WO2014077393A1 - Cnt/non-woven composite capacitor - Google Patents

Cnt/non-woven composite capacitor Download PDF

Info

Publication number
WO2014077393A1
WO2014077393A1 PCT/JP2013/081058 JP2013081058W WO2014077393A1 WO 2014077393 A1 WO2014077393 A1 WO 2014077393A1 JP 2013081058 W JP2013081058 W JP 2013081058W WO 2014077393 A1 WO2014077393 A1 WO 2014077393A1
Authority
WO
WIPO (PCT)
Prior art keywords
cnt
nonwoven fabric
capacitor
electrode
fabric composite
Prior art date
Application number
PCT/JP2013/081058
Other languages
French (fr)
Japanese (ja)
Inventor
俊雄 阿部
Original Assignee
スペースリンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スペースリンク株式会社 filed Critical スペースリンク株式会社
Publication of WO2014077393A1 publication Critical patent/WO2014077393A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a CNT / nonwoven fabric composite capacitor using carbon nanotubes having high electrical characteristics.
  • An electric double layer capacitor is an electric double layer capacitor that accumulates electricity by electrostatic adsorption and desorption of ions. Unlike a battery using a chemical reaction, an electric double layer capacitor uses a simple ion transfer to an electrode and an electrolyte and a charging phenomenon by physical adsorption. Rapid charge and discharge is possible, and it has high charge and discharge efficiency and semi-permanent cycle life characteristics.
  • a polarizable electrode material is applied on a collector electrode provided with a metal foil, and a polarizable electrode (anode) on the positive electrode side and an electrode (cathode) on the negative electrode side And these polarizable electrodes are combined with a separator (separation membrane) interposed therebetween.
  • the capacitor composed of the anode / separation membrane / cathode is housed in a container, and then manufactured by injecting an electrolytic solution therein.
  • the collector electrode is the base of the first polarizable electrode and is a component that plays an important role in collecting electricity.
  • the collector electrode collects the charge of the polarizable electrode.
  • an aluminum foil or a copper foil is used as the metal foil to be joined to the collector electrode.
  • Metal foil is used to improve conductivity.
  • An electric double layer capacitor is an electric double layer capacitor utilizing an interface phenomenon, and its capacitance increases as the surface area of the polarizable electrode interface increases. Therefore, conventionally, the electrode material has a large specific surface area. Activated carbon has been mainly used.
  • activated carbon having a large specific surface area generally has low electrical conductivity, and when only activated carbon is used as an electrode material for an electric double layer capacitor, the internal resistance of the electrode becomes too large, so that it can be used for taking out a large current. Is not suitable. Moreover, there existed the subject that a thing with a large electrostatic capacitance was not obtained and the vulnerability of a structure.
  • carbon black or the like is generally mixed in the electrode in addition to activated carbon as a main component, mainly for the purpose of lowering the internal resistance of the electrode.
  • Patent Document 1 discloses that carbon nanotubes are mixed with activated carbon powder and carbon black. It has been proposed to obtain an electric double layer capacitor with improved capacitance by forming an electrode.
  • Patent Document 2 proposes to obtain a capacitor with high capacity and high charge / discharge speed by using a carbon nanotube film impregnated with an electrolyte as an electrode.
  • the present invention eliminates the conventional problems and uses a carbon nanotube to reduce the internal resistance and to reduce the polarizable electrode capable of improving the capacitance per unit mass.
  • the goal is to realize a high-performance electric double layer capacitor that is realized at low cost.
  • the present inventor has immersed a multi-walled carbon nanotube (MWCNT) or a single-walled carbon nanotube (SWCNT) in a non-woven fabric, thereby obtaining a high-performance electrode.
  • MWCNT multi-walled carbon nanotube
  • SWCNT single-walled carbon nanotube
  • the present invention is characterized by the following.
  • An electric double layer capacitor comprising a separator, a pair of polarizable electrodes on the positive electrode side and negative electrode side disposed on both sides of the separator, and a pair of polarizable electrodes on the side not facing the separator.
  • CNT carbon nanotubes
  • the non-woven fabric is a conductive non-woven fabric.
  • Nonwoven composite capacitor is a conductive non-woven fabric.
  • the carbon nanotube is a multi-walled carbon nanotube.
  • Nonwoven composite capacitor is a multi-walled carbon nanotube.
  • a non-woven composite capacitor wherein the end surfaces of the pair of polarizable electrodes, the separator, and the pair of collector electrodes are hermetically bonded with an insulating material.
  • Nonwoven composite capacitor
  • any one of the above CNT is A non-woven composite capacitor, in which CNT. Positive and negative polarizable electrodes made of a non-woven fabric composite are arranged, these are housed in a conductive case, a gasket is interposed between the case and the conductive lid, and the lid is covered And CNT. Nonwoven composite capacitor.
  • the electric double layer CNT of the present invention As described above, the electric double layer CNT of the present invention.
  • the use of the CNT / non-woven fabric composite as a polarizable electrode can realize a capacitance more than double that of a conventional CNT capacitor. This is considered to be due to the improved connection between CNTs, which has been a conventional problem, improved ion conductivity, and increased the amount of ions attached to the CNT surface.
  • This effect is exhibited regardless of whether it is multilayer or single layer.
  • multi-walled carbon nanotubes are inexpensive (about 30,000 yen per kilogram), and are overwhelmingly less expensive than expensive single-walled carbon nanotubes (200 million yen per kilogram). Therefore, the effect is great if the capacitor can be made stably with multi-walled carbon nanotubes.
  • CNTs are firmly bonded to each other on the fiber surface by adhering to the fiber surface of the nonwoven fabric by intermolecular force.
  • Nonwoven fabrics in CNT / nonwoven fabric composites (sheets entangled without weaving fibers) fibers include aramid fibers, glass fibers, cellulose fibers, nylon fibers, vinylon fibers, polyester fibers, polyolefin fibers, rayon fibers
  • Inorganic, such as titanium oxide fiber, or various conductive polymer fibers such as polyaniline, polythiophene, and polyacetylene are used.
  • titanium oxide fibers, cellulose fibers, and conductive polymer fibers are preferably used. This is because the lifetime of the device can be extended and the performance can be improved due to the fact that there is little reaction with the electrolytic solution and the conductivity is good.
  • a method of impregnating a carbon nanotube into a nonwoven fabric in the present invention, a method of generally immersing the nonwoven fabric in a solution of carbon nanotubes dispersed in water or a method of injecting a paste mixed with carbon nanotubes in water into the nonwoven fabric is preferably employed. Is done. For example, specifically, 1 g of carbon nanotube dispersed in 10 liters of water is mixed. The nonwoven fabric is dipped in this solution, taken out, dried and dipped. By repeating this cycle 5 times or more, the carbon nanotubes are attached to the non-woven fibers, and the conductivity is increased.
  • a paste in which 1 g of carbon nanotubes is mixed with 100 cc of water is prepared and injected into the nonwoven fabric with a syringe.
  • the electrode is produced by drying the CNT / nonwoven fabric composite thus obtained. In such a process, since no chemicals are used, an effect of not deteriorating the electrolytic solution is produced.
  • the internal resistance can be reduced, the capacitance can be increased several times, and a CNT / nonwoven fabric composite capacitor having a very large capacitance is realized.
  • the Particularly important in this technology is that multi-walled carbon nanotubes can be supported by a nonwoven fabric, so that a low-cost (tens of tens of thousands of yen per kilogram), structurally strong, and large-capacity practical capacitors can be stably manufactured. It can be mass-produced with. Since the price of the material is about the same as that of the activated carbon capacitor, the performance ratio is excellent and it is competitive in the market.
  • FIG. 1 It is a block diagram which shows the structural example of the conventional electrical double layer capacitor. It is sectional drawing which illustrated the CNT and the nonwoven fabric composite capacitor as embodiment of this invention. It is sectional drawing which illustrated the coin type CNT * nonwoven fabric composite capacitor which is other embodiments of the present invention. It is the assembly exploded view which illustrated the embodiment of another coin type CNT and nonwoven fabric composite capacitor. It is an example of a photograph of a measurement jig and an electrode. It is an example of experimental data which shows the discharge characteristic of the electrode in connection with this invention.
  • Electrode 101 Metal foil 102 Graphene layer 103 Carbon nanotube / graphene layer 104 Carbon nanotube layer 200 CNT / nonwoven fabric composite capacitor 201 CNT / nonwoven fabric composite positive electrode 202 CNT / nonwoven fabric composite negative electrode 203 Separator 204 Positive electrode collecting electrode 205 Negative electrode side collector electrode 206 Metal foil 207 Insulating material 300 Coin type CNT / nonwoven fabric composite capacitor 302 CNT / nonwoven fabric composite positive electrode 303 CNT / nonwoven fabric composite negative electrode 304 Conductive adhesive 305 Case 306 Lid 307 Separator 308 Gasket 309 Wave washer 310 Spacer 401 Discharge Characteristics of Multi-Wall Carbon Nanotube Capacitor 402 Discharge Characteristics of CNT / Nonwoven Fabric Composite Capacitor Using Multi-Wall Carbon Nanotubes 403 Single-Wall Carbon Nano Discharge characteristics of CNT ⁇ nonwoven composite capacitor using a discharge characteristic 404 SWNTs Yubukyapashita
  • FIG. 1 illustrates a configuration of a conventional capacitor in a cross-sectional view.
  • a graphene layer 102 is formed by applying graphene dispersed in an extremely fine manner with ultrasonic waves on the surface of the metal foil 101 to form a graphene layer 102, and further, a slurry is obtained by combining carbon nanotubes and graphene on the surface.
  • a method of forming and applying the carbon nanotube / graphene layer 103 to form the carbon nanotube layer 104 on the surface of the carbon nanotube / graphene layer 103 has been adopted.
  • the ionic conductivity of the carbon nanotube layer 104 is inhibited, and the amount of stored charge cannot be increased as expected. Therefore, the limit of the electrostatic capacity that can be realized is 20 F / g to 40 F / g in terms of electrode material. Moreover, since the connection of CNT does not work well, it is difficult to increase the size and the structure is unstable. That is, when trying to make a business card size or larger electrode, the CNT connection in the surface direction could not be sufficiently secured, and the internal resistance did not increase or the capacitance did not increase.
  • FIG. 2 is a sectional view of a CNT / nonwoven fabric composite capacitor 200 as one embodiment of the present invention.
  • the positive side CNT / nonwoven fabric composite positive electrode 201 is disposed on the front side of the separator 203, and the negative side CNT / nonwoven fabric composite negative electrode 202 is disposed on the back side.
  • These polarizable electrodes are joined to positive and negative polarizable electrodes, each of a positive collector electrode 204 and a negative collector electrode 205. Further, a metal foil 206 is bonded to the surfaces of these collector electrodes.
  • the insulating material 207 is applied and sealed along the end surfaces of the CNT / nonwoven fabric composite positive electrode 201, the CNT / nonwoven fabric composite negative electrode 202, the separator 203, and the collector electrodes 204 and 205.
  • a silicon adhesive, an acrylic, a Teflon (registered trademark) adhesive, or the like can be used, and a silicon or Teflon (registered trademark) adhesive having excellent chemical resistance is preferably used.
  • FIG. 3 is a cross-sectional view of a CNT / nonwoven fabric composite capacitor 300 as another embodiment of the present invention.
  • a CNT / nonwoven fabric composite positive electrode 302 and a CNT / nonwoven fabric composite negative electrode 303 made of a CNT / nonwoven fabric composite are formed by shaping a CNT / nonwoven fabric composite into a circle having a diameter of about 13 mm.
  • the CNT / nonwoven fabric composite negative electrode 303 and the CNT / nonwoven fabric composite positive electrode 302 are respectively bonded to a stainless steel container case 305 and a stainless steel container lid 306 using a conductive adhesive 304.
  • a cellulose-based or conductive polymer-based material is suitably used for the nonwoven fabric.
  • a two-component epoxy / silver adhesive is preferably used as the conductive adhesive.
  • the CNT / nonwoven fabric composite negative electrode 303 adhered to the case 305 and the CNT / nonwoven fabric composite negative electrode 302 adhered to the lid 306 are annealed with ultraviolet rays and further dried at 120 to 200 ° C. under reduced pressure for 2 to 4 hours. After that, both electrodes are impregnated with an electrolyte in a glove box in a dry nitrogen atmosphere.
  • the electrolytic solution can be produced by dissolving tetraethylammonium tetrafluoroborate in propylene carbonate at a concentration of 2 to 3 mol / L. There are various variations of this electrolytic solution, such as adding an ionic liquid or sulfonic acid.
  • the CNT / nonwoven fabric composite electrode impregnated with the electrolytic solution is opposed to each other through a nonwoven fabric separator 307 and caulked with a polypropylene gasket 308, and the coin-shaped CNT / nonwoven fabric composite capacitor according to this embodiment is used. 300 is configured.
  • the obtained coin-shaped CNT / nonwoven fabric composite capacitor 300 according to the present embodiment is charged and discharged with a constant current of an upper limit voltage of 3 V and 1 mA as shown in FIG.
  • the result was, for example, that the capacitance was 3 V, the voltage was 3 V, the discharge current was 1 mA, the discharge time was 88 minutes, and the CNT / nonwoven fabric composite was used 80 mg.
  • the electrostatic capacity per gram is calculated according to the following formula (1), and the large capacity of 88 F / g greatly exceeds 30-40 F / g, which is the typical performance of the conventional carbon nanotube capacitor. Realized.
  • the energy density is calculated by the following formula (2).
  • FIG. 6 compares the characteristics of various batteries and the CNT / nonwoven fabric composite capacitor of the present invention. As can be seen, it is possible to exhibit sufficient performance without using metal.
  • the CNT / nonwoven fabric composite capacitor is resistant to charge / discharge cycle deterioration, and the storage capacity is only deteriorated within 2% even after 10,000 charge / discharge cycles. Furthermore, the carbon nanotubes that are formed are nonflammable, and the electrolyte can be made nonflammable when an ionic liquid is used. This can be avoided from the danger of heating and ignition.
  • the electrode material is subjected to an acid treatment, the purpose of which is to remove impurities and add functional groups.
  • an acid treatment the purpose of which is to remove impurities and add functional groups.
  • the electrodes are irradiated with ultraviolet rays in an ammonia atmosphere. This step is to reduce the functional group. By performing such treatment, the electrode exhibits high conductivity, the internal resistance can be reduced, and the performance is improved.
  • FIG. 4 illustrates still another embodiment.
  • the structure is slightly different from the coin-shaped CNT / nonwoven fabric composite capacitor of FIG. 3, and a spacer and a wave washer are added.
  • a CNT / nonwoven fabric composite positive electrode 302 and a CNT / nonwoven fabric composite negative electrode 303 made of a CNT / nonwoven fabric composite electrode are formed by shaping a CNT / nonwoven fabric composite into a circle having a diameter of about 13 mm.
  • the configuration up to this point is the same as in FIG.
  • the CNT / nonwoven fabric composite negative electrode 303 is adhered to the case 305 with a conductive adhesive 304 using a conductive adhesive 304.
  • the CNT / nonwoven fabric composite positive electrode 302 is similarly bonded to a stainless steel spacer 307.
  • a wave washer 310 having a spring structure is placed on the upper portion of the spacer, and a lid 306 is further covered.
  • the lid 306 and the case 305 are joined and integrated by caulking.
  • the CNT / nonwoven fabric composite negative electrode 303 is electrically connected to the case 305 of the stainless steel container, and the CNT / nonwoven fabric composite negative electrode 302 is electrically connected to the cover 306 of the stainless steel container.
  • a cellulose-based or conductive polymer-based material is suitably used for the nonwoven fabric. Further, the two-component epoxy / silver adhesive is preferably used as the conductive adhesive zs agent as in the second embodiment.
  • the manufacturing process is the same as in Example 2. The difference is that a spacer 310 and a wave washer 309 are inserted between the lid 306 on the positive electrode side and the CNT / nonwoven fabric composite positive electrode 302. As a result, electrical connection between the electrode and the cap 306 and the case 305 is ensured, and stable performance is exhibited.
  • the measurement result of a conventional single-walled carbon nanotube capacitor was 403, and 40 F / g was obtained.
  • the discharge characteristic indicated by curve 404 was obtained, and 50 F / g was obtained.
  • a CNT / nonwoven fabric composite capacitor is provided to society, a conventional storage battery can be reduced in size and weight, and can be used as an ideal storage element having a long life and high safety.
  • the market availability is as follows. (1) New energy vehicle market Effective as a storage battery for hybrid cars, electric cars, and fuel cell cars. (2) Effective for leveling the amount of power generated by wind turbine generators, where the wind power market is volatile. (3) Solar power generation market Same as wind power.

