WO2014077536A1 - Lithium-ion battery fire prevention apparatus and method - Google Patents

Lithium-ion battery fire prevention apparatus and method Download PDF

Info

Publication number
WO2014077536A1
WO2014077536A1 PCT/KR2013/009941 KR2013009941W WO2014077536A1 WO 2014077536 A1 WO2014077536 A1 WO 2014077536A1 KR 2013009941 W KR2013009941 W KR 2013009941W WO 2014077536 A1 WO2014077536 A1 WO 2014077536A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
ion battery
lithium ion
battery cell
voltage
Prior art date
Application number
PCT/KR2013/009941
Other languages
French (fr)
Korean (ko)
Inventor
성시영
한범석
한창수
Original Assignee
자동차부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 자동차부품연구원 filed Critical 자동차부품연구원
Publication of WO2014077536A1 publication Critical patent/WO2014077536A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4228Leak testing of cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4214Arrangements for moving electrodes or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/579Devices or arrangements for the interruption of current in response to shock
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion battery fire protection device and method, and more particularly to a lithium ion battery fire protection device and method for preventing a fire of a lithium ion battery due to the electrolyte leakage of the lithium ion battery.
  • Li-ion secondary batteries are manufactured by injecting a nonaqueous electrolyte into an electrode structure consisting of a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, which is oxidized when lithium ions are inserted / deinserted from the positive electrode and the negative electrode. , Electrical energy is generated by the reduction reaction.
  • carbonate-based organic solvents especially alkylene carbonates such as propylene carbonate and ethylene carbonate, are mainly used as the organic solvent constituting the electrolyte, and are used as electric vehicle batteries such as electric vehicles.
  • the temperature of the battery cell is rapidly increased by the chemical reaction of the electrolyte, leading to a fire. Since the electrolyte used in the lithium ion battery has a low ignition temperature, when the electrolyte is counted out, the electrolyte is easily ignited.
  • the technique of changing the negative electrode material to the lithium ion battery has a problem that the operating voltage of the lithium ion battery is lowered, and the technology of applying a flame retardant electrolyte to the organic solvent is a problem that the ion conductivity is lowered There was this.
  • the technique of applying a solid electrolyte has a problem that its application is limited to a gel-polymer.
  • Background art related to the present invention is a binder composition for a lithium secondary battery electrode and a lithium secondary battery comprising the same as Korean Patent Publication No. 10-2010-0104654 (2010.09.29).
  • the present invention has been made to improve the above-described problems, and when the amount of impact applied to the lithium ion battery, the voltage and temperature of the lithium ion battery satisfy the ignition conditions of the lithium ion battery, by spraying a neutralizer to the battery cell lithium ion battery
  • An object of the present invention is to provide a fire protection device and method for preventing a lithium ion battery.
  • Another object of the present invention is to prevent secondary damage of the electric vehicle due to the fire and explosion of the lithium ion battery, thereby protecting the life of the electric vehicle driver and the rescuer to rescue the driver.
  • Lithium ion battery fire protection device for detecting whether the electrolyte leaks from the battery cell of the lithium ion battery; A neutralizer injector for injecting a neutralizer into the battery cell; And a control unit for injecting the neutralizing agent into the battery cell by controlling the neutralizing agent injector when it is determined that the electrolyte is leaked through the detected value detected by the electrolyte leakage detecting unit.
  • the present invention further includes a temperature sensing unit for sensing a temperature of the battery cell, wherein the controller controls the neutralizer injector to further spray the neutralizer to the battery cell when the temperature of the battery cell is equal to or higher than a temperature reference value. It features.
  • the electrolyte leakage detection unit of the present invention is characterized in that it comprises an impact amount detection sensor for detecting an impact applied to the lithium ion battery.
  • the electrolyte leakage detection unit of the present invention is characterized in that it comprises a voltage sensor for sensing the voltage of the lithium ion battery.
  • the electrolyte leakage detection unit of the present invention is characterized in that it comprises a gas detection sensor for detecting the gas generated by the electrolyte.
  • Lithium ion battery fire protection method comprises the steps of determining whether the electrolyte leaks from the battery cell of the lithium ion battery; And if it is determined that the electrolyte is leaked from the battery cell, spraying a neutralizer on the battery cell.
  • Determining whether the electrolyte of the present invention is leaked comprises the steps of determining whether the amount of impact applied to the lithium ion battery is greater than the reference value of the impact amount; And determining whether the gas caused by the electrolyte leakage is detected when the impact amount is equal to or greater than the impact amount reference value.
  • Determining whether the electrolyte of the present invention is leaked comprises the steps of determining whether the voltage of the lithium ion battery is out of the voltage reference range; And if the voltage is outside the voltage reference range, determining whether a gas due to the electrolyte leakage is detected.
  • the present invention may further include the step of additionally injecting the neutralizer into the battery cell if the temperature of the battery cell is detected and the temperature is equal to or higher than a temperature reference value.
  • the present invention when the amount of impact applied to the lithium ion battery, the voltage and temperature of the lithium ion battery satisfies the ignition conditions of the lithium ion battery, by spraying a neutralizer to the battery cell to prevent fire and explosion of the lithium ion battery and Secure stability
  • the present invention is to prevent secondary damage of the electric vehicle due to fire and explosion of the lithium ion battery, and to protect the life of the electric vehicle driver.
  • FIG. 1 is a block diagram of a lithium ion battery fire protection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram of the neutralizer injector of FIG. 1.
  • FIG. 3 is a flow chart of a lithium ion battery fire prevention method according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of a lithium ion battery fire protection device according to an embodiment of the present invention
  • Figure 2 is a block diagram of the neutralizer injector of FIG.
  • a lithium ion battery fire protection apparatus includes an electrolyte leakage detector 10, a temperature detector 20, a controller 40, and a neutralizer injector 30. .
  • the electrolyte leak detector 10 detects whether the electrolyte leaks from the battery cell of the lithium ion battery.
  • the electrolyte leak detection unit 10 includes an impact amount detection sensor 11, a voltage detection sensor 12, and a gas detection sensor 13.
  • the impact amount sensor 11 detects an impact amount applied to the lithium ion battery due to the collision of the electric vehicle.
  • the impact sensor 11 is installed in the battery pack 50 of the lithium ion battery to directly detect the impact applied to the lithium ion battery.
