第2部分11の基端面11aにも開く。また、凹部13は、径方向外側に開くように形成されている。 The inner device 4 has three recesses 13 arranged at equal intervals in the outer circumferential direction as shown in FIG. Each of these recesses 13 is formed over the entire length of the inner device 4 in parallel with the axis 4A. Therefore, the recess 13 opens on the distal end surface 10 a of the first portion 10 of the inner device 4 and also opens on the proximal end surface 11 a of the second portion 11. Moreover, the recessed part 13 is formed so that it may open to a radial direction outer side.
 また、凹部13は、インナーディバイス4の先端側の軸線方向の一定距離の領域において基端側の他の領域よりも幅広の第1凹部分14を有している。図1及び図2の掘削工具における掘削前進時、インナーディバイス4はその軸線4Aの周りに正回転方向(第1回転方向)Kに回転されて用いられる。第1凹部分14は、インナーディバイス4の軸線4A周りの正回転方向Kの逆側に、つまり逆回転方向(第2回転方向)に凹部13を拡げるように設けられた拡張部分14aを含む。なお、正回転方向とは、後述する記載から明らかであるように、インナーディバイス4を掘削ビットに係合させて、インナーディバイス4を掘削ビット5と一緒に回転させるための方向である。これに対して、逆回転方向とは、例えば、インナーディバイス4と掘削ビット5との係合を解除するための方向である。 Further, the recess 13 has a first recess portion 14 that is wider than the other region on the proximal end side in a region of a constant distance in the axial direction on the distal end side of the inner device 4. At the time of excavation advancement in the excavation tool of FIGS. 1 and 2, the inner device 4 is rotated and used in the normal rotation direction (first rotation direction) K around the axis 4A. The first concave portion 14 includes an extended portion 14a provided on the opposite side of the forward rotation direction K around the axis 4A of the inner device 4, that is, so as to expand the concave portion 13 in the reverse rotation direction (second rotation direction). The positive rotation direction is a direction for causing the inner device 4 to engage with the excavation bit and rotating the inner device 4 together with the excavation bit 5 as will be apparent from the description to be described later. On the other hand, the reverse rotation direction is a direction for releasing the engagement between the inner device 4 and the excavation bit 5, for example.
 拡張部分14aは、第1凹部分14と同様に、インナーディバイス4の先端面10aにまで延びるように軸線4Aに略平行に設けられている。凸部13の第1凹部分14は、特にそのうちの拡張部分14aは、凹状の第1係合要素として設けられている。第1凹部分14の拡張部分14aは、後述する掘削ビット5の凸部(第2係合要素)と係合し、該凸部を正回転方向Kに押すことができるように形付けられている。 The extended portion 14a is provided substantially parallel to the axis 4A so as to extend to the front end surface 10a of the inner device 4 in the same manner as the first concave portion 14. The first concave portion 14 of the convex portion 13 is provided as a concave first engaging element, in particular, the expanded portion 14a thereof. The extended portion 14a of the first concave portion 14 is shaped so as to engage with a convex portion (second engagement element) of the excavating bit 5 described later and to push the convex portion in the normal rotation direction K. Yes.
 また、この凹部13は、先端側の第1凹部分14(幅広部分)と、この第1凹部分よりも幅(周方向の長さ)が狭い基端側の第2凹部分(幅狭部分)15とにおいて深さが異なるように形成されている。第2凹部分15の底面に比べて第1凹部分14の底面は軸線4A側に位置付けられている。 Further, the concave portion 13 includes a first concave portion 14 (wide portion) on the distal end side and a second concave portion (narrow portion on the proximal end side) having a narrower width (length in the circumferential direction) than the first concave portion. ) 15 and a different depth. Compared with the bottom surface of the second concave portion 15, the bottom surface of the first concave portion 14 is positioned on the axis 4 </ b> A side.
 インナーディバイス4の第2部分11は、図4に示されているように、前述した第1部分10の基端側に位置付けられていて、凹部13は第2部分11の基端面11aまで伸長している。軸線4Aを含む面での凹部13の断面において、第1凹部分14を除いて、凹部13の底面13aからインナーディバイス4の軸線4aまでの距離は、第1部分10における部分と第2部分11における部分とで変化はない。したがって、第1部分10よりも第2部分11が大きな外径または外形を有するので、その分だけ、第2部分11において、凹部13の深さが第1部分10でのその深さよりも大きくなっている。 As shown in FIG. 4, the second portion 11 of the inner device 4 is positioned on the base end side of the first portion 10 described above, and the recess 13 extends to the base end surface 11 a of the second portion 11. ing. In the cross section of the recess 13 on the plane including the axis 4A, the distance from the bottom surface 13a of the recess 13 to the axis 4a of the inner device 4 excluding the first recess portion 14 is the portion in the first portion 10 and the second portion 11. There is no change in the part. Accordingly, since the second portion 11 has a larger outer diameter or outer shape than the first portion 10, the depth of the recess 13 is larger than the depth of the first portion 10 in the second portion 11. ing.
 また、インナーディバイス4には、その内周面によって、軸線4Aに沿って先端面10aと基端面11aとを貫通するように延びる貫通孔4bが形成されている。貫通孔4bは、第1円筒状空間16と第2空間17とからなる。 Further, the inner device 4 is formed with a through-hole 4b extending along the axis 4A so as to penetrate the distal end surface 10a and the proximal end surface 11a by the inner peripheral surface thereof. The through hole 4 b includes a first cylindrical space 16 and a second space 17.
 特に第1部分10の内部には、インナーディバイス4の内周面により、軸線4Aに沿って第1円筒状空間16が区画形成されている。第1円筒状空間16の一端はインナーディバイス4の先端面10aに開口しており、他端は第2部分11内にまで延びている。この第1円筒状空間16には掘削中に掘削機械から水が供給されて、この水はインナーディバイス4の先端面10aに位置付けられた先端開口部16aから排出される。この水は、第2空間17に配置されるロッド12に設けられた図示しない貫通穴を通して掘削機械からインナーディバイス4へ供給される。これによって、掘削によって生じた石等の破砕粒を穴から流しだすことができる。 In particular, a first cylindrical space 16 is partitioned and formed along the axis 4A by the inner peripheral surface of the inner device 4 inside the first portion 10. One end of the first cylindrical space 16 opens to the front end surface 10 a of the inner device 4, and the other end extends into the second portion 11. During the excavation, water is supplied to the first cylindrical space 16 from the excavating machine, and the water is discharged from the front end opening 16a positioned on the front end surface 10a of the inner device 4. This water is supplied from the excavating machine to the inner device 4 through a through hole (not shown) provided in the rod 12 disposed in the second space 17. Thereby, crushed grains such as stones generated by excavation can be discharged from the hole.
 また、上で述べたように、第2部分11の内部にまでも、第1円筒状空間16が延びている。第1円筒状空間16は第1部分10から第2部分11に一続きに連続している。この第1円筒状空間16に連続して、図4(d)に示されているように、第1部分10の基端部から一定の距離離れた箇所から、基端側に、より断面積の大きな第2空間17が形成されている。すなわち、第2部分11の内部には、第1円筒状空間16の一部と、それよりも断面積が大きな第2空間17とが連続した内部空間が形成されている。これら空間16、17の両者の軸線は、インナーディバイス4の軸線4Aに一致する。この第2空間17はロッド12を挿入するための空間として形成されている。インナーディバイス4の第2部分11の基端側の部分にはロッド12を第2空間17に固定するための、第2固定部材としてのスプリングピンの通し穴18が形成されている。なお、ロッド12はインナーディバイス4の略角形断面の第2空間17内で軸線4A周りに回転しないように構成されていて、より具体的にはここではその横断面が略角形である。ただし、ロッド12の横断面は略円形であってもよく、この場合、第2空間17は略円形の断面を有するように形成されるとよい。 Further, as described above, the first cylindrical space 16 extends to the inside of the second portion 11 as well. The first cylindrical space 16 is continuous from the first portion 10 to the second portion 11. Continuing from the first cylindrical space 16, as shown in FIG. 4 (d), the cross-sectional area is further increased from the location away from the base end portion of the first portion 10 to the base end side. Large second space 17 is formed. That is, an internal space in which a part of the first cylindrical space 16 and the second space 17 having a larger cross-sectional area are continuous is formed inside the second portion 11. The axes of both the spaces 16 and 17 coincide with the axis 4A of the inner device 4. The second space 17 is formed as a space for inserting the rod 12. A through hole 18 of a spring pin as a second fixing member for fixing the rod 12 to the second space 17 is formed in a portion on the proximal end side of the second portion 11 of the inner device 4. The rod 12 is configured not to rotate around the axis 4A in the second space 17 of the substantially square cross section of the inner device 4, and more specifically, the cross section thereof is substantially square here. However, the rod 12 may have a substantially circular cross section. In this case, the second space 17 may be formed to have a substantially circular cross section.
