WO2014080657A1 - Boiler device - Google Patents

Boiler device Download PDF

Info

Publication number
WO2014080657A1
WO2014080657A1 PCT/JP2013/066185 JP2013066185W WO2014080657A1 WO 2014080657 A1 WO2014080657 A1 WO 2014080657A1 JP 2013066185 W JP2013066185 W JP 2013066185W WO 2014080657 A1 WO2014080657 A1 WO 2014080657A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air supply
pressure
blower
supply duct
Prior art date
Application number
PCT/JP2013/066185
Other languages
French (fr)
Japanese (ja)
Inventor
孝明 大西
栄紀 鈴木
啓二 西村
Original Assignee
三浦工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三浦工業株式会社 filed Critical 三浦工業株式会社
Publication of WO2014080657A1 publication Critical patent/WO2014080657A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/04Measuring pressure
    • F23N2225/06Measuring pressure for determining flow

Definitions

  • the present invention relates to a boiler device.
  • This application claims priority based on Japanese Patent Application No. 2012-256900 for which it applied to Japan on November 22, 2012, and uses the content here.
  • boilers that generate steam by heating water with combustion gas generated by burning fuel gas in a can body are known.
  • the fuel gas is mixed with combustion air and then supplied to the can body.
  • the ratio (air / fuel ratio) at which the combustion air supplied to the can body and the fuel gas are mixed needs to be kept constant in order to stabilize the combustion state inside the can body.
  • a pressure reducing means is provided inside the air supply duct through which the combustion air flows.
  • Patent Document 1 which controls the amount of fuel gas to be supplied based on the pressure difference (pressure loss) between before and after.
  • Patent Document 1 In a boiler in which such an air heater is provided in an air supply duct, the technique described in Patent Document 1 is applied to control the amount of gas supplied based on the pressure loss of combustion air flowing through the air supply duct Even if the volumetric flow rate (m 3 / h) of combustion air is the same, the mass flow rate (kg / h) of combustion air increases as the temperature of combustion air decreases, so the fuel gas supplied This amount tends to be smaller than the amount of fuel gas required for combustion. Conversely, if the temperature of the combustion air increases, the mass flow rate decreases even if the volume flow rate of the combustion air is the same, so the amount of fuel gas supplied is the amount of fuel gas required for combustion Tend to be more.
  • an air heater for heating combustion air is provided in the supply duct of the boiler, and further, a pressure reducing member is provided in the supply duct, and the difference in pressure before and after the pressure reducing means is determined.
  • the amount of gas to be supplied is controlled based on this, there is a high probability that the difference between the actually required gas amount and the supplied gas amount will increase.
  • the temperature of the combustion air is low, so the amount of gas supplied tends to be smaller than the amount of gas required for ignition, and it is difficult to ignite the fuel gas. There has been a case where a problem occurs.
  • the present invention solves the above-described problem, and even when an air heater is provided in an air supply duct, a boiler device capable of maintaining a constant ratio of mixing combustion air and fuel gas.
  • the purpose is to provide.
  • the present invention relates to a can body, a blower that supplies air to the can body, an air supply duct that connects the can body and the blower, and through which air supplied from the blower circulates, and the air supply duct.
  • An air heater that heats the air supplied from the blower, and a gas supply line that is connected to the can body side of the air heater in the air supply duct and supplies fuel gas to the air supply duct;
  • a pressure-reducing member that is disposed closer to the blower than the air heater in the air supply duct and depressurizes the air flowing through the air supply duct, and a first pressure detection unit that detects a pressure upstream of the pressure-reducing member.
  • a control unit for controlling the supply amount of the fuel gas supplied from relates boiler apparatus comprising a.
  • the air supply duct further includes a damper that is disposed closer to the blower than the decompression member and adjusts the amount of air supplied from the blower, and the damper passes between the damper and the decompression member. It is preferable that the lengths are separated so as not to be affected by air drift.
  • FIG. 1 (a) is a front view of the said boiler apparatus
  • FIG.1 (b) is a right view of the said boiler apparatus
  • FIG. c) is a rear view of the boiler device
  • FIG. 1D is a plan view of the boiler device.
  • FIG. 3 is a sectional view taken along line BB in FIG.
  • the boiler apparatus 1 of the present embodiment has a can body 10, a blower 20 that feeds combustion air into the can body 10, and the combustion air flows through the connection between the can body 10 and the blower 20.
  • An air supply duct 30, a gas supply line 40 (see FIG.
  • the can body 10 includes a boiler housing 11, a plurality of water pipes 12, a connecting wall 13, a lower header 14, an upper header 15, and a burner 17.
  • casing 11 comprises the external shape of the can 10, and is formed in the rectangular parallelepiped shape of planar view.
  • An air supply port 18 is formed in the first side surface 11 a located on one end side in the longitudinal direction of the boiler housing 11, and a second side surface 11 b located on the other end side in the longitudinal direction of the boiler housing 11 is An exhaust port 19 is formed.
  • a front end portion of an air supply duct 30 described later is connected to the air supply port 18.
  • the exhaust port 19 is connected to a base end portion of an exhaust cylinder 50 described later.
  • the plurality of water pipes 12 are disposed in the boiler casing 11 so as to extend in the vertical direction, and are disposed at predetermined intervals in the longitudinal direction and the width direction of the boiler casing 11.
  • the plurality of water pipes 12 are arranged along the longitudinal direction at the outer water pipe group 12 a arranged along the side part extending in the longitudinal direction of the boiler casing 11 and the center part in the width direction of the boiler casing 11.
  • the central water pipe group 12b is disposed between the outer water pipe group 12a and the central water pipe group 12b.
  • the connection wall 13 connects the water pipes 12 arranged adjacent to each other in the outer water pipe group 12a.
  • the lower header 14 is formed of a rectangular parallelepiped container having a rectangular shape in plan view, and is disposed at the lower portion of the boiler casing 11.
  • the lower header 14 is connected to lower ends of the plurality of water pipes 12. Water is supplied to the lower header 14, and water is supplied from the lower header 14 to the plurality of water pipes 12.
  • the upper header 15 is configured by a rectangular parallelepiped container having a rectangular shape in plan view, and is disposed on an upper portion of the boiler casing 11.
  • the upper header 15 is connected to the upper ends of the plurality of water pipes 12. Steam generated in the plurality of water pipes 12 is collected in the upper header 15.
  • the steam collected in the upper header 15 is led out to the outside through a steam outlet pipe 16 (see FIG. 1).
  • the burner 17 is disposed in the air supply port 18.
  • the blower 20 is disposed at the lower part on the left side of the boiler device 1.
  • the blower 20 has air wheel blades.
  • the air wheel blade is disposed inside the blower 20. As the air wheel blades rotate, the combustion air is drawn into the blower 20 and sent into an air supply duct 30 described later.
  • the air supply duct 30 has an upstream end connected to the blower 20 and a downstream end connected to the air supply port 18.
  • the air supply duct 30 supplies the combustion air sent from the blower 20 to the can body 10.
  • the air supply duct 30 includes an upward air supply passage portion 31, a first horizontal air supply passage portion 32, a first downward air supply passage portion 33, and a second horizontal air supply passage portion 34. And a second downward air supply passage 35.
  • the upward air supply passage portion 31 extends upward from a connection portion with the blower 20. More specifically, as shown in FIG. 5, the upward air supply passage portion 31 includes a first bent portion 311 and a second bent portion 312 provided on the blower 20 side. The upward air supply passage 31 is bent by the first bent portion 311 and the second bent portion 312 to such an extent that the combustion air fed from the blower 20 does not cause a drift. A damper 313 is disposed in the vicinity of the first bent portion 311 in the upward air supply passage portion 31. By adjusting the opening degree of the damper 313, the circulation amount of the combustion air sent from the blower 20 is adjusted.
  • the 1st horizontal air supply path part 32 is connected to the upper end of the upward air supply path part 31, and is extended in a horizontal direction, as shown in FIG.1 (c) and (d).
  • the first downward air supply path section 33 extends downward from the tip of the first horizontal air supply path section 32 as shown in FIGS.
  • the second horizontal air supply passage portion 34 extends substantially horizontally from the front end portion of the first downward air supply passage portion 35 above the can body 10. As shown in FIGS. 1A and 1B, the second downward air supply passage portion 35 extends downward from the distal end portion of the second horizontal air supply passage portion 34 along the first side surface 11 a of the can 10. It extends and is connected to the air inlet 18.
  • the gas supply line 40 is connected to the second downward air supply passage 35 and supplies fuel gas to the air supply duct 30.
  • the gas supply line 40 is provided with a regulating valve 41, an orifice 42, and a plurality of nozzles 43.
  • the adjustment valve 41 adjusts the flow rate of the fuel gas supplied to the air supply duct 30.
  • the orifice 42 is disposed on the downstream side of the adjustment valve 41.
  • the plurality of nozzles 43 are disposed at the distal end portion of the gas supply line 40 and jet fuel gas into the air supply duct 30.
  • the tip ends of the plurality of nozzles 43 extend upward, that is, in a direction facing the flow direction of combustion air in the air supply duct 30 (see FIGS. 2 and 4).
