WO2014078773A1 - Atténuation de la production de bruit de pale de turbine éolienne en réponse à une variation atmosphérique - Google Patents

Atténuation de la production de bruit de pale de turbine éolienne en réponse à une variation atmosphérique Download PDF

Info

Publication number
WO2014078773A1
WO2014078773A1 PCT/US2013/070525 US2013070525W WO2014078773A1 WO 2014078773 A1 WO2014078773 A1 WO 2014078773A1 US 2013070525 W US2013070525 W US 2013070525W WO 2014078773 A1 WO2014078773 A1 WO 2014078773A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor blade
noise mitigation
noise
mitigation measure
variation
Prior art date
Application number
PCT/US2013/070525
Other languages
English (en)
Inventor
William David Duncan
Roderick A. Hyde
David B. Tuckerman
Lowell L. Wood, Jr.
Original Assignee
Elwha Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/681,231 external-priority patent/US9759196B2/en
Priority claimed from US13/681,266 external-priority patent/US9435320B2/en
Priority claimed from US13/681,196 external-priority patent/US20140142888A1/en
Application filed by Elwha Llc filed Critical Elwha Llc
Publication of WO2014078773A1 publication Critical patent/WO2014078773A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0296Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor to prevent, counteract or reduce noise emissions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • an embodiment of the subject matter described herein includes a wind turbine system.
  • the wind turbine system includes a rotor blade attached to a rotor hub drivingly coupled to an electric generator.
  • the system includes a controllable feature configured to decrease a noise generated by the rotor blade if activated.
  • the system includes a sensor configured to detect an atmospheric variation approaching the rotor blade.
  • the system includes a noise manager circuit configured to authorize a noise mitigation measure responsive to the detected atmospheric variation.
  • the system includes a control circuit configured to activate the controllable feature in response to the authorized noise mitigation measure.
  • the system includes a support structure positioning the rotor hub a sufficient distance above the ground to allow rotation of the rotor blade about the rotor hub without contacting the ground.
  • an embodiment of the subject matter described herein includes a method.
  • the method includes detecting an atmospheric variation approaching a rotating rotor blade having a controllable feature and attached to a rotor hub driving an electric generator.
  • the controllable feature is configured to decrease a noise generated by the rotor blade if activated.
  • the method includes authorizing a noise mitigation measure responsive to the detected atmospheric variation.
  • the method includes activating the controllable feature of the rotating rotor blade in response to the authorized noise mitigation measure.
  • the method includes predicting an arrival of the approaching atmospheric variation at the rotating rotor blade.
  • the activating includes activating the controllable feature of the rotating rotor blade in response to the authorized noise mitigation measure and in response to the predicted arrival of the atmospheric variation.
  • an embodiment of the subject matter described herein includes a system.
  • the system includes means for detecting an atmospheric variation approaching a rotating rotor blade having a controllable feature and attached to a rotor hub driving an electric generator.
  • the controllable feature is configured to decrease a noise generated by the rotor blade if activated.
  • the system includes means for authorizing a noise mitigation measure responsive to the detected atmospheric variation.
  • the system includes means for activating the controllable feature of the rotating rotor blade in response to the authorized noise mitigation measure.
  • the system includes means for predicting an arrival of the approaching atmospheric variation at the rotating rotor blade.
  • FIG. 1 illustrates an example embodiment of a thin computing device 19
  • FIG. 2 illustrates an example embodiment of a general-purpose computing system
  • FIG. 3 illustrates an example environment 200
  • FIG. 4 illustrates an example operational flow 300
  • FIG. 5 illustrates an example environment 400
  • FIG. 6 illustrates an example operational flow 500
  • FIG. 7 illustrates an alternative embodiment of the operational flow 500 described in conjunction with FIG. 6;
  • FIG. 8 illustrates an alternative embodiment of the operational flow 500 described in conjunction with FIG. 6;
  • FIG. 9 illustrates an example environment 600
  • FIG. 10 illustrates an example operational flow 700
  • FIG. 11 illustrates an alternative embodiment of the operational flow 700 of FIG.
  • FIG. 12 illustrates an alternative embodiment of the operational flow 700 of FIG.
  • FIG. 13 illustrates an alternative embodiment of the operational flow 700 of FIG.
  • FIG. 14 illustrates an example system 800
  • FIG. 15 illustrates an example environment 900
  • FIG. 16 illustrates an example operational flow 1000
  • FIG. 17 illustrates an example operational flow 1100.
  • the implementer may opt for a mainly software implementation; or, yet again alternatively, the implementer may opt for some
  • implementations will typically employ optically-oriented hardware, software, and or firmware.
  • implementations may include software or other control structures suitable to implement an operation.
  • Electronic circuitry may manifest one or more paths of electrical current constructed and arranged to implement various logic functions as described herein.
  • one or more media are configured to bear a device-detectable implementation if such media holds or transmits a special-purpose device instruction set operable to perform as described herein.
  • this may manifest as an update or other modification of existing software or firmware, or of gate arrays or other programmable hardware, such as by performing a reception of or a transmission of one or more instructions in relation to one or more operations described herein.
  • an implementation may include special- purpose hardware, software, firmware components, and/or general-purpose components executing or otherwise invoking special-purpose components. Specifications or other implementations may be transmitted by one or more instances of tangible transmission media as described herein, optionally by packet transmission or otherwise by passing through distributed media at various times.
  • implementations may include executing a special-purpose instruction sequence or otherwise invoking circuitry for enabling, triggering, coordinating, requesting, or otherwise causing one or more occurrences of any functional operations described below.
  • operational or other logical descriptions herein may be expressed directly as source code and compiled or otherwise invoked as an executable instruction sequence.
  • C++ or other code sequences can be compiled directly or otherwise implemented in high-level descriptor languages (e.g., a logic-synthesizable language, a hardware description language, a hardware design simulation, and/or other such similar mode(s) of expression).
  • some or all of the logical expression may be manifested as a Verilog-type hardware description or other circuitry model before physical implementation in hardware, especially for basic operations or timing-critical applications.
  • Verilog-type hardware description or other circuitry model before physical implementation in hardware, especially for basic operations or timing-critical applications.
  • electromechanical system includes, but is not limited to, electrical circuitry operably coupled with a transducer (e.g., an actuator, a motor, a piezoelectric crystal, a Micro Electro Mechanical System (MEMS), etc.), electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of memory (e.g., random access, flash, read only, etc.)), electrical circuitry forming a communications device (e.g., a modem, module, communications switch, optical-electrical equipment, etc.), and/or any
  • electro-mechanical systems include but are not limited to a variety of consumer electronics systems, medical devices, as well as other systems such as motorized transport systems, factory automation systems, security systems, and/or communication/computing systems.
  • electromechanical as used herein, is not necessarily limited to a system that has both electrical and mechanical actuation except as context may dictate otherwise.
  • electrical circuitry includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of memory (e.g., random access, flash, read only, etc.)), and/or electrical circuitry forming a communications device (
  • a data processing system generally includes one or more of a system unit housing, a video display device, memory such as volatile or non- volatile memory, processors such as microprocessors or digital signal processors, computational entities such as operating systems, drivers, graphical user interfaces, and applications programs, one or more interaction devices (e.g., a touch pad, a touch screen, an antenna, etc.), and/or control systems including feedback loops and control motors (e.g., feedback for sensing position and/or velocity; control motors for moving and/or adjusting components and/or quantities).
  • a data processing system may be implemented utilizing suitable commercially available components, such as those typically found in data computing/communication and/or network computing/communication systems.
  • FIGS. 1 and 2 provide respective general descriptions of several environments in which implementations may be implemented.
  • FIG. 1 is generally directed toward a thin computing environment 19 having a thin computing device 20
  • FIG. 2 is generally directed toward a general purpose computing environment 100 having general purpose computing device 110.
  • prices of computer components drop and as capacity and speeds increase, there is not always a bright line between a thin computing device and a general purpose computing device.
  • FIG. 1 illustrates an example system that includes a thin computing device 20, which may be included or embedded in an electronic device that also includes a device functional element 50.
  • the electronic device may include any item having electrical or electronic components playing a role in a functionality of the item, such as for example, a refrigerator, a car, a digital image acquisition device, a camera, a cable modem, a printer, an ultrasound device, an x-ray machine, a non-invasive imaging device, or an airplane.
  • the electronic device may include any item that interfaces with or controls a functional element of the item.
  • a thin computing device may be included in an implantable medical apparatus or device.
  • the thin computing device may be operable to communicate with an implantable or implanted medical apparatus.
  • a thin computing device may include a computing device having limited resources or limited processing capability, such as a limited resource computing device, a wireless communication device, a mobile wireless communication device, a smart phone, an electronic pen, a handheld electronic writing device, a scanner, a cell phone, a smart phone (such as an Android® or iPhone® based device), a tablet device (such as an iPad®), or a Blackberry® device.
  • a thin computing device may include a thin client device or a mobile thin client device, such as a smart phone, tablet, notebook, or desktop hardware configured to function in a virtualized environment.
  • the thin computing device 20 includes a processing unit 21, a system memory 22, and a system bus 23 that couples various system components including the system memory 22 to the processing unit 21.
