WO2014077066A1 - Laser fusion-cutting method for plate glass - Google Patents

Laser fusion-cutting method for plate glass Download PDF

Info

Publication number
WO2014077066A1
WO2014077066A1 PCT/JP2013/077760 JP2013077760W WO2014077066A1 WO 2014077066 A1 WO2014077066 A1 WO 2014077066A1 JP 2013077760 W JP2013077760 W JP 2013077760W WO 2014077066 A1 WO2014077066 A1 WO 2014077066A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate glass
laser
gas
cutting
glass
Prior art date
Application number
PCT/JP2013/077760
Other languages
French (fr)
Japanese (ja)
Inventor
尚利 稲山
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to US14/441,348 priority Critical patent/US9725353B2/en
Priority to KR1020147035352A priority patent/KR102073667B1/en
Priority to CN201380051856.5A priority patent/CN104703932B/en
Priority to EP13854446.5A priority patent/EP2921461B1/en
Publication of WO2014077066A1 publication Critical patent/WO2014077066A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/08Severing cooled glass by fusing, i.e. by melting through the glass
    • C03B33/082Severing cooled glass by fusing, i.e. by melting through the glass using a focussed radiation beam, e.g. laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1435Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means
    • B23K26/1438Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means for directional control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/08Severing cooled glass by fusing, i.e. by melting through the glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Definitions

  • the present invention relates to a laser fusing method for a plate glass that cuts the plate glass by irradiating the plate glass with a laser along a planned cutting line and removing the molten glass melted by heating with the laser.
  • FPD flat panel displays
  • liquid crystal displays plasma displays
  • electroluminescence displays organic EL displays
  • flat glass products used for solar cells large glass sheets are reduced to small glass sheets. Or trim the edge along the side of the glass sheet.
  • Patent Document 1 discloses an example thereof.
  • This laser fusing method irradiates a laser along a planned cutting line extending in the surface direction of the workpiece to be cut, and removes the melted portion by heating with the laser by spraying an assist gas or the like. The workpiece is cut.
  • front surface the surface on which the laser is irradiated
  • back surface the opposite surface
  • the thickness of the cut end Ga rounded by the action of the surface tension becomes larger than the thickness of other parts in the plate glass G, and the surface Gaa and the back surface Gab of the cut end Ga. Are formed in a protruding state (in the following description, the shape of this defective cut end is referred to as “dama”).
  • this dama is formed in the same way when the beam mode of the laser irradiated on the plate glass inevitably deteriorates.
  • the laser is focused by a lens or the like and irradiated so that its focal point is located at a predetermined position with respect to the surface of the plate glass.
  • the beam mode is inevitably deteriorated due to deformation of the optical element or the position of the focal point is extremely deviated from the predetermined position described above, the area and energy density of the position where the laser is irradiated are reduced. It will deviate from the proper range, and as a result, the amount of molten glass becomes excessive.
  • lumps are formed as in the case where the output of the laser is high.
  • the plate glass is unnecessarily strongly pressed by the gas pressure, so that the cut end Ga is lower than the other parts as shown in FIG. It is formed in a suspended state (in the following description, the shape of this defective cut end is referred to as sagging). In this case, this sagging is likely to be formed particularly when the thickness of the plate glass to be cut is thin.
  • the present invention made in view of the above circumstances has a technical problem of forming a cut end portion of a plate glass after cutting into a good shape free from lumps and sagging in the cutting of the plate glass by a laser fusing method.
  • the method according to the present invention which was created to solve the above-mentioned problems, is a method of laser cutting a plate glass by irradiating a laser from the surface side along a planned cutting line extending in the plane direction of the plate glass and cutting the plate glass.
  • the shaping gas sprayed so as to form a flow along at least one of the front and back surfaces of the plate glass is characterized by passing through the laser irradiation section.
  • the shaping gas when the shaping gas is injected so as to form a flow along the surface of the plate glass, with the laser irradiation at the cut end portion of the plate glass that is sequentially formed in the laser irradiation unit,
  • the molten glass tries to be rounded by the action of surface tension, even if a bulge is formed on the surface side of the cut end, a force that pushes the bulge in the surface direction of the plate glass acts due to the pressure of the shaping gas.
  • the surface side of the cut end is placed under a state where the atmospheric pressure is lower than that of the back surface side because the shaping gas passes through the surface side.
  • the assist gas is injected toward the laser irradiation part, even if a sag is formed at the cut end due to the pressure of the assist gas, the above-described protrusion is also applied to the sag from the back side.
  • the force pushing into the surface side acts. Therefore, even in this case, the formation of sagging can be avoided accurately.
  • the cut end portion of the cut plate glass in cutting the plate glass by the laser fusing method, the cut end portion of the cut plate glass can be formed into a good shape free from lumps and sagging.
  • disconnection edge part acts on the surface direction of plate glass.
  • the pressure on the back side is lower than that on the front side, the protrusions that are to be formed on the front side of the cut end are pushed from the high pressure side to the low pressure side. Will be. From these things, the same effect as the case where the shaping gas is injected so as to form the flow along the surface of the plate glass as described above can be obtained also in this case.
  • the same effect can be obtained when the shaping gas is injected so as to form a flow along both the front surface and the back surface of the plate glass.
  • the shaping gas injected to the back side is injected so that the flow velocity passing through the cutting end is slower than the shaping gas injected to the front side.
  • the pressure on the back surface side is maintained higher than that on the front surface side, there is a risk that the action of pushing the ledge to be formed on the back surface of the cut end portion from the back surface side to the front surface side may be lost. Can be eliminated.
  • the shaping gas forms only a flow along the surface of the plate glass.
  • the back surface of the plate glass is in contact with the processing table. Therefore, there will be a processing table in the vicinity of the back surface of the plate glass in the laser irradiation section, and when the shaping gas forms a flow along the back surface of the plate glass, the flow of the shaping gas is disturbed by this processing table, and the cutting end The effect of improving the shape of the part may be reduced. For this reason, it is more preferable that the shaping gas forms only a flow along the surface of the plate glass.
  • the shaping gas injection direction and the front and back surfaces of the plate glass are parallel to each other.
  • a gas injection member having an injection port for injecting the shaping gas is provided, and the injection port has a wide shape in a direction parallel to the front and back surfaces of the plate glass.
  • the thickness of the plate glass is 500 ⁇ m or less.
  • the thickness of the plate glass is 500 ⁇ m or less, it was difficult to suppress the occurrence of sag particularly at the cut end, but according to the method of the present invention, such a plate thickness Even a thin plate glass can sufficiently suppress the occurrence of sagging.
  • the assist gas is injected from the direction inclined with respect to the surface of the plate glass toward the laser irradiation portion.
  • the molten glass melted by the laser heating can be scattered and removed by the pressure of the assist gas, so that the molten glass can be removed more quickly and smoothly.
  • the assist gas is sprayed to the irradiation part from the direction inclined with respect to the surface of the plate glass, the cut end of the plate glass is strongly pressed from the front side to the back side by the pressure of the assist gas. Is avoided. For this reason, it is possible to prevent the occurrence of sagging at the cut end portion in combination with the above-described action by the shaping gas injection.
  • the laser is condensed and irradiated with a lens, and gas is injected along the irradiation direction of the laser.
  • the cutting glass cutting direction is crossed with the direction in which the shaping gas passes through the laser irradiation part, and the two pieces of plate glass after cutting are positioned on the injection side of the shaping gas. It is preferable that the plate glass to be used is a product and the plate glass located on the injection destination side is a non-product.
  • the plate glass located on the injection source side of the shaping gas and the plate glass located on the injection destination side With respect to the magnitude of the effect of preventing the formation of the protrusion at the cut end, the plate glass located on the injection source side You can get a big effect.
  • the dross generated when cutting the plate glass is likely to be scattered to the shaping gas injection destination side, the dross is less likely to adhere to the cut end portion of the plate glass located on the injection source side. Therefore, the quality of a product can be improved if the plate glass located in the shaping gas injection side is used as a product among both the plate glasses after cutting.
  • the shaping gas injected so as to form a flow along at least one surface of the front and back surfaces of the plate glass passes through the laser irradiation portion, and thus is based on the laser fusing method.
  • the cut end portion of the cut plate glass can be formed into a good shape free from lumps and sagging.
  • a horizontally placed plate glass is cut by a laser fusing method along a planned cutting line, and the plate glass is divided into a product part to be a product and a non-product part to be a non-product (waste).