  • the combustion air sent out from the blower 20 circulates upward in the upward air supply passage portion 31 as shown in FIG. 1 and then the first horizontal air supply passage portion. 32 circulates in the horizontal direction, then circulates downward in the first downward air supply passage portion 33, then circulates in the second horizontal air supply passage portion 34 in the horizontal direction, and finally the second downward air supply passageway. It is supplied to the can 10 by flowing downward through the portion 35. Further, in the second downward air supply passage 35, the fuel gas is supplied from the gas supply line 40, and the fuel gas and the combustion air are mixed.
  • the exhaust tube 50 is connected to the second side surface 11b of the can body 10 (boiler casing 11).
  • the exhaust cylinder 50 discharges combustion gas generated by burning the mixed gas inside the can 10.
  • the exhaust tube 50 has an upward exhaust passage portion 51 extending upward along the second side surface 11b. According to the exhaust pipe 50 described above, the combustion gas discharged from the can body 10 is exhausted through the upward exhaust path portion 51 upward as shown in FIG.
  • the economizer 60 is disposed in the vicinity of the second side surface 11b of the can 10 (boiler casing 11).
  • the economizer 60 exchanges heat between water flowing through a water supply channel (not shown) and combustion gas flowing through the exhaust pipe 50 (upward exhaust channel portion 51). More specifically, the economizer 60 heats the water by exchanging heat between the water flowing through the water supply channel from above to the combustion gas flowing through the upward exhaust passage 51 upward from below.
  • the air heater 70 is disposed in a portion where the first downward air supply passage portion 33 and the upward exhaust passage portion 51 are located above the economizer 60.
  • the air heater 70 performs heat exchange between the combustion air flowing through the air supply duct 30 and the combustion gas flowing through the exhaust pipe 50 (upward exhaust passage portion 51). More specifically, the air heater 70 exchanges heat between the combustion air that circulates in the first downward air supply passage portion 33 from below to the combustion gas that circulates in the upward exhaust passage portion 51 from below to above. By doing so, the combustion air is heated.
  • the control device 80 controls the amount of fuel gas supplied to the air supply duct 30 by controlling the opening degree of the regulating valve 41.
  • the control device 80 includes a punching metal 314 as a decompression member disposed in the air supply duct 30, a first pressure detector 315 disposed on the upstream side of the punching metal 314, and a downstream side of the punching metal 314.
  • the second pressure detection unit 316, the control unit 81, and the storage unit 82 are provided.
  • the punching metal 314 is configured by a metal plate in which a large number of through holes are formed. As shown in FIG. 5, the punching metal 314 is disposed on the upstream side of the air heater 70 and on the downstream side of the damper 313 in the upward air supply path portion 31. The punching metal 314 depressurizes the combustion air flowing through the upward air supply passage 31. In the present embodiment, as shown in FIG. 4, the punching metal 314 and the damper 313 are separated by a length (L1) that is not affected by the drift of the air that has passed through the damper 313. ing. The length L1 between the punching metal 314 and the damper 313 is preferably 80 cm or more, more preferably 100 cm or more.
  • the first pressure detector 315 detects the pressure upstream of the punching metal 314.
  • the second pressure detection unit 316 detects the pressure on the downstream side of the punching metal 314.
  • the storage unit 82 corresponds to the difference between the pressure upstream and downstream of the punching metal 314 detected by the first pressure detection unit 315 and the second pressure detection unit 316 in the boiler device 1 (pressure loss in the punching metal: ⁇ P).
  • the supply flow rate (G) of the combustion gas supplied from the gas supply line 40 is stored.
  • the relationship between ⁇ P and G is set so that the mixing ratio of the combustion air and the fuel gas is such that the mixed gas burns well inside the can 10.
  • G also increases because more fuel gas is required, and when ⁇ P decreases, the amount of required fuel gas decreases and G also decreases.
  • the control unit 81 calculates the pressure loss ( ⁇ P) in the punching metal 314 from the upstream and downstream pressures of the punching metal 314 detected by the first pressure detection unit 315 and the second pressure detection unit 316, and stores the pressure loss ( ⁇ P) in the storage unit 82.
  • the opening degree of the adjustment valve 41 is adjusted so that the stored G becomes G corresponding to the calculated ⁇ P.
  • the boiler device 1 draws combustion air by the blower 20 and sends it out to the air supply duct 30. Since the air blower 20 is provided on the upstream side of the air heater 70, the air blower 20 can draw the combustion air before being increased in volume by being heated by the air heater 70 and send it to the air supply duct 30. Compared to the case where the blower 20 is provided on the downstream side of the air heater 70 by such an arrangement, the volume of the combustion air sent out by the blower 20 becomes relatively small, so that the power consumption by the blower 20 can be suppressed. In the air supply duct 30, the combustion air sent out from the blower 20 circulates upward in the upward air supply path portion 31. The flow rate of the combustion air flowing through the upward air supply passage 31 is first adjusted by the damper 313.
  • the combustion air whose flow rate is adjusted by the damper 313 is decompressed by the punching metal 314.
  • the pressure on the upstream side of the punching metal 314 is detected by the first pressure detector 315, and the pressure on the downstream side of the punching metal 314 is detected by the second pressure detector 316, respectively.
  • the combustion air that has passed through the punching metal 314 flows through the first downward air supply passage 33 after passing through the upward air supply passage 31 and the first horizontal air supply passage 32.
  • the combustion air flowing through the first downward air supply passage 33 is heated by the air heater 70 by being exchanged with the combustion gas discharged from the can 10 and flowing through the exhaust tube 50.
  • the combustion gas discharged from the can body 10 circulates through a water supply channel in the economizer 60 and exchanges heat with water supplied to the can body 10 before heat exchange (second heat exchange) in the air heater 70. (First heat exchange).
  • the fuel gas is supplied through the gas supply line 40 and a plurality of nozzles 43 provided at the tip of the gas supply line 40, and the fuel gas and the combustion air are mixed.
  • the amount of combustion gas supplied is adjusted by the adjustment valve 41.
  • the plurality of nozzles 43 extend in the direction opposite to the flow direction of the combustion air in the air supply duct 30, but in this way, the plurality of nozzles 43 correspond to the flow direction of the combustion air in the supply air duct 30. Therefore, the mixing property of the fuel gas and the combustion air is improved by being arranged in a direction inclined by 0 ° to 90 ° from the direction orthogonal to the flow direction.
  • the mixed gas is supplied into the can 10 through the air supply port 18.
  • the mixed gas is injected by the burner 17 and burned.
  • water coranned water
  • water in the water pipe disposed inside the can body 10 supplied from the above-described water supply channel boils and generates steam.
  • the steam generated in the water pipe is stored in the upper header 15 and then led out to the outside through the steam outlet pipe 16.
  • the combustion gas generated by the combustion of the mixed gas in the gas flow space is discharged from the exhaust port 19 to the exhaust pipe 50.
  • the combustion gas discharged from the exhaust pipe 50 is discharged to the outside after being subjected to the first heat exchange and the second heat exchange described above (see FIG. 1).
  • the boiler device 1 has the following effects. (1) In the boiler apparatus 1, in order to stabilize the combustion in the can 10, it is necessary to mix combustion air and fuel gas at an optimum ratio. This mixing ratio is based on the mass of the combustion air. It is required. On the other hand, when the punching metal 314 is provided in the air supply duct 30 of the boiler device 1, the volume of combustion air is measured based on the pressure difference (pressure loss) between the upstream side and the downstream side of the punching metal 314. The flow rate (m 3 / h). Normally, when the temperature of the combustion air is lowered, the volume of the combustion air is reduced, so that the mass flow rate (kg / h) of the combustion air is increased even if the volume flow rate of the combustion air is the same.
  • the punching metal 314 is disposed closer to the blower 20 than the air heater 70 in the air supply duct 30. With such an arrangement, even if the combustion air is heated by the air heater 70, there is almost no temperature change of the combustion air in the vicinity of the punching metal 314, and the punching metal 314 is not considered even if the temperature change of the combustion air is taken into consideration.
  • the ratio (mass ratio) for mixing the combustion air and the fuel gas based on the pressure loss before and after the above can be kept constant at all times. If the ratio of mixing the combustion air and the fuel gas can be kept constant, the combustion of the mixed gas inside the can 10 is stabilized.
  • the boiler device 1 further includes a damper 313 that is disposed closer to the blower 20 than the punching metal 314 in the air supply duct 30 and adjusts the amount of air supplied from the blower 20.
  • the punching metal 314 are separated by a length that is not affected by the drift of the air that has passed through the damper 313.
  • the first pressure detection unit 315 and the second pressure detection unit 316 are not easily affected by the drift generated by the damper 313. Accordingly, it is possible to accurately measure the pressure loss before and after the punching metal 314, and it becomes easier to keep the ratio of mixing the combustion air and the fuel gas constant.
  • the upward air supply passage portion 31 includes the first bent portion 311 and the second bent portion 312, but is not limited thereto. That is, you may comprise an upward air supply path part linearly.
  • the punching metal 314, the first pressure detection unit 315, and the second pressure detection unit 316 are arranged in the upward air supply path unit 31, but the present invention is not limited thereto. That is, the punching metal, the first pressure detection unit, and the second pressure detection unit may be arranged in other portions of the air supply duct as long as they are upstream of the air heater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Supply (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

