WO2014079006A1 - 一种ospf报文的流量控制方法及装置 - Google Patents

一种ospf报文的流量控制方法及装置 Download PDF

Info

Publication number
WO2014079006A1
WO2014079006A1 PCT/CN2012/084995 CN2012084995W WO2014079006A1 WO 2014079006 A1 WO2014079006 A1 WO 2014079006A1 CN 2012084995 W CN2012084995 W CN 2012084995W WO 2014079006 A1 WO2014079006 A1 WO 2014079006A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
ospf
lsa
traffic threshold
threshold
Prior art date
Application number
PCT/CN2012/084995
Other languages
English (en)
French (fr)
Inventor
张怡
章善惠
谢业专
彭和平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280002401.XA priority Critical patent/CN104040975B/zh
Priority to PCT/CN2012/084995 priority patent/WO2014079006A1/zh
Publication of WO2014079006A1 publication Critical patent/WO2014079006A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control

Definitions

  • the present invention belongs to the field of network technologies, and in particular, to an open short path priority (Open Short Path).
  • Open Short Path First, OSPF) packet flow control method and device.
  • OSPF is a link-state internal gateway protocol for large and complex networks. It divides the network into different OSPF domains. Generally, the device that joins the OSPF domain is called a device running OSPF. For a device running OSPF, it needs to extract the characteristics of OSPF packets to identify OSPF packets and send the OSPF packets to the software protocol stack for processing. (Designated The election of the router and DR is used to calculate the network topology and generate OSPF routes.
  • OSPF Central
  • CPU Processing Unit
  • a CPU protection mechanism is introduced on the OSPF device.
  • the OSPF packet is classified.
  • the traffic threshold is set for each type of OSPF packet. If the traffic exceeds the corresponding traffic threshold, the current OSPF packet of this type is discarded.
  • the traffic threshold of each type of OSPF packet is fixed, and the set value is relatively small. It can only meet the most basic services or be applicable to small and medium-sized networks. If the number of packets increases, the traffic threshold needs to be manually increased. When the number of packets falls back and stabilizes, the traffic threshold needs to be manually restored to the default value. The traffic threshold cannot be adaptively adjusted according to the topology changes of the network. As a result, the OSPF network may be in the inactive state. The large number of retransmission packets caused by the route flapping consumes network bandwidth and the OSPF network is attacked.
  • the object of the present invention is to provide a method and device for controlling the flow of OSPF packets, which is to solve the problem that the current OSPF packet traffic threshold cannot be adaptively adjusted according to the topology change of the network.
  • a first aspect of the present invention provides a method for controlling flow of an OSPF packet, the method comprising: determining whether a current packet sending and receiving state meets a preset triggering condition, where the triggering condition includes reaching a preset time interval or receiving a preset type of packet; when the preset trigger condition is met, the packet receiving and receiving parameters of the OSPF packet corresponding to the trigger condition are obtained; and the OSPF packet of the type is determined according to the packet sending and receiving parameters.
  • the traffic threshold is configured to perform flow control on the OSPF packet of the type according to the determined new traffic threshold.
  • the triggering condition includes: reaching a preset time interval, where the OSPF packet of the corresponding type of the triggering condition includes a HELLO packet, and the acquiring the triggering condition corresponding type
  • the OSPF packet receiving and sending parameters include: obtaining, by the configuration file, the packet sending and receiving parameters, where the sending and receiving parameters include the number of valid neighbors of the OSPF device, the HELLO packet interval of each valid neighbor, and each The timeout period of the valid neighbors: the determining, according to the packet sending and receiving parameters, the new traffic threshold of the OSPF packet of the type includes: importing the packet sending and receiving parameters into a preset formula, and generating a HELLO to be received.
  • the traffic of the HELLO packet is adjusted according to the configuration of the OSPF device, and the adjusted traffic of the HELLO packet is determined as the new traffic threshold of the HELLO packet.
  • the time interval of the preset time interval is on the order of seconds.
  • the triggering condition includes: receiving a database description DD packet, where the OSPF packet of the trigger type includes an OSPF link state advertisement LSA packet, and the acquiring
  • the sending and receiving parameters of the OSPF packet of the corresponding type of the triggering condition include: obtaining the packet sending and receiving parameters, where the sending and receiving parameters include the number of the first LSA packet and the number of the second LSA packet, and the first LSA report
  • the number of the LSA packets is the number of the LSA packets that are received by the DD packet
  • the number of the second LSA packets is the number of LSA packets that are received but not received by the DD packet.
  • Determining, according to the packet sending and receiving parameters, the new traffic threshold of the OSPF packet of the type includes: adding the number of the first LSA packet to the number of the second LSA packet to generate a third LSA packet
  • the number of the texts is determined according to the preset average length of the LSA packets and the number of the third LSA packets, and the LSA packet traffic to be received is determined according to the configuration of the OSPF device, and the adjusted LSA packet traffic is adjusted.
  • the LSA packet traffic is determined as The LSA said new packet flow threshold.
  • the performing flow control on the OSPF packet of the type according to the determined new traffic threshold includes: obtaining a current traffic threshold of the OSPF packet, determining whether a deviation between the new traffic threshold and the current traffic threshold exceeds a preset threshold, and when the new traffic threshold is different from the current traffic threshold If the preset threshold is exceeded, the new traffic threshold is used as the updated current traffic threshold; when the deviation between the new traffic threshold and the current traffic threshold does not exceed the preset threshold, the maintenance is maintained.
  • the current traffic threshold is configured to perform flow control on the OSPF packet of the type according to the current traffic threshold.
  • a second aspect of the present invention provides a flow control device for OSPF packets, where the device includes: a determining unit, configured to determine whether a current packet sending and receiving state meets a preset triggering condition, where the triggering condition includes reaching a preset Obtaining a packet of a preset type in the time interval; the obtaining unit is configured to obtain, according to the judgment result of the determining unit, a packet sending and receiving parameter of the OSPF packet of the triggering type, and a determining unit, configured to receive the packet Acquiring the packet sending and receiving parameters sent by the unit, determining a new traffic threshold of the OSPF packet according to the packet sending and receiving parameters; and the flow control unit, configured to receive the new traffic sent by the determining unit The threshold is used to perform flow control on the OSPF packet of the type according to the determined new traffic threshold.
  • the triggering condition includes: reaching a preset time interval, where the OSPF packet of the corresponding type of the triggering condition includes a HELLO packet, where the acquiring unit is specifically configured to pass the configuration file. Acquiring the packet sending and receiving parameters, where the packet sending and receiving parameters include the number of valid neighbors of the OSPF device, the interval of each valid neighbor's HELLO packet, and the timeout period of each valid neighbor; The method is configured to: import the packet sending and receiving parameters into a preset formula, generate a HELLO packet traffic to be received, and adjust the HELLO packet traffic according to the configuration of the OSPF device, and adjust the adjusted HELLO packet traffic.
  • the new traffic threshold is determined to be the HELLO message.
  • the time interval of the preset time interval is on the order of seconds.
  • the triggering condition includes: receiving a database description DD packet, where the triggering condition corresponding type OSPF packet includes an OSPF link state advertisement LSA packet, and the acquiring The unit is specifically configured to: obtain a packet receiving and sending parameter, where the packet sending and receiving parameter includes the number of the first LSA packet and the number of the second LSA packet, where the number of the first LSA packet is the currently received DD packet.
  • the number of the indicated LSA packets is specifically configured to:
  • the number of the LSA packets is added to the number of the second LSA packets, and the number of the third LSA packets is generated.
  • the LSA to be received is determined according to the preset average length of the LSA packets and the number of the third LSA packets.
  • the traffic of the LSA packet is adjusted according to the configuration of the OSPF device, and the adjusted traffic of the LSA packet is determined as the new traffic threshold of the LSA packet.
  • the flow control unit is configured to: obtain a current traffic threshold of the OSPF packet of the type; Determining whether the deviation between the new traffic threshold and the current traffic threshold exceeds a preset threshold, and when the deviation between the new traffic threshold and the current traffic threshold exceeds the preset threshold, the new The traffic threshold is used as the updated current traffic threshold; when the deviation between the new traffic threshold and the current traffic threshold does not exceed the preset threshold, maintaining the current traffic threshold; and according to the current traffic threshold
  • the OSPF packet of the type is used for flow control.
  • a third aspect of the present invention provides a flow control apparatus for OSPF packets, the apparatus comprising a processor, a memory, and a bus: wherein the processor and the memory communicate with each other through the bus; the memory For storing a program; the processor is configured to execute a program stored in the memory, and when the program is executed, the method is configured to: determine whether a current message sending and receiving state meets a preset trigger condition, and the trigger condition And receiving the preset time interval or receiving the preset type of the message; when the preset trigger condition is met, obtaining the packet sending and receiving parameters of the OSPF packet of the triggering type; determining according to the sending and receiving parameters of the packet A new traffic threshold of the OSPF packet of the type; the traffic control of the OSPF packet of the type is performed according to the determined new traffic threshold.
  • the triggering condition includes: reaching a preset time interval, where the OSPF packet of the corresponding type of the triggering condition includes a HELLO packet, and the acquiring the triggering condition corresponding type
  • the sending and receiving parameters of the OSPF packet include: receiving, by the configuration file, the sending and receiving parameters of the packet, where the sending and receiving parameters include the number of valid neighbors of the OSPF device, the interval of each valid neighbor's HELLO packet, and each The timeout period of the valid neighbors: the determining, according to the packet sending and receiving parameters, the new traffic threshold of the OSPF packet of the type includes: importing the packet sending and receiving parameters into a preset formula, and generating a HELLO to be received.
