WO2014079018A1 - 可变带宽的方法、网络侧设备和用户设备 - Google Patents

可变带宽的方法、网络侧设备和用户设备 Download PDF

Info

Publication number
WO2014079018A1
WO2014079018A1 PCT/CN2012/085061 CN2012085061W WO2014079018A1 WO 2014079018 A1 WO2014079018 A1 WO 2014079018A1 CN 2012085061 W CN2012085061 W CN 2012085061W WO 2014079018 A1 WO2014079018 A1 WO 2014079018A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
type
pilot channel
channel
spreading factor
Prior art date
Application number
PCT/CN2012/085061
Other languages
English (en)
French (fr)
Inventor
王宗杰
马雪利
汪凡
李元杰
徐文颖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12888707.2A priority Critical patent/EP2924901A4/en
Priority to PCT/CN2012/085061 priority patent/WO2014079018A1/zh
Priority to CN201280002110.0A priority patent/CN103959858A/zh
Publication of WO2014079018A1 publication Critical patent/WO2014079018A1/zh
Priority to US14/720,076 priority patent/US20150257140A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • Embodiments of the present invention relate to the field of communications technologies, and, more particularly, to a method of variable bandwidth, a network side device, and a user equipment. Background technique
  • High Speed Packet Access has been introduced in the Universal Mobile Telecommunication System (UMTS) to improve spectral efficiency. Further, to support larger bandwidths and higher rates, UMTS has also introduced support for multi-carrier systems.
  • the traditional UMTS system has a chip rate of 3.84 MHz, and a single carrier system is typically deployed on a 5 MHz frequency bandwidth. If a multi-carrier system is considered, the UMTS can be deployed on an integer multiple of the 5 MHz spectrum. However, the spectrum resources owned by the operator may be less than 5 MHz or not an integer multiple of 5 MHz. If the traditional UMTS system is deployed, it may cause fragmentation of frequency, reduce spectrum utilization, and waste spectrum resources. Summary of the invention
  • the present invention provides a variable bandwidth method, a network side device, and a user equipment, which can improve bandwidth usage efficiency and reduce bandwidth waste.
  • variable bandwidth method including:
  • a chip rate of the first type of carrier is 3.84 megachips per second, and a chip rate of the second type of carrier is P*3.84 Mcps, P is less than 1 and greater than 0;
  • the first type of carrier and/or the second type of carrier are used for communication.
  • the transmission time interval ⁇ length of the at least one cell corresponding to the first type of carrier is the same as the length of the at least one cell corresponding to the second type of carrier.
  • the cell identifier ID of the at least one cell corresponding to the second type of carrier corresponds to the first type of carrier
  • the ID of at least one cell is the same.
  • the primary scrambling code sequence used by the at least one cell corresponding to the second type of carrier is the same as the primary 4 special code sequence of the at least one cell corresponding to the first type of carrier;
  • the primary scrambling code sequence used by the at least one cell corresponding to the second type of carrier is determined according to a primary 4 code sequence of at least one cell corresponding to the first type of carrier.
  • the chip rate of the second type of carrier or the number of the second type of carriers is carried by the radio resource control RRC signaling of the first type of carrier.
  • the high-speed physical downlink shared channel HS-PDSCH of the downlink carrier of the second type of carrier uses a spreading factor of 16, and the spreading factor of the pilot channel of the downlink carrier of the second type of carrier is the downlink of the first type of carrier. P times the spreading factor of the same pilot channel of the carrier.
  • the uplink enhanced dedicated physical data channel of the uplink carrier of the second type of carrier, the spreading factor used by the E-DPDCH, is one or more of the spreading factors that can be used by the uplink carrier of the first type of carrier.
  • the pilot channel spreading factor of the uplink carrier of the second type of carrier is P times the spreading factor of the same pilot channel of the uplink carrier of the first type of carrier.
  • the downlink carrier of the second type of carrier carries only the HS-PDSCH and the first type of pilot channel.
  • the first type of pilot channel is a common pilot channel, a pilot channel for data demodulation, or used for measurement Pilot channel.
  • the uplink carrier of the second type of carrier carries only the E-DPDCH and the second type of pilot channel.
  • the second type of pilot channel is a dedicated pilot channel.
  • the spreading factor of some or all of the channels of the second type of carrier for random access is P times the spreading factor of the equivalent or all channels of the first type of carrier for random access.
  • the spreading factor of the control channel and/or the common channel of the second type of carrier is P times the spreading factor of the same type of carrier equal control channel and/or common channel.
  • variable bandwidth method including:
  • the chip rate of the first type of carrier is 3.84 megachips per second
  • the chip rate of the second type of wave is P*3.84 Mcps. P is less than 1 and greater than zero.
  • the transmission time interval ⁇ length of the at least one cell corresponding to the first type of carrier is the same as the length of the at least one cell corresponding to the second type of carrier.
  • the identification ID of the at least one cell corresponding to the second type of carrier is the same as the ID of at least one cell corresponding to the first type of carrier.
  • the primary scrambling code sequence used by the at least one cell corresponding to the second type of carrier is the same as the primary 4 special code sequence of the at least one cell corresponding to the first type of carrier;
  • the primary scrambling code sequence used by at least one cell corresponding to the second type of carrier is according to the first type
  • the primary 4 sigma sequence of at least one cell corresponding to the carrier is determined.
  • the chip rate of the second type of carrier or the number of the second type of carriers is carried by the radio resource control RRC signaling of the first type of carrier.
  • the high-speed physical downlink shared channel HS-PDSCH of the downlink carrier of the second type of carrier uses a spreading factor of 16, and the spreading factor of the pilot channel of the downlink carrier of the second type of carrier is the downlink of the first type of carrier. P times the spreading factor of the same pilot channel of the carrier.
  • the uplink enhanced dedicated physical data channel of the uplink carrier of the second type of carrier, the spreading factor used by the E-DPDCH, is one or more of the spreading factors that can be used by the uplink carrier of the first type of carrier.
  • the pilot channel spreading factor of the uplink carrier of the second type of carrier is P times the spreading factor of the same pilot channel of the uplink carrier of the first type of carrier.
  • the downlink carrier of the second type of carrier carries only the HS-PDSCH and the first type of pilot channel.
  • the first type of pilot channel is a common pilot channel, a pilot channel for data demodulation, or used for measurement. Pilot channel.
  • the uplink carrier of the second type of carrier carries only the E-DPDCH and the second type of pilot channel.
  • the second type of pilot channel is a dedicated pilot channel.
  • the spreading factor of some or all of the channels of the second type of carrier for random access is P times the spreading factor of the equivalent or all channels of the first type of carrier for random access.
  • the spreading factor of the control channel and/or the common channel of the second type of carrier is P times the spreading factor of the same type of carrier equal control channel and/or common channel.
  • the present invention provides a network side device, including:
  • control unit configured to configure a first type of carrier and a second type of carrier, where a chip rate of the first type of carrier is 3.84 megachips per second, and a chip rate of the second type of carrier is P*3.84 Mcps. P is less than 1 and greater than 0;
  • a communication unit configured to communicate using the first type of carrier and/or the second type of carrier.
  • the transmission time interval ⁇ length of the at least one cell corresponding to the first type of carrier is the same as the length of the at least one cell corresponding to the second type of carrier.
  • the identification ID of the at least one cell corresponding to the second type of carrier is the same as the ID of at least one cell corresponding to the first type of carrier.
  • the primary scrambling code sequence used by the at least one cell corresponding to the second type of carrier is the same as the primary 4 special code sequence of the at least one cell corresponding to the first type of carrier;
  • the primary scrambling code sequence used by the at least one cell corresponding to the second type of carrier is determined according to a primary 4 code sequence of at least one cell corresponding to the first type of carrier.
  • the chip rate of the second type of carrier or the number of the second type of carriers is carried by the radio resource control RRC signaling of the first type of carrier.
  • the high-speed physical downlink shared channel HS-PDSCH of the downlink carrier of the second type of carrier uses a spreading factor of 16, and the spreading factor of the pilot channel of the downlink carrier of the second type of carrier is the downlink of the first type of carrier. P times the spreading factor of the same pilot channel of the carrier.
  • the uplink enhanced dedicated physical data channel of the uplink carrier of the second type of carrier, the spreading factor used by the E-DPDCH, is one or more of the spreading factors that can be used by the uplink carrier of the first type of carrier.
  • the pilot channel spreading factor of the uplink carrier of the second type of carrier is P times the spreading factor of the same pilot channel of the uplink carrier of the first type of carrier.
  • the downlink carrier of the second type of carrier carries only the HS-PDSCH and the first type of pilot channel.
  • the first type of pilot channel is a common pilot channel, a pilot channel for data demodulation, or a pilot channel for measurement.
  • the uplink carrier of the second type of carrier carries only the E-DPDCH and the second type of pilot channel.
  • the second type of pilot channel is a dedicated pilot channel.
  • the spreading factor of some or all of the channels of the second type of carrier for random access is P times the spreading factor of the equivalent or all channels of the first type of carrier for random access.
  • the spreading factor of the control channel and/or the common channel of the second type of carrier is the same as that of the first type of carrier P times the spreading factor of the control channel and/or the common channel.
  • the present invention provides a user equipment, including:
  • An acquiring unit configured to acquire configuration information of a first type of carrier and configuration information of a second type of carrier; a communication unit, configured to communicate by using the first type of carrier and/or the second type of carrier, where the first type of carrier
  • the chip rate is 3.84 megachips per second, and the chip rate of the second wave is P*3.84 Mcps, P is less than 1 and greater than zero.
  • the transmission time interval ⁇ length of the at least one cell corresponding to the first type of carrier is the same as the length of the at least one cell corresponding to the second type of carrier.
  • the identifier ID of the at least one cell corresponding to the second type of carrier is the same as the ID of the at least one cell corresponding to the first type of carrier .
  • At least one primary scrambling code sequence corresponding to the second type of carrier is the same as a primary scrambling code sequence of at least one cell corresponding to the first type of carrier;
  • the at least one used primary scrambling code sequence corresponding to the second type of carrier is determined according to a primary 4 special code sequence of at least one cell corresponding to the first type of carrier.
  • the chip rate of the second type of carrier or the number of the second type of carriers is carried by the radio resource control RRC signaling of the first type of carrier.
  • the high-speed physical downlink shared channel HS-PDSCH of the downlink carrier of the second type of carrier uses a spreading factor of 16, and the spreading factor of the pilot channel of the downlink carrier of the second type of carrier is the downlink of the first type of carrier. P times the spreading factor of the same pilot channel of the carrier.
  • the uplink enhanced dedicated physical data channel E-DPDCH of the uplink carrier of the second type carrier uses a spreading factor which is one or more of the spreading factors that can be adopted by the uplink carrier of the first type of carrier.
  • the pilot channel spreading factor of the uplink carrier of the second type of carrier is P times the spreading factor of the same pilot channel of the uplink carrier of the first type of carrier.
  • the downlink carrier of the second type of carrier carries only the HS-PDSCH and the first type of pilot channel.
  • the first type of pilot channel is a common pilot channel, a pilot channel for data demodulation, or used for measurement Pilot channel.
  • the uplink carrier of the second type of carrier carries only the E-DPDCH and the second type of pilot channel.
  • the second type of pilot channel is a dedicated pilot channel.
  • the spreading factor of some or all of the channels of the second type of carrier for random access is P times the spreading factor of the equivalent or all channels of the first type of carrier for random access.
  • the spreading factor of the control channel and/or the common channel of the second type of carrier is P times the spreading factor of the same type of carrier equal control channel and/or common channel.
  • a first type of carrier and a second type of carrier are configured, wherein a chip rate of the first type of carrier is 3.8 Mcps, a chip rate of the second type of carrier is P*3.84 Mcps, and P is less than 1 and greater than 0;
  • the first type of carrier and/or the second type of carrier communicate.
  • the second type of carrier since the second type of carrier has a low chip rate and a low occupied bandwidth, it can be applied to a non-standard bandwidth, which can improve bandwidth usage efficiency and reduce bandwidth waste.
  • FIG. 1 is a schematic flow chart of variable bandwidth according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of the variable bandwidth of the present invention.
  • FIG. 3 is a schematic block diagram of a network side device of the present invention.
  • FIG. 4 is a schematic block diagram of a user equipment of the present invention. detailed description
  • GSM Global System of Mobile communication
  • CDMA code division multiple access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division
  • TDD Time Division Duplex
  • UPD Universal Mobile Telecommunication system System
  • UE User Equipment
  • Mobile Terminal Mobile Terminal
  • MT mobile user equipment
  • a radio access network eg, Radio Access Network, RAN
  • RAN Radio Access Network
  • the telephone and the computer having the mobile terminal may be portable, pocket, handheld, computer built-in or in-vehicle mobile devices.
  • the network side device may be a base station or a base station controller.
  • the base station may be a Base Transceiver Station (BTS) in GSM or CDMA. It may also be a base station (NodeB) in WCDMA, and may also be an eNB or an e-NodeB in LTE, which is not limited by the present invention.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved NodeB
  • e-NodeB LTE
  • the base station controller may be a base station controller (BSC), a radio network controller (RNC), or an RNC-capable eNB, and the present invention is not limited thereto.
  • BSC base station controller
  • RNC radio network controller
  • RNC-capable eNB an RNC-capable eNB
  • FIG. 1 is a schematic flow chart of variable bandwidth according to an embodiment of the present invention. The method of Figure 1 is performed by a network side device.
  • 102 Communicate using a first type of carrier and/or a second type of carrier.
  • the second type of carrier since the second type of carrier has a low chip rate and a low occupied bandwidth, it can be applied to a non-standard bandwidth, which can improve bandwidth usage efficiency and reduce bandwidth waste.
  • the first type of carrier and the second type of carrier may be configured by the base station controller, or may be pre-configured in the base station.
  • the configuration information of the first type of carrier and the configuration information of the second type of carrier may be sent to the user equipment, so that the user equipment, according to the received configuration information, Communication is performed using a first type of carrier and/or a second type of carrier.
  • the method further includes determining an activation/deactivation configuration for activating the first type of carrier and/or the second type of carrier to communicate using the first type of carrier and/or the second type of carrier.
  • the first type of carrier and the second type of carrier default to an active state, i.e., communication using the first type of carrier and the second type of carrier.
  • one or more first type carriers may be configured, or one or more second type carriers may be configured.
  • the typical value of P can be 1/2, 1/4 or 1/8.
  • the user equipment may be configured with a first type of carrier with a chip rate of 3.84 Mcps and a second type of carrier with a chip rate of 0.96 Mcps.
  • a second type of carrier with a chip rate of 3.84 Mcps and a second type of carrier with a chip rate of 1.92 Mcps can be configured for the downlink of the user equipment.
  • the transmission time interval (TTI) of the at least one cell corresponding to the second type of carrier may be 2 ms or 10 ms.
  • the length of the ⁇ and the second type that the at least one cell corresponding to the first type of carrier can use
  • the available TTI lengths of at least one cell corresponding to the carrier are the same. In this way, it can be guaranteed that the second type of carrier has time-selective characteristics comparable to the conventional UMTS, and the delay characteristics are comparable to those of the conventional UMTS.
  • the identifier (ID) of the at least one cell corresponding to the second type of carrier is the same as the ID of the at least one cell corresponding to the first type of carrier. In this way, the complexity of the cell planning can be reduced as much as possible.
  • the primary scrambling code sequence used by the at least one cell corresponding to the second type of carrier is the same as the primary scrambling code sequence of the at least one cell corresponding to the first type of carrier, or the primary used by the at least one cell corresponding to the second type of carrier.
  • the scrambling code sequence is determined according to a primary scrambling code sequence of at least one cell corresponding to the first type of carrier. In this way, the scrambling code sequence of at least one cell corresponding to the first type of carrier can be reused, and the scrambling code sequence generation complexity is reduced.
  • the primary scrambling code sequence used by the at least one cell corresponding to the second type of carrier may be identical to the primary scrambling code sequence of the at least one cell corresponding to the first type of carrier, or the primary of the at least one cell corresponding to the first type of carrier. Part of the 4 y code sequence.
  • the primary 4 code sequence of the corresponding one cell of the first type of carrier is:
  • Mod is the modulo.
  • the primary scrambling code sequence of the at least one cell corresponding to the second type of carrier may be configured as one part of the primary scrambling code sequence of the at least one cell corresponding to the first type of carrier, for example, if the chip of the second type of carrier The rate is 0.96 Mcps, and the sequence length of the primary scrambling code of each radio frame is 9600.
  • the primary scrambling sequence of the corresponding cell of the second type of carrier may be:
  • the primary scrambling code sequence of the at least one cell corresponding to the second type of carrier may be configured to be the same as the primary scrambling code sequence of the at least one cell corresponding to the first type of carrier.
  • the second type of carrier may have a main 4 special code sequence of consecutive A radio frames, and the main 4 special code sequence of the consecutive A radio frames The columns are combined to form the primary scrambling code sequence for the first type of carrier. For example, if the chip rate of the second type of carrier is 0.96 Mcps and the length of the primary scrambling code sequence of each radio frame is 9600, the primary scrambling code sequences of the four radio frames may be combined to form the primary interference of the first type of carrier. Code sequence.
  • the configuration information of the second type of carrier is carried by the Radio Resource Control (RRC) signaling of the first type of carrier.
  • RRC Radio Resource Control
  • the user equipment can support variable chip rates as well as variable bandwidth configurations.
  • one or more bits may be used by RRC signaling to indicate a second type of carrier chip rate. For example, 00 indicates that the chip rate of the second type of carrier is 1.92 Mcps, and 01 indicates that the chip rate of the second type of carrier is 0.96 Mcps and so on.
  • the number of carriers of the second type may be indicated by N bit bitmaps, for example, 11000000 means that two second type carriers are configured, and the like.
  • the high speed physical downlink shared channel (HS-PDSCH) of the downlink carrier of the second type of carrier uses a spreading factor of 16, and the pilot channel of the downlink carrier of the second type of carrier
  • the spreading factor is P times the spreading factor of the same pilot channel of the downlink carrier of the first type of carrier, where P is less than 1 and greater than zero.
  • the same means that the name, type or effect is the same.
  • the P-CPICH of the first type of carrier is the same as the P-CPICH of the second type of carrier
  • the pilot channel for measuring the first type of carrier is equivalent to the pilot channel for measuring the second type of carrier.
  • the second type of carrier can support similar multi-user equipment scheduling flexibility of the first type of carrier. Since the spreading factor of the second type of carrier pilot channel is P times of the spreading factor of the first type of carrier equal pilot channel, it can ensure that the same pilot symbol as the first type of carrier is transmitted in the same frame or subframe. , to ensure channel estimation performance.
  • typical values for P can be 1/2, 1/4, and 1/8.
  • the downlink carrier of the second type of carrier carries only the HS-PDSCH channel and the first type of pilot channel.
  • the first type of pilot channel may be a common pilot channel, a pilot channel for demodulation, or a pilot channel for measurement.
  • the first type of pilot channel may be one or more of the following: a primary common pilot channel (P-CPICH), a secondary common pilot channel (S-CPICH), a solution.
  • P-CPICH primary common pilot channel
  • S-CPICH secondary common pilot channel
  • a solution a channel of a Demodulation Common Pilot Channel (D-CPICH), a Channel Status Information Reference Signal (CSI-RS), or a Channel State Indicator Pilot (CSI-Pilot)
  • D-CPICH Demodulation Common Pilot Channel
  • CSI-RS Channel Status Information Reference Signal
  • CSI-Pilot Channel State Indicator Pilot
  • DMRS Demodulation Reference Signal
  • DM-Pilot Demodulation Pilot
  • the spreading factor used by the Enhanced Dedicated Physical Data Channel (E-DPDCH) of the uplink carrier of the second type of carrier is one of the spreading factors that can be adopted by the uplink carrier of the first type of carrier. Or multiple.
  • the spreading factor used by the E-DPDCH of the second type of carrier is one or more of the spreading factors that can be adopted by the first type of carrier, the spreading sequence can be multiplexed.
  • the pilot channel spreading factor of the uplink carrier of the second type of carrier is P times the spreading factor of the same pilot channel of the uplink carrier of the first type of carrier, where P is less than 1 and greater than 0.
  • P is less than 1 and greater than 0.
  • typical values for P can be 1/2, 1/4, and 1/8.
  • the uplink carrier of the second type of carrier only carries the E-DPDCH channel and the second type of pilot channel.
  • the second type of pilot channel can be a dedicated pilot channel.
  • the second type of carrier only supports high-speed data services, which can effectively improve the spectrum utilization efficiency on the second type of carrier.
  • part or all of the channel spreading factors of the second type of carrier for random access are P times of a part or all of the channel spreading factors of the first type of carrier for random access, where P is smaller than 1 and greater than 0.
  • the relevant channel of the random access may include an uplink physical random access channel (PRACH), a downlink acquisition indicator channel (AICH), and the like.
  • PRACH uplink physical random access channel
  • AICH downlink acquisition indicator channel
  • the amount of random access information in the access process is the same as or partially the same as that of the conventional UMTS.