Provided is a boiler device which is configured so that, even if an air heater is provided in an air supply duct, the ratio of mixing between combustion air and a fuel gas can be maintained constant. A boiler device (1) is provided with: a can body (10); an air blower (20); an air supply duct (30); an air heater (70); a gas supply line (40); punched metal (314) provided at the part of the air supply duct (30), which is closer to the air blower (20) than the air heater (70), and reducing the pressure of air flowing through the air supply duct (30); a first pressure detection unit (315) for detecting the pressure upstream of the punched metal (314); a second pressure detection unit (316) for detecting the pressure downstream of the punched metal (314); and a control device (80) for controlling, on the basis of the difference between the pressure detected by the first pressure detection unit (315) and the pressure detected by the second pressure detection unit (316), the amount of a fuel gas supplied from the gas supply line (40).

Description

ボイラ装置Boiler equipment
 本発明は、ボイラ装置に関する。本願は、2012年11月22日に日本に出願された特願2012-256900号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a boiler device. This application claims priority based on Japanese Patent Application No. 2012-256900 for which it applied to Japan on November 22, 2012, and uses the content here.
 従来、缶体において燃料ガスを燃焼させて発生させた燃焼ガスにより水を加熱することで蒸気を生成するボイラが知られている。ボイラにおいて、燃料ガスは燃焼用空気と混合された後、缶体に供給される。缶体に供給される燃焼用空気と、燃料ガスとを混合させる比率(空燃比)は、缶体の内部における燃焼状態を安定させるため、一定に保つ必要がある。 Conventionally, boilers that generate steam by heating water with combustion gas generated by burning fuel gas in a can body are known. In the boiler, the fuel gas is mixed with combustion air and then supplied to the can body. The ratio (air / fuel ratio) at which the combustion air supplied to the can body and the fuel gas are mixed needs to be kept constant in order to stabilize the combustion state inside the can body.
 缶体に供給される燃焼用空気の量の変動に合わせて、供給される燃料ガスの量を制御する装置としては、燃焼用空気が流通する給気ダクトの内部に減圧手段を設け、減圧手段の前後における圧力の差(圧力損失)に基づいて供給する燃料ガスの量を制御するガス量制御装置が提案されている(例えば、特許文献1参照)。 As a device for controlling the amount of fuel gas to be supplied in accordance with fluctuations in the amount of combustion air supplied to the can body, a pressure reducing means is provided inside the air supply duct through which the combustion air flows. Has been proposed (see, for example, Patent Document 1), which controls the amount of fuel gas to be supplied based on the pressure difference (pressure loss) between before and after.
 ところで、燃料ガスと混合されて缶体に供給される燃焼用空気と、蒸気を生成するために用いられた後の燃焼ガスとの間で熱交換を行うエアヒータを設けることにより、燃焼ガスから熱回収を行うことで熱効率を向上させたボイラも提案されている。 By the way, by providing an air heater that performs heat exchange between the combustion air mixed with the fuel gas and supplied to the can body and the combustion gas after being used to generate steam, heat is generated from the combustion gas. Boilers that have improved thermal efficiency by performing recovery have also been proposed.
 このようなエアヒータを給気ダクトに設けたボイラにおいて、特許文献1に記載された技術を適用して、給気ダクトを流通する燃焼用空気の圧力損失に基づいて供給するガス量を制御した場合、燃焼用空気の体積流量(m/h)が同じであったとしても、燃焼用空気の温度が低くなると燃焼用空気の質量流量(kg/h)が高くなるので、供給される燃料ガスの量は燃焼の際に必要とされる燃料ガスの量よりも少なくなる傾向にある。逆に、燃焼用空気の温度が高くなると燃焼用空気の体積流量が同じであっても質量流量は小さくなるので、供給される燃料ガスの量は燃焼の際に必要とされる燃料ガスの量よりも多くなる傾向にある。 In a boiler in which such an air heater is provided in an air supply duct, the technique described in Patent Document 1 is applied to control the amount of gas supplied based on the pressure loss of combustion air flowing through the air supply duct Even if the volumetric flow rate (m 3 / h) of combustion air is the same, the mass flow rate (kg / h) of combustion air increases as the temperature of combustion air decreases, so the fuel gas supplied This amount tends to be smaller than the amount of fuel gas required for combustion. Conversely, if the temperature of the combustion air increases, the mass flow rate decreases even if the volume flow rate of the combustion air is the same, so the amount of fuel gas supplied is the amount of fuel gas required for combustion Tend to be more.
特開平11-108352号公報JP-A-11-108352
 このように、ボイラの給気ダクトに、燃焼用空気を加熱する空気加熱器(エアヒータ)を設け、更に、給気ダクト内に減圧部材を設けた上で、減圧手段の前後における圧力の差に基づいて供給するガス量を制御した場合、実際に必要なガス量と供給されるガス量との差が大きくなってしまう蓋然性が高くなる。特に、ボイラの起動時においては、燃焼用空気の温度が低いことから、着火の際に必要なガス量に比べて供給されるガス量が少なくなってしまう傾向にあり、燃料ガスに着火し難くなるといった問題が発生してしまう場合があった。 In this way, an air heater (air heater) for heating combustion air is provided in the supply duct of the boiler, and further, a pressure reducing member is provided in the supply duct, and the difference in pressure before and after the pressure reducing means is determined. When the amount of gas to be supplied is controlled based on this, there is a high probability that the difference between the actually required gas amount and the supplied gas amount will increase. In particular, when the boiler is started, the temperature of the combustion air is low, so the amount of gas supplied tends to be smaller than the amount of gas required for ignition, and it is difficult to ignite the fuel gas. There has been a case where a problem occurs.
 本発明は、上記課題を解決するものであり、給気ダクトに空気加熱器を設けた場合であっても、燃焼用空気と燃料ガスとを混合させる比率を一定に保つことが可能なボイラ装置を提供することを目的とする。 The present invention solves the above-described problem, and even when an air heater is provided in an air supply duct, a boiler device capable of maintaining a constant ratio of mixing combustion air and fuel gas. The purpose is to provide.
 本発明は、缶体と、前記缶体に空気を供給する送風機と、前記缶体と前記送風機とを接続し、前記送風機から供給される空気が流通する給気ダクトと、前記給気ダクトに設けられ、前記送風機から供給される空気を加熱する空気加熱器と、前記給気ダクトにおける前記空気加熱器よりも前記缶体側に接続され、前記給気ダクトに燃料ガスを供給するガス供給ラインと、前記給気ダクトにおける前記空気加熱器よりも前記送風機側に配置され、該給気ダクトを流通する空気を減圧する減圧部材と、前記減圧部材の上流側の圧力を検出する第1圧力検出部と、前記減圧部材の下流側の圧力を検出する第2圧力検出部と、前記第1圧力検出部により検出された圧力と前記第2圧力検出部により検出された圧力との差に基づいて、前記ガス供給ラインから供給される燃料ガスの供給量を制御する制御部と、を備えるボイラ装置に関する。 The present invention relates to a can body, a blower that supplies air to the can body, an air supply duct that connects the can body and the blower, and through which air supplied from the blower circulates, and the air supply duct. An air heater that heats the air supplied from the blower, and a gas supply line that is connected to the can body side of the air heater in the air supply duct and supplies fuel gas to the air supply duct; A pressure-reducing member that is disposed closer to the blower than the air heater in the air supply duct and depressurizes the air flowing through the air supply duct, and a first pressure detection unit that detects a pressure upstream of the pressure-reducing member. And a second pressure detector that detects a pressure downstream of the decompression member, and a difference between the pressure detected by the first pressure detector and the pressure detected by the second pressure detector, The gas supply line A control unit for controlling the supply amount of the fuel gas supplied from relates boiler apparatus comprising a.
 前記給気ダクトにおける前記減圧部材よりも前記送風機側に配置され、前記送風機から供給される空気の量を調整するダンパを更に備え、前記ダンパと前記減圧部材との間は、該ダンパを通過した空気の偏流による影響を受けない程度の長さ離間していることが好ましい。 The air supply duct further includes a damper that is disposed closer to the blower than the decompression member and adjusts the amount of air supplied from the blower, and the damper passes between the damper and the decompression member. It is preferable that the lengths are separated so as not to be affected by air drift.
 本発明によれば、給気ダクトに空気加熱器を設けた場合であっても、燃焼用空気と燃料ガスとを混合させる比率を一定に保つことが可能なボイラ装置を提供することができる。 According to the present invention, it is possible to provide a boiler device capable of maintaining a constant ratio of mixing combustion air and fuel gas even when an air heater is provided in an air supply duct.
本発明の実施形態に係るボイラ装置を示す外観図であり、図1(a)は前記ボイラ装置の正面図であり、図1(b)は前記ボイラ装置の右側面図であり、図1(c)は前記ボイラ装置の背面図であり、図1(d)は前記ボイラ装置の平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is an external view which shows the boiler apparatus which concerns on embodiment of this invention, FIG. 1 (a) is a front view of the said boiler apparatus, FIG.1 (b) is a right view of the said boiler apparatus, FIG. c) is a rear view of the boiler device, and FIG. 1D is a plan view of the boiler device. 本発明の実施形態に係るボイラ装置における缶体部分の断面図であり、図(d)のA-A線断面を示す図である。It is sectional drawing of the can part in the boiler apparatus which concerns on embodiment of this invention, and is a figure which shows the AA sectional view of FIG. (D). 図2のB-B線断面図である。FIG. 3 is a sectional view taken along line BB in FIG. 本発明の実施形態に係るボイラ装置の構成を示す概略図である。It is the schematic which shows the structure of the boiler apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るボイラ装置を左側面から視た、送風機と空気加熱器とを結ぶ給気ダクトの形状について示した概略図である。It is the schematic shown about the shape of the air supply duct which connects an air blower and an air heater which looked at the boiler apparatus which concerns on embodiment of this invention from the left side surface.