  • the system bus 23 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures.
  • the system memory includes read-only memory (ROM) 24 and random access memory (RAM) 25.
  • ROM read-only memory
  • RAM random access memory
  • a basic input/output system (BIOS) 26 containing the basic routines that help to transfer information between sub-components within the thin computing device 20, such as during start-up, is stored in the ROM 24.
  • a number of program modules may be stored in the ROM 24 or RAM 25, including an operating system 28, one or more application programs 29, other program modules 30 and program data 31.
  • a user may enter commands and information into the computing device
  • An input interface may include a touch-sensitive display, or one or more switches or buttons with suitable input detection circuitry.
  • a touch-sensitive display is illustrated as a display 32 and screen input detector 33.
  • One or more switches or buttons are illustrated as hardware buttons 44 connected to the system via a hardware button interface 45.
  • the output circuitry of the touch-sensitive display 32 is connected to the system bus 23 via a video driver 37.
  • Other input devices may include a microphone 34 connected through a suitable audio interface 35, or a physical hardware keyboard (not shown).
  • Output devices may include the display 32, or a projector display 36.
  • the computing device 20 may include other peripheral output devices, such as at least one speaker 38.
  • Other external input or output devices 39 such as a joystick, game pad, satellite dish, scanner or the like may be connected to the processing unit 21 through a USB port 40 and USB port interface 41, to the system bus 23.
  • the other external input and output devices 39 may be connected by other interfaces, such as a parallel port, game port or other port.
  • the computing device 20 may further include or be capable of connecting to a flash card memory (not shown) through an appropriate connection port (not shown).
  • the computing device 20 may further include or be capable of connecting with a network through a network port 42 and network interface 43, and through wireless port 46 and corresponding wireless interface 47 may be provided to facilitate communication with other peripheral devices, including other computers, printers, and so on (not shown). It will be appreciated that the various components and connections shown are examples and other components and means of establishing communication links may be used.
  • the computing device 20 may be primarily designed to include a user interface.
  • the user interface may include a character, a key-based, or another user data input via the touch sensitive display 32.
  • the user interface may include using a stylus (not shown).
  • the user interface is not limited to an actual touch-sensitive panel arranged for directly receiving input, but may alternatively or in addition respond to another input device such as the microphone 34. For example, spoken words may be received at the microphone 34 and recognized.
  • the computing device 20 may be designed to include a user interface having a physical keyboard (not shown).
  • the device functional elements 50 are typically application specific and related to a function of the electronic device, and are coupled with the system bus 23 through an interface (not shown).
  • the functional elements may typically perform a single well-defined task with little or no user configuration or setup, such as a refrigerator keeping food cold, a cell phone connecting with an appropriate tower and transceiving voice or data information, a camera capturing and saving an image, or communicating with an implantable medical apparatus.
  • the thin computing device 20 may be deemed not necessary and omitted. In other instances, one or more other elements 50 may be deemed necessary and added to the thin computing device.
  • FIG. 2 and the following discussion are intended to provide a brief, general description of an environment in which embodiments may be implemented.
  • FIG. 2 illustrates an example embodiment of a general -purpose computing system in which embodiments may be implemented, shown as a computing system environment 100.
  • Components of the computing system environment 100 may include, but are not limited to, a general purpose computing device 110 having a processor 120, a system memory 130, and a system bus 121 that couples various system components including the system memory to the processor 120.
  • the system bus 121 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures.
  • bus architectures include Industry Standard Architecture (ISA) bus, Micro Channel
  • MCA Multimedia Architecture
  • EISA Enhanced ISA
  • Computer-readable media may include any media that can be accessed by the computing device 110 and include both volatile and nonvolatile media, removable and non-removable media.
  • Computer-readable media may include computer storage media.
  • Computer-readable media may include a communication media.
  • Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules, or other data.
  • Computer storage media includes, but is not limited to, random-access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory, or other memory technology, CD-ROM, digital versatile disks (DVD), or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage, or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computing device 110.
  • a computer storage media may include a group of computer storage media devices.
  • a computer storage media may include an information store.
  • an information store may include a quantum memory, a photonic quantum memory, or atomic quantum memory.
  • Communication media may typically embody computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism and include any information delivery media.
  • modulated data signal means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
  • communications media may include wired media, such as a wired network and a direct-wired connection, and wireless media such as acoustic, RF, optical, and infrared media.
  • the system memory 130 includes computer storage media in the form of volatile and nonvolatile memory such as ROM 131 and RAM 132.
  • a RAM may include at least one of a DRAM, an EDO DRAM, a SDRAM, a RDRAM, a VRAM, or a DDR DRAM.
  • a basic input/output system (BIOS) 133 containing the basic routines that help to transfer information between elements within the computing device 110, such as during start-up, is typically stored in ROM 131.
  • BIOS basic input/output system
  • RAM 132 typically contains data and program modules that are immediately accessible to or presently being operated on by the processor 120.
  • FIG. 2 illustrates an operating system 134, application programs 135, other program modules 136, and program data 137.
  • the operating system 134 offers services to applications programs 135 by way of one or more application programming interfaces (APIs) (not shown). Because the operating system 134 incorporates these services, developers of applications programs 135 need not redevelop code to use the services. Examples of APIs provided by operating systems such as Microsoft's "WINDOWS" ® are well known in the art.
  • APIs application programming interfaces
  • FIG. 2 illustrates a non-removable non-volatile memory interface (hard disk interface) 140 that reads from and writes for example to non-removable, non- volatile magnetic media.
  • FIG. 2 also illustrates a removable non- volatile memory interface 150 that, for example, is coupled to a magnetic disk drive 151 that reads from and writes to a removable, non- volatile magnetic disk 152, or is coupled to an optical disk drive 155 that reads from and writes to a removable, non-volatile optical disk 156, such as a CD ROM.
  • a removable non-volatile memory interface 150 that, for example, is coupled to a magnetic disk drive 151 that reads from and writes to a removable, non- volatile magnetic disk 152, or is coupled to an optical disk drive 155 that reads from and writes to a removable, non-volatile optical disk 156, such as a CD ROM.
  • Other removable/non-removable, volatile/non-volatile computer storage media that can be used in the example operating environment include, but are not limited to, magnetic tape cassettes, memory cards, flash memory cards, DVDs, digital video tape, solid state RAM, and solid state ROM.
  • the hard disk drive 141 is typically connected to the system bus 121 through a non-removable memory interface, such as the interface 140, and magnetic disk drive 151 and optical disk drive 155 are typically connected to the system bus 121 by a removable non-volatile memory interface, such as interface 150.
  • the drives and their associated computer storage media discussed above and illustrated in FIG. 2 provide storage of computer-readable instructions, data structures, program modules, and other data for the computing device 110.
  • hard disk drive 141 is illustrated as storing an operating system 144, application programs 145, other program modules 146, and program data 147. Note that these components can either be the same as or different from the operating system 134, application programs 135, other program modules 136, and program data 137.
  • the operating system 144, application programs 145, other program modules 146, and program data 147 are given different numbers here to illustrate that, at a minimum, they are different copies.
  • a user may enter commands and information into the computing device
  • input devices such as a microphone 163, keyboard 162, and pointing device 161, commonly referred to as a mouse, trackball, or touch pad.
  • Other input devices may include at least one of a touch sensitive display, joystick, game pad, satellite dish, and scanner.
  • a user input interface 160 that is coupled to the system bus, but may be connected by other interface and bus structures, such as a parallel port, game port, or a universal serial bus (USB).
  • a display 191 such as a monitor or other type of display device or surface may be connected to the system bus 121 via an interface, such as a video interface 190.
  • a projector display engine 192 that includes a projecting element may be coupled to the system bus.
  • the computing device 110 may also include other peripheral output devices such as speakers 197 and printer 196, which may be connected through an output peripheral interface 195.
  • the computing system environment 100 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 180.
  • the remote computer 180 may be a personal computer, a server, a router, a network PC, a peer device, or other common network node, and typically includes many or all of the elements described above relative to the computing device 110, although only a memory storage device 181 has been illustrated in FIG. 2.
  • the network logical connections depicted in FIG. 2 include a local area network (LAN) and a wide area network (WAN), and may also include other networks such as a personal area network (PAN) (not shown).
  • LAN local area network
  • WAN wide area network
  • PAN personal area network
  • Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets, and the Internet.
  • the computing system environment 100 When used in a networking environment, the computing system environment 100 is connected to the network 171 through a network interface, such as the network interface 170, or to the network 173 through the modem 172, or through the wireless interface 193.
  • the network may include a LAN network environment, or a WAN network environment, such as the Internet.
  • program modules depicted relative to the computing device 110, or portions thereof, may be stored in a remote memory storage device.