 後述するようにインナーディバイス4の先端面10aは掘削ビット5に衝撃力を及ぼすように掘削ビット5に突き当たることができる。ここでは、先端面10aは、軸線4Aに略直角に形成されている。このような先端面10aに外接する外接円(つまり図4(b)に示される直径D1を有する円)の面積B1に対して、インナーディバイス4の第1部分10の先端面10aの実面積B2(すなわち、後述される掘削ビット5の凹部の端壁面20cと当接可能または接触可能な部分の面積)は、0.5×B1≦B2≦1.0×B1の範囲にあることが好ましい。なお、インナーディバイス4の先端面10aの外接円は、図4(c)のインナーディバイスの先端視において定められるとよい。また、インナーディバイス4の全長(軸線方向の長さ)C1に対して、図2に示されているようにケーシングパイプ2の内部に直接的に位置付けられるインナーディバイス4の第2部分11の軸線方向の長さC2は、0.3×C1≦C2≦0.8×C1の範囲にあることが好ましい。 As will be described later, the tip surface 10 a of the inner device 4 can abut against the excavation bit 5 so as to exert an impact force on the excavation bit 5. Here, the tip surface 10a is formed substantially perpendicular to the axis 4A. The actual area B2 of the front end surface 10a of the first portion 10 of the inner device 4 with respect to the area B1 of the circumscribed circle circumscribing the front end surface 10a (that is, the circle having the diameter D1 shown in FIG. 4B). (That is, the area of the portion that can contact or contact the end wall surface 20c of the recess of the excavation bit 5 described later) is preferably in the range of 0.5 × B1 ≦ B2 ≦ 1.0 × B1. Note that the circumscribed circle of the front end surface 10a of the inner device 4 may be determined in the front end view of the inner device in FIG. Further, the axial direction of the second portion 11 of the inner device 4 positioned directly inside the casing pipe 2 as shown in FIG. 2 with respect to the total length (length in the axial direction) C1 of the inner device 4. Is preferably in the range of 0.3 × C1 ≦ C2 ≦ 0.8 × C1.
 掘削ビットディバイス(以下、掘削ビット)5は、図5に示されているように、先端側の第1部分(以下、第1先端部)19と基端側の第2部分(以下、第2基端部)20とを有し、それらを通過するように延びる軸線5Aを有する。この軸線5Aは、掘削工具1が組み立てられたときに、掘削工具1における上記中心軸線Aに略一致するまたは一致する。 As shown in FIG. 5, the drill bit device (hereinafter referred to as a drill bit) 5 includes a first portion (hereinafter referred to as a first tip portion) 19 on the distal end side and a second portion (hereinafter referred to as a second portion) on the proximal end side. And an axis 5A extending so as to pass therethrough. The axis 5A substantially coincides with or coincides with the central axis A of the excavation tool 1 when the excavation tool 1 is assembled.
 掘削ビット5は、その第2基端部20に開口部20aを有し、この開口部20aで第2基端部に開く凹部20bを備える。凹部20bは、軸線5Aに沿って回転対称に形成され、略円筒形状の側壁の内周面と略径方向に延在する先端壁の端壁面20cにより概ね区画形成される。凹部20bの端壁面20cは、インナーディバイス44の先端部が軸線方向において突き当たることが可能に構成されている。 The excavation bit 5 has an opening 20a at the second base end 20 thereof, and is provided with a recess 20b that opens at the second base end at the opening 20a. The recess 20b is formed rotationally symmetrically along the axis 5A, and is generally defined by an inner peripheral surface of the substantially cylindrical side wall and an end wall surface 20c of the tip wall extending in a substantially radial direction. The end wall surface 20c of the recess 20b is configured such that the tip of the inner device 44 can abut in the axial direction.
 掘削ビット5の第1先端部19は、掘削工具1の掘削部として構成されている。掘削ビット5の第1先端部19は、先端面19aを有する。先端面19aは、反対側に端壁面20cを有する先端壁の先端側の外表面である。先端面19aは、掘削ビット5の軸線5Aとの交差部5bから、該掘削ビット5の外周面5cに向けて径方向に延在する。掘削ビット5の第1先端部19の先端面19aは、地山の掘削に直接的に関与する3つの掘削部材(ビット部材)21を備える。掘削ビット5の凹部20bは、その開口部20aを介して前述したインナーディバイス4が挿入可能に構成されている。ここでは、凹部20aは第1先端部19にまで延びている(図2参照)。第2基端部20は、第1先端部19よりも外径が小さく形成されている。 The first tip 19 of the excavation bit 5 is configured as an excavation part of the excavation tool 1. The first tip 19 of the excavation bit 5 has a tip 19a. The distal end surface 19a is an outer surface on the distal end side of the distal end wall having the end wall surface 20c on the opposite side. The distal end surface 19 a extends in the radial direction from the intersecting portion 5 b with the axis 5 </ b> A of the excavation bit 5 toward the outer peripheral surface 5 c of the excavation bit 5. The distal end surface 19a of the first distal end portion 19 of the excavation bit 5 includes three excavation members (bit members) 21 that are directly involved in excavation of natural ground. The recess 20b of the excavation bit 5 is configured such that the inner device 4 described above can be inserted through the opening 20a. Here, the recess 20a extends to the first tip 19 (see FIG. 2). The second base end portion 20 is formed to have an outer diameter smaller than that of the first tip end portion 19.
 掘削ビット5の第1先端部19の先端面19aは図5(b)において略円形をなしている。軸線5Aに沿って掘削ビット5を第1先端部19の先端面19aに対向する側からみたとき、つまり図5(b)の先端視において、掘削ビット5の外周面5c及び第2基端部20は先端面19aの存在により実質的に見えない。 The distal end surface 19a of the first distal end portion 19 of the excavation bit 5 has a substantially circular shape in FIG. When the excavation bit 5 is viewed from the side facing the distal end surface 19a of the first distal end portion 19 along the axis 5A, that is, in the distal end view of FIG. 5B, the outer peripheral surface 5c and the second proximal end portion of the excavation bit 5 20 is substantially invisible due to the presence of the tip surface 19a.
 また、掘削ビット5をケーシングパイプ2に取り付けるとき、第2基端部20は、ケーシングシュー3内に挿入されて、ケーシングシュー3を介してケーシングパイプ2に取り付けられる。このとき図1及び図2に明瞭に示されるように、第1先端部19の最大外径(図1における軸線Aに直交する方向での最大長さ)D2は、ケーシングパイプ2の外径(図1における軸線Aに直交する方向での長さ)D3よりも大きい。そして、掘削ビット5の先端面19aは、軸線との交差部5bから外周面5cまで延在するので、第1先端部19の最大外径D2は、第1先端部19の先端面19aの回転軌跡の径D4に実質的に相当する。したがって、第1先端部19の先端面19aの回転軌跡の径D4は、ケーシングパイプ2の外径D3よりも大きい。ここで、第1先端部19の先端面19aの回転軌跡の径D4とは、図5(b)の先端視における、先端面19を円とみなしたときの、その円の直径を指す。つまり、掘削工具1の先端視(不図示)は図5(b)に実質的に相当し、この掘削工具1の先端視において、掘削ビット5の先端面19aの内側に、掘削ビット5、ケーシングシュー3及びケーシングパイプ2がある。したがって、掘削工具1が地山に進むとき、掘削ビット5、ケーシングシュー3及びケーシングパイプ2は、第1先端部19の先端面19aの背後に実質的に隠れる。 Further, when the excavation bit 5 is attached to the casing pipe 2, the second base end portion 20 is inserted into the casing shoe 3 and attached to the casing pipe 2 via the casing shoe 3. At this time, as clearly shown in FIGS. 1 and 2, the maximum outer diameter (the maximum length in the direction perpendicular to the axis A in FIG. 1) D <b> 2 of the first tip portion 19 is the outer diameter of the casing pipe 2 ( The length in a direction orthogonal to the axis A in FIG. Since the tip surface 19a of the excavation bit 5 extends from the intersection 5b with the axis to the outer peripheral surface 5c, the maximum outer diameter D2 of the first tip 19 is the rotation of the tip surface 19a of the first tip 19. This substantially corresponds to the diameter D4 of the locus. Therefore, the diameter D4 of the rotation locus of the tip surface 19a of the first tip part 19 is larger than the outer diameter D3 of the casing pipe 2. Here, the diameter D4 of the rotation locus of the distal end surface 19a of the first distal end portion 19 refers to the diameter of the circle when the distal end surface 19 is regarded as a circle in the distal end view of FIG. That is, the front end view (not shown) of the excavation tool 1 substantially corresponds to FIG. 5B. In the front end view of the excavation tool 1, the excavation bit 5 and the casing are disposed inside the front end surface 19a of the excavation bit 5. There is a shoe 3 and a casing pipe 2. Therefore, when the excavation tool 1 advances to the natural ground, the excavation bit 5, the casing shoe 3, and the casing pipe 2 are substantially hidden behind the distal end surface 19 a of the first distal end portion 19.