  • the case of dividing will be described as an example.
  • FIGS. 1 and 2 are a longitudinal sectional front view and a partial cross-sectional plan view showing a laser fusing device used in a sheet glass laser fusing method according to an embodiment of the present invention, respectively.
  • the laser fusing device 1 includes a processing table 5 on which a plate glass G is placed, a laser irradiator 2 that irradiates a laser L toward the surface S of the plate glass G, and heating of the laser L.
  • the main elements are an assist gas injection nozzle 3 that injects an assist gas A2 that scatters molten glass M, and a shaping gas injection nozzle 4 as a gas injection member that injects shaping gas A3 along the surface S of the glass sheet G. Configured as
  • the laser irradiator 2 is installed at a fixed position, and is composed of a cylindrical base end portion and a mortar-shaped tip end portion.
  • a lens 6 that collects a laser beam L emitted from a laser oscillator (not shown) and irradiates the surface S of the glass sheet G is attached to the inner peripheral wall of the base end portion.
  • a gas introduction pipe 2a for introducing the gas A1 injected along the irradiation direction of the laser L into the laser irradiator 2 is connected to the tip, and the laser L and the gas A1 are irradiated and injected.
  • a circular illumination outlet 2b for this purpose is formed.
  • the assist gas injection nozzle 3 is installed at a fixed position in the same manner as the laser irradiator 2 and is installed in a posture inclined with respect to the surface S of the plate glass G.
  • the shape is formed in a cylindrical shape, and assist gas A2 compressed by a gas compression device (for example, an air compressor) (not shown) passes through the inside and is injected toward the irradiation part C of the laser L. It is comprised so that.
  • the shaping gas injection nozzle 4 is installed at a fixed position on the surface S side in the same manner as the laser irradiator 2 and the assist gas injection nozzle 3, and is in a posture parallel to the surface S of the plate glass G and in the plane direction of the plate glass G. It is installed in the direction orthogonal to the planned cutting line X extending in the direction.
  • tip is formed in the substantially rectangular shape, and the injection port 4a is wide in the direction along the cutting projected line X.
  • omitted illustration passes through the inside, and becomes a structure injected in parallel with the surface S of the plate glass G from the injection port 4a. Moreover, this shaping gas A3 is injected toward the side used as the non-product part G2 from the side used as the product part G1 among the both glass plates G after a cutting
  • a pair of processing tables 5 are installed in parallel across the planned cutting line X. Moreover, both the process bases 5 become a structure which can move synchronizing with the T direction (direction parallel to the cutting projected line X) shown in FIG. 2 in the state in which the plate glass G was mounted.
  • the laser irradiator 2 continuously lasers the surface S of the plate glass along the planned cutting line X as the processing table 5 on which the plate glass G is placed moves in the T direction. L is irradiated. Then, the molten glass M melted by the irradiation part C of the laser L is removed by blowing away and scattering the assist gas A2 sprayed from the assist gas spray nozzle 3. After that, the shaping gas A3 injected from the shaping gas injection nozzle 4 passes along the surface S of the plate glass G and the cutting progress direction of the cut end Ga formed sequentially on the plate glass G along with the removal of the molten glass M. It is comprised so that it may pass orthogonally. Further, the dross scattered when the molten glass M is removed is prevented from adhering to the lens 6 by the pressure of the gas A1 ejected from the laser irradiator 2.
  • the injection pressures of the gas A1, the assist gas A2, and the shaping gas A3 are as follows: the gas A1: 0.00 to 0.02 MPa, the assist gas A2: 0.00 to 0.25 MPa, and the shaping gas A3: 0.01. It is preferable that the pressure is 1.0 MPa.
  • the separation distance between the injection port 4a formed in the shaping gas injection nozzle 4 and the planned cutting line X is preferably 1 to 30 mm, more preferably 1 to 10 mm.
  • the angle formed by the assist gas A2 injection direction and the surface S of the glass sheet G is preferably 25 to 60 °.
  • the molten glass M tends to be rounded by the action of surface tension, and the surface Gaa and the back surface Gab of the cut end portion Ga are formed to protrude.
  • a force F that pushes the protrusion in the surface direction of the plate glass G acts on the protrusion to be formed on the surface Gaa by the pressure of the shaping gas A3.
  • the surface Gaa side of the cut end Ga is placed under a state where the atmospheric pressure is lower than that of the back Gab side because the shaping gas A3 passes through the surface Gaa side. Therefore, as shown in FIG. 3c, a force P acts to push the protrusion to be formed on the back surface Gab from the back surface Gab side having a high atmospheric pressure to the surface Gaa side having a low atmospheric pressure.
  • a force P acts to push the protrusion to be formed on the back surface Gab from the back surface Gab side having a high atmospheric pressure to the surface Gaa side having a low atmospheric pressure.
  • the shaping gas A3 forms a flow along the surface S of the glass sheet G, so that a situation where the flow of the shaping gas A3 is disturbed by the processing table 5 is avoided. Is possible. Further, since the flow rate of the injected shaping gas A3 is decelerated due to the collision between the shaping gas A3 and the plate glass G due to the injection in parallel with the surface S of the plate glass G, the occurrence of a situation where possible. Can be prevented. In addition, the higher the flow velocity of the shaping gas A3 that passes through the cutting end Ga, the higher the pressure of the shaping gas A3 that acts on the ledge to be formed on the surface Gaa side, and the pressure difference between the surface Gaa side and the back surface Gab side. Becomes larger.
  • the injection port 4a formed in the shaping gas injection nozzle 4 is wide in the direction along the surface S of the glass sheet G, the injected shaping gas A3 is cut following the shape of the injection port 4a. It spreads over a wide range of the end Ga. For this reason, it becomes possible to prevent the formation of the protrusion at the cut end Ga more stably.
  • the assist gas A2 is sprayed toward the irradiation part C of the laser L, the molten glass M melted in the irradiation part C can be scattered and removed by the pressure of the assist gas A2, Removal of the molten glass M can be performed more quickly and smoothly.
  • the shape of the cut end Ga is defective.
  • the injected shaping gas A3 passes through the cutting end Ga along the surface S of the glass sheet G, the cutting end Ga is strongly moved from the surface Gaa side to the back surface Gab side by the shaping gas A3. It is also prevented from being pressed. For this reason, no sagging is formed in the cut end Ga by the shaping gas A3.
  • the risk of sagging at the cut end Ga due to the pressure of the assist gas A2 is also accurately eliminated as described below. That is, even if a sag is formed at the cut end Ga by the pressure of the assist gas A2, the force P that pushes the bulge already described from the back surface Gab side to the front surface Gaa side acts on this sag. Therefore, the formation of sagging is avoided accurately.
  • dross generated when cutting the glass sheet G is likely to be scattered toward the injection destination side of the shaping gas A3. Therefore, it becomes difficult for dross to adhere to the cut end portion Ga of the product portion G1 located on the injection source side of the shaping gas A3 in the plate glass G after cutting, and the product portion G1 can be made of high quality. .
  • a thin glass having a thickness of 500 ⁇ m or less which has been difficult to suppress the occurrence of sagging at the cut end Ga, is particularly an object to be cut. Even if it exists, it is possible to cut
  • disconnection it is more preferable to set it as 300 micrometers or less, Most preferably, it is 200 micrometers or less.
  • the laser fusing method for plate glass according to the present invention is not limited to the configuration described in the above embodiment.
  • the cutting progress direction and the direction in which the shaping gas passes through the laser irradiation unit are orthogonal to each other. However, these may only intersect without being orthogonal. However, they may be parallel. That is, the shaping gas may be injected in any direction as long as the injected shaping gas passes through the laser irradiation portion along the surface of the plate glass. Further, the shaping gas is not necessarily injected in parallel with the surface of the plate glass, and may be injected from a direction inclined with respect to the surface S of the plate glass G as shown in FIG.
  • the angle ⁇ formed by the injection direction of the shaping gas and the surface S of the glass sheet G is preferably 0 to 25 °, more preferably 0 to 15 °, and most preferably 0. ⁇ 5 °.
  • the distance between the intersection point 4c and the irradiation part C of the laser L is 1 to 30 mm. More preferably, it is 2 to 10 mm, and most preferably 2 to 5 mm.