 以下、本発明の実施形態について図面を参照しながら説明する。
 本実施形態のボイラ装置1は、図1に示すように、缶体10と、缶体10に燃焼用空気を送り込む送風機20と、缶体10と送風機20を接続して燃焼用空気が流通する給気ダクト30と、給気ダクト30に燃料ガスを供給するガス供給ライン40(図4参照)と、缶体10から排出される燃焼ガスが流通する排気筒50と、缶体10に水を供給する給水路(図示せず)と、缶体10に供給される水と燃焼ガスとの間で熱交換を行うエコノマイザ60と、燃焼ガスと燃焼用空気との間で熱交換を行うエアヒータ(本発明に係る空気加熱器)70と、ガス供給ライン40に備えられた弁を制御する制御装置80(図4参照)と、を備える。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the boiler apparatus 1 of the present embodiment has a can body 10, a blower 20 that feeds combustion air into the can body 10, and the combustion air flows through the connection between the can body 10 and the blower 20. An air supply duct 30, a gas supply line 40 (see FIG. 4) for supplying fuel gas to the air supply duct 30, an exhaust pipe 50 through which combustion gas discharged from the can body 10 circulates, and water in the can body 10 A water supply channel (not shown) to be supplied, an economizer 60 for exchanging heat between water supplied to the can 10 and the combustion gas, and an air heater for exchanging heat between the combustion gas and combustion air ( An air heater 70 according to the present invention and a control device 80 (see FIG. 4) for controlling a valve provided in the gas supply line 40 are provided.
 缶体10は、図2及び図3に示すように、ボイラ筐体11と、複数の水管12と、連結壁13と、下部ヘッダ14と、上部ヘッダ15と、バーナ17と、を備える。
 ボイラ筐体11は、缶体10の外形を構成し、平面視矩形形状の直方体状に形成される。このボイラ筐体11の長手方向の一端側に位置する第1側面11aには、給気口18が形成され、ボイラ筐体11の長手方向の他端側に位置する第2側面11bには、排気口19が形成される。
 給気口18には、後述の給気ダクト30の先端部が接続される。排気口19には、後述の排気筒50の基端部が接続される。
As shown in FIGS. 2 and 3, the can body 10 includes a boiler housing 11, a plurality of water pipes 12, a connecting wall 13, a lower header 14, an upper header 15, and a burner 17.
The boiler housing | casing 11 comprises the external shape of the can 10, and is formed in the rectangular parallelepiped shape of planar view. An air supply port 18 is formed in the first side surface 11 a located on one end side in the longitudinal direction of the boiler housing 11, and a second side surface 11 b located on the other end side in the longitudinal direction of the boiler housing 11 is An exhaust port 19 is formed.
A front end portion of an air supply duct 30 described later is connected to the air supply port 18. The exhaust port 19 is connected to a base end portion of an exhaust cylinder 50 described later.
 複数の水管12は、ボイラ筐体11の内部に上下方向に延びて配置されるとともに、ボイラ筐体11の長手方向及び幅方向に所定の間隔をあけて配置される。
 本実施形態では、複数の水管12は、ボイラ筐体11の長手方向に延びる側部に沿って配置される外側水管群12aと、ボイラ筐体11の幅方向の中央部に、長手方向に沿って配置される中央水管群12bと、外側水管群12aと中央水管群12bとの間に配置される中間水管群12cと、に分類される。
 連結壁13は、外側水管群12aにおいて隣り合って配置される水管12同士を連結する。
The plurality of water pipes 12 are disposed in the boiler casing 11 so as to extend in the vertical direction, and are disposed at predetermined intervals in the longitudinal direction and the width direction of the boiler casing 11.
In the present embodiment, the plurality of water pipes 12 are arranged along the longitudinal direction at the outer water pipe group 12 a arranged along the side part extending in the longitudinal direction of the boiler casing 11 and the center part in the width direction of the boiler casing 11. The central water pipe group 12b is disposed between the outer water pipe group 12a and the central water pipe group 12b.
The connection wall 13 connects the water pipes 12 arranged adjacent to each other in the outer water pipe group 12a.
 下部ヘッダ14は、平面視矩形形状の直方体状の容器によって構成され、ボイラ筐体11の下部に配置される。下部ヘッダ14には、複数の水管12の下端部が接続される。下部ヘッダ14には、水が供給され、この下部ヘッダ14から複数の水管12に水が供給される。 The lower header 14 is formed of a rectangular parallelepiped container having a rectangular shape in plan view, and is disposed at the lower portion of the boiler casing 11. The lower header 14 is connected to lower ends of the plurality of water pipes 12. Water is supplied to the lower header 14, and water is supplied from the lower header 14 to the plurality of water pipes 12.
 上部ヘッダ15は、平面視矩形形状の直方体状の容器によって構成され、ボイラ筐体11の上部に配置される。上部ヘッダ15には、複数の水管12の上端部が接続される。上部ヘッダ15には、複数の水管12において生成された蒸気が集められる。上部ヘッダ15に集められた蒸気は、蒸気導出管16(図1参照)を介して外部に導出される。
 バーナ17は、給気口18に配置される。
The upper header 15 is configured by a rectangular parallelepiped container having a rectangular shape in plan view, and is disposed on an upper portion of the boiler casing 11. The upper header 15 is connected to the upper ends of the plurality of water pipes 12. Steam generated in the plurality of water pipes 12 is collected in the upper header 15. The steam collected in the upper header 15 is led out to the outside through a steam outlet pipe 16 (see FIG. 1).
The burner 17 is disposed in the air supply port 18.
 送風機20は、図1に示すように、ボイラ装置1の左側面側の下部に配置される。送風機20は、エアホイール羽根を有する。
 エアホイール羽根は、送風機20の内部に配置される。このエアホイール羽根が回転することで、燃焼用空気が送風機20に引き込まれて、後述の給気ダクト30に送り込まれる。
As shown in FIG. 1, the blower 20 is disposed at the lower part on the left side of the boiler device 1. The blower 20 has air wheel blades.
The air wheel blade is disposed inside the blower 20. As the air wheel blades rotate, the combustion air is drawn into the blower 20 and sent into an air supply duct 30 described later.
 給気ダクト30は、上流側の端部が送風機20に接続され、下流側の端部が給気口18に接続される。給気ダクト30は、送風機20から送り込まれた燃焼用空気を缶体10に供給する。
 給気ダクト30は、図1に示すように、上向き給気路部31と、第1水平給気路部32と、第1下向き給気路部33と、第2水平給気路部34と、第2下向き給気路部35と、を有する。
The air supply duct 30 has an upstream end connected to the blower 20 and a downstream end connected to the air supply port 18. The air supply duct 30 supplies the combustion air sent from the blower 20 to the can body 10.
As shown in FIG. 1, the air supply duct 30 includes an upward air supply passage portion 31, a first horizontal air supply passage portion 32, a first downward air supply passage portion 33, and a second horizontal air supply passage portion 34. And a second downward air supply passage 35.
 上向き給気路部31は、図1(c)に示すように、送風機20との接続部分から上方に延びる。より詳細には、上向き給気路部31は、図5に示すように、送風機20側に設けられた第1屈曲部311と、第2屈曲部312とを有する。上向き給気路部31は、第1屈曲部311と第2屈曲部312によって、送風機20から送り込まれた燃焼用空気が偏流を生じない程度に屈曲している。
 上向き給気路部31における第1屈曲部311の近傍には、ダンパ313が配置される。このダンパ313の開度を調整することで、送風機20から送られる燃焼用空気の流通量が調整される。
As shown in FIG. 1C, the upward air supply passage portion 31 extends upward from a connection portion with the blower 20. More specifically, as shown in FIG. 5, the upward air supply passage portion 31 includes a first bent portion 311 and a second bent portion 312 provided on the blower 20 side. The upward air supply passage 31 is bent by the first bent portion 311 and the second bent portion 312 to such an extent that the combustion air fed from the blower 20 does not cause a drift.
A damper 313 is disposed in the vicinity of the first bent portion 311 in the upward air supply passage portion 31. By adjusting the opening degree of the damper 313, the circulation amount of the combustion air sent from the blower 20 is adjusted.
 第1水平給気路部32は、図1(c)及び(d)に示すように、上向き給気路部31の上端に接続され水平方向に延びる。
 第1下向き給気路部33は、図1(a)~(c)に示すように、第1水平給気路部32の先端部から下方に延びる。
The 1st horizontal air supply path part 32 is connected to the upper end of the upward air supply path part 31, and is extended in a horizontal direction, as shown in FIG.1 (c) and (d).
The first downward air supply path section 33 extends downward from the tip of the first horizontal air supply path section 32 as shown in FIGS.
 第2水平給気路部34は、図1(b)に示すように、第1下向き給気路部35の先端部から缶体10の上方を略水平方向に延びる。
 第2下向き給気路部35は、図1(a)及び(b)に示すように、第2水平給気路部34の先端部から、缶体10の第1側面11aに沿って下方に延び、給気口18に接続される。
As shown in FIG. 1 (b), the second horizontal air supply passage portion 34 extends substantially horizontally from the front end portion of the first downward air supply passage portion 35 above the can body 10.
As shown in FIGS. 1A and 1B, the second downward air supply passage portion 35 extends downward from the distal end portion of the second horizontal air supply passage portion 34 along the first side surface 11 a of the can 10. It extends and is connected to the air inlet 18.
 ガス供給ライン40は、第2下向き給気路部35に接続され、給気ダクト30に燃料ガスを供給する。このガス供給ライン40には、調整弁41と、オリフィス42と、複数のノズル43が設けられる。
 調整弁41は、給気ダクト30に供給される燃料ガスの流通量を調整する。オリフィス42は、調整弁41の下流側に配置される。
 複数のノズル43は、ガス供給ライン40の先端部に配置され、給気ダクト30に燃料ガスを噴出する。複数のノズル43の先端側は、上方に向かって、つまり、給気ダクト30における燃焼用空気の流通方向に対向する方向に延びている(図2及び4参照)。
The gas supply line 40 is connected to the second downward air supply passage 35 and supplies fuel gas to the air supply duct 30. The gas supply line 40 is provided with a regulating valve 41, an orifice 42, and a plurality of nozzles 43.
The adjustment valve 41 adjusts the flow rate of the fuel gas supplied to the air supply duct 30. The orifice 42 is disposed on the downstream side of the adjustment valve 41.
The plurality of nozzles 43 are disposed at the distal end portion of the gas supply line 40 and jet fuel gas into the air supply duct 30. The tip ends of the plurality of nozzles 43 extend upward, that is, in a direction facing the flow direction of combustion air in the air supply duct 30 (see FIGS. 2 and 4).