  • FIG. 2 illustrates remote application programs 185 as residing on memory storage device 181. It will be appreciated that the network connections shown are examples and other means of establishing communication link between the computers may be used.
  • one or more elements of the computing device 110 may be deemed not necessary and omitted. In other instances, one or more other elements may be deemed necessary and added to the computing device.
  • FIG. 3 illustrates an example environment 200 in which embodiments may be implemented.
  • the illustrated environment includes a wind turbine system 202.
  • the environment may include other wind turbine systems, illustrated by a wind turbine system 204.
  • Wind turbines larger than one megawatt of rated power may be a surprise for many nearby residents by being much louder than expected.
  • the sounds produced by blades, gearing, and generator may be significantly louder and more noticeable as wind turbine size increases.
  • Long rotor blades create a distinctive aerodynamic sound as air shears off the trailing edge or rear portion of the airfoil and tip. The sound character varies from a "whoosh” at low wind speeds to "a jet plane that never lands” at moderate and higher wind speeds. Blade -induced air vortices spinning off the tip may produce an audible "thump" as each blade sweeps past the mast. Thumping can become more pronounced at distance, sometimes described as "sneakers in a dryer," when sounds from multiple turbines arrive at a listener's position simultaneously.
  • Wind turbines often are not synchronized and so thumps may arrive together or separately, creating an unpredictable or chaotic acoustic pattern.
  • the sounds of large industrial wind turbines may be clearly audible for miles. They may be considered intrusive sounds that are uncharacteristic of a natural soundscape.
  • the wind turbine system 202 includes a wind turbine 203 having a rotor blade 210 attached to a rotor hub 220 drivingly coupled to an electric generator 224.
  • the electric generator may be housed in a nacelle 226.
  • the system includes a sensor configured to detect a rotational position 218 of the rotor blade relative to a surface of the ground 290.
  • FIG. 3 illustrates an embodiment where the rotor blade rotates counterclockwise when viewed from a head-on or upwind direction. In another embodiment, the rotor blade may rotate clockwise.
  • the sensor is illustrated by a sensor 232 carried by the rotor blade 210.
  • the sensor is illustrated by a sensor 234 carried by a support structure 240.
  • the senor is illustrated by a sensor 236 carried by a structure 242 other than the support structure 240.
  • a rotational position may be expressed as a linear distance measurement 292 of a tip 212 of the rotor blade above the ground.
  • the sensor is illustrated by a sensor and rotational angle index mark 238 carried on the rotor shaft 220.
  • the rotational position 218 may be expressed by a degree of rotation relative to horizontal axis or relative to vertical axis of the earth.
  • FIG. 5 illustrates a rotation 494 of a rotor 410 relative to a vertical axis, as illustrated by the support structure 440.
  • the wind turbine system 202 includes a noise controller 250 configured to implement a noise mitigation measure responsive to the detected rotational position 218 of the rotor blade relative to the surface of the ground 290. While the noise controller is illustrated in FIG. 3 as carried by the nacelle 226, the noise controller may be carried, located, or positioned at any convenient location.
  • the noise controller may be carried or mounted within the nacelle, onboard some other portion of the wind turbine, on the support structure 240, or off-board of the wind turbine.
  • the surface of the ground 290 includes a naturally occurring surface of the earth, or a surface of an earthen structure, such as a manmade fill or excavation.
  • the surface of the ground includes a surface of the ground closest to a propeller disc described by a revolution of the rotor blade 210. For example, see the portion of the ground proximate to the tip 212 referenced by the distance measurement 292.
  • the senor is configured to detect a descending motion of the tip 212 of the rotor blade 210 relative to the surface of the ground 290. In an embodiment, the sensor is configured to detect an ascending motion of the tip of the rotor blade relative to the surface of the ground. In an embodiment, the sensor is configured to detect a motion of a tip of the rotor blade generally parallel to the surface of the ground. In an embodiment, the sensor is configured to detect a rotational position 218 of the rotor blade relative to a portion of the surface of the ground proximate to the structure 240 supporting the rotor hub 220. In an embodiment, the sensor is configured to detect a rotational position of the rotor blade relative to the structure supporting the rotor hub.
  • the senor is configured to detect a rotor blade angle within the generator. See sensor and rotational angle index mark 238.
  • the sensor includes a trigger indexed to the rotor blade.
  • the sensor includes a microphone.
  • the sensor includes a pressure sensor.
  • the sensor includes an optical sensor.
  • the noise controller 250 is configured to select and implement a noise mitigation measure responsive to the detected rotational position 218 of the rotor blade 210.
  • the noise mitigation measure includes changing an orientation of at least a portion of the rotor blade.
  • the changing an orientation may include changing a pitch of the entire rotor blade.
  • the changing an orientation may include changing a pitch of a portion of the rotor blade using a controllable feature 262 of the rotor blade.
  • the noise mitigation measure includes dynamically shaping airflow over at least a portion of a rotor blade.
  • the dynamically shaping airflow may include using the controllable feature of the rotor blade.
  • the noise mitigation measure includes releasing air from a region on the rotor blade.
  • the releasing air may occur on the vacuum side or the pressure side of the rotor blade using the controllable feature of the rotor blade.
  • the noise mitigation measure includes creating a transpiration airflow on at least a portion of the rotor blade. Transpiration is a technique in which extra non- physical normal flows are created on an airfoil surface in order to form a new streamline pattern such that the surface streamlines no longer follow the airfoil surface under inviscid flow.
  • the creating a transpiration airflow may include using the controllable feature of the rotor blade.
  • the noise mitigation measure is responsive to a detected descending motion of the tip 212 of the rotor blade 210 relative to the surface of the ground 290. In an embodiment, the noise mitigation measure is responsive to a detected ascending motion of a tip of the rotor blade relative to the surface of the ground. In an embodiment, the noise mitigation measure is responsive to a detected rotational position 218 of the rotor blade relative to the surface of the ground. In an embodiment, the noise mitigation measure varies asymmetrically depending upon a detected rotational position 218 of the rotor blade relative to the surface of the ground.
  • the noise mitigation measure may change or vary depending on whether the rotor blade is descending toward the surface of the ground, paralleling the surface of the ground, or ascending away from the surface of the ground.
  • the noise mitigation measure is implemented by an apparatus carried on at least a portion of the rotor blade, such as by the controllable feature 262 of the rotor blade.
  • the controllable feature of the rotor blade includes a dynamically shapeable region of the rotor blade located at a first portion of the longitudinal length of the rotor blade, and the noise mitigation measure is implemented by the dynamically shapeable region.
  • the noise mitigation measure is implemented by a speaker.
  • the speaker is carried by the rotor blade, and may be implemented using the controllable feature 262.
  • a speaker 264 is carried by the support structure 240 supporting the rotor hub 220.
  • the speaker 266 is carried by a structure 244 other than the support structure 240.
  • system 202 further includes another rotor blade
  • the noise mitigation measure is further responsive to a position of the another rotor blade with respect to the surface of the ground 290. In an embodiment, the noise mitigation measure is further responsive to a position of the another rotor blade with respect to the support structure 240. In an embodiment, the system further includes the support structure 240 mounted on or in the ground and maintaining the rotor hub a sufficient distance above the surface of the ground to allow the rotor blade 210 to rotate about the rotor hub without contacting the surface of the ground.
  • FIG. 4 illustrates an example operational flow 300.
  • the operational flow includes a locating operation 310.
  • the locating operation includes detecting a position relative to a surface of the ground of a rotating rotor blade of a wind turbine driven electric generator.
  • the locating operation may be implemented using the sensors 232, 234, 236, or 238 described in conjunction with FIG. 3.
  • An approval operation 320 includes authorizing a noise mitigation measure responsive to the detected position of the rotating rotor blade.
  • the approval operation may be implemented using the noise manager circuit 650 described in conjunction with FIG. 9.
  • An execution operation 330 includes implementing the authorized noise mitigation measure.
  • the execution operation may be implemented using the noise controller 250 described in conjunction with FIG. 3.
  • the operational flow includes an end operation.
  • the detecting a position 310 includes detecting a position of a tip of the rotating rotor blade.
  • the authorizing 320 includes authorizing a noise mitigation measure responsive to the detected position of the tip of the rotating rotor blade.
  • the detecting a position includes detecting a position relative to a surface of the ground closest to a propeller disc described by the rotating rotor blade of a rotating rotor blade of a wind turbine driven electric generator.
  • the detecting a position includes detecting a rotational position of the rotor blade.
  • a detected position may be expressed in a degree of rotation about an axis, such as 10 degrees from vertical, such as in a first descending quadrant, or as 330 degrees from vertical, such as in a third ascending quadrant.
  • the detecting a position includes detecting a descending or an ascending rotational position of the tip of the rotor blade.
  • the authorized noise mitigation measure includes dynamically shaping airflow over at least a portion of the rotor blade.
  • the authorized noise mitigation measure includes releasing air from a region of the rotor blade.
  • the air may be released from a vacuum side or a pressure side of the rotor blade.
  • the authorized noise mitigation measure includes creating a transpiration airflow on at least a portion of the rotor blade.
  • the implementing 330 includes implementing 332 the authorized noise mitigation measure using an apparatus carried on at least a portion of the rotor blade. In an embodiment, the implementing includes implementing 334 the authorized noise mitigation measure using a speaker.
  • the speaker is carried by a structure supporting the rotor hub. In an embodiment, the speaker is carried by carried by a structure other than a structure supporting the rotor hub. In an
  • FIG. 5 illustrates an example environment 400.
  • the environment includes a wind turbine system 402.
  • the environment includes another wind turbine system 404.
  • the wind turbine system 402 includes a wind turbine 403 having a rotor blade 410 attached to a rotor hub 420 drivingly coupled to an electric generator.