  • the shaping gas may be injected along both the front and back surfaces of the plate glass. That is, in the above embodiment, the shaping gas is injected so that only the surface side of the laser irradiation portion passes along the surface of the plate glass, but as shown in FIG.
  • the shaping gas A3 may be injected not only on the front surface Gaa side but also on the back surface Gab side. In this case, it is preferable that the shaping gas A3 injected to the back surface Gab side is injected so that the flow velocity passing through the cutting end Ga is slower than the shaping gas A3 injected to the front surface Gaa side.
  • the pressure on the back surface Gab side is maintained higher than that on the front surface Gaa side, there is a risk that the action of pushing the protrusion to be formed on the back surface Gab from the back surface Gab side to the front surface Gaa side may be lost. Can be eliminated.
  • the shaping gas A3 is injected so as to pass through the back surface Gab, the shaping gas A3 may be injected from a direction inclined with respect to the back surface B of the plate glass G. Moreover, you may inject so that shaping gas may form only the flow along the back surface of plate glass, and also in this case, the same effect as the case where the flow along the surface is formed can be acquired.
  • the molten glass is scattered and removed by spraying the assist gas.
  • the molten glass can be removed without spraying the assist gas. In this case, moisture and volatile components in the glass, or energy when the glass itself vaporizes and expands, becomes a driving force for removing the molten glass, whereby the molten glass is scattered and removed.
  • the shape of the injection port formed in the shaping gas injection nozzle is rectangular in the above embodiment, but is not limited to this, and may be formed in any shape.
  • the shaping gas injected from the injection port has a shape that spreads over a wide range of the cutting end, such as an ellipse having a major axis in a direction parallel to the surface of the plate glass. Shape is assumed.
  • the following table shows the cutting conditions when the plate glass is cut.
  • what is in parentheses in the item of laser medium indicates the wavelength of the laser.
  • the conveyance speed of plate glass represents the speed
  • the injection angle of the assist gas and the injection angle of the shaping gas represent these inclination angles with respect to the surface of the plate glass.
  • the item “None” indicates that the assist gas or the shaping gas was not injected.

Abstract

A laser fusion-cutting method for plate glass, that irradiates a laser (L) from a surface (S) side, along a planned cutting line (X) extending in the surface direction of plate glass (G), and cuts the plate glass (G). The method uses a configuration whereby a shaping gas (A3), sprayed so as to form a flow along the surface of at least either the front or rear surface (S, B) of the plate glass (G), passes through an irradiation section (C) for the laser (L).

Description

板ガラスのレーザー溶断方法Laser cutting method for sheet glass
 本発明は、切断予定線に沿って板ガラスにレーザーを照射し、レーザーによる加熱で溶融した溶融ガラスを除去することで、当該板ガラスを切断する板ガラスのレーザー溶断方法に関する。 The present invention relates to a laser fusing method for a plate glass that cuts the plate glass by irradiating the plate glass with a laser along a planned cutting line and removing the molten glass melted by heating with the laser.
 周知のように、液晶ディスプレイ、プラズマディスプレイ、エレクトロルミネッセンスディスプレイ、有機ELディスプレイ等のフラットパネルディスプレイ(FPD)や、太陽電池に使用される板ガラス製品の製造工程では、大面積の板ガラスから小面積の板ガラスを切り出したり、板ガラスの辺に沿う縁部をトリミングしたりする。 As is well known, in the manufacturing process of flat panel displays (FPD) such as liquid crystal displays, plasma displays, electroluminescence displays, organic EL displays, and flat glass products used for solar cells, large glass sheets are reduced to small glass sheets. Or trim the edge along the side of the glass sheet.
 このように板ガラスを切断するための手法の一つとしては、レーザー溶断法が公知となっており、特許文献1に、その一例が開示されている。このレーザー溶断法は、切断の対象となる被加工物の面方向に延びる切断予定線に沿ってレーザーを照射し、レーザーによる加熱で溶融した部位を、アシストガスの噴射等により除去することで、被加工物を切断するものである。 As one of the methods for cutting the plate glass as described above, a laser fusing method is known, and Patent Document 1 discloses an example thereof. This laser fusing method irradiates a laser along a planned cutting line extending in the surface direction of the workpiece to be cut, and removes the melted portion by heating with the laser by spraying an assist gas or the like. The workpiece is cut.
 このレーザー溶断法を板ガラスの切断に適用した場合には、切断後の板ガラスにおける切断端部が滑らかな火造り面に形成される。これにより、機械的な方法による研磨鏡面加工と比較して同等以上の効果を切断端部に与えることが可能である。 When this laser fusing method is applied to the cutting of sheet glass, the cut end of the sheet glass after cutting is formed on a smooth fired surface. Thereby, it is possible to give the cutting end portion an effect equal to or higher than that of the polishing mirror surface processing by a mechanical method.
特開平8-141764号公報Japanese Patent Laid-Open No. 8-141864
 しかしながら、上述のような優れた特性を有するレーザー溶断法においても、未だ解決すべき問題が残存している。なお、以降の記載において、板ガラスの表裏面のうち、レーザーが照射される側の面を「表面」、その反対側の面を「裏面」と記載する。 However, problems to be solved still remain in the laser fusing method having the excellent characteristics as described above. In the following description, among the front and back surfaces of the plate glass, the surface on which the laser is irradiated is referred to as “front surface”, and the opposite surface is referred to as “back surface”.
 すなわち、レーザー溶断法による板ガラスの切断においては、板ガラスに照射されるレーザーの出力や、レーザーの照射部に向かって噴射されるアシストガスの噴射圧力等の調整が非常に困難である。このことに起因して、切断後の板ガラスにおける切断端部が不良な形状に形成されやすいという問題があった。 That is, in the cutting of the plate glass by the laser fusing method, it is very difficult to adjust the output of the laser irradiated on the plate glass, the injection pressure of the assist gas injected toward the laser irradiation portion, and the like. Due to this, there has been a problem that the cut end portion of the plate glass after cutting is easily formed into a defective shape.
 詳述すると、例えば、レーザーの出力が高い場合、レーザーの加熱により溶融する溶融ガラスの量が過多となる。これにより、図6に示すように、表面張力の作用によって丸まった切断端部Gaの厚みが、板ガラスGにおける他の部位の厚みと比較して大きくなり、切断端部Gaの表面Gaaと裏面Gabとが出っ張った状態に形成されてしまう(以降の記載において、この不良な切断端部の形状をダマと呼ぶ)。 More specifically, for example, when the output of the laser is high, the amount of molten glass melted by heating the laser becomes excessive. Thereby, as shown in FIG. 6, the thickness of the cut end Ga rounded by the action of the surface tension becomes larger than the thickness of other parts in the plate glass G, and the surface Gaa and the back surface Gab of the cut end Ga. Are formed in a protruding state (in the following description, the shape of this defective cut end is referred to as “dama”).
 また、このダマは、板ガラスに照射されるレーザーのビームモードが不可避的に悪化した場合にも同様に形成される。通常、レーザーはレンズ等によって集光され、その焦点が板ガラスの表面に対して所定の位置に位置するように照射される。このとき、光学素子の変形等によって、ビームモードが不可避的に悪化し、あるいは、焦点の位置が上述した所定の位置から極端に外れてしまうと、レーザーが照射される位置の面積やエネルギー密度が適正な範囲から外れてしまい、ひいては、溶融ガラスの量が過多となる。その結果、上述のように、レーザーの出力が高い場合と同様にダマが形成される。 Also, this dama is formed in the same way when the beam mode of the laser irradiated on the plate glass inevitably deteriorates. Usually, the laser is focused by a lens or the like and irradiated so that its focal point is located at a predetermined position with respect to the surface of the plate glass. At this time, if the beam mode is inevitably deteriorated due to deformation of the optical element or the position of the focal point is extremely deviated from the predetermined position described above, the area and energy density of the position where the laser is irradiated are reduced. It will deviate from the proper range, and as a result, the amount of molten glass becomes excessive. As a result, as described above, lumps are formed as in the case where the output of the laser is high.
 さらに、アシストガスの噴射圧力が強い場合には、板ガラスがガスの圧力で不必要に強く押圧されることにより、図7に示すように、切断端部Gaが他の部位と比較して下方に垂下った状態に形成されてしまう(以下の記載において、この不良な切断端部の形状をダレと呼ぶ)。その場合、このダレは、特に切断の対象となる板ガラスの厚みが薄い場合に形成されやすくなる。 Furthermore, when the assist gas injection pressure is strong, the plate glass is unnecessarily strongly pressed by the gas pressure, so that the cut end Ga is lower than the other parts as shown in FIG. It is formed in a suspended state (in the following description, the shape of this defective cut end is referred to as sagging). In this case, this sagging is likely to be formed particularly when the thickness of the plate glass to be cut is thin.