  • a sensor provided in an airbag system for an electric vehicle (not shown) for detecting a collision of the electric vehicle may be employed. have.
  • the voltage sensor 12 is connected to a power supply terminal of the lithium ion battery and detects a voltage input and output to the lithium ion battery.
  • the voltage sensor 12 may also receive an input / output voltage of the lithium ion battery from a battery management system (BMS) that generally controls the voltage and charge / discharge capacity of the lithium ion battery.
  • BMS battery management system
  • the gas sensor 13 detects a gas generated by the electrolyte when the battery cell is damaged due to the collision of an electric vehicle and the electrolyte is leaked from the battery cell.
  • the temperature detector 20 detects the temperature of the battery cell. In general, when a battery cell of a lithium ion battery is damaged due to a collision of an electric vehicle, a fire occurs due to a chemical reaction of an electrolyte flowing out of the battery cell. The temperature sensor 20 directly detects the temperature of the battery cell to determine whether a fire of the lithium ion battery occurs.
  • the neutralizer injector 30 prevents fire generated in the lithium ion battery by injecting the neutralizer into the battery cell of the lithium ion battery.
  • the neutralizer injector 30 includes a neutralizer tank 31, a supply pipe 32, a nozzle 33, a pump 34, and a valve 35, as shown in FIG. 2.
  • the neutralizing agent includes liquefied carbonic acid (CO 2 ), carbon tetrachloride (CCl 4 ), CF 3 Br, CF 3 ClBr, C 2 F 4 Br 2 , [K 2 CO 3 ] + [H 2 SO 4 ], [6NaHCO] 3 ] + [Al 2 (SO 4 ) 3 .18H 2 O].
  • CO 2 liquefied carbonic acid
  • CCl 4 carbon tetrachloride
  • CF 3 Br CF 3 Br
  • CF 3 ClBr C 2 F 4 Br 2
  • [K 2 CO 3 ] + [H 2 SO 4 ] + [H 2 SO 4 ], [6NaHCO] 3 ] + [Al 2 (SO 4 ) 3 .18H 2 O] [K 2 CO 3 ] and [H 2 SO 4 ], and [6NaHCO 3 ] and [Al 2 (SO 4 ) 3 ⁇ 18H 2 O] were stored separately from each other in the neutralizer tank 31, and then
  • the neutralizer tank 31 stores the neutralizer.
  • the supply pipe 32 is connected between the neutralizer tank 31 and the battery cell to guide the neutralizer stored in the neutralizer tank 31 into the battery cell.
  • the supply pipe 32 is formed so that the neutralizing agent is evenly sprayed into the battery pack 50 so that the end is branched into a plurality of so as to spray the neutralizing agent in various directions inside the battery cell.
  • nozzles 33 are respectively provided at the ends of the supply pipe 32, and the nozzle 33 allows the neutralizer supplied through the supply pipe 32 to be evenly sprayed to the battery cells.
  • the valve 35 is provided in the supply pipe 32 to control the neutralizing agent supplied from the neutralizing tank 31.
  • the pump 34 forcibly supplies the neutralizer stored in the neutralizer tank 31 into the battery cell.
  • the neutralizer stored in the neutralizer tank 31 is led to the battery cell through the supply pipe 32 when the pump 34 is driven and the valve 35 is opened, and through the nozzle 33 installed at the end of the supply pipe 32. It is sprayed evenly inside the battery cell to prevent fire of the battery cell.
  • the controller 40 determines whether the electrolyte leaks from the battery cell based on the detected values detected by the impact amount sensor 11, the voltage sensor 12, and the gas sensor 13. If it is determined that the spilled, the neutralizer injector 30 is controlled to spray the neutralizer to the lithium ion battery.
  • the controller 40 determines whether a fire has occurred in the battery cell by determining whether a fire has occurred in the battery cell through the temperature of the battery cell detected by the temperature sensing unit 20.
  • the neutralizer injector 30 is further controlled to further inject the neutralizer to completely extinguish the fire generated in the battery cell.
  • FIG. 3 is a flow chart of a lithium ion battery fire prevention method according to an embodiment of the present invention.
  • the electrolyte leak detection unit 10 detects whether the electrolyte is leaked.
  • the impact amount detection sensor 11 detects the impact amount applied due to the collision of the electric vehicle and inputs it to the control unit 40
  • the voltage detection sensor 12 detects the voltage of the lithium ion battery and inputs it to the control unit 40. do.
  • the controller 40 determines whether the shock amount is greater than the shock amount reference value by comparing the shock amount detected by the shock amount sensor 11 with a preset shock amount reference value, and the voltage detected by the voltage sensor 12 is a voltage reference range. It is determined whether the out of (S10).
  • the impact amount reference value is an impact amount such that the battery cell is damaged due to the collision of the electric vehicle and the electrolyte may flow out of the battery cell, and may be variously set according to the type of the vehicle or the structure of the electric vehicle. Therefore, the control unit 40 can determine that the shock is applied to the battery cell to the extent that the battery cell is damaged by the amount of impact or more than the shock amount reference value.
  • the voltage reference range is a range of voltage values input and output to the lithium ion battery when the lithium ion battery is normally operated by the BMS. Therefore, the controller 40 may determine whether the lithium ion battery is abnormal, such as a damage, based on whether the voltage sensed by the voltage sensor 12 is out of the voltage reference range.
  • the controller 40 determines whether the gas detected by the gas detection sensor 13 is a gas generated due to the leakage of the electrolyte when the impact amount is greater than the impact amount reference value or the voltage is out of the voltage reference range. It is determined whether the electrolyte is leaked through (S20).
  • step S10 if the impact amount is less than the impact amount reference value or the voltage is within the voltage reference range, the process returns to step S10 and repeats the above process.
  • step S20 when it is determined in step S20 that the control unit 40 is determined that the electrolyte is leaked, the control unit 40 controls the neutralizer injector 30 to inject the neutralizer to the battery cell (S30). That is, the controller 40 drives the pump 34 and opens the valve 35 to inject the neutralizer stored in the neutralizer tank 31 to the battery cell.
  • the controller 40 determines whether the temperature sensed by the temperature sensor 20 is equal to or greater than a preset temperature reference value (S40).
  • the temperature reference value is a temperature of the battery cell serving as a reference for determining that a fire has occurred in the battery cell. Therefore, when the temperature of the battery cell is equal to or higher than the temperature reference value, the controller 40 may determine that a fire has occurred in the battery cell due to electrolyte leakage.
  • the controller 40 determines whether the temperature of the battery cell is greater than or equal to the temperature reference value. If the temperature of the battery cell is greater than or equal to the temperature reference value, the controller 40 further controls the neutralizer injector 30 to further inject the neutralizer into the battery cell (S50). Through this, it is possible to prevent the fire of the lithium ion battery.
  • step S40 if the temperature of the battery cell is less than the temperature reference value as a result of the determination in step S40, the process according to the present embodiment is terminated.
  • the present invention configured as described above can prevent the fire and explosion caused by the lithium ion battery, and prevent the secondary damage of the electric vehicle due to the fire and explosion of the lithium ion battery to suppress the damage to the life and property of the electric vehicle driver. have.