  • the wind turbine system includes a support structure 440 mounted on or in the ground 290 and maintaining the rotor hub a sufficient distance above the surface of the ground to allow the rotor blade to rotate about the rotor hub without contacting the surface of the ground.
  • the wind turbine system includes a sensor configured to detect a rotational position 494 of the rotor blade relative to the support structure.
  • the sensor is illustrated by a sensor 432 carried by the rotor blade 410.
  • the sensor is illustrated by a sensor 434 carried by a support structure 440.
  • the sensor is illustrated by a sensor 436 carried by a structure 442 other than the support structure 440.
  • the sensor is illustrated by a sensor and rotational position index mark 438 carried on the rotor shaft 420.
  • the wind turbine system includes a noise controller 450 configured to implement a noise mitigation measure responsive to the detected rotational position of the rotor blade relative to the support structure. While the noise controller is illustrated in FIG.
  • the noise controller may be carried, located, or positioned at any convenient location.
  • the noise controller may be carried or mounted within the nacelle, onboard some other portion of the wind turbine, on the support structure 440, or off board of the wind turbine.
  • the senor is configured to detect a position of a tip
  • the senor is configured to detect the rotor blade sweeping past the support structure. In an embodiment, the sensor is configured to detect a motion of a tip 412 of the rotor blade generally parallel to the surface of the ground.
  • the noise controller 450 is further configured to predict when the rotor blade will sweep past the support structure, and to further implement the noise mitigation measure responsive to the predicted sweep of the rotor blade past the support structure. For example, the prediction may include information forecasting or predicting a time until or when the rotor blade will sweep past the support structure. In an embodiment, the noise mitigation measure is implemented by a controllable feature 462 located on the rotor blade.
  • the noise mitigation measure is implemented by an apparatus located on the support structure, such as the controllable feature 464.
  • the controllable feature may be configured to emit an air blast or pull a vacuum in a region swept through by the rotor blade.
  • the noise mitigation measure is responsive to the rotor blade sweeping past the support structure.
  • the noise mitigation measure is implemented by an apparatus carried by a structure other than a structure supporting the rotor hub on the support structure, such as a speaker 466 carried on a structure 444.
  • the noise mitigation measure is responsive to a detected tip of the rotor blade sweeping past the support structure.
  • the noise mitigation measure is response to a detected rotational position 438 of the rotor blade 410 relative to the support structure 440.
  • the rotational position may be expressed as approaching, paralleling, or departing the support structure.
  • FIG. 6 illustrates an example operational flow 500.
  • the operational flow includes a locating operation 510.
  • the locating operation includes detecting a position relative to a support structure of a rotating rotor blade of a wind turbine driven electric generation system.
  • the support structure is mounted on or in the ground and maintains the rotor hub a sufficient distance above the surface of the ground to allow rotation of the rotor blade about the rotor hub without the rotor blade contacting the ground.
  • the locating operation may be implemented using at least one of the sensors 432, 434, 436, or 438 described in conjunction with FIG. 5.
  • An execution operation 540 includes implementing a noise mitigation measure responsive to the detected position of the rotating rotor blade.
  • the execution operation may be implemented using the noise controller 450 described in conjunction with FIG. 5.
  • the operational flow includes an end operation.
  • the detecting includes detecting a position relative to a support structure of a tip of a rotating rotor blade of a wind turbine electric generation system. In an embodiment, the detecting includes detecting the rotating rotor blade rotating past the support structure. For example a tip or a particular portion of the rotating rotor blade may be detected.
  • the operational flow 500 includes an approval operation 520 authorizing implementing the noise mitigation measure. In an embodiment, the operational flow includes a timing operation 530 predicting when the rotating rotor blade will pass the support structure.
  • FIG. 7 illustrates an alternative embodiment of the operational flow 500 described in conjunction with FIG. 6. In an embodiment, the approval operation 520 includes at least one additional operation.
  • the at least one additional operation may include an operation 522, an operation 524, or an operation 526.
  • the operation 522 includes authorizing the implementing the noise mitigation measure in response to a noise impact criteria.
  • the operation 524 includes authorizing the implementing the noise mitigation measure in response to a time of day criteria.
  • the operation 526 includes authorizing the implementing the noise mitigation measure in response to an ambient conditions based criteria.
  • an ambient conditions based criteria may include an ambient condition of the wind turbine, or an ambient condition of a potentially downwind neighborhood.
  • the timing operation 530 may include at least one additional operation, such as an operation 532.
  • the operation 532 includes predicting when a tip of the rotating rotor blade will pass the support structure.
  • the timing operation may include predicting when a portion of the rotating rotor blade will pass the support structure.
  • the execution operation 540 may include at least one additional operation, such as an operation 542.
  • the operation 542 includes implementing a noise mitigation measure responsive to the detected position of the rotating rotor blade and responsive to the predicted passage of the rotating rotor blade past the support structure.
  • FIG. 8 illustrates an alternative embodiment of the operational flow 500 described in conjunction with FIG. 6.
  • the execution operation 540 may include at least one additional operation.
  • the at least one additional operation may include an operation 544, an operation 546, an operation 548, an operation 552, an operation 554, an operation 556, or an operation 558.
  • the operation 544 includes implementing a noise mitigation measure using an apparatus located on the support structure.
  • a noise mitigation measure may include an air blast, or a vacuum in a region swept through by the rotor blade.
  • the operation 546 includes dynamically shaping airflow over at least a portion of a rotor blade.
  • An operation includes dynamically shaping airflow over at least a portion of a rotor blade as the rotor blade rotates past the support structure.
  • An operation includes changing an orientation of at least a portion of the rotating rotor blade.
  • the operation 548 includes releasing air from a region of the rotor blade. For example, the air may be released from the vacuum side or the pressure side of the rotating rotor blade.
  • An operation includes releasing air from a region of the rotor blade as the rotor blade rotates past the support structure.
  • the operation 552 includes creating a transpiration airflow on at least a portion of the rotor blade.
  • An operation includes creating a transpiration airflow on at least a portion of the rotor blade as the rotor blade rotates past the support structure.
  • the operation 554 includes
  • the operation 556 includes implementing a noise mitigation measure using an apparatus carried by the support structure.
  • the operation 558 includes implementing a noise mitigation measure using a speaker carried by a structure supporting the rotor hub.
  • An operation includes implementing a noise mitigation measure using a speaker carried by a structure other than the structure supporting the rotor hub.
  • FIG. 9 illustrates an example environment 600.
  • the environment includes a wind turbine system 602.
  • the environment includes another wind turbine system 604, and may include a further wind turbine system 606.
  • the wind turbine system 602 includes a wind turbine 603 having a rotor blade 610 attached to a rotor hub 620 drivingly coupled to an electric generator 624.
  • the system includes a sensor configured to detect an atmospheric variation 680 approaching the rotor blade 610.
  • Illustrated embodiments of the sensor include a sensor 631 carried by the rotor hub 620, a sensor 632 carried by the rotor blade, a sensor 633 carried by a nacelle 626, a sensor 634 carried by the structure 640 supporting the rotor hub, and a sensor 635 carried by a structure 642 other than the support structure 640.
  • the system includes a controllable feature configured to decrease a noise generated by the rotor blade if activated.
  • Illustrated embodiments of the controllable feature include a controllable feature 662 carried by the rotor blade, a controllable feature 664 carried by the support structure 640, and a controllable feature 666 carried by another structure 644 other than the support structure 640.
  • the system 602 includes a noise manager circuit 650 configured to authorize a noise mitigation measure responsive to the detected atmospheric variation 680. While the noise manager system is illustrated in FIG. 9 as carried by the nacelle 626, the noise manager system may be carried, located, or positioned at any convenient location. For example, the noise manager system may be carried or mounted within the nacelle 626, onboard some other portion of the wind turbine, on the support structure 640, or off-board the wind turbine.
  • the system includes a control circuit 670 configured to activate the controllable feature in response to the authorized noise mitigation measure. While the control circuit is illustrated in FIG. 9 as carried by the nacelle 626, the control circuit may be carried, located, or positioned at any convenient location. For example, the control circuit may be carried or mounted within the nacelle, onboard some other portion of the wind turbine, on the support structure, or off-board the wind turbine.
  • the system 602 includes a computing device 675 configured to predict a possible shift or change in the detected atmospheric variation as it approaches the rotor blade. For example, the computing device may predict that a detected atmospheric pressure drop will increase or decrease by the time it reaches the rotor blade. For example, the computing device may predict that a detected wind speed change will dissipate by the time it reaches the rotor blade.
  • the rotor blade 610 incudes the controllable feature 662.
  • the system 602 further includes a support structure carrying the controllable feature.
  • the support structure 640 carries the controllable feature 662 and supports the rotor hub 620 a sufficient distance above the ground to allow rotation of the rotor blade about the rotor hub without contacting the ground 290.
  • the support structure includes a structure 644 carrying the controllable feature 666.
  • the senor includes a laser Doppler anemometer
  • the senor includes a rotary cup anemometer.
  • the sensor includes a sonic anemometer.
  • the sensor includes an atmospheric pressure sensor.
  • the sensor includes a radar sensor.
  • the senor is carried by the rotor hub, a nacelle enclosing the rotor hub, or a structure supporting the rotor hub.
  • the sensor is configured to detect an atmospheric variation approaching the rotor blade at a distance of at least one rotor blade length upwind of the rotor hub.