  • control channel and/or the common channel spreading factor of the second type of carrier is P times the equal control channel of the first type of carrier and/or the common channel spreading factor, where P is less than 1 and greater than 0.
  • the control channel and/or the common channel may be a High Speed Shared Control Channel (HS-SCCH) or the like.
  • FIG. 2 is a schematic flow chart of the variable bandwidth of the present invention. The method of Figure 2 is performed by a user equipment. 201. Acquire configuration information of a first type of carrier and configuration information of a second type of carrier.
  • the obtaining the configuration information of the first type of carrier and the configuration information of the second type of carrier may be the configuration information of the first type of carrier sent by the network side device, and the configuration information of the second type of carrier, or may be a preset Configuration information of the first type of carrier in the user equipment and configuration information of the second type of carrier Interest.
  • 202 Communicate using a first type of carrier and/or a second type of carrier, wherein a chip rate of the first type of carrier is 3.84 Mcps, and a chip rate of the second type of carrier is P*3.84 Mcps, and P is less than 1 and greater than 0.
  • the typical values of P are 1/2, 1/4, and 1/8.
  • the second type of carrier since the second type of carrier has a low chip rate and a low occupied bandwidth, it can be applied to a non-standard bandwidth, which can improve bandwidth usage efficiency and reduce bandwidth waste.
  • a receiving activation/deactivation configuration may be included for activating the first type of carrier and/or the second type of carrier to communicate using the first type of carrier and/or the second type of carrier.
  • the first type of carrier and the second type of carrier default to an active state, i.e., communication using the first type of carrier and the second type of carrier.
  • the second type of carrier may have a length of 2 ms or 10 ms.
  • At least one cell corresponding to the first type of carrier can use the same length as the at least one cell corresponding to the second type of carrier.
  • the second type of carrier anti-time selective characteristics is comparable to the conventional UMTS, and the delay characteristics are comparable to those of the conventional UMTS.
  • the at least one cell identifier (ID) corresponding to the second type of carrier is the same as the ID of the at least one cell corresponding to the first type of carrier. In this way, the complexity of the cell planning can be reduced as much as possible.
  • the primary scrambling code sequence used by the at least one cell corresponding to the second type of carrier is the same as the primary scrambling code sequence of the at least one cell corresponding to the first type of carrier, or the primary used by the at least one cell corresponding to the second type of carrier.
  • the scrambling code sequence is determined according to a primary scrambling code sequence of at least one cell corresponding to the first type of carrier. In this way, the scrambling code sequence of at least one cell corresponding to the first type of carrier can be reused, and the scrambling code sequence generation complexity is reduced.
  • the primary scrambling code sequence used by the at least one cell corresponding to the second type of carrier may be identical to the primary scrambling code sequence of the at least one cell corresponding to the first type of carrier, or the primary of the at least one cell corresponding to the first type of carrier. Part of the 4 y code sequence.
  • the primary 4 code sequence of the corresponding one cell of the first type of carrier is:
  • Mod is the modulo.
  • the primary scrambling code sequence of the at least one cell corresponding to the second type of carrier may be one part of the primary scrambling code sequence of the at least one cell corresponding to the first type of carrier, for example, if the chip rate of the second type of carrier For 0.96 Mcps, the sequence length of the primary scrambling code of each radio frame is 9600, and the primary scrambling code sequence of the corresponding cell of the second type of carrier may be:
  • the primary scrambling code sequence of the at least one cell corresponding to the second type of carrier may be the same as the primary scrambling code sequence of the at least one cell corresponding to the first type of carrier.
  • the second type of carrier may use consecutive A radio frames with different primary scrambling code sequences, and combine the primary scrambling code sequences of the consecutive A radio frames to form a primary scrambling code sequence of the first type of carrier. For example, if the chip rate of the second type of carrier is 0.96 Mcps and the length of the primary scrambling code sequence of each radio frame is 9600, the primary scrambling code sequences of the four radio frames may be combined to form the primary interference of the first type of carrier. Code sequence.
  • the chip rate of the second type of carrier or the number of the second type of carriers is determined by the first type of carrier
  • RRC signaling bearer In this way, the receiver can support variable chip rates as well as variable bandwidth configurations.
  • one or more bits may be used by RRC signaling to indicate a second type of carrier chip rate. For example, 00 indicates that the chip rate of the second type of carrier is 1.92 Mcps, and 01 indicates that the chip rate of the second type of carrier is 0.96 Mcps and so on.
  • the number of carriers of the second type may be indicated by N bit bitmaps, for example, 11000000 means that two second type carriers are configured, and the like.
  • the high speed physical downlink shared channel (HS-PDSCH) of the downlink carrier of the second type of carrier uses a spreading factor of 16, and the pilot channel of the downlink carrier of the second type of carrier
  • the spreading factor is P times the spreading factor of the same pilot channel of the downlink carrier of the first type of carrier, where P is less than 1 and greater than zero.
  • the equivalent means the name, type or role is the same.
  • the P-CPICH of the first type of carrier is the same as the P-CPICH of the second type of carrier
  • the pilot channel for measuring the first type of carrier is equivalent to the pilot channel for measuring the second type of carrier.
  • the second type of carrier can support similar multi-user equipment scheduling flexibility of the first type of carrier.
  • the spreading factor of the second type of carrier pilot channel is P times of the spreading factor of the first type of carrier equal pilot channel, it can ensure that the same pilot symbol as the first type of carrier is transmitted in the same frame or subframe. , to ensure channel estimation performance.
  • typical values for P can be 1/2, 1/4, and 1/8.
  • the downlink carrier of the second type of carrier carries only the HS-PDSCH channel and the first type of pilot channel.
  • the first type of pilot channel may be a common pilot channel, a pilot channel for demodulation, or a pilot channel for measurement.
  • a Primary Common Pilot Channel P-CPICH
  • S-CPICH Secondary Common Pilot Channel
  • D-CPICH Demodulation Common Pilot Channel
  • CSI-RS Channel Status Information Reference Signal
  • CSI-Pilot Channel State Indicator Pilot
  • DMRS Demodulation Reference Signal
  • the spreading factor used by the Enhanced Dedicated Physical Data Channel (E-DPDCH) of the uplink carrier of the second type of carrier is one of the spreading factors that can be adopted by the uplink carrier of the first type of carrier. Or multiple.
  • the spreading factor used by the E-DPDCH of the second type of carrier is one or more of the spreading factors that can be adopted by the first type of carrier, the spreading sequence can be multiplexed.
  • the pilot channel spreading factor of the uplink carrier of the second type of carrier is P times the spreading factor of the same pilot channel of the uplink carrier of the first type of carrier, where P is less than 1 and greater than 0.
  • P is less than 1 and greater than 0.
  • typical values for P can be 1/2, 1/4, and 1/8.
  • the uplink carrier of the second type of carrier only carries the E-DPDCH channel and the second type of pilot channel.
  • the second type of pilot channel can be a dedicated pilot channel.
  • the second type of carrier only supports high-speed data services, which can effectively improve the spectrum utilization efficiency on the second type of carrier.
  • part or all of the channel spreading factors of the second type of carrier for random access are P times of a part or all of the channel spreading factors of the first type of carrier for random access, where P is smaller than 1 and greater than 0.
  • the relevant channel of the random access may include an uplink physical random access channel (PRACH), a downlink acquisition indicator channel (AICH), and the like.
  • PRACH uplink physical random access channel
  • AICH downlink acquisition indicator channel
  • Random access letter during access The amount of interest is the same or partially the same as the traditional UMTS.
  • control channel and/or the common channel spreading factor of the second type of carrier is P times the equal control channel of the first type of carrier and/or the common channel spreading factor, where P is less than 1 and greater than 0.
  • the control channel and/or the common channel may be a High Speed Shared Control Channel (HS-SCCH) or the like.
  • FIG. 3 is a schematic block diagram of a network side device of the present invention.
  • the network side device 300 of FIG. 3 can perform the steps performed by the network side device of FIG.
  • the method includes: a control unit 301 and a communication unit 302.
  • the control unit 301 is configured to configure a first type of carrier and a second type of carrier, where a chip rate of the first type of carrier is 3.8 Mcps, a chip rate of the second type of carrier is P*3.84 Mcps, and P is less than 1 and greater than 0. .
  • the communication unit 302 is configured to communicate using the first type of carrier and the second type of carrier.
  • the second type of carrier since the second type of carrier has a low chip rate and a low occupied bandwidth, it can be applied to a non-standard bandwidth, which can improve bandwidth usage efficiency and reduce bandwidth waste.
  • the communication unit 302 is further configured to send configuration information of the first type of carrier and configuration information of the second type of carrier to the user equipment, before using the first type of carrier and the second type of carrier communication, so that the user equipment uses the A class of carriers and/or a second type of carrier communication.
  • control unit 301 is further configured to determine an activation/deactivation configuration, where the activation/deactivation configuration is used to activate the first type of carrier and/or the second type of carrier, so as to use the first type of carrier and/or the second Class-like carrier communication.
  • the first type of carrier and the second type of carrier default to an active state, i.e., communication using the first type of carrier and the second type of carrier.
  • control unit 301 may be configured to configure one or more first type carriers, and may also be configured to configure one or more second type carriers.
  • the typical value of P can be 1/2, 1/4 or 1/8.
  • the control unit 301 can configure, for the user equipment, a first type of carrier with a chip rate of 3.84 Mcps, and a second type of carrier with a chip rate of 0.96 Mcps.
  • a second type of carrier with a chip rate of 3.84 Mcps and a second type of carrier with a chip rate of 1.92 Mcps can be configured for the downlink of the user equipment.
  • the transmission time interval (TTI) of the at least one cell corresponding to the second type of carrier may be 2 ms or 10 ms.
  • At least one cell corresponding to the first type of carrier can use the same length of the at least one cell corresponding to the second type of carrier.
  • the second can be guaranteed Class-like carrier time-selective characteristics are comparable to traditional UMTS, and latency characteristics are comparable to traditional UMTS.
  • the identifier (ID) of the at least one cell corresponding to the second type of carrier is the same as the ID of the at least one cell corresponding to the first type of carrier. In this way, the complexity of the cell planning can be reduced as much as possible.
  • the primary scrambling code sequence used by the at least one cell corresponding to the second type of carrier is the same as the primary scrambling code sequence of the at least one cell corresponding to the first type of carrier, or the primary used by the at least one cell corresponding to the second type of carrier.
  • the scrambling code sequence is determined according to a primary scrambling code sequence of at least one cell corresponding to the first type of carrier. In this way, the scrambling code sequence of at least one cell corresponding to the first type of carrier can be reused, and the scrambling code sequence generation complexity is reduced.
  • the primary scrambling code sequence used by the at least one cell corresponding to the second type of carrier may be identical to the primary scrambling code sequence of the at least one cell corresponding to the first type of carrier, or the primary of the at least one cell corresponding to the first type of carrier. Part of the 4 y code sequence.
  • the primary 4 code sequence of the corresponding one cell of the first type of carrier is:
  • Mod is the modulo.
  • the primary scrambling code sequence of the at least one cell corresponding to the second type of carrier may be configured as one part of the primary scrambling code sequence of the at least one cell corresponding to the first type of carrier, for example, if the chip of the second type of carrier The rate is 0.96 Mcps, and the sequence length of the primary scrambling code of each radio frame is 9600.
  • the primary scrambling sequence of the corresponding cell of the second type of carrier may be:
  • the primary scrambling code sequence of the at least one cell corresponding to the second type of carrier may be configured to be the same as the primary scrambling code sequence of the at least one cell corresponding to the first type of carrier.
  • the second type of carrier may have different main 4 special code sequences of consecutive A radio frames, and the main 4 special code sequences of the consecutive A radio frames are combined to form a primary scrambling code sequence of the first type of carrier. For example, if the chip rate of the second type of carrier The rate is 0.96 Mcps, and the length of the primary scrambling code sequence of each radio frame is 9600.
  • the primary scrambling code sequences of the four radio frames can be combined to form the primary scrambling code sequence of the first type of carrier.
  • the configuration information of the second type of carrier is carried by the RRC signaling of the first type of carrier.
  • the user equipment can support variable chip rates as well as variable bandwidth configurations.
  • one or more bits may be used by RRC signaling to indicate a second type of carrier chip rate. For example, 00 indicates that the chip rate of the second type of carrier is 1.92 Mcps, and 01 indicates that the chip rate of the second type of carrier is 0.96 Mcps and so on.
  • the number of carriers of the second type may be indicated by N bit bitmaps, for example, 11000000 indicates that two second class carriers are configured, and the like.
  • a high-speed physical downlink shared channel of the downlink carrier of the second type of carrier (High Speed
  • the Physical Downlink Shared Channel, HS-PDSCH uses a spreading factor of 16, and the spreading factor of the pilot channel of the downlink carrier of the second type of carrier is the same pilot channel spreading factor of the downlink carrier of the first type of carrier. P times, where P is less than 1 and greater than zero. Among them, the same means that the name, type or effect is the same.
  • the P-CPICH of the first type of carrier is the same as the P-CPICH of the second type of carrier
  • the pilot channel for measuring the first type of carrier is equivalent to the pilot channel for measuring the second type of carrier.
  • the second type of carrier can support similar multi-user equipment scheduling flexibility of the first type of carrier. Since the spreading factor of the second type of carrier pilot channel is P times of the spreading factor of the first type of carrier equal pilot channel, it can ensure that the same pilot symbol as the first type of carrier is transmitted in the same frame or subframe. , to ensure channel estimation performance.
  • typical values for P can be 1/2, 1/4, and 1/8.
  • the downlink carrier of the second type of carrier carries only the HS-PDSCH channel and the first type of pilot channel.
  • the first type of pilot channel may be a common pilot channel, a pilot channel for demodulation, or a pilot channel for measurement.
  • the first type of pilot channel may be one or more of the following: a primary common pilot channel (P-CPICH), a secondary common pilot channel (S-CPICH), a solution.
  • P-CPICH primary common pilot channel
  • S-CPICH secondary common pilot channel
  • a solution a channel of a Demodulation Common Pilot Channel (D-CPICH), a Channel Status Information Reference Signal (CSI-RS), or a Channel State Indicator Pilot (CSI-Pilot)
  • D-CPICH Demodulation Common Pilot Channel
  • CSI-RS Channel Status Information Reference Signal
  • CSI-Pilot Channel State Indicator Pilot
  • DMRS Demodulation Reference Signal
  • DM-Pilot Demodulation Pilot
  • the second type of carrier only supports high-speed data services, which can effectively improve the spectrum utilization efficiency on the second type of carrier.
  • the spreading factor used by the Enhanced Dedicated Physical Data Channel (E-DPDCH) of the uplink carrier of the second type of carrier is one of the spreading factors that can be adopted by the uplink carrier of the first type of carrier. Or multiple. In this way, since the spreading factor used by the E-DPDCH of the second type of carrier is one or more of the spreading factors that can be adopted by the first type of carrier, the spreading sequence can be multiplexed.
  • E-DPDCH Enhanced Dedicated Physical Data Channel
  • the pilot channel spreading factor of the uplink carrier of the second type of carrier is P times the spreading factor of the same pilot channel of the uplink carrier of the first type of carrier, where P is less than 1 and greater than 0.
  • P is less than 1 and greater than 0.
  • typical values for P can be 1/2, 1/4, and 1/8.
  • the uplink carrier of the second type of carrier only carries the E-DPDCH channel and the second type of pilot channel.
  • the second type of pilot channel can be a dedicated pilot channel.
  • the second type of carrier only supports high-speed data services, which can effectively improve the spectrum utilization efficiency on the second type of carrier.
  • part or all of the channel spreading factors of the second type of carrier for random access are P times of a part or all of the channel spreading factors of the first type of carrier for random access, where P is smaller than 1 and greater than 0.
  • the relevant channel of the random access may include an uplink physical random access channel (PRACH), a downlink acquisition indicator channel (AICH), and the like.
  • PRACH uplink physical random access channel
  • AICH downlink acquisition indicator channel
  • the amount of random access information in the access process is the same as or partially the same as that of the conventional UMTS.
  • control channel and/or the common channel spreading factor of the second type of carrier is P times the equal control channel of the first type of carrier and/or the common channel spreading factor, where P is less than 1 and greater than 0.
  • the control channel and/or the common channel may be a High Speed Shared Control Channel (HS-SCCH) or the like.
  • FIG. 4 is a schematic block diagram of a user equipment of the present invention.
  • User device 400 of Figure 4 can perform the steps performed by the user equipment of Figure 2.
  • the method includes an obtaining unit 401 and a communication unit 402.
  • the obtaining unit 401 is configured to obtain configuration information of the first type of carrier and configuration information of the second type of carrier.
  • the communication unit 402 is configured to communicate by using a first type of carrier and/or a second type of carrier, where a chip rate of the first type of carrier is 3.84 Mcps, and a chip rate of the second type of carrier is P*3.84 Mcps, P is small. At 1 and greater than 0. Optionally, the typical values of P are 1/2, 1/4, and 1/8.
  • the communication unit 402 is further configured to receive configuration information of the first type of carrier and configuration information of the second type of carrier that are sent by the network side device.
  • the obtaining unit 401 is further configured to determine configuration information of the first type of carrier and configuration information of the second type of carrier, which is configuration information of the first type of carrier and configuration information of the second type of carrier that the communication unit 402 receives from the network side device.
  • the obtaining unit 401 may be configured to obtain configuration information of a first type of carrier preset to the user equipment and configuration information of a second type of carrier.
  • the second type of carrier since the second type of carrier has a low chip rate and a low occupied bandwidth, it can be applied to a non-standard bandwidth, which can improve bandwidth usage efficiency and reduce bandwidth waste.
  • the communication unit 402 is further configured to receive an activation/deactivation configuration.
  • the control unit 401 is further configured to activate the first type of carrier and/or the second type of carrier, and use the first type of carrier and/or the second type of carrier to communicate.
  • the first type of carrier and the second type of carrier default to an active state, i.e., communication using the first type of carrier and the second type of carrier.
  • the second type of carrier may have a length of 2 ms or 10 ms.
  • At least one cell corresponding to the first type of carrier can use the same length as the at least one cell corresponding to the second type of carrier.
  • the second type of carrier anti-time selective characteristics is comparable to the conventional UMTS, and the delay characteristics are comparable to those of the conventional UMTS.
  • the at least one cell identifier (ID) corresponding to the second type of carrier is the same as the ID of the at least one cell corresponding to the first type of carrier. In this way, the complexity of the cell planning can be reduced as much as possible.
  • the primary scrambling code sequence used by the at least one cell corresponding to the second type of carrier is the same as the primary scrambling code sequence of the at least one cell corresponding to the first type of carrier, or the primary used by the at least one cell corresponding to the second type of carrier.
  • the scrambling code sequence is determined according to a primary scrambling code sequence of at least one cell corresponding to the first type of carrier. In this way, the scrambling code sequence of at least one cell corresponding to the first type of carrier can be reused, and the scrambling code sequence generation complexity is reduced.
  • the primary scrambling code sequence used by the at least one cell corresponding to the second type of carrier may be identical to the primary scrambling code sequence of the at least one cell corresponding to the first type of carrier, or the primary of the at least one cell corresponding to the first type of carrier. Part of the 4 y code sequence.
  • the primary 4 code sequence of the corresponding one cell of the first type of carrier is:
  • Mod is the modulo.
  • the primary scrambling code sequence of the at least one cell corresponding to the second type of carrier may be one part of the primary scrambling code sequence of the at least one cell corresponding to the first type of carrier, for example, if the chip rate of the second type of carrier For 0.96 Mcps, the sequence length of the primary scrambling code of each radio frame is 9600, and the primary scrambling code sequence of the corresponding cell of the second type of carrier may be:
  • the primary scrambling code sequence of the at least one cell corresponding to the second type of carrier may be the same as the primary scrambling code sequence of the at least one cell corresponding to the first type of carrier.
  • the second type of carrier may use consecutive A radio frames with different primary scrambling code sequences, and combine the primary scrambling code sequences of the consecutive A radio frames to form a primary scrambling code sequence of the first type of carrier. For example, if the chip rate of the second type of carrier is 0.96 Mcps and the length of the primary scrambling code sequence of each radio frame is 9600, the primary scrambling code sequences of the four radio frames may be combined to form the primary interference of the first type of carrier. Code sequence.
  • the chip rate of the second type of carrier or the number of the second type of carriers is carried by the RRC signaling of the first type of carrier.
  • the receiver can support variable chip rates as well as variable bandwidth configurations.
  • one or more bits may be used by RRC signaling to indicate a second type of carrier chip rate.
  • 00 indicates that the chip rate of the second type of carrier is 1.92 Mcps
  • 01 indicates that the chip rate of the second type of carrier is 0.96 Mcps and so on.
  • the number of carriers of the second type may be indicated by N bit bitmaps, for example, 11000000 means that two second type carriers are configured, and the like.