  • the traffic of the HELLO packet is adjusted according to the configuration of the OSPF device, and the adjusted traffic of the HELLO packet is determined as the new traffic threshold of the HELLO packet.
  • the time interval of the preset time interval is on the order of seconds.
  • the triggering condition includes: receiving a database description DD packet, where the triggering condition corresponding type of OSPF packet includes an OSPF link state advertisement LSA packet, and the report
  • the sending and receiving parameters include the number of the first LSA packet and the number of the second LSA packet, and the number of the first LSA packet is the number of LSA packets indicated by the currently received DD packet, and the second LSA packet
  • the new traffic threshold of the OSPF packet of the type determined according to the packet sending and receiving parameters includes: The number of the first LSA packet is added to the number of the second LSA packet, and the number of the third LSA packet is generated.
  • the preset average length of the LSA packet and the number of the third LSA packet it is determined that the number of the first LSA packet is to be received.
  • the LSA packet traffic is adjusted; and the LSA packet traffic is adjusted according to the configuration of the OSPF device, and the adjusted LSA packet traffic is determined as the new traffic threshold of the LSA packet.
  • the performing flow control on the OSPF packet of the type according to the determined new traffic threshold includes: Obtaining a current traffic threshold of the OSPF packet of the type; determining whether the deviation between the new traffic threshold and the current traffic threshold exceeds a preset threshold, and when the new traffic threshold is different from the current traffic threshold If the preset threshold is exceeded, the new traffic threshold is used as the updated current traffic threshold; when the deviation between the new traffic threshold and the current traffic threshold does not exceed the preset threshold, the maintenance is maintained.
  • the current traffic threshold is configured; and the OSPF packet of the type is controlled according to the current traffic threshold.
  • the OSPF packet traffic threshold is obtained by acquiring the OSPF packet traffic threshold in real time, and dynamically adjusting the traffic threshold of the OSPF packet according to the OSPF network topology change. Adaptive adjustment effectively avoids neighbor failures, protocol flapping, or network bandwidth waste caused by topology changes in the OSPF network.
  • FIG. 1 is a flowchart of implementing a flow control method for OSPF packets according to an embodiment of the present invention
  • FIG. 2 is a flowchart of implementing a flow control method for a HELLO packet according to an embodiment of the present invention
  • FIG. 3 is a flowchart of implementing a flow control method for an LSA packet according to an embodiment of the present invention
  • step S104 is a specific implementation flowchart of step S104 in the OSPF packet flow control method according to the embodiment of the present invention.
  • FIG. 5 is a structural block diagram of an OSPF packet flow control apparatus according to an embodiment of the present invention.
  • FIG. 6 is a block diagram showing the hardware structure of an OSPF packet flow control apparatus according to an embodiment of the present invention.
  • the OSPF packet traffic threshold is obtained by acquiring the OSPF packet traffic threshold in real time, and dynamically adjusting the traffic threshold of the OSPF packet according to the OSPF network topology change. Adaptive adjustment effectively avoids neighbor failures, protocol flapping, or network bandwidth waste caused by topology changes in the OSPF network.
  • the device that controls the flow of the OSPF packet may be an OSPF device that is added to the OSPF domain, and may be a switch that is added to the OSPF domain.
  • FIG. 1 is a flowchart showing an implementation process of a flow control method for OSPF packets according to an embodiment of the present disclosure, which is described in detail as follows:
  • step S101 it is determined whether the current packet sending and receiving state meets a preset triggering condition, where the triggering condition includes reaching a preset time interval or receiving a preset type of message.
  • the preset trigger conditions are used according to the monitored conditions.
  • the status of the current packet is sent and received to determine whether the OSPF packet traffic threshold needs to be triggered.
  • the number of OSPF neighbors changes and the link state information changes.
  • the change is reflected in the packet, and the number of HELLO packets changes and the link state advertisement (Link-State).
  • the number of the advertisement (LSA) packets (including but not limited to the link state request packet, the link state update packet, and the link state confirmation packet) is changed. Therefore, preferably, in this embodiment, according to the two The OSPF packets are set to different triggering conditions to dynamically adjust the traffic thresholds of the two OSPF packets.
  • the corresponding triggering condition includes the arrival of the preset time interval.
  • the corresponding triggering condition includes receiving the preset type of packet, and the related implementation principle is respectively determined in the following embodiments. Detailed description will not be repeated here.
  • step S102 when the preset triggering condition is met, the packet sending and receiving parameters of the OSPF packet of the corresponding type of the triggering condition are obtained.
  • the packet receiving and receiving parameter acquisition process of the corresponding type of OSPF packet is started, in real time. Collect the current packet sending and receiving parameters of the OSPF packet to learn the current topology changes.
  • step S103 a new traffic threshold of the OSPF packet of the type is determined according to the packet sending and receiving parameters.
  • the new traffic threshold of the OSPF packet is determined according to the packet sending and receiving parameters, so that the current topology of the OSPF network changes according to the current topology of the OSPF network. Realize dynamic adjustment of traffic thresholds.
  • step S104 flow control is performed on the OSPF packet of the type according to the determined new traffic threshold.
  • traffic control is performed on the corresponding OSPF packet according to the dynamically adjusted traffic threshold, which reduces the degree of manual intervention of the traffic threshold, and greatly saves the management cost of the OSPF network.
  • the exact matching between the traffic threshold and the current OSPF network topology changes effectively reduces the neighbor failure, route flapping, and network bandwidth waste caused by topology changes in the OSPF network.
  • the traffic threshold is adjusted for the OSPF HELLO packet and the LSA packet, where the HELLO packet is used to establish and maintain the neighbor relationship between the OSPF devices, and the LSA packet is used for The link state information is advertised between OSPF neighbors.
  • FIG. 2 is a flowchart showing an implementation process of HELLO packet flow control according to an embodiment of the present invention, which is as follows:
  • step S201 it is determined whether a preset time interval has been reached.
  • a timer may be set to prompt whether a preset time interval is reached. Specifically, according to the change of the number of neighbors of the OSPF device, a timer of a second level may be set, for example, a HELLO message is triggered every second. The traffic threshold is adjusted, or the HELLO packet traffic threshold is adjusted every tens of seconds.
  • step S202 when the preset time interval is reached, the packet receiving and receiving parameters of the HELLO packet are obtained through the configuration file, where the packet sending and receiving parameters include the number of valid neighbors of the OSPF device and the interval of the HELLO packet of each valid neighbor. And the timeout for each valid neighbor.
  • An OSPF device is an OSPF device that performs OSPF packet flow control.
  • the packet sending and receiving parameters of the HELLO packet are obtained, and the packet sending and receiving parameters of the HELLO packet include but are not limited to the number of valid neighbors of the OSPF device, and each of the valid neighbors The HELLO message interval and the timeout period of each of the valid neighbors.
  • the effective neighbor is the neighbor OSPF device in the FULL state or non-FULL state in the state above the INIT state for the OSPF device that performs OSPF packet traffic control.
  • the number of valid neighbors and the HELLO packet interval of each valid neighbor can be obtained by querying the real-time configuration file in the OSPF device.
  • the packet sending and receiving parameters can reflect the traffic of the HELLO packet that the OSPF device is about to receive.
  • step S203 the packet sending and receiving parameters are imported into a preset formula to generate HELLO packet traffic to be received.
  • the preset formula is pre-configured in the OSPF device, and is used to calculate the HELLO packet traffic to be received according to the packet receiving and receiving parameters obtained in step S202, for example, HELLO to be processed every second.
  • the traffic of the message may be configured in advance by the relevant technical personnel in the OSPF device according to experience.
  • the specific form of the empirical formula is not used herein to limit the present invention.
  • step S204 the HELLO packet traffic is adjusted according to the configuration of the OSPF device, and the adjusted HELLO packet traffic is determined as a new traffic threshold of the HELLO packet.
  • the OSPF device Due to the actual processing capability of the OSPF device, for example, the computing power of the OSPF device CPU, the OSPF device has a basic threshold that meets its own capabilities. Therefore, after obtaining the HELLO packet traffic to be received, refer to The configuration of the OSPF device is used to adjust the traffic of the HELLO packet obtained in step S203, so as to determine a new traffic threshold of the appropriate HELLO packet according to the actual situation of the OSPF device.
  • the new traffic threshold of the HELLO packet is determined to be lower than the value of the HELLO packet traffic, so as to avoid certain determination.
  • the new traffic threshold is too high, and the OSPF device CPU is overloaded and cannot be processed.
  • step S205 flow control is performed on the HELLO message according to the determined new traffic threshold.
  • FIG. 3 is a flowchart showing an implementation process of LSA packet flow control according to an embodiment of the present invention, which is described in detail as follows:
  • step S301 it is determined whether a preset type of message is received.
  • the trigger condition may include receiving the database description in the OSPF protocol (Data Description, DD) Packet, that is, when an OSPF device receives a DD packet, it indicates that the OSPF device may generate LSA packet traffic, which means that the OSPF device may receive the neighbor LSA packet afterwards. Therefore, in order to confirm the traffic size of the LSA packet to be received, the OSPF device needs to analyze the received DD packet to extract the corresponding packet transmission and reception parameters from the DD packet.
  • Data Description, DD Data Description
  • the packet receiving and receiving parameters are obtained, where the packet sending and receiving parameters include the number of the first LSA packet and the number of the second LSA packet, where the number of the first LSA packet is current.
  • the number of second LSA packets is the number of LSA packets indicated by the previously received DD packet but not yet received.
