WO2014080062A1 - Sensor de temperatura diferencial con inmunidad a interferencias térmicas - Google Patents

Sensor de temperatura diferencial con inmunidad a interferencias térmicas Download PDF

Info

Publication number
WO2014080062A1
WO2014080062A1 PCT/ES2013/070810 ES2013070810W WO2014080062A1 WO 2014080062 A1 WO2014080062 A1 WO 2014080062A1 ES 2013070810 W ES2013070810 W ES 2013070810W WO 2014080062 A1 WO2014080062 A1 WO 2014080062A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sensor
output
circuit
interfering
Prior art date
Application number
PCT/ES2013/070810
Other languages
English (en)
French (fr)
Inventor
Didac Gomez Salinas
Diego Mateo Peña
Josep Altet Sanahujes
Original Assignee
Universitat Politècnica De Catalunya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politècnica De Catalunya filed Critical Universitat Politècnica De Catalunya
Publication of WO2014080062A1 publication Critical patent/WO2014080062A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/08Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values
    • G01K3/14Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values in respect of space

Definitions

  • the present invention relates to an electronic circuit with electrical output magnitude dependent on the temperature difference of two zones of the semiconductor crystal in which it is integrated, and which at the same time presents a great rejection of possible thermal interference from other areas of the same crystal
  • the sector of the technique to which it refers is that of electronic instrumentation for measuring temperature in integrated circuits.
  • differential temperature sensors In the field of electronic instrumentation technology there are ios called differential temperature sensors [1]. They are circuits with applications in the realization of temperature measurements in integrated circuits. Its operation is that the output voltage (or current) varies proportionally to the temperature difference of two of its devices, called temperature transducers. These sensors are normally used in test applications and characterization of integrated circuits, such as those described by patents [2], [3], since the operation of any electronic circuit causes a power dissipation and this in turn a temperature variation in its vicinity. Therefore, a temperature measurement near this circuit can provide information on possible anomalies and characteristics thereof.
  • Patent number 2294888 Procedure for determining the electrical characteristics of integrated analog circuits.
  • Patent number 2332688 Heterodyne procedure for temperature measurements. Explanation of the invention.
  • Differential temperature sensors are used to measure the temperature variations caused by the operation of a circuit, and from these measurements, extract electrical characteristics of the circuit. These differential sensors have the advantage of having a high sensitivity to differential temperature variations caused by power dissipation due to circuits located in the same semiconductor crystal— (8) in Figure 2— than the sensor, and very low sensitivity at temperature variations that equally affect the entire semiconductor crystal, such as variations in ambient temperature.
  • the state of the art of the differential temperature sensors shows architectures based on differential amplifiers, for example, two bipolar coupled by emitter, bipolar that would act as temperature transducers.
  • One of the two bipolar would be located in the area of the surface of the semiconductor crystal whose temperature is considered reference - for example, (2) in figures 1 and 2 - while the other - for example (3) in the figures 1 and 2 - would be located in the vicinity of the device or circuit whose temperature variation with respect to the reference is measured - (1) in Figure 2—.
  • the advantage of this method of obtaining information of the circuit under measure is to be electrically non-invasive, something especially beneficial in high-performance circuits such as high-frequency analog ios.
  • a possible inconvenience of a differential temperature sensor classic would be due to the fact that the measurement transducer (the one cited as (3) in figures 1 and 2) would not be influenced solely by the temperature variations of the circuit under measurement - (1) in figure 2— if not It could also be influenced by the temperature variations of other devices or circuits integrated in the same glass and that are also in the vicinity of the measurement zone - (7) in Figure 2—.
  • the present invention proposes a solution to solve this possible thermal interference, without modifying the arrangement of the devices or circuits generating said thermal interference.
  • ⁇ /; AT h
  • a is the coefficient of thermal collection between the hys zones, and whose value depends on parameters such as the physical properties of the material over which all the circuitry is integrated and the distance between both zones
  • is the temperature variation that you want to measure
  • Ts is the temperature variation that you have in the area where the sensor transconductor is located, temperature variations always with respect to that of the differential sensor reference zone.
  • One of the zones hi is considered the zone whose temperature variation is to be measured, for example h1, and the rest, for example h2 to hn, zones whose temperature has also varied because they are dissipative devices that cause thermal interference on them! to zone s.
  • the objective of the thermal sensing technique by means of integrated temperature sensors is to estimate ⁇ from ⁇ ATs, with the coefficients ai and also the value of ios interfering temperature increases T ⁇ , with i between 2 and n.
  • the coefficients ai can be estimated a priori from the layout of the circuit by computer simulation, but the interfering temperature increases will generally be unpredictable.
  • the present invention proposes to eliminate the effect of interfering temperatures by using more than one sensor device - in Figure 2 a single extra sensor device has been considered, indicated as (4) -, thus assuming the use of m sensor devices (In addition to the reference, indicated as (2) in Figure 2), the above equation is transformed into a system of m equations:
  • aij is the thermal coupling between the source j (of a total of n) and the sensor device i (of a total of m).
  • Figure 1 shows the symbol of the electronic circuit object of the present invention. It has two power inputs (5) and (6), and as output it has a node (1). In addition, it has several internal devices, at least 3. The figure shows 3— (2), (3) and (4) -, without limiting the present invention to the use of a larger number, the temperatures of which will influence directly on the value of the electrical magnitude of the output node.
  • FIG 2 schematically shows a semiconductor crystal (8) in which there is an electronic circuit or device (1) whose temperature variation we want to measure by including a temperature sensor integrated in the same crystal, sensor whose elements more Significant are a temperature sensitive device located near the circuit to be measured and indicated as (3) in Figure 2, and a device responsible for measuring the reference temperature of the integrated circuit and indicated as (2) in Figure 2.
  • a circuit or device that dissipates power in the vicinity of the circuit to be measured - indicated as (7) in the figure -, and that causes an increase in temperature in (3) considered as interference.
  • an extra temperature sensitive device is also included, (4) in Figure 2, forming part of the same temperature sensor together with (3) and (2).
  • Figure 3 shows an inverting amplifier formed by an amplifier transistor MA (1) and its resistive load RLOAD (7).
  • the temperature of the transistor MA is the objective of the measurement, and the RLOAD resistive load acts as a thermal interference by generating a temperature increase in the area of the semiconductor glass that will also affect the measurement sensor by thermal coupling.
  • Figure 4 shows a possible transistor level implementation of the circuit of Figure 1, object of the present invention.
  • the indications (1) to (6) of figure 4 correspond to those of figure 1: two power nodes (5) and (6), the output (1) (in this case in voltage mode and also indicated with Vout), and the temperature sensing devices that in this implementation are the bipolar transistors Qref (2) (which is responsible for sensing the reference temperature of the semiconductor crystal die, and that is usually located at a place on the surface of the die away from any heat source), and the bipolar Qs1 (3) and Qs2 (4) (corresponding to (3) and (4) in Figure 1 and also in Figure 2), all interconnected by coupling of transmitter as a differential torque, Qref on the one hand and the rest on the other. All the MOS transistors perform functions of active loads and current mirrors, to end up generating the output voltage Vout (1). Description of preferred applications
  • Figure 1 shows the symbol of the temperature differential sensor object of the present invention
  • Figure 4 a possible implementation is shown at the level of transistor of said circuit.
  • An electronic circuit is described in Figure 3 which is used in the preferred application as a circuit to be characterized by temperature measurements, without limiting the use of the differential sensor object of the present invention to the temperature measurement caused by other electronic circuits.
  • the circuit described in Figure 3 is an inverting amplifier formed by an amplifier transistor MA (1) and its resistive load RLOAD (7), the first being the object of measurement, and the resistive load (7) the device that acts as a source of interfering temperature.
  • Figure 2 shows a possible distribution on the surface of the semiconductor glass of the heat sources corresponding to the circuit of Figure 3, so that in Figure 2 (1) it corresponds to the transistor MA of Figure 3 and ( 7) to the RLOAD load of the same figure. Also shown in Figure 2 are the sensor devices of the temperature sensor of Figure 4, so that (2), (3) and (4) of Figure 2 correspond to the transistors (2), (3) and (4) of Figure 3. The device is considered transconductor in charge of the reference temperature - Qref in Figure 4 (2) and also represented in Figure 2 (2) - is far enough away to not be influenced by any heat source.
  • ATs1 being the temperature increase in the measuring zone s1 and ⁇ Ts2 the temperature increase in the measuring zone s2; ⁇ the temperature increase caused by the transistor object of the MA measurement in the semiconductor glass area where it is located and ⁇ the temperature increase caused by the RLOAD load resistance in the area of the glass where it is located and considered as interfering; a1 1 and a12 the thermal coupling coefficients of the MA and RLOAD devices respectively to the area where the device Q1 and a21 and a22 the thermal coupling coefficients of the MA and RLOAD devices respectively to the area where the device Q2 is located . Assuming that these four coefficients are known, either by experimental measure or by simulation, it is immediate to obtain from the measure of ⁇ 1 and ATs2 the temperature increase object of the measurement, in this case ATh1, despite the increase in temperature interference caused by resistance:
  • the procedure for estimating the temperature increase caused by the transistor MA of the amplifier of Figure 3 in the vicinity of its position, being polarized and dissipating power both it and its RLOAD load resistance (which would act as an increase generator of interfering temperature on the temperature sensor), consists of polarizing the sensor and successively activating each of its m transconducting devices, and measuring in each case the sensor output.
  • Q1 would first be activated (with Q2 deactivated) and the corresponding variation of the sensor output, AVs1 would be measured. Then Q1 would be deactivated (for example, putting its base-to-ground voltage) and Q2 would be properly polarized, measuring the corresponding variation of the output of! sensor, AVs2.
  • the estimation of the temperature variation of MA due to being the polarized amplifier would be:

Abstract

La presente invención describe un circuito electrónico orientado a ser integrado en un cristal semiconductor capaz de proporcionar una magnitud eléctrica a su salida dependiente de la diferencia de temperatura entre dos zonas de la superficie de dicho cristal semiconductor, y que presenta al mismo tiempo un gran rechazo a posibles interferencias térmicas provenientes de otras zonas del mismo cristal. La figura 1 muestra el símbolo del circuito electrónico. Éste tiene dos entradas de alimentación (5) y (6), y como salida tiene un nodo (1). Además, tiene diversos dispositivos internos, (2), (3) y (4) en la figura, las temperaturas de los cuales influirán de forma directa en el valor de la magnitud eléctrica del nodo de salida.

Description

SENSOR DE TEMPERATURA DIFERENCIAL CON INMUNIDAD A
INTERFERENCIAS TÉRMICAS Sector de la técnica
La presente invención se refiere a un circuito electrónico con magnitud eléctrica de salida dependiente de la diferencia de temperatura de dos zonas del cristal semiconductor en el que se integra, y que presenta al mismo tiempo un gran rechazo a posibles interferencias térmicas provenientes de otras zonas del mismo cristal. El sector de la técnica al que se refiere es al de la instrumentación electrónica para la medida de temperatura en circuitos integrados. Estado de la técnica
En el sector de la técnica de la instrumentación electrónica existen ios denominados sensores de temperatura diferenciales [1 ]. Son circuitos con aplicaciones en la realización de mediciones de temperatura en circuitos integrados. Su funcionamiento consiste en que la tensión (o corriente) de salida varía de forma proporcional a la diferencia de temperatura de dos de sus dispositivos, denominados transductores de temperatura. Estos sensores son normalmente utilizados en aplicaciones de test y caracterización de circuitos integrados, tales y como las descritas por las patentes [2], [3], ya que el funcionamiento de cualquier circuito electrónico provoca una disipación de potencia y ésta a su vez una variación de temperatura en sus proximidades. Por lo tanto, una medida de temperatura cerca de este circuito puede proporcionar información sobre posibles anomalías y características del mismo. En comparación con ios métodos clásicos de verificación de circuitos integrados basados en la medida de magnitudes eléctricas, la utilización de la temperatura como observable tiene la ventaja principal de que el circuito bajo medida no está cargado eléctricamente, lo cual es de vital importancia por ejemplo en circuitos de alta frecuencia. [1 ] Eduardo Aidrete-Vidrio, Diego Mateo y Josep Altet, "Diíferential Temperature Sensors Fully Compatible With a 0.35-μΓΠ CMOS Process", IEEE TRANSACTiONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 30, NO, 4, DECEMBER 2007.
[2] Patente número 2294888. Procedimiento para determinar las características eléctricas de circuitos analógicos integrados.
[3] Patente número 2332688. Procedimiento heterodino para la realización de mediciones de temperatura. Explicación de la invención
Los sensores diferenciales de temperatura son utilizados para realizar mediciones de las variaciones de temperatura que provoca el funcionamiento de un circuito, y a partir de estas mediciones, extraer características eléctricas del circuito. Estos sensores diferenciales tienen como ventaja el hecho de tener una elevada sensibilidad a variaciones de temperatura diferenciales provocadas por la disipación de potencia debida a circuitos ubicados en el mismo cristal semiconductor— (8) en la figura 2— que el sensor, y muy poca sensibilidad a variaciones de temperatura que afecten por igual a todo el cristal semiconductor, tal y como variaciones de la temperatura ambiente. El estado del arte de ios sensores diferenciales de temperatura muestra arquitecturas basadas en amplificadores diferenciales, por ejemplo, dos bipolares acoplados por emisor, bipolares que harían de transductores de temperatura. Uno de ios dos bipolares estaría