 図5(b)に示す掘削ビット5の第1先端部19の端面視(先端視)において、掘削部材21は、第1先端部19の先端面19aにおいて、少なくとも軸線5A付近から外周端19b(5cに相当)まで径方向においてカバーしていることが求められ、本実施形態では中心軸線付近から外周端まで連続的に設けられている。しかし、掘削部材21は、断続的に設けられていてもよい。先端部19の先端面19aの中心(軸線との交差部)またはその付近から外周端にかけて1つの掘削部材21が延在していてもよいし、複数の掘削部材21が組み合わさって中心またはその付近から外周端までの範囲をカバーしていてもよい。このように掘削部材21が中心軸線5Aまたはその付近から外周端19bまで連続的または断続的に設けられることで、掘削ビット5だけで内周側掘削と外周側掘削とを行うことができる。 5B, in the end face view (tip view) of the first tip portion 19 of the excavation bit 5, the excavation member 21 has an outer peripheral end 19b (at least from the vicinity of the axis 5A on the tip surface 19a of the first tip portion 19). (Corresponding to 5c) is required to be covered in the radial direction, and in this embodiment, it is continuously provided from the vicinity of the central axis to the outer peripheral end. However, the excavation member 21 may be provided intermittently. One excavation member 21 may extend from the center of the front end surface 19a of the front end portion 19 (intersection with the axis) or from the vicinity thereof to the outer peripheral end. The range from the vicinity to the outer peripheral edge may be covered. As described above, the excavation member 21 is continuously or intermittently provided from the central axis 5A or the vicinity thereof to the outer peripheral end 19b, whereby the inner peripheral side excavation and the outer peripheral side excavation can be performed only by the excavation bit 5.
 本実施形態では、掘削ビット5の先端部19の先端面19a上には、掘削部材21を装着又は形成することが可能な掘削部材領域22が規定されている。掘削部材21として超硬チップを採用しているが、他の材料から作られたチップが用いられてもよい。3つの掘削部材領域22は、第1先端部19の端面視において、軸線5A周りに放射状に周方向に均等の間隔(約120度間隔)で設けられ、その各々は一定の幅を有する帯状の領域である。この3つの帯状の領域は軸線5A上において合流している。しかし、掘削部材領域22の数はこれに限定されることはなく、1つでも、3つ以外の複数であってもよい。また、3つの掘削部材領域22は全て、掘削ビット5の軸線に対して直交する同一平面S1上に延在する。本実施形態の場合、軸線5Aを中心として放射状に3つの掘削部材21が配置される。そのために、帯状の掘削部材領域22に板状の超硬チップを挿入するための凹部(不図示)が形成されており、超硬チップはその凹部にろう付けで固定されている。しかしながら、超硬チップを固定する方法はこれに限定されることはなく、適宜変更することが可能である。 In the present embodiment, a drilling member region 22 in which the drilling member 21 can be mounted or formed is defined on the distal end surface 19a of the distal end portion 19 of the drilling bit 5. Although a cemented carbide tip is adopted as the excavation member 21, a tip made of another material may be used. The three excavation member regions 22 are provided in the circumferential direction in the radial direction around the axis 5A in the end surface view of the first tip portion 19 (at intervals of about 120 degrees), each of which is a belt-like shape having a certain width. It is an area. These three belt-like regions meet on the axis 5A. However, the number of excavation member regions 22 is not limited to this, and may be one or a plurality other than three. Further, all the three excavation member regions 22 extend on the same plane S1 orthogonal to the axis of the excavation bit 5. In the case of this embodiment, three excavation members 21 are arranged radially about the axis 5A. For this purpose, a recess (not shown) for inserting a plate-like carbide tip is formed in the belt-shaped excavation member region 22, and the carbide tip is fixed to the recess by brazing. However, the method of fixing the cemented carbide chip is not limited to this, and can be changed as appropriate.
 また、掘削ビット5の先端部の先端面19aにおいて、1つの掘削部材領域22と隣り合うもう一つの掘削部材領域22との間には、中間領域23がある。3つの掘削部材領域22があるので、軸線5Aの周囲に互いに対して離れるように3つの中間領域23が形成されている。これら中間領域23は互いに同じ構成を有し、同じ形状を有する。各中間領域23は、掘削部材領域22から離間するにしたがって基端部20側へ向かって漸次後退するように形成されている(図5(a)参照)。これによって、掘削した土砂が基端側に逃げやすくなるとともに、掘削抵抗を減少させる効果もある。各中間領域23の略中央付近には、1つの貫通孔24が形成されていて、この貫通孔24は軸線5A方向に先端面19aを貫通する。この貫通孔24は軸線5Aを中心とした円の円弧に実質的に沿うように延在し、その円弧に沿った略長円形状を有する。3つの貫通孔24は、軸線5Aを中心とした単一円上に略等間隔で配置されている。 Also, in the distal end surface 19a of the distal end portion of the excavation bit 5, there is an intermediate region 23 between one excavation member region 22 and another adjacent excavation member region 22. Since there are three excavation member regions 22, three intermediate regions 23 are formed around the axis 5A so as to be separated from each other. These intermediate regions 23 have the same configuration and the same shape. Each intermediate region 23 is formed so as to gradually recede toward the base end portion 20 as the distance from the excavation member region 22 increases (see FIG. 5A). This makes it easy for the excavated earth and sand to escape to the base end side, and also has an effect of reducing excavation resistance. One through hole 24 is formed near the center of each intermediate region 23, and this through hole 24 penetrates the tip surface 19a in the direction of the axis 5A. The through hole 24 extends substantially along a circular arc centered on the axis 5A, and has a substantially oval shape along the circular arc. The three through holes 24 are arranged at substantially equal intervals on a single circle centered on the axis 5A.
 貫通孔24の形状は、豆形状と称されることも可能である。ここで言う「豆形状」とは、図5(b)に示されているように、楕円を一方向から押しつぶしたような形状のことを指す。本実施形態の場合、加工の容易性から貫通孔24の形状として豆形状を選択している。 The shape of the through hole 24 can also be referred to as a bean shape. The “bean shape” here refers to a shape obtained by crushing an ellipse from one direction as shown in FIG. In the case of this embodiment, the bean shape is selected as the shape of the through-hole 24 from the ease of processing.
 しかし、貫通穴24の形状はこれに限定されることはなく、他の形状であってよい。また、貫通孔24は、他の位置に設けられてもよく、例えば、軸線5Aとの交差部5bに設けられてもよい。この場合、掘削ビット5の先端面19aは軸線5Aとの交差部付近から外周面5cに向けて延在し、一方で貫通孔24は掘削工具1においてインナーディバイス4が掘削ビット5から突き出ない程度の大きさを有することができる。 However, the shape of the through hole 24 is not limited to this, and may be another shape. Moreover, the through-hole 24 may be provided in another position, for example, may be provided in the intersection 5b with the axis 5A. In this case, the front end surface 19a of the excavation bit 5 extends from the vicinity of the intersection with the axis 5A toward the outer peripheral surface 5c, while the through-hole 24 is such that the inner device 4 does not protrude from the excavation bit 5 in the excavation tool 1. Can have a size of
 この貫通穴24は、掘削ビット5の外部と内部(凹部20b)とを連絡する通路を形成する。貫通孔24は、インナーディバイス4を介して供給された水の外部への流出を可能にし、また掘削した土砂の取り込み口となり得る。 The through hole 24 forms a passage that connects the outside and the inside (recess 20b) of the excavation bit 5. The through-hole 24 allows the water supplied via the inner device 4 to flow out to the outside, and can serve as an intake for excavated earth and sand.
 また、掘削ビット5の第1先端部19の外周は、その先端側部分で外径が変化しないように形成され、それに続いて、漸次外径が減少する傾斜部19cが形成されている。この傾斜部19cに続いて、この傾斜部19cの基端側の最少径よりもさらに小径の第2基端部20が設けられている。第2基端部20は、基本的に、軸線5Aの方向において外径が一定であるが、基端近くにさらに小径となった凹溝部25が設けられている。この凹溝部25は、掘削ビット5をケーシングシュー3に結合するときに用いられる、上記止め輪9を挿入するための、環状の溝である。また、前述の中間領域23に隣接する掘削ビット5の外周面には、図5(b)において円弧状に切り欠かれた切欠き部26が形成されている。この切欠き部26は、掘削ビット5の外周面上で、軸線5Aに沿った方向に傾斜部19cの途中まで延伸している。この切欠き部は、掘削された土砂を基端部20方向へと逃がす役割を有している。 Further, the outer periphery of the first tip 19 of the excavation bit 5 is formed so that the outer diameter does not change at the tip side portion, and subsequently, an inclined portion 19c in which the outer diameter gradually decreases is formed. Subsequent to the inclined portion 19c, a second base end portion 20 having a smaller diameter than the minimum diameter on the base end side of the inclined portion 19c is provided. The second base end portion 20 basically has a constant outer diameter in the direction of the axis 5A, but is provided with a recessed groove portion 25 having a smaller diameter near the base end. The recessed groove portion 25 is an annular groove for inserting the retaining ring 9 used when the excavation bit 5 is coupled to the casing shoe 3. Further, on the outer peripheral surface of the excavation bit 5 adjacent to the intermediate region 23 described above, a cutout portion 26 cut out in an arc shape in FIG. 5B is formed. The notch 26 extends on the outer peripheral surface of the excavation bit 5 to the middle of the inclined portion 19c in the direction along the axis 5A. This notch part has a role which makes the excavated earth and sand escape to the base end part 20 direction.