 以上の給気ダクト30によれば、送風機20から送り出された燃焼用空気は、図1に示すように、上向き給気路部31を上方に向かって流通した後、第1水平給気路部32を水平方向に流通してから第1下向き給気路部33を下方に向かって流通し、続いて第2水平給気路部34を水平方向に流通し、最後に第2下向き給気路部35を下方に向かって流通することで缶体10に供給される。また、第2下向き給気路部35において、ガス供給ライン40から燃料ガスが供給され、燃料ガスと燃焼用空気とが混合される。 According to the air supply duct 30 described above, the combustion air sent out from the blower 20 circulates upward in the upward air supply passage portion 31 as shown in FIG. 1 and then the first horizontal air supply passage portion. 32 circulates in the horizontal direction, then circulates downward in the first downward air supply passage portion 33, then circulates in the second horizontal air supply passage portion 34 in the horizontal direction, and finally the second downward air supply passageway. It is supplied to the can 10 by flowing downward through the portion 35. Further, in the second downward air supply passage 35, the fuel gas is supplied from the gas supply line 40, and the fuel gas and the combustion air are mixed.
 排気筒50は、缶体10(ボイラ筐体11)の第2側面11bに接続される。排気筒50は、缶体10の内部で混合ガスが燃焼して生じた燃焼ガスを排出する。排気筒50は、第2側面11bに沿って上方に延びる上向き排気路部51を有する。
 以上の排気筒50によれば、缶体10から排出された燃焼ガスは、図1に示すように、上向き排気路部51を上方に向かって流通して排出される。
The exhaust tube 50 is connected to the second side surface 11b of the can body 10 (boiler casing 11). The exhaust cylinder 50 discharges combustion gas generated by burning the mixed gas inside the can 10. The exhaust tube 50 has an upward exhaust passage portion 51 extending upward along the second side surface 11b.
According to the exhaust pipe 50 described above, the combustion gas discharged from the can body 10 is exhausted through the upward exhaust path portion 51 upward as shown in FIG.
 エコノマイザ60は、缶体10(ボイラ筐体11)の第2側面11bの近傍に配置される。エコノマイザ60は、給水路(図示しない)を流通する水と、排気筒50(上向き排気路部51)を流通する燃焼ガスとの間で熱交換を行う。
 より具体的には、エコノマイザ60は、給水路を上方から下方に流通する水と、上向き排気路部51を下方から上方に流通する燃焼ガスと間で熱交換を行うことで水を加熱する。
The economizer 60 is disposed in the vicinity of the second side surface 11b of the can 10 (boiler casing 11). The economizer 60 exchanges heat between water flowing through a water supply channel (not shown) and combustion gas flowing through the exhaust pipe 50 (upward exhaust channel portion 51).
More specifically, the economizer 60 heats the water by exchanging heat between the water flowing through the water supply channel from above to the combustion gas flowing through the upward exhaust passage 51 upward from below.
 エアヒータ70は、図1に示すように、エコノマイザ60の上方における第1下向き給気路部33及び上向き排気路部51が位置する部分に配置される。エアヒータ70は、給気ダクト30を流通する燃焼用空気と、排気筒50(上向き排気路部51)を流通する燃焼ガスとの間で熱交換を行う。
 より具体的には、エアヒータ70は、第1下向き給気路部33を上方から下方に流通する燃焼用空気と、上向き排気路部51を下方から上方に流通する燃焼ガスと間で熱交換を行うことで燃焼用空気を加熱する。
As shown in FIG. 1, the air heater 70 is disposed in a portion where the first downward air supply passage portion 33 and the upward exhaust passage portion 51 are located above the economizer 60. The air heater 70 performs heat exchange between the combustion air flowing through the air supply duct 30 and the combustion gas flowing through the exhaust pipe 50 (upward exhaust passage portion 51).
More specifically, the air heater 70 exchanges heat between the combustion air that circulates in the first downward air supply passage portion 33 from below to the combustion gas that circulates in the upward exhaust passage portion 51 from below to above. By doing so, the combustion air is heated.
 制御装置80は、調整弁41の開度を制御することで、給気ダクト30に供給される燃料ガスの量を制御する。この制御装置80は、給気ダクト30に配置される減圧部材としてのパンチングメタル314と、このパンチングメタル314の上流側に配置される第1圧力検出部315と、パンチングメタル314の下流側に配置される第2圧力検出部316と、制御部81と、記憶部82と、を備える。 The control device 80 controls the amount of fuel gas supplied to the air supply duct 30 by controlling the opening degree of the regulating valve 41. The control device 80 includes a punching metal 314 as a decompression member disposed in the air supply duct 30, a first pressure detector 315 disposed on the upstream side of the punching metal 314, and a downstream side of the punching metal 314. The second pressure detection unit 316, the control unit 81, and the storage unit 82 are provided.
 パンチングメタル314は、多数の貫通穴が形成された金属板により構成される。パンチングメタル314は、図5に示すように、エアヒータ70の上流側で、且つ、上向き給気路部31におけるダンパ313よりも下流側に配置される。パンチングメタル314は、上向き給気路部31を流通する燃焼用空気を減圧する。
 本実施形態では、図4に示すように、パンチングメタル314とダンパ313との間は、パンチングメタル314がダンパ313を通過した空気の偏流による影響を受けない程度の長さ(L1)だけ離間している。パンチングメタル314とダンパ313との間の長さL1は、好ましくは、80cm以上、より好ましくは100cm以上である。
The punching metal 314 is configured by a metal plate in which a large number of through holes are formed. As shown in FIG. 5, the punching metal 314 is disposed on the upstream side of the air heater 70 and on the downstream side of the damper 313 in the upward air supply path portion 31. The punching metal 314 depressurizes the combustion air flowing through the upward air supply passage 31.
In the present embodiment, as shown in FIG. 4, the punching metal 314 and the damper 313 are separated by a length (L1) that is not affected by the drift of the air that has passed through the damper 313. ing. The length L1 between the punching metal 314 and the damper 313 is preferably 80 cm or more, more preferably 100 cm or more.
 第1圧力検出部315は、パンチングメタル314の上流側の圧力を検出する。第2圧力検出部316は、パンチングメタル314の下流側の圧力を検出する。 The first pressure detector 315 detects the pressure upstream of the punching metal 314. The second pressure detection unit 316 detects the pressure on the downstream side of the punching metal 314.
 記憶部82は、ボイラ装置1における、第1圧力検出部315及び第2圧力検出部316により検出されたパンチングメタル314の上流と下流の圧力の差(パンチングメタルにおける圧力損失:ΔP)に対応する、ガス供給ライン40から供給される燃焼ガスの供給流量(G)を記憶する。ΔPとGとの関係は、燃焼用空気と燃料ガスの混合比が、缶体10の内部で混合ガスが良好に燃焼するような比率となるように設定されている。通常、ΔPが増加すると、多くの燃料ガスが必要になることからGも増加し、ΔPが減少すると、必要な燃料ガスの量が減少することからGも減少する関係にある。 The storage unit 82 corresponds to the difference between the pressure upstream and downstream of the punching metal 314 detected by the first pressure detection unit 315 and the second pressure detection unit 316 in the boiler device 1 (pressure loss in the punching metal: ΔP). The supply flow rate (G) of the combustion gas supplied from the gas supply line 40 is stored. The relationship between ΔP and G is set so that the mixing ratio of the combustion air and the fuel gas is such that the mixed gas burns well inside the can 10. Usually, when ΔP increases, G also increases because more fuel gas is required, and when ΔP decreases, the amount of required fuel gas decreases and G also decreases.
 制御部81は、第1圧力検出部315及び第2圧力検出部316により検出されたパンチングメタル314の上流と下流の圧力から、パンチングメタル314における圧力損失(ΔP)を算出し、記憶部82に記憶された、算出されたΔPに対応するGとなるように、調整弁41の開度を調整する。 The control unit 81 calculates the pressure loss (ΔP) in the punching metal 314 from the upstream and downstream pressures of the punching metal 314 detected by the first pressure detection unit 315 and the second pressure detection unit 316, and stores the pressure loss (ΔP) in the storage unit 82. The opening degree of the adjustment valve 41 is adjusted so that the stored G becomes G corresponding to the calculated ΔP.
 次に、主に図4を参照しながらボイラ装置1の動作について説明する。 Next, the operation of the boiler apparatus 1 will be described mainly with reference to FIG.
 ボイラ装置1は、送風機20によって燃焼用空気を引き込むとともに、給気ダクト30に送り出す。エアヒータ70よりも上流側に送風機20が設けられているので、送風機20は、エアヒータ70によって加熱されて体積が増加する前の燃焼用空気を引き込んで給気ダクト30に送り出すことができる。このような配置によって、エアヒータ70よりも下流側に送風機20を設ける場合に比べて、送風機20の送り出す燃焼用空気の容量は相対的に小さくなるので、送風機20による消費電力を抑えることができる。
 給気ダクト30では送風機20から送り出された燃焼用空気は、上向き給気路部31を上方に向かって流通する。上向き給気路部31を流通する燃焼用空気は、まずダンパ313によって流量が調整される。ダンパ313によって流量が調整された燃焼用空気はパンチングメタル314によって減圧される。パンチングメタル314の上流側の圧力は第1圧力検出部315によって、パンチングメタル314の下流側の圧力は第2圧力検出部316によって、それぞれ検出される。
The boiler device 1 draws combustion air by the blower 20 and sends it out to the air supply duct 30. Since the air blower 20 is provided on the upstream side of the air heater 70, the air blower 20 can draw the combustion air before being increased in volume by being heated by the air heater 70 and send it to the air supply duct 30. Compared to the case where the blower 20 is provided on the downstream side of the air heater 70 by such an arrangement, the volume of the combustion air sent out by the blower 20 becomes relatively small, so that the power consumption by the blower 20 can be suppressed.
In the air supply duct 30, the combustion air sent out from the blower 20 circulates upward in the upward air supply path portion 31. The flow rate of the combustion air flowing through the upward air supply passage 31 is first adjusted by the damper 313. The combustion air whose flow rate is adjusted by the damper 313 is decompressed by the punching metal 314. The pressure on the upstream side of the punching metal 314 is detected by the first pressure detector 315, and the pressure on the downstream side of the punching metal 314 is detected by the second pressure detector 316, respectively.
 パンチングメタル314を通過した燃焼用空気は、上向き給気路部31及び第1水平給気路部32を流通した後に、第1下向き給気路部33を流通する。 The combustion air that has passed through the punching metal 314 flows through the first downward air supply passage 33 after passing through the upward air supply passage 31 and the first horizontal air supply passage 32.