 なお、このダレの発生を防止するため、溶融ガラスの除去を、アシストガスを用いずに実行することが考えられる。この場合、ガラス中の水分・揮発性成分、もしくは、ガラス自身が気化・膨張する際のエネルギーが溶融ガラスを除去する駆動力となり、これによって溶融ガラスが除去されることになる。しかしながら、この場合は、レーザーの焦点が、上述した所定の位置の範囲内に収まるように切断した場合でも、切断後の板ガラスにおける切断端部は、他の部位と比較して、その表裏面がわずかに出っ張った不良な形状に形成されてしまう。 In order to prevent the occurrence of this sagging, it is conceivable to remove the molten glass without using an assist gas. In this case, moisture and volatile components in the glass, or energy when the glass itself vaporizes and expands, becomes a driving force for removing the molten glass, thereby removing the molten glass. However, in this case, even when the laser is cut so that the focal point of the laser falls within the range of the predetermined position described above, the cut end portion of the plate glass after cutting has its front and back surfaces compared to other parts. It will be formed into a slightly protruding defective shape.
 上記事情に鑑みなされた本発明は、レーザー溶断法による板ガラスの切断において、切断後の板ガラスにおける切断端部を、ダマやダレのない良好な形状に形成することを技術的課題とする。 The present invention made in view of the above circumstances has a technical problem of forming a cut end portion of a plate glass after cutting into a good shape free from lumps and sagging in the cutting of the plate glass by a laser fusing method.
 上記課題を解決するために創案された本発明に係る方法は、板ガラスの面方向に延びる切断予定線に沿って表面側からレーザーを照射し、前記板ガラスを切断する板ガラスのレーザー溶断方法であって、前記板ガラスの表裏面のうち、少なくとも一方の面に沿う流れを形成するように噴射した整形ガスが、前記レーザーの照射部を通過することに特徴付けられる。 The method according to the present invention, which was created to solve the above-mentioned problems, is a method of laser cutting a plate glass by irradiating a laser from the surface side along a planned cutting line extending in the plane direction of the plate glass and cutting the plate glass. The shaping gas sprayed so as to form a flow along at least one of the front and back surfaces of the plate glass is characterized by passing through the laser irradiation section.
 このような方法によれば、板ガラスの表面に沿う流れを形成するように整形ガスを噴射した場合、レーザーの照射部に順次に形成される板ガラスの切断端部において、当該レーザーの照射に伴い、溶融ガラスが表面張力の作用により丸まろうとする際、切断端部の表面側に出っ張りが形成されようとしても、整形ガスの圧力により、この出っ張りを板ガラスの面方向に押し出す力が作用する。加えて、切断端部の表面側は、表面側を整形ガスが通過していることにより、裏面側と比較して気圧が低い状態下に置かれる。そのため、切断端部の裏面側に出っ張りが形成されようとしても、この出っ張りを気圧の高い裏面側から気圧の低い表面側へと押し込む力が作用する。この二つの力の作用により、切断端部の表裏面の双方が平坦化され、出っ張りの形成が阻止される。その結果、ダマの形成等、溶融ガラスの量が過多となったことに起因して、切断端部の形状が不良に形成されてしまうような事態を回避できる。また、噴射された整形ガスが、板ガラスの表面に沿う流れを形成してレーザーの照射部を通過していることで、切断端部が整形ガスの圧力により、表面側から裏面側へと強く押圧されることがないため、ダレの形成も回避することが可能となる。さらには、仮にレーザーの照射部に向かってアシストガスを噴射した場合に、アシストガスの圧力により、切断端部にダレが形成されようとしても、このダレにも、既に述べた出っ張りを裏面側から表面側へと押し込む力が作用する。そのため、この場合においてもダレの形成が的確に回避される。以上のことから、本発明にかかる方法によれば、レーザー溶断法による板ガラスの切断において、切断後の板ガラスにおける切断端部を、ダマやダレのない良好な形状に形成することができる。なお、板ガラスの裏面に沿う流れを形成するように整形ガスを噴射した場合には、切断端部の裏面側に形成されようとする出っ張りを板ガラスの面方向に押し出す力が作用する。また、裏面側の気圧が表面側と比較して低い状態下に置かれるため、切断端部の表面側に形成されようとする出っ張りは、気圧の高い表面側から気圧の低い裏面側へと押し込まれることになる。これらのことから、この場合においても、上述のように板ガラスの表面に沿う流れを形成するように整形ガスを噴射した場合と、同様の効果を得ることができる。さらには、板ガラスの表面、及び裏面の双方に沿う流れを形成するように整形ガスを噴射した場合にも、同じ効果を得ることが可能である。この場合、板ガラスの表裏面のうち、裏面側に噴射する整形ガスは、表面側に噴射する整形ガスに対して、切断端部を通過する流速が遅くなるように噴射することが好ましい。このようにすれば、裏面側の気圧が表面側よりも高い状態が保持されるため、切断端部の裏面に形成されようとする出っ張りを、裏面側から表面側に押し込む作用が失われる恐れを排除できる。 According to such a method, when the shaping gas is injected so as to form a flow along the surface of the plate glass, with the laser irradiation at the cut end portion of the plate glass that is sequentially formed in the laser irradiation unit, When the molten glass tries to be rounded by the action of surface tension, even if a bulge is formed on the surface side of the cut end, a force that pushes the bulge in the surface direction of the plate glass acts due to the pressure of the shaping gas. In addition, the surface side of the cut end is placed under a state where the atmospheric pressure is lower than that of the back surface side because the shaping gas passes through the surface side. Therefore, even if a bulge is formed on the back side of the cut end, a force acts to push the bulge from the back side having a high atmospheric pressure to the front side having a low atmospheric pressure. By the action of these two forces, both the front and back surfaces of the cut end are flattened and the formation of a bulge is prevented. As a result, it is possible to avoid a situation in which the shape of the cut end portion is poorly formed due to an excessive amount of molten glass such as formation of lumps. In addition, since the injected shaping gas forms a flow along the surface of the plate glass and passes through the laser irradiation part, the cutting end is strongly pressed from the front side to the back side by the pressure of the shaping gas. Therefore, the formation of sagging can be avoided. Furthermore, if the assist gas is injected toward the laser irradiation part, even if a sag is formed at the cut end due to the pressure of the assist gas, the above-described protrusion is also applied to the sag from the back side. The force pushing into the surface side acts. Therefore, even in this case, the formation of sagging can be avoided accurately. From the above, according to the method according to the present invention, in cutting the plate glass by the laser fusing method, the cut end portion of the cut plate glass can be formed into a good shape free from lumps and sagging. In addition, when shaping gas is injected so that the flow along the back surface of plate glass may be injected, the force which pushes out the protrusion which is going to be formed in the back surface side of a cutting | disconnection edge part acts on the surface direction of plate glass. In addition, since the pressure on the back side is lower than that on the front side, the protrusions that are to be formed on the front side of the cut end are pushed from the high pressure side to the low pressure side. Will be. From these things, the same effect as the case where the shaping gas is injected so as to form the flow along the surface of the plate glass as described above can be obtained also in this case. Furthermore, the same effect can be obtained when the shaping gas is injected so as to form a flow along both the front surface and the back surface of the plate glass. In this case, among the front and back surfaces of the plate glass, it is preferable that the shaping gas injected to the back side is injected so that the flow velocity passing through the cutting end is slower than the shaping gas injected to the front side. In this way, since the pressure on the back surface side is maintained higher than that on the front surface side, there is a risk that the action of pushing the ledge to be formed on the back surface of the cut end portion from the back surface side to the front surface side may be lost. Can be eliminated.
 上記の方法において、前記整形ガスが、前記板ガラスの表面に沿う流れのみを形成することが好ましい。 In the above method, it is preferable that the shaping gas forms only a flow along the surface of the plate glass.