 掘削ビット5の凹部20bは、図5(c)及び図5(d)にて特に示されているように、略円筒状の空間を定める。そして、掘削ビット5の凹部20bの内周面には、略均等の間隔で3つの凸部(第2係合要素)27が設けられている。この凸部27は、掘削ビット5の凹部20bの略全長にわたって設けられている。より詳しくは、凸部27は、凹部20bの内周面において、掘削ビット5の後縁部近くにまで延びるように軸線5Aに実質的に平行に設けられている。凸部27は、インナーディバイス4の第1凹部分14に係合するとき、この第1凹部分14の拡張部分14aに係合するように寸法付けられている。 The recess 20b of the excavation bit 5 defines a substantially cylindrical space, as particularly shown in FIGS. 5 (c) and 5 (d). Then, three convex portions (second engagement elements) 27 are provided on the inner peripheral surface of the concave portion 20b of the excavation bit 5 at substantially equal intervals. The convex portion 27 is provided over substantially the entire length of the concave portion 20 b of the excavation bit 5. More specifically, the convex portion 27 is provided substantially parallel to the axis 5A so as to extend to the vicinity of the rear edge portion of the excavation bit 5 on the inner peripheral surface of the concave portion 20b. The convex portion 27 is dimensioned to engage with the extended portion 14 a of the first concave portion 14 when engaged with the first concave portion 14 of the inner device 4.
 さらに、掘削ビット5の凹部20bを区画形成する内周面には、凸部27に隣接して第1内凹部28と第2内凹部29とが設けられている。第1内凹部28と第2内凹部29とはそれぞれ軸線5Aに平行に延びるように形成されている。図5(c)に示すように、第1内凹部28は関連する凸部27の正回転方向K側に隣接しており、第2内凹部29は関連する凸部27の逆回転方向側に隣接している。第1内凹部28と第2内凹部29の深さ(径方向長さ)は略同一であるが、第1内凹部28の幅(周方向長さ)は第2内凹部29の幅よりも広い。第1内凹部28は、関連する貫通孔24につながるように形成され、掘削ビット5の内外を連絡する通路を部分的に形成する。また、本実施形態において、掘削ビット5の材料は、機械構造用合金鋼鋼材(JIS G 4053)に規定のある、クロムモリブデン鋼であるSCM440であるが、これに限定されることはない。 Furthermore, a first inner concave portion 28 and a second inner concave portion 29 are provided adjacent to the convex portion 27 on the inner peripheral surface that defines the concave portion 20 b of the excavation bit 5. The first inner recess 28 and the second inner recess 29 are formed so as to extend in parallel to the axis 5A. As shown in FIG. 5 (c), the first inner concave portion 28 is adjacent to the forward rotation direction K side of the related convex portion 27, and the second inner concave portion 29 is adjacent to the reverse rotational direction side of the related convex portion 27. Adjacent. The depth (diameter length) of the first inner recess 28 and the second inner recess 29 is substantially the same, but the width (circumferential length) of the first inner recess 28 is larger than the width of the second inner recess 29. wide. The first inner recess 28 is formed so as to be connected to the associated through hole 24, and partially forms a passage that communicates the inside and outside of the excavation bit 5. In the present embodiment, the material of the excavation bit 5 is SCM440, which is chromium molybdenum steel, as defined in alloy steel for machine structure (JIS G 4053), but is not limited thereto.
 次に、上述した各部材の組み立て及び、組み立てられた掘削工具1における動作について説明する。 Next, the assembly of the above-described members and the operation of the assembled excavation tool 1 will be described.
 本実施形態の掘削工具1においては、ケーシングパイプ2が互いに連結され、連結されたケーシングパイプ2の先端部2bにケーシングシュー3が溶接により取り付けられる。このケーシングシュー3には掘削ビット5が止め輪9を用いて取り付けられる。こうして形成された掘削工具1の中心軸線Aに沿った内部空間に、ロッド12が連結されたインナーディバイス4が挿入される。これにより、インナーディバイス4の先端部はケーシングパイプ2を介してケーシングシュー3の内部を通り、掘削ビット5の凹部20bに達する。インナーディバイス4は、それの第1部分10における凹部13が掘削ビット5の凹部20bの凸部27に位置合わされるようにして、掘削ビット5の凹部20bに挿入される。このようにして、ケーシングパイプ2、ケーシングシュー3、インナーディバイス4及び掘削ビット5が一体的に組み立てられたとき、これら部材の軸線は概ね上記中心軸線A上に並ぶ。 In the excavation tool 1 of the present embodiment, the casing pipes 2 are connected to each other, and the casing shoe 3 is attached to the distal end portion 2b of the connected casing pipe 2 by welding. A drill bit 5 is attached to the casing shoe 3 using a retaining ring 9. The inner device 4 to which the rod 12 is connected is inserted into the internal space along the central axis A of the excavation tool 1 formed in this way. As a result, the tip of the inner device 4 passes through the inside of the casing shoe 3 via the casing pipe 2 and reaches the recess 20b of the excavation bit 5. The inner device 4 is inserted into the recess 20b of the excavation bit 5 such that the recess 13 in the first portion 10 thereof is aligned with the projection 27 of the recess 20b of the excavation bit 5. In this way, when the casing pipe 2, the casing shoe 3, the inner device 4, and the excavation bit 5 are assembled together, the axes of these members are generally aligned on the central axis A.
 なお、インナーディバイス4の第2部分11の第2空間17には、ロッド12が挿入される。通し穴18に挿入されたスプリングピンにより、ロッド12はインナーディバイス4にしっかりと連結される。 Note that the rod 12 is inserted into the second space 17 of the second portion 11 of the inner device 4. The rod 12 is firmly connected to the inner device 4 by a spring pin inserted into the through hole 18.
 インナーディバイス4が掘削ビット5の凹部20bに挿入さていてインナーディバイス4が周方向において掘削ビット5に係合していないとき、掘削ビット5に対してインナーディバイス4を第1方向である正回転方向Kに回転させる。これにより、掘削ビット5の第2係合要素である凸部27がインナーディバイス4の第1凹部分14の第1係合要素である拡張部分14aに入り、凸部27に拡張部分14aが係合する。こうして、インナーディバイス4は、掘削ビット5に対して、拡張部分14aと凸部27とが互いに対して係合する係合位置に位置付けられる。 When the inner device 4 is inserted into the recess 20b of the excavation bit 5 and the inner device 4 is not engaged with the excavation bit 5 in the circumferential direction, the inner device 4 is rotated forward in the first direction with respect to the excavation bit 5. Rotate in direction K. Accordingly, the convex portion 27 that is the second engagement element of the excavation bit 5 enters the extended portion 14 a that is the first engagement element of the first concave portion 14 of the inner device 4, and the extended portion 14 a is engaged with the convex portion 27. Match. Thus, the inner device 4 is positioned at the engagement position where the extended portion 14 a and the convex portion 27 engage with each other with respect to the excavation bit 5.
 逆に、インナーディバイス4が、掘削ビット5に対する係合位置に位置付けられているとき、掘削ビット5に対してインナーディバイス4を第2方向である逆回転方向に回転させることで、掘削ビット5の凸部27はインナーディバイス4の拡張部分14aから離れるまたは外れる。こうして、インナーディバイス4は、掘削ビット5に対して、拡張部分14aと凸部27とが互いから解放された解放位置に位置付けられる。このように、インナーディバイス4は、掘削ビット5に対して、係合位置と解放位置との間で、相対的に動き得る。 On the contrary, when the inner device 4 is positioned at the engagement position with respect to the excavation bit 5, the inner device 4 is rotated in the reverse rotation direction, which is the second direction, with respect to the excavation bit 5. The convex portion 27 is separated from or disengaged from the extended portion 14 a of the inner device 4. Thus, the inner device 4 is positioned in the release position where the extended portion 14a and the convex portion 27 are released from each other with respect to the excavation bit 5. In this way, the inner device 4 can move relative to the excavation bit 5 between the engagement position and the release position.
 掘削ビット5に対してインナーディバイス4を正回転方向Kに回転させることで、図6に一対の係合要素のみを誇張して模式的に示すようにインナーディバイス4が掘削ビット5に周方向で係合する。このとき、さらにインナーディバイス4が正回転方向Kに回転することで、インナーディバイス4の凹部13における第1凹部分14の正回転方向K側を向いた側面14bは、掘削ビット5内周の凸部27の逆回転方向側を向いた側面27aに強く接触して係合し、凸部27のその側面27aを正回転方向Kに押す。これによって、掘削ビット5はインナーディバイス4の動きに伴い、正回転方向Kに回転することが可能となる。こうして、インナーディバイス4の回転力は、掘削ビット5へと適切にしっかりと伝達される。なお、このとき、掘削ビット5は止め輪9を介してケーシングシュー3に連結されているので、ケーシングシュー3に対して掘削ビット5は回転し得る。 By rotating the inner device 4 in the normal rotation direction K with respect to the excavation bit 5, the inner device 4 is moved to the excavation bit 5 in the circumferential direction as schematically shown in FIG. Engage. At this time, when the inner device 4 further rotates in the forward rotation direction K, the side surface 14b of the concave portion 13 of the inner device 4 facing the positive rotation direction K side of the first concave portion 14 becomes convex on the inner periphery of the excavation bit 5. The side surface 27a of the portion 27 facing in the reverse rotation direction is brought into strong contact with the side surface 27a, and the side surface 27a of the convex portion 27 is pushed in the forward rotation direction K. As a result, the excavation bit 5 can rotate in the normal rotation direction K with the movement of the inner device 4. Thus, the rotational force of the inner device 4 is properly and securely transmitted to the excavation bit 5. At this time, since the excavation bit 5 is connected to the casing shoe 3 via the retaining ring 9, the excavation bit 5 can rotate with respect to the casing shoe 3.