 第1下向き給気路部33を流通する燃焼用空気は、エアヒータ70において、缶体10から排出され、排気筒50を流通する燃焼ガスとの間で熱交換されることによって加温される。
 尚、缶体10から排出された燃焼ガスは、エアヒータ70における熱交換(2回目の熱交換)の前に、エコノマイザ60において、給水路を流通し、缶体10に供給される水と熱交換(1回目の熱交換)される。
The combustion air flowing through the first downward air supply passage 33 is heated by the air heater 70 by being exchanged with the combustion gas discharged from the can 10 and flowing through the exhaust tube 50.
The combustion gas discharged from the can body 10 circulates through a water supply channel in the economizer 60 and exchanges heat with water supplied to the can body 10 before heat exchange (second heat exchange) in the air heater 70. (First heat exchange).
 そして、エアヒータ70を流通しての燃焼ガスとの間で熱交換を行った後の燃焼用空気は、第2水平給気路部34を流通し、続いて、第2下向き給気路部35を流通する。 Then, the combustion air after heat exchange with the combustion gas flowing through the air heater 70 flows through the second horizontal air supply passage 34 and then the second downward air supply passage 35. Circulate.
 第2下向き給気路部35では、ガス供給ライン40及びガス供給ライン40の先端部に設けられた複数のノズル43を通じて燃料ガスが供給され、燃料ガスと燃焼用空気が混合される。
 供給される燃焼ガスの量は調整弁41によって調整される。複数のノズル43は、給気ダクト30における燃焼用空気の流通方向に対向する方向に延びているが、このように、複数のノズル43が、給気ダクト30における燃焼用空気の流通方向に対して直交する方向から該流通方向に対向する方向に0°~90°傾斜した向きに配置されることによって、燃料ガスと燃焼用空気の混合性が向上する。
 混合ガスは給気口18を通じて缶体10の内部に供給される。
In the second downward air supply passage 35, the fuel gas is supplied through the gas supply line 40 and a plurality of nozzles 43 provided at the tip of the gas supply line 40, and the fuel gas and the combustion air are mixed.
The amount of combustion gas supplied is adjusted by the adjustment valve 41. The plurality of nozzles 43 extend in the direction opposite to the flow direction of the combustion air in the air supply duct 30, but in this way, the plurality of nozzles 43 correspond to the flow direction of the combustion air in the supply air duct 30. Therefore, the mixing property of the fuel gas and the combustion air is improved by being arranged in a direction inclined by 0 ° to 90 ° from the direction orthogonal to the flow direction.
The mixed gas is supplied into the can 10 through the air supply port 18.
 缶体10では、混合ガスがバーナ17により噴射されて燃焼される。この混合ガスの燃焼によって、上述した給水路から供給される、缶体10の内部に配置された水管内の水(缶水)が沸騰して蒸気を生成する。水管内で生成した蒸気は、上部ヘッダ15に貯留された後、蒸気導出管16を介して外部に導出される。 In the can 10, the mixed gas is injected by the burner 17 and burned. By the combustion of the mixed gas, water (canned water) in the water pipe disposed inside the can body 10 supplied from the above-described water supply channel boils and generates steam. The steam generated in the water pipe is stored in the upper header 15 and then led out to the outside through the steam outlet pipe 16.
 一方、ガス流動空間において混合ガスが燃焼することによって生成した燃焼ガスは、排気口19から排気筒50に排出される。排気筒50から排出される燃焼ガスは、上述した1回目の熱交換及び2回目の熱交換に供された後に外部に排出される(図1参照)。 On the other hand, the combustion gas generated by the combustion of the mixed gas in the gas flow space is discharged from the exhaust port 19 to the exhaust pipe 50. The combustion gas discharged from the exhaust pipe 50 is discharged to the outside after being subjected to the first heat exchange and the second heat exchange described above (see FIG. 1).
 本実施形態に係るボイラ装置1は、以下のような効果を奏する。
 (1)ボイラ装置1においては、缶体10内における燃焼を安定させるため、燃焼用空気と燃料ガスを最適な比率で混合する必要があるが、この混合比率は燃焼用空気の質量に基づいて求められるものである。
 一方、ボイラ装置1の給気ダクト30にパンチングメタル314を設けた場合、パンチングメタル314の上流側と下流側の圧力の差(圧力損失)に基づいて測定されるのは、燃焼用空気の体積流量(m/h)である。
 通常、燃焼用空気の温度が低くなると、燃焼用空気の体積が小さくなるので、燃焼用空気の体積流量が同じであっても、燃焼用空気の質量流量(kg/h)が高くなる。逆に、燃焼用空気の温度が高くなると、燃焼用空気の体積が大きくなるので、燃焼用空気の体積流量が同じであっても質量流量は小さくなる。
 従って、ボイラ装置1の給気ダクト30にエアヒータ70を設けて燃焼用空気を加熱した上で、給気ダクト30を流通する燃焼用空気の圧力損失から必要な燃料ガスの量を算出した場合、その算出された燃料ガスの量と、実際に必要な燃料ガスの量との間に差が生じてしまう蓋然性が高くなる。
The boiler device 1 according to the present embodiment has the following effects.
(1) In the boiler apparatus 1, in order to stabilize the combustion in the can 10, it is necessary to mix combustion air and fuel gas at an optimum ratio. This mixing ratio is based on the mass of the combustion air. It is required.
On the other hand, when the punching metal 314 is provided in the air supply duct 30 of the boiler device 1, the volume of combustion air is measured based on the pressure difference (pressure loss) between the upstream side and the downstream side of the punching metal 314. The flow rate (m 3 / h).
Normally, when the temperature of the combustion air is lowered, the volume of the combustion air is reduced, so that the mass flow rate (kg / h) of the combustion air is increased even if the volume flow rate of the combustion air is the same. Conversely, when the temperature of the combustion air increases, the volume of the combustion air increases, so that the mass flow rate decreases even if the volume flow rate of the combustion air is the same.
Accordingly, when the air heater 70 is provided in the air supply duct 30 of the boiler device 1 to heat the combustion air, and the amount of required fuel gas is calculated from the pressure loss of the combustion air flowing through the air supply duct 30, There is a high probability that a difference occurs between the calculated amount of fuel gas and the actually required amount of fuel gas.
 本実施形態に係るボイラ装置1では、パンチングメタル314が、給気ダクト30におけるエアヒータ70よりも送風機20側に配置される。このような配置により、エアヒータ70によって燃焼用空気を加熱したとしても、パンチングメタル314の近傍での燃焼用空気の温度変化はほとんどなく、燃焼用空気の温度変化を考慮しなくとも、パンチングメタル314の前後の圧力損失に基づいて燃焼用空気と燃料ガスとを混合させる比率(質量比)を常に一定に保つことが可能となる。燃焼用空気と燃料ガスとを混合させる比率を一定に保つことができれば、缶体10の内部での混合ガスの燃焼が安定する。 In the boiler device 1 according to the present embodiment, the punching metal 314 is disposed closer to the blower 20 than the air heater 70 in the air supply duct 30. With such an arrangement, even if the combustion air is heated by the air heater 70, there is almost no temperature change of the combustion air in the vicinity of the punching metal 314, and the punching metal 314 is not considered even if the temperature change of the combustion air is taken into consideration. The ratio (mass ratio) for mixing the combustion air and the fuel gas based on the pressure loss before and after the above can be kept constant at all times. If the ratio of mixing the combustion air and the fuel gas can be kept constant, the combustion of the mixed gas inside the can 10 is stabilized.
 (2)本実施形態に係るボイラ装置1では、給気ダクト30におけるパンチングメタル314よりも送風機20側に配置され、送風機20から供給される空気の量を調整するダンパ313を更に備え、ダンパ313とパンチングメタル314との間は、ダンパ313を通過した空気の偏流による影響を受けない程度の長さ離間している。
 このような配置によって、第1圧力検出部315及び第2圧力検出部316が、ダンパ313によって生じる偏流から影響を受け難い。従って、パンチングメタル314の前後における圧力損失の正確な測定が可能となり、燃焼用空気と燃料ガスとを混合させる比率を一定に保つことがより容易になる。
(2) The boiler device 1 according to the present embodiment further includes a damper 313 that is disposed closer to the blower 20 than the punching metal 314 in the air supply duct 30 and adjusts the amount of air supplied from the blower 20. And the punching metal 314 are separated by a length that is not affected by the drift of the air that has passed through the damper 313.
With such an arrangement, the first pressure detection unit 315 and the second pressure detection unit 316 are not easily affected by the drift generated by the damper 313. Accordingly, it is possible to accurately measure the pressure loss before and after the punching metal 314, and it becomes easier to keep the ratio of mixing the combustion air and the fuel gas constant.
 以上、本発明のボイラ装置の好ましい一実施形態について説明したが、本発明は、上述した実施形態に制限されるものではなく、適宜変更が可能である。
 例えば、本実施形態では、上向き給気路部31を、第1屈曲部311及び第2屈曲部312を含んで構成したが、これに限らない。即ち、上向き給気路部を直線状に構成してもよい。
The preferred embodiment of the boiler device of the present invention has been described above, but the present invention is not limited to the above-described embodiment, and can be modified as appropriate.
For example, in the present embodiment, the upward air supply passage portion 31 includes the first bent portion 311 and the second bent portion 312, but is not limited thereto. That is, you may comprise an upward air supply path part linearly.
 また、本実施形態では、パンチングメタル314、第1圧力検出部315及び第2圧力検出部316を、上向き給気路部31に配置したが、これに限らない。即ち、パンチングメタル、第1圧力検出部及び第2圧力検出部は、エアヒータよりも上流側であれば、給気ダクトにおける他の部分に配置してもよい。 In this embodiment, the punching metal 314, the first pressure detection unit 315, and the second pressure detection unit 316 are arranged in the upward air supply path unit 31, but the present invention is not limited thereto. That is, the punching metal, the first pressure detection unit, and the second pressure detection unit may be arranged in other portions of the air supply duct as long as they are upstream of the air heater.
 1 ボイラ装置
 10 缶体
 20 送風機
 30 給気ダクト
 40 ガス供給ライン
 70 エアヒータ(空気加熱器)
 80 制御装置
 313 ダンパ
 314 パンチングメタル(減圧部材)
 315 第1圧力検出部
 316 第2圧力検出部
DESCRIPTION OF SYMBOLS 1 Boiler apparatus 10 Can body 20 Blower 30 Air supply duct 40 Gas supply line 70 Air heater (air heater)
80 Control device 313 Damper 314 Punching metal (decompression member)
315 First pressure detection unit 316 Second pressure detection unit