  • the DD packet can be obtained according to the currently received DD packet. Number of the first LSA packet indicated.
  • the number of LSA packets received by the OSPF device does not reach the number of LSA packets indicated by the DD packet received by the OSPF device, that is, the OSPF device exists.
  • the LSA packets that the OSPF device expects to receive but have not received may reach the OSPF device in a later period of time. Therefore, you need to determine the LSA report.
  • the previously received DD packet can be obtained.
  • the number of the first LSA packet is added to the number of the second LSA packet, and the number of the third LSA packet is generated.
  • the number of the third LSA packets is the number of LSA packets that the OSPF device will receive.
  • step S304 the LSA packet traffic to be received is determined according to the preset average length of the LSA packet and the number of the third LSA packet.
  • the length of each LSA packet can reflect the traffic of the LSA packet. Therefore, the LSA packet traffic to be generated can be determined according to the average length of the LSA packet and the number of LSA packets. In this embodiment, the length of each LSA packet can be determined according to the experience of the relevant technical personnel. Therefore, the average length of the LSA packet can be preset in the OSPF device by using the experience of the relevant technical personnel. The product of the average length of the LSA packet and the number of the third LSA packet can be used to determine the LSA packet traffic that the OSPF device will receive.
  • step S305 the LSA packet traffic is adjusted according to the configuration of the OSPF device, and the adjusted LSA packet traffic is determined as a new traffic threshold of the LSA packet.
  • step S204 The implementation principle of the step S204 is the same. After the LSA packet traffic is obtained, the LSA packet traffic obtained in step S304 is adjusted according to the configuration of the OSPF device. The actual situation of the device determines the new traffic threshold for the appropriate LSA packet.
  • the new traffic threshold of the LSA packet is determined to be lower than the LSA packet traffic. In this case, avoid the situation where the new traffic threshold is too high and the CPU load of the OSPF device is too heavy to be processed.
  • step S306 flow control is performed on the LSA packet according to the determined new traffic threshold.
  • a timer of a minute level may be set according to the traffic characteristics of the LSA packet, and the current prediction of the OSPF device is counted every several minutes. If the number of the third LSA packets received but not received is far less than the current traffic threshold, it indicates that in the following period, except for the LSA flooding, the basic It is not possible to receive a large number of LSA packets. In this case, the traffic threshold of the LSA packets can be reduced and the previously amplified traffic thresholds can be restored.
  • FIG. 4 shows a specific implementation process of the step S104 of the OSPF packet flow control method provided in the embodiment of the present invention, which is as follows:
  • step S401 the current traffic threshold of the OSPF packet of the type is obtained.
  • step S402 it is determined whether the deviation between the new traffic threshold determined in step 103 and the current traffic threshold exceeds a preset threshold; if yes, step S403 is performed, and if no, step S404 is performed.
  • step S403 when the determined deviation between the new traffic threshold and the current traffic threshold exceeds a preset threshold, the current traffic threshold is adjusted to the determined new traffic threshold.
  • step S404 when the determined deviation between the new traffic threshold and the current traffic threshold does not exceed the preset threshold, the current traffic threshold is maintained.
  • step S405 flow control is performed on the OSPF packet of the type according to the current traffic threshold.
  • the current traffic threshold is adjusted by determining whether the deviation between the determined new traffic threshold and the current traffic threshold of the OSPF packet exceeds a preset threshold.
  • the LSA packet is used as an example. If the deviation between the new traffic threshold and the current traffic threshold of the LSA packet exceeds a preset threshold, for example, the deviation is greater than 50 Kb/s, the current traffic threshold is adjusted. Otherwise, if the adjustment of the current traffic threshold is not large, the current traffic threshold is not adjusted to avoid instability of the OSPF network caused by excessive unnecessary adjustment of the traffic threshold.
  • the OSPF packet traffic threshold is obtained by acquiring the OSPF packet traffic threshold in real time, and dynamically adjusting the traffic threshold of the OSPF packet according to the OSPF network topology change. Adaptive adjustment effectively avoids neighbor failures, protocol flapping, or network bandwidth waste caused by topology changes in the OSPF network.
  • FIG. 5 is a structural block diagram of a flow control device for OSPF packets according to an embodiment of the present invention.
  • the device may be located in an OSPF device, and used to run the OSPF packet according to the embodiment of the present invention. Control Method. For the convenience of explanation, only the parts related to the present embodiment are shown.
  • the apparatus includes:
  • the determining unit 51 determines whether the current packet sending and receiving state meets a preset triggering condition, where the triggering condition includes reaching a preset time interval or receiving a preset type of message.
  • the obtaining unit 52 obtains the packet sending and receiving parameters of the OSPF packet of the corresponding type of the trigger condition according to the judgment result of the determining unit 51.
  • the determining unit 53 receives the packet sending and receiving parameters sent by the obtaining unit 52, and determines a new traffic threshold of the OSPF packet of the type according to the packet sending and receiving parameters.
  • the flow control unit 54 receives the new traffic threshold sent by the determining unit 53 and performs flow control on the OSPF packet of the type according to the determined new traffic threshold.
  • the triggering condition includes: reaching a preset time interval, where the OSPF packet corresponding to the triggering condition includes a HELLO packet, and the obtaining unit 52 is configured to obtain the packet sending and receiving parameters by using the configuration file, where the packet sending and receiving parameters include the OSPF device.
  • the determining unit 53 is specifically configured to:
  • the HELLO packet traffic is adjusted according to the configuration of the OSPF device, and the adjusted traffic of the HELLO packet is determined as the new traffic threshold of the HELLO packet.
  • the time interval of the preset time interval is on the order of seconds.
  • the triggering condition includes: receiving the DD packet, where the OSPF packet of the corresponding type of the triggering condition includes the LSA packet, and the obtaining unit 52 is specifically configured to:
  • the packet sending and receiving parameter includes the number of the first LSA packet and the number of the second LSA packet, wherein the number of the first LSA packet is the number of LSA packets indicated by the currently received DD packet, The number of the second LSA packets is the number of LSA packets indicated by the previously received DD packets but not yet received.
  • the determining unit 53 is specifically configured to:
  • the LSA packet traffic is adjusted according to the configuration of the OSPF device, and the adjusted traffic of the LSA packet is determined as the new traffic threshold of the LSA packet.
  • the flow control unit 54 is specifically configured to:
  • the new The traffic threshold is used as the updated current traffic threshold; when the deviation of the new traffic threshold from the current traffic threshold does not exceed the preset threshold, maintaining the current traffic threshold;
  • FIG. 6 is a block diagram showing the hardware structure of an OSPF packet flow control apparatus according to an embodiment of the present invention.
  • the apparatus may be located in an OSPF device for running the OSPF packet according to the embodiment of the present invention.
  • Flow control method For the convenience of explanation, only the parts related to the present embodiment are shown.
  • the apparatus includes a processor 61, a memory 62 and a bus 63, wherein the processor 61 and the memory 62 communicate with each other via a bus 63 for storing a program, and the processor 61 is for executing the memory 62.
  • a stored program that, when executed, is used to:
  • Determining whether the current packet sending and receiving state meets a preset triggering condition includes: reaching a preset time interval or receiving a preset type of message;
  • the packet sending and receiving parameters of the OSPF packet corresponding to the triggering condition are obtained.
  • Traffic control of the OSPF packet of the type is performed according to the determined new traffic threshold.
  • the triggering condition includes: reaching a preset time interval, where the OSPF packet corresponding to the triggering condition includes a HELLO packet,
  • Obtaining the parameters for sending and receiving OSPF packets of the corresponding type of the trigger condition includes obtaining the packet sending and receiving parameters through the configuration file, where the packet sending and receiving parameters include the number of valid neighbors of the OSPF device, the interval of the HELLO packets of each valid neighbor, and each Timeout period of valid neighbors;
  • Determining, according to the packet sending and receiving parameters, a new traffic threshold of the OSPF packet of the type includes:
  • the HELLO packet traffic is adjusted according to the configuration of the OSPF device, and the adjusted traffic of the HELLO packet is determined as the new traffic threshold of the HELLO packet.
  • the time interval of the preset time interval is on the order of seconds.
  • the OSPF packet of the corresponding type of the triggering condition includes the LSA packet.
  • the packet sending and receiving parameters include the number of the first LSA packet and the number of the second LSA packet, wherein the number of the first LSA packet is the number of LSA packets indicated by the currently received DD packet, and the number of the second LSA packet. The number of LSA packets indicated by the previously received DD packet but not yet received;
  • Determining, according to the packet sending and receiving parameters, a new traffic threshold of the OSPF packet of the type includes:
  • the LSA packet traffic is adjusted according to the configuration of the OSPF device, and the adjusted traffic of the LSA packet is determined as the new traffic threshold of the LSA packet.
  • the performing flow control on the OSPF packet of the type according to the determined new traffic threshold includes:
  • the new traffic is The threshold is used as the updated current traffic threshold; when the deviation between the new traffic threshold and the current traffic threshold does not exceed the preset threshold, maintaining the current traffic threshold;
  • the OSPF packet traffic threshold is obtained by acquiring the OSPF packet traffic threshold in real time, and dynamically adjusting the traffic threshold of the OSPF packet according to the OSPF network topology change. Adaptive adjustment effectively avoids neighbor failures, protocol flapping, or network bandwidth waste caused by topology changes in the OSPF network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明适用于网络技术领域,提供了一种OSPF报文的流量控制方法及装置。所述装置判断当前的报文收发状态是否满足预设的触发条件,所述触发条件包括到达预设时间间隔或者接收到预设类型的报文;当满足预设的触发条件时,获取所述触发条件对应类型的OSPF报文的报文收发参数;根据所述报文收发参数确定所述类型的OSPF报文的新的流量阈值;根据确定的所述新的流量阈值对所述类型的OSPF报文进行流量控制。本发明基于OSPF网络的拓扑变化情况实现OSPF报文流量阈值的自适应调整,有效地避免了OSPF网络中由于拓扑变化导致的邻居失效、协议震荡或者网络带宽浪费问题。