  • the sensor is carried by a structure potentially downwind of the rotor hub. While this embodiment may not be illustrated in FIG. 9, a sensor, for example, may be carried by a structure positioned substantially between the wind turbine system 602 and a
  • the senor is carried by a structure potentially upwind of the rotor hub, illustrated as by the support structure 642 carrying the sensor 637.
  • the sensor is configured to detect an atmospheric variation 680 approaching the rotor blade within a time frame sufficient for the noise manager circuit 650 to authorize a noise mitigation measure and the controller circuit 670 to implement the noise mitigation measure before or as the atmospheric variation affects the rotor blade.
  • the sensor includes a sensor configured to detect a spatial variation in airflow approaching the rotor blade.
  • a spatial variation may include a vertical or horizontal variation profile.
  • the sensor includes a sensor configured to detect a variation in air moisture content, temperature, or density in an airflow approaching the rotor blade.
  • the detected atmospheric variation includes a detected transient atmospheric variation.
  • a detected atmospheric variation may include a gust, shift in wind direction, or patch of warm or cold air.
  • the detected atmospheric variation includes a detected wind speed, a change in wind speed, a wind direction, a change in wind direction, or a wind gradient.
  • a detected wind speed variation may include a 1 ⁇ 2, 1, 2, 3, 5 mph wind speed variation over a particular time, or a directional variation of 2, 5, or 10 degrees over a particular time for example.
  • the detected atmospheric variation includes a detected turbulence, temperature, or pressure variation.
  • the detected atmospheric variation includes a detected atmospheric variation categorized as possibly having an effect on generation of the noise by the rotor blade.
  • the detected atmospheric variation includes a detected variation in a wind speed approaching the rotor blade.
  • the controllable feature includes an airflow-modifiable region 662 of the rotor blade 610 located at a portion of a longitudinal length of the rotor blade.
  • the noise mitigation measure includes changing a cross- sectional shape of the airflow-modifiable region of the rotor blade.
  • the noise mitigation measure includes controlling airflow over the airflow-modifiable region.
  • the noise mitigation measure includes dynamically altering airflow over the airflow-modifiable region.
  • the noise mitigation measure includes releasing air from the airflow-modifiable region.
  • the noise mitigation measure includes creating a transpiration airflow through the airflow- modifiable region.
  • controllable feature includes a controllable rotor blade pitch.
  • noise mitigation measure includes changing a pitch of the rotor blade.
  • the noise mitigation measure is further implemented by a controllable feature 664 carried on the structure 640 supporting the rotor hub.
  • the authorization of the noise mitigation measure is not responsive to a possible impact of the authorized noise mitigation measure on electric power generated by the electric generator 624.
  • the authorization may not take into account, or may be indifferent or agnostic to a possible reduction in electricity generated by the electric generator.
  • the authorization of the noise mitigation measure is responsive to a possible impact of the authorized noise mitigation measure on electric power generated by the electric generator.
  • the authorization of the noise mitigation measure includes authorizing the noise mitigation measure if the electric power generation reduction is below a threshold level. For example, implementation of the noise mitigation measure may be authorized if the anticipated power generation reduction is less than 10% of that currently being generated.
  • the authorization of the noise mitigation measure is responsive to a minimum electric power generation requirement for the wind turbine system. For example, implementation of the noise mitigation measure may be authorized if the power generation is predicted or calculated to remain above 1 megawatt.
  • the noise manager circuit is further configured to select the noise mitigation measure from at least two possible noise mitigation measures responsive to the detected atmospheric variation.
  • the authorizing includes authorizing a noise mitigation measure selected from at least two possible noise mitigation measures responsive to the detected atmospheric variation. [0067]
  • the noise manager circuit 650 is further configured to select the noise mitigation measure having the least reduction in electric power generated by the electric generator 624 from at least two possible noise mitigation measures responsive to the detected atmospheric variation 680.
  • the noise manager circuit is configured to authorize a noise mitigation measure responsive to a detected average wind speed approaching the rotor blade 610 exceeding a threshold wind speed. In an embodiment, the noise manager circuit is configured to authorize a noise mitigation measure responsive to a detected variation of atmospheric pressure approaching the rotor blade that exceeds a threshold criterion. In an embodiment, the noise manager circuit is configured to authorize a noise mitigation measure responsive to a detected turbulence, air moisture content, air temperature, or air density variation approaching the blade.
  • the senor is configured to detect an atmospheric variation 680 approaching the rotor blade 610 within a time frame sufficient for the noise manager circuit 650 to select the noise mitigation measure and for the controller circuit 670 to implement the authorized noise mitigation measure before or as the atmospheric variation affects the rotor blade.
  • the system 602 further includes the support structure 640 positioning the rotor hub 620 a sufficient distance above the ground 290 to allow rotation of the rotor blade about the rotor hub 620 without contacting the ground.
  • FIG. 10 illustrates an example operational flow 700.
  • the operational flow includes a locating operation 710.
  • the locating operation includes detecting an atmospheric variation approaching a rotating rotor blade having a controllable feature and attached to a rotor hub driving an electric generator.
  • the controllable feature is configured to decrease a noise generated by the rotor blade if activated.
  • the locating operation may be implemented using a sensor of the sensors 631-637 described in conjunction with FIG. 9.
  • An approval operation 720 includes authorizing a noise mitigation measure responsive to the detected atmospheric variation.
  • the approval operation may be implemented using the noise manager circuit 650 described in conjunction with FIG. 9.
  • An execution operation 740 includes activating the controllable feature of the rotating rotor blade in response to the authorized noise mitigation measure.
  • the execution operation may be implemented using the control circuit 670 described in conjunction with FIG. 9.
  • the operational flow includes an end operation.
  • the operational flow 700 includes predicting 730 an arrival of the approaching atmospheric variation at the rotating rotor blade.
  • the execution operation 740 includes activating 742 the controllable feature of the rotating rotor blade in response to the authorized noise mitigation measure and in response to the predicted arrival of the atmospheric variation.
  • the operational flow includes computationally predicting a possible shift or change in the detected atmospheric variation as it approaches the rotor blade.
  • the computationally predicting may be implemented using the computing device 675 described in conjunction with FIG. 9.
  • FIG. 11 illustrates an alternative embodiment of the operational flow 700 of FIG. 10.
  • the locating operation 710 may include at least one additional embodiment.
  • the at least one additional embodiment may include an operation 712, an operation 714, an operation 716, or an operation 718.
  • the operation 712 includes detecting an atmospheric variation approaching a rotating rotor blade using a LIDAR device.
  • the operation 714 includes detecting an atmospheric variation approaching a rotating rotor blade using an anemometer sensor.
  • the operation 716 includes detecting an atmospheric variation approaching a rotating rotor blade using a radar sensor.
  • the operation 718 includes detecting an atmospheric variation approaching the rotor blade within a time frame sufficient to activate the controllable feature before or as the atmospheric variation affects the rotor blade.
  • FIG. 12 illustrates an alternative embodiment of the operational flow 700 of FIG. 10.
  • the approval operation 720 may include at least one additional operation.
  • the at least one additional operation may include an operation 722, an operation 724, an operation 726, or an operation 728.
  • the operation 722 includes authorizing a noise mitigation measure responsive to the detected atmospheric variation and not responsive to a possible impact of the authorized noise mitigation measure on electric power generated by the electric generator.
  • the operation 724 includes authorizing a noise mitigation measure responsive to the detected atmospheric variation and responsive to a possible impact of the authorized noise mitigation measure on electric power generated by the electric generator.
  • the operation 726 includes authorizing a noise mitigation measure responsive to the detected atmospheric variation and responsive to a minimum electric power generation requirement assigned to the electric generator.
  • the operation 728 includes authorizing a noise mitigation measure selected from at least two possible noise mitigation measures responsive to the detected atmospheric variation.
  • FIG. 13 illustrates an alternative embodiment of the operational flow 700 of FIG. 10.
  • the execution operation 740 may include at least one additional operation.
  • the at least one additional operation may include an operation 744 or an operation 746.
  • the operation 744 includes activating an airflow-modifiable region of the rotor blade in response to the authorized noise mitigation measure.
  • the operation 746 includes activating a controllable rotor blade pitch of the rotating rotor blade in response to the authorized noise mitigation measure.
  • FIG. 14 illustrates an example system 800.
  • the system includes means
  • the system 800 includes means 830 for predicting an arrival of the approaching atmospheric variation at the rotating rotor blade.
  • FIG. 15 illustrates an example environment 900.
  • the illustrated environment includes a wind turbine system 902.
  • the environment may include other wind turbine systems, illustrated by a wind turbine system 904.
  • the wind turbine system 902 includes a wind turbine 903 having a rotor blade 910 attached to a rotor hub 920 drivingly coupled to an electric generator 924.
  • the electric generator may be housed in a nacelle 926.
  • the rotor blade includes a tip 912.
  • the rotor blade has a controllable feature 962 configured if activated to decrease a noise generated by the rotor blade.
  • FIG. 15 illustrates an embodiment with the rotor blade 910 rotating counterclockwise when viewed from a head-on or upwind direction.
  • the wind turbine system 902 includes a sensor configured to detect a parameter indicative of present or possible future noise generation state of the rotor blade 910.
  • the parameter may include a distinguishing feature of a present or a possible future noise generation state of the rotor blade.
  • a parameter indicative of a present noise generation state may include turbulence forming over a portion of the rotor blade.