situado en la zona de la superficie del cristal semiconductor cuya temperatura se considera de referencia— por ejemplo, (2) en las figuras 1 y 2— , mientras que el otro — por ejemplo (3) en las figuras 1 y 2— estaría situado en la proximidad del dispositivo o circuito cuya variación de temperatura respecto a la de referencia es objeto de medida — (1 ) en la figura 2— . La ventaja de este método de obtención de información del circuito bajo medida consiste en ser eléctricamente no invasiva, algo beneficioso especialmente en circuitos de altas prestaciones como ios analógicos de alta frecuencia. Un posible inconveniente de un sensor de temperatura diferencial clásico sería la debida a que el transductor de medida (el citado como (3) en las figuras 1 y 2) no se vería influenciado únicamente por las variaciones de temperatura del circuito bajo medida — (1 ) en la figura 2— si no que también se podría ver influenciado por las variaciones de temperatura de otros dispositivos o circuitos integrados en el mismo cristal y que se encuentren también en las proximidades de la zona de medida — (7) en la figura 2— . La presente invención propone una solución para solventar esta posible interferencia térmica, sin necesidad de modificar la disposición de los dispositivos o circuitos generadores de dicha interferencia térmica.
Si denominamos h a la zona cuya variación de temperatura respecto a la de la zona de referencia desea ser medida — (1 ) en la figura 2— , y s a la zona donde situamos el dispositivo transconductor del sensor encargado de medirla — (3) en la figura 2— , de forma genérica se puede escribir:
Λ/; = ATh donde a es el coeficiente de acopiamiento térmico entre las zonas h y s, y cuyo valor depende de parámetros como las propiedades físicas del material sobre el que se integra toda la circuitería y de la distancia entre ambas zonas, ΔΤη es la variación de temperatura que se desea medir, y Ts es la variación de temperatura que se tiene en la zona donde se sitúa el transconductor del sensor, variaciones de temperatura siempre respecto a la de la zona de referencia del sensor diferencial.
Si en vez de tener una única fuente de calor en las cercanías de h, por el contrario hay más fuentes de calor, estas pueden provocar también una variación de la temperatura en el dispositivo de medida y por lo tanto se pueden considerar como fuentes de calor interferentes. En la figura 2 se ha considerado una única fuente interferente, indicada como (7), pero de forma genérica pueden ser más las interferencias térmicas a considerar para la medida que se está realizando. Considerando n fuentes de calor interferentes, en tal caso la ecuación anterior se debe escribir: Ί = α, ATH, + αΊ ATh. a„ AT,„ donde ai es el acoplamiento térmico entre cada zona hi donde se encuentra una fuente disipando potencia y la zona s de sensado térmico. Una de las zonas hi se considera la zona cuya variación de temperatura se desea medir, por ejemplo h1 , y el resto, por ejemplo h2 a hn, zonas cuya temperatura también ha variado por estar en ellas dispositivos disipativos que provocan una interferencia térmica sobre ¡a zona s. E¡ objetivo de la técnica de sensado térmico mediante sensores de temperatura integrados es estimar ΔΤΊΊΙ a partir de ¡a medida ATs, con lo se deberían conocer los coeficientes ai y además el valor de ios incrementos de temperatura interferentes T \, con i entre 2 y n. Los coeficientes ai pueden ser estimados a priori a partir del layout del circuito mediante simulación computacionai, pero ios incrementos de temperatura interferentes serán en general no predecibles.
La presente invención propone eliminar el efecto de las temperaturas interferentes mediante la utilización de más de un dispositivo sensor — en la figura 2 se ha considerado un único dispositivo sensor extra, indicado como (4)— , Así, asumiendo la utilización de m dispositivos sensores (además del de referencia, indicado como (2) en la figura 2), la ecuación anterior se transforma en un sistema de m ecuaciones:
a. I:
Figure imgf000005_0001
donde aij es el acoplamiento térmico entre la fuente j (de un total de n) y el dispositivo sensor i (de un total de m). De esta forma es inmediato que, asegurando que m sea igual o superior a n, y asumiendo conocida la matriz de acoplamientos térmicos, mediante la medida del vector de variaciones de temperatura ATs = [ΔΤβΙ , ATs2, ... , ATsm] es posible determinar el incremento de temperatura buscado (por ejemplo ΔΤΜ , pero podría ser cualquier otro), eliminando el efecto de los incrementos de temperatura interferentes. Descripción de los dibujos
La figura 1 muestra el símbolo del circuito electrónico objeto de la presente invención. Tiene dos entradas de alimentación (5) y (6), y como salida tiene un nodo (1 ). Además, tiene diversos dispositivos internos, como mínimo 3. En la figura aparecen 3— (2), (3) y (4)— , sin que ello limite la presente invención al uso de un número mayor, las temperaturas de los cuales influirán de forma directa en el valor de la magnitud eléctrica del nodo de salida.
La figura 2 muestra de forma esquemática un cristal semiconductor (8) en el que se encuentra un circuito o dispositivo electrónico (1 ) cuya variación de temperatura queremos medir mediante la inclusión de un sensor de temperatura integrado en el mismo cristal, sensor cuyos elementos más significativos son un dispositivo sensible a la temperatura situado cerca del circuito a medir y indicado como (3) en la figura 2, y un dispositivo encargado de medir la temperatura de referencia del circuito integrado y indicado como (2) en la figura 2. En la misma figura 2 se ha incluido un circuito o dispositivo que disipa potencia en las cercanías del circuito a medir— indicado como (7) en la figura— , y que provoca un incremento de temperatura en (3) considerado como interferencia. Y se incluye también un dispositivo extra sensible a la temperatura, (4) en la figura 2, formando parte del mismo sensor de temperatura juntamente con (3) y (2).
La figura 3 muestra un amplificador inversor formado por un transistor amplificador MA (1 ) y su carga resistiva RLOAD (7). La temperatura del transistor MA es el objetivo de la medida, y a la carga resistiva RLOAD actúa como interferente térmica al generar en la zona del cristal semiconductor donde se encuentra situada un incremento de temperatura que afectará también por acoplo térmico ai sensor de medida. La figura 4 muestra una posible implementación a nivel de transistor del circuito de la figura 1 , objeto de la presente invención. Las indicaciones (1 ) a (6) de la figura 4 corresponden con las de la figura 1 : ios dos nodos de alimentación (5) y (6), la salida (1 ) (en este caso en modo tensión e indicada también con Vout), y los dispositivos sensores de temperatura que en esta implementación son ios transistores bipolares Qref (2) (el cual es el encargado de sensar la temperatura de referencia del dado de cristal semiconductor, y que usualmente está situado en un lugar de la superficie del dado alejado de toda fuente de calor), y los bipolares Qs1 (3) y Qs2 (4) (correspondientes a (3) y (4) en la figura 1 y también en la figura 2), interconectados todos ellos por acoplo de emisor a modo de par diferencial, Qref por un lado y el resto por otro. Todos ios transistores MOS realizan funciones de cargas activas y espejos de corriente, para acabar generando la tensión de salida Vout (1 ). Descripción de las aplicaciones preferidas