Description

一种OSPF报文的流量控制方法及装置 技术领域
本发明属于网络技术领域,尤其涉及一种开放最短路径优先(Open Short Path First,OSPF)报文的流量控制方法及装置。
背景技术
OSPF是用于大型复杂网络的链路状态内部网关协议,其将网络分隔为不同的OSPF域,通常,把加入OSPF域的设备称为运行OSPF的设备。对于运行OSPF的设备来说,其需要提取OSPF协议报文的特征以识别OSPF报文,并将OSPF报文上送至软件协议栈进行处理,从而实现根据OSPF报文进行邻居的建立和指定路由器(Designated Router,DR)的选举,计算出网络拓扑,生成OSPF路由。
由于软件协议栈的处理能力有限,当需要处理的OSPF报文远远超过软件协议栈的处理能力时,必然会导致运行OSPF的设备的中央处理器(Central Processing Unit,CPU)过载,从而造成设备瘫痪。为了解决上述问题,在运行OSPF的设备中引入了CPU防护机制,通过对OSPF报文进行分类,对每种类型的OSPF报文均设置相应的流量阈值,若单位时间内某种类型的OSPF报文的流量超过了其对应的流量阈值,则直接对当前该类型的OSPF报文进行丢弃。
然而,在现行方案中,每种类型的OSPF报文的流量阈值是固定的,且设定值相对较小,仅能满足最基本的业务或是适用于中小型网络,一旦由于拓扑变化导致业务量出现激增,就需要人为手动地放大流量阈值,而当报文数量回落并趋于稳定时,又需要手动地将流量阈值恢复为默认值,流量阈值无法根据网络的拓扑变化进行自适应调整,从而导致OSPF网络可能存在邻居失效,由于路由震荡导致的大量重传报文占用网络带宽,以及OSPF网络被攻击的风险。
技术问题
本发明的目的在于提供一种OSPF报文的流量控制方法及装置,旨在解决现行的OSPF报文流量阈值无法根据网络的拓扑变化进行自适应调整的问题。
技术解决方案
本发明第一方面提供了一种OSPF报文的流量控制方法,所述方法包括:判断当前的报文收发状态是否满足预设的触发条件,所述触发条件包括到达预设时间间隔或者接收到预设类型的报文;当满足预设的触发条件时,获取所述触发条件对应类型的OSPF报文的报文收发参数;根据所述报文收发参数确定所述类型的OSPF报文的新的流量阈值;根据确定的所述新的流量阈值对所述类型的OSPF报文进行流量控制。
在第一方面的第一种可能的实现方式中,所述触发条件包括到达预设时间间隔,所述触发条件对应类型的OSPF报文包括HELLO报文,所述获取所述触发条件对应类型的OSPF报文的报文收发参数包括:通过配置文件获取所述报文收发参数,所述报文收发参数包括OSPF设备的有效邻居的数量、每个所述有效邻居的HELLO报文间隔以及每个所述有效邻居的超时时间;所述根据所述报文收发参数确定所述类型的OSPF报文的新的流量阈值包括:将所述报文收发参数导入预设公式,生成将要接收到的HELLO报文流量;根据OSPF设备的配置情况调整所述HELLO报文流量,将调整后的所述HELLO报文流量确定为所述HELLO报文的所述新的流量阈值。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述预设时间间隔的时间间隔数量级为秒。
在第一方面的第三种可能的实现方式中,所述触发条件包括接收到数据库描述DD报文,所述触发条件对应类型的OSPF报文包括OSPF链路状态通告LSA报文,所述获取所述触发条件对应类型的OSPF报文的报文收发参数包括:获取报文收发参数,所述报文收发参数包括第一LSA报文数量和第二LSA报文数量,所述第一LSA报文数量为当前接收到的所述DD报文指示的LSA报文数量,所述第二LSA报文数量为之前接收到的所述DD报文指示的但还未接收到的LSA报文数量;所述根据所述报文收发参数确定所述类型的OSPF报文的新的流量阈值包括:将所述第一LSA报文数量与所述第二LSA报文数量相加,生成第三LSA报文数量;根据预设的LSA报文平均长度及所述第三LSA报文数量,确定将要接收到的LSA报文流量;根据OSPF设备的配置情况调整所述LSA报文流量,将调整后的所述LSA报文流量确定为所述LSA报文的所述新的流量阈值。
结合第一方面或者第一方面的上述任一种可能的实现方式,在第四种可能的实现方式中,所述根据确定的所述新的流量阈值对所述类型的OSPF报文进行流量控制包括:获取所述OSPF报文的当前流量阈值;判断所述新的流量阈值与所述当前流量阈值的偏差是否超过了预设阈值,当所述新的流量阈值与所述当前流量阈值的偏差超过了所述预设阈值,则将所述新的流量阈值作为更新后的当前流量阈值;当所述新的流量阈值与所述当前流量阈值的偏差未超过所述预设阈值,则维持所述当前流量阈值;根据所述当前流量阈值对所述类型的OSPF报文进行流量控制。
本发明第二方面提供了一种OSPF报文的流量控制装置,所述装置包括:判断单元,用于判断当前的报文收发状态是否满足预设的触发条件,所述触发条件包括到达预设时间间隔或者接收到预设类型的报文;获取单元,用于根据所述判断单元的判断结果获取所述触发条件对应类型的OSPF报文的报文收发参数;确定单元,用于接收所述获取单元发送的所述报文收发参数,根据所述报文收发参数确定所述类型的OSPF报文的新的流量阈值;流量控制单元,用于接收所述确定单元发送的所述新的流量阈值,根据确定的所述新的流量阈值对所述类型的OSPF报文进行流量控制。
在第二方面的第一种可能的实现方式中,所述触发条件包括到达预设时间间隔,所述触发条件对应类型的OSPF报文包括HELLO报文,所述获取单元具体用于通过配置文件获取所述报文收发参数,所述报文收发参数包括OSPF设备的有效邻居的数量、每个所述有效邻居的HELLO报文间隔以及每个所述有效邻居的超时时间;所述确定单元具体用于:将所述报文收发参数导入预设公式,生成将要接收到的HELLO报文流量;以及根据OSPF设备的配置情况调整所述HELLO报文流量,将调整后的所述HELLO报文流量确定为所述HELLO报文的所述新的流量阈值。
结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述预设时间间隔的时间间隔数量级为秒。
在第二方面的第三种可能的实现方式中,所述触发条件包括接收到数据库描述DD报文,所述触发条件对应类型的OSPF报文包括OSPF链路状态通告LSA报文,所述获取单元具体用于:获取报文收发参数,所述报文收发参数包括第一LSA报文数量和第二LSA报文数量,所述第一LSA报文数量为当前接收到的所述DD报文指示的LSA报文数量,所述第二LSA报文数量为之前接收到的所述DD报文指示的但还未接收到的LSA报文数量;所述确定单元具体用于:将所述第一LSA报文数量与所述第二LSA报文数量相加,生成第三LSA报文数量;根据预设的LSA报文平均长度及所述第三LSA报文数量,确定将要接收到的LSA报文流量;以及根据OSPF设备的配置情况调整所述LSA报文流量,将调整后的所述LSA报文流量确定为所述LSA报文的所述新的流量阈值。
结合第二方面或者第二方面的上述任一种可能的实现方式,在第四种可能的实现方式中,所述流量控制单元具体用于:获取所述类型的OSPF报文的当前流量阈值;判断所述新的流量阈值与所述当前流量阈值的偏差是否超过了预设阈值,当所述新的流量阈值与所述当前流量阈值的偏差超过了所述预设阈值,则将所述新的流量阈值作为更新后的当前流量阈值;当所述新的流量阈值与所述当前流量阈值的偏差未超过所述预设阈值,则维持所述当前流量阈值;以及根据所述当前流量阈值对所述类型的OSPF报文进行流量控制。
本发明第三方面提供了一种OSPF报文的流量控制装置,所述装置包括处理器、存储器和总线:其中所述处理器和所述存储器通过所述总线进行相互间的通信;所述存储器,用于存储程序;所述处理器用于执行所述存储器中存储的程序,所述程序在被执行时,用于:判断当前的报文收发状态是否满足预设的触发条件,所述触发条件包括到达预设时间间隔或者接收到预设类型的报文;当满足预设的触发条件时,获取所述触发条件对应类型的OSPF报文的报文收发参数;根据所述报文收发参数确定所述类型的OSPF报文的新的流量阈值;根据确定的所述新的流量阈值对所述类型的OSPF报文进行流量控制。
在第三方面的第一种可能的实现方式中,所述触发条件包括到达预设时间间隔,所述触发条件对应类型的OSPF报文包括HELLO报文,所述获取所述触发条件对应类型的OSPF报文的报文收发参数具体包括通过配置文件获取所述报文收发参数,所述报文收发参数包括OSPF设备的有效邻居的数量、每个所述有效邻居的HELLO报文间隔以及每个所述有效邻居的超时时间;所述根据所述报文收发参数确定所述类型的OSPF报文的新的流量阈值包括:将所述报文收发参数导入预设公式,生成将要接收到的HELLO报文流量;以及根据OSPF设备的配置情况调整所述HELLO报文流量,将调整后的所述HELLO报文流量确定为所述HELLO报文的所述新的流量阈值。
结合第三方面的第一种可能的实现方式,在第二种可能的实现方式中,所述预设时间间隔的时间间隔数量级为秒。
在第三方面的第三种可能的实现方式中,所述触发条件包括接收到数据库描述DD报文,所述触发条件对应类型的OSPF报文包括OSPF链路状态通告LSA报文,所述报文收发参数包括第一LSA报文数量和第二LSA报文数量,所述第一LSA报文数量为当前接收到的所述DD报文指示的LSA报文数量,所述第二LSA报文数量根据之前接收到的所述DD报文指示的但还未接收到的LSA报文数量;所述根据所述报文收发参数确定所述类型的OSPF报文的新的流量阈值包括:将所述第一LSA报文数量与所述第二LSA报文数量相加,生成第三LSA报文数量;根据预设的LSA报文平均长度及所述第三LSA报文数量,确定将要接收到的LSA报文流量;以及根据OSPF设备的配置情况调整所述LSA报文流量,将调整后的所述LSA报文流量确定为所述LSA报文的所述新的流量阈值。