  • the sensor is illustrated by a sensor 932 carried by the rotor blade 910.
  • the sensor is illustrated by a sensor 934 carried by a support structure 940.
  • the sensor is illustrated by a sensor 936 carried by a structure 942 other than the support structure 940.
  • the sensor is illustrated by a sensor and rotational position index mark 938 carried on the rotor shaft 920.
  • the wind turbine system 902 includes a noise manager circuit 950 configured to select a noise mitigation measure responsive to the detected parameter and in compliance with a minimum electric power generation requirement assigned to the wind turbine system. While the noise manager circuit is illustrated in FIG. 15 as carried by the nacelle 926, the noise manager circuit may be carried, located, or positioned at any convenient location. For example, the noise manager circuit may be carried or mounted within the nacelle, onboard some other portion of the wind turbine, on the support structure 940, or off-board of the wind turbine 903.
  • the wind turbine system includes a control circuit 970 configured to activate the controllable feature in response to the selected noise mitigation measure. While the control circuit is illustrated in FIG.
  • control circuit may be carried, located, or positioned at any convenient location.
  • control circuit may be carried or mounted within the nacelle, onboard some other portion of the wind turbine, on the support structure, or off-board of the wind turbine.
  • controllable feature includes an airflow-modifiable region of the rotor blade located at a portion of a longitudinal length of the rotor blade. In an embodiment, the controllable feature includes a controllable rotor blade pitch. In an embodiment, the sensor is configured to detect a vortex induced noise. In an embodiment, the sensor includes a microphone. In an embodiment, the sensor includes a pressure sensor. In an embodiment, the sensor includes a vibration or an accelerometer sensor.
  • the parameter includes a parameter indicative of noise generated by airflow across the rotor blade 910.
  • the parameter includes a parameter indicative of an atmospheric variation approaching the rotor blade.
  • the parameter includes a parameter indicative of noise received by a noise-alleviation zone.
  • the noise-alleviation zone includes a land area having a noise tolerance rating.
  • a noise tolerance rating may be at least partially based on the existing land use in the area, history of adverse noise incidents, time of day, special events, or prevailing wind direction.
  • the parameter includes a parameter indicative of a noise produced or propagated by airflow across the rotor blade.
  • the parameter may be indicative of noise generated by airflow across the rotor blade, including vortexes, vibration, and the like.
  • the parameter includes a parameter indicative of a noise produced or propagated by unstalled airflow across the rotor blade.
  • the parameter includes turbulence induced noise.
  • the minimum electric power generation requirement is responsive to a time of day.
  • the minimum electric power generation requirement is responsive to a weather condition.
  • the weather condition may include a current or a predicted weather condition.
  • the minimum electric power generation requirement is responsive to a wind direction.
  • the wind direction may include a current or a predicted wind direction.
  • the minimum electric power generation requirement is responsive to a target cumulative electric power generation requirement over a period of time.
  • a target cumulative electric power generation requirement may include a certain number of megawatts generated over 12 hours for example, i.e.
  • the minimum electric power generation requirement includes a maximum allowable percentage reduction in present electric power generation. For example, if present or target electric power generation is 2 MW for the wind turbine system 903, the selected noise mitigation measure cannot reduce the power generation by more than 10% or 200 KW.
  • the minimum electric power generation requirement is responsive to minimum a monetary value of electric power generation over a period of time. For example, the wind turbine must have generated a minimum dollar value worth of electric power in the last 24 hours before electric power generation can be reduced or ceased.
  • the dollar value may be computed according to a generally prevailing price of electricity, or according to spot price of electricity.
  • the minimum electric power generation requirement is responsive to a noise sensitivity of a noise-alleviation zone lying potentially downwind of the wind turbine.
  • the noise mitigation measure is selected in response to instantaneous values of the detected parameter.
  • the noise mitigation measure is selected in response to an average value of the detected parameter over a period of time.
  • the noise mitigation measure is selected in response to cumulative values of the detected parameter and of cumulative power generation over a period of time.
  • the noise mitigation measure is selected in response to weighted values of the detected parameter and electric power generation over a period of time. For example, electric power generation may be more important at some times of a day than other times.
  • the noise mitigation measure includes changing an orientation of a portion of the rotor blade 910. In an embodiment, the noise mitigation measure includes dynamically shaping airflow over at least a portion of the rotor blade 910. In an embodiment, the noise mitigation measure includes releasing air from a region on the rotor blade. In an embodiment, the noise mitigation measure includes creating a transpiration airflow on at least a portion of the rotor blade. [0085] Another embodiment includes a system comprising a first wind turbine and a second wind turbine. The first wind turbine includes a first rotor blade having a first controllable feature and attached to a first rotor hub drivingly coupled to a first electric generator.
  • the first controllable feature is configured if activated to decrease a first noise generated by the first rotor blade and correspondingly to decrease a first electric power generated by the first electric generator.
  • the first wind turbine may be illustrated by the wind turbine described in conjunction with FIG. 15.
  • the second wind turbine includes a second rotor blade having a second controllable feature and attached to a second rotor hub drivingly coupled to a second electric generator.
  • the second controllable feature is configured if activated to decrease a second noise generated by the second rotor blade and correspondingly to decrease a second electric power generated by the second electric generator.
  • the second wind turbine may also be illustrated by the wind turbine described in conjunction with FIG. 15.
  • the system includes a sensor configured to detect a parameter indicative of present or possible future noise generation state of the first rotor blade or of the second rotor blade.
  • the sensor may include one of more of the embodiments of the sensor described in conjunction with FIG. 15.
  • the system includes a noise manager circuit configured to select a noise mitigation measure. The noise mitigation measure is selected (i) in response to the detected parameter and (ii) in compliance with the first minimum electric power generation requirement assigned to the first electric generator or the second minimum power generation requirement assigned to the second electric generator.
  • the noise manager circuit may include one of more of the embodiments of the noise manager circuit 950 described in conjunction with FIG. 15.
  • the system includes a control system configured to activate the first controllable feature or second controllable feature in response to the selected noise mitigation measure.
  • the control system may include one of more of the embodiments of the control system 960 described in conjunction with FIG. 15
  • FIG. 16 illustrates an example operational flow 1000.
  • the operational flow includes a sensing operation 1010.
  • the sensing operation includes detecting a parameter indicative of present or possible future noise generation state of a rotating rotor blade having a controllable feature and attached to a rotor hub driving an electric generator.
  • the controllable feature is configured to decrease a noise generated by the rotating rotor blade if activated.
  • the sensing operation may be implemented using an embodiment of the sensor described in conjunction with FIG. 15.
  • a choosing operation 1020 includes selecting a noise mitigation measure responsive to the detected parameter and in compliance with a minimum electric power generation requirement assigned to the electric generator.
  • the choosing operation may be implemented using the noise manager circuit 950 described in conjunction with FIG. 15.
  • An execution operation 1030 includes activating the controllable feature of the rotating rotor blade in response to the selected noise mitigation measure.
  • the execution operation may be implemented using the control circuit 970 described in conjunction with FIG. 15.
  • the operational flow includes an end operation.
  • FIG. 17 illustrates an example operational flow 1100. After a start operation, the operational flow includes a sensing operation 1110.
  • the sensing operation includes detecting a parameter indicative of present or possible future noise generation state of each rotating rotor blade of at least two rotating rotor blades.
  • Each rotating rotor blade respectively having a controllable feature and is attached to a respective rotor hub driving a respective electric generator.
  • Each controllable feature is configured to decrease a noise generated by its respective rotating rotor blade if activated.
  • the sensing operation may be implemented using an embodiment of the sensor described in conjunction with FIG. 15.
  • a choosing operationl 120 includes selecting a noise mitigation measure (i) responsive to the detected parameter and (ii) in compliance with a minimum electric power generation requirement assigned to each electric generator of the respective electric generators.
  • the choosing operation may be implemented using the noise manager circuit 950 described in conjunction with FIG. 15.
  • An execution operation 1130 includes activating a controllable feature of a rotating rotor blade of the at least two rotating rotor blades as appropriate to implement the selected noise mitigation measure.
  • the execution operation may be implemented using the control circuit 970 described in conjunction with FIG. 15.
  • the operational flow includes an end operation.
  • Configured includes at least one of designed, set up, shaped, implemented, constructed, or adapted for at least one of a particular purpose, application, or function.
  • any of these phrases would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B, and C together, and may further include more than one of A, B, or C, such as A ls A 2 , and C together, A, B ls B 2 , Ci, and C 2 together, or Bi and B 2 together).
  • any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components.
  • any two components so associated can also be viewed as being “operably connected,” or “operably coupled,” to each other to achieve the desired functionality.
  • operably couplable any two components capable of being so associated can also be viewed as being “operably couplable” to each other to achieve the desired functionality.
  • operably couplable include but are not limited to physically mateable or physically interacting components or wirelessly interactable or wirelessly interacting components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