 さらに、組み立てられた掘削工具1では、その先端視において、掘削ビット5の先端部19の先端面19aの影にケーシングパイプ2が隠れる。このような状態のときに、インナーディバイス4の第1部分10の先端面10aは掘削ビット5の凹部20b内部の先端側の端壁面20cに軸線方向において突き当てられる。掘削作業時、インナーディバイス4はこの端壁面20cを打撃することになる。これによって、インナーディバイス4を介して打撃力が掘削ビット5へと確実に伝達される。 Further, in the assembled excavation tool 1, the casing pipe 2 is hidden in the shadow of the distal end surface 19a of the distal end portion 19 of the excavation bit 5 in the distal end view. In such a state, the distal end surface 10a of the first portion 10 of the inner device 4 is abutted in the axial direction against the end wall surface 20c on the distal end side inside the recess 20b of the excavation bit 5. During the excavation work, the inner device 4 hits the end wall surface 20c. As a result, the striking force is reliably transmitted to the excavation bit 5 through the inner device 4.
 この掘削工具1では、掘削作業時、掘削ビット5の先端部を地山に向けた状態で、インナーディバイス4は、掘削ビット5に対して回転されつつ、掘削ビット5に対して押し進められる。これにより、掘削ビット5に回転力を伝え、かつ、掘削ビット5に打撃力を及ぼすことができ、それにより、所定の深さにまで、ケーシングパイプ2を送り届けることができる。そして、ケーシングパイプ2を打設した後、インナーディバイス4は逆回転方向に回転されて、引き抜かれ、掘削ビット5はケーシングパイプ2と共に地中に残される。その後、固化剤は、ケーシングパイプ2の中空の内部空間に供給される。 In this excavation tool 1, during the excavation work, the inner device 4 is pushed forward with respect to the excavation bit 5 while being rotated with respect to the excavation bit 5 with the tip portion of the excavation bit 5 facing the natural ground. Thereby, a rotational force can be transmitted to the excavation bit 5 and a striking force can be exerted on the excavation bit 5, whereby the casing pipe 2 can be delivered to a predetermined depth. After placing the casing pipe 2, the inner device 4 is rotated in the reverse rotation direction and pulled out, and the excavation bit 5 is left in the ground together with the casing pipe 2. Thereafter, the solidifying agent is supplied to the hollow internal space of the casing pipe 2.
 さらに、本実施形態の掘削工具1の作用及び効果について説明する。 Furthermore, the operation and effect of the excavation tool 1 of this embodiment will be described.
 本実施形態の掘削工具1においては、上で述べたように、掘削ビット5は、インナーディバイスの先端部が軸線方向において突き当たることが可能な壁面を有し、掘削ビット5の第1先端部の最大外径がケーシングパイプ2の外径よりも大きく、掘削部材21が掘削ビット5の先端面の中心軸線付近から外周面までをカバーするように設けられている。このように掘削ビット5のみに掘削部としての構成つまり掘削部材21が設けられ、掘削ビット5に力を伝達することで地中の掘削を行うことが可能となっている。すなわち、特許文献1の掘削工具では、地中掘削に関与するビットを外周側掘削用のリングビットと内周側掘削用のインナービットとに分割した構成を採用していたのに対し、本実施形態の掘削工具1では、外周側掘削用ビットと内周側掘削用ビットとを一体的に備えた掘削ビット5によって全掘削領域をカバーしている。このように掘削ビットが構成されているので、インナーディバイス4は掘削ビット5に対して押し進められるとき、その軸線方向の力である打撃力は、確実に、インナーディバイス4から掘削ビット5に伝達される。一方、インナーディバイス4の第1係合要素が掘削ビット5の第2係合要素に係合することで、インナーディバイス4から、径方向の力である回転力は、掘削ビットに伝達される。このように、掘削ビット5へのインナーディバイス4からの回転力の伝達機構と、掘削ビット5へのインナーディバイス4からの打撃力の伝達機構とが、掘削工具1では独立した関係にある。それ故、掘削工具1では、掘削機械からの回転力及び打撃力のうちの少なくとも一方を、特に打撃力を、しっかりとインナーディバイス4から掘削ビット5へ伝達することができる。したがって、従来において発生していた、インナービットに加えられた回転力及び打撃力がリングビットへと伝達される際における力の伝達損失を低減することができる。よって、本実施形態の掘削工具1によれば、そのような伝達損失による掘削効率の低下を緩和するまたは防ぐことができ、高能率掘削を行うことが可能となる。さらに、地盤の強度が高い箇所においては掘削抵抗が非常に大きくなるため、本実施形態のそのような構成は特に有効となる。 In the excavation tool 1 of the present embodiment, as described above, the excavation bit 5 has a wall surface on which the tip of the inner device can abut in the axial direction. The maximum outer diameter is larger than the outer diameter of the casing pipe 2, and the excavation member 21 is provided so as to cover from the vicinity of the central axis of the distal end surface of the excavation bit 5 to the outer peripheral surface. Thus, only the excavation bit 5 is provided with a configuration as an excavation part, that is, an excavation member 21, and excavation in the ground can be performed by transmitting force to the excavation bit 5. That is, the excavation tool of Patent Document 1 employs a configuration in which a bit involved in underground excavation is divided into a ring bit for excavation on the outer peripheral side and an inner bit for excavation on the inner peripheral side. In the excavation tool 1 of the form, the entire excavation area is covered by the excavation bit 5 integrally provided with the outer peripheral side excavation bit and the inner peripheral side excavation bit. Since the excavation bit is configured in this way, when the inner device 4 is pushed forward with respect to the excavation bit 5, the striking force, which is the axial force, is reliably transmitted from the inner device 4 to the excavation bit 5. The On the other hand, when the first engagement element of the inner device 4 is engaged with the second engagement element of the excavation bit 5, the rotational force, which is a radial force, is transmitted from the inner device 4 to the excavation bit. Thus, the transmission mechanism of the rotational force from the inner device 4 to the excavation bit 5 and the transmission mechanism of the striking force from the inner device 4 to the excavation bit 5 are in an independent relationship in the excavation tool 1. Therefore, in the excavation tool 1, at least one of the rotational force and the striking force from the excavating machine, in particular the striking force, can be securely transmitted from the inner device 4 to the excavation bit 5. Therefore, it is possible to reduce the transmission loss of force when the rotational force and the striking force applied to the inner bit are transmitted to the ring bit. Therefore, according to the excavation tool 1 of the present embodiment, it is possible to mitigate or prevent such a decrease in excavation efficiency due to transmission loss, and to perform highly efficient excavation. Furthermore, since the excavation resistance becomes very large at a location where the strength of the ground is high, such a configuration of the present embodiment is particularly effective.
 また、本実施形態の掘削工具1において掘削ビットは、上記構成を備えるので、従来の掘削工具におけるリングビットとインナービットとの間に石や土砂が噛みこまれることによって、それらのビットが破損してしまう問題と無縁である。これはビットの長寿命化につながり、工具全体にかかるコストを大きく抑制することとなる。 In addition, since the excavation bits in the excavation tool 1 of the present embodiment have the above-described configuration, stones and earth and sand are bitten between the ring bit and the inner bit in the conventional excavation tool, and the bits are damaged. It has nothing to do with the problem. This leads to a longer life of the bit and greatly reduces the cost of the entire tool.
 さらに、本実施形態では、インナーディバイス4はその先端部にその先端面にまで延びる第1係合要素を有し、掘削ビット5は凹部に第2係合要素を有する。そしてこれら第1及び第2係合要素の係合によりインナーディバイス4は掘削ビット5に周方向で係合することができる。このように、掘削工具1では、インナーディバイス4の第1係合要素を、その先端面にまで延びるように設けているので、インナーディバイス4の径方向寸法を相対的に小さくし易い。 Furthermore, in the present embodiment, the inner device 4 has a first engagement element extending to the tip surface at the tip, and the excavation bit 5 has a second engagement element in the recess. The inner device 4 can be engaged with the excavation bit 5 in the circumferential direction by the engagement of the first and second engagement elements. Thus, in the excavation tool 1, since the first engagement element of the inner device 4 is provided so as to extend to the tip end surface, the radial dimension of the inner device 4 can be relatively easily reduced.
 一方、特許文献1の掘削工具では、インナービットの先端部をリングビットの中央部から先端側に突出させなければならない。それ故、そのインナービットは、その先端からある程度離れたその外周面に係合要素を備えなければならない。よって、特許文献1の掘削工具では、インナービットの外径を小さくすることに関して多くの制限がある。 On the other hand, in the excavation tool of Patent Document 1, the tip portion of the inner bit must protrude from the center portion of the ring bit toward the tip side. Therefore, the inner bit must be provided with an engagement element on its outer peripheral surface that is some distance away from its tip. Therefore, in the excavation tool of patent document 1, there are many restrictions regarding reducing the outer diameter of the inner bit.