结合第三方面或者第三方面的上述任一种可能的实现方式,在第四种可能的实现方式中,所述根据确定的新的流量阈值对所述类型的OSPF报文进行流量控制包括:获取所述类型的OSPF报文的当前流量阈值;判断所述新的流量阈值与所述当前流量阈值的偏差是否超过了预设阈值,当所述新的流量阈值与所述当前流量阈值的偏差超过了所述预设阈值,则将所述新的流量阈值作为更新后的当前流量阈值;当所述新的流量阈值与所述当前流量阈值的偏差未超过所述预设阈值,则维持所述当前流量阈值;以及根据所述当前流量阈值对所述类型的OSPF报文进行流量控制。
有益效果
在本发明实施例中,通过实时地获取OSPF报文的报文收发参数,根据报文收发参数动态地调整OSPF报文的流量阈值,从而基于OSPF网络的拓扑变化情况实现OSPF报文流量阈值的自适应调整,有效地避免了OSPF网络中由于拓扑变化导致的邻居失效、协议震荡或者网络带宽浪费问题。
附图说明
图1是本发明实施例提供的OSPF报文的流量控制方法的实现流程图;
图2是本发明实施例提供的HELLO报文的流量控制方法的实现流程图;
图3是本发明实施例提供的LSA报文的流量控制方法的实现流程图;
图4是本发明实施例提供的OSPF报文的流量控制方法中步骤S104的具体实现流程图;
图5是本发明实施例提供的OSPF报文的流量控制装置的结构框图;
图6是本发明实施例提供的OSPF报文的流量控制装置的硬件结构框图
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明实施例中,通过实时地获取OSPF报文的报文收发参数,根据报文收发参数动态地调整OSPF报文的流量阈值,从而基于OSPF网络的拓扑变化情况实现OSPF报文流量阈值的自适应调整,有效地避免了OSPF网络中由于拓扑变化导致的邻居失效、协议震荡或者网络带宽浪费问题。
在本实施例中,对OSPF报文进行流量控制的装置可以为加入OSPF域的OSPF设备,优选地,可以为加入OSPF域的交换机。
图1示出了本发明实施例提供的OSPF报文的流量控制方法的实现流程,详述如下:
在步骤S101中,判断当前的报文收发状态是否满足预设的触发条件,其中,触发条件包括到达预设时间间隔或者接收到预设类型的报文。
在OSPF网络中,网络拓扑变化会带来OSPF报文数量的变化,且OSPF网络中的拓扑变化具有非持续性的特点,因此,在本实施例中,通过预设触发条件,根据监测到的当前的报文收发状态来判断是否需要触发对OSPF报文流量阈值的调整。
由于拓扑变化随之带来的是OSPF邻居数量的变化以及链路状态信息的变化,其变化反映在报文上,则分别对应HELLO报文数量的变化以及链路状态通告(Link-State Advertisement,LSA)报文(包括但不限于链路状态请求报文、链路状态更新报文以及链路状态确认报文)数量的变化,因此,优选地,在本实施例中,根据这两种OSPF报文分别设置不同的触发条件,来分别对这两种OSPF报文的流量阈值进行动态调整。
具体地,对于HELLO报文,其对应的触发条件包括到达预设时间间隔,对于LSA报文,其对应的触发条件包括接收到预设类型的报文,相关实现原理将在后续实施例中分别进行详细说明,在此不再赘述。
在步骤S102中,当满足预设的触发条件时,获取所述触发条件对应类型的OSPF报文的报文收发参数。
在本实施例中,在根据当前的报文收发状态监测出到达预设时间间隔或者接收到预设类型的报文时,则启动对应类型的OSPF报文的报文收发参数获取过程,实时地采集该OSPF报文当前的报文收发参数,以掌握当前的拓扑变化情况。
在步骤S103中,根据所述报文收发参数确定该类型的OSPF报文的新的流量阈值。
在步骤S102获取到触发条件对应类型的OSPF报文的报文收发参数之后,即可以根据报文收发参数来确定该类型的OSPF报文的新的流量阈值,从而根据OSPF网络的当前拓扑变化情况实现流量阈值的动态调整。
在步骤S104中,根据确定的新的流量阈值对所述类型的OSPF报文进行流量控制。
由此,在本实施例中,根据动态调整后的流量阈值对相应的OSPF报文进行流量控制,降低了流量阈值的人工干预程度,大大节省了OSPF网络的管理成本。同时,通过流量阈值与当前OSPF网络拓扑变化的精确匹配,有效降低了OSPF网络中由于拓扑变化导致的邻居失效、路由震荡以及网络带宽浪费等问题。
在本发明实施例中,分别针对OSPF的HELLO报文以及LSA报文来进行流量阈值的调整,其中,HELLO报文用于建立和维护OSPF设备之间的邻居关系,而LSA报文则用于在OSPF邻居之间通告链路状态信息。图2示出了本发明实施例提供的HELLO报文流量控制的实现流程,详述如下:
在步骤S201中,判断是否到达预设时间间隔。
在本实施例中,可以通过设置定时器来提示是否到达预设时间间隔,具体地,根据OSPF设备的邻居数目变化情况,可以设置秒级的定时器,例如,每秒钟触发一次HELLO报文流量阈值调整,或者每几十秒触发一次HELLO报文流量阈值调整。
在步骤S202中,当到达预设时间间隔时,通过配置文件获取HELLO报文的报文收发参数,其中,报文收发参数包括OSPF设备的有效邻居的数量、每个有效邻居的HELLO报文间隔以及每个有效邻居的超时时间。其中,OSPF设备指的是执行OSPF报文流量控制的OSPF设备。
在本实施例中,当到达预设时间间隔时,获取HELLO报文的报文收发参数,HELLO报文的报文收发参数包括但不限于OSPF设备的有效邻居的数量、每个所述有效邻居的HELLO报文间隔以及每个所述有效邻居的超时时间。其中,有效邻居为对执行OSPF报文流量控制的OSPF设备来说处于INIT状态以上状态的、处于FULL状态或者非FULL状态的邻居OSPF设备,有效邻居的数量、每个有效邻居的HELLO报文间隔以及每个有效邻居的超时时间均可以通过查询OSPF设备中的实时配置文件获取,上述报文收发参数能够反映出OSPF设备即将接收到的HELLO报文的流量情况。
在步骤S203中,将所述报文收发参数导入预设公式,生成将要接收到的HELLO报文流量。
在本实施例中,预设公式在OSPF设备中预先进行配置,用于根据步骤S202中获取到的报文收发参数来计算出将要接收到的HELLO报文流量,例如,每秒需要处理的HELLO报文的流量。其中,预设公式可以由相关技术人员根据经验预先在OSPF设备中进行配置,经验公式的具体形式在此不用于限制本发明。
在步骤S204中,根据OSPF设备的配置情况调整所述HELLO报文流量,将调整后的所述HELLO报文流量确定为HELLO报文的新的流量阈值。
由于OSPF设备的实际处理能力,例如,OSPF设备CPU的运算能力等,决定了OSPF设备均有一个符合自身能力情况的基础阈值,因此,可以在获取到将要接收到的HELLO报文流量后,参考OSPF设备的配置情况来对步骤S203中获取到的HELLO报文流量进行调整,从而根据OSPF设备的实际情况确定出合适的HELLO报文的新的流量阈值。
例如,当OSPF设备的基础阈值大大低于将要接收到的HELLO报文流量时,则相应地将HELLO报文的新的流量阈值确定在低于该HELLO报文流量的值上,避免出现确定的新的流量阈值过高,OSPF设备CPU负荷过重,无法处理的情况。
在步骤S205中,根据确定的新的流量阈值对HELLO报文进行流量控制。
图3示出了本发明实施例提供的LSA报文流量控制的实现流程,详述如下:
在步骤S301中,判断是否接收到预设类型的报文。
具体地,对于LSA报文来说,其触发条件可以包括接收到OSPF协议中的数据库描述(Data Description,DD)报文,即当OSPF设备接收到DD报文,则表示OSPF设备中可能会产生LSA报文的流量,即表示OSPF设备在之后可能接收到邻居的LSA报文。因此,为了确认即将收到的LSA报文的流量大小,OSPF设备需要对接收到的DD报文进行分析,以从DD报文中提取出相应的报文收发参数。
在步骤S302中,当接收到DD报文时,获取报文收发参数,其中,报文收发参数包括第一LSA报文数量和第二LSA报文数量,其中,第一LSA报文数量为当前接收到的DD报文指示的LSA报文的数量,第二LSA报文数量为之前接收到的DD报文指示的但还未接收到的LSA报文的数量。
在OSPF设备接收到的DD报文的链路信息摘要中,指示了在将来一段时间内将要到达的LSA报文的数量,因此,可以根据当前接收到的DD报文,获取到该DD报文指示的第一LSA报文数量。
同时,由于在实际的网络传输过程中,会出现OSPF设备当前已接收到的LSA报文的数量未达到OSPF设备之前接收到的DD报文指示的LSA报文数量的情况,即存在着OSPF设备预计接收但仍未接收到的LSA报文的数量,这部分OSPF设备预计接收但仍未接收到的LSA报文可能在之后的一段时间内到达OSPF设备,因此,还需要确定出这部分LSA报文数量,以更加准确地估计OSPF设备即将接收到的LSA报文的数量。在本实施例中,通过将之前接收到的DD报文中指示的LSA报文数量进行存储,并通过对当前已经接收到的LSA报文数量进行统计,即可以获取到之前接收到的DD报文中指示的但还未接收到的第二LSA报文数量。在步骤S303中,将第一LSA报文数量与第二LSA报文数量相加,生成第三LSA报文数量。
其中,第三LSA报文数量即为OSPF设备即将接收到的LSA报文的数量。
在步骤S304中,根据预设的LSA报文平均长度及第三LSA报文数量,确定将要接收到的LSA报文流量。