  • the high speed physical downlink shared channel (HS-PDSCH) of the downlink carrier of the second type of carrier uses a spreading factor of 16, and the pilot channel of the downlink carrier of the second type of carrier
  • the spreading factor is P times the spreading factor of the same pilot channel of the downlink carrier of the first type of carrier, where P is less than 1 and greater than zero.
  • the equivalent means the name, type or role is the same.
  • the P-CPICH of the first type of carrier is the same as the P-CPICH of the second type of carrier
  • the pilot channel for measuring the first type of carrier is equivalent to the pilot channel for measuring the second type of carrier.
  • the second type of carrier can support the multi-user equipment scheduling similar to the first type of carrier. Active. Since the spreading factor of the second type of carrier pilot channel is P times of the spreading factor of the first type of carrier equal pilot channel, it can ensure that the same pilot symbol as the first type of carrier is transmitted in the same frame or subframe. , to ensure channel estimation performance. Alternatively, typical values for P can be 1/2, 1/4, and 1/8.
  • the downlink carrier of the second type of carrier carries only the HS-PDSCH channel and the first type of pilot channel.
  • the first type of pilot channel may be a common pilot channel, a pilot channel for demodulation, or a pilot channel for measurement.
  • it may be one or more of the following: a Primary Common Pilot Channel (P-CPICH), a Secondary Common Pilot Channel (S-CPICH), and a Demodulation Common Pilot Channel ( Demodulation Common Pilot Channel (D-CPICH), Channel Status Information Reference Signal (CSI-RS) or Channel State Indicator Pilot (CSI-Pilot) channel, carrying demodulation reference signal (Demodulation Reference Signal, DMRS) or Demodulation Pilot (DM-Pilot) channel.
  • P-CPICH Primary Common Pilot Channel
  • S-CPICH Secondary Common Pilot Channel
  • CSI-RS Demodulation Common Pilot Channel
  • CSI-Pilot Channel State Indicator Pilot
  • the second type of carrier only supports high-speed data services, which can effectively improve the spectrum utilization efficiency on the second type of carrier.
  • an uplink enhanced dedicated physical channel of the uplink carrier of the second type of carrier (Enhanced
  • the spreading factor used by the Dedicated Physical Data Channel is one or more of the spreading factors that the uplink carrier of the first type of carrier can employ.
  • the spreading factor used by the E-DPDCH of the second type of carrier is one or more of the spreading factors that can be adopted by the first type of carrier, the spreading sequence can be multiplexed.
  • the pilot channel spreading factor of the uplink carrier of the second type of carrier is P times the spreading factor of the same pilot channel of the uplink carrier of the first type of carrier, where P is less than 1 and greater than 0.
  • P is less than 1 and greater than 0.
  • typical values for P can be 1/2, 1/4, and 1/8.
  • the uplink carrier of the second type of carrier only carries the E-DPDCH channel and the second type of pilot channel.
  • the second type of pilot channel can be a dedicated pilot channel.
  • the second type of carrier only supports high-speed data services, which can effectively improve the spectrum utilization efficiency on the second type of carrier.
  • part or all of the channel spreading factors of the second type of carrier for random access are P times of a part or all of the channel spreading factors of the first type of carrier for random access, where P is smaller than 1 and greater than 0.
  • the relevant channel of the random access may include an uplink physical random access channel (PRACH), and a downlink acquisition indication channel. (Acquisition Indicator Channel, AICH), etc.
  • PRACH physical random access channel
  • AICH Automatic Indicator Channel
  • the amount of random access information in the access process is the same as or partially the same as that of the conventional UMTS.
  • control channel and/or the common channel spreading factor of the second type of carrier is P times the equal control channel of the first type of carrier and/or the common channel spreading factor, where P is less than 1 and greater than 0.
  • the control channel and/or the common channel may be a High Speed Shared Control Channel (HS-SCCH) or the like.
  • the present invention provides a network side device 500, and the network side device 500 can perform the steps performed by the network side device in FIG.
  • the method includes: a processor 501, a transceiver 502.
  • the processor 501 is configured to configure a first type of carrier and a second type of carrier, where a chip rate of the first type of carrier is 3.8 Mcps, a chip rate of the second type of carrier is P*3.84 Mcps, and P is less than 1 and greater than 0. .
  • the transceiver 502 is configured to communicate using the first type of carrier and the second type of carrier.
  • the second type of carrier since the second type of carrier has a low chip rate and a low occupied bandwidth, it can be applied to a non-standard bandwidth, which can improve bandwidth usage efficiency and reduce bandwidth waste.
  • the transceiver 502 is further configured to send configuration information of the first type of carrier and configuration information of the second type of carrier to the user equipment, before using the first type of carrier and the second type of carrier communication, so that the user equipment uses the A class of carriers and/or a second type of carrier communication.
  • the processor 501 is further configured to determine an activation/deactivation configuration, where the activation/deactivation configuration is used to activate the first type of carrier and/or the second type of carrier, so as to use the first type of carrier and/or the second Class-like carrier communication.
  • the processor 501 does not determine the activation/deactivation configuration, the first type of carrier and the second type of carrier default to an active state, i.e., communication using the first type of carrier and the second type of carrier.
  • the processor 501 may be configured to configure one or more first type carriers, and may also be configured to configure one or more second type carriers.
  • the typical value of P can be 1/2, 1/4 or 1/8.
  • the processor 501 can configure, for the user equipment, a first type of carrier with a chip rate of 3.84 Mcps and a second type of carrier with a chip rate of 0.96 Mcps.
  • a second type of carrier with a chip rate of 3.84 Mcps and a second type of carrier with a chip rate of 1.92 Mcps can be configured for the downlink of the user equipment.
  • a transmission time interval of at least one cell corresponding to the second type of carrier can be 2ms or 10ms.
  • At least one cell corresponding to the first type of carrier can use the same length of the at least one cell corresponding to the second type of carrier.
  • the second type of carrier has time-selective characteristics comparable to the traditional UMTS, and the delay characteristics are comparable to those of the conventional UMTS.
  • the identifier (ID) of the at least one cell corresponding to the second type of carrier is the same as the ID of the at least one cell corresponding to the first type of carrier. In this way, the complexity of the cell planning can be reduced as much as possible.
  • the primary scrambling code sequence used by the at least one cell corresponding to the second type of carrier is the same as the primary scrambling code sequence of the at least one cell corresponding to the first type of carrier, or the primary used by the at least one cell corresponding to the second type of carrier.
  • the scrambling code sequence is determined according to a primary scrambling code sequence of at least one cell corresponding to the first type of carrier. In this way, the scrambling code sequence of at least one cell corresponding to the first type of carrier can be reused, and the scrambling code sequence generation complexity is reduced.
  • the primary scrambling code sequence used by the at least one cell corresponding to the second type of carrier may be identical to the primary scrambling code sequence of the at least one cell corresponding to the first type of carrier, or the primary of the at least one cell corresponding to the first type of carrier. Part of the 4 y code sequence.
  • the primary 4 code sequence of the corresponding one cell of the first type of carrier is:
  • Mod is the modulo.
  • the primary scrambling code sequence of the at least one cell corresponding to the second type of carrier may be configured as one part of the primary scrambling code sequence of the at least one cell corresponding to the first type of carrier, for example, if the chip of the second type of carrier The rate is 0.96 Mcps, and the sequence length of the primary scrambling code of each radio frame is 9600.
  • the primary scrambling sequence of the corresponding cell of the second type of carrier may be:
  • the primary scrambling code sequence of the at least one cell corresponding to the second type of carrier may be configured with the first The primary scrambling code sequence of at least one cell corresponding to the class carrier is the same.
  • the second type of carrier may have different main 4 special code sequences of consecutive A radio frames, and the main 4 special code sequences of the consecutive A radio frames are combined to form a primary scrambling code sequence of the first type of carrier. For example, if the chip rate of the second type of carrier is 0.96 Mcps and the length of the primary scrambling code sequence of each radio frame is 9600, the primary scrambling code sequences of the four radio frames may be combined to form the primary interference of the first type of carrier. Code sequence.
  • the configuration information of the second type of carrier is carried by the RRC signaling of the first type of carrier.
  • the user equipment can support variable chip rates as well as variable bandwidth configurations.
  • one or more bits may be used by RRC signaling to indicate a second type of carrier chip rate. For example, 00 indicates that the chip rate of the second type of carrier is 1.92 Mcps, and 01 indicates that the chip rate of the second type of carrier is 0.96 Mcps and so on.
  • the number of carriers of the second type may be indicated by N bit bitmaps, for example, 11000000 indicates that two second class carriers are configured, and the like.
  • the high speed physical downlink shared channel (HS-PDSCH) of the downlink carrier of the second type of carrier uses a spreading factor of 16, and the pilot channel of the downlink carrier of the second type of carrier
  • the spreading factor is P times the spreading factor of the same pilot channel of the downlink carrier of the first type of carrier, where P is less than 1 and greater than zero.
  • the same means that the name, type or effect is the same.
  • the P-CPICH of the first type of carrier is the same as the P-CPICH of the second type of carrier
  • the pilot channel for measuring the first type of carrier is equivalent to the pilot channel for measuring the second type of carrier.
  • the second type of carrier can support similar multi-user equipment scheduling flexibility of the first type of carrier. Since the spreading factor of the second type of carrier pilot channel is P times of the spreading factor of the first type of carrier equal pilot channel, it can ensure that the same pilot symbol as the first type of carrier is transmitted in the same frame or subframe. , to ensure channel estimation performance.
  • typical values for P can be 1/2, 1/4, and 1/8.
  • the downlink carrier of the second type of carrier carries only the HS-PDSCH channel and the first type of pilot channel.
  • the first type of pilot channel may be a common pilot channel, a pilot channel for demodulation, or a pilot channel for measurement.
  • the first type of pilot channel may be one or more of the following: a primary common pilot channel (P-CPICH), a secondary common pilot channel (S-CPICH), a solution. a channel of a Demodulation Common Pilot Channel (D-CPICH), a Channel Status Information Reference Signal (CSI-RS), or a Channel State Indicator Pilot (CSI-Pilot) , carrying demodulation reference signal (Demodulation Reference Signal, DMRS) or Demodulation Pilot (DM-Pilot) channel.
  • P-CPICH primary common pilot channel
  • S-CPICH secondary common pilot channel
  • CSI-RS Channel Status Information Reference Signal
  • CSI-Pilot Channel State Indicator Pilot
  • the second type of carrier only supports high-speed data services, which can effectively improve the spectrum utilization efficiency on
  • the spreading factor of the Enhanced Dedicated Physical Data Channel (E-DPDCH) of the uplink carrier of the second type of carrier is one of the spreading factors that can be adopted by the uplink carrier of the first type of carrier. Or multiple.
  • the spreading factor used by the E-DPDCH of the second type of carrier is one or more of the spreading factors that can be adopted by the first type of carrier, the spreading sequence can be multiplexed.
  • the pilot channel spreading factor of the uplink carrier of the second type of carrier is P times the spreading factor of the same pilot channel of the uplink carrier of the first type of carrier, where P is less than 1 and greater than 0.
  • P is less than 1 and greater than 0.
  • typical values for P can be 1/2, 1/4, and 1/8.
  • the uplink carrier of the second type of carrier only carries the E-DPDCH channel and the second type of pilot channel.
  • the second type of pilot channel can be a dedicated pilot channel.
  • the second type of carrier only supports high-speed data services, which can effectively improve the spectrum utilization efficiency on the second type of carrier.
  • part or all of the channel spreading factors of the second type of carrier for random access are P times of a part or all of the channel spreading factors of the first type of carrier for random access, where P is smaller than 1 and greater than 0.
  • the relevant channel of the random access may include an uplink physical random access channel (PRACH), a downlink acquisition indicator channel (AICH), and the like.
  • PRACH uplink physical random access channel
  • AICH downlink acquisition indicator channel
  • the amount of random access information in the access process is the same as or partially the same as that of the conventional UMTS.
  • control channel and/or the common channel spreading factor of the second type of carrier is P times the equal control channel of the first type of carrier and/or the common channel spreading factor, where P is less than 1 and greater than 0.
  • the control channel and/or the common channel may be a High Speed Shared Control Channel (HS-SCCH) or the like.
  • the present invention provides a user equipment 600, which can perform the steps performed by the user equipment in FIG.
  • the method includes: a controller 601, a transceiver 602.
  • the controller 601 is configured to obtain configuration information of the first type of carrier and configuration information of the second type of carrier.
  • the transceiver 602 is configured to communicate by using a first type of carrier and/or a second type of carrier, where a chip rate of the first type of carrier is 3.84 Mcps, and a chip rate of the second type of carrier is P*3.84 Mcps, and P is less than 1. And greater than 0.
  • the typical values of P are 1/2, 1/4, and 1/8.
  • the transceiver 602 is further configured to receive configuration information of the first type of carrier and configuration information of the second type of carrier sent by the network side device.
  • the controller 601 is further configured to determine configuration information of the first type of carrier and configuration information of the second type of carrier, which is configuration information of the first type of carrier and configuration information of the second type of carrier that the transceiver 602 receives from the network side device.
  • the controller 601 can also be configured to obtain configuration information of a first type of carrier preset to the user equipment and configuration information of a second type of carrier.
  • the second type of carrier since the second type of carrier has a low chip rate and a low occupied bandwidth, it can be applied to a non-standard bandwidth, which can improve bandwidth usage efficiency and reduce bandwidth waste.
  • the transceiver 602 is further configured to receive an activation/deactivation configuration.
  • the processor 601 is further configured to activate the first type of carrier and/or the second type of carrier to communicate using the first type of carrier and/or the second type of carrier.
  • the first type of carrier and the second type of carrier default to an active state, i.e., communication using the first type of carrier and the second type of carrier.
  • the second type of carrier may have a length of 2 ms or 10 ms.
  • At least one cell corresponding to the first type of carrier can use the same length as the at least one cell corresponding to the second type of carrier.
  • the second type of carrier anti-time selective characteristics is comparable to the conventional UMTS, and the delay characteristics are comparable to those of the conventional UMTS.
  • the at least one cell identifier (ID) corresponding to the second type of carrier is the same as the ID of the at least one cell corresponding to the first type of carrier. In this way, the complexity of the cell planning can be reduced as much as possible.
  • the primary scrambling code sequence used by the at least one cell corresponding to the second type of carrier is the same as the primary scrambling code sequence of the at least one cell corresponding to the first type of carrier, or the primary used by the at least one cell corresponding to the second type of carrier.
  • the scrambling code sequence is determined according to a primary scrambling code sequence of at least one cell corresponding to the first type of carrier. In this way, the scrambling code sequence of at least one cell corresponding to the first type of carrier can be reused, and the scrambling code sequence generation complexity is reduced.
  • the primary scrambling code sequence used by the at least one cell corresponding to the second type of carrier may be identical to the primary scrambling code sequence of the at least one cell corresponding to the first type of carrier, or the primary of the at least one cell corresponding to the first type of carrier. Part of the 4 y code sequence.
  • the primary 4 code sequence of the corresponding one cell of the first type of carrier is:
  • Mod is the modulo.
  • the primary scrambling code sequence of the at least one cell corresponding to the second type of carrier may be one part of the primary scrambling code sequence of the at least one cell corresponding to the first type of carrier, for example, if the chip rate of the second type of carrier For 0.96 Mcps, the sequence length of the primary scrambling code of each radio frame is 9600, and the primary scrambling code sequence of the corresponding cell of the second type of carrier may be:
  • the primary scrambling code sequence of the at least one cell corresponding to the second type of carrier may be the same as the primary scrambling code sequence of the at least one cell corresponding to the first type of carrier.
  • the second type of carrier may use consecutive A radio frames with different primary scrambling code sequences, and combine the primary scrambling code sequences of the consecutive A radio frames to form a primary scrambling code sequence of the first type of carrier. For example, if the chip rate of the second type of carrier is 0.96 Mcps and the length of the primary scrambling code sequence of each radio frame is 9600, the primary scrambling code sequences of the four radio frames may be combined to form the primary interference of the first type of carrier. Code sequence.
  • the chip rate of the second type of carrier or the number of the second type of carriers is determined by the first type of carrier
  • RRC signaling bearer In this way, the receiver can support variable chip rates as well as variable bandwidth configurations.
  • one or more bits may be used by RRC signaling to indicate a second type of carrier chip rate. For example, 00 indicates that the chip rate of the second type of carrier is 1.92 Mcps, and 01 indicates that the chip rate of the second type of carrier is 0.96 Mcps and so on.
  • the number of carriers of the second type may be indicated by N bit bitmaps, for example, 11000000 means that two second type carriers are configured, and the like.
  • the high speed physical downlink shared channel (HS-PDSCH) of the downlink carrier of the second type of carrier uses a spreading factor of 16, and the pilot channel of the downlink carrier of the second type of carrier
  • the spreading factor is P times the spreading factor of the same pilot channel of the downlink carrier of the first type of carrier, where P is less than 1 and greater than zero.
  • the equivalent means the name, type or role is the same.
  • the P-CPICH of the first type of carrier is the same as the P-CPICH of the second type of carrier, and the pilot signal of the first type of carrier serves as a pilot signal for measuring and the second type of carrier.
  • the road is equal.
  • the second type of carrier can support similar multi-user equipment scheduling flexibility of the first type of carrier. Since the spreading factor of the second type of carrier pilot channel is P times of the spreading factor of the first type of carrier equal pilot channel, it can ensure that the same pilot symbol as the first type of carrier is transmitted in the same frame or subframe. , to ensure channel estimation performance.
  • typical values for P can be 1/2, 1/4, and 1/8.
  • the downlink carrier of the second type of carrier carries only the HS-PDSCH channel and the first type of pilot channel.
  • the first type of pilot channel may be a common pilot channel, a pilot channel for demodulation, or a pilot channel for measurement.
  • it may be one or more of the following: a Primary Common Pilot Channel (P-CPICH), a Secondary Common Pilot Channel (S-CPICH), and a Demodulation Common Pilot Channel ( Demodulation Common Pilot Channel (D-CPICH), Channel Status Information Reference Signal (CSI-RS) or Channel State Indicator Pilot (CSI-Pilot) channel, carrying demodulation reference signal (Demodulation Reference Signal, DMRS) or Demodulation Pilot (DM-Pilot) channel.
  • P-CPICH Primary Common Pilot Channel
  • S-CPICH Secondary Common Pilot Channel
  • CSI-RS Demodulation Common Pilot Channel
  • CSI-Pilot Channel State Indicator Pilot
  • the second type of carrier only supports high-speed data services, which can effectively improve the spectrum utilization efficiency on the second type of carrier.
  • the spreading factor used by the Enhanced Dedicated Physical Data Channel (E-DPDCH) of the uplink carrier of the second type of carrier is one of the spreading factors that can be adopted by the uplink carrier of the first type of carrier. Or multiple.
  • the spreading factor used by the E-DPDCH of the second type of carrier is one or more of the spreading factors that can be adopted by the first type of carrier, the spreading sequence can be multiplexed.
  • the pilot channel spreading factor of the uplink carrier of the second type of carrier is P times the spreading factor of the same pilot channel of the uplink carrier of the first type of carrier, where P is less than 1 and greater than 0.
  • P is less than 1 and greater than 0.
  • typical values for P can be 1/2, 1/4, and 1/8.
  • the uplink carrier of the second type of carrier only carries the E-DPDCH channel and the second type of pilot channel.
  • the second type of pilot channel can be a dedicated pilot channel.
  • the second type of carrier only supports high-speed data services, which can effectively improve the spectrum utilization efficiency on the second type of carrier.
  • part or all of the channel spreading factors of the second type of carrier for random access are P times of a part or all of the channel spreading factors of the first type of carrier for random access, where P is small At 1 and greater than 0.
  • the relevant channel of the random access may include an uplink physical random access channel (PRACH), a downlink acquisition indicator channel (AICH), and the like.
  • PRACH uplink physical random access channel
  • AICH downlink acquisition indicator channel
  • the amount of random access information in the access process is the same as or partially the same as that of the conventional UMTS.
  • control channel and/or the common channel spreading factor of the second type of carrier is P times the equal control channel of the first type of carrier and/or the common channel spreading factor, where P is less than 1 and greater than 0.
  • the control channel and/or the common channel may be a High Speed Shared Control Channel (HS-SCCH) or the like.
  • the present invention provides a communication system including a network side device and a user equipment.
  • the network side device configures a first type of carrier and a second type of carrier, and uses the first type of carrier and/or the second type of carrier to communicate with the user equipment.
  • the specific configuration of the first type of carrier and the second type of carrier is as described in the above embodiment.
  • the user equipment acquires configuration information of the first type of carrier and configuration information of the second type of carrier, and uses the first type of carrier and/or the second type of carrier to communicate with the network side device.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential to the prior art or part of the technical solution, may be embodied in the form of a software product stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供可变带宽的方法、网络侧设备和用户设备,包括配置第一类载波和第二类载波,其中第一类载波的码片速率为3.8Mcps,第二类载波的码片速率为P*3.84Mcps,P小于1且大于0;使用第一类载波和/或第二类载波通信。这样,由于第二类载波的码片速率低,占用带宽低,因此可以适用于非标准带宽,可以提高带宽的使用效率,减少带宽的浪费。