 したがって、特許文献1の掘削工具のインナービットに比べて、本実施形態の掘削工具におけるインナーディバイス4は径方向寸法(軸線に直交する方向の幅)を小さくすることに利点を有する。そのため、本実施形態においては、相対的に小径のインナーディバイス4のみを引き抜き、掘削ビット5はケーシングパイプ2と共に地中に残される。したがって、掘削工具1によれば、ケーシングパイプ2を、相対的に小径のインナーディバイス4が通過できる程度に小径にすることが可能になる。したがって、掘削工具1によれば、掘削に要するエネルギを低減することができる。そして、そのため、ケーシングパイプ2に投入する固化剤の量を従来と比較して大幅に減少させることができるので、結果として工事全体のコストを抑制することができる。 Therefore, compared with the inner bit of the excavating tool of Patent Document 1, the inner device 4 in the excavating tool of this embodiment has an advantage in reducing the radial dimension (width in the direction perpendicular to the axis). Therefore, in this embodiment, only the relatively small-diameter inner device 4 is pulled out, and the excavation bit 5 is left in the ground together with the casing pipe 2. Therefore, according to the excavation tool 1, it is possible to make the casing pipe 2 small in diameter so that the relatively small diameter inner device 4 can pass therethrough. Therefore, according to the excavation tool 1, the energy required for excavation can be reduced. As a result, the amount of the solidifying agent to be introduced into the casing pipe 2 can be greatly reduced as compared with the conventional case. As a result, the cost of the entire construction can be suppressed.
 また、本実施形態は、掘削ビット5とインナーディバイス4とが、掘削ビット5の凹部内の凸部27とインナーディバイス4の先端側の第1部分10の凹部13との組み合わせという非常にシンプルな係合関係により周方向において連結される。この係合関係においては、インナーディバイス4を逆回転方向に回転させて、ケーシングパイプ2からインナーディバイス4を後方に引っ張るだけで、容易にインナーディバイス4をケーシングパイプ2から抜くことができる。 Further, in the present embodiment, the excavation bit 5 and the inner device 4 have a very simple combination of the convex portion 27 in the concave portion of the excavation bit 5 and the concave portion 13 of the first portion 10 on the tip side of the inner device 4. They are connected in the circumferential direction by the engagement relationship. In this engagement relationship, the inner device 4 can be easily pulled out of the casing pipe 2 simply by rotating the inner device 4 in the reverse rotation direction and pulling the inner device 4 backward from the casing pipe 2.
 一方、特許文献1の掘削工具では、インナービットの先端部をリングビットの中央部から先端側に突出させなければならないので、インナービットと掘削ビットとの係合構造は複雑であり、かつ、それらの接続部は掘削工具の先端に連続する。したがって、インナービットとリングビットとの接続部には石や土砂が進入し易く、リングビットとインナービットとの隙間に石などが噛み込まれたときなどは、その影響により、リングビットとインナービットとの係合は解除し難くなるので、特許文献1の掘削工具では、その係合解除のためにさらなる工夫を必要としている。 On the other hand, in the excavation tool of Patent Document 1, since the distal end portion of the inner bit has to protrude from the central portion of the ring bit toward the distal end side, the engagement structure between the inner bit and the excavation bit is complicated, and those Is connected to the tip of the drilling tool. Therefore, it is easy for stones and earth and sand to enter the connection between the inner bit and the ring bit. When stones are caught in the gap between the ring bit and the inner bit, the ring bit and inner bit are affected by the effect. Since it is difficult to release the engagement, the excavation tool of Patent Document 1 requires further contrivance for releasing the engagement.
 これに対し、本実施形態の掘削工具1は、前述した構成の単一の掘削ビット5を用いているため、インナーディバイスと掘削ビットとの係合構造を簡単にしつつ、それらの係合部で問題が生じる可能性をも低減できる。 On the other hand, since the excavation tool 1 of the present embodiment uses the single excavation bit 5 having the above-described configuration, the engagement structure between the inner device and the excavation bit is simplified, and the engagement portions thereof are used. It is also possible to reduce the possibility of problems.
 また、上記のごとく、インナーディバイス4の第1部分10の先端面の外接円の面積B1に対して、インナーディバイス4の第1部分10の先端面10aの実面積B2は、0.5×B1≦B2≦1.0×B1の範囲にあることが好ましい。インナーディバイス4の第1部分10側の先端面の実面積B2がこの範囲にあることによって、ロッド12によってインナーディバイス4に加えられた打撃力を掘削ビット5へ、最も効率的に伝達することが可能となる。B2<0.5×B1の場合、打撃面が小さくなりすぎてしまいインナーディバイス4の強度が低下するおそれが生じるために好ましくない。また、B2>B1となる場合は現実的にありえない。 Further, as described above, the actual area B2 of the tip surface 10a of the first portion 10 of the inner device 4 is 0.5 × B1 with respect to the area B1 of the circumscribed circle of the tip surface of the first portion 10 of the inner device 4. ≦ B2 ≦ 1.0 × B1 is preferable. Since the actual area B2 of the front end surface of the inner device 4 on the first portion 10 side is within this range, the striking force applied to the inner device 4 by the rod 12 can be most efficiently transmitted to the excavation bit 5. It becomes possible. In the case of B2 <0.5 × B1, the striking surface becomes too small and the strength of the inner device 4 may be lowered, which is not preferable. In addition, it is practically impossible when B2> B1.
 また、上で述べたように、インナーディバイス4の全長C1に対して、インナーディバイス4の第2部分11の軸線方向の長さC2は、0.3×C1≦C2≦0.8×C1の範囲にあることが好ましい。インナーディバイス4の大径部分11の長さC2をこの範囲にすることによって、各部材の寿命と掘削性能とを適切なレベルに維持することができる。C2<0.3×C1の場合、インナーディバイス4の第1部分10のケーシングパイプ2からの突き出し量が大きくなりすぎるため、それをカバーするためにケーシングシュー3の長さを過度に大きくして補強する必要が生じる。これによって、ケーシングシュー3とインナーディバイス4又は掘削ビット5との接触面積が増大して互いの摩耗が早く進行することになり、がたつき等の不具合が発生しやすくなるおそれがある。C2>0.8×C1の場合、インナーディバイス4の第1部分10のケーシングパイプ2からの突き出し量が小さくなりすぎるため、それに合わせてケーシングシュー3の長さを過度に小さくする必要が生じ得る。これによって、ケーシングシュー3による掘削ビット5の固定力が低下することになり、がたつき等の不具合が発生しやすくなる。 Further, as described above, the length C2 in the axial direction of the second portion 11 of the inner device 4 is 0.3 × C1 ≦ C2 ≦ 0.8 × C1 with respect to the entire length C1 of the inner device 4. It is preferable to be in the range. By setting the length C2 of the large-diameter portion 11 of the inner device 4 within this range, the life and excavation performance of each member can be maintained at appropriate levels. In the case of C2 <0.3 × C1, the protruding amount of the first portion 10 of the inner device 4 from the casing pipe 2 becomes too large, so that the length of the casing shoe 3 is excessively increased to cover it. There is a need to reinforce. As a result, the contact area between the casing shoe 3 and the inner device 4 or the excavation bit 5 is increased, and the mutual wear progresses quickly, which may cause problems such as rattling. In the case of C2> 0.8 × C1, since the protruding amount of the first portion 10 of the inner device 4 from the casing pipe 2 becomes too small, it may be necessary to excessively reduce the length of the casing shoe 3 accordingly. . As a result, the fixing force of the excavation bit 5 by the casing shoe 3 is reduced, and problems such as rattling are likely to occur.
 本発明を上記2つの実施形態に基づいて説明したが、本発明は種々の変形を許容する。例えば、図8に模式的に示されるように、インナーディバイス4の第1係合要素を凸状部50にし、掘削ビット5の第2係合要素を凹状部52にしてもよい。また、上記実施形態では、インナーディバイス4の第1係合要素の数を複数にし、掘削ビット5の第2係合要素の数を複数にしたが、それぞれ1つであってもよい。ただし、掘削機械からの力をより好適に掘削ビットに伝達するためには、インナーディバイス4の第1係合要素の数は、掘削ビット5の第2係合要素の数に等しく、それぞれ複数であり、それらは掘削工具の中心軸線A周りに回転対称に配置されるとよい。 Although the present invention has been described based on the above two embodiments, the present invention allows various modifications. For example, as schematically shown in FIG. 8, the first engagement element of the inner device 4 may be a convex part 50, and the second engagement element of the excavation bit 5 may be a concave part 52. Moreover, in the said embodiment, although the number of the 1st engagement elements of the inner device 4 was made into multiple, and the number of the 2nd engagement elements of the excavation bit 5 was made into multiple, each may be one. However, in order to more suitably transmit the force from the excavating machine to the excavating bit, the number of the first engaging elements of the inner device 4 is equal to the number of the second engaging elements of the excavating bit 5, and each of them is plural. Yes, they may be arranged rotationally symmetrical around the central axis A of the excavation tool.
 以上、本発明の代表的な実施形態及びその変形例について説明したが、本発明は種々の変更が可能であり、本願の請求の範囲によって定義される本発明の精神及び範囲から逸脱しない限り、置換、変更が可能である。 The exemplary embodiments of the present invention and the modifications thereof have been described above. However, the present invention can be variously modified and changed without departing from the spirit and scope of the present invention defined by the claims of the present application. Replacement and change are possible.