每条LSA报文的长度能够反映出该条LSA报文的流量,因此,可以根据LSA报文的平均长度及LSA报文的数量来确定出将要产生的LSA报文流量。在本实施例中,由于每条LSA报文的长度是可以根据相关技术人员的经验来确定的,因此,通过相关技术人员的经验,可以在OSPF设备中预设LSA报文平均长度,通过该LSA报文平均长度与第三LSA报文数量的乘积,即可以确定出OSPF设备即将接收到的LSA报文流量。
在步骤S305中,根据OSPF设备的配置情况调整所述LSA报文流量,将调整后的所述LSA报文流量确定为所述LSA报文的新的流量阈值。
与步骤S204的实现原理相同,当获取到LSA报文流量后,由于OSPF设备的实际处理能力不同,参考OSPF设备的配置情况来对步骤S304中获取到的LSA报文流量进行调整,从而根据OSPF设备的实际情况确定出合适的LSA报文的新的流量阈值。
例如,当OSPF设备对LSA报文的处理能力大大低于确定出的将要接收到的LSA报文流量时,则相应地将LSA报文的新的流量阈值确定在低于该LSA报文流量的值上,避免出现新的流量阈值过高,OSPF设备CPU负荷过重,无法处理的情况。
在步骤S306中,根据确定的新的流量阈值对LSA报文进行流量控制。
作为本发明的一个实施例,在对LSA报文的新的流量阈值进行确定的过程中,还可以根据LSA报文的流量特性,设置分钟级的定时器,每隔若干分钟统计OSPF设备当前预计接收但未接收到的第三LSA报文数量,若统计出的第三LSA报文数量远远小于当前的流量阈值时,则表示在此后的一段时间内,除LSA泛洪的情况外,基本不可能接收到大量的LSA报文,此时,即可以适当地降低LSA报文的流量阈值,对之前放大的流量阈值进行恢复。
作为本明的一个实施例,图4示出了本发明实施例提供的OSPF报文的流量控制方法步骤S104的具体实现流程,详述如下:
在步骤S401中,获取所述类型的OSPF报文的当前流量阈值。
在步骤S402中,判断步骤103中确定的新的流量阈值与当前流量阈值的偏差是否超过了预设阈值;如果是,执行步骤S403,如果否,执行步骤S404。
在步骤S403中,当确定的新的流量阈值与当前流量阈值的偏差超过了预设阈值,将当前流量阈值调整至确定的新的流量阈值。
在步骤S404中,当确定的新的流量阈值与当前流量阈值的偏差未超过预设阈值,维持当前流量阈值。
在步骤S405中,根据所述当前流量阈值对所述类型的OSPF报文进行流量控制。
在本实施例中,通过判断确定出的新的流量阈值与OSPF报文的当前流量阈值的偏差是否超过了预设阈值,来进一步确定是否对当前的流量阈值进行调整。具体地,以LSA报文为例,若确定出的新的流量阈值与LSA报文的当前流量阈值的偏差超过了预设阈值,例如,偏差大于50Kb/s,则对当前流量阈值进行调整,否则,认为需要对当前流量阈值进行调整的调整幅度不大,则不对当前流量阈值进行调整,避免出现对流量阈值的过多不必要的调整导致的OSPF网络不稳定。
在本发明实施例中,通过实时地获取OSPF报文的报文收发参数,根据报文收发参数动态地调整OSPF报文的流量阈值,从而基于OSPF网络的拓扑变化情况实现OSPF报文流量阈值的自适应调整,有效地避免了OSPF网络中由于拓扑变化导致的邻居失效、协议震荡或者网络带宽浪费问题。
图5示出了本发明实施例提供的OSPF报文的流量控制装置的结构框图,该装置可以位于OSPF设备中,用于运行本发明图1至图4实施例所述的OSPF报文的流量控制方法。为了便于说明,仅示出了与本实施例相关的部分。
参照图5,该装置包括:
判断单元51,判断当前的报文收发状态是否满足预设的触发条件,其中,触发条件包括到达预设时间间隔或者接收到预设类型的报文。
获取单元52,根据判断单元51的判断结果,获取触发条件对应类型的OSPF报文的报文收发参数。
确定单元53,接收获取单元52发送的报文收发参数,根据报文收发参数确定所述类型的OSPF报文的新的流量阈值。
流量控制单元54,接收确定单元53发送的新的流量阈值,根据确定的新的流量阈值对所述类型的OSPF报文进行流量控制。
可选地,触发条件包括到达预设时间间隔,触发条件对应类型的OSPF报文包括HELLO报文,获取单元52具体用于通过配置文件获取报文收发参数,其中,报文收发参数包括OSPF设备的有效邻居的数量、每个有效邻居的HELLO报文间隔以及每个所述有效邻居的超时时间。
在本实施例中,确定单元53具体用于:
将报文收发参数导入预设公式,生成将要接收到的HELLO报文流量;以及
根据OSPF设备的配置情况调整HELLO报文流量,将调整后的所述HELLO报文流量确定为HELLO报文的所述新的流量阈值。
可选地,预设时间间隔的时间间隔数量级为秒。
可选地,触发条件包括接收到DD报文,其中,触发条件对应类型的OSPF报文包括LSA报文,获取单元52具体用于:
获取报文收发参数,所述报文收发参数包括第一LSA报文数量和第二LSA报文数量,其中,第一LSA报文数量为当前接收到的DD报文指示的LSA报文数量,第二LSA报文数量为之前接收到的DD报文指示的但还未接收到的LSA报文数量。
在本实施例中,确定单元53具体用于:
将第一LSA报文数量与第二LSA报文数量相加,生成第三LSA报文数量;
根据预设的LSA报文平均长度及第三LSA报文数量,确定将要接收到的LSA报文流量;以及
根据OSPF设备的配置情况调整LSA报文流量,将调整后的所述LSA报文流量确定为LSA报文的所述新的流量阈值。
可选地,流量控制单元54具体用于:
获取所述类型的OSPF报文的当前流量阈值。
判断所述新的流量阈值与所述当前流量阈值的偏差是否超过了预设阈值,当所述新的流量阈值与所述当前流量阈值的偏差超过了所述预设阈值,则将所述新的流量阈值作为更新后的当前流量阈值;当所述新的流量阈值与所述当前流量阈值的偏差未超过所述预设阈值,则维持所述当前流量阈值;以及
根据所述当前流量阈值对所述类型的OSPF报文进行流量控制。
图6示出了本发明实施例提供的OSPF报文的流量控制装置的硬件结构框图,该装置可以位于OSPF设备中,用于运行本发明图1至图4实施例所述的OSPF报文的流量控制方法。为了便于说明,仅示出了与本实施例相关的部分。
参照图6,该装置包括处理器61、存储器62和总线63,其中,处理器61和存储器62通过总线63进行相互间的通信,存储器92用于存储程序,处理器61用于执行存储器62中存储的程序,所述程序在被执行时,用于:
判断当前的报文收发状态是否满足预设的触发条件,其中,触发条件包括到达预设时间间隔或者接收到预设类型的报文;
当满足预设的触发条件时,获取触发条件对应类型的OSPF报文的报文收发参数;
根据报文收发参数确定所述类型的OSPF报文的新的流量阈值;
根据确定的新的流量阈值对所述类型的OSPF报文进行流量控制。
可选地,触发条件包括到达预设时间间隔,其中,触发条件对应类型的OSPF报文包括HELLO报文,
获取触发条件对应类型的OSPF报文的报文收发参数包括通过配置文件获取报文收发参数,其中,报文收发参数包括OSPF设备的有效邻居的数量、每个有效邻居的HELLO报文间隔以及每个有效邻居的超时时间;
所述根据所述报文收发参数确定所述类型的OSPF报文的新的流量阈值包括:
将所述报文收发参数导入预设公式,生成将要接收到的HELLO报文流量;以及
根据OSPF设备的配置情况调整HELLO报文流量,将调整后的所述HELLO报文流量确定为HELLO报文的所述新的流量阈值。
可选地,预设时间间隔的时间间隔数量级为秒。
可选地,当触发条件包括接收到DD报文,触发条件对应类型的OSPF报文包括LSA报文,
所述报文收发参数包括第一LSA报文数量和第二LSA报文数量,其中,第一LSA报文数量为当前接收到的DD报文指示的LSA报文数量,第二LSA报文数量根据之前接收到的DD报文指示的但还未接收到的LSA报文数量;
所述根据所述报文收发参数确定所述类型的OSPF报文的新的流量阈值包括:
将第一LSA报文数量与第二LSA报文数量相加,生成第三LSA报文数量;
根据预设的LSA报文平均长度及第三LSA报文数量,确定将要接收到的LSA报文流量;以及
根据OSPF设备的配置情况调整LSA报文流量,将调整后的所述LSA报文流量确定为LSA报文的所述新的流量阈值。
可选地,所述根据确定的新的流量阈值对所述类型的OSPF报文进行流量控制包括:
获取所述类型的OSPF报文的当前流量阈值;
判断所述新的流量阈值与当前流量阈值的偏差是否超过了预设阈值,当所述新的流量阈值与所述当前流量阈值的偏差超过了所述预设阈值,则将所述新的流量阈值作为更新后的当前流量阈值;当所述新的流量阈值与所述当前流量阈值的偏差未超过所述预设阈值,则维持所述当前流量阈值;以及
根据所述当前流量阈值对所述类型的OSPF报文进行流量控制。
在本发明实施例中,通过实时地获取OSPF报文的报文收发参数,根据报文收发参数动态地调整OSPF报文的流量阈值,从而基于OSPF网络的拓扑变化情况实现OSPF报文流量阈值的自适应调整,有效地避免了OSPF网络中由于拓扑变化导致的邻居失效、协议震荡或者网络带宽浪费问题。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种开放最短路径优先OSPF报文的流量控制方法,其特征在于,包括:
    判断当前的报文收发状态是否满足预设的触发条件,所述触发条件包括到达预设时间间隔或者接收到预设类型的报文;
    当满足预设的触发条件时,获取所述触发条件对应类型的OSPF报文的报文收发参数;
    根据所述报文收发参数确定所述类型的OSPF报文的新的流量阈值;