Description

可变带宽的方法、 网络侧设备和用户设备 技术领域
本发明实施例涉及通信技术领域,并且更具体地,涉及可变带宽的方法、 网络侧设备和用户设备。 背景技术
为了满足用户日益增长的速率要求, 通用移动通讯系统 (Universal Mobile Telecommunication System, UMTS )中引入了高速包接入( High Speed Packet Access, HSPA ), 用于提高频谱效率。 进一步地, 为了支持更大的带 宽和更高的速率, UMTS还引入了支持多载波系统。
传统的 UMTS 系统码片速率为 3.84MHz, 单载波系统典型地部署在 5MHz频率带宽上。 如果考虑多载波系统, 那么 UMTS可以部署在 5MHz频 谱的整数倍上。 然而运营商拥有的频谱资源可能小于 5MHz或者不是 5MHz 的整数倍。 如果采用传统的 UMTS系统部署, 则可能造成频语碎片, 降低频 谱利用率, 造成频谱资源的浪费。 发明内容
本发明提供可变带宽的方法、 网络侧设备和用户设备, 可以提高带宽的 使用效率, 减少带宽的浪费。
第一方面, 本发明提供一种可变带宽的方法, 包括:
配置第一类载波和第二类载波, 其中该第一类载波的码片速率为 3.84 兆码片每秒 Mcps, 该第二类载波的码片速率为 P*3.84Mcps, P小于 1且大 于 0;
使用该第一类载波和 /或该第二类载波通信。
结合第一方面, 在第一种可能的实现方式中,
该第一类载波对应的至少一个小区的传输时间间隔 ΤΉ 长度与该第二 类载波对应的至少一个小区的 ΤΉ长度相同。
结合第一方面或第一方面的第一种可能的实现方式,在第二种可能的实 现方式中,
该第二类载波对应的至少一个小区的小区标识 ID与该第一类载波对应 的至少一个小区的 ID相同。
结合第一方面或第一方面上述任一种可能的实现方式,在第三种可能的 实现方式中,
该第二类载波对应的至少一个小区使用的主扰码序列与该第一类载波 对应的至少一个小区的主 4尤码序列相同; 或
该第二类载波对应的至少一个小区使用的主扰码序列是根据该第一类 载波对应的至少一个小区的主 4尤码序列确定的。
结合第一方面或第一方面上述任一种可能的实现方式,在第四种可能的 实现方式中,
该第二类载波的码片速率或该第二类载波的个数由该第一类载波的无 线资源控制 RRC信令承载。
结合第一方面或第一方面上述任一种可能的实现方式,在第五种可能的 实现方式中,
该第二类载波的下行载波的高速物理下行共享信道 HS-PDSCH采用的 扩频因子为 16,且该第二类载波的下行载波的导频信道的扩频因子为该第一 类载波的下行载波的同等导频信道扩频因子的 P倍。
结合第一方面或第一方面上述任一种可能的实现方式,在第六种可能的 实现方式中,
该第二类载波的上行载波的上行增强专用物理数据信道 E-DPDCH采用 的扩频因子为该第一类载波的上行载波能够采用的扩频因子中的一个或多 个。
结合第一方面或第一方面上述任一种可能的实现方式,在七种可能的实 现方式中,
该第二类载波的上行载波的导频信道扩频因子为该第一类载波的上行 载波的同等导频信道扩频因子的 P倍。
结合第一方面或第一方面上述任一种可能的实现方式,在第八种可能的 实现方式中,
该第二类载波的下行载波上仅承载 HS-PDSCH和第一类导频信道。 结合第一方面的第八种可能的实现方式, 在第九种可能的实现方式中, 该第一类导频信道为公共导频信道、用于数据解调的导频信道或用于测 量的导频信道。 结合第一方面或第一方面上述任一种可能的实现方式,在第十种可能的 实现方式中,
该第二类载波的上行载波上仅承载 E-DPDCH和第二类导频信道。 结合第一方面的第十种可能的实现方式, 在第十一种可能的实现方式 中,
该第二类导频信道为专用导频信道。
结合第一方面或第一方面上述任一种可能的实现方式,在第十二种可能 的实现方式中,
该第二类载波的用于随机接入的部分或全部信道的扩频因子为该第一 类载波的同等的用于随机接入的部分或全部信道的扩频因子的 P倍。
结合第一方面或第一方面上述任一种可能的实现方式,在第十三种可能 的实现方式中,
该第二类载波的控制信道和 /或公共信道的扩频因子为该第一类载波同 等控制信道和 /或公共信道的扩频因子的 P倍。
第二方面, 本发明提供一种可变带宽的方法, 包括:
获取第一类载波的配置信息和第二类载波的配置信息;
使用该第一类载波和 /或该第二类载波通信,其中该第一类载波的码片速 率为 3.84兆码片每秒 Mcps, 该第二类波的码片速率为 P*3.84Mcps, P小于 1且大于 0。
结合第二方面, 在第一种可能的实现方式中,
该第一类载波对应的至少一个小区的传输时间间隔 ΤΉ 长度与该第二 类载波对应的至少一个小区的 ΤΉ的长度相同。
结合第二面或第二方面的第一种可能的实现方式,在第二种可能的实现 方式中,
该第二类载波对应的至少一个小区的标识 ID与该第一类载波对应的至 少一个小区的 ID相同。
结合第二方面或第二方面上述任一种可能的实现方式,在第三种可能的 实现方式中,
该第二类载波对应的至少一个小区使用的主扰码序列与该第一类载波 对应的至少一个小区的主 4尤码序列相同; 或
该第二类载波对应的至少一个小区使用的主扰码序列是根据该第一类 载波对应的至少一个小区的主 4尤码序列确定的。
结合第二方面或第二方面上述任一种可能的实现方式,在第四种可能的 实现方式中,
该第二类载波的码片速率或该第二类载波的个数由该第一类载波的无 线资源控制 RRC信令承载。
结合第二方面或第二方面上述任一种可能的实现方式,在第五种可能的 实现方式中,
该第二类载波的下行载波的高速物理下行共享信道 HS-PDSCH采用的 扩频因子为 16,且该第二类载波的下行载波的导频信道的扩频因子为该第一 类载波的下行载波的同等导频信道扩频因子的 P倍。
结合第二方面或第二方面上述任一种可能的实现方式,在第六种可能的 实现方式中,
该第二类载波的上行载波的上行增强专用物理数据信道 E-DPDCH采用 的扩频因子为该第一类载波的上行载波能够采用的扩频因子中的一个或多 个。
结合第二方面或第二方面上述任一种可能的实现方式,在第七种可能的 实现方式中,
该第二类载波的上行载波的导频信道扩频因子为该第一类载波的上行 载波的同等导频信道扩频因子的 P倍。
结合第二方面或第二方面上述任一种可能的实现方式,在第八种可能的 实现方式中,
该第二类载波的下行载波上仅承载 HS-PDSCH和第一类导频信道。 结合第二方面的第八种可能的实现方式, 在第九种可能的实现方式中, 该第一类导频信道为公共导频信道、用于数据解调的导频信道或用于测 量的导频信道。
结合第二方面或第二方面上述任一种可能的实现方式,在第十种可能的 实现方式中,
该第二类载波的上行载波上仅承载 E-DPDCH和第二类导频信道。
结合第二方面的第十种可能的实现方式, 在第十一种可能的实现方式 中,
该第二类导频信道为专用导频信道。 结合第二方面或第二方面上述任一种可能的实现方式,在第十二种可能 的实现方式中,
该第二类载波的用于随机接入的部分或全部信道的扩频因子为该第一 类载波的同等的用于随机接入的部分或全部信道的扩频因子的 P倍。
结合第二方面或第二方面上述任一种可能的实现方式,在第十三种可能 的实现方式中,
该第二类载波的控制信道和 /或公共信道的扩频因子为该第一类载波同 等控制信道和 /或公共信道的扩频因子的 P倍。
第三方面, 本发明提供一种网络侧设备, 包括:
控制单元, 用于配置第一类载波和第二类载波, 其中该第一类载波的码 片速率为 3.84兆码片每秒 Mcps, 该第二类载波的码片速率为 P*3.84Mcps, P小于 1且大于 0;
通信单元, 用于使用该第一类载波和 /或该第二类载波通信。
结合第三方面, 在第一种可能的实现方式中,
该第一类载波对应的至少一个小区的传输时间间隔 ΤΉ 长度与该第二 类载波对应的至少一个小区的 ΤΉ长度相同。
结合第三方面或第三方面的第一种可能的实现方式,在第二种可能的实 现方式中,
该第二类载波对应的至少一个小区的标识 ID与该第一类载波对应的至 少一个小区的 ID相同。
结合第三方面或第三方面上述任一种可能的实现方式,在第三种可能的 实现方式中,
该第二类载波对应的至少一个小区使用的主扰码序列与该第一类载波 对应的至少一个小区的主 4尤码序列相同; 或
该第二类载波对应的至少一个小区使用的主扰码序列是根据该第一类 载波对应的至少一个小区的主 4尤码序列确定的。
结合第三方面或第三方面上述任一种可能的实现方式,在第四种可能的 实现方式中,
该第二类载波的码片速率或该第二类载波的个数由该第一类载波的无 线资源控制 RRC信令承载。
结合第三方面或第三方面上述任一种可能的实现方式,在第五种可能的 实现方式中,
该第二类载波的下行载波的高速物理下行共享信道 HS-PDSCH采用的 扩频因子为 16,且该第二类载波的下行载波的导频信道的扩频因子为该第一 类载波的下行载波的同等导频信道扩频因子的 P倍。
结合第三方面或第三方面上述任一种可能的实现方式,在第六种可能的 实现方式中,
该第二类载波的上行载波的上行增强专用物理数据信道 E-DPDCH采用 的扩频因子为该第一类载波的上行载波能够采用的扩频因子中的一个或多 个。
结合第三方面或第三方面上述任一种可能的实现方式,在第七种可能的 实现方式中,
该第二类载波的上行载波的导频信道扩频因子为该第一类载波的上行 载波的同等导频信道扩频因子的 P倍。
结合第三方面或第三方面上述任一种可能的实现方式,在第八种可能的 实现方式中,
该第二类载波的下行载波上仅承载 HS-PDSCH和第一类导频信道。 结合第八种可能的实现方式, 在第九种可能的实现方式中,
该第一类导频信道为公共导频信道、用于数据解调的导频信道或用于测 量的导频信道。
结合第三方面或第三方面上述任一种可能的实现方式,在第十种可能的 实现方式中,
该第二类载波的上行载波上仅承载 E-DPDCH和第二类导频信道。 结合第十种可能的实现方式, 在第十一种可能的实现方式中, 该第二类导频信道为专用导频信道。
结合第三方面或第三方面上述任一种可能的实现方式,在第十二种可能 的实现方式中,
该第二类载波的用于随机接入的部分或全部信道的扩频因子为该第一 类载波的同等的用于随机接入的部分或全部信道的扩频因子的 P倍。
结合第三方面或第三方面上述任一种可能的实现方式,在第十三种可能 的实现方式中,
该第二类载波的控制信道和 /或公共信道的扩频因子为该第一类载波同 等控制信道和 /或公共信道的扩频因子的 P倍。
第四方面, 本发明提供一种用户设备, 包括:
获取单元, 用于获取第一类载波的配置信息和第二类载波的配置信息; 通信单元,用于使用该第一类载波和 /或该第二类载波通信,其中该第一 类载波的码片速率为 3.84 兆码片每秒 Mcps , 该第二类波的码片速率为 P*3.84Mcps, P小于 1且大于 0。
结合第四方面, 在第一种可能的实现方式中,
该第一类载波对应的至少一个小区的传输时间间隔 ΤΉ 长度与该第二 类载波对应的至少一个小区的 ΤΉ的长度相同。
结合第四方面的第一种可能的实现方式, 在第二种可能的实现方式中, 该第二类载波对应的至少一个小区的标识 ID与该第一类载波对应的至 少一个小区的 ID相同。
结合第四方面或第四方面上述任一种可能的实现方式,在第三种可能的 实现方式中,
该第二类载波对应的至少一个使用的主扰码序列与该第一类载波对应 的至少一个小区的主扰码序列相同; 或
该第二类载波对应的至少一个使用的主扰码序列是根据该第一类载波 对应的至少一个小区的主 4尤码序列确定的。
结合第四方面或第四方面上述任一种可能的实现方式,在第四种可能的 实现方式中,
该第二类载波的码片速率或该第二类载波的个数由该第一类载波的无 线资源控制 RRC信令承载。
结合第四方面或第四方面上述任一种可能的实现方式,在第五种可能的 实现方式中,
该第二类载波的下行载波的高速物理下行共享信道 HS-PDSCH采用的 扩频因子为 16,且该第二类载波的下行载波的导频信道的扩频因子为该第一 类载波的下行载波的同等导频信道扩频因子的 P倍。
结合第四方面或第四方面上述任一种可能的实现方式,在第六种可能的 实现方式中,
该第二类载波的上行载波的上行增强专用物理数据信道 E-DPDCH采用 的扩频因子为该第一类载波的上行载波能够采用的扩频因子中的一个或多 结合第四方面或第四方面上述任一种可能的实现方式,在第七种可能的 实现方式中,
该第二类载波的上行载波的导频信道扩频因子为该第一类载波的上行 载波的同等导频信道扩频因子的 P倍。
结合第四方面或第四方面上述任一种可能的实现方式,在第八种可能的 实现方式中,
该第二类载波的下行载波上仅承载 HS-PDSCH和第一类导频信道。 结合第四方面的第八种可能的实现方式, 在第九种可能的实现方式中, 该第一类导频信道为公共导频信道、用于数据解调的导频信道或用于测 量的导频信道。
结合第四方面或第四方面上述任一种可能的实现方式,在第十种可能的 实现方式中,
该第二类载波的上行载波上仅承载 E-DPDCH和第二类导频信道。
结合第四方面的第十种可能的实现方式, 在第十一种可能的实现方式 中,
该第二类导频信道为专用导频信道。
结合第四方面或第四方面上述任一种可能的实现方式,在第十二种可能 的实现方式中,
该第二类载波的用于随机接入的部分或全部信道的扩频因子为该第一 类载波的同等的用于随机接入的部分或全部信道的扩频因子的 P倍。
结合第四方面或第四方面上述任一种可能的实现方式,在第十三种可能 的实现方式中,
该第二类载波的控制信道和 /或公共信道的扩频因子为该第一类载波同 等控制信道和 /或公共信道的扩频因子的 P倍。
根据本发明, 配置第一类载波和第二类载波, 其中第一类载波的码片速 率为 3.8Mcps, 第二类载波的码片速率为 P*3.84Mcps, P小于 1且大于 0; 使用第一类载波和 /或第二类载波通信。这样,由于第二类载波的码片速率低, 占用带宽低, 因此可以适用于非标准带宽, 可以提高带宽的使用效率, 减少 带宽的浪费。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作筒单地介绍, 显而易见地, 下面所描述的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例的可变带宽的示意性流程图。
图 2是本发明的可变带宽的示意性流程图。
图 3是本发明网络侧设备的示意框图。
图 4是本发明用户设备的示意框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所述的实施例是本发明的一部分实施例, 而不是 全部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动的前提下所获得的所有其他实施例, 都应属于本发明保护的范围。
应理解, 本发明实施例的技术方案可以应用于各种通信系统, 例如: 全 球移动通讯(Global System of Mobile communication, 筒称 "GSM" ) 系统、 码分多址(Code Division Multiple Access, 筒称 "CDMA" ) 系统、 宽带码分 多址(Wideband Code Division Multiple Access, 筒称 "WCDMA" )系统、 通 用分组无线业务(General Packet Radio Service, 筒称 "GPRS" )、 长期演进 ( Long Term Evolution,筒称 "LTE" )系统、 LTE频分双工( Frequency Division Duplex, 筒称 "FDD" ) 系统、 LTE时分双工 ( Time Division Duplex, 筒称 "TDD" )、 通用移动通信系统 ( Universal Mobile Telecommunication System, 筒称 "UMTS" )等。
用户设备 (User Equipment, UE)也可称之为移动终端 ( Mobile Terminal,
MT )、 移动用户设备等, 可以经无线接入网 (例如, Radio Access Network, RAN )与一个或多个核心网进行通信, 用户设备可以是移动终端, 如移动电 话(或称为"蜂窝"电话)和具有移动终端的计算机, 例如, 可以是便携式、 袖珍式、 手持式、 计算机内置的或者车载的移动装置。
网络侧设备, 可以是基站, 也可以是基站控制器。
基站,可以是 GSM或 CDMA中的基站( Base Transceiver Station, BTS ), 也可以是 WCDMA中的基站( NodeB ),还可以是 LTE中的 eNB或 e-NodeB, , 本发明并不限定。
基站控制器, 可以是基站控制器(Base Station Controller, BSC ), 也可 以是无线网络控制器(Radio Network Controller, RNC ), 还可以是有 RNC 功能的 eNB , 本发明并不限定。
图 1是本发明实施例的可变带宽的示意性流程图。 图 1的方法由网络侧 设备执行。
101 , 配置第一类载波和第二类载波, 其中第一类载波的码片速率为 3.8 兆码片每秒(Mega Chip Per Second, Mcps ), 第二类载波的码片速率为 P*3.84Mcps, P小于 1且大于 0。
102, 使用第一类载波和 /或第二类载波通信。
根据图 1所示的方法, 由于第二类载波的码片速率低, 占用带宽低, 因 此可以适用于非标准带宽, 可以提高带宽的使用效率, 减少带宽的浪费。
可选的, 第一类载波和第二类载波可以由基站控制器配置, 也可以预配 置在基站中。
可选的, 在使用第一类载波和第二类载波通信前, 还可以向用户设备发 送第一类载波的配置信息和第二类载波的配置信息, 以便用户设备根据接收 到的配置信息, 使用第一类载波和 /或第二类载波通信。
可选的, 还可以包括确定激活 /去激活配置, 用于激活第一类载波和 /或 第二类载波, 以便使用第一类载波和 /或第二类载波通信。 在不包括激活 /去 激活配置的情况下, 第一类载波和第二类载波默认为激活状态, 即使用第一 类载波和第二类载波通信。
可选的, 可以配置一个或多个第一类载波, 也可以配置一个或多个第二 类载波。
可选的, P的典型取值可以是 1/2、 1/4或 1/8。 例如, 可以给用户设备 下行配置 1个码片速率为 3.84Mcps的第一类载波,2个码片速率为 0.96Mcps 的第二类载波。 再如, 可以为用户设备下行配置 2个码片速率为 3.84Mcps 的第一类载波, 1个码片速率为 1.92Mcps的第二类载波。
可选的,第二类载波对应的至少一个小区的传输时间间隔( Transmission Time Interval, TTI )长度可以是 2ms , 也可以是 10ms。