Como aplicación preferida se muestra la descrita en las figura 1 , 2, 3 y 4. En la figura 1 se muestra el símbolo del sensor diferencial de temperatura objeto de la presente invención, y en la figura 4 se muestra una posible implementación a nivel de transistor de dicho circuito. En la figura 3 se describe un circuito electrónico que es utilizado en la aplicación preferida como circuito a caracterizar mediante medidas de temperatura, sin que ello limite la utilización del sensor diferencial objeto de la presente invención a la medida de temperatura provocada por otros circuitos electrónicos. El circuito que describe la figura 3 es un amplificador inversor formado por un transistor amplificador MA (1 ) y su carga resistiva RLOAD (7), siendo el primero el objeto de medida, y la carga resistiva (7) el dispositivo que actúa como fuente de temperatura interferente. Y por último, la figura 2 muestra una posible distribución en la superficie del cristal semiconductor de las fuentes de calor correspondientes al circuito de la figura 3, de forma que en la figura 2 (1 ) corresponde al transistor MA de la figura 3 y (7) a la carga RLOAD de la misma figura. También se muestran en la figura 2 los dispositivos sensores del sensor de temperatura de la figura 4, de forma que (2), (3) y (4) de la figura 2 se corresponden con ios transistores (2), (3) y (4) de la figura 3. Se considera que el dispositivo transconductor encargado de la temperatura de referencia— Qref en la figura 4 (2) y también representado en ¡a figura 2 (2)— está suficientemente alejado como para no verse influenciado por ninguna fuente de calor.
A partir de la distribución presentada en la figura 2, se pueden obtener las siguiente ecuaciones:
ATsl = a11AThl + ai2
Δ¾. = a2lAXbl + a22ATll2
siendo ATs1 el incremento de temperatura que se tiene en la zona de medida s1 y ñTs2 el incremento de temperatura que se tiene en la zona de medida s2; ΔΤηΙ el incremento de temperatura que provoca el transistor objeto de la medida MA en la zona del cristal semiconductor donde se encuentra situado y ΔΤΜ el incremento de temperatura que provoca la resistencia de carga RLOAD en la zona del cristal donde se encuentra situada y que se considera como interferente; a1 1 y a12 los coeficientes de acoplo térmico de ios dispositivos MA y RLOAD respectivamente hasta la zona donde se encuentra el dispositivo Q1 y a21 y a22 los coeficientes de acoplo térmico de los dispositivos MA y RLOAD respectivamente hasta la zona donde se encuentra el dispositivo Q2. Asumiendo que dichos cuatro coeficientes son conocidos, bien mediante medida experimental bien mediante simulación, es inmediato la obtención a partir de la medida de ΔΤε1 y de ATs2 del incremento de temperatura objeto de la medida, en este caso ATh1 , a pesar del incremento de temperatura interferente provocado por la resistencia:
-ATS[ + -ΔΤ„,
Ia 1 1a 22 a 2! a ¡2 laiia 22 a 2! a !2 -
Concretando en la medida que de hecho se realizará con el sensor, y asumiendo que su salida es en modo tensión al igual que el sensor presentado en la presente invención, el sistema de ecuaciones queda convertido en el siguiente: AVsl = ST(auAThl + ai2ATh2)
Δν82 = ST(a21ATM + a22ATh2)
donde ST es la sensibilidad diferencia! de! sensor de temperatura (de unidades V/°C), y donde se ha considerado sin pérdida de generalidad que los dos transconductores Q1 y Q2 de la figura 4 están dimensionados y polarizados de la misma forma, proporcionando por lo tanto igual sensibilidad ST,
De esta forma, el procedimiento de estimación del incremento de temperatura provocado por el transistor MA del amplificador de la figura 3 en las cercanías de su posición, estando polarizado y disipando potencia tanto éi como su resistencia de carga RLOAD (que actuaría como generadora de incremento de temperatura interferente sobre el sensor de temperatura), consiste en polarizar el sensor y activar de forma sucesiva cada uno de sus m dispositivos transconductores, y midiendo en cada caso la salida del sensor. En el presente caso, primero se activaría Q1 (teniendo desactivado Q2) y se mediría la correspondiente variación de la salida del sensor, AVs1 . A continuación se desactivaría Q1 (por ejemplo, poniendo su tensión de base a masa) y se polarizaría adecuadamente Q2, midiendo la correspondiente variación de la salida de! sensor, AVs2. La estimación de la variación de temperatura de MA debido a estar el amplificador polarizado sería:
ΔΤ„, =—, ^ :AV„ +
V ( \ s i ' C ( \ 82
eliminando el efecto interferente de la disipación de potencia de la carga RLOAD.