Claims (13)

  1.  先端側から基端側に延びる中心軸線を有する円筒状のケーシングパイプ(2)内に前記軸線に沿って進退可能に挿入されるインナーディバイス(4)と、
     前記ケーシングパイプ(2)の先端部に取り付けられる掘削ビット(5)であって、前記インナーディバイス(4)と係合可能な掘削ビット(5)と
    を備え、
     前記掘削ビット(5)は、少なくとも1つの掘削部材(21)を備えた第1部分(19)と、該第1部分の基端側の第2部分(20)とを有し、
     該掘削ビット(5)は、前記インナーディバイス(4)の先端部が軸線方向において突き当たることが可能な壁面(20c)を有し、
      前記掘削ビット(5)の前記第1部分(19)の最大外径は前記ケーシングパイプ(2)の外径よりも大きい、掘削工具(1、100)。
    An inner device (4) inserted into a cylindrical casing pipe (2) having a central axis extending from the distal end side to the proximal end side so as to be movable back and forth along the axis;
    A drill bit (5) attached to the tip of the casing pipe (2), the drill bit (5) being engageable with the inner device (4);
    The drill bit (5) has a first part (19) with at least one drill member (21) and a second part (20) proximal to the first part,
    The excavation bit (5) has a wall surface (20c) capable of abutting the tip of the inner device (4) in the axial direction,
    The excavation tool (1, 100), wherein the maximum outer diameter of the first part (19) of the excavation bit (5) is larger than the outer diameter of the casing pipe (2).
  2.  前記インナーディバイス(4)は第1係合要素を備え、
     前記掘削ビット(5)は前記第2部分(20)で開く凹部(20b)を備え、該凹部に前記第1係合要素と係合可能な第2係合要素を備え、
     前記インナーディバイス(4)が前記凹部に挿入されているとき、前記インナーディバイス(4)は、前記第1係合要素と前記第2係合要素とが互いに対して係合する係合位置と、前記第1係合要素と前記第2係合要素とが互いから解放された解放位置との間で、前記掘削ビットに対して相対的に動くことができる、
    請求項1に記載の掘削工具。
    The inner device (4) comprises a first engagement element;
    The excavation bit (5) includes a recess (20b) that opens at the second portion (20), and the recess includes a second engagement element engageable with the first engagement element,
    When the inner device (4) is inserted into the recess, the inner device (4) has an engagement position where the first engagement element and the second engagement element engage with each other; The first engagement element and the second engagement element can move relative to the drill bit between a release position released from each other;
    The excavation tool according to claim 1.
  3.  前記インナーディバイス(4)の前記第1係合要素(14a)は凹状であり、
     前記掘削ビット(5)の前記第2係合要素(27)は凸状である、
    請求項2に記載の掘削工具(1)。
    The first engagement element (14a) of the inner device (4) is concave,
    The second engagement element (27) of the drill bit (5) is convex;
    Drilling tool (1) according to claim 2.
  4.  前記インナーディバイス(4)の前記第1係合要素(50)は凸状であり、
     前記掘削ビット(5)の前記第2係合要素(52)は凹状である、
    請求項2に記載の掘削工具(1)。
    The first engagement element (50) of the inner device (4) is convex;
    The second engagement element (52) of the drill bit (5) is concave;
    Drilling tool (1) according to claim 2.
  5.  前記第1係合要素は、前記インナーディバイス(4)の先端面(10a)にまで延びるように前記軸線に略平行に設けられていて、
     前記第2係合要素は、前記掘削ビット(5)の前記凹部において、前記軸線に略平行に設けられている、
    請求項3又は4に記載の掘削工具(1)。
    The first engagement element is provided substantially parallel to the axis so as to extend to the tip surface (10a) of the inner device (4),
    The second engagement element is provided substantially parallel to the axis in the recess of the excavation bit (5).
    Drilling tool (1) according to claim 3 or 4.
  6.  前記インナーディバイス(4)における前記掘削ビット(5)に突き当たることが可能な先端面は前記軸線に略直角に形成され、
     該インナーディバイス(4)の該先端面に外接する円の面積B1に対して、該インナーディバイス(4)の該先端面の実面積B2は、0.5×B1≦B2≦1.0×B1の範囲にある、請求項1から5のいずれか一項に記載の掘削工具(1)。
    The front end surface of the inner device (4) that can hit the excavation bit (5) is formed substantially perpendicular to the axis,
    The actual area B2 of the tip surface of the inner device (4) is 0.5 × B1 ≦ B2 ≦ 1.0 × B1 with respect to the area B1 of the circle circumscribing the tip surface of the inner device (4). Excavation tool (1) according to any one of claims 1 to 5, in the range of
  7.  前記掘削ビットは、略円筒状のケーシングシュー(3)を介して、前記ケーシングパイプ(2)の前記先端部に取り付けられる、請求項1から6のいずれか一項に記載の掘削工具(1)。 The excavation tool (1) according to any one of claims 1 to 6, wherein the excavation bit is attached to the tip of the casing pipe (2) via a substantially cylindrical casing shoe (3). .
  8.  前記インナーディバイス(4)の前記軸線の方向の全長C1に対して、前記ケーシングパイプの内部に直接的に位置付けられる前記インナーディバイス(4)の部分(11)の前記軸線の方向の長さC2は、0.3×C1≦C2≦0.8×C1の範囲にある、請求項1から7のいずれか一項に記載の掘削工具(1)。 The length C2 in the axial direction of the portion (11) of the inner device (4) positioned directly inside the casing pipe with respect to the total length C1 in the axial direction of the inner device (4) is The excavation tool (1) according to any one of claims 1 to 7, wherein the excavation tool (1) is in a range of 0.3 x C1 ≤ C2 ≤ 0.8 x C1.
  9.  前記掘削ビット(5)の前記第1部分は、1つまたは複数の掘削部材(21)を備え、
     該1つまたは複数の掘削部材は、前記軸線との交差部またはその付近から外周面まで連続的又は断続的に設けられている、請求項1から8のいずれか一項に記載の掘削工具(1)。
    The first portion of the drill bit (5) comprises one or more drill members (21);
    The excavation tool according to any one of claims 1 to 8, wherein the one or more excavation members are provided continuously or intermittently from an intersection with or near the axis to the outer peripheral surface. 1).
  10.  前記掘削ビット(5)の前記第1部分(19)の先端面(19a)には、複数の掘削部材(21)が前記軸線周りに放射状に略均等の間隔で設けられている、請求項1から9のいずれか一項に記載の掘削工具(1)。 The plurality of excavation members (21) are provided radially at substantially equal intervals around the axis on the tip surface (19a) of the first portion (19) of the excavation bit (5). The excavation tool (1) according to any one of 1 to 9.
  11.  前記掘削ビット(5)の前記第1部分(19)の前記先端面において、隣り合う前記掘削部材(21)間の中間領域(23)は、該掘削部材(21)から離間するにしたがって前記掘削ビットの基端側へ漸次後退するように形成されている、請求項10に記載の掘削工具(1)。 In the tip surface of the first portion (19) of the excavation bit (5), an intermediate region (23) between adjacent excavation members (21) is excavated as the distance from the excavation member (21) increases. The excavation tool (1) according to claim 10, wherein the excavation tool (1) is formed so as to gradually retreat toward the base end side of the bit.
  12.  前記掘削ビット(5)において、前記中間領域(23)に隣接する外周面には、前記軸線に沿った方向に伸長した切欠き部(26)が形成されている、請求項11に記載の掘削工具(1)。 The excavation bit according to claim 11, wherein a notch (26) extending in a direction along the axis is formed on an outer peripheral surface adjacent to the intermediate region (23) in the excavation bit (5). Tool (1).
  13.  前記掘削部材(21)は超硬チップであることを特徴とする請求項1から12のいずれか一項に記載の掘削工具(1)。 The excavation tool (1) according to any one of claims 1 to 12, wherein the excavation member (21) is a cemented carbide tip.
PCT/JP2013/081209 2012-11-20 2013-11-19 Drilling tool WO2014080920A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014548587A JP6011637B2 (en) 2012-11-20 2013-11-19 Drilling tools