可选的,第一类载波对应的至少一个小区能够使用的 ΤΉ长度和第二类 载波对应的至少一个小区的能够使用的 TTI长度相同。 这样, 可以保证第二 类载波对抗时间选择性特性和传统的 UMTS相当, 时延特性和传统 UMTS 相当。
可选的, 第二类载波对应的至少一个小区的标识(ID )与第一类载波对 应的至少一个小区的 ID相同。 这样, 可以尽可能降低小区规划的复杂度。
可选的, 第二类载波对应的至少一个小区使用的主扰码序列与第一类载 波对应的至少一个小区的主扰码序列相同, 或者, 第二类载波对应的至少一 个小区使用的主扰码序列是根据第一类载波对应的至少一个小区的主扰码 序列确定的。这样,可以重用该第一类载波对应的至少一个小区的扰码序列, 降低扰码序列生成复杂度。
具体地, 第二类载波对应的至少一个小区使用的主扰码序列可以与第一 类载波对应的至少一个小区的主扰码序列完全相同, 或者是第一类载波对应 的至少一个小区的主 4尤码序列的一部分。
例如, 第一类载波的对应的一个小区的主 4尤码序列为:
Sdlfi(k) = Z0(k) + jZ0((k + 131072)mod(218 - l)),fc = 0,1, .." 38399 其中,
Zn (i) = x((i + n) mod(218 - 1)) + y(i) mod 2, i = 0, 1,...218 - 2 ,
( + 18) = x(i + 7) + ( )mod2, = 0,1, ...218 - 20 ,
y(i + 18) = y(i + 10) + y(i + 7) + y(i + 5) + y(i)mod2, i = 0,1,...218 - 20 , (0) = l, (l) = x(2) = ... = (16) = (17) = 0 ,
3 (0) = ) (1) = ... = 3 (16) = 3 (17) = 1 ,
mod为取模。
可选的, 可以配置第二类载波对应的至少一个小区的主扰码序列是第一 类载波对应的至少一个小区的主扰码序列中的一个部分, 例如, 如果第二类 载波的码片速率为 0.96Mcps, 每个无线帧主扰码的序列长度为 9600, 则第 二类载波的对应的小区的主扰码序列可以是:
Sdl 0(k) = Z0(k) + Z。((fc + 131072)mod(218—l)),fc = 0,1, .."9599。 在此情况 下, 每个无线帧的主扰码序列相同。
可选的, 可以配置第二类载波对应的至少一个小区的主扰码序列与第一 类载波对应的至少一个小区的主扰码序列相同。 具体地, 可以配置第二类载 波有连续 A个无线帧的主 4尤码序列不同, 将该连续 A个无线帧的主 4尤码序 列合并起来构成第一类载波的主扰码序列。 例如, 如果第二类载波的码片速 率为 0.96Mcps, 每个无线帧的主扰码序列长度为 9600, 则可以由 4个无线 帧的主扰码序列合并起来构成第一类载波的主扰码序列。
可选的, 第二类载波的相关配置信息, 例如第二类载波的码片速率或者 第二类载波的个数, 由第一类载波的无线资源控制(Radio Resource Control, RRC )信令承载。 这样, 用户设备可以支持可变码片速率以及可变的带宽配 置。 具体地, 可以由 RRC信令使用 1个或多个比特指示第二类载波码片速 率。 例如 00表示第二类载波的码片速率为 1.92Mcps, 01表示第二类载波的 码片速率为 0.96Mcps等等。 可以由 N个比特位图的方式指示第二类载波的 个数, 例如 11000000表示配置 2个第二类载波等等。
可选的, 第二类载波的下行载波的高速物理下行共享信道(High speed Physical Downlink Shared Channel, HS-PDSCH )采用的扩频因子为 16, 且 第二类载波的下行载波的导频信道的扩频因子为第一类载波的下行载波的 同等导频信道扩频因子的 P倍, 其中 P小于 1且大于 0。 其中, 同等是指名 称、类型或作用相同。例如第一类载波的 P-CPICH与第二类载波的 P-CPICH 同等, 第一类载波起测量作用的导频信道与第二类载波起测量作用的导频信 道为同等。 这样, 由于第二类载波的 HS-PDSCH采用的扩频因子和第一类 载波相同, 因此第二类载波可以支持第一类载波相类似的多用户设备调度灵 活性。 由于第二类载波导频信道的扩频因子为第一类载波同等导频信道扩频 因子的 P倍,则可以保证在同一个帧或者子帧内传输与第一类载波相同的导 频符号, 保证信道估计性能。 可选的, P的典型值可以是 1/2、 1/4和 1/8。
可选的, 第二类载波的下行载波上仅承载 HS-PDSCH信道和第一类导 频信道。 第一类导频信道可以公共导频信道、 用于解调的导频信道或用于测 量的导频信道。 例如第一类导频信道可以是以下的一种或多种: 主公共导频 信道( Primary Common Pilot Channel, P-CPICH )、辅公共导频信道( Secondary Common Pilot Channel , S-CPICH )、 解调公共导频信道 ( Demodulation Common Pilot Channel, D-CPICH )、 承载信道状态参考信息( Channel Status Information Reference Signal, CSI-RS )或者信道状态指示导频( Channel State Indicator Pilot, CSI-Pilot )的信道,承载解调参考信号( Demodulation Reference Signal, DMRS )或者解调导频( Demodulation Pilot, DM-Pilot )的信道。 这 样, 第二类载波仅支持高速数据业务, 能够有效提高第二类载波上的频谱利 用效率。
可选的, 第二类载波的上行载波的上行增强专用物理信道(Enhanced Dedicated Physical Data Channel , E-DPDCH )采用的扩频因子为第一类载波 的上行载波能够采用的扩频因子中的一个或多个。 这样, 由于第二类载波的 E-DPDCH采用的扩频因子是第一类载波能够采用的扩频因子中的一个或多 个, 可以复用扩频序列, 筒化过程。
可选的, 第二类载波的上行载波的导频信道扩频因子为第一类载波的上 行载波的同等导频信道扩频因子的 P倍, 其中 P小于 1且大于 0。 这样, 由 于第二类载波导频信道的扩频因子为第一类载波同等导频信道扩频因子的 P 倍, 则可以保证在同一个子帧内传输与第一类载波相同的导频符号, 保证信 道估计性能。 可选的, P的典型值可以是 1/2、 1/4和 1/8。
可选的, 第二类载波的上行载波的上仅^载 E-DPDCH信道和第二类导 频信道。 第二类导频信道可以是专用导频信道。 这样, 第二类载波仅支持高 速数据业务, 能够有效提高第二类载波上的频谱利用效率。
可选的, 第二类载波的用于随机接入的部分或全部信道扩频因子为第一 类载波的同等的用于随机接入的部分或全部信道扩频因子的 P倍,其中 P小 于 1 且大于 0。 该随机接入的相关信道可以包括上行的物理随机接入信道 ( Physical Random Access Channel , PRACH ) , 下行的捕获指示信道 ( Acquisition Indicator Channel, AICH )等。 这样, 由于第二类载波的用于 随机接入的部分或全部信道扩频因子为第一类载波的同等的用于随机接入 的部分或全部信道扩频因子的 P倍,则可以保证随机接入过程中随机接入信 息量与传统的 UMTS相同或者部分相同。
可选的 ,第二类载波的控制信道和 /或公共信道扩频因子为第一类载波的 同等控制信道和 /或公共信道扩频因子的 P倍, 其中 P小于 1且大于 0。 该控 制信道和 /或公共信道可以是高速共享控制信道(High Speed Shared Control Channel, HS-SCCH )等。
图 2是本发明的可变带宽的示意性流程图。图 2的方法由用户设备执行。 201 , 获取第一类载波的配置信息和第二类载波的配置信息。
可选的, 获取第一类载波的配置信息和第二类载波的配置信息可以是接 收网络侧设备发送的第一类载波的配置信息和第二类载波的配置信息,也可 以是获取预设在用户设备的第一类载波的配置信息和第二类载波的配置信 息。
202, 使用第一类载波和 /或第二类载波通信, 其中第一类载波的码片速 率为 3.84Mcps , 第二类载波的码片速率为 P*3.84Mcps, P小于 1且大于 0。 可选的, P的典型取值为 1/2、 1/4和 1/8。
根据图 2所示的方法, 由于第二类载波的码片速率低, 占用带宽低, 因 此可以适用于非标准带宽, 可以提高带宽的使用效率, 减少带宽浪费。
可选的, 还可以包括接收激活 /去激活配置, 用于激活第一类载波和 /或 第二类载波, 以便使用第一类载波和 /或第二类载波通信。 在没有接收激活 / 去激活配置的情况下, 第一类载波和第二类载波默认为激活状态, 即使用第 一类载波和第二类载波通信。
可选的, 第二类载波的 ΤΉ长度可以是 2ms , 也可以是 10ms。
可选的,第一类载波对应的至少一个小区能够使用的 ΤΉ和第二类载波 对应的至少一个小区的能够使用的 ΤΉ长度相同。 这样, 可以保证第二类载 波对抗时间选择性特性和传统的 UMTS相当, 时延特性和传统 UMTS相当。
可选的, 第二类载波对应的至少一个小区标识(ID )与第一类载波对应 的至少一个小区的 ID相同。 这样, 可以尽可能降低小区规划的复杂度。
可选的, 第二类载波对应的至少一个小区使用的主扰码序列与第一类载 波对应的至少一个小区的主扰码序列相同, 或者, 第二类载波对应的至少一 个小区使用的主扰码序列是根据第一类载波对应的至少一个小区的主扰码 序列确定的。这样,可以重用该第一类载波对应的至少一个小区的扰码序列, 降低扰码序列生成复杂度。
具体地, 第二类载波对应的至少一个小区使用的主扰码序列可以与第一 类载波对应的至少一个小区的主扰码序列完全相同, 或者是第一类载波对应 的至少一个小区的主 4尤码序列的一部分。
例如, 第一类载波的对应的一个小区的主 4尤码序列为:
Sdl 0(k) = Z0(k) + jZ0((k + 131072)mod(218 - l)),fc = 0,1, .." 38399 其中,
Zn (i) = x((i + n) mod(218 - 1)) + y(i) mod 2, i = 0, 1,...218 - 2 ,
( + 18) = x(i + 7) + ( )mod2, = 0,1, ...218 - 20 ,
y(i + 18) = y(i + 10) + y(i + 7) + y(i + 5) + y(i)mod2, i = 0,1,...218 - 20 , (0) = l, (l) = x(2) = ... = (16) = (17) = 0 , 3 (0) = ) (1) = ... = 3 (16) = 3 (17) = 1 ,
mod为取模。
可选的, 第二类载波对应的至少一个小区的主扰码序列可以是第一类载 波对应的至少一个小区的主扰码序列中的一个部分, 例如, 如果第二类载波 的码片速率为 0.96Mcps, 每个无线帧主扰码的序列长度为 9600, 则第二类 载波的对应的小区的主扰码序列可以是:
Sdl 0(k) = Z0(k) + Z。((fc + 131072)mod(218—l)),fc = 0,1, .."9599。 在此情况 下, 每个无线帧的主扰码序列相同。
可选的, 第二类载波对应的至少一个小区的主扰码序列可以与第一类载 波对应的至少一个小区的主扰码序列相同。 具体地, 第二类载波可以使用主 扰码序列不同的连续 A个无线帧, 将该连续 A个无线帧的主扰码序列合并 起来构成第一类载波的主扰码序列。 例如, 如果第二类载波的码片速率为 0.96Mcps,每个无线帧的主扰码序列长度为 9600,则可以由 4个无线帧的主 扰码序列合并起来构成第一类载波的主扰码序列。
可选的, 第二类载波的码片速率或者第二类载波的个数由第一类载波的
RRC信令承载。这样,该接收端可以支持可变码片速率以及可变的带宽配置。 具体地, 可以由 RRC信令使用 1个或多个比特指示第二类载波码片速率。 例如 00表示第二类载波的码片速率为 1.92Mcps, 01表示第二类载波的码片 速率为 0.96Mcps等等。可以由 N个比特位图的方式指示第二类载波的个数, 例如 11000000表示配置 2个第二类载波等等。
可选的, 第二类载波的下行载波的高速物理下行共享信道(High speed Physical Downlink Shared Channel, HS-PDSCH )采用的扩频因子为 16, 且 第二类载波的下行载波的导频信道的扩频因子为第一类载波的下行载波的 同等导频信道扩频因子的 P倍, 其中 P小于 1且大于 0。 其中, 同等是指名 称、类型或作用相同。例如第一类载波的 P-CPICH与第二类载波的 P-CPICH 同等, 第一类载波起测量作用的导频信道与第二类载波起测量作用的导频信 道为同等。 这样, 由于第二类载波的 HS-PDSCH采用的扩频因子和第一类 载波相同, 因此第二类载波可以支持第一类载波相类似的多用户设备调度灵 活性。 由于第二类载波导频信道的扩频因子为第一类载波同等导频信道扩频 因子的 P倍,则可以保证在同一个帧或者子帧内传输与第一类载波相同的导 频符号, 保证信道估计性能。 可选的, P的典型值可以是 1/2、 1/4和 1/8。 可选的, 第二类载波的下行载波上仅承载 HS-PDSCH信道和第一类导 频信道。 第一类导频信道可以公共导频信道、 用于解调的导频信道或用于测 量的导频信道。 例如可以是以下的一种或多种: 主公共导频信道( Primary Common Pilot Channel, P-CPICH )、辅公共导频信道( Secondary Common Pilot Channel , S-CPICH )、 解调公共导频信道 ( Demodulation Common Pilot Channel, D-CPICH )、 承载信道状态参考信息 (Channel Status Information Reference Signal, CSI-RS )或者信道状态指示导频( Channel State Indicator Pilot, CSI-Pilot )的信道,承载解调参考信号( Demodulation Reference Signal, DMRS )或者解调导频 ( Demodulation Pilot, DM-Pilot ) 的信道。 这样, 第 二类载波仅支持高速数据业务, 能够有效提高第二类载波上的频谱利用效 率。
可选的, 第二类载波的上行载波的上行增强专用物理信道(Enhanced Dedicated Physical Data Channel , E-DPDCH )采用的扩频因子为第一类载波 的上行载波能够采用的扩频因子中的一个或多个。 这样, 由于第二类载波的 E-DPDCH采用的扩频因子是第一类载波能够采用的扩频因子中的一个或多 个, 可以复用扩频序列, 筒化过程。
可选的, 第二类载波的上行载波的导频信道扩频因子为第一类载波的上 行载波的同等导频信道扩频因子的 P倍, 其中 P小于 1且大于 0。 这样, 由 于第二类载波导频信道的扩频因子为第一类载波同等导频信道扩频因子的 P 倍, 则可以保证在同一个子帧内传输与第一类载波相同的导频符号, 保证信 道估计性能。 可选的, P的典型值可以是 1/2、 1/4和 1/8。
可选的, 第二类载波的上行载波的上仅^载 E-DPDCH信道和第二类导 频信道。 第二类导频信道可以是专用导频信道。 这样, 第二类载波仅支持高 速数据业务, 能够有效提高第二类载波上的频谱利用效率。
可选的, 第二类载波的用于随机接入的部分或全部信道扩频因子为第一 类载波的同等的用于随机接入的部分或全部信道扩频因子的 P倍,其中 P小 于 1 且大于 0。 该随机接入的相关信道可以包括上行的物理随机接入信道 ( Physical Random Access Channel , PRACH ) , 下行的捕获指示信道 ( Acquisition Indicator Channel, AICH )等。 这样, 由于第二类载波的用于 随机接入的部分或全部信道扩频因子为第一类载波的同等的用于随机接入 的部分或全部信道扩频因子的 P倍,则可以保证随机接入过程中随机接入信 息量与传统的 UMTS相同或者部分相同。
可选的 ,第二类载波的控制信道和 /或公共信道扩频因子为第一类载波的 同等控制信道和 /或公共信道扩频因子的 P倍, 其中 P小于 1且大于 0。 该控 制信道和 /或公共信道可以是高速共享控制信道(High Speed Shared Control Channel, HS-SCCH )等。
图 3是本发明网络侧设备的示意框图。 图 3的网络侧设备 300可以执行 图 1中网络侧设备执行的步骤。 包括: 控制单元 301 , 通信单元 302。
控制单元 301 , 用于配置第一类载波和第二类载波, 其中第一类载波的 码片速率为 3.8Mcps, 第二类载波的码片速率为 P*3.84Mcps, P小于 1且大 于 0。
通信单元 302, 用于使用第一类载波和第二类载波通信。
根据图 3的网络侧设备 300, 由于第二类载波的码片速率低, 占用带宽 低, 因此可以适用于非标准带宽, 可以提高带宽的使用效率, 减少带宽的浪 费。
可选的, 通信单元 302, 在使用第一类载波和第二类载波通信前, 还用 于向用户设备发送第一类载波的配置信息和第二类载波的配置信息, 以便用 户设备使用第一类载波和 /或第二类载波通信。
可选的, 控制单元 301 , 还用于确定激活 /去激活配置, 该激活 /去激活 配置用于激活第一类载波和 /或第二类载波, 以便使用第一类载波和 /或第二 类载波通信。在控制单元 301没有确定激活 /去激活配置的情况下,第一类载 波和第二类载波默认为激活状态, 即使用第一类载波和第二类载波通信。
可选的, 控制单元 301 , 可以用于配置一个或多个第一类载波, 也可以 用于配置一个或多个第二类载波。
可选的, P的典型取值可以是 1/2、 1/4或 1/8。 例如, 控制单元 301 , 可 以给用户设备下行配置 1个码片速率为 3.84Mcps的第一类载波, 2个码片速 率为 0.96Mcps的第二类载波。 再如, 可以为用户设备下行配置 2个码片速 率为 3.84Mcps的第一类载波, 1个码片速率为 1.92Mcps的第二类载波。