 一般的に、加工台によって、板ガラスを支持する場合、板ガラスの裏面と加工台とが接する形態となる。そのため、レーザーの照射部における板ガラスの裏面近傍には、加工台が存在することになり、整形ガスが板ガラスの裏面に沿う流れを形成する場合、この加工台によって整形ガスの流れが乱れ、切断端部の形状を良好なものとする効果を低減させてしまう場合がある。このため、整形ガスが板ガラスの表面に沿う流れのみを形成することがより好ましい。 Generally, when a plate glass is supported by a processing table, the back surface of the plate glass is in contact with the processing table. Therefore, there will be a processing table in the vicinity of the back surface of the plate glass in the laser irradiation section, and when the shaping gas forms a flow along the back surface of the plate glass, the flow of the shaping gas is disturbed by this processing table, and the cutting end The effect of improving the shape of the part may be reduced. For this reason, it is more preferable that the shaping gas forms only a flow along the surface of the plate glass.
 上記の方法において、前記整形ガスの噴射方向と、前記板ガラスの表裏面とが平行であることが好ましい。 In the above method, it is preferable that the shaping gas injection direction and the front and back surfaces of the plate glass are parallel to each other.
 このようにすれば、噴射された整形ガスの流速が、整形ガスと板ガラスとの衝突によって減速してしまうような事態の発生を防止でき、切断端部を通過する整形ガスの流速を可及的に高めることが可能となる。また、切断端部を通過する整形ガスの流速が速い程、表面側に形成されようとする出っ張りに作用する整形ガスの圧力、及び表面側と裏面側との気圧差が大きくなる。そのため、例えば、整形ガスが板ガラスの表裏面のうち、表面に沿う流れを形成する場合には、表面側に形成されようとする出っ張りを板ガラスの面方向に押し出す作用と、裏面側に形成されようとする出っ張りを裏面側から表面側へと押し込む作用とを、より良好に発現させることができる。 In this way, it is possible to prevent the occurrence of a situation in which the flow velocity of the injected shaping gas is decelerated due to the collision between the shaping gas and the plate glass, and the flow velocity of the shaping gas passing through the cutting end is as much as possible. Can be increased. Moreover, the higher the flow velocity of the shaping gas passing through the cutting end, the greater the pressure of the shaping gas acting on the ledge that is to be formed on the front surface side, and the atmospheric pressure difference between the front surface side and the back surface side. Therefore, for example, when the shaping gas forms a flow along the surface of the front and back surfaces of the plate glass, it will be formed on the back surface side with the action of pushing out the protrusion to be formed on the front surface side in the surface direction of the plate glass. The action of pushing the bulge from the back side to the front side can be expressed more favorably.
 上記の方法において、前記整形ガスを噴射する噴射口を備えたガス噴射部材を設け、前記噴射口は前記板ガラスの表裏面と平行な方向に幅広な形状を有することが好ましい。 In the above method, it is preferable that a gas injection member having an injection port for injecting the shaping gas is provided, and the injection port has a wide shape in a direction parallel to the front and back surfaces of the plate glass.
 このようにすれば、噴射された整形ガスが、噴射口の形状に倣って切断端部の広範囲に亘って広がっていく。このため、より安定的に切断端部における出っ張りの形成を阻止することが可能となる。 In this way, the injected shaping gas spreads over a wide range of the cut end portion following the shape of the injection port. For this reason, it becomes possible to prevent the formation of the protrusion at the cut end more stably.
 上記の方法において、前記板ガラスの厚みが500μm以下であることが好ましい。 In the above method, it is preferable that the thickness of the plate glass is 500 μm or less.
 すなわち、従来の方法では、板ガラスの厚みが500μm以下であれば、切断端部における特にダレの発生を抑制することが困難であったが、本発明に係る方法によれば、そのような板厚の薄い板ガラスであっても、十分にダレの発生を抑止することができる。 That is, in the conventional method, if the thickness of the plate glass is 500 μm or less, it was difficult to suppress the occurrence of sag particularly at the cut end, but according to the method of the present invention, such a plate thickness Even a thin plate glass can sufficiently suppress the occurrence of sagging.
 上記の方法において、前記板ガラスの表面に対して傾斜した方向から前記レーザーの照射部に向かってアシストガスを噴射することが好ましい。 In the above method, it is preferable that the assist gas is injected from the direction inclined with respect to the surface of the plate glass toward the laser irradiation portion.
 このようにすれば、レーザーの加熱で溶融した溶融ガラスをアシストガスの圧力によって飛散させ、除去することが可能となるため、溶融ガラスの除去をより素早く、円滑に実施することができる。また、板ガラスの表面に対して傾斜した方向から照射部にアシストガスを噴射していることで、板ガラスの切断端部が、アシストガスの圧力により、表面側から裏面側へと強く押圧されることが回避される。そのため、既述の整形ガスの噴射による作用と相俟って、切断端部にダレが形成されてしまうような事態の発生も防止することが可能となる。 In this way, the molten glass melted by the laser heating can be scattered and removed by the pressure of the assist gas, so that the molten glass can be removed more quickly and smoothly. In addition, since the assist gas is sprayed to the irradiation part from the direction inclined with respect to the surface of the plate glass, the cut end of the plate glass is strongly pressed from the front side to the back side by the pressure of the assist gas. Is avoided. For this reason, it is possible to prevent the occurrence of sagging at the cut end portion in combination with the above-described action by the shaping gas injection.
 上記の方法において、前記レーザーをレンズで集光して照射すると共に、該レーザーの照射方向に沿ってガスを噴射することが好ましい。 In the above method, it is preferable that the laser is condensed and irradiated with a lens, and gas is injected along the irradiation direction of the laser.
 このようにすれば、レーザーの照射方向に沿って噴射されたガスの圧力によって、飛散したドロスがレンズに付着するような事態の発生を可及的に阻止することができる。 In this way, it is possible to prevent as much as possible the occurrence of the situation where the scattered dross adheres to the lens by the pressure of the gas injected along the laser irradiation direction.
 上記の方法において、前記板ガラスの切断の進行方向と、前記整形ガスが前記レーザーの照射部を通過する方向とを交差させると共に、切断後の両板ガラスのうち、前記整形ガスの噴射元側に位置する板ガラスを製品とし、噴射先側に位置する板ガラスを非製品とすることが好ましい。 In the above method, the cutting glass cutting direction is crossed with the direction in which the shaping gas passes through the laser irradiation part, and the two pieces of plate glass after cutting are positioned on the injection side of the shaping gas. It is preferable that the plate glass to be used is a product and the plate glass located on the injection destination side is a non-product.
 すなわち、切断端部における出っ張りの形成を阻止する効果の大小について、整形ガスの噴射元側に位置する板ガラスと、噴射先側に位置する板ガラスとを比較した場合、噴射元側に位置する板ガラスの方が大きな効果を得ることができる。加えて、板ガラスを切断する際に発生したドロスは、整形ガスの噴射先側へと飛散しやすいため、噴射元側に位置する板ガラスの切断端部にはドロスが付着しにくくなる。そのため、切断後の両板ガラスのうち、整形ガスの噴射元側に位置する板ガラスを製品とすれば、製品の品質を向上させることが可能となる。 That is, when comparing the plate glass located on the injection source side of the shaping gas and the plate glass located on the injection destination side with respect to the magnitude of the effect of preventing the formation of the protrusion at the cut end, the plate glass located on the injection source side You can get a big effect. In addition, since the dross generated when cutting the plate glass is likely to be scattered to the shaping gas injection destination side, the dross is less likely to adhere to the cut end portion of the plate glass located on the injection source side. Therefore, the quality of a product can be improved if the plate glass located in the shaping gas injection side is used as a product among both the plate glasses after cutting.
 以上のように、本発明によれば、板ガラスの表裏面のうち、少なくとも一方の面に沿う流れを形成するように噴射した整形ガスが、レーザーの照射部を通過することにより、レーザー溶断法による板ガラスの切断において、切断後の板ガラスにおける切断端部を、ダマやダレのない良好な形状に形成することが可能となる。 As described above, according to the present invention, the shaping gas injected so as to form a flow along at least one surface of the front and back surfaces of the plate glass passes through the laser irradiation portion, and thus is based on the laser fusing method. In cutting the plate glass, the cut end portion of the cut plate glass can be formed into a good shape free from lumps and sagging.