Claims (2)

  1.  缶体と、
     前記缶体に空気を供給する送風機と、
     前記缶体と前記送風機とを接続し、前記送風機から供給される空気が流通する給気ダクトと、
     前記給気ダクトに設けられ、前記送風機から供給される空気を加熱する空気加熱器と、
     前記給気ダクトにおける前記空気加熱器よりも前記缶体側に接続され、前記給気ダクトに燃料ガスを供給するガス供給ラインと、
     前記給気ダクトにおける前記空気加熱器よりも前記送風機側に配置され、該給気ダクトを流通する空気を減圧する減圧部材と、
     前記減圧部材の上流側の圧力を検出する第1圧力検出部と、
     前記減圧部材の下流側の圧力を検出する第2圧力検出部と、
     前記第1圧力検出部により検出された圧力と前記第2圧力検出部により検出された圧力との差に基づいて、前記ガス供給ラインから供給される燃料ガスの供給量を制御する制御部と、を備えるボイラ装置。
    Can body,
    A blower for supplying air to the can body;
    An air supply duct that connects the can body and the blower, and through which air supplied from the blower flows,
    An air heater provided in the air supply duct for heating air supplied from the blower;
    A gas supply line connected to the can body side of the air heater in the air supply duct and supplying fuel gas to the air supply duct;
    A pressure reducing member that is disposed closer to the blower than the air heater in the air supply duct, and depressurizes air flowing through the air supply duct;
    A first pressure detector that detects a pressure upstream of the decompression member;
    A second pressure detector for detecting the pressure downstream of the decompression member;
    A control unit that controls a supply amount of the fuel gas supplied from the gas supply line based on a difference between the pressure detected by the first pressure detection unit and the pressure detected by the second pressure detection unit; A boiler device comprising:
  2.  前記給気ダクトにおける前記減圧部材よりも前記送風機側に配置され、前記送風機から供給される空気の量を調整するダンパを更に備え、
     前記ダンパと前記減圧部材との間は、該ダンパを通過した空気の偏流による影響を受けない程度の長さ離間している請求項1に記載のボイラ装置。
    It further includes a damper that is disposed closer to the blower than the decompression member in the air supply duct and adjusts the amount of air supplied from the blower.
    The boiler device according to claim 1, wherein the damper and the pressure reducing member are separated by a length that is not affected by a drift of air that has passed through the damper.
PCT/JP2013/066185 2012-11-22 2013-06-12 Boiler device WO2014080657A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-256900 2012-11-22
JP2012256900A JP6123253B2 (en) 2012-11-22 2012-11-22 Boiler equipment