Des modes de réalisation de l'invention portent sur un système de turbine éolienne. Dans ce mode de réalisation, le système comprend une pale de rotor fixée à un moyeu de rotor couplée par entraînement à une génératrice électrique. Le système comprend un dispositif pouvant être commandé conçu pour réduire le bruit généré par la pale de rotor s'il est activé. Le système comprend un capteur conçu pour détecter une variation atmosphérique qui s'approche de la pale de rotor. Le système comprend un circuit de gestion de bruit conçu pour autoriser une mesure d'atténuation de bruit en réponse à la variation atmosphérique détectée. Le système comprend un circuit de commande conçu pour activer le dispositif pouvant être commandé en réponse à la mesure d'atténuation de bruit autorisée. Dans un mode de réalisation, le système comprend une structure de support qui positionne le moyeu de rotor à une distance suffisante au-dessus du sol pour permettre à la pale de rotor de tourner autour du moyeu de rotor sans entrer en contact avec le sol.
PCT/US2013/070525 2012-11-19 2013-11-18 Atténuation de la production de bruit de pale de turbine éolienne en réponse à une variation atmosphérique WO2014078773A1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US13/681,196 2012-11-19
US13/681,231 2012-11-19
US13/681,231 US9759196B2 (en) 2012-11-19 2012-11-19 Mitigating wind turbine blade noise generation in response to an atmospheric variation
US13/681,266 2012-11-19
US13/681,266 US9435320B2 (en) 2012-11-19 2012-11-19 Mitigating wind turbine blade noise generation in view of a minimum power generation requirement
US13/681,196 US20140142888A1 (en) 2012-11-19 2012-11-19 Mitigating wind turbine blade noise generation