Abstract

In order to increase the electrostatic capacitance of electrodes in an electric double-layer capacitor, said electric double-layer capacitor comprises a separator, a pair of polarizable electrodes arranged on both surfaces of the separator, and a pair of collectors arranged in contact with the pair of polarizable electrodes on the side that is not facing the separator. The electric double-layer capacitor has an electrolyte impregnated into the polarizable electrodes and a carbon nanotube (CNT)-impregnated non-woven composite body is used for the polarizable electrodes.

Description

CNT・不織布合成体キャパシタCNT / nonwoven composite capacitors
 本発明は、高い電気的特性を有するカーボンナノチューブを利用したCNT・不織布合成体キャパシタに関するものである。 The present invention relates to a CNT / nonwoven fabric composite capacitor using carbon nanotubes having high electrical characteristics.
 電気二重層キャパシタは、イオンの静電気的吸着と脱着によって電気を蓄積する電気二重層コンデンサである。電気二重層キャパシタは、化学反応を利用するバッテリーと異なって、電極と電解質への単純なイオンの移動や物理的吸着による充電現象を利用する。急速充放電が可能であり、高い充放電効率及び半永久的なサイクル寿命特性を有する。 An electric double layer capacitor is an electric double layer capacitor that accumulates electricity by electrostatic adsorption and desorption of ions. Unlike a battery using a chemical reaction, an electric double layer capacitor uses a simple ion transfer to an electrode and an electrolyte and a charging phenomenon by physical adsorption. Rapid charge and discharge is possible, and it has high charge and discharge efficiency and semi-permanent cycle life characteristics.
 一般的な電気二重層キャパシタの構造としては、例えば金属箔を備えた集電極の上に、分極性電極材料を塗布して正極側の分極性電極(陽極)と、負極側の電極(陰極)を形成し、セパレータ(分離膜)を挟んでこれらの分極性電極を結合する。このようにして前記陽極/分離膜/陰極で構成されたキャパシタを容器に収納した後、ここに電解液を注入することにより製造する。 As a structure of a general electric double layer capacitor, for example, a polarizable electrode material is applied on a collector electrode provided with a metal foil, and a polarizable electrode (anode) on the positive electrode side and an electrode (cathode) on the negative electrode side And these polarizable electrodes are combined with a separator (separation membrane) interposed therebetween. In this way, the capacitor composed of the anode / separation membrane / cathode is housed in a container, and then manufactured by injecting an electrolytic solution therein.
 このような構成を有する電気二重層キャパシタにおいて、前記分極性電極の両端が連結された電極に数ボルトの電圧を加えると、電場が形成され、これにより電解質内のイオンが移動して電極表面に吸着されて電気が蓄積される。 In the electric double layer capacitor having such a configuration, when a voltage of several volts is applied to the electrode where both ends of the polarizable electrode are connected, an electric field is formed, which causes ions in the electrolyte to move to the electrode surface. It is adsorbed and accumulates electricity.
 集電極は前期分極性電極のベースとなるもので、電気を集める重要な働きをする構成要素である。集電極は分極性電極の電荷を集める作用をする。この集電極に接合される金属箔には一般的にはアルミ箔や銅箔が用いられている。金属箔は伝導性を良くするために用いられる。 The collector electrode is the base of the first polarizable electrode and is a component that plays an important role in collecting electricity. The collector electrode collects the charge of the polarizable electrode. In general, an aluminum foil or a copper foil is used as the metal foil to be joined to the collector electrode. Metal foil is used to improve conductivity.
 電気二重層キャパシタは、電気二重層という界面現象を利用したキャパシタであり、その静電容量は分極性電極界面の表面積が大きいほど向上するため、従来、その電極の材料としては、比表面積の大きい活性炭が主に用いられてきた。 An electric double layer capacitor is an electric double layer capacitor utilizing an interface phenomenon, and its capacitance increases as the surface area of the polarizable electrode interface increases. Therefore, conventionally, the electrode material has a large specific surface area. Activated carbon has been mainly used.
 ところが、大比表面積を有する活性炭は一般的に電気伝導度が小さく、電気二重層キャパシタの電極材料として活性炭のみを用いた場合は、電極の内部抵抗が大きくなり過ぎるため、大電流を取り出す用途には適さない。また、静電容量も大きなものが得られないことや構造の脆弱性という課題があった。 However, activated carbon having a large specific surface area generally has low electrical conductivity, and when only activated carbon is used as an electrode material for an electric double layer capacitor, the internal resistance of the electrode becomes too large, so that it can be used for taking out a large current. Is not suitable. Moreover, there existed the subject that a thing with a large electrostatic capacitance was not obtained and the vulnerability of a structure.
 そのため、主に電極の内部抵抗を下げることを目的として、電極中に主成分としての活性炭に加えて、カーボンブラックなどを混合することが一般的に行われている。 For this reason, carbon black or the like is generally mixed in the electrode in addition to activated carbon as a main component, mainly for the purpose of lowering the internal resistance of the electrode.
 しかしながら、導電性を高めるための活性炭以外の材料の混合割合が高くなるほど、内部抵抗は低下するのに対して、活性炭の混合割合は低くなるため、キャパシタの単位質量当り静電容量は減少してしまう。 However, the higher the mixing ratio of materials other than activated carbon to increase conductivity, the lower the internal resistance, whereas the lower the mixing ratio of activated carbon, the lower the capacitance per unit mass of the capacitor. End up.
 そこで、導電性を高めて電極の内部抵抗を低下させるとともに、単位質量当りの静電容量の向上をも図るために、下記特許文献1には、カーボンナノチューブを活性炭粉末およびカーボンブラックと混合して電極を形成することで、静電容量が向上した電気二重層キャパシタを得ることが提案されている。 Therefore, in order to increase the conductivity and lower the internal resistance of the electrode and to improve the capacitance per unit mass, the following Patent Document 1 discloses that carbon nanotubes are mixed with activated carbon powder and carbon black. It has been proposed to obtain an electric double layer capacitor with improved capacitance by forming an electrode.
 また、下記特許文献2には、カーボンナノチューブ膜に電解液を含浸させたものを電極として用いることで、高容量化および充放電の高速化が図られたキャパシタを得ることが提案されている。 Further, Patent Document 2 below proposes to obtain a capacitor with high capacity and high charge / discharge speed by using a carbon nanotube film impregnated with an electrolyte as an electrode.
 しかしこれらの工夫にもかかわらず、これまでは、カーボンナノチューブの性能を十分に発揮することができず、製品化が進展しない状況にあった。 However, in spite of these ideas, until now, the performance of carbon nanotubes could not be fully exhibited, and commercialization has not progressed.
 近年においては、太陽光、風力発電等によるクリーンエネルギーの蓄電システム用途などに、応答の早い電気二重層キャパシタが期待されており、より大容量でリチウムイオン電池のエネルギー密度に迫り、かつ大電流を取り出せる電気二重層キャパシタの開発が望まれている。さらに、ニッカド電池、ナトリュウム硫黄電池、ニッケル水素電池、リチウムイオン電池のような現在主流の二次電池において、発火爆発事故が多数発生している。特にリチウムイオン電池の事故が多い。このため、現状では安全な大容量蓄電手段が見つからない状況である。このため、リチウムやナトリュウム、硫黄、水素などの危険な材料を用いない安全な蓄電素子が望まれている。そこで、カーボンナノチューブを用いたキャパシタが研究開発されているが、内部抵抗が低く、大容量でしかも低コストなものがまだ実現されていない。 In recent years, electric double layer capacitors with high response have been expected for applications such as solar energy and wind power generation, which are used for clean energy storage systems. Development of an electric double layer capacitor that can be taken out is desired. Furthermore, many ignition and explosion accidents have occurred in secondary batteries that are currently mainstream, such as nickel-cadmium batteries, sodium-sulfur batteries, nickel-metal hydride batteries, and lithium-ion batteries. There are many accidents involving lithium-ion batteries. Therefore, at present, a safe large-capacity storage means cannot be found. For this reason, a safe electric storage element that does not use dangerous materials such as lithium, sodium, sulfur, and hydrogen is desired. Thus, although a capacitor using carbon nanotubes has been researched and developed, a capacitor having a low internal resistance, a large capacity, and a low cost has not yet been realized.