本発明の実施形態に係るレーザー溶断方法に用いるレーザー溶断装置を示す縦断正面図である。It is a vertical front view which shows the laser fusing apparatus used for the laser fusing method which concerns on embodiment of this invention. 本発明の実施形態に係るレーザー溶断方法に用いるレーザー溶断装置を示す一部横断平面図である。It is a partial cross section top view which shows the laser fusing apparatus used for the laser fusing method which concerns on embodiment of this invention. 本発明の実施形態に係るレーザー溶断方法の作用を示す側面断面図である。It is side surface sectional drawing which shows the effect | action of the laser fusing method which concerns on embodiment of this invention. 本発明の実施形態に係るレーザー溶断方法の作用を示す側面断面図である。It is side surface sectional drawing which shows the effect | action of the laser fusing method which concerns on embodiment of this invention. 本発明の実施形態に係るレーザー溶断方法の作用を示す側面断面図である。It is side surface sectional drawing which shows the effect | action of the laser fusing method which concerns on embodiment of this invention. 本発明の実施形態に係るレーザー溶断方法の作用を示す側面断面図である。It is side surface sectional drawing which shows the effect | action of the laser fusing method which concerns on embodiment of this invention. 本発明の他の実施形態に係るレーザー溶断方法を示す側面断面図である。It is side surface sectional drawing which shows the laser fusing method which concerns on other embodiment of this invention. 本発明の他の実施形態に係るレーザー溶断方法を示す側面断面図である。It is side surface sectional drawing which shows the laser fusing method which concerns on other embodiment of this invention. 不良に形成された切断端部の形状を示す側面断面図である。It is side surface sectional drawing which shows the shape of the cut end part formed in defect. 不良に形成された切断端部の形状を示す側面断面図である。It is side surface sectional drawing which shows the shape of the cut end part formed in defect.
 以下、本発明の実施形態について添付の図面を参照して説明する。なお、本実施形態では、横置きにされた板ガラスを切断予定線に沿ってレーザー溶断法により切断し、当該板ガラスを製品となる製品部と、非製品(廃棄物)となる非製品部とに分割する場合を例に挙げて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In this embodiment, a horizontally placed plate glass is cut by a laser fusing method along a planned cutting line, and the plate glass is divided into a product part to be a product and a non-product part to be a non-product (waste). The case of dividing will be described as an example.
 図1,図2は、それぞれ本発明の実施形態に係る板ガラスのレーザー溶断方法に用いるレーザー溶断装置を示す縦断正面図と一部横断平面図である。これらの図に示すように、レーザー溶断装置1は、板ガラスGが載置される加工台5と、板ガラスGの表面Sに向かってレーザーLを照射するレーザー照射器2と、レーザーLの加熱により溶融した溶融ガラスMを飛散させるアシストガスA2を噴射するアシストガス噴射ノズル3と、板ガラスGの表面Sに沿って整形ガスA3を噴射するガス噴射部材としての整形ガス噴射ノズル4とを主要な要素として構成される。 FIGS. 1 and 2 are a longitudinal sectional front view and a partial cross-sectional plan view showing a laser fusing device used in a sheet glass laser fusing method according to an embodiment of the present invention, respectively. As shown in these drawings, the laser fusing device 1 includes a processing table 5 on which a plate glass G is placed, a laser irradiator 2 that irradiates a laser L toward the surface S of the plate glass G, and heating of the laser L. The main elements are an assist gas injection nozzle 3 that injects an assist gas A2 that scatters molten glass M, and a shaping gas injection nozzle 4 as a gas injection member that injects shaping gas A3 along the surface S of the glass sheet G. Configured as
 レーザー照射器2は、定位置に設置されると共に、円筒状の基端部と、すり鉢状の先端部とで構成されている。基端部の内周壁には、図示省略のレーザー発振器から発せられたレーザーLを集光し、板ガラスGの表面Sに向かって照射するレンズ6が取付けられている。また、先端部には、レーザーLの照射方向に沿って噴射されるガスA1を、レーザー照射器2の内部に導入するガス導入管2aが連結されると共に、レーザーL、ガスA1を照射、噴射するための円形の照噴射口2bが形成されている。 The laser irradiator 2 is installed at a fixed position, and is composed of a cylindrical base end portion and a mortar-shaped tip end portion. A lens 6 that collects a laser beam L emitted from a laser oscillator (not shown) and irradiates the surface S of the glass sheet G is attached to the inner peripheral wall of the base end portion. In addition, a gas introduction pipe 2a for introducing the gas A1 injected along the irradiation direction of the laser L into the laser irradiator 2 is connected to the tip, and the laser L and the gas A1 are irradiated and injected. A circular illumination outlet 2b for this purpose is formed.
 アシストガス噴射ノズル3は、レーザー照射器2と同様に定位置に設置されると共に、板ガラスGの表面Sに対して傾斜した姿勢で設置されている。その形状は、円筒状に形成されており、図示省略のガス圧縮装置(例えば、エアコンプレッサー)で圧縮されたアシストガスA2が、その内部を通過し、レーザーLの照射部Cに向かって噴射されるように構成されている。 The assist gas injection nozzle 3 is installed at a fixed position in the same manner as the laser irradiator 2 and is installed in a posture inclined with respect to the surface S of the plate glass G. The shape is formed in a cylindrical shape, and assist gas A2 compressed by a gas compression device (for example, an air compressor) (not shown) passes through the inside and is injected toward the irradiation part C of the laser L. It is comprised so that.
 整形ガス噴射ノズル4は、レーザー照射器2、及びアシストガス噴射ノズル3と同様に表面S側の定位置に設置されると共に、板ガラスGの表面Sと平行な姿勢で、且つ板ガラスGの面方向に延びる切断予定線Xと直交する向きに設置されている。その横断面、及び先端に形成された噴射口4aは、略矩形に形成されており、噴射口4aは、切断予定線Xに沿う方向に幅広となっている。そして、図示省略のガス圧縮装置で圧縮された整形ガスA3が、その内部を通過し、噴射口4aから板ガラスGの表面Sと平行に噴射される構成となっている。また、この整形ガスA3は、切断後の両板ガラスGのうち、製品部G1となる側から非製品部G2となる側に向かって噴射される。 The shaping gas injection nozzle 4 is installed at a fixed position on the surface S side in the same manner as the laser irradiator 2 and the assist gas injection nozzle 3, and is in a posture parallel to the surface S of the plate glass G and in the plane direction of the plate glass G. It is installed in the direction orthogonal to the planned cutting line X extending in the direction. The injection port 4a formed in the cross section and the front-end | tip is formed in the substantially rectangular shape, and the injection port 4a is wide in the direction along the cutting projected line X. As shown in FIG. And the shaping gas A3 compressed with the gas compression apparatus abbreviate | omitted illustration passes through the inside, and becomes a structure injected in parallel with the surface S of the plate glass G from the injection port 4a. Moreover, this shaping gas A3 is injected toward the side used as the non-product part G2 from the side used as the product part G1 among the both glass plates G after a cutting | disconnection.
 加工台5は、切断予定線Xを挟んで一対が平行に設置される。また、両加工台5は、板ガラスGが載置された状態で、図2に示すT方向(切断予定線Xに平行な方向)に同期して移動することが可能な構成となっている。 A pair of processing tables 5 are installed in parallel across the planned cutting line X. Moreover, both the process bases 5 become a structure which can move synchronizing with the T direction (direction parallel to the cutting projected line X) shown in FIG. 2 in the state in which the plate glass G was mounted.
 以上から、レーザー溶断装置1は、板ガラスGを載置した加工台5のT方向への移動に伴って、レーザー照射器2が切断予定線Xに沿って板ガラスの表面Sに対し連続的にレーザーLを照射する。そして、レーザーLの照射部Cで溶融した溶融ガラスMをアシストガス噴射ノズル3から噴射されたアシストガスA2が吹き飛ばし、飛散させることで除去する。その後、溶融ガラスMの除去に伴って板ガラスGに順次に形成された切断端部Gaを、整形ガス噴射ノズル4から噴射された整形ガスA3が、板ガラスGの表面Sに沿い且つ切断の進行方向と直交して通過するように構成されている。また、溶融ガラスMを除去する際に飛散したドロスのレンズ6への付着を、レーザー照射器2から噴射されたガスA1の圧力により防止する。 From the above, in the laser fusing device 1, the laser irradiator 2 continuously lasers the surface S of the plate glass along the planned cutting line X as the processing table 5 on which the plate glass G is placed moves in the T direction. L is irradiated. Then, the molten glass M melted by the irradiation part C of the laser L is removed by blowing away and scattering the assist gas A2 sprayed from the assist gas spray nozzle 3. After that, the shaping gas A3 injected from the shaping gas injection nozzle 4 passes along the surface S of the plate glass G and the cutting progress direction of the cut end Ga formed sequentially on the plate glass G along with the removal of the molten glass M. It is comprised so that it may pass orthogonally. Further, the dross scattered when the molten glass M is removed is prevented from adhering to the lens 6 by the pressure of the gas A1 ejected from the laser irradiator 2.