可选的,第二类载波对应的至少一个小区的传输时间间隔( Transmission Time Interval, TTI )长度可以是 2ms , 也可以是 10ms。
可选的,第一类载波对应的至少一个小区能够使用的 ΤΉ长度和第二类 载波对应的至少一个小区的能够使用的 ΤΉ长度相同。 这样, 可以保证第二 类载波对抗时间选择性特性和传统的 UMTS相当, 时延特性和传统 UMTS 相当。
可选的, 第二类载波对应的至少一个小区的标识(ID )与第一类载波对 应的至少一个小区的 ID相同。 这样, 可以尽可能降低小区规划的复杂度。
可选的, 第二类载波对应的至少一个小区使用的主扰码序列与第一类载 波对应的至少一个小区的主扰码序列相同, 或者, 第二类载波对应的至少一 个小区使用的主扰码序列是根据第一类载波对应的至少一个小区的主扰码 序列确定的。这样,可以重用该第一类载波对应的至少一个小区的扰码序列, 降低扰码序列生成复杂度。
具体地, 第二类载波对应的至少一个小区使用的主扰码序列可以与第一 类载波对应的至少一个小区的主扰码序列完全相同, 或者是第一类载波对应 的至少一个小区的主 4尤码序列的一部分。
例如, 第一类载波的对应的一个小区的主 4尤码序列为:
Sdl 0(k) = Z0(k) + jZ0((k + 131072)mod(218 - l)),fc = 0,1, .." 38399 其中,
Zn (i) = x((i + n) mod(218 - 1)) + y(i) mod 2, i = 0, 1,...218 - 2 ,
( + 18) = x(i + 7) + ( )mod2, = 0,1, ...218 - 20 ,
y(i + 18) = y(i + 10) + y(i + 7) + y(i + 5) + y(i)mod2, i = 0,1,...218 - 20 , (0) = l, (l) = x(2) = ... = (16) = (17) = 0 ,
) (0) = 3 (1) = ... = 3 (16) = 3 (17) = 1 ,
mod为取模。
可选的, 可以配置第二类载波对应的至少一个小区的主扰码序列是第一 类载波对应的至少一个小区的主扰码序列中的一个部分, 例如, 如果第二类 载波的码片速率为 0.96Mcps, 每个无线帧主扰码的序列长度为 9600, 则第 二类载波的对应的小区的主扰码序列可以是:
Sd 0(k) = Z0(k) + Z。((fc + 131072)mod(218—l)),fc = 0,1, .."9599。 在此情况 下, 每个无线帧的主扰码序列相同。
可选的, 可以配置第二类载波对应的至少一个小区的主扰码序列与第一 类载波对应的至少一个小区的主扰码序列相同。 具体地, 可以配置第二类载 波有连续 A个无线帧的主 4尤码序列不同, 将该连续 A个无线帧的主 4尤码序 列合并起来构成第一类载波的主扰码序列。 例如, 如果第二类载波的码片速 率为 0.96Mcps, 每个无线帧的主扰码序列长度为 9600, 则可以由 4个无线 帧的主扰码序列合并起来构成第一类载波的主扰码序列。
可选的, 第二类载波的相关配置信息, 例如第二类载波的码片速率或者 第二类载波的个数, 由第一类载波的 RRC信令承载。 这样, 用户设备可以 支持可变码片速率以及可变的带宽配置。 具体地, 可以由 RRC信令使用 1 个或多个比特指示第二类载波码片速率。 例如 00表示第二类载波的码片速 率为 1.92Mcps, 01表示第二类载波的码片速率为 0.96Mcps等等。 可以由 N 个比特位图的方式指示第二类载波的个数, 例如 11000000表示配置 2个第 二类载波等等。
可选的, 第二类载波的下行载波的高速物理下行共享信道(High Speed
Physical Downlink Shared Channel, HS-PDSCH )采用的扩频因子为 16, 且 第二类载波的下行载波的导频信道的扩频因子为第一类载波的下行载波的 同等导频信道扩频因子的 P倍, 其中 P小于 1且大于 0。 其中, 同等是指名 称、类型或作用相同。例如第一类载波的 P-CPICH与第二类载波的 P-CPICH 同等, 第一类载波起测量作用的导频信道与第二类载波起测量作用的导频信 道为同等。 这样, 由于第二类载波的 HS-PDSCH采用的扩频因子和第一类 载波相同, 因此第二类载波可以支持第一类载波相类似的多用户设备调度灵 活性。 由于第二类载波导频信道的扩频因子为第一类载波同等导频信道扩频 因子的 P倍,则可以保证在同一个帧或者子帧内传输与第一类载波相同的导 频符号, 保证信道估计性能。 可选的, P的典型值可以是 1/2、 1/4和 1/8。
可选的, 第二类载波的下行载波上仅承载 HS-PDSCH信道和第一类导 频信道。 第一类导频信道可以公共导频信道、 用于解调的导频信道或用于测 量的导频信道。 例如第一类导频信道可以是以下的一种或多种: 主公共导频 信道( Primary Common Pilot Channel, P-CPICH )、辅公共导频信道( Secondary Common Pilot Channel , S-CPICH )、 解调公共导频信道 ( Demodulation Common Pilot Channel, D-CPICH )、 承载信道状态参考信息( Channel Status Information Reference Signal, CSI-RS )或者信道状态指示导频( Channel State Indicator Pilot, CSI-Pilot )的信道,承载解调参考信号( Demodulation Reference Signal, DMRS )或者解调导频( Demodulation Pilot, DM-Pilot )的信道。 这 样, 第二类载波仅支持高速数据业务, 能够有效提高第二类载波上的频谱利 用效率。 可选的, 第二类载波的上行载波的上行增强专用物理信道(Enhanced Dedicated Physical Data Channel , E-DPDCH )采用的扩频因子为第一类载波 的上行载波能够采用的扩频因子中的一个或多个。 这样, 由于第二类载波的 E-DPDCH采用的扩频因子是第一类载波能够采用的扩频因子中的一个或多 个, 可以复用扩频序列, 筒化过程。
可选的, 第二类载波的上行载波的导频信道扩频因子为第一类载波的上 行载波的同等导频信道扩频因子的 P倍, 其中 P小于 1且大于 0。 这样, 由 于第二类载波导频信道的扩频因子为第一类载波同等导频信道扩频因子的 P 倍, 则可以保证在同一个子帧内传输与第一类载波相同的导频符号, 保证信 道估计性能。 可选的, P的典型值可以是 1/2、 1/4和 1/8。
可选的, 第二类载波的上行载波的上仅^载 E-DPDCH信道和第二类导 频信道。 第二类导频信道可以是专用导频信道。 这样, 第二类载波仅支持高 速数据业务, 能够有效提高第二类载波上的频谱利用效率。
可选的, 第二类载波的用于随机接入的部分或全部信道扩频因子为第一 类载波的同等的用于随机接入的部分或全部信道扩频因子的 P倍,其中 P小 于 1 且大于 0。 该随机接入的相关信道可以包括上行的物理随机接入信道 ( Physical Random Access Channel , PRACH ) , 下行的捕获指示信道 ( Acquisition Indicator Channel, AICH )等。 这样, 由于第二类载波的用于 随机接入的部分或全部信道扩频因子为第一类载波的同等的用于随机接入 的部分或全部信道扩频因子的 P倍,则可以保证随机接入过程中随机接入信 息量与传统的 UMTS相同或者部分相同。
可选的 ,第二类载波的控制信道和 /或公共信道扩频因子为第一类载波的 同等控制信道和 /或公共信道扩频因子的 P倍, 其中 P小于 1且大于 0。 该控 制信道和 /或公共信道可以是高速共享控制信道(High Speed Shared Control Channel, HS-SCCH )等。
图 4是本发明用户设备的示意框图。 图 4的用户设备 400可以执行图 2 中用户设备执行的步骤。 包括: 获取单元 401 , 通信单元 402。
获取单元 401 , 用于获取第一类载波的配置信息和第二类载波的配置信 息。
通信单元 402, 用于使用第一类载波和 /或第二类载波通信, 其中第一类 载波的码片速率为 3.84Mcps, 第二类载波的码片速率为 P*3.84Mcps, P小 于 1且大于 0。 可选的, P的典型取值为 1/2、 1/4和 1/8。
可选的, 通信单元 402, 还用于接收网络侧设备发送的第一类载波的配 置信息和第二类载波的配置信息。 获取单元 401 , 还可以用于确定第一类载 波的配置信息和第二类载波的配置信息是通信单元 402从网络侧设备接收的 第一类载波的配置信息和第二类载波的配置信息。 获取单元 401 , 也可以用 于获取预设在用户设备的第一类载波的配置信息和第二类载波的配置信息。
根据图 4所示的用户设备 400 , 由于第二类载波的码片速率低, 占用带 宽低, 因此可以适用于非标准带宽, 可以提高带宽的使用效率, 减少带宽浪 费。
可选的, 通信单元 402, 还用于接收激活 /去激活配置。 控制单元 401 , 还用于激活第一类载波和 /或第二类载波, 使用第一类载波和 /或第二类载波 通信。在没有接收激活 /去激活配置的情况下,第一类载波和第二类载波默认 为激活状态, 即使用第一类载波和第二类载波通信。
可选的, 第二类载波的 ΤΉ长度可以是 2ms , 也可以是 10ms。
可选的,第一类载波对应的至少一个小区能够使用的 ΤΉ和第二类载波 对应的至少一个小区的能够使用的 ΤΉ长度相同。 这样, 可以保证第二类载 波对抗时间选择性特性和传统的 UMTS相当, 时延特性和传统 UMTS相当。
可选的, 第二类载波对应的至少一个小区标识(ID )与第一类载波对应 的至少一个小区的 ID相同。 这样, 可以尽可能降低小区规划的复杂度。
可选的, 第二类载波对应的至少一个小区使用的主扰码序列与第一类载 波对应的至少一个小区的主扰码序列相同, 或者, 第二类载波对应的至少一 个小区使用的主扰码序列是根据第一类载波对应的至少一个小区的主扰码 序列确定的。这样,可以重用该第一类载波对应的至少一个小区的扰码序列, 降低扰码序列生成复杂度。
具体地, 第二类载波对应的至少一个小区使用的主扰码序列可以与第一 类载波对应的至少一个小区的主扰码序列完全相同, 或者是第一类载波对应 的至少一个小区的主 4尤码序列的一部分。
例如, 第一类载波的对应的一个小区的主 4尤码序列为:
Sd 0(k) = Z0(k) + jZ0((k + 131072)mod(218— l)),fc = 0,1, .." 38399 其中,
Zn (i) = x((i + n) mod(218 - 1)) + y(i) mod 2, i = 0, 1,...218 - 2 , ( + 18) = x(i + 7) + ( )mod2, = 0,1,...218 - 20 ,
y(i + 18) = y(i + 10) + y(i + 7) + y(i + 5) + y(i)mod2, i = 0,1,...218 - 20 , (0) = l, (l) = x(2) = ... = (16) = (17) = 0 ,
3 (0) = ) (1) = ... = 3 (16) = 3 (17) = 1 ,
mod为取模。
可选的, 第二类载波对应的至少一个小区的主扰码序列可以是第一类载 波对应的至少一个小区的主扰码序列中的一个部分, 例如, 如果第二类载波 的码片速率为 0.96Mcps , 每个无线帧主扰码的序列长度为 9600, 则第二类 载波的对应的小区的主扰码序列可以是:
Sd 0(k) = Z0(k) + Z。((fc + 131072)mod(218—l)),fc = 0,1, .."9599。 在此情况 下, 每个无线帧的主扰码序列相同。
可选的, 第二类载波对应的至少一个小区的主扰码序列可以与第一类载 波对应的至少一个小区的主扰码序列相同。 具体地, 第二类载波可以使用主 扰码序列不同的连续 A个无线帧, 将该连续 A个无线帧的主扰码序列合并 起来构成第一类载波的主扰码序列。 例如, 如果第二类载波的码片速率为 0.96Mcps ,每个无线帧的主扰码序列长度为 9600 ,则可以由 4个无线帧的主 扰码序列合并起来构成第一类载波的主扰码序列。
可选的, 第二类载波的码片速率或者第二类载波的个数由第一类载波的 RRC信令承载。这样,该接收端可以支持可变码片速率以及可变的带宽配置。 具体地, 可以由 RRC信令使用 1个或多个比特指示第二类载波码片速率。 例如 00表示第二类载波的码片速率为 1.92Mcps, 01表示第二类载波的码片 速率为 0.96Mcps等等。可以由 N个比特位图的方式指示第二类载波的个数, 例如 11000000表示配置 2个第二类载波等等。
可选的, 第二类载波的下行载波的高速物理下行共享信道(High speed Physical Downlink Shared Channel, HS-PDSCH )采用的扩频因子为 16, 且 第二类载波的下行载波的导频信道的扩频因子为第一类载波的下行载波的 同等导频信道扩频因子的 P倍, 其中 P小于 1且大于 0。 其中, 同等是指名 称、类型或作用相同。例如第一类载波的 P-CPICH与第二类载波的 P-CPICH 同等, 第一类载波起测量作用的导频信道与第二类载波起测量作用的导频信 道为同等。 这样, 由于第二类载波的 HS-PDSCH采用的扩频因子和第一类 载波相同, 因此第二类载波可以支持第一类载波相类似的多用户设备调度灵 活性。 由于第二类载波导频信道的扩频因子为第一类载波同等导频信道扩频 因子的 P倍,则可以保证在同一个帧或者子帧内传输与第一类载波相同的导 频符号, 保证信道估计性能。 可选的, P的典型值可以是 1/2、 1/4和 1/8。
可选的, 第二类载波的下行载波上仅承载 HS-PDSCH信道和第一类导 频信道。 第一类导频信道可以公共导频信道、 用于解调的导频信道或用于测 量的导频信道。 例如可以是以下的一种或多种: 主公共导频信道( Primary Common Pilot Channel, P-CPICH )、辅公共导频信道( Secondary Common Pilot Channel , S-CPICH )、 解调公共导频信道 ( Demodulation Common Pilot Channel, D-CPICH )、 承载信道状态参考信息 (Channel Status Information Reference Signal, CSI-RS )或者信道状态指示导频( Channel State Indicator Pilot, CSI-Pilot )的信道,承载解调参考信号( Demodulation Reference Signal, DMRS )或者解调导频 ( Demodulation Pilot, DM-Pilot ) 的信道。 这样, 第 二类载波仅支持高速数据业务, 能够有效提高第二类载波上的频谱利用效 率。
可选的, 第二类载波的上行载波的上行增强专用物理信道(Enhanced
Dedicated Physical Data Channel , E-DPDCH )采用的扩频因子为第一类载波 的上行载波能够采用的扩频因子中的一个或多个。 这样, 由于第二类载波的 E-DPDCH采用的扩频因子是第一类载波能够采用的扩频因子中的一个或多 个, 可以复用扩频序列, 筒化过程。
可选的, 第二类载波的上行载波的导频信道扩频因子为第一类载波的上 行载波的同等导频信道扩频因子的 P倍, 其中 P小于 1且大于 0。 这样, 由 于第二类载波导频信道的扩频因子为第一类载波同等导频信道扩频因子的 P 倍, 则可以保证在同一个子帧内传输与第一类载波相同的导频符号, 保证信 道估计性能。 可选的, P的典型值可以是 1/2、 1/4和 1/8。
可选的, 第二类载波的上行载波的上仅^载 E-DPDCH信道和第二类导 频信道。 第二类导频信道可以是专用导频信道。 这样, 第二类载波仅支持高 速数据业务, 能够有效提高第二类载波上的频谱利用效率。
可选的, 第二类载波的用于随机接入的部分或全部信道扩频因子为第一 类载波的同等的用于随机接入的部分或全部信道扩频因子的 P倍,其中 P小 于 1 且大于 0。 该随机接入的相关信道可以包括上行的物理随机接入信道 ( Physical Random Access Channel , PRACH ) , 下行的捕获指示信道 ( Acquisition Indicator Channel, AICH )等。 这样, 由于第二类载波的用于 随机接入的部分或全部信道扩频因子为第一类载波的同等的用于随机接入 的部分或全部信道扩频因子的 P倍,则可以保证随机接入过程中随机接入信 息量与传统的 UMTS相同或者部分相同。
可选的 ,第二类载波的控制信道和 /或公共信道扩频因子为第一类载波的 同等控制信道和 /或公共信道扩频因子的 P倍, 其中 P小于 1且大于 0。 该控 制信道和 /或公共信道可以是高速共享控制信道(High Speed Shared Control Channel, HS-SCCH )等。
可选的, 本发明提供网络侧设备 500, 网络侧设备 500可以执行图 1中 网络侧设备执行的步骤。 包括: 处理器 501 , 收发器 502。
处理器 501 , 用于配置第一类载波和第二类载波, 其中第一类载波的码 片速率为 3.8Mcps, 第二类载波的码片速率为 P*3.84Mcps, P小于 1且大于 0。
收发器 502, 用于使用第一类载波和第二类载波通信。
在使用网络侧设备 500的情况下, 由于第二类载波的码片速率低, 占用 带宽低, 因此可以适用于非标准带宽, 可以提高带宽的使用效率, 减少带宽 的浪费。
可选的, 收发器 502, 在使用第一类载波和第二类载波通信前, 还用于 向用户设备发送第一类载波的配置信息和第二类载波的配置信息, 以便用户 设备使用第一类载波和 /或第二类载波通信。
可选的, 处理器 501 , 还用于确定激活 /去激活配置, 该激活 /去激活配 置用于激活第一类载波和 /或第二类载波, 以便使用第一类载波和 /或第二类 载波通信。在处理器 501没有确定激活 /去激活配置的情况下,第一类载波和 第二类载波默认为激活状态, 即使用第一类载波和第二类载波通信。
可选的, 处理器 501 , 可以用于配置一个或多个第一类载波, 也可以用 于配置一个或多个第二类载波。