特開2000-124079号公報JP 2000-1224079 A 特開2008-44820号公報JP 2008-44820 A
 本発明は、以上のとおりの背景から、従来の問題点を解消し、カーボンナノチューブを用いて、内部抵抗を低下させるとともに、単位質量当りの静電容量を向上させることのできる分極性電極を低コストで実現し、高性能な電気二重層キャパシタとすることを課題としている。 In view of the above background, the present invention eliminates the conventional problems and uses a carbon nanotube to reduce the internal resistance and to reduce the polarizable electrode capable of improving the capacitance per unit mass. The goal is to realize a high-performance electric double layer capacitor that is realized at low cost.
 本発明者は、電気二重層キャパシタの性能向上を図るべく種々実験的研究を進めた結果、多層カーボンナノチューブ(MWCNT)や単層カーボンナノチューブ(SWCNT)を不織布に浸漬させることで、高性能な電極ができることを見いだし、本発明を完成した。 As a result of conducting various experimental studies to improve the performance of the electric double layer capacitor, the present inventor has immersed a multi-walled carbon nanotube (MWCNT) or a single-walled carbon nanotube (SWCNT) in a non-woven fabric, thereby obtaining a high-performance electrode. The present invention has been completed.
 すなわち、本発明は以下のことを特徴としている。 That is, the present invention is characterized by the following.
 1.電気二重層キャパシタであって、セパレータと、セパレータの両面に配された正極側および負極側の一対の分極性電極と、この一対の分極性電極の各々の前記セパレータと面していない側に配された正極側および負極側の一対の集電極とを備え、前記分極性電極には電解液が含浸している電気二重層キャパシタにおいて、正極側と負極側の前記分極性電極は、カーボンナノチューブ(CNT)が不織布に含浸されたCNT.不織布合成体であることを特徴とするCNT.不織布合成体キャパシタ。 1. An electric double layer capacitor comprising a separator, a pair of polarizable electrodes on the positive electrode side and negative electrode side disposed on both sides of the separator, and a pair of polarizable electrodes on the side not facing the separator. A pair of collector electrodes on the positive electrode side and the negative electrode side, wherein the polarizable electrode is impregnated with an electrolyte solution, wherein the polarizable electrodes on the positive electrode side and the negative electrode side are carbon nanotubes ( CNT) impregnated in a nonwoven fabric. CNT. Which is a non-woven fabric composite. Nonwoven composite capacitor.
 2.不織布は導電性不織布であることを特徴とするCNT.不織布合成体キャパシタ。 2. The non-woven fabric is a conductive non-woven fabric. Nonwoven composite capacitor.
 3.カーボンナノチューブは、多層カーボンナノチューブであることを特徴とするCNT.不織布合成体キャパシタ。 3. The carbon nanotube is a multi-walled carbon nanotube. Nonwoven composite capacitor.
 4.前記いずれかのCNT.不織布合成体キャパシタであって、前記一対の分極性電極、セパレータおよび一対の集電極の端面が絶縁材で密閉接着されている構成であることを特徴とするCNT.不織布合成体キャパシタ。 4. Any one of the above CNT. A non-woven composite capacitor, wherein the end surfaces of the pair of polarizable electrodes, the separator, and the pair of collector electrodes are hermetically bonded with an insulating material. Nonwoven composite capacitor.
 5.同様に前記いずれかのCNT.不織布合成体キャパシタであって、セパレータの表裏両面に電解液が含浸されたCNT.不織布合成体からなる正極および負極の分極性電極が配設され、導電性のケース内にこれらが収納され、ガスケットがケースと導電性の蓋との間に介設されて蓋が被せられてケースと圧着されている構成であることを特徴とするCNT.不織布合成体キャパシタ。 5. Similarly, any one of the above CNT. A non-woven composite capacitor, in which CNT. Positive and negative polarizable electrodes made of a non-woven fabric composite are arranged, these are housed in a conductive case, a gasket is interposed between the case and the conductive lid, and the lid is covered And CNT. Nonwoven composite capacitor.
 6.ウェーブワッシャとスペースが正極の分極性電極と蓋との間に介在されていることを特徴とする前記のCNT.不織布合成体キャパシタ。 6. The CNT. Characterized in that a wave washer and a space are interposed between a positive polarizable electrode and a lid. Nonwoven composite capacitor.
 以上のとおりの本発明の電気二重層CNT.不織布合成体キャパシタでは、CNT・不織布合成体を分極性電極として用いることで、従来のCNTキャパシタよりも倍以上の静電容量を実現できることが確認された。これは、従来の課題であったCNT同士の接続が良くなり、イオン伝導性が向上し、CNT表面へのイオン付着量も増加したことによるものと考えられる。この効果は多層、単層にかかわらず発揮される。特に多層カーボンナノチューブは安価であり(1Kgあたり3万円程度)、高価な単層カーボンナノチューブ(Kgあたり2億円)に比べると圧倒的に低価格である。したがって、多層カーボンナノチューブでキャパシタが安定的に作れるとその効果は大きい。 As described above, the electric double layer CNT of the present invention. In the non-woven fabric composite capacitor, it has been confirmed that the use of the CNT / non-woven fabric composite as a polarizable electrode can realize a capacitance more than double that of a conventional CNT capacitor. This is considered to be due to the improved connection between CNTs, which has been a conventional problem, improved ion conductivity, and increased the amount of ions attached to the CNT surface. This effect is exhibited regardless of whether it is multilayer or single layer. In particular, multi-walled carbon nanotubes are inexpensive (about 30,000 yen per kilogram), and are overwhelmingly less expensive than expensive single-walled carbon nanotubes (200 million yen per kilogram). Therefore, the effect is great if the capacitor can be made stably with multi-walled carbon nanotubes.
 CNT・不織布合成体を用いることで、従来のカーボンナノチューブ電極を用いた電気二重層キャパシタの蓄電能力を2倍近くまで高めうる。これは多層、単層にかかわらず本発明では、容量増大の効果がある。また内部抵抗も従来の10分の1程度に低くすることができる。そして、この構造はCNTが多層でも単層でも共通的に利用できる。 By using a CNT / nonwoven fabric composite, it is possible to increase the storage capacity of an electric double layer capacitor using a conventional carbon nanotube electrode to nearly double. This has the effect of increasing the capacity in the present invention regardless of whether it is a multilayer or a single layer. Also, the internal resistance can be lowered to about 1/10 of the conventional one. This structure can be commonly used regardless of whether the CNT is a multilayer or a single layer.
 つまり、CNTが不織布の繊維表面に分子間力で付着することにより、繊維表面でCNTが相互に強固に結びつくことによると考えられる。 That is, it is considered that CNTs are firmly bonded to each other on the fiber surface by adhering to the fiber surface of the nonwoven fabric by intermolecular force.
 CNT・不織布合成体における不織布(繊維を織らずに絡み合わせたシート状のものをいう。)繊維にはアラミド繊維、ガラス繊維、セルロース繊維、ナイロン繊維、ビニロン繊維、ポリエステル繊維、ポリオレフィン繊維、レーヨン繊維、酸化チタン繊維等の無機質の、あるいはポリアニリン系やポリチオフェン系、ポリアセチレン系等の各種の導電性ポリマー繊維などが用いられる。特に酸化チタン繊維、セルロース繊維や導電性ポリマー繊維が好適に用いられる。それは、電解液との反応が少ないことや導電性が良いことなどから素子の寿命を長くし性能を良くすることができるからである。導電性不織布のなかでも、特に酸化チタン(TiO)繊維の場合、比誘電率が40と大きいので、電気二重層の領域における誘電率を高める効果がある。そのため、静電容量を大きくする効果がある。 Nonwoven fabrics in CNT / nonwoven fabric composites (sheets entangled without weaving fibers) fibers include aramid fibers, glass fibers, cellulose fibers, nylon fibers, vinylon fibers, polyester fibers, polyolefin fibers, rayon fibers Inorganic, such as titanium oxide fiber, or various conductive polymer fibers such as polyaniline, polythiophene, and polyacetylene are used. In particular, titanium oxide fibers, cellulose fibers, and conductive polymer fibers are preferably used. This is because the lifetime of the device can be extended and the performance can be improved due to the fact that there is little reaction with the electrolytic solution and the conductivity is good. Among conductive non-woven fabrics, in particular, in the case of titanium oxide (TiO 2 ) fiber, since the relative dielectric constant is as large as 40, there is an effect of increasing the dielectric constant in the electric double layer region. Therefore, there is an effect of increasing the capacitance.