Publications (1)

Publication Number Publication Date
WO2014080657A1 true WO2014080657A1 (en) 2014-05-30

Family

ID=50775849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066185 WO2014080657A1 (en) 2012-11-22 2013-06-12 Boiler device

Country Status (2)

Country Link
JP (1) JP6123253B2 (en)
WO (1) WO2014080657A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020790A (en) * 2014-07-15 2016-02-04 三浦工業株式会社 Boiler system
JP2016020789A (en) * 2014-07-15 2016-02-04 三浦工業株式会社 Boiler system
JP2016020791A (en) * 2014-07-15 2016-02-04 三浦工業株式会社 Boiler system
JP2016020793A (en) * 2014-07-15 2016-02-04 三浦工業株式会社 Boiler device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7006363B2 (en) * 2018-02-22 2022-01-24 三浦工業株式会社 Boiler device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464813A (en) * 1990-07-03 1992-02-28 Miura Co Ltd Proportional combustion controller for gas firing boiler system
JPH0674076A (en) * 1992-07-03 1994-03-15 Honda Motor Co Ltd Intake air amount calculating method for internal combustion engine
JPH09178166A (en) * 1995-12-21 1997-07-11 Tokyo Gas Co Ltd Control for fuel supply in start of combustion of combustion system
JPH11166699A (en) * 1997-12-02 1999-06-22 Nippon Air Liquide Kk Flow rate control device of exhaust duct in cylinder cabinet
JPH11230540A (en) * 1998-02-13 1999-08-27 Miura Co Ltd Device for controlling quantity of fuel gas of premixing system of gas burner
JP2011133180A (en) * 2009-12-25 2011-07-07 Miura Co Ltd Boiler

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292317A (en) * 2005-04-13 2006-10-26 Miura Co Ltd Boiler and low-nox combustion method
JP5358895B2 (en) * 2007-04-13 2013-12-04 三浦工業株式会社 Combustion device
JP2012163265A (en) * 2011-02-08 2012-08-30 Miura Co Ltd Heat equipment
WO2012144241A1 (en) * 2011-04-18 2012-10-26 三浦工業株式会社 Heat medium boiler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464813A (en) * 1990-07-03 1992-02-28 Miura Co Ltd Proportional combustion controller for gas firing boiler system
JPH0674076A (en) * 1992-07-03 1994-03-15 Honda Motor Co Ltd Intake air amount calculating method for internal combustion engine
JPH09178166A (en) * 1995-12-21 1997-07-11 Tokyo Gas Co Ltd Control for fuel supply in start of combustion of combustion system
JPH11166699A (en) * 1997-12-02 1999-06-22 Nippon Air Liquide Kk Flow rate control device of exhaust duct in cylinder cabinet
JPH11230540A (en) * 1998-02-13 1999-08-27 Miura Co Ltd Device for controlling quantity of fuel gas of premixing system of gas burner
JP2011133180A (en) * 2009-12-25 2011-07-07 Miura Co Ltd Boiler

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020790A (en) * 2014-07-15 2016-02-04 三浦工業株式会社 Boiler system
JP2016020789A (en) * 2014-07-15 2016-02-04 三浦工業株式会社 Boiler system
JP2016020791A (en) * 2014-07-15 2016-02-04 三浦工業株式会社 Boiler system
JP2016020793A (en) * 2014-07-15 2016-02-04 三浦工業株式会社 Boiler device

Also Published As

Publication number Publication date
JP6123253B2 (en) 2017-05-10
JP2014105881A (en) 2014-06-09

Similar Documents

Publication Publication Date Title
JP6123253B2 (en) Boiler equipment
US9951945B2 (en) Diffuser plate for premixed burner box
US8677947B2 (en) Boiler system
KR20210134970A (en) How the adjustable burner works
JP5774381B2 (en) Waste heat recovery boiler and power plant
JP2011033029A (en) System and method for supplying fuel to gas turbine
US20200088404A1 (en) Burner
JP5370457B2 (en) Heating medium boiler
JP2014105882A (en) Boiler device
JP2016020792A (en) Boiler device
JP5583628B2 (en) Combustion appliances
JP6508659B2 (en) Gas burner
JP6221468B2 (en) Boiler equipment
JP4619643B2 (en) Steam desuperheater
JP6171647B2 (en) boiler
JP6107391B2 (en) boiler
JP2020051637A (en) Combustion device and water heating device
CN213983499U (en) Water supply system of gas steam boiler
KR20140096998A (en) Dual path paralell superheater
JP2012072992A (en) Water supply control device and boiler
JP5801756B2 (en) Secondary heat exchanger for latent heat recovery water heater
JP5408150B2 (en) Boiler system
WO2020066310A1 (en) Combustion apparatus and water heater
JP2009097802A (en) Reheater boiler and gas temperature control method of reheater boiler
KR102473270B1 (en) Burner system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856213

Country of ref document: EP

Kind code of ref document: A1