Claims

Reivindicaciones
1 .- Un circuito electrónico integrado en un dado de cristal semiconductor caracterizado porque la variación de su magnitud eléctrica de salida dependa de la diferencia de temperatura entre dos zonas de dicho cristal, siendo capaz al mismo tiempo de no depender de los incrementos de temperatura que tengan lugar en otras zonas del mismo cristal semiconductor. Teniendo m-1 fuentes de temperatura interferentes, y asumiendo un sensor de salida en modo tensión (podría ser en modo corriente), es posible obtener a la salida del sensor una medida proporcional únicamente a la diferencia de temperatura objetivo de la medida ΔΤη1 e independiente de las temperaturas interferentes:
ΔΤω = ,AVsl + a2AYs2 +■■■ + + mAYsm dónde AVsi son los valores que se obtienen a la salida del sensor activando únicamente cada uno de sus m dispositivos de medida de temperatura, y ai son coeficientes que dependen de los acoplos térmicos entre las fuentes interferentes y ios m dispositivos del sensor y de la sensibilidad del sensor.
2. Un circuito electrónico según la reivindicación 1 puede ser de salida en modo tensión AVout o en modo corriente Alout .
3. Un circuito electrónico que comprende un par diferencial formado por:
a) en una de las dos ramas de dicho par, un transistor bipolar encargado de aportar al circuito la dependencia de la salida del circuito respecto a una temperatura de referencia,
b) y en la otra rama del par diferencial, no otro único transistor sino m transistores bipolares en paralelo y situados adecuadamente en la superficie del cristal semiconductor.
Y caracterizado porque si m es 1 el circuito se comportaría como un sensor de temperatura diferencial clásico, y para valores de m mayores de 1 el circuito podrá eliminar m-1 variaciones de temperatura interferentes.
PCT/ES2013/070810 2012-11-22 2013-11-22 Sensor de temperatura diferencial con inmunidad a interferencias térmicas WO2014080062A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201231816A ES2471671B2 (es) 2012-11-22 2012-11-22 Sensor de temperatura diferencial con inmunidad a interferencias térmicas
ESP201231816 2012-11-22

Publications (1)

Publication Number Publication Date
WO2014080062A1 true WO2014080062A1 (es) 2014-05-30

Family

ID=50775585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070810 WO2014080062A1 (es) 2012-11-22 2013-11-22 Sensor de temperatura diferencial con inmunidad a interferencias térmicas

Country Status (2)