 ここで、ガスA1、アシストガスA2、整形ガスA3の噴射圧力は、各々、ガスA1:0.00~0.02MPa、アシストガスA2:0.00~0.25MPa、整形ガスA3:0.01~1.0MPaであることが好ましい。また、整形ガス噴射ノズル4に形成された噴射口4aと切断予定線Xとの離間距離は、1~30mmであることが好ましく、より好ましくは、1~10mmである。さらに、アシストガスA2の噴射方向と板ガラスGの表面Sとがなす角は、25~60°であることが好ましい。 Here, the injection pressures of the gas A1, the assist gas A2, and the shaping gas A3 are as follows: the gas A1: 0.00 to 0.02 MPa, the assist gas A2: 0.00 to 0.25 MPa, and the shaping gas A3: 0.01. It is preferable that the pressure is 1.0 MPa. Further, the separation distance between the injection port 4a formed in the shaping gas injection nozzle 4 and the planned cutting line X is preferably 1 to 30 mm, more preferably 1 to 10 mm. Furthermore, the angle formed by the assist gas A2 injection direction and the surface S of the glass sheet G is preferably 25 to 60 °.
 以下、上記のレーザー溶断装置1を用いた板ガラスのレーザー溶断方法の作用について添付の図面を参照して説明する。なお、この作用について説明するための図面では、切断後の両板ガラスのうち、非製品部となる側の板ガラスの図示を省略している。 Hereinafter, the operation of the laser glass cutting method using the above laser cutting device 1 will be described with reference to the accompanying drawings. In addition, in drawing for explaining this effect | action, illustration of the plate glass of the side used as a non-product part is abbreviate | omitted among the both plate glasses after a cutting | disconnection.
 レーザーLの照射部Cで溶融した溶融ガラスMをアシストガスA2の圧力で吹き飛ばし除去すると、これに伴って、板ガラスGには、順次に切断端部Gaが形成される。このとき、レーザーLの出力が高い場合、或いは、レーザーLのビームモードが不可避的に悪化した場合には、溶融した溶融ガラスMの量が過多となる。 When the molten glass M melted at the irradiation portion C of the laser L is blown off and removed with the pressure of the assist gas A2, the cut end portions Ga are sequentially formed on the plate glass G accordingly. At this time, when the output of the laser L is high, or when the beam mode of the laser L is inevitably deteriorated, the amount of the molten glass M melted is excessive.
 このため、図3aに二点鎖線で示すように、溶融ガラスMが表面張力の作用によって丸まろうとし、切断端部Gaの表面Gaa、及び裏面Gabが出っ張った状態に形成されようとする。しかしながら、表面Gaaに形成されようとする出っ張りには、図3bに示すように、整形ガスA3の圧力により、出っ張りを板ガラスG(製品部G1)の面方向に押し出す力Fが作用する。 For this reason, as shown by a two-dot chain line in FIG. 3a, the molten glass M tends to be rounded by the action of surface tension, and the surface Gaa and the back surface Gab of the cut end portion Ga are formed to protrude. However, as shown in FIG. 3B, a force F that pushes the protrusion in the surface direction of the plate glass G (product part G1) acts on the protrusion to be formed on the surface Gaa by the pressure of the shaping gas A3.
 加えて、切断端部Gaの表面Gaa側は、表面Gaa側を整形ガスA3が通過していることにより、裏面Gab側と比較して気圧が低い状態下に置かれる。そのため、図3cに示すように、裏面Gabに形成されようとする出っ張りを、気圧の高い裏面Gab側から気圧の低い表面Gaa側へと押し込む力Pが作用する。この二つの力F,Pにより、切断端部Gaの表裏面Gaa,Gabの双方が平坦化され、図3dに示すように、出っ張りの形成が阻止される。 In addition, the surface Gaa side of the cut end Ga is placed under a state where the atmospheric pressure is lower than that of the back Gab side because the shaping gas A3 passes through the surface Gaa side. Therefore, as shown in FIG. 3c, a force P acts to push the protrusion to be formed on the back surface Gab from the back surface Gab side having a high atmospheric pressure to the surface Gaa side having a low atmospheric pressure. By these two forces F and P, both the front and back surfaces Gaa and Gab of the cut end Ga are flattened, and as shown in FIG.
 また、これらの作用が発現する際、整形ガスA3が、板ガラスGの表面Sに沿う流れを形成しているため、整形ガスA3の流れが加工台5によって乱されるような事態を回避することが可能となる。また、板ガラスGの表面Sと平行に噴射されていることにより、噴射された整形ガスA3の流速が、整形ガスA3と板ガラスGとの衝突によって減速してしまうような事態の発生を可及的に防止できる。加えて、切断端部Gaを通過する整形ガスA3の流速が速い程、表面Gaa側に形成されようとする出っ張りに作用する整形ガスA3の圧力、及び表面Gaa側と裏面Gab側との気圧差が大きくなる。このため、切断端部Gaの表面Gaaに形成されようとする出っ張りを面方向に押し出す作用と、裏面Gabに形成されようとする出っ張りを裏面Gab側から表面Gaa側へと押し込む作用とが、良好に発現する。 Moreover, when these effects are manifested, the shaping gas A3 forms a flow along the surface S of the glass sheet G, so that a situation where the flow of the shaping gas A3 is disturbed by the processing table 5 is avoided. Is possible. Further, since the flow rate of the injected shaping gas A3 is decelerated due to the collision between the shaping gas A3 and the plate glass G due to the injection in parallel with the surface S of the plate glass G, the occurrence of a situation where possible. Can be prevented. In addition, the higher the flow velocity of the shaping gas A3 that passes through the cutting end Ga, the higher the pressure of the shaping gas A3 that acts on the ledge to be formed on the surface Gaa side, and the pressure difference between the surface Gaa side and the back surface Gab side. Becomes larger. For this reason, the action of pushing the protrusion to be formed on the surface Gaa of the cut end Ga in the surface direction and the action of pushing the protrusion to be formed on the back surface Gab from the back surface Gab side to the surface Gaa side are good. Expressed in
 さらに、整形ガス噴射ノズル4に形成された噴射口4aが、板ガラスGの表面Sに沿う方向に幅広となっていることで、噴射された整形ガスA3が、噴射口4aの形状に倣って切断端部Gaの広範囲に亘って広がっていく。このため、より安定的に切断端部Gaにおける出っ張りの形成を阻止することが可能となる。 Furthermore, since the injection port 4a formed in the shaping gas injection nozzle 4 is wide in the direction along the surface S of the glass sheet G, the injected shaping gas A3 is cut following the shape of the injection port 4a. It spreads over a wide range of the end Ga. For this reason, it becomes possible to prevent the formation of the protrusion at the cut end Ga more stably.
 また、レーザーLの照射部Cに向かってアシストガスA2を噴射していることで、照射部Cで溶融した溶融ガラスMをアシストガスA2の圧力によって飛散させ、除去することが可能となるため、溶融ガラスMの除去をより素早く、円滑に実施することができる。 Further, since the assist gas A2 is sprayed toward the irradiation part C of the laser L, the molten glass M melted in the irradiation part C can be scattered and removed by the pressure of the assist gas A2, Removal of the molten glass M can be performed more quickly and smoothly.
 これらの結果、ダマの形成等、切断端部Gaの形状が不良に形成されることを回避できる。加えて、噴射された整形ガスA3が板ガラスGの表面Sに沿って切断端部Gaを通過していることで、切断端部Gaが整形ガスA3により、表面Gaa側から裏面Gab側へと強く押圧されることも防止される。このため、整形ガスA3によって切断端部Gaにダレが形成されることもなくなる。 As a result, it can be avoided that the shape of the cut end Ga, such as formation of lumps, is defective. In addition, since the injected shaping gas A3 passes through the cutting end Ga along the surface S of the glass sheet G, the cutting end Ga is strongly moved from the surface Gaa side to the back surface Gab side by the shaping gas A3. It is also prevented from being pressed. For this reason, no sagging is formed in the cut end Ga by the shaping gas A3.