Abstract

The present invention is characterized by comprising: an electrolyte leak detection unit for detecting whether or not an electrolyte is leaking from a battery cell of a lithium-ion battery; a neutralizing agent sprayer for spraying a neutralizing agent to the battery cell; and a control unit for controlling the neutralizing agent sprayer so as to spray the neutralizing agent to the battery cell when an electrolyte leak is determined to have occurred from a detection value which has been detected by the electrolyte leak detection unit.

Description

리튬이온 배터리 화재 방지 장치 및 방법Lithium-ion battery fire protection device and method
본 발명은 리튬이온 배터리 화재 방지 장치 및 방법에 관한 것으로서, 더욱 상세하게는 리튬이온 배터리의 전해질 유출로 인한 리튬이온 배터리의 화재를 방지하는 리튬이온 배터리 화재 방지 장치 및 방법에 관한 것이다.The present invention relates to a lithium ion battery fire protection device and method, and more particularly to a lithium ion battery fire protection device and method for preventing a fire of a lithium ion battery due to the electrolyte leakage of the lithium ion battery.
리튬이온(Li-ion) 이차전지는 양극, 음극 및 양극과 음극 사이에 개재된 세퍼레이터로 이루어진 전극 구조체에 비수 전해질을 주입하여 제조하는데, 리튬이온이 양극 및 음극에서 삽입/탈삽입될 때의 산화, 환원 반응에 의해 전기 에너지를 생성한다.Li-ion secondary batteries are manufactured by injecting a nonaqueous electrolyte into an electrode structure consisting of a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, which is oxidized when lithium ions are inserted / deinserted from the positive electrode and the negative electrode. , Electrical energy is generated by the reduction reaction.
이러한 리튬이온 이차전지에서는 전해질을 구성하는 유기용매로 카보네이트계 유기용매, 특히 프로필렌 카보네이트, 에틸렌 카보네이트 등의 알킬렌 카보네이트가 주로 사용되며, 전기 자동차 등의 전기 자동차 배터리로 사용된다. In such lithium-ion secondary batteries, carbonate-based organic solvents, especially alkylene carbonates such as propylene carbonate and ethylene carbonate, are mainly used as the organic solvent constituting the electrolyte, and are used as electric vehicle batteries such as electric vehicles.
그런데, 리튬이온 배터리는 전기 자동차의 충돌 등으로 인해 BMS(Battery Management System) 제어가 어려운 경우, 안전성에 문제가 발생한다.However, when the lithium ion battery is difficult to control the BMS (Battery Management System) due to the collision of the electric vehicle, a problem occurs in the safety.
즉, 전기 자동차의 충돌로 인해 배터리 셀이 파괴될 경우 전해질의 화학 반응에 의해 배터리 셀의 온도가 급격히 상승하여 화재로 이어지게 된다. 리튬이온 배터리에서 사용되는 전해질은 발화온도가 낮기 때문에, 전해질이 세어 나오게 되면, 그 전해질은 쉽게 발화되는 성질이 있다.That is, when the battery cell is destroyed by the collision of the electric vehicle, the temperature of the battery cell is rapidly increased by the chemical reaction of the electrolyte, leading to a fire. Since the electrolyte used in the lithium ion battery has a low ignition temperature, when the electrolyte is counted out, the electrolyte is easily ignited.
이에 따라, 종래에는 리튬이온 배터리의 화재를 방지하기 위해, 리튬이온 배터리의 음극 소재를 변경하거나, 유기용매로 난연성 전해질을 적용하거나 고체 전해질을 적용하는 기술이 제시되었다. Accordingly, in order to prevent a fire of a lithium ion battery, a technique of changing a negative electrode material of a lithium ion battery, applying a flame retardant electrolyte as an organic solvent, or applying a solid electrolyte has been proposed.
그러나, 종래의 화재 방지 기술에 있어서, 리튬이온 배터리에 음극 소재를 변경하는 기술은 리튬이온 배터리의 작동 전압이 하강하는 문제점이 있었고, 유기용매로 난연성 전해질을 적용하는 기술은 이온 전도율이 저하되는 문제점이 있었다. 또한 고체 전해질을 적용하는 기술은 젤-폴리머 정도로 그 적용이 제한되는 문제점이 있었다. However, in the conventional fire protection technology, the technique of changing the negative electrode material to the lithium ion battery has a problem that the operating voltage of the lithium ion battery is lowered, and the technology of applying a flame retardant electrolyte to the organic solvent is a problem that the ion conductivity is lowered There was this. In addition, the technique of applying a solid electrolyte has a problem that its application is limited to a gel-polymer.
본 발명과 관련된 배경기술로는 대한민국 특허공개번호 10-2010-0104654 호(2010.09.29)의 '리튬 이차 전지 전극용 바인더 조성물 및 이를 포함하는 리튬 이차 전지'가 있다.Background art related to the present invention is a binder composition for a lithium secondary battery electrode and a lithium secondary battery comprising the same as Korean Patent Publication No. 10-2010-0104654 (2010.09.29).
본 발명은 전술한 문제점을 개선하기 위해 창안된 것으로서, 리튬이온 배터리에 가해지는 충격량, 리튬이온 배터리의 전압 및 온도가 리튬이온 배터리의 발화 조건을 만족하면, 배터리 셀에 중화제를 분사하여 리튬이온 배터리의 화재를 방지하는 리튬이온 배터리 화재 방지 장치 및 방법을 제공하는 데에 그 목적이 있다.The present invention has been made to improve the above-described problems, and when the amount of impact applied to the lithium ion battery, the voltage and temperature of the lithium ion battery satisfy the ignition conditions of the lithium ion battery, by spraying a neutralizer to the battery cell lithium ion battery An object of the present invention is to provide a fire protection device and method for preventing a lithium ion battery.
또한, 본 발명의 다른 목적은 리튬이온 배터리의 화재 및 폭발로 인한 전기 자동차의 2차 피해를 방지하고, 이를 통해 전기 자동차 운전자 및 운전자를 구조하는 구조자의 인명을 보호하는 데에 있다. In addition, another object of the present invention is to prevent secondary damage of the electric vehicle due to the fire and explosion of the lithium ion battery, thereby protecting the life of the electric vehicle driver and the rescuer to rescue the driver.
본 발명의 일 측면에 따른 리튬이온 배터리 화재 방지 장치는 리튬이온 배터리의 배터리 셀에서 전해질이 유출되는 지를 감지하는 전해질 유출 감지부; 상기 배터리 셀에 중화제를 분사하는 중화제 분사기; 및 상기 전해질 유출 감지부에서 감지된 감지값을 통해 상기 전해질이 유출된 것으로 판단되면, 상기 중화제 분사기를 제어하여 상기 배터리 셀에 상기 중화제를 분사하는 제어부를 포함하는 것을 특징으로 한다. Lithium ion battery fire protection device according to an aspect of the present invention electrolyte leakage detection unit for detecting whether the electrolyte leaks from the battery cell of the lithium ion battery; A neutralizer injector for injecting a neutralizer into the battery cell; And a control unit for injecting the neutralizing agent into the battery cell by controlling the neutralizing agent injector when it is determined that the electrolyte is leaked through the detected value detected by the electrolyte leakage detecting unit.
본 발명은 상기 배터리 셀의 온도를 감지하는 온도 감지부를 더 포함하되, 상기 제어부는 상기 배터리 셀의 온도가 온도 기준값 이상이면, 상기 중화제 분사기를 제어하여 상기 배터리 셀에 상기 중화제를 추가적으로 더 분사하는 것을 특징으로 한다.The present invention further includes a temperature sensing unit for sensing a temperature of the battery cell, wherein the controller controls the neutralizer injector to further spray the neutralizer to the battery cell when the temperature of the battery cell is equal to or higher than a temperature reference value. It features.
본 발명의 상기 전해질 유출 감지부는 상기 리튬이온 배터리에 가해지는 충격을 감지하는 충격량 감지 센서를 포함하는 것을 특징으로 한다.The electrolyte leakage detection unit of the present invention is characterized in that it comprises an impact amount detection sensor for detecting an impact applied to the lithium ion battery.
본 발명의 상기 전해질 유출 감지부는 상기 리튬이온 배터리의 전압을 감지하는 전압 감지 센서를 포함하는 것을 특징으로 한다.The electrolyte leakage detection unit of the present invention is characterized in that it comprises a voltage sensor for sensing the voltage of the lithium ion battery.
본 발명의 상기 전해질 유출 감지부는 상기 전해질로 인해 발생되는 가스를 감지하는 가스 감지 센서를 포함하는 것을 특징으로 한다.The electrolyte leakage detection unit of the present invention is characterized in that it comprises a gas detection sensor for detecting the gas generated by the electrolyte.
본 발명의 일 측면에 따른 리튬이온 배터리 화재 방지 방법은 리튬이온 배터리의 배터리 셀에서 전해질이 유출되는 지를 판단하는 단계; 및 상기 배터리 셀에서 상기 전해질이 유출된 것으로 판단되면, 상기 배터리 셀에 중화제를 분사하는 단계를 포함하는 것을 특징으로 한다. Lithium ion battery fire protection method according to an aspect of the present invention comprises the steps of determining whether the electrolyte leaks from the battery cell of the lithium ion battery; And if it is determined that the electrolyte is leaked from the battery cell, spraying a neutralizer on the battery cell.
본 발명의 상기 전해질이 유출되는 지를 판단하는 단계는 상기 리튬이온 배터리에 가해지는 충격량을 감지이 충격량 기준값 이상인지 판단하는 단계; 및 상기 충격량이 충격량 기준값 이상이면, 상기 전해질 유출에 의한 가스가 감지되는지 판단하는 단계를 포함하는 것을 특징으로 한다.Determining whether the electrolyte of the present invention is leaked comprises the steps of determining whether the amount of impact applied to the lithium ion battery is greater than the reference value of the impact amount; And determining whether the gas caused by the electrolyte leakage is detected when the impact amount is equal to or greater than the impact amount reference value.
본 발명의 상기 전해질이 유출되는 지를 판단하는 단계는 상기 리튬이온 배터리의 전압이 전압 기준 범위를 벗어나는지 여부를 판단하는 단계; 및 상기 전압이 상기 전압 기준 범위를 벗어나면, 상기 전해질 유출에 의한 가스가 감지되는지 판단하는 단계를 포함하는 것을 특징으로 한다.Determining whether the electrolyte of the present invention is leaked comprises the steps of determining whether the voltage of the lithium ion battery is out of the voltage reference range; And if the voltage is outside the voltage reference range, determining whether a gas due to the electrolyte leakage is detected.
본 발명은 상기 배터리 셀의 온도를 감지하여 상기 온도가 온도 기준값 이상이면, 상기 배터리 셀에 상기 중화제를 추가적으로 더 분사하는 단계를 더 포함하는 것을 특징으로 한다. The present invention may further include the step of additionally injecting the neutralizer into the battery cell if the temperature of the battery cell is detected and the temperature is equal to or higher than a temperature reference value.
본 발명은 리튬이온 배터리에 가해지는 충격량, 리튬이온 배터리의 전압 및 온도가 리튬이온 배터리의 발화 조건을 만족하면, 배터리 셀에 중화제를 분사하여 리튬이온 배터리의 화재 및 폭발을 방지하고 리튬이온 배터리의 안정성을 확보한다.The present invention, when the amount of impact applied to the lithium ion battery, the voltage and temperature of the lithium ion battery satisfies the ignition conditions of the lithium ion battery, by spraying a neutralizer to the battery cell to prevent fire and explosion of the lithium ion battery and Secure stability
또한, 본 발명은 리튬이온 배터리의 화재 및 폭발로 인한 전기 자동차의 2차 피해를 방지하고, 전기 자동차 운전자의 인명을 보호할 수 있도록 한다. In addition, the present invention is to prevent secondary damage of the electric vehicle due to fire and explosion of the lithium ion battery, and to protect the life of the electric vehicle driver.
도 1 은 본 발명의 일 실시예에 따른 리튬이온 배터리 화재 방지 장치의 블럭 구성도이다.1 is a block diagram of a lithium ion battery fire protection apparatus according to an embodiment of the present invention.
도 2 는 도 1 의 중화제 분사기의 구성도이다.FIG. 2 is a configuration diagram of the neutralizer injector of FIG. 1.
도 3 은 본 발명의 일 실시예에 따른 리튬이온 배터리 화재 방지 방법의 순서도이다.3 is a flow chart of a lithium ion battery fire prevention method according to an embodiment of the present invention.
이하에서는 본 발명의 일 실시예에 따른 리튬이온 배터리 화재 방지 장치 및 방법을 첨부된 도면들을 참조하여 상세하게 설명한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로, 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, a lithium ion battery fire protection apparatus and method according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. In this process, the thickness of the lines or the size of the components shown in the drawings may be exaggerated for clarity and convenience of description. In addition, terms to be described below are terms defined in consideration of functions in the present invention, which may vary according to the intention or convention of a user or an operator. Therefore, definitions of these terms should be made based on the contents throughout the specification.
도 1 은 본 발명의 일 실시예에 따른 리튬이온 배터리 화재 방지 장치의 블럭 구성도이고, 도 2 는 도 1 의 중화제 분사기의 구성도이다. 1 is a block diagram of a lithium ion battery fire protection device according to an embodiment of the present invention, Figure 2 is a block diagram of the neutralizer injector of FIG.
도 1 을 참조하면, 본 발명의 일 실시예에 따른 리튬이온 배터리 화재 방지 장치는 전해질 유출 감지부(10)와, 온도 감지부(20), 제어부(40) 및 중화제 분사기(30)를 포함한다. Referring to FIG. 1, a lithium ion battery fire protection apparatus according to an embodiment of the present invention includes an electrolyte leakage detector 10, a temperature detector 20, a controller 40, and a neutralizer injector 30. .
전해질 유출 감지부(10)는 리튬이온 배터리의 배터리 셀에서 전해질이 유출되는지를 감지한다. The electrolyte leak detector 10 detects whether the electrolyte leaks from the battery cell of the lithium ion battery.
전해질 유출 감지부(10)는 충격량 감지 센서(11)와 전압 감지 센서(12) 및 가스 감지 센서(13)를 포함한다.The electrolyte leak detection unit 10 includes an impact amount detection sensor 11, a voltage detection sensor 12, and a gas detection sensor 13.
충격량 감지 센서(11)는 전기 자동차의 충돌로 인해 리튬이온 배터리에 가해지는 충격량을 감지한다. 이러한 충격량 감지 센서(11)는 리튬이온 배터리의 배터리 팩(50)에 설치되어 리튬이온 배터리에 가해지는 충격량을 직접적으로 감지한다. 또한, 충격량 감지 센서(11)로는, 리튬이온 배터리의 배터리 팩(50)에 직접 설치되는 것 이외에도, 전기 자동차용 에어백 시스템(미도시)에 구비되어 전기 자동차의 충돌을 감지하는 센서가 채용될 수도 있다. The impact amount sensor 11 detects an impact amount applied to the lithium ion battery due to the collision of the electric vehicle. The impact sensor 11 is installed in the battery pack 50 of the lithium ion battery to directly detect the impact applied to the lithium ion battery. In addition, as the impact amount detection sensor 11, in addition to being directly installed in the battery pack 50 of the lithium ion battery, a sensor provided in an airbag system for an electric vehicle (not shown) for detecting a collision of the electric vehicle may be employed. have.
전압 감지 센서(12)는 리튬이온 배터리의 전원 단자에 연결되어 리튬이온 배터리에 입출력되는 전압을 감지한다. 전압 감지 센서(12)는 리튬이온 배터리의 전압과 충방전 용량 등을 전반적으로 제어하는 BMS(Battery Management System)로부터 리튬이온 배터리의 입출력 전압을 입력받는 것도 가능하다. The voltage sensor 12 is connected to a power supply terminal of the lithium ion battery and detects a voltage input and output to the lithium ion battery. The voltage sensor 12 may also receive an input / output voltage of the lithium ion battery from a battery management system (BMS) that generally controls the voltage and charge / discharge capacity of the lithium ion battery.
가스 감지 센서(13)는 전기 자동차의 충돌 등으로 배터리 셀이 파손되어 배터리 셀에서 전해질이 유출될 경우, 전해질로 인해 발생되는 가스를 감지한다. The gas sensor 13 detects a gas generated by the electrolyte when the battery cell is damaged due to the collision of an electric vehicle and the electrolyte is leaked from the battery cell.
온도 감지부(20)는 배터리 셀의 온도를 감지한다. 통상, 전기 자동차의 충돌 등으로 인해 리튬이온 배터리의 배터리 셀이 파손될 경우, 배터리 셀에서 유출되는 전해질의 화학반응 등으로 인해 화재가 발생하게 된다. 이에 온도 감지부(20)는 배터리 셀의 온도를 직접 감지하여 리튬이온 배터리의 화재 발생 여부를 판단할 수 있도록 한다. The temperature detector 20 detects the temperature of the battery cell. In general, when a battery cell of a lithium ion battery is damaged due to a collision of an electric vehicle, a fire occurs due to a chemical reaction of an electrolyte flowing out of the battery cell. The temperature sensor 20 directly detects the temperature of the battery cell to determine whether a fire of the lithium ion battery occurs.
중화제 분사기(30)는 리튬이온 배터리의 배터리 셀에 중화제를 분사하여 리튬이온 배터리에 발생되는 화재를 방지한다. The neutralizer injector 30 prevents fire generated in the lithium ion battery by injecting the neutralizer into the battery cell of the lithium ion battery.
상기한 중화제 분사기(30)는 도 2 에 도시된 바와 같이, 중화제 탱크(31), 공급관(32), 노즐(33), 펌프(34) 및 밸브(35)를 포함한다. The neutralizer injector 30 includes a neutralizer tank 31, a supply pipe 32, a nozzle 33, a pump 34, and a valve 35, as shown in FIG. 2.
여기서, 중화제에는 액화탄산(CO2), 4염화탄소(CCl4), CF3Br, CF3ClBr, C2F4Br2, [K2CO3]+[H2SO4], [6NaHCO3] + [Al2(SO4)3·18H2O] 중 어느 하나 이상이 포함된다. 참고로, [K2CO3]와 [H2SO4], 및 [6NaHCO3]와 [Al2(SO4)3·18H2O]는 중화제 탱크(31)에 서로 분리되어 저장되었다가 노즐(33)에서 섞이면서 반응하여 중화 및 소화 역할을 수행한다. Here, the neutralizing agent includes liquefied carbonic acid (CO 2 ), carbon tetrachloride (CCl 4 ), CF 3 Br, CF 3 ClBr, C 2 F 4 Br 2 , [K 2 CO 3 ] + [H 2 SO 4 ], [6NaHCO] 3 ] + [Al 2 (SO 4 ) 3 .18H 2 O]. For reference, [K 2 CO 3 ] and [H 2 SO 4 ], and [6NaHCO 3 ] and [Al 2 (SO 4 ) 3 · 18H 2 O] were stored separately from each other in the neutralizer tank 31, and then the nozzle It reacts with mixing in (33) to perform neutralizing and digesting roles.
중화제 탱크(31)는 중화제를 저장한다. The neutralizer tank 31 stores the neutralizer.
공급관(32)은 중화제 탱크(31)와 배터리 셀 사이에 연결되어 중화제 탱크(31)에 저장된 중화제를 배터리 셀 내부로 유도한다. 특히, 공급관(32)은 배터리 셀 내부의 다양한 방향으로 중화제를 분사할 수 있도록 그 단부가 다수 개로 분기되어 중화제가 배터리 팩(50) 내부에 골고루 분사될 수 있도록 형성된다. 더욱이, 공급관(32) 단부에는 노즐(33)이 각각 설치되며, 이 노즐(33)은 공급관(32)을 통해 공급된 중화제를 배터리 셀에 고르게 분사되도록 한다. The supply pipe 32 is connected between the neutralizer tank 31 and the battery cell to guide the neutralizer stored in the neutralizer tank 31 into the battery cell. In particular, the supply pipe 32 is formed so that the neutralizing agent is evenly sprayed into the battery pack 50 so that the end is branched into a plurality of so as to spray the neutralizing agent in various directions inside the battery cell. Furthermore, nozzles 33 are respectively provided at the ends of the supply pipe 32, and the nozzle 33 allows the neutralizer supplied through the supply pipe 32 to be evenly sprayed to the battery cells.
밸브(35)는 공급관(32)에 설치되어 중화제 탱크(31)로부터 공급되는 중화제를 단속한다. The valve 35 is provided in the supply pipe 32 to control the neutralizing agent supplied from the neutralizing tank 31.
펌프(34)는 중화제 탱크(31)에 저장된 중화제를 배터리 셀 내부로 강제적으로 공급한다. The pump 34 forcibly supplies the neutralizer stored in the neutralizer tank 31 into the battery cell.
따라서, 중화제 탱크(31)에 저장된 중화제는 펌프(34)가 구동하고 밸브(35)가 개방되면 공급관(32)을 통해 배터리 셀로 유도되고, 공급관(32)의 단부에 설치된 노즐(33)을 통해 배터리 셀 내부에 골고루 분사되어 배터리 셀의 화재를 방지한다. Therefore, the neutralizer stored in the neutralizer tank 31 is led to the battery cell through the supply pipe 32 when the pump 34 is driven and the valve 35 is opened, and through the nozzle 33 installed at the end of the supply pipe 32. It is sprayed evenly inside the battery cell to prevent fire of the battery cell.
제어부(40)는 충격량 감지 센서(11)와 전압 감지 센서(12) 및 가스 감지 센서(13)에서 감지된 감지값을 통해 배터리 셀에서 전해질이 유출되는지를 판단하고, 판단 결과, 배터리 셀에서 전해질이 유출된 것으로 판단되면, 중화제 분사기(30)를 제어하여 리튬이온 배터리에 중화제를 분사한다. The controller 40 determines whether the electrolyte leaks from the battery cell based on the detected values detected by the impact amount sensor 11, the voltage sensor 12, and the gas sensor 13. If it is determined that the spilled, the neutralizer injector 30 is controlled to spray the neutralizer to the lithium ion battery.
더욱이, 제어부(40)는 상기한 바와 같이 중화제를 분사한 후에도, 온도 감지부(20)에서 감지된 배터리 셀의 온도를 통해 배터리 셀에 화재가 발생하였는지를 판단하여 배터리 셀에 화재가 발생한 것으로 판단되면, 중화제 분사기(30)를 제어하여 중화제를 추가적으로 더 분사하여 배터리 셀에 발생된 화재를 완전히 진압하게 된다. Furthermore, even after spraying the neutralizer as described above, the controller 40 determines whether a fire has occurred in the battery cell by determining whether a fire has occurred in the battery cell through the temperature of the battery cell detected by the temperature sensing unit 20. In addition, the neutralizer injector 30 is further controlled to further inject the neutralizer to completely extinguish the fire generated in the battery cell.
이하 본 발명의 일 실시예에 따른 리튬이온 배터리 화재 방지 방법을 도 3 을 참조하여 상세하게 설명한다. Hereinafter, a method of preventing fire of a lithium ion battery according to an embodiment of the present invention will be described in detail with reference to FIG. 3.
도 3 은 본 발명의 일 실시예에 따른 리튬이온 배터리 화재 방지 방법의 순서도이다. 3 is a flow chart of a lithium ion battery fire prevention method according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 리튬이온 배터리 화재 방지 방법에 따르면, 먼저 전해질 유출 감지부(10)가 전해질이 유출되었는지를 감지한다.According to the lithium ion battery fire prevention method according to an embodiment of the present invention, first, the electrolyte leak detection unit 10 detects whether the electrolyte is leaked.
즉, 충격량 감지 센서(11)는 전기 자동차의 충돌로 인해 가해지는 충격량을 감지하여 제어부(40)에 입력하고, 전압 감지 센서(12)는 리튬이온 배터리의 전압을 감지하여 제어부(40)에 입력한다. That is, the impact amount detection sensor 11 detects the impact amount applied due to the collision of the electric vehicle and inputs it to the control unit 40, and the voltage detection sensor 12 detects the voltage of the lithium ion battery and inputs it to the control unit 40. do.
이에 따라, 제어부(40)는 충격량 감지 센서(11)에서 감지된 충격량을 기 설정된 충격량 기준값과 비교하여 충격량이 충격량 기준값 이상인지를 판단하고, 전압 감지 센서(12)에서 감지된 전압이 전압 기준 범위를 벗어났는지를 판단한다(S10). Accordingly, the controller 40 determines whether the shock amount is greater than the shock amount reference value by comparing the shock amount detected by the shock amount sensor 11 with a preset shock amount reference value, and the voltage detected by the voltage sensor 12 is a voltage reference range. It is determined whether the out of (S10).
여기서, 충격량 기준값은 전기 자동차의 충돌로 인해 배터리 셀이 파손되어 배터리 셀에서 전해질이 유출될 수 있을 정도의 충격량으로서, 전기 자동차의 차종이나 전기 자동차의 구조 등에 따라 다양하게 설정될 수 있다. 따라서, 제어부(40)는 충격량이 충격량 기준값 이상인지를 통해 배터리 셀을 파손시킬 정도의 충격이 배터리 셀에 가해진 것으로 판단할 수 있게 된다. Here, the impact amount reference value is an impact amount such that the battery cell is damaged due to the collision of the electric vehicle and the electrolyte may flow out of the battery cell, and may be variously set according to the type of the vehicle or the structure of the electric vehicle. Therefore, the control unit 40 can determine that the shock is applied to the battery cell to the extent that the battery cell is damaged by the amount of impact or more than the shock amount reference value.
전압 기준 범위는 리튬이온 배터리가 BMS에 의해 정상적으로 동작할 경우 리튬이온 배터리에 입출력되는 전압값의 범위이다. 따라서, 제어부(40)는 전압 감지 센서(12)에서 감지된 전압이 전압 기준 범위를 벗어났는지 여부를 통해 리튬이온 배터리가 파손 등 비정상적인 상태인지 여부를 판단할 수 있다. The voltage reference range is a range of voltage values input and output to the lithium ion battery when the lithium ion battery is normally operated by the BMS. Therefore, the controller 40 may determine whether the lithium ion battery is abnormal, such as a damage, based on whether the voltage sensed by the voltage sensor 12 is out of the voltage reference range.
제어부(40)는 상기 단계(S10)에서의 판단 결과 충격량이 충격량 기준값 이상이거나, 전압이 전압 기준 범위를 벗어나면, 가스 감지 센서(13)에서 감지된 가스가 전해질 유출로 인해 발생된 가스인지 여부를 통해 전해질이 유출되었는지를 판단한다(S20).The controller 40 determines whether the gas detected by the gas detection sensor 13 is a gas generated due to the leakage of the electrolyte when the impact amount is greater than the impact amount reference value or the voltage is out of the voltage reference range. It is determined whether the electrolyte is leaked through (S20).
반면, 상기 단계(S10)에서의 판단 결과 충격량이 충격량 기준값 미만이거나 전압이 전압 기준 범위 이내이면 단계(S10)으로 복귀하여 상기한 과정을 반복한다.On the contrary, if the impact amount is less than the impact amount reference value or the voltage is within the voltage reference range, the process returns to step S10 and repeats the above process.
한편, 단계(S20)에서의 판단 결과 제어부(40)는 전해질이 유출된 것으로 판단되면, 제어부(40)는 중화제 분사기(30)를 제어하여 배터리 셀에 중화제를 분사한다(S30). 즉, 제어부(40)는 펌프(34)를 구동시키고 밸브(35)를 개방시켜 중화제 탱크(31) 내부에 저장되어 있는 중화제를 배터리 셀에 분사한다. On the other hand, when it is determined in step S20 that the control unit 40 is determined that the electrolyte is leaked, the control unit 40 controls the neutralizer injector 30 to inject the neutralizer to the battery cell (S30). That is, the controller 40 drives the pump 34 and opens the valve 35 to inject the neutralizer stored in the neutralizer tank 31 to the battery cell.
이후, 제어부(40)는 온도 감지부(20)에서 감지된 온도가 기 설정된 온도 기준값 이상인지를 판단한다(S40).Thereafter, the controller 40 determines whether the temperature sensed by the temperature sensor 20 is equal to or greater than a preset temperature reference value (S40).
여기서, 온도 기준값은 배터리 셀에 화재가 발생한 것으로 판단하는 기준이 되는 배터리 셀의 온도이다. 따라서, 제어부(40)는 배터리 셀의 온도가 온도 기준값 이상이면, 전해질 유출로 인해 배터리 셀에 화재가 발생된 것으로 판단할 수 있다. Here, the temperature reference value is a temperature of the battery cell serving as a reference for determining that a fire has occurred in the battery cell. Therefore, when the temperature of the battery cell is equal to or higher than the temperature reference value, the controller 40 may determine that a fire has occurred in the battery cell due to electrolyte leakage.
제어부(40)는 배터리 셀의 온도가 온도 기준값 이상인지를 판단한 결과, 배터리 셀의 온도가 온도 기준값 이상이면, 중화제 분사기(30)를 제어하여 배터리 셀에 중화제를 추가적으로 더 분사한다(S50). 이를 통해, 리튬이온 배터리의 화재를 방지할 수 있게 된다.The controller 40 determines whether the temperature of the battery cell is greater than or equal to the temperature reference value. If the temperature of the battery cell is greater than or equal to the temperature reference value, the controller 40 further controls the neutralizer injector 30 to further inject the neutralizer into the battery cell (S50). Through this, it is possible to prevent the fire of the lithium ion battery.
반면, 단계(S40)에서의 판단 결과 배터리 셀의 온도가 온도 기준값 미만이면, 본 실시예에 따른 프로세스를 종료한다. On the other hand, if the temperature of the battery cell is less than the temperature reference value as a result of the determination in step S40, the process according to the present embodiment is terminated.
이와 같이 구성되는 본 발명은 리튬이온 배터리의 화재 및 이로 인한 폭발을 방지하고, 리튬이온 배터리의 화재 및 폭발로 인한 전기 자동차의 2차 피해를 방지하여 전기 자동차 운전자의 인명 및 재산 피해를 억제할 수 있다.The present invention configured as described above can prevent the fire and explosion caused by the lithium ion battery, and prevent the secondary damage of the electric vehicle due to the fire and explosion of the lithium ion battery to suppress the damage to the life and property of the electric vehicle driver. have.
본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며 당해 기술이 속하는 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 아래의 특허청구범위에 의하여 정해져야할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, it is merely exemplary and various modifications and equivalent other embodiments are possible to those skilled in the art. I will understand. Therefore, the true technical protection scope of the present invention will be defined by the claims below.

Claims (11)

  1. 리튬이온 배터리의 배터리 셀에서 전해질이 유출되는지를 감지하는 전해질 유출 감지부; An electrolyte leak detector configured to detect whether the electrolyte leaks from the battery cell of the lithium ion battery;
    상기 배터리 셀에 중화제를 분사하는 중화제 분사기; 및A neutralizer injector for injecting a neutralizer into the battery cell; And
    상기 전해질 유출 감지부에서 감지된 감지값을 통해 상기 전해질이 유출된 것으로 판단되면, 상기 중화제 분사기를 제어하여 상기 배터리 셀에 상기 중화제를 분사하는 제어부를 포함하는 리튬이온 배터리 화재 방지 장치.And a control unit for injecting the neutralizer into the battery cell by controlling the neutralizer injector when it is determined that the electrolyte is leaked through the detected value detected by the electrolyte leakage detector.
  2. 제 1 항에 있어서, 상기 배터리 셀의 온도를 감지하는 온도 감지부를 더 포함하되, 상기 제어부는 상기 배터리 셀의 온도가 온도 기준값 이상이면, 상기 중화제 분사기를 제어하여 상기 배터리 셀에 상기 중화제를 추가적으로 더 분사하는 것을 특징으로 하는 리튬이온 배터리 화재 방지 장치.The battery cell of claim 1, further comprising a temperature sensor configured to detect a temperature of the battery cell, wherein the controller controls the neutralizer injector to further add the neutralizer to the battery cell when the temperature of the battery cell is equal to or higher than a temperature reference value. Lithium-ion battery fire protection device, characterized in that for spraying.
  3. 제 1 항에 있어서, 상기 전해질 유출 감지부는The method of claim 1, wherein the electrolyte leakage detection unit
    상기 리튬이온 배터리에 가해지는 충격을 감지하는 충격량 감지 센서를 포함하는 것을 특징으로 하는 리튬이온 배터리 화재 방지 장치.Lithium-ion battery fire protection device comprising a shock sensor for sensing the impact applied to the lithium ion battery.
  4. 제 1 항에 있어서, 상기 전해질 유출 감지부는 The method of claim 1, wherein the electrolyte leakage detection unit
    상기 리튬이온 배터리의 전압을 감지하는 전압 감지 센서를 포함하는 것을 특징으로 하는 리튬이온 배터리 화재 방지 장치.Lithium ion battery fire protection device comprising a voltage sensor for sensing the voltage of the lithium ion battery.
  5. 제 1 항에 있어서, 상기 전해질 유출 감지부는 The method of claim 1, wherein the electrolyte leakage detection unit
    상기 전해질로 인해 발생되는 가스를 감지하는 가스 감지 센서를 포함하는 것을 특징으로 하는 리튬이온 배터리 화재 방지 장치. Lithium ion battery fire protection device comprising a gas detection sensor for detecting the gas generated by the electrolyte.
  6. 제 1 항에 있어서, The method of claim 1,
    상기 전해질 유출 감지부는 상기 리튬이온 배터리에 가해지는 충격을 감지하는 충격량 감지 센서, 및 상기 전해질로 인해 발생되는 가스를 감지하는 가스 감지 센서를 포함하되,The electrolyte leakage detection unit includes an impact amount detection sensor for detecting an impact applied to the lithium ion battery, and a gas detection sensor for detecting a gas generated by the electrolyte,
    상기 제어부는, 상기 충격량 감지센서에 의해 감지된 상기 리튬이온 배터리에 가해지는 충격량이 충격량 기준값 이상이고 전해질 유출에 의한 가스가 상기 가스 감지센서에 의해 감지되면, 상기 전해질이 유출된 것으로 판단하는 것을 특징으로 하는 리튬이온 배터리 화재 방지 장치.The controller may determine that the electrolyte is leaked when the amount of impact applied to the lithium ion battery detected by the impact amount sensor is greater than or equal to an impact amount reference value and a gas due to electrolyte leakage is detected by the gas sensor. Lithium-ion battery fire protection device.
  7. 제 1 항에 있어서, The method of claim 1,
    상기 전해질 유출 감지부는 상기 리튬이온 배터리의 전압을 감지하는 전압 감지 센서, 및 상기 전해질로 인해 발생되는 가스를 감지하는 가스 감지 센서를 포함하되,The electrolyte leakage detection unit includes a voltage detection sensor for detecting a voltage of the lithium ion battery, and a gas detection sensor for detecting a gas generated by the electrolyte,
    상기 제어부는, 상기 전압 감지 센서에 의해 감지된 리튬이온 배터리의 전압이 전압 기준 범위를 벗어나고 전해질 유출에 의한 가스가 상기 가스 감지센서에 의해 감지되면, 상기 전해질이 유출된 것으로 판단하는 것을 특징으로 하는 리튬이온 배터리 화재 방지 장치.The controller may determine that the electrolyte is leaked when the voltage of the lithium ion battery detected by the voltage sensor is outside the voltage reference range and the gas due to the electrolyte leak is detected by the gas sensor. Lithium-ion battery fire protection device.
  8. 제어부가 리튬이온 배터리의 배터리 셀에서 전해질이 유출되는지를 판단하는 단계; 및 Determining, by the controller, whether the electrolyte leaks from the battery cell of the lithium ion battery; And
    상기 배터리 셀에서 상기 전해질이 유출된 것으로 판단되면, 상기 제어부가 상기 배터리 셀에 중화제를 분사하도록 제어하는 단계를 포함하는 리튬이온 배터리 화재 방지 방법.If it is determined that the electrolyte leaked from the battery cell, the control unit comprising the step of controlling to spray the neutralizer to the battery cell comprising a lithium ion battery fire prevention method.
  9. 제 8 항에 있어서, 상기 전해질이 유출되는지를 판단하는 단계는The method of claim 8, wherein the determining of whether the electrolyte leaks
    충격량 감지센서에 의해 감지된 상기 리튬이온 배터리에 가해지는 충격량이 충격량 기준값 이상인지 판단하는 단계; 및Determining whether an impact amount applied to the lithium ion battery sensed by the impact amount sensor is equal to or greater than an impact amount reference value; And
    상기 충격량이 충격량 기준값 이상이면, 상기 전해질 유출에 의한 가스가 감지되는지 판단하는 단계를 포함하는 것을 특징으로 하는 리튬이온 배터리 화재 방지 방법. And determining whether the gas caused by the electrolyte leakage is detected when the impact amount is equal to or greater than the impact amount reference value.
  10. 제 8 항에 있어서, 상기 전해질이 유출되는지를 판단하는 단계는 The method of claim 8, wherein the determining of whether the electrolyte leaks
    상기 리튬이온 배터리의 전압이 전압 기준 범위를 벗어나는지 여부를 판단하는 단계; 및Determining whether a voltage of the lithium ion battery is outside a voltage reference range; And
    상기 전압이 상기 전압 기준 범위를 벗어나면, 상기 전해질 유출에 의한 가스가 감지되는지 판단하는 단계를 포함하는 것을 특징으로 하는 리튬이온 배터리 화재 방지 방법.And determining whether a gas due to the electrolyte leakage is detected when the voltage is outside the voltage reference range.
  11. 제 8 항에 있어서, 상기 배터리 셀의 온도를 감지하여 상기 온도가 온도 기준값 이상이면, 상기 배터리 셀에 상기 중화제를 추가적으로 더 분사하는 단계를 더 포함하는 것을 특징으로 하는 리튬이온 배터리 화재 방지 방법. The method of claim 8, further comprising: spraying the neutralizer further into the battery cell when the temperature of the battery cell is sensed and the temperature is equal to or greater than a temperature reference value.
PCT/KR2013/009941 2012-11-19 2013-11-05 Lithium-ion battery fire prevention apparatus and method WO2014077536A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120131200A KR101489837B1 (en) 2012-11-19 2012-11-19 Apparatus for preventing fire in lithium-ion battery and method thereof
KR10-2012-0131200 2012-11-19

Publications (1)

Publication Number Publication Date
WO2014077536A1 true WO2014077536A1 (en) 2014-05-22

Family

ID=50731401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009941 WO2014077536A1 (en) 2012-11-19 2013-11-05 Lithium-ion battery fire prevention apparatus and method

Country Status (2)

Country Link
KR (1) KR101489837B1 (en)
WO (1) WO2014077536A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112332013A (en) * 2019-09-26 2021-02-05 宁德时代新能源科技股份有限公司 Battery pack, vehicle and control method for relieving thermal runaway spread of battery pack
US20210218004A1 (en) * 2020-01-10 2021-07-15 Caterpillar Inc. Battery fire suppression system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160020234A (en) 2014-08-13 2016-02-23 현대자동차주식회사 Automatic fire extinguishing device of battery pack and method thereof
KR101930135B1 (en) * 2016-10-06 2019-03-14 중소기업은행 Method and apparatus for suppression of combustion in battery pack
KR102134707B1 (en) * 2019-05-02 2020-07-17 주식회사 이에스텍 Ess for fire early prevention
CN112331990B (en) 2019-09-26 2021-09-14 宁德时代新能源科技股份有限公司 Battery pack, vehicle and control method for relieving thermal runaway spread of battery pack
KR20210040725A (en) 2019-10-04 2021-04-14 주식회사 엘지화학 Apparatus for managing battery
KR20210058155A (en) 2019-11-13 2021-05-24 주식회사 피엠그로우 Combustible Gas Detection and Discharge System due to Thermal Runaway in Lithium Secondary Batteries of Energy Storage System and Its Operating Method
KR20210075235A (en) 2019-12-12 2021-06-23 한국전자기술연구원 Fire detection sensor module for lithium ion battery and system including the same
KR102332444B1 (en) 2019-12-23 2021-11-26 삼성에스디아이 주식회사 Thermal runaway detection device, battery system and thermal runaway detection method thereof
KR102116720B1 (en) * 2020-01-20 2020-05-29 (주)테스 Electrical energy storage system and method for preventing fire thereof
KR102152565B1 (en) * 2020-03-19 2020-09-07 주식회사 비티엑스엔펌 Fire extinguishing method and fire extinguishing system for energy storage device
KR102299443B1 (en) 2021-03-31 2021-09-08 주식회사 씨티엔에스 A battery pack having fire extinguishing means
KR20230076448A (en) * 2021-11-24 2023-05-31 주식회사 엘지에너지솔루션 Battery module and battery pack including the same
KR20240034600A (en) 2022-09-07 2024-03-14 주식회사 씨티엔에스 A battery pack with fire spread prevention function

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990051814A (en) * 1997-12-20 1999-07-05 손욱 Charge / discharger of lithium ion battery
KR20070052375A (en) * 2005-11-17 2007-05-22 주식회사 엘지화학 Meddle or large-sized battery system of excellent stability
JP2010153117A (en) * 2008-12-24 2010-07-08 Mitsubishi Heavy Ind Ltd Battery module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974603A (en) * 1995-09-01 1997-03-18 Mitsubishi Motors Corp Safety device of battery for electric vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990051814A (en) * 1997-12-20 1999-07-05 손욱 Charge / discharger of lithium ion battery
KR20070052375A (en) * 2005-11-17 2007-05-22 주식회사 엘지화학 Meddle or large-sized battery system of excellent stability
JP2010153117A (en) * 2008-12-24 2010-07-08 Mitsubishi Heavy Ind Ltd Battery module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112332013A (en) * 2019-09-26 2021-02-05 宁德时代新能源科技股份有限公司 Battery pack, vehicle and control method for relieving thermal runaway spread of battery pack
CN112332013B (en) * 2019-09-26 2021-10-01 宁德时代新能源科技股份有限公司 Battery pack, vehicle and control method for relieving thermal runaway spread of battery pack
US11342611B2 (en) 2019-09-26 2022-05-24 Contemporary Amperex Technology Co., Limited Battery pack, vehicle and control method for alleviating thermal runaway spreading of battery pack
US20210218004A1 (en) * 2020-01-10 2021-07-15 Caterpillar Inc. Battery fire suppression system

Also Published As

Publication number Publication date
KR101489837B1 (en) 2015-02-04
KR20140064176A (en) 2014-05-28

Similar Documents

Publication Publication Date Title
WO2014077536A1 (en) Lithium-ion battery fire prevention apparatus and method
WO2018139737A1 (en) Battery pack including fire extinguishing system
WO2020171414A1 (en) Battery rack and power storage device comprising same
WO2021230528A1 (en) Battery pack including fire suppression means
US10873069B2 (en) Single cell battery, battery module, power battery, and electric vehicle
KR20140005323A (en) Battery housing for lithium-ion cells
WO2015046804A1 (en) Battery pack having insertional bms assembly
WO2012134108A2 (en) Pouched type secondary battery including gas discharging device and gas discharging control method
US10804522B2 (en) Single-cell battery, battery module, power battery, and electric vehicle
WO2020166940A1 (en) Energy storage system having structure in which coolant can be fed into battery module
WO2022050804A2 (en) Hydrogen dispenser apparatus and method for controlling same
KR102480842B1 (en) fire extinguishing apparatus for electric vehicle
EP3422441A1 (en) Single-cell battery, battery module, battery pack, and electric vehicle
CN107719149A (en) A kind of electrokinetic cell safety management system
KR102507576B1 (en) fire prevention and extinguishing apparatus for electric vehicle
WO2022146013A1 (en) Storage device and method for safe transport of waste secondary battery
WO2015002379A1 (en) Battery pack protection device and method
WO2018052209A1 (en) Secondary battery
WO2023287232A1 (en) Battery pack frame, and battery rack and energy storage system comprising same
WO2021210715A1 (en) Device and method for protecting battery
WO2015111987A1 (en) Battery management unit for preventing performance of erroneous control algorithm from communication error
CN116031537B (en) Battery pack
WO2017150818A1 (en) Vehicular battery system
WO2023096431A1 (en) Fire extinguishing device using salt water tank for battery for testing high-capacity charging/discharging
US10797296B2 (en) Single-cell battery, battery module, power battery, and electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13854448

Country of ref document: EP

Kind code of ref document: A1