    根据确定的所述新的流量阈值对所述类型的OSPF报文进行流量控制。
  2. 如权利要求1所述的方法,其特征在于,所述触发条件包括到达预设时间间隔,所述触发条件对应类型的OSPF报文包括HELLO报文,
    所述获取所述触发条件对应类型的OSPF报文的报文收发参数包括:
    通过配置文件获取所述报文收发参数,所述报文收发参数包括OSPF设备的有效邻居的数量、每个所述有效邻居的HELLO报文间隔以及每个所述有效邻居的超时时间;
    所述根据所述报文收发参数确定所述类型的OSPF报文的新的流量阈值包括:
    将所述报文收发参数导入预设公式,生成将要接收到的HELLO报文流量;
    根据OSPF设备的配置情况调整所述HELLO报文流量,将调整后的所述HELLO报文流量确定为所述HELLO报文的所述新的流量阈值。
  3. 如权利要求2所述的方法,其特征在于,所述预设时间间隔的时间间隔数量级为秒。
  4. 如权利要求1所述的方法,其特征在于,所述触发条件包括接收到数据库描述DD报文,所述触发条件对应类型的OSPF报文包括OSPF链路状态通告LSA报文,
    所述获取所述触发条件对应类型的OSPF报文的报文收发参数包括:
    获取报文收发参数,所述报文收发参数包括第一LSA报文数量和第二LSA报文数量,所述第一LSA报文数量为当前接收到的所述DD报文指示的LSA报文数量,所述第二LSA报文数量为之前接收到的所述DD报文指示的但还未接收到的LSA报文数量;
    所述根据所述报文收发参数确定所述类型的OSPF报文的新的流量阈值包括:
    将所述第一LSA报文数量与所述第二LSA报文数量相加,生成第三LSA报文数量;
    根据预设的LSA报文平均长度及所述第三LSA报文数量,确定将要接收到的LSA报文流量;
    根据OSPF设备的配置情况调整所述LSA报文流量,将调整后的所述LSA报文流量确定为所述LSA报文的所述新的流量阈值。
  5. 如权利要求1~4任一项所述的方法,其特征在于,所述根据确定的所述新的流量阈值对所述类型的OSPF报文进行流量控制包括:
    获取所述OSPF报文的当前流量阈值;
    判断所述新的流量阈值与所述当前流量阈值的偏差是否超过了预设阈值,当所述新的流量阈值与所述当前流量阈值的偏差超过了所述预设阈值,则将所述新的流量阈值作为更新后的当前流量阈值;当所述新的流量阈值与所述当前流量阈值的偏差未超过所述预设阈值,则维持所述当前流量阈值;
    根据所述当前流量阈值对所述类型的OSPF报文进行流量控制。
  6. 一种开放最短路径优先OSPF报文的流量控制装置,其特征在于,包括:
    判断单元,用于判断当前的报文收发状态是否满足预设的触发条件,所述触发条件包括到达预设时间间隔或者接收到预设类型的报文;
    获取单元,用于根据所述判断单元的判断结果获取所述触发条件对应类型的OSPF报文的报文收发参数;
    确定单元,用于接收所述获取单元发送的所述报文收发参数,根据所述报文收发参数确定所述类型的OSPF报文的新的流量阈值;
    流量控制单元,用于接收所述确定单元发送的所述新的流量阈值,根据确定的所述新的流量阈值对所述类型的OSPF报文进行流量控制。
  7. 如权利要求6所述的装置,其特征在于,所述触发条件包括到达预设时间间隔,所述触发条件对应类型的OSPF报文包括HELLO报文,
    所述获取单元具体用于通过配置文件获取所述报文收发参数,所述报文收发参数包括OSPF设备的有效邻居的数量、每个所述有效邻居的HELLO报文间隔以及每个所述有效邻居的超时时间;
    所述确定单元具体用于:
    将所述报文收发参数导入预设公式,生成将要接收到的HELLO报文流量;以及
    根据OSPF设备的配置情况调整所述HELLO报文流量,将调整后的所述HELLO报文流量确定为所述HELLO报文的所述新的流量阈值。
  8. 如权利要求7所述的装置,其特征在于,所述预设时间间隔的时间间隔数量级为秒。
  9. 如权利要求6所述的装置,其特征在于,所述触发条件包括接收到数据库描述DD报文,所述触发条件对应类型的OSPF报文包括OSPF链路状态通告LSA报文,
    所述获取单元具体用于:
    获取报文收发参数,所述报文收发参数包括第一LSA报文数量和第二LSA报文数量,所述第一LSA报文数量为当前接收到的所述DD报文指示的LSA报文数量,所述第二LSA报文数量为之前接收到的所述DD报文指示的但还未接收到的LSA报文数量;
    所述确定单元具体用于:
    将所述第一LSA报文数量与所述第二LSA报文数量相加,生成第三LSA报文数量;
    根据预设的LSA报文平均长度及所述第三LSA报文数量,确定将要接收到的LSA报文流量;以及
    根据OSPF设备的配置情况调整所述LSA报文流量,将调整后的所述LSA报文流量确定为所述LSA报文的所述新的流量阈值。
  10. 如权利要求6~9任一项所述的装置,其特征在于,所述流量控制单元具体用于:
    获取所述类型的OSPF报文的当前流量阈值;
    判断所述新的流量阈值与所述当前流量阈值的偏差是否超过了预设阈值,当所述新的流量阈值与所述当前流量阈值的偏差超过了所述预设阈值,则将所述新的流量阈值作为更新后的当前流量阈值;当所述新的流量阈值与所述当前流量阈值的偏差未超过所述预设阈值,则维持所述当前流量阈值;以及
    根据所述当前流量阈值对所述类型的OSPF报文进行流量控制。
  11. 一种开放最短路径优先OSPF报文的流量控制装置,其特征在于,所述装置包括处理器、存储器和总线:
    其中所述处理器和所述存储器通过所述总线进行相互间的通信;
    所述存储器,用于存储程序;
    所述处理器用于执行所述存储器中存储的程序,所述程序在被执行时,用于:
    判断当前的报文收发状态是否满足预设的触发条件,所述触发条件包括到达预设时间间隔或者接收到预设类型的报文;
    当满足预设的触发条件时,获取所述触发条件对应类型的OSPF报文的报文收发参数;
    根据所述报文收发参数确定所述类型的OSPF报文的新的流量阈值;
    根据确定的所述新的流量阈值对所述类型的OSPF报文进行流量控制。
  12. 如权利要求11所述的装置,其特征在于,所述触发条件包括到达预设时间间隔,所述触发条件对应类型的OSPF报文包括HELLO报文,
    所述获取所述触发条件对应类型的OSPF报文的报文收发参数具体包括通过配置文件获取所述报文收发参数,所述报文收发参数包括OSPF设备的有效邻居的数量、每个所述有效邻居的HELLO报文间隔以及每个所述有效邻居的超时时间;
    所述根据所述报文收发参数确定所述类型的OSPF报文的新的流量阈值包括:
    将所述报文收发参数导入预设公式,生成将要接收到的HELLO报文流量;以及
    根据OSPF设备的配置情况调整所述HELLO报文流量,将调整后的所述HELLO报文流量确定为所述HELLO报文的所述新的流量阈值。
  13. 如权利要求12所述的装置,其特征在于,所述预设时间间隔的时间间隔数量级为秒。
  14. 如权利要求11所述的装置,其特征在于,所述触发条件包括接收到数据库描述DD报文,所述触发条件对应类型的OSPF报文包括OSPF链路状态通告LSA报文,
    所述报文收发参数包括第一LSA报文数量和第二LSA报文数量,所述第一LSA报文数量为当前接收到的所述DD报文指示的LSA报文数量,所述第二LSA报文数量根据之前接收到的所述DD报文指示的但还未接收到的LSA报文数量;
    所述根据所述报文收发参数确定所述类型的OSPF报文的新的流量阈值包括:
    将所述第一LSA报文数量与所述第二LSA报文数量相加,生成第三LSA报文数量;
    根据预设的LSA报文平均长度及所述第三LSA报文数量,确定将要接收到的LSA报文流量;以及
    根据OSPF设备的配置情况调整所述LSA报文流量,将调整后的所述LSA报文流量确定为所述LSA报文的所述新的流量阈值。
  15. 如权利要求11~14任一项所述的装置,其特征在于,所述根据确定的新的流量阈值对所述类型的OSPF报文进行流量控制包括:
    获取所述类型的OSPF报文的当前流量阈值;
    判断所述新的流量阈值与所述当前流量阈值的偏差是否超过了预设阈值,当所述新的流量阈值与所述当前流量阈值的偏差超过了所述预设阈值,则将所述新的流量阈值作为更新后的当前流量阈值;当所述新的流量阈值与所述当前流量阈值的偏差未超过所述预设阈值,则维持所述当前流量阈值;以及
    根据所述当前流量阈值对所述类型的OSPF报文进行流量控制。
PCT/CN2012/084995 2012-11-21 2012-11-21 一种ospf报文的流量控制方法及装置 WO2014079006A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280002401.XA CN104040975B (zh) 2012-11-21 2012-11-21 一种ospf报文的流量控制方法及装置
PCT/CN2012/084995 WO2014079006A1 (zh) 2012-11-21 2012-11-21 一种ospf报文的流量控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/084995 WO2014079006A1 (zh) 2012-11-21 2012-11-21 一种ospf报文的流量控制方法及装置