Publications (1)

Publication Number Publication Date
WO2014078773A1 true WO2014078773A1 (fr) 2014-05-22

Family

ID=50731750

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2013/070520 WO2014078770A1 (fr) 2012-11-19 2013-11-18 Atténuation de génération de bruit de pale de turbine éolienne
PCT/US2013/070525 WO2014078773A1 (fr) 2012-11-19 2013-11-18 Atténuation de la production de bruit de pale de turbine éolienne en réponse à une variation atmosphérique

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US2013/070520 WO2014078770A1 (fr) 2012-11-19 2013-11-18 Atténuation de génération de bruit de pale de turbine éolienne

Country Status (1)

Country Link
WO (2) WO2014078770A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9909563B2 (en) 2014-11-21 2018-03-06 General Electric Company System and method for monitoring and controlling wind turbine blade deflection
WO2018109100A1 (fr) 2016-12-16 2018-06-21 Wobben Properties Gmbh Procédé pour faire fonctionner un aérogénérateur ainsi que dispositif pour commander et/ou réguler un aérogénérateur et aérogénérateur correspondant comprenant un rotor et un générateur entraîné par le biais du rotor pour générer une puissance électrique

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3181897T3 (da) 2015-12-18 2022-01-10 Siemens Gamesa Renewable Energy As Drift af en vindmølle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379115B1 (en) * 1999-08-02 2002-04-30 Tetsuo Hirai Windmill and windmill control method
US20050175451A1 (en) * 2001-02-10 2005-08-11 Aloys Wobben Wind power installation
US20090097976A1 (en) * 2007-10-15 2009-04-16 General Electric Company Active damping of wind turbine blades
EP2258942A2 (fr) * 2009-06-03 2010-12-08 General Electric Company Système et procédé de contrôle du bruit et de détection de dégâts d'une éolienne
US8157533B2 (en) * 2005-10-17 2012-04-17 Vestas Wind Systems A/S Wind turbine blade with variable aerodynamic profile

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100140936A1 (en) * 2008-12-23 2010-06-10 General Electric Company Wind turbine with gps load control
US8321062B2 (en) * 2009-11-05 2012-11-27 General Electric Company Systems and method for operating a wind turbine having active flow control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379115B1 (en) * 1999-08-02 2002-04-30 Tetsuo Hirai Windmill and windmill control method
US20050175451A1 (en) * 2001-02-10 2005-08-11 Aloys Wobben Wind power installation
US8157533B2 (en) * 2005-10-17 2012-04-17 Vestas Wind Systems A/S Wind turbine blade with variable aerodynamic profile
US20090097976A1 (en) * 2007-10-15 2009-04-16 General Electric Company Active damping of wind turbine blades
EP2258942A2 (fr) * 2009-06-03 2010-12-08 General Electric Company Système et procédé de contrôle du bruit et de détection de dégâts d'une éolienne

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9909563B2 (en) 2014-11-21 2018-03-06 General Electric Company System and method for monitoring and controlling wind turbine blade deflection
WO2018109100A1 (fr) 2016-12-16 2018-06-21 Wobben Properties Gmbh Procédé pour faire fonctionner un aérogénérateur ainsi que dispositif pour commander et/ou réguler un aérogénérateur et aérogénérateur correspondant comprenant un rotor et un générateur entraîné par le biais du rotor pour générer une puissance électrique
DE102016124703A1 (de) * 2016-12-16 2018-06-21 Wobben Properties Gmbh Verfahren zum Betrieb einer Windenergieanlage sowie Einrichtung zum Steuern und/oder Regeln einer Windenergieanlage und entsprechende Windenergieanlage mit einem Rotor und einem über den Rotor angetriebenen Generator zur Erzeugung einer elektrischen Leistung

Also Published As

Publication number Publication date
WO2014078770A1 (fr) 2014-05-22

Similar Documents

Publication Publication Date Title
US20140142888A1 (en) Mitigating wind turbine blade noise generation
EP2247851B1 (fr) Systèmes et procédés pour limiter les effets d'éoliennes sur un radar
US9644610B2 (en) Warning a wind turbine generator in a wind park of an extreme wind event
JP6001770B2 (ja) 風力発電装置、および風力発電装置またはウィンドパークの制御方法
KR101477213B1 (ko) 풍력 발전 시스템 및 그 제어 방법
JP4626265B2 (ja) 風力発電装置、風力発電装置の制御方法およびコンピュータプログラム
US9435320B2 (en) Mitigating wind turbine blade noise generation in view of a minimum power generation requirement
US10655599B2 (en) Wind farm, control method thereof and wind power generation unit
CA2840441C (fr) Procede et appareil de reduction du bruit des eoliennes
EP2626550B1 (fr) Contrôle amélioré de la réduction du bruit pour éoliennes
US20080166242A1 (en) Wind Turbine Rotor Projection
EP3263890B1 (fr) Procédés et systèmes de commande prédictive d'éoliennes
EP2543876B1 (fr) Contrôle de la modulation d'amplitude du bruit généré par les éoliennes
KR20120018331A (ko) 윈드 터빈에서 윈드 거스트의 발생을 예측하기 위한 방법 및 시스템
US9759196B2 (en) Mitigating wind turbine blade noise generation in response to an atmospheric variation
JP2020501065A (ja) 低腐食条件中の定格を超えた風力タービンの運転
US20150071778A1 (en) Methods and systems for reducing amplitude modulation in wind turbines
WO2014078773A1 (fr) Atténuation de la production de bruit de pale de turbine éolienne en réponse à une variation atmosphérique
DK2715122T3 (en) A WAY TO OPERATE A WINDMILL
EP2788620B1 (fr) Procédés et systèmes d'avertissement d'un générateur d'éolienne dans un parc éolien en cas d'évènement venteux extrême
KR20190085080A (ko) 빗방울 크기에 기초한 풍력 터빈 제어
CN114026323A (zh) 控制来自风力涡轮机的个体叶片的噪声排放
JP5372526B2 (ja) 風力発電機
WO2018190922A1 (fr) Conception d'aile et d'hélice pour aéronef
KR101777175B1 (ko) 풍력 발전 시스템 및 풍력 발전 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13855454

Country of ref document: EP

Kind code of ref document: A1