Country Link
ES (1) ES2471671B2 (es)
WO (1) WO2014080062A1 (es)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020014675A1 (en) * 2000-08-04 2002-02-07 Toru Matsumoto Semiconductor temperature detecting method and its circuit
US20030231697A1 (en) * 2002-06-13 2003-12-18 Mykrolis Corporation Temperature regulator for use with a pressure sensing device
JP2008032497A (ja) * 2006-07-27 2008-02-14 Toyota Motor Corp 温度検出回路およびその補正方法
US7480588B1 (en) * 2006-04-19 2009-01-20 Darryl Walker Semiconductor device having variable parameter selection based on temperature and test method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020014675A1 (en) * 2000-08-04 2002-02-07 Toru Matsumoto Semiconductor temperature detecting method and its circuit
US20030231697A1 (en) * 2002-06-13 2003-12-18 Mykrolis Corporation Temperature regulator for use with a pressure sensing device
US7480588B1 (en) * 2006-04-19 2009-01-20 Darryl Walker Semiconductor device having variable parameter selection based on temperature and test method
JP2008032497A (ja) * 2006-07-27 2008-02-14 Toyota Motor Corp 温度検出回路およびその補正方法

Also Published As

Publication number Publication date
ES2471671A1 (es) 2014-06-26
ES2471671B2 (es) 2014-10-01

Similar Documents

Publication Publication Date Title
Kaltsas et al. Novel C-MOS compatible monolithic silicon gas flow sensor with porous silicon thermal isolation
Schweitzer et al. Thermal transient characterization of semiconductor devices with multiple heat sources—Fundamentals for a new thermal standard
JP6225766B2 (ja) 内部温度測定方法及び内部温度測定装置
EP2847564A1 (en) Method and device for sensing isotropic stress and providing a compensation for the piezo-hall effect
WO2016067952A1 (ja) 内部温度測定装置
Basov High-sensitivity MEMS pressure sensor utilizing bipolar junction transistor with temperature compensation
TWI439679B (zh) 電校式輻射計
JP2003057117A (ja) 赤外線温度計に用いるプローブ
CN201266119Y (zh) 温度补偿电路
CN111741709A (zh) 具有两个teg的主体核心温度传感器
WO2014080062A1 (es) Sensor de temperatura diferencial con inmunidad a interferencias térmicas
Sisto et al. Pressure sensing in vacuum hermetic micropackaging for MOEMS-MEMS
Marriage et al. Testing and assembly of the detectors for the Millimeter Bolometer Array Camera on ACT
Park et al. Evaluation of thickness‐dependent temperature coefficient in a thin film thermocouple and its in vivo test using a porcine model
ES2425007B1 (es) Procedimiento para la medición de la eficiencia de amplificadores de potencia integrados lineales clase a utilizando mediciones de temperatura en continua
WO2013093159A1 (es) Procedimiento para la estimación de características eléctricas de un circuito analógico mediante la medición en continua de temperatura
ES2294888B1 (es) Procedimiento para determinar las caracteristicas electricas de circuitos analogicos integrados.
TW201905446A (zh) 熱特性量測裝置
TWI695159B (zh) 溫度測定裝置、周圍溫度測定方法、及周圍溫度測定程式
ES2317732B1 (es) Procedimiento para la obtencion de la frecuencia central en amplificadores sintonizados integrados en un cristal semiconductor mediante la medicion de temperatura.
TW201830001A (zh) 濕度感測器及濕度感測器裝置
ES2583175B2 (es) Procedimiento para la medición de la frecuencia central y el ancho de banda 3dB en amplificadores sintonizados o de banda estrecha mediante mediciones de temperatura en continua
Zhao et al. Design and Simulation of Low Noise Amplifier in Lower Frequency
Szekely et al. Improvements of the variable thermal resistance
WO2013124508A1 (es) Circuito electrónico con magnitud eléctrica de salida dependiente de la diferencia de tensión de dos nodos de entrada y de la diferencia de temperatura de dos de sus dispositivos

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857649

Country of ref document: EP

Kind code of ref document: A1