Publications (1)

Publication Number Publication Date
WO2014079006A1 true WO2014079006A1 (zh) 2014-05-30

Family

ID=50775389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084995 WO2014079006A1 (zh) 2012-11-21 2012-11-21 一种ospf报文的流量控制方法及装置

Country Status (2)

Country Link
CN (1) CN104040975B (zh)
WO (1) WO2014079006A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111740914A (zh) * 2020-06-18 2020-10-02 深圳市信锐网科技术有限公司 一种ospf协议报文分布式处理方法、系统及相关设备
CN114726791A (zh) * 2022-03-18 2022-07-08 中国建设银行股份有限公司 流控阈值的确定方法、装置、电子设备及计算机存储介质
US11929910B2 (en) * 2018-06-28 2024-03-12 Orange Communication method implemented by a first router of an autonomous system using an interior gateway protocol

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104618256B (zh) * 2015-01-22 2018-07-10 盛科网络(苏州)有限公司 Ospf动态调整链路负载的方法
CN111669334B (zh) * 2020-05-15 2023-03-28 南京南瑞继保电气有限公司 流量控制方法、装置、设备及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6571238B1 (en) * 1999-06-11 2003-05-27 Abuzz Technologies, Inc. System for regulating flow of information to user by using time dependent function to adjust relevancy threshold
CN1477823A (zh) * 2003-07-31 2004-02-25 分布式交换路由器系统的cpu报文流量控制方法
CN101079746A (zh) * 2007-06-22 2007-11-28 中兴通讯股份有限公司 宽带接入设备安全实现方法和装置
CN101170509A (zh) * 2007-11-21 2008-04-30 中兴通讯股份有限公司 交换路由器系统的流量控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6571238B1 (en) * 1999-06-11 2003-05-27 Abuzz Technologies, Inc. System for regulating flow of information to user by using time dependent function to adjust relevancy threshold
CN1477823A (zh) * 2003-07-31 2004-02-25 分布式交换路由器系统的cpu报文流量控制方法
CN101079746A (zh) * 2007-06-22 2007-11-28 中兴通讯股份有限公司 宽带接入设备安全实现方法和装置
CN101170509A (zh) * 2007-11-21 2008-04-30 中兴通讯股份有限公司 交换路由器系统的流量控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11929910B2 (en) * 2018-06-28 2024-03-12 Orange Communication method implemented by a first router of an autonomous system using an interior gateway protocol
CN111740914A (zh) * 2020-06-18 2020-10-02 深圳市信锐网科技术有限公司 一种ospf协议报文分布式处理方法、系统及相关设备
CN114726791A (zh) * 2022-03-18 2022-07-08 中国建设银行股份有限公司 流控阈值的确定方法、装置、电子设备及计算机存储介质

Also Published As

Publication number Publication date
CN104040975B (zh) 2017-04-19
CN104040975A (zh) 2014-09-10

Similar Documents

Publication Publication Date Title
WO2014079006A1 (zh) 一种ospf报文的流量控制方法及装置
WO2014000187A1 (zh) 参数配置方法及基站、用户设备
WO2015072709A1 (ko) Sdn에서 네트워크 장애 해소를 위한 컨트롤러 및 스위치의 동작 방법과, 이를 위한 컨트롤러 및 스위치
US20070280239A1 (en) Method and system for power control based on application awareness in a packet network switch
WO2012141556A2 (en) Machine-to-machine node erase procedure
WO2013170448A1 (zh) 用户设备的非连续接收配置方法、基站及系统
WO2011023123A1 (zh) Eaps 环网拓扑监控方法及系统
WO2015024167A1 (zh) 一种处理用户报文的方法及转发面设备
WO2011144126A2 (zh) 一种网络设备的配置方法、装置及系统
US11411915B2 (en) Leveraging MACsec key agreement (MKA) state events to trigger fast IGP/EGP convergence on MACsec encrypted links
WO2017185925A1 (zh) 一种访问网站的方法、客户端及局域网内服务器
WO2018177345A1 (zh) 实现wlan和lte网络自动切换的方法及通信终端
WO2019200728A1 (zh) 虚拟网关主备切换方法、装置及计算机可读存储介质
Abdelmoniem et al. Incast-Aware Switch-Assisted TCP congestion control for data centers
WO2014101453A1 (zh) 基于聚合链路实现ptp时间同步的方法及装置
WO2015012454A1 (ko) 가상 링크 조정에 의한 네트워크 성능 개선 방법 및 이를 적용한 네트워크 시스템
WO2016000107A1 (zh) 动态路由设备的主备系统切换的方法及其装置
WO2020130158A1 (ko) 오픈 프론트홀 네트워크 시스템
WO2015080525A1 (ko) Sdn 환경에서 트래픽의 동적 제어를 위한 방법 및 장치
WO2018076293A1 (zh) 多媒体通信的参数调整方法、装置及移动终端
WO2014201613A1 (zh) 一种mep配置方法及网络设备
WO2012041080A1 (zh) 老化时间的调整方法及系统、调制解调器
WO2016201643A1 (zh) 车联网数据传输方法及装置
WO2015096040A1 (zh) 接入节点、移动管理网元以及寻呼消息处理方法
WO2021017259A1 (zh) 会话监控调整方法、设备、存储介质及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888731

Country of ref document: EP

Kind code of ref document: A1