 不織布へカーボンナノチューブを含浸する方法は、本発明では、一般的に水に分散したカーボンナノチューブの溶液に不織布を浸漬することや、水にカーボンナノチューブを混合したペーストを不織布に注入する方法が好ましく採用される。例えば具体的には、水10リッターに対して分散したカーボンナノチューブを1g混合する。この溶液の中に不織布を浸漬し、取り出して乾燥し、また浸漬する。このサイクルを5回以上繰り返すことで不織布の繊維にカーボンナノチューブを付着させ、導電性を高める。さらには、カーボンナノチューブを水100ccに対して1g混合したペーストとし、注射器で不織布に注入する。こうして得られたCNT・不織布合成体を乾燥することで電極を作成する。このような工程では薬品類を一切使用しないので、電解液を劣化させない効果が生ずる。 As a method of impregnating a carbon nanotube into a nonwoven fabric, in the present invention, a method of generally immersing the nonwoven fabric in a solution of carbon nanotubes dispersed in water or a method of injecting a paste mixed with carbon nanotubes in water into the nonwoven fabric is preferably employed. Is done. For example, specifically, 1 g of carbon nanotube dispersed in 10 liters of water is mixed. The nonwoven fabric is dipped in this solution, taken out, dried and dipped. By repeating this cycle 5 times or more, the carbon nanotubes are attached to the non-woven fibers, and the conductivity is increased. Further, a paste in which 1 g of carbon nanotubes is mixed with 100 cc of water is prepared and injected into the nonwoven fabric with a syringe. The electrode is produced by drying the CNT / nonwoven fabric composite thus obtained. In such a process, since no chemicals are used, an effect of not deteriorating the electrolytic solution is produced.
 本発明に係る電極を用いた、CNT・不織布合成体キャパシタによれば、内部抵抗を小さくでき静電容量を数倍に増加させ、きわめて大きな静電容量を持つCNT・不織布合成体キャパシタが実現される。特にこの技術で重要なことは、多層カーボンナノチューブを不織布で担持することができるので、低価格(Kgあたり数万円)で、構造的に丈夫で、大容量の実用的なキャパシタを安定した工程で量産できることにある。材料の価格は活性炭キャパシタのそれと同程度となるので、性能比では選りすぐれたものとなり、市場での競争力がある。 According to the CNT / nonwoven fabric composite capacitor using the electrode according to the present invention, the internal resistance can be reduced, the capacitance can be increased several times, and a CNT / nonwoven fabric composite capacitor having a very large capacitance is realized. The Particularly important in this technology is that multi-walled carbon nanotubes can be supported by a nonwoven fabric, so that a low-cost (tens of tens of thousands of yen per kilogram), structurally strong, and large-capacity practical capacitors can be stably manufactured. It can be mass-produced with. Since the price of the material is about the same as that of the activated carbon capacitor, the performance ratio is excellent and it is competitive in the market.
従来の電気二重層キャパシタの構成例を示す構成図である。It is a block diagram which shows the structural example of the conventional electrical double layer capacitor. 本発明の実施形態としてのCNT・不織布合成体キャパシタを例示した断面図である。It is sectional drawing which illustrated the CNT and the nonwoven fabric composite capacitor as embodiment of this invention. 本発明のその他の実施形態であるコイン形CNT・不織布合成体キャパシタを例示した断面図である。It is sectional drawing which illustrated the coin type CNT * nonwoven fabric composite capacitor which is other embodiments of the present invention. さらに別のコイン形CNT・不織布合成体キャパシタの実施形態を例示した組立て分解図である。It is the assembly exploded view which illustrated the embodiment of another coin type CNT and nonwoven fabric composite capacitor. 測定治具と電極の写真例である。It is an example of a photograph of a measurement jig and an electrode. 本考案に関わる電極の放電特性をを示す実験データ例である。It is an example of experimental data which shows the discharge characteristic of the electrode in connection with this invention.
100 電極
101 金属箔
102 グラフェン層
103 カーボンナノチューブ・グラフェン層
104 カーボンナノチューブ層
200 CNT・不織布合成体キャパシタ
201 CNT・不織布合成体正電極
202 CNT・不織布合成体負電極
203 セパレータ
204 正極側の集電極
205 負極側の集電極
206 金属箔
207 絶縁材
300 コイン型CNT・不織布合成体キャパシタ
302 CNT・不織布合成体正極
303 CNT・不織布合成体負極
304 導電性接着剤
305 ケース
306 蓋
307 セパレータ
308 ガスケット
309 ウエーブワッシャ
310 スペーサ
401 多層カーボンナノチューブキャパシタの放電特性
402 多層カーボンナノチューブを用いたCNT・不織布合成体キャパシタの放電特性
403 単層カーボンナノチューブキャパシタの放電特性
404 単層カーボンナノチューブを用いたCNT・不織布合成体キャパシタの放電特性
DESCRIPTION OF SYMBOLS 100 Electrode 101 Metal foil 102 Graphene layer 103 Carbon nanotube / graphene layer 104 Carbon nanotube layer 200 CNT / nonwoven fabric composite capacitor 201 CNT / nonwoven fabric composite positive electrode 202 CNT / nonwoven fabric composite negative electrode 203 Separator 204 Positive electrode collecting electrode 205 Negative electrode side collector electrode 206 Metal foil 207 Insulating material 300 Coin type CNT / nonwoven fabric composite capacitor 302 CNT / nonwoven fabric composite positive electrode 303 CNT / nonwoven fabric composite negative electrode 304 Conductive adhesive 305 Case 306 Lid 307 Separator 308 Gasket 309 Wave washer 310 Spacer 401 Discharge Characteristics of Multi-Wall Carbon Nanotube Capacitor 402 Discharge Characteristics of CNT / Nonwoven Fabric Composite Capacitor Using Multi-Wall Carbon Nanotubes 403 Single-Wall Carbon Nano Discharge characteristics of CNT · nonwoven composite capacitor using a discharge characteristic 404 SWNTs Yubukyapashita
 以下、図面に基づいて本発明の実施の形態について詳細に説明する。まず、図1には、従来のキャパシタの構成を断面図で例示した。
従来の電極においては、金属箔101の表面に、超音波などできわめて細かく分散したグラフェンをペースト状にして塗布しグラフェン層102を形成し、さらにその表面にカーボンナノチューブとグラフェンを交合してスラリーを作り、塗布してカーボンナノチューブ・グラフェン層103を形成し、さらにその表面にカーボンナノチューブ層104を同様に形成するという手法が採用されてきた。この手法では、カーボンナノチューブ層104のイオン伝導性が阻害されて、蓄えられる電荷量が期待するほど大きくできない。そのため、実現できる静電容量は電極材料換算で20F/gから40F/gが限界である。また、CNTの接続がうまくゆかないために、大型化が困難であり、構造に不安定さがあった。つまり、名刺大やそれ以上の大きな電極を作ろうとすると、表面の面方向でのCNT接続が十分に確保できず、内部抵抗が大きくなったり、静電容量が大きくならなかった。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, FIG. 1 illustrates a configuration of a conventional capacitor in a cross-sectional view.
In the conventional electrode, a graphene layer 102 is formed by applying graphene dispersed in an extremely fine manner with ultrasonic waves on the surface of the metal foil 101 to form a graphene layer 102, and further, a slurry is obtained by combining carbon nanotubes and graphene on the surface. A method of forming and applying the carbon nanotube / graphene layer 103 to form the carbon nanotube layer 104 on the surface of the carbon nanotube / graphene layer 103 has been adopted. In this method, the ionic conductivity of the carbon nanotube layer 104 is inhibited, and the amount of stored charge cannot be increased as expected. Therefore, the limit of the electrostatic capacity that can be realized is 20 F / g to 40 F / g in terms of electrode material. Moreover, since the connection of CNT does not work well, it is difficult to increase the size and the structure is unstable. That is, when trying to make a business card size or larger electrode, the CNT connection in the surface direction could not be sufficiently secured, and the internal resistance did not increase or the capacitance did not increase.
 一方、図2は本発明の一実施形態としてのCNT・不織布合成体キャパシタ200の断面図である。 On the other hand, FIG. 2 is a sectional view of a CNT / nonwoven fabric composite capacitor 200 as one embodiment of the present invention.
 セパレータ203の表側に正極側のCNT・不織布合成体正電極201が、裏側に負極側のCNT・不織布合成体負電極202が配設されている。これらの分極性電極を正極側の集電極204と負極側の集電極205がそれぞれ正負の対応する分極性電極に接合されている。さらに、これらの集電極の表面に金属箔206が接合されいる。 The positive side CNT / nonwoven fabric composite positive electrode 201 is disposed on the front side of the separator 203, and the negative side CNT / nonwoven fabric composite negative electrode 202 is disposed on the back side. These polarizable electrodes are joined to positive and negative polarizable electrodes, each of a positive collector electrode 204 and a negative collector electrode 205. Further, a metal foil 206 is bonded to the surfaces of these collector electrodes.
 CNT・不織布合成体正電極201とCNT・不織布合成体負電極202とセパレータ203および集電極204と205の端面に沿って、絶縁材207を塗り、密閉する。絶縁材にはシリコン系接着剤やアクリル系、テフロン(登録商標)系接着剤などが利用できるが、耐薬品性がすぐれるシリコン系もしくはテフロン(登録商標)系の接着剤が好適に用いられる。 The insulating material 207 is applied and sealed along the end surfaces of the CNT / nonwoven fabric composite positive electrode 201, the CNT / nonwoven fabric composite negative electrode 202, the separator 203, and the collector electrodes 204 and 205. As the insulating material, a silicon adhesive, an acrylic, a Teflon (registered trademark) adhesive, or the like can be used, and a silicon or Teflon (registered trademark) adhesive having excellent chemical resistance is preferably used.
 また、図3は、本発明の別の実施形態としてのCNT・不織布合成体キャパシタ300の断面図である。図に示すように、CNT・不織布合成体からなるCNT・不織布合成体正極302およびCNT・不織布合成体負極303は、CNT・不織布合成体を直径13mm程度の円形に整形したものである。 FIG. 3 is a cross-sectional view of a CNT / nonwoven fabric composite capacitor 300 as another embodiment of the present invention. As shown in the figure, a CNT / nonwoven fabric composite positive electrode 302 and a CNT / nonwoven fabric composite negative electrode 303 made of a CNT / nonwoven fabric composite are formed by shaping a CNT / nonwoven fabric composite into a circle having a diameter of about 13 mm.
 CNT・不織布合成体負極303およびCNT・不織布合成体正極302は、各々、導電性接着剤304を用いて、ステンレス製容器のケース305とステンレス製容器の蓋306にそれぞれ接着されている。 The CNT / nonwoven fabric composite negative electrode 303 and the CNT / nonwoven fabric composite positive electrode 302 are respectively bonded to a stainless steel container case 305 and a stainless steel container lid 306 using a conductive adhesive 304.
 不織布にはセルロース系や導電性ポリマー系が好適に用いられる。また、導電性接着剤には2液性のエポキシ・銀系接着剤が好適に用いられる。 A cellulose-based or conductive polymer-based material is suitably used for the nonwoven fabric. A two-component epoxy / silver adhesive is preferably used as the conductive adhesive.
 ケース305に接着されたCNT・不織布合成体負極303および蓋306に接着されたCNT・不織布合成体正極302とを紫外線でアニール処理し、さらに120℃から200℃、減圧下で2~4時間乾燥したのちに、乾燥窒素雰囲気のグローブボックス中で電解液を両電極に含浸させる。電解液は、テトラエチルアンモニウムテトラフルオロボレートを2~3mol/Lの濃度で、プロピレンカーボネートに溶解することによって製造できる。この電解液については、イオン性液体やスルホン酸を加えるなど様々な変形がある。 The CNT / nonwoven fabric composite negative electrode 303 adhered to the case 305 and the CNT / nonwoven fabric composite negative electrode 302 adhered to the lid 306 are annealed with ultraviolet rays and further dried at 120 to 200 ° C. under reduced pressure for 2 to 4 hours. After that, both electrodes are impregnated with an electrolyte in a glove box in a dry nitrogen atmosphere. The electrolytic solution can be produced by dissolving tetraethylammonium tetrafluoroborate in propylene carbonate at a concentration of 2 to 3 mol / L. There are various variations of this electrolytic solution, such as adding an ionic liquid or sulfonic acid.
 次いで、電解液を含浸したCNT・不織布合成体電極を、不織布のセパレータ307を介して対向させ、ポリプロピレン製ガスケット308を用いてかしめ封口し、本実施形態に係るコイン形状のCNT・不織布合成体キャパシタ300を構成する。 Next, the CNT / nonwoven fabric composite electrode impregnated with the electrolytic solution is opposed to each other through a nonwoven fabric separator 307 and caulked with a polypropylene gasket 308, and the coin-shaped CNT / nonwoven fabric composite capacitor according to this embodiment is used. 300 is configured.
 上記得られた本実施形態に係るコイン形CNT・不織布合成体キャパシタ300を図5に例示した測定治具と電極の配置のようにして上限電圧3V、1mAの定電流で充放電し、静電容量と内部抵抗を測定したところ、その結果は例えば静電容量は、電圧3V,放電電流1mA、放電時間88分、CNT・不織布合成体を80ミリグラム使用、という結果から計算すると7Fが得られた。この数値を元に、後述の式(1)に従ってグラムあたりの静電容量を計算すると、従来のカーボンナノチューブキャパシタの典型的な性能である30~40F/gを大きく超えて88F/gの大容量を実現した。エネルギー密度は後述の式(2)により算出されるが、セパレータと電解液を含めて計算するとエネルギー密度は92~179Wh/Kgとなる。また、内部抵抗は2ミリオーム以内であることが確認された。図6には各種電池と本発明のCNT・不織布合成体キャパシタの特性を比較して示す。これでわかるように、金属を使用しなくとも十分な性能を発揮することが可能である。 The obtained coin-shaped CNT / nonwoven fabric composite capacitor 300 according to the present embodiment is charged and discharged with a constant current of an upper limit voltage of 3 V and 1 mA as shown in FIG. When the capacitance and the internal resistance were measured, the result was, for example, that the capacitance was 3 V, the voltage was 3 V, the discharge current was 1 mA, the discharge time was 88 minutes, and the CNT / nonwoven fabric composite was used 80 mg. . Based on this numerical value, the electrostatic capacity per gram is calculated according to the following formula (1), and the large capacity of 88 F / g greatly exceeds 30-40 F / g, which is the typical performance of the conventional carbon nanotube capacitor. Realized. The energy density is calculated by the following formula (2). When calculated including the separator and the electrolyte, the energy density is 92 to 179 Wh / Kg. The internal resistance was confirmed to be within 2 milliohms. FIG. 6 compares the characteristics of various batteries and the CNT / nonwoven fabric composite capacitor of the present invention. As can be seen, it is possible to exhibit sufficient performance without using metal.
 また、大容量であり内部抵抗が2ミリオーム以下と小さくできるので、従来、大容量キャパシタの内部抵抗は大きく、小容量キャパシタの内部抵抗は小さくなるという常識を覆すものである。 Also, since it has a large capacity and the internal resistance can be reduced to 2 milliohms or less, the conventional sense that the internal resistance of the large-capacitance capacitor is large and the internal resistance of the small-capacitance capacitor is small.
 このように、カード型やコイン形状のCNT・不織布合成体キャパシタを安定的に製造することが可能となることを確認できた。その構造は簡単なものであるが、性能がきわめて優れて安定しており本発明の価値は高いと考える。 Thus, it was confirmed that it was possible to stably produce card-type or coin-shaped CNT / nonwoven fabric composite capacitors. Although the structure is simple, the performance is extremely excellent and stable, and the value of the present invention is considered high.
 さらにCNT・不織布合成体キャパシタは、充放電サイクル劣化に強く、1万回の充放電を繰り返しても蓄電能力は2%以内の劣化に過ぎない。さらに、構成するカーボンナノチューブが不燃性であり、電解液もイオン性液体を用いると不燃性にできるので、きわめて安全なものができる。このことで、加熱発火の危険性から回避することができる。 Furthermore, the CNT / nonwoven fabric composite capacitor is resistant to charge / discharge cycle deterioration, and the storage capacity is only deteriorated within 2% even after 10,000 charge / discharge cycles. Furthermore, the carbon nanotubes that are formed are nonflammable, and the electrolyte can be made nonflammable when an ionic liquid is used. This can be avoided from the danger of heating and ignition.
 製造工程のなかで電極材料に対して、酸処理を行うが、その目的は不純物の除去と官能基を付与するものである。つぎにアニール処理として、電極に対して紫外線をアンモニア雰囲気中で照射する。この工程は官能基を還元することである。このような処理を行うことで、電極は高い導電性を示し、内部抵抗を小さくでき性能が向上する。 In the manufacturing process, the electrode material is subjected to an acid treatment, the purpose of which is to remove impurities and add functional groups. Next, as an annealing process, the electrodes are irradiated with ultraviolet rays in an ammonia atmosphere. This step is to reduce the functional group. By performing such treatment, the electrode exhibits high conductivity, the internal resistance can be reduced, and the performance is improved.
 図4は、さらに別の実施形態を例示し、図3のコイン形CNT・不織布合成体キャパシタとはその構造が少し異なり、スペーサとウエーブワッシャを追加している。 FIG. 4 illustrates still another embodiment. The structure is slightly different from the coin-shaped CNT / nonwoven fabric composite capacitor of FIG. 3, and a spacer and a wave washer are added.
 図に示すように、CNT・不織布合成体電極からなるCNT・不織布合成体正極302およびCNT・不織布合成体負極303は、CNT・不織布合成体を直径13mm程度の円形に整形したものである。ここまでの構成は図3の場合と同じである。 As shown in the figure, a CNT / nonwoven fabric composite positive electrode 302 and a CNT / nonwoven fabric composite negative electrode 303 made of a CNT / nonwoven fabric composite electrode are formed by shaping a CNT / nonwoven fabric composite into a circle having a diameter of about 13 mm. The configuration up to this point is the same as in FIG.
 CNT・不織布合成体負極303は、導電性接着剤304を用いて、ケース305に導電性接着剤により接着される。CNT・不織布合成体正極302はステンレス製のスペーサ307に同様に接着される。スペーサの上部にバネ構造のウエーブワッシャ310を載せ、さらに蓋306を被せて、カシメジグにより蓋306とケース305を接合して一体化する。 The CNT / nonwoven fabric composite negative electrode 303 is adhered to the case 305 with a conductive adhesive 304 using a conductive adhesive 304. The CNT / nonwoven fabric composite positive electrode 302 is similarly bonded to a stainless steel spacer 307. A wave washer 310 having a spring structure is placed on the upper portion of the spacer, and a lid 306 is further covered. The lid 306 and the case 305 are joined and integrated by caulking.
 CNT・不織布合成体負極303はステンレス製容器のケース305に、CNT・不織布合成体正極302はステンレス製容器の蓋306にそれぞれ電気的に接続されている。 The CNT / nonwoven fabric composite negative electrode 303 is electrically connected to the case 305 of the stainless steel container, and the CNT / nonwoven fabric composite negative electrode 302 is electrically connected to the cover 306 of the stainless steel container.
 不織布にはセルロース系や導電性ポリマー系が好適に用いられる。また、導電性接着zs剤には2液性のエポキシ・銀系接着剤が好適に用いられることは実施例2と同じ。 A cellulose-based or conductive polymer-based material is suitably used for the nonwoven fabric. Further, the two-component epoxy / silver adhesive is preferably used as the conductive adhesive zs agent as in the second embodiment.
 製造工程は実施例2と同じ。異なる部分はスペーサ310とウエーブワッシャ309を正極側の蓋306とCNT・不織布合成体正極302の間に挿入したことである。
このことにより、電極とキャップ306およびケース305との電気的接続が確保されて安定した性能を発揮する。
The manufacturing process is the same as in Example 2. The difference is that a spacer 310 and a wave washer 309 are inserted between the lid 306 on the positive electrode side and the CNT / nonwoven fabric composite positive electrode 302.
As a result, electrical connection between the electrode and the cap 306 and the case 305 is ensured, and stable performance is exhibited.
 電気二重層キャパシタの静電容量を計測するため図5のような測定治具に電極とセパレータを収納して、充放電試験器により測定した。その結果を図6に示す。 In order to measure the capacitance of the electric double layer capacitor, the electrode and separator were housed in a measurement jig as shown in FIG. The result is shown in FIG.
 多層カーボンナノチューブを用いた従来のキャパシタについて比較のため測定を行ったところ、図6の401で示されているように、放電電流1mAで放電時間が60分、放電開始電圧が3vであるから、下記の式(1)で計算して単位グラムあたりに換算すると約15F/gとなる。そして本発明の多層カーボンナノチューブを用いたCNT・不織布合成体キャパシタについて測定したところ402の曲線の放電特性が得られた。これから30F/gに増加したことが確認できた。 When a conventional capacitor using multi-walled carbon nanotubes was measured for comparison, as shown by 401 in FIG. 6, the discharge current was 1 mA, the discharge time was 60 minutes, and the discharge start voltage was 3 v. When calculated by the following formula (1) and converted per unit gram, it is about 15 F / g. When the CNT / nonwoven fabric composite capacitor using the multi-walled carbon nanotube of the present invention was measured, a discharge characteristic having a curve 402 was obtained. From this, it was confirmed that it increased to 30 F / g.
 さらに、従来の単層カーボンナノチューブキャパシタについて測定した結果403のようになり、40F/gが得られた。そして単層カーボンナノチューブを用いたCNT・不織布合成体キャパシタについて測定したところ404の曲線の放電特性となり50F/gが得られた。 Furthermore, the measurement result of a conventional single-walled carbon nanotube capacitor was 403, and 40 F / g was obtained. When the CNT / nonwoven fabric composite capacitor using single-walled carbon nanotubes was measured, the discharge characteristic indicated by curve 404 was obtained, and 50 F / g was obtained.
 このように不織布含浸CNT電極を利用すると、静電容量が増大する事が確認できた。効果はこれだけで無く、内部抵抗も従来の数分の一に低下することが確認された。
また、このCNT・不織布合成体キャパシタは、不燃性材料で構成するのでリチウムイオン電池と違い、爆発や燃焼の危険性がない。リチウムイオン電池が多くの発火、爆発事故を起こし、世界中でリコールが多発している現状をみると、一日も早く安全な蓄電池を開発し実用化する必要性が高い。
It was confirmed that the use of the nonwoven fabric-impregnated CNT electrode increased the electrostatic capacity. In addition to this effect, it was confirmed that the internal resistance was reduced to a fraction of the conventional value.
Further, since this CNT / nonwoven fabric composite capacitor is made of a non-combustible material, there is no risk of explosion or combustion unlike a lithium ion battery. Looking at the current situation in which lithium-ion batteries have caused many fires and explosions and many recalls have occurred around the world, it is highly necessary to develop and put into practical use safe batteries as soon as possible.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、本発明は、上記各実施の形態に限定されるものではなく、種々の変形が可能である。 The present invention is not limited to the above-described embodiments, and various modifications can be made.
 CNT・不織布合成体キャパシタを社会に提供すると、従来の蓄電池を小型軽量にでき、寿命が長く、安全性の高い理想的な蓄電素子として利用できる。その市場における利用可能性としては下記のようなものがある。
(1)新エネルギー自動車市場
    ハイブリットカー、電気自動車、燃料電池自動車の蓄電池として有効。
(2)風力発電市場
変動の激しい風車発電機の発電量の平準化に有効。
(3)太陽光発電市場
風力と同じ。
If a CNT / nonwoven fabric composite capacitor is provided to society, a conventional storage battery can be reduced in size and weight, and can be used as an ideal storage element having a long life and high safety. The market availability is as follows.
(1) New energy vehicle market Effective as a storage battery for hybrid cars, electric cars, and fuel cell cars.
(2) Effective for leveling the amount of power generated by wind turbine generators, where the wind power market is volatile.
(3) Solar power generation market Same as wind power.
 このほか、宇宙航空用の長寿命電池、医療用の安全で長寿命な電池などに利用が拡大される。 In addition, the use will be expanded to long-life batteries for aerospace and safe and long-life batteries for medical use.

Claims (6)

  1.  電気二重層キャパシタであって、セパレータと、このセパレータの両面に配された正極側および負極側の一対の分極性電極と、前記一対の分極性電極の各々の前記セパレータと面していない側に配された一対の正極側および負極側の集電極とを備え、前記電極には電解液が含浸されている電気二重層キャパシタにおいて、前記正極側と負極側の分極性電極は、カーボンナノチューブ(CNT)を不織布に含浸したCNT・不織布合成体であることを特徴とするCNT.不織布合成体キャパシタ。 An electric double layer capacitor having a separator, a pair of polarizable electrodes on the positive electrode side and negative electrode side disposed on both surfaces of the separator, and a side of each of the pair of polarizable electrodes that does not face the separator An electric double layer capacitor having a pair of positive electrode and negative electrode collectors disposed therein, the electrode being impregnated with an electrolyte, wherein the polarizable electrodes on the positive electrode side and the negative electrode side are carbon nanotubes (CNT ) And a non-woven fabric composite impregnated in a non-woven fabric. Nonwoven composite capacitor.
  2.  前記不織布は、導電性不織布であることを特徴とする請求項1に記載のCNT.不織布合成体キャパシタ。 The CNTs according to claim 1, wherein the nonwoven fabric is a conductive nonwoven fabric. Nonwoven composite capacitor.
  3.  前記カーボンナノチューブは、多層カーボンナノチューブであることを特徴とするCNT.不織布合成体キャパシタ。 The carbon nanotubes are multi-walled carbon nanotubes. Nonwoven composite capacitor.
  4.  請求項1から3のいずれか一項記載のCNT.不織布合成体キャパシタであって、前記一対の分極性電極および前記セパレータおよび前記一対の集電極の端面が絶縁材で密閉接着されていることを特徴とする、CNT・不織布合成体キャパシタ。 The CNT according to any one of claims 1 to 3. A non-woven fabric composite capacitor, characterized in that the pair of polarizable electrodes, the separator, and the end surfaces of the pair of collector electrodes are hermetically bonded with an insulating material.
  5.  請求項1から3のいずれか一項に記載のCNT.不織布合成体キャパシタであって、導電性のケースにガスケットをもって導電性の蓋の間に封入された構造を有していることを特徴とするCNT・不織布合成体キャパシタ。 The CNT according to any one of claims 1 to 3. A non-woven fabric composite capacitor, characterized in that it has a structure in which a conductive case is sealed between conductive caps with a gasket.
  6.  請求項5記載のCNT・不織布合成体キャパシタにおいて、ウエーブワッシャとスペーサがCNT・不織布合成体正極と蓋の間に挿入されていることを特徴とするCNT・不織布合成体キャパシタ。 6. The CNT / nonwoven fabric composite capacitor according to claim 5, wherein a wave washer and a spacer are inserted between the CNT / nonwoven fabric composite positive electrode and the lid.
PCT/JP2013/081058 2012-11-19 2013-11-18 Cnt/non-woven composite capacitor WO2014077393A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-007032U 2012-11-19
JP2012007032U JP3182172U (en) 2012-11-19 2012-11-19 CNT / nonwoven composite capacitors

Publications (1)

Publication Number Publication Date
WO2014077393A1 true WO2014077393A1 (en) 2014-05-22

Family

ID=50426303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081058 WO2014077393A1 (en) 2012-11-19 2013-11-18 Cnt/non-woven composite capacitor

Country Status (2)

Country Link
JP (1) JP3182172U (en)
WO (1) WO2014077393A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230906A (en) * 2014-06-03 2015-12-21 スペースリンク株式会社 Electric double layer capacitor and method for manufacturing the same
JP2016012714A (en) * 2014-06-03 2016-01-21 スペースリンク株式会社 Conductive complex and manufacturing method thereof, and electric double layer capacitor and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314492B2 (en) * 1983-09-20 1988-03-31 Matsushita Electric Ind Co Ltd
JPH11302953A (en) * 1998-04-16 1999-11-02 Dynic Corp Stitch bond nonwoven fabric and activated carbon nonwoven fabric
JP3018343B2 (en) * 1989-03-15 2000-03-13 松下電器産業株式会社 Electric double layer capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314492B2 (en) * 1983-09-20 1988-03-31 Matsushita Electric Ind Co Ltd
JP3018343B2 (en) * 1989-03-15 2000-03-13 松下電器産業株式会社 Electric double layer capacitor
JPH11302953A (en) * 1998-04-16 1999-11-02 Dynic Corp Stitch bond nonwoven fabric and activated carbon nonwoven fabric

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230906A (en) * 2014-06-03 2015-12-21 スペースリンク株式会社 Electric double layer capacitor and method for manufacturing the same
JP2016012714A (en) * 2014-06-03 2016-01-21 スペースリンク株式会社 Conductive complex and manufacturing method thereof, and electric double layer capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JP3182172U (en) 2013-03-14

Similar Documents

Publication Publication Date Title
Jalal et al. A review on Supercapacitors: Types and components
Halper et al. Supercapacitors: A brief overview
KR100883748B1 (en) Electrochemical energy storage device with high capacity and high power using conductive polymer composite
JP4705566B2 (en) Electrode material and manufacturing method thereof
US20120134072A1 (en) Electrodes having multi layered structure and supercapacitor including the same
KR101596511B1 (en) Positive electrode active material for lithium ion storage device and lithium ion storage device making use of the same
Kamila et al. Advances in Electrochemical energy storage device: supercapacitor
JP2014064030A (en) Electrochemical capacitor
US20110188171A1 (en) Electric double layer capacitor and method of manufacturing the same
TW201717233A (en) Composite material of electrode unit, method of producing electrode unit with composite material, and supercapacitor
WO2014077393A1 (en) Cnt/non-woven composite capacitor
Saleem et al. Coin-cell supercapacitors based on CVD grown and vertically aligned carbon nanofibers (VACNFs)
JP6487699B2 (en) Manufacturing method of electric double layer capacitor
EP3616248B1 (en) Battery comprising an electrode having carbon additives
TWI498931B (en) Energy storage device
JP3187172U (en) CNT / nonwoven composite capacitors
JP2000124081A (en) Electric double-layer capacitor
KR20100088019A (en) Power battery
JP3182167U (en) Coin-type carbon nanotube film capacitor
JP2008166309A (en) Lithium ion capacitor
KR20190042268A (en) Composition used for forming an electrode of super capacitor and the super capacitor using the same
JP2015103602A (en) Lithium ion capacitor
JP2003209029A (en) Double-layered electric capacitor having improved withstand voltage
KR102028677B1 (en) Multilayer lithium-ion capacitor comprising graphene electrode
KR102163165B1 (en) Method for preparing graphene-activated carbon composite and graphene-activated carbon composite prepared by the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13855089

Country of ref document: EP

Kind code of ref document: A1