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012253859 2012-11-20
JP2012-253859 2012-11-20

Publications (1)

Publication Number Publication Date
WO2014080920A1 true WO2014080920A1 (en) 2014-05-30

Family

ID=50776100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081209 WO2014080920A1 (en) 2012-11-20 2013-11-19 Drilling tool

Country Status (2)

Country Link
JP (1) JP6011637B2 (en)
WO (1) WO2014080920A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08312280A (en) * 1995-05-16 1996-11-26 Maruwa Giken:Kk Rock bit
JP3903881B2 (en) * 2001-09-26 2007-04-11 三菱マテリアル株式会社 Drilling tools
JP4001346B2 (en) * 2004-10-05 2007-10-31 鹿島建設株式会社 Drilling device
JP4962129B2 (en) * 2007-05-09 2012-06-27 三菱マテリアル株式会社 Drilling tools

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08312280A (en) * 1995-05-16 1996-11-26 Maruwa Giken:Kk Rock bit
JP3903881B2 (en) * 2001-09-26 2007-04-11 三菱マテリアル株式会社 Drilling tools
JP4001346B2 (en) * 2004-10-05 2007-10-31 鹿島建設株式会社 Drilling device
JP4962129B2 (en) * 2007-05-09 2012-06-27 三菱マテリアル株式会社 Drilling tools

Also Published As

Publication number Publication date
JPWO2014080920A1 (en) 2017-01-05
JP6011637B2 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
AU717418B2 (en) Method and apparatus for attaching a casing to a drill bit in overburden drilling equipment
KR20170042568A (en) Excavation tool
JP4767307B2 (en) Double pipe drilling rig
JP5439073B2 (en) Double pipe drilling tool
JP5582649B2 (en) Double pipe drilling device
KR101745393B1 (en) Withdrawable hammer bit
JP6011637B2 (en) Drilling tools
JP3014349B2 (en) Drilling tool
JP5899620B2 (en) Excavation tool and manufacturing method thereof
JP6542179B2 (en) Core material burial method
JP4475497B2 (en) Self-drilling lock bolt and self-drilling lock bolt construction method
JP4463154B2 (en) Peripheral bit of steel pipe
JP5513162B2 (en) Drilling tools
WO2018030464A1 (en) Excavating tool
EP1399640A1 (en) Rock drilling tool, a ring drill bit and an adapter for percussive drilling
KR101819369B1 (en) Withdrawable hammer bit
JP5820573B2 (en) Drilling tools
JP2006152602A (en) Excavator
JP3500371B2 (en) Buried pipe for double pipe drilling
JP4699147B2 (en) Drilling head
JP6759726B2 (en) Drilling tool
JP2004052437A (en) Double pipe boring device used in pressurized water
JP4144173B2 (en) Excavation method and cutter used in the excavation method
JP6589374B2 (en) Drilling tools
WO2017057716A1 (en) Drilling tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856247

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014548587

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856247

Country of ref document: EP

Kind code of ref document: A1