可选的, P的典型取值可以是 1/2、 1/4或 1/8。 例如, 处理器 501 , 可以 给用户设备下行配置 1个码片速率为 3.84Mcps的第一类载波, 2个码片速率 为 0.96Mcps的第二类载波。 再如, 可以为用户设备下行配置 2个码片速率 为 3.84Mcps的第一类载波, 1个码片速率为 1.92Mcps的第二类载波。
可选的,第二类载波对应的至少一个小区的传输时间间隔( Transmission Time Interval, TTI )长度可以是 2ms , 也可以是 10ms。
可选的,第一类载波对应的至少一个小区能够使用的 ΤΉ长度和第二类 载波对应的至少一个小区的能够使用的 ΤΉ长度相同。 这样, 可以保证第二 类载波对抗时间选择性特性和传统的 UMTS相当, 时延特性和传统 UMTS 相当。
可选的, 第二类载波对应的至少一个小区的标识(ID )与第一类载波对 应的至少一个小区的 ID相同。 这样, 可以尽可能降低小区规划的复杂度。
可选的, 第二类载波对应的至少一个小区使用的主扰码序列与第一类载 波对应的至少一个小区的主扰码序列相同, 或者, 第二类载波对应的至少一 个小区使用的主扰码序列是根据第一类载波对应的至少一个小区的主扰码 序列确定的。这样,可以重用该第一类载波对应的至少一个小区的扰码序列, 降低扰码序列生成复杂度。
具体地, 第二类载波对应的至少一个小区使用的主扰码序列可以与第一 类载波对应的至少一个小区的主扰码序列完全相同, 或者是第一类载波对应 的至少一个小区的主 4尤码序列的一部分。
例如, 第一类载波的对应的一个小区的主 4尤码序列为:
Sdlfi(k) = Z0(k) + jZ0((k + 131072)mod(218 - l)),fc = 0,1, .." 38399 其中,
Zn (i) = x((i + n) mod(218 - 1)) + y(i) mod 2, i = 0, 1,...218 - 2 ,
( + 18) = ( + 7) + ( )mod2, = 0,1,...218 - 20 ,
y(i + 18) = y(i + 10) + y(i + 7) + y(i + 5) + y(i)mod2, i = 0,1,...218 - 20 , (0) = l, (l) = x(2) = ... = (16) = (17) = 0 ,
3 (0) = ) (1) = ... = 3 (16) = 3 (17) = 1 ,
mod为取模。
可选的, 可以配置第二类载波对应的至少一个小区的主扰码序列是第一 类载波对应的至少一个小区的主扰码序列中的一个部分, 例如, 如果第二类 载波的码片速率为 0.96Mcps, 每个无线帧主扰码的序列长度为 9600, 则第 二类载波的对应的小区的主扰码序列可以是:
Sd 0(k) = Z0(k) + Z。((fc + 131072)mod(218—l)),fc = 0,1, .."9599。 在此情况 下, 每个无线帧的主扰码序列相同。
可选的, 可以配置第二类载波对应的至少一个小区的主扰码序列与第一 类载波对应的至少一个小区的主扰码序列相同。 具体地, 可以配置第二类载 波有连续 A个无线帧的主 4尤码序列不同, 将该连续 A个无线帧的主 4尤码序 列合并起来构成第一类载波的主扰码序列。 例如, 如果第二类载波的码片速 率为 0.96Mcps, 每个无线帧的主扰码序列长度为 9600, 则可以由 4个无线 帧的主扰码序列合并起来构成第一类载波的主扰码序列。
可选的, 第二类载波的相关配置信息, 例如第二类载波的码片速率或者 第二类载波的个数, 由第一类载波的 RRC信令承载。 这样, 用户设备可以 支持可变码片速率以及可变的带宽配置。 具体地, 可以由 RRC信令使用 1 个或多个比特指示第二类载波码片速率。 例如 00表示第二类载波的码片速 率为 1.92Mcps, 01表示第二类载波的码片速率为 0.96Mcps等等。 可以由 N 个比特位图的方式指示第二类载波的个数, 例如 11000000表示配置 2个第 二类载波等等。
可选的, 第二类载波的下行载波的高速物理下行共享信道(High speed Physical Downlink Shared Channel, HS-PDSCH )采用的扩频因子为 16, 且 第二类载波的下行载波的导频信道的扩频因子为第一类载波的下行载波的 同等导频信道扩频因子的 P倍, 其中 P小于 1且大于 0。 其中, 同等是指名 称、类型或作用相同。例如第一类载波的 P-CPICH与第二类载波的 P-CPICH 同等, 第一类载波起测量作用的导频信道与第二类载波起测量作用的导频信 道为同等。 这样, 由于第二类载波的 HS-PDSCH采用的扩频因子和第一类 载波相同, 因此第二类载波可以支持第一类载波相类似的多用户设备调度灵 活性。 由于第二类载波导频信道的扩频因子为第一类载波同等导频信道扩频 因子的 P倍,则可以保证在同一个帧或者子帧内传输与第一类载波相同的导 频符号, 保证信道估计性能。 可选的, P的典型值可以是 1/2、 1/4和 1/8。
可选的, 第二类载波的下行载波上仅承载 HS-PDSCH信道和第一类导 频信道。 第一类导频信道可以公共导频信道、 用于解调的导频信道或用于测 量的导频信道。 例如第一类导频信道可以是以下的一种或多种: 主公共导频 信道( Primary Common Pilot Channel, P-CPICH )、辅公共导频信道( Secondary Common Pilot Channel , S-CPICH )、 解调公共导频信道 ( Demodulation Common Pilot Channel, D-CPICH )、 承载信道状态参考信息( Channel Status Information Reference Signal, CSI-RS )或者信道状态指示导频( Channel State Indicator Pilot, CSI-Pilot )的信道,承载解调参考信号( Demodulation Reference Signal, DMRS )或者解调导频( Demodulation Pilot, DM-Pilot )的信道。 这 样, 第二类载波仅支持高速数据业务, 能够有效提高第二类载波上的频谱利 用效率。
可选的, 第二类载波的上行载波的上行增强专用物理信道(Enhanced Dedicated Physical Data Channel, E-DPDCH )采用的扩频因子为第一类载波 的上行载波能够采用的扩频因子中的一个或多个。 这样, 由于第二类载波的 E-DPDCH采用的扩频因子是第一类载波能够采用的扩频因子中的一个或多 个, 可以复用扩频序列, 筒化过程。
可选的, 第二类载波的上行载波的导频信道扩频因子为第一类载波的上 行载波的同等导频信道扩频因子的 P倍, 其中 P小于 1且大于 0。 这样, 由 于第二类载波导频信道的扩频因子为第一类载波同等导频信道扩频因子的 P 倍, 则可以保证在同一个子帧内传输与第一类载波相同的导频符号, 保证信 道估计性能。 可选的, P的典型值可以是 1/2、 1/4和 1/8。
可选的, 第二类载波的上行载波的上仅^载 E-DPDCH信道和第二类导 频信道。 第二类导频信道可以是专用导频信道。 这样, 第二类载波仅支持高 速数据业务, 能够有效提高第二类载波上的频谱利用效率。
可选的, 第二类载波的用于随机接入的部分或全部信道扩频因子为第一 类载波的同等的用于随机接入的部分或全部信道扩频因子的 P倍,其中 P小 于 1 且大于 0。 该随机接入的相关信道可以包括上行的物理随机接入信道 ( Physical Random Access Channel , PRACH ) , 下行的捕获指示信道 ( Acquisition Indicator Channel, AICH )等。 这样, 由于第二类载波的用于 随机接入的部分或全部信道扩频因子为第一类载波的同等的用于随机接入 的部分或全部信道扩频因子的 P倍,则可以保证随机接入过程中随机接入信 息量与传统的 UMTS相同或者部分相同。
可选的 ,第二类载波的控制信道和 /或公共信道扩频因子为第一类载波的 同等控制信道和 /或公共信道扩频因子的 P倍, 其中 P小于 1且大于 0。 该控 制信道和 /或公共信道可以是高速共享控制信道(High Speed Shared Control Channel, HS-SCCH )等。
可选的, 本发明提供用户设备 600, 用户设备 600可以执行图 2中用户 设备执行的步骤。 包括: 控制器 601 , 收发器 602。
控制器 601 ,用于获取第一类载波的配置信息和第二类载波的配置信息。 收发器 602, 用于使用第一类载波和 /或第二类载波通信, 其中第一类载 波的码片速率为 3.84Mcps, 第二类载波的码片速率为 P*3.84Mcps , P小于 1 且大于 0。 可选的, P的典型取值为 1/2、 1/4和 1/8。
可选的, 收发器 602, 还可以用于接收网络侧设备发送的第一类载波的 配置信息和第二类载波的配置信息。 控制器 601 , 还可以用于确定第一类载 波的配置信息和第二类载波的配置信息是收发器 602从网络侧设备接收的第 一类载波的配置信息和第二类载波的配置信息。 控制器 601 , 也可以用于获 取预设在用户设备的第一类载波的配置信息和第二类载波的配置信息。
在使用用户设备 600的情况下, 由于第二类载波的码片速率低, 占用带 宽低, 因此可以适用于非标准带宽, 可以提高带宽的使用效率, 减少带宽浪 费。
可选的, 收发器 602, 还用于接收激活 /去激活配置。 处理器 601 , 还用 于激活第一类载波和 /或第二类载波,使用第一类载波和 /或第二类载波通信。 在没有接收激活 /去激活配置的情况下,第一类载波和第二类载波默认为激活 状态, 即使用第一类载波和第二类载波通信。
可选的, 第二类载波的 ΤΉ长度可以是 2ms , 也可以是 10ms。
可选的,第一类载波对应的至少一个小区能够使用的 ΤΉ和第二类载波 对应的至少一个小区的能够使用的 ΤΉ长度相同。 这样, 可以保证第二类载 波对抗时间选择性特性和传统的 UMTS相当, 时延特性和传统 UMTS相当。
可选的, 第二类载波对应的至少一个小区标识(ID )与第一类载波对应 的至少一个小区的 ID相同。 这样, 可以尽可能降低小区规划的复杂度。
可选的, 第二类载波对应的至少一个小区使用的主扰码序列与第一类载 波对应的至少一个小区的主扰码序列相同, 或者, 第二类载波对应的至少一 个小区使用的主扰码序列是根据第一类载波对应的至少一个小区的主扰码 序列确定的。这样,可以重用该第一类载波对应的至少一个小区的扰码序列, 降低扰码序列生成复杂度。
具体地, 第二类载波对应的至少一个小区使用的主扰码序列可以与第一 类载波对应的至少一个小区的主扰码序列完全相同, 或者是第一类载波对应 的至少一个小区的主 4尤码序列的一部分。
例如, 第一类载波的对应的一个小区的主 4尤码序列为:
Sdl 0(k) = Z0(k) + jZ0((k + 131072)mod(218— l)),fc = 0,1, .." 38399 其中,
Zn (i) = x((i + n) mod(218 - 1)) + y(i) mod 2, i = 0, 1,...218 - 2 ,
( + 18) = x(i + 7) + ( )mod2, = 0,1, ...218 - 20 ,
y(i + 18) = y(i + 10) + y( + 7) + y(i + 5) + y( )mod2, = 0,1,...218 - 20 , (0) = l, (l) = x(2) = ... = (16) = (17) = 0 ,
3 (0) = ) (1) = ... = 3 (16) = 3 (17) = 1 ,
mod为取模。
可选的, 第二类载波对应的至少一个小区的主扰码序列可以是第一类载 波对应的至少一个小区的主扰码序列中的一个部分, 例如, 如果第二类载波 的码片速率为 0.96Mcps , 每个无线帧主扰码的序列长度为 9600, 则第二类 载波的对应的小区的主扰码序列可以是:
Sd 0(k) = Z0(k) + Z。((fc + 131072)mod(218—l)),fc = 0,1, .."9599。 在此情况 下, 每个无线帧的主扰码序列相同。
可选的, 第二类载波对应的至少一个小区的主扰码序列可以与第一类载 波对应的至少一个小区的主扰码序列相同。 具体地, 第二类载波可以使用主 扰码序列不同的连续 A个无线帧, 将该连续 A个无线帧的主扰码序列合并 起来构成第一类载波的主扰码序列。 例如, 如果第二类载波的码片速率为 0.96Mcps ,每个无线帧的主扰码序列长度为 9600 ,则可以由 4个无线帧的主 扰码序列合并起来构成第一类载波的主扰码序列。
可选的, 第二类载波的码片速率或者第二类载波的个数由第一类载波的
RRC信令承载。这样,该接收端可以支持可变码片速率以及可变的带宽配置。 具体地, 可以由 RRC信令使用 1个或多个比特指示第二类载波码片速率。 例如 00表示第二类载波的码片速率为 1.92Mcps, 01表示第二类载波的码片 速率为 0.96Mcps等等。可以由 N个比特位图的方式指示第二类载波的个数, 例如 11000000表示配置 2个第二类载波等等。
可选的, 第二类载波的下行载波的高速物理下行共享信道(High speed Physical Downlink Shared Channel, HS-PDSCH )采用的扩频因子为 16, 且 第二类载波的下行载波的导频信道的扩频因子为第一类载波的下行载波的 同等导频信道扩频因子的 P倍, 其中 P小于 1且大于 0。 其中, 同等是指名 称、类型或作用相同。例如第一类载波的 P-CPICH与第二类载波的 P-CPICH 同等, 第一类载波起测量作用的导频信道与第二类载波起测量作用的导频信 道为同等。 这样, 由于第二类载波的 HS-PDSCH采用的扩频因子和第一类 载波相同, 因此第二类载波可以支持第一类载波相类似的多用户设备调度灵 活性。 由于第二类载波导频信道的扩频因子为第一类载波同等导频信道扩频 因子的 P倍,则可以保证在同一个帧或者子帧内传输与第一类载波相同的导 频符号, 保证信道估计性能。 可选的, P的典型值可以是 1/2、 1/4和 1/8。
可选的, 第二类载波的下行载波上仅承载 HS-PDSCH信道和第一类导 频信道。 第一类导频信道可以公共导频信道、 用于解调的导频信道或用于测 量的导频信道。 例如可以是以下的一种或多种: 主公共导频信道( Primary Common Pilot Channel, P-CPICH )、辅公共导频信道( Secondary Common Pilot Channel , S-CPICH )、 解调公共导频信道 ( Demodulation Common Pilot Channel, D-CPICH )、 承载信道状态参考信息 (Channel Status Information Reference Signal, CSI-RS )或者信道状态指示导频( Channel State Indicator Pilot, CSI-Pilot )的信道,承载解调参考信号( Demodulation Reference Signal, DMRS )或者解调导频 ( Demodulation Pilot, DM-Pilot ) 的信道。 这样, 第 二类载波仅支持高速数据业务, 能够有效提高第二类载波上的频谱利用效 率。
可选的, 第二类载波的上行载波的上行增强专用物理信道(Enhanced Dedicated Physical Data Channel , E-DPDCH )采用的扩频因子为第一类载波 的上行载波能够采用的扩频因子中的一个或多个。 这样, 由于第二类载波的 E-DPDCH采用的扩频因子是第一类载波能够采用的扩频因子中的一个或多 个, 可以复用扩频序列, 筒化过程。
可选的, 第二类载波的上行载波的导频信道扩频因子为第一类载波的上 行载波的同等导频信道扩频因子的 P倍, 其中 P小于 1且大于 0。 这样, 由 于第二类载波导频信道的扩频因子为第一类载波同等导频信道扩频因子的 P 倍, 则可以保证在同一个子帧内传输与第一类载波相同的导频符号, 保证信 道估计性能。 可选的, P的典型值可以是 1/2、 1/4和 1/8。
可选的, 第二类载波的上行载波的上仅^载 E-DPDCH信道和第二类导 频信道。 第二类导频信道可以是专用导频信道。 这样, 第二类载波仅支持高 速数据业务, 能够有效提高第二类载波上的频谱利用效率。
可选的, 第二类载波的用于随机接入的部分或全部信道扩频因子为第一 类载波的同等的用于随机接入的部分或全部信道扩频因子的 P倍,其中 P小 于 1 且大于 0。 该随机接入的相关信道可以包括上行的物理随机接入信道 ( Physical Random Access Channel , PRACH ) , 下行的捕获指示信道 ( Acquisition Indicator Channel, AICH )等。 这样, 由于第二类载波的用于 随机接入的部分或全部信道扩频因子为第一类载波的同等的用于随机接入 的部分或全部信道扩频因子的 P倍,则可以保证随机接入过程中随机接入信 息量与传统的 UMTS相同或者部分相同。
可选的 ,第二类载波的控制信道和 /或公共信道扩频因子为第一类载波的 同等控制信道和 /或公共信道扩频因子的 P倍, 其中 P小于 1且大于 0。 该控 制信道和 /或公共信道可以是高速共享控制信道(High Speed Shared Control Channel, HS-SCCH )等。
本发明提供一种通信系统, 包括网络侧设备和用户设备。
该网络侧设备配置第一类载波和第二类载波, 并使用该第一类载波和 / 或第二类载波与该用户设备通信。 第一类载波和第二类载波的具体配置如上 述实施例所述。
该用户设备获取第一类载波的配置信息和第二类载波的配置信息, 并使 用该第一类载波和 /或第二类载波与该网络侧设备通信。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。 所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)或处理器(processor )执行本发明各个实施例所述方法的 全部或部分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器 ( ROM , Read-Only Memory ), 随机存取存储器 (RAM , Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到的变化或替换, 都应涵盖在本发明的保护范围之内, 因此本发明的保护 范围应以权利要求的保护范围为准。