 さらに、アシストガスA2の圧力により、切断端部Gaにダレが形成される恐れも下記のように的確に排除される。すなわち、アシストガスA2の圧力により、切断端部Gaにダレが形成されようとしても、このダレにも、既に述べた出っ張りを裏面Gab側から表面Gaa側へと押し込む力Pが作用する。そのため、ダレの形成が的確に回避される。 Furthermore, the risk of sagging at the cut end Ga due to the pressure of the assist gas A2 is also accurately eliminated as described below. That is, even if a sag is formed at the cut end Ga by the pressure of the assist gas A2, the force P that pushes the bulge already described from the back surface Gab side to the front surface Gaa side acts on this sag. Therefore, the formation of sagging is avoided accurately.
 また、板ガラスGを切断する際に発生するドロスは、整形ガスA3の噴射先側へと飛散しやすい。そのため、切断後の板ガラスGのうち、整形ガスA3の噴射元側に位置する製品部G1の切断端部Gaにはドロスが付着しにくくなり、製品部G1を高品質なものとすることができる。 Also, dross generated when cutting the glass sheet G is likely to be scattered toward the injection destination side of the shaping gas A3. Therefore, it becomes difficult for dross to adhere to the cut end portion Ga of the product portion G1 located on the injection source side of the shaping gas A3 in the plate glass G after cutting, and the product portion G1 can be made of high quality. .
 その上、本実施形態に係るレーザー溶断方法によれば、従来の方法では、切断端部Gaにおける特にダレの発生を抑制することが困難であった厚みが500μm以下の薄板ガラスが切断の対象であっても、切断端部Gaにダレを形成することなく、切断することが可能である。なお、切断の対象となる板ガラスGの厚みとしては、300μm以下とすることがより好ましく、最も好ましくは、200μm以下である。 In addition, according to the laser fusing method according to the present embodiment, a thin glass having a thickness of 500 μm or less, which has been difficult to suppress the occurrence of sagging at the cut end Ga, is particularly an object to be cut. Even if it exists, it is possible to cut | disconnect, without forming sagging in the cutting | disconnection edge part Ga. In addition, as thickness of the plate glass G used as the object of a cutting | disconnection, it is more preferable to set it as 300 micrometers or less, Most preferably, it is 200 micrometers or less.
 ここで、本発明に係る板ガラスのレーザー溶断方法は、上記の実施形態で説明した構成に限定されるものではない。例えば、上記の実施形態では、切断の進行方向と、整形ガスがレーザーの照射部を通過する方向とが直交する構成となっているが、これらは直交せずに交差するのみであってもよいし、平行であってもよい。すなわち、噴射された整形ガスが板ガラスの表面に沿ってレーザーの照射部を通過しさえすれば、整形ガスをどのような方向に噴射しても構わない。また、整形ガスは、必ずしも板ガラスの表面と平行に噴射する必要はなく、図4に示すように、板ガラスGの表面Sに対して傾斜した方向から噴射してもよい。なお、この場合、整形ガスの噴射方向と板ガラスGの表面Sとがなす角αは、0~25°であることが好ましく、より好ましくは、0~15°であって、最も好ましくは、0~5°である。また、この場合、整形ガス噴射ノズル4の中心線4bと板ガラスGの表面Sとが交わる点を交点4cとしたとき、交点4cとレーザーLの照射部Cとの距離は、1~30mmであることが好ましく、より好ましくは、2~10mmであり、最も好ましくは、2~5mmである。 Here, the laser fusing method for plate glass according to the present invention is not limited to the configuration described in the above embodiment. For example, in the above-described embodiment, the cutting progress direction and the direction in which the shaping gas passes through the laser irradiation unit are orthogonal to each other. However, these may only intersect without being orthogonal. However, they may be parallel. That is, the shaping gas may be injected in any direction as long as the injected shaping gas passes through the laser irradiation portion along the surface of the plate glass. Further, the shaping gas is not necessarily injected in parallel with the surface of the plate glass, and may be injected from a direction inclined with respect to the surface S of the plate glass G as shown in FIG. In this case, the angle α formed by the injection direction of the shaping gas and the surface S of the glass sheet G is preferably 0 to 25 °, more preferably 0 to 15 °, and most preferably 0. ~ 5 °. In this case, when the point where the center line 4b of the shaping gas injection nozzle 4 and the surface S of the glass sheet G intersect is defined as the intersection point 4c, the distance between the intersection point 4c and the irradiation part C of the laser L is 1 to 30 mm. More preferably, it is 2 to 10 mm, and most preferably 2 to 5 mm.
 さらに、整形ガスは、板ガラスの表裏面の双方に沿って噴射するようにしてもよい。すなわち、上記の実施形態においては、整形ガスは、レーザーの照射部の表面側のみを板ガラスの表面に沿って通過するように噴射されているが、図5に示すように、切断端部Gaの表面Gaa側のみではなく、裏面Gab側にも整形ガスA3を噴射してもよい。この場合、裏面Gab側に噴射する整形ガスA3は、表面Gaa側に噴射する整形ガスA3に対して、切断端部Gaを通過する流速が遅くなるように噴射することが好ましい。このようにすれば、裏面Gab側の気圧が表面Gaa側よりも高い状態が保持されるため、裏面Gabに形成されようとする出っ張りを、裏面Gab側から表面Gaa側に押し込む作用が失われる恐れを排除できる。なお、この裏面Gabを通過するように整形ガスA3を噴射する場合においても、整形ガスA3を板ガラスGの裏面Bに対して傾斜した方向から噴射してもよい。また、整形ガスが板ガラスの裏面に沿う流れのみを形成するように噴射してもよく、この場合においても、表面に沿う流れを形成した場合と、同様の効果を得ることができる。 Further, the shaping gas may be injected along both the front and back surfaces of the plate glass. That is, in the above embodiment, the shaping gas is injected so that only the surface side of the laser irradiation portion passes along the surface of the plate glass, but as shown in FIG. The shaping gas A3 may be injected not only on the front surface Gaa side but also on the back surface Gab side. In this case, it is preferable that the shaping gas A3 injected to the back surface Gab side is injected so that the flow velocity passing through the cutting end Ga is slower than the shaping gas A3 injected to the front surface Gaa side. In this case, since the pressure on the back surface Gab side is maintained higher than that on the front surface Gaa side, there is a risk that the action of pushing the protrusion to be formed on the back surface Gab from the back surface Gab side to the front surface Gaa side may be lost. Can be eliminated. Even when the shaping gas A3 is injected so as to pass through the back surface Gab, the shaping gas A3 may be injected from a direction inclined with respect to the back surface B of the plate glass G. Moreover, you may inject so that shaping gas may form only the flow along the back surface of plate glass, and also in this case, the same effect as the case where the flow along the surface is formed can be acquired.
 加えて、上記の実施形態では、アシストガスの噴射によって溶融ガラスを飛散させて除去する構成となっているが、アシストガスを噴射しなくとも溶融ガラスを除去することが可能である。この場合、ガラス中の水分・揮発性成分、もしくは、ガラス自身が気化・膨張する際のエネルギーが溶融ガラスを除去する駆動力となり、これによって溶融ガラスが飛散し除去される。 In addition, in the above embodiment, the molten glass is scattered and removed by spraying the assist gas. However, the molten glass can be removed without spraying the assist gas. In this case, moisture and volatile components in the glass, or energy when the glass itself vaporizes and expands, becomes a driving force for removing the molten glass, whereby the molten glass is scattered and removed.
 また、整形ガス噴射ノズルに形成された噴射口の形状は、上記の実施形態においては、矩形となっているが、この限りではなく、どのような形状に形成してもよい。しかしながら、噴射口から噴射された整形ガスが切断端部の広範囲に亘って広がるような形状であることが好ましく、このような形状としては、例えば、板ガラスの表面と平行な方向に長径を有する楕円形等が想定される。 In addition, the shape of the injection port formed in the shaping gas injection nozzle is rectangular in the above embodiment, but is not limited to this, and may be formed in any shape. However, it is preferable that the shaping gas injected from the injection port has a shape that spreads over a wide range of the cutting end, such as an ellipse having a major axis in a direction parallel to the surface of the plate glass. Shape is assumed.
 さらに、