Claims

权利要求
1、 一种可变带宽的方法, 其特征在于, 包括:
配置第一类载波和第二类载波,其中所述第一类载波的码片速率为 3.84 兆码片每秒 Mcps, 所述第二类载波的码片速率为 P*3.84Mcps, P小于 1且 大于 0;
使用所述第一类载波和 /或所述第二类载波通信。
2、 如权利要求 1所述的方法, 其特征在于,
所述第一类载波对应的至少一个小区的传输时间间隔 ΤΉ 长度与所述 第二类载波对应的至少一个小区的 ΤΉ长度相同。
3、 如权利要求 1或 2所述的方法, 其特征在于,
所述第二类载波对应的至少一个小区的小区标识 ID与所述第一类载波 对应的至少一个小区的 ID相同。
4、 如权利要求 1-3任一项所述的方法, 其特征在于,
所述第二类载波对应的至少一个小区使用的主扰码序列与所述第一类 载波对应的至少一个小区的主 4尤码序列相同; 或
所述第二类载波对应的至少一个小区使用的主扰码序列是根据所述第 一类载波对应的至少一个小区的主扰码序列确定的。
5、 如权利要求 1-4任一项所述的方法, 其特征在于,
所述第二类载波的码片速率或所述第二类载波的个数由所述第一类载 波的无线资源控制 RRC信令承载。
6、 如权利要求 1-5任一项所述的方法, 其特征在于,
所述第二类载波的下行载波的高速物理下行共享信道 HS-PDSCH采用 的扩频因子为 16,且所述第二类载波的下行载波的导频信道的扩频因子为所 述第一类载波的下行载波的同等导频信道扩频因子的 P倍。
7、 如权利要求 1-6任一项所述的方法, 其特征在于,
所述第二类载波的上行载波的上行增强专用物理数据信道 E-DPDCH采 用的扩频因子为所述第一类载波的上行载波能够采用的扩频因子中的一个 或多个。
8、 如权利要求 1-7任一项所述的方法, 其特征在于,
所述第二类载波的上行载波的导频信道扩频因子为所述第一类载波的 上行载波的同等导频信道扩频因子的 P倍。
9、 如权利要求 1-8任一项所述的方法, 其特征在于,
所述第二类载波的下行载波上仅^载 HS-PDSCH和第一类导频信道。
10、 如权利要求 9所述的方法, 其特征在于,
所述第一类导频信道为公共导频信道、用于数据解调的导频信道或用于 测量的导频信道。
11、 如权利要求 1-10任一项所述的方法, 其特征在于,
所述第二类载波的上行载波上仅承载 E-DPDCH和第二类导频信道。
12、 如权利要求 11所述的方法, 其特征在于,
所述第二类导频信道为专用导频信道。
13、 如权利要求 1-12任一项所述的方法, 其特征在于,
所述第二类载波的用于随机接入的部分或全部信道的扩频因子为所述 第一类载波的同等的用于随机接入的部分或全部信道的扩频因子的 P倍。
14、 如权利要求 1-13任一项所述的方法, 其特征在于,
所述第二类载波的控制信道和 /或公共信道的扩频因子为所述第一类载 波同等控制信道和 /或公共信道的扩频因子的 P倍。
15、 一种可变带宽的方法, 其特征在于, 包括:
获取第一类载波的配置信息和第二类载波的配置信息;
使用所述第一类载波和 /或所述第二类载波通信,其中所述第一类载波的 码片速率为 3.84兆码片每秒 Mcps,所述第二类波的码片速率为 P*3.84Mcps。
16、 如权利要求 15所述的方法, 其特征在于,
所述第一类载波对应的至少一个小区的传输时间间隔 ΤΉ 长度与所述 第二类载波对应的至少一个小区的 ΤΉ的长度相同。
17、 如权利要求 15或 16所述的方法, 其特征在于,
所述第二类载波对应的至少一个小区的标识 ID与所述第一类载波对应 的至少一个小区的 ID相同。
18、 如权利要求 15-17任一项所述的方法, 其特征在于,
所述第二类载波对应的至少一个小区使用的主扰码序列与所述第一类 载波对应的至少一个小区的主 4尤码序列相同; 或
所述第二类载波对应的至少一个小区使用的主扰码序列是根据所述第 一类载波对应的至少一个小区的主扰码序列确定的。
19、 如权利要求 15-18任一项所述的方法, 其特征在于, 所述第二类载波的码片速率或所述第二类载波的个数由所述第一类载 波的无线资源控制 RRC信令承载。
20、 如权利要求 15-19任一项所述的方法, 其特征在于,
所述第二类载波的下行载波的高速物理下行共享信道 HS-PDSCH采用 的扩频因子为 16,且所述第二类载波的下行载波的导频信道的扩频因子为所 述第一类载波的下行载波的同等导频信道扩频因子的 P倍。
21、 如权利要求 15-20任一项所述的方法, 其特征在于,
所述第二类载波的上行载波的上行增强专用物理数据信道 E-DPDCH采 用的扩频因子为所述第一类载波的上行载波能够采用的扩频因子中的一个 或多个。
22、 如权利要求 15-21任一项所述的方法, 其特征在于,
所述第二类载波的上行载波的导频信道扩频因子为所述第一类载波的 上行载波的同等导频信道扩频因子的 P倍。
23、 如权利要求 15-22任一项所述的方法, 其特征在于,
所述第二类载波的下行载波上仅^载 HS-PDSCH和第一类导频信道。
24、 如权利要求 23所述的方法, 其特征在于,
所述第一类导频信道为公共导频信道、用于数据解调的导频信道或用于 测量的导频信道。
25、 如权利要求 15-24任一项所述的方法, 其特征在于,
所述第二类载波的上行载波上仅承载 E-DPDCH和第二类导频信道。
26、 如权利要求 25所述的方法, 其特征在于,
所述第二类导频信道为专用导频信道。
27、 如权利要求 15-26任一项所述的方法, 其特征在于,
所述第二类载波的用于随机接入的部分或全部信道的扩频因子为所述 第一类载波的同等的用于随机接入的部分或全部信道的扩频因子的 P倍。
28、 如权利要求 15-27任一项所述的方法, 其特征在于,
所述第二类载波的控制信道和 /或公共信道的扩频因子为所述第一类载 波同等控制信道和 /或公共信道的扩频因子的 P倍。
29、 一种网络侧设备, 其特征在于, 包括:
控制单元, 用于配置第一类载波和第二类载波, 其中所述第一类载波的 码片速率为 3.84 兆码片每秒 Mcps , 所述第二类载波的码片速率为 P*3.84Mcps, P小于 1且大于 0;
通信单元, 用于使用所述第一类载波和 /或所述第二类载波通信。
30、 如权利要求 29所述的网络侧设备, 其特征在于,
所述第一类载波对应的至少一个小区的传输时间间隔 ΤΉ 长度与所述 第二类载波对应的至少一个小区的 ΤΉ长度相同。
31、 如权利要求 29或 30所述的网络侧设备, 其特征在于,
所述第二类载波对应的至少一个小区的标识 ID与所述第一类载波对应 的至少一个小区的 ID相同。
32、 如权利要求 29-31任一项所述的网络侧设备, 其特征在于, 所述第二类载波对应的至少一个小区使用的主扰码序列与所述第一类 载波对应的至少一个小区的主 4尤码序列相同; 或
所述第二类载波对应的至少一个小区使用的主扰码序列是根据所述第 一类载波对应的至少一个小区的主扰码序列确定的。
33、 如权利要求 29-32任一项所述的网络侧设备, 其特征在于, 所述第二类载波的码片速率或所述第二类载波的个数由所述第一类载 波的无线资源控制 RRC信令承载。
34、 如权利要求 29-33任一项所述的网络侧设备, 其特征在于, 所述第二类载波的下行载波的高速物理下行共享信道 HS-PDSCH采用 的扩频因子为 16,且所述第二类载波的下行载波的导频信道的扩频因子为所 述第一类载波的下行载波的同等导频信道扩频因子的 P倍。
35、 如权利要求 29-34任一项所述的网络侧设备, 其特征在于, 所述第二类载波的上行载波的上行增强专用物理数据信道 E-DPDCH采 用的扩频因子为所述第一类载波的上行载波能够采用的扩频因子中的一个 或多个。
36、 如权利要求 29-35任一项所述的网络侧设备, 其特征在于, 所述第二类载波的上行载波的导频信道扩频因子为所述第一类载波的 上行载波的同等导频信道扩频因子的 P倍。
37、 如权利要求 29-36任一项所述的网络侧设备, 其特征在于, 所述第二类载波的下行载波上仅^载 HS-PDSCH和第一类导频信道。
38、 如权利要求 37所述的网络侧设备, 其特征在于,
所述第一类导频信道为公共导频信道、用于数据解调的导频信道或用于 测量的导频信道。
39、 如权利要求 29-38任一项所述的网络侧设备, 其特征在于, 所述第二类载波的上行载波上仅承载 E-DPDCH和第二类导频信道。
40、 如权利要求 39所述的网络侧设备, 其特征在于,
所述第二类导频信道为专用导频信道。
41、 如权利要求 29-40任一项所述的网络侧设备, 其特征在于, 所述第二类载波的用于随机接入的部分或全部信道的扩频因子为所述 第一类载波的同等的用于随机接入的部分或全部信道的扩频因子的 P倍。
42、 如权利要求 29-41任一项所述的网络侧设备, 其特征在于, 所述第二类载波的控制信道和 /或公共信道的扩频因子为所述第一类载 波同等控制信道和 /或公共信道的扩频因子的 P倍。
43、 一种用户设备, 其特征在于, 包括:
获取单元, 用于获取第一类载波的配置信息和第二类载波的配置信息; 通信单元,用于使用所述第一类载波和 /或所述第二类载波通信,其中所 述第一类载波的码片速率为 3.84兆码片每秒 Mcps, 所述第二类波的码片速 率为 P*3.84Mcps, P小于 1且大于 0。
44、 如权利要求 43所述的用户设备, 其特征在于,
所述第一类载波对应的至少一个小区的传输时间间隔 ΤΉ 长度与所述 第二类载波对应的至少一个小区的 ΤΉ的长度相同。
45、 如权利要求 43或 44所述的用户设备, 其特征在于,
所述第二类载波对应的至少一个小区的标识 ID与所述第一类载波对应 的至少一个小区的 ID相同。
46、 如权利要求 43-45任一项所述的用户设备, 其特征在于,
所述第二类载波对应的至少一个使用的主扰码序列与所述第一类载波 对应的至少一个小区的主 4尤码序列相同; 或
所述第二类载波对应的至少一个使用的主扰码序列是根据所述第一类 载波对应的至少一个小区的主 4尤码序列确定的。
47、 如权利要求 43-46任一项所述的用户设备, 其特征在于,
所述第二类载波的码片速率或所述第二类载波的个数由所述第一类载 波的无线资源控制 RRC信令承载。
48、 如权利要求 43-47任一项所述的用户设备, 其特征在于, 所述第二类载波的下行载波的高速物理下行共享信道 HS-PDSCH采用 的扩频因子为 16,且所述第二类载波的下行载波的导频信道的扩频因子为所 述第一类载波的下行载波的同等导频信道扩频因子的 P倍。
49、 如权利要求 43-48任一项所述的用户设备, 其特征在于, 所述第二类载波的上行载波的上行增强专用物理数据信道 E-DPDCH采 用的扩频因子为所述第一类载波的上行载波能够采用的扩频因子中的一个 或多个。
50、 如权利要求 43-49任一项所述的用户设备, 其特征在于, 所述第二类载波的上行载波的导频信道扩频因子为所述第一类载波的 上行载波的同等导频信道扩频因子的 P倍。
51、 如权利要求 43-49任一项所述的用户设备, 其特征在于, 所述第二类载波的下行载波上仅^载 HS-PDSCH和第一类导频信道。
52、 如权利要求 51所述的用户设备, 其特征在于,
所述第一类导频信道为公共导频信道、用于数据解调的导频信道或用于 测量的导频信道。
53、 如权利要求 43-52任一项所述的用户设备, 其特征在于, 所述第二类载波的上行载波上仅承载 E-DPDCH和第二类导频信道。
54、 如权利要求 53所述的用户设备, 其特征在于,
所述第二类导频信道为专用导频信道。
55、 如权利要求 43-54任一项所述的用户设备, 其特征在于, 所述第二类载波的用于随机接入的部分或全部信道的扩频因子为所述 第一类载波的同等的用于随机接入的部分或全部信道的扩频因子的 P倍。
56、 如权利要求 43-55任一项所述的用户设备, 其特征在于, 所述第二类载波的控制信道和 /或公共信道的扩频因子为所述第一类载 波同等控制信道和 /或公共信道的扩频因子的 P倍。
PCT/CN2012/085061 2012-11-22 2012-11-22 可变带宽的方法、网络侧设备和用户设备 WO2014079018A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12888707.2A EP2924901A4 (en) 2012-11-22 2012-11-22 METHOD FOR CHANGING BANDWIDTH, NETWORK SIDE DEVICE, AND USER EQUIPMENT
PCT/CN2012/085061 WO2014079018A1 (zh) 2012-11-22 2012-11-22 可变带宽的方法、网络侧设备和用户设备
CN201280002110.0A CN103959858A (zh) 2012-11-22 2012-11-22 可变带宽的方法、网络侧设备和用户设备
US14/720,076 US20150257140A1 (en) 2012-11-22 2015-05-22 Method, network side device and user equipment of variable bandwidth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/085061 WO2014079018A1 (zh) 2012-11-22 2012-11-22 可变带宽的方法、网络侧设备和用户设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/720,076 Continuation US20150257140A1 (en) 2012-11-22 2015-05-22 Method, network side device and user equipment of variable bandwidth

Publications (1)

Publication Number Publication Date
WO2014079018A1 true WO2014079018A1 (zh) 2014-05-30

Family

ID=50775400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085061 WO2014079018A1 (zh) 2012-11-22 2012-11-22 可变带宽的方法、网络侧设备和用户设备

Country Status (4)

Country Link
US (1) US20150257140A1 (zh)
EP (1) EP2924901A4 (zh)
CN (1) CN103959858A (zh)
WO (1) WO2014079018A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116056095A (zh) * 2021-10-28 2023-05-02 中兴通讯股份有限公司 载波小区的建立方法、电子设备和计算机可读存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050175073A1 (en) * 2002-11-01 2005-08-11 Kari Pajukoski Data transmission method and transmitter

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101415226B (zh) * 2007-10-15 2010-06-23 大唐移动通信设备有限公司 时分双工系统提高下行导频时隙资源利用率的方法及装置
US8184599B2 (en) * 2008-06-23 2012-05-22 Qualcomm Incorporated Management of UE operation in a multi-carrier communication system
CN104243122B (zh) * 2008-10-31 2018-02-06 交互数字专利控股公司 在网络元件中实现的使用多载波的方法以及网络元件
CN103687064B (zh) * 2009-04-22 2017-07-14 华为技术有限公司 无线链路失步的处理方法、装置和系统
CN112202536A (zh) * 2009-10-01 2021-01-08 交互数字专利控股公司 上行链路控制数据传输
JP5551275B2 (ja) * 2010-02-10 2014-07-16 ブラックベリー リミテッド 状態/モード伝送のための方法および装置
US8498664B2 (en) * 2010-04-04 2013-07-30 Lg Electronics Inc. Method and apparatus for handling barred cell in wireless communication system
GB2477649B (en) * 2011-03-31 2012-01-11 Renesas Mobile Corp Multiplexing logical channels in mixed licensed and unlicensed spectrum carrier aggregation
US9480103B2 (en) * 2014-02-14 2016-10-25 Freescale Semiconductor, Inc. Method of DTX detection in a wireless communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050175073A1 (en) * 2002-11-01 2005-08-11 Kari Pajukoski Data transmission method and transmitter

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ADACHI, F. ET AL.: "Coherent DS-CDMA: Promising Multiple Access For Wireless Multimedia Mobile Communications.", 1996 IEEE 4TH INTERNATIONAL SYMPOSIUM ON SPREAD SPECTRUM TECHNIQUES AND APPLICATIONS PROCEEDINGS, vol. 1, September 1996 (1996-09-01), pages 352, XP010208591 *
LI, YAO: "Discussion on planning and optimization of WCDMA network", MOBILE COMMUNICATIONS, vol. 36, no. 13, September 2012 (2012-09-01), pages 17 - 19, XP008177055 *
See also references of EP2924901A4 *

Also Published As

Publication number Publication date
US20150257140A1 (en) 2015-09-10
EP2924901A4 (en) 2015-10-28
CN103959858A (zh) 2014-07-30
EP2924901A1 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
JP7136423B2 (ja) リソース指示方法、端末デバイス、及びネットワークデバイス
CN108347778B (zh) 通信方法及装置
EP3554155B1 (en) Resource indication method and user equipment
JP5468606B2 (ja) 反復重複のあるシンボルのリソース・ブロック・マッピング
CN109511173B (zh) 一种子帧配置方法及相关设备
CN105766014B (zh) 一种物理下行控制信道的传输方法、基站设备及用户设备
WO2012136130A1 (zh) 分配信道资源的方法、基站设备、终端设备和通信系统
EP3869759B1 (en) Reference signal transmission method and user equipment
EP3496351B1 (en) Pilot signal transmission method and device
EP3637818B1 (en) Signal sending and receiving method and device
CA3088813A1 (en) Sounding reference signal transmission method, network device and terminal device
WO2014075270A1 (zh) 信息传输的方法、基站和用户设备
WO2019095931A1 (zh) 信息指示、资源确定方法及装置、计算机存储介质
EP3277036B1 (en) Communication method and communication device
EP3996447B1 (en) Control channel resource configuration method, base station, and terminal device
EP2991283A1 (en) Data transmission method and apparatus
CN110115076B (zh) 传输信息的方法、网络设备和终端设备及计算机可读介质
EP2993848B1 (en) Data transmission method and apparatus
EP3826370B1 (en) Configuring different quantities of layers for transmitting data through a pdsch under different conditions
US10912036B2 (en) Downlink transmission method, base station, and terminal device
WO2014079018A1 (zh) 可变带宽的方法、网络侧设备和用户设备
CN111417196B (zh) 基于预调度的传输配置方法、传输参数确定方法及设备
EP3402091B1 (en) Signal transmission method, receiving method, terminal device, base station and system
JP6463823B2 (ja) 参照信号送信方法及びユーザ機器
WO2023125761A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012888707

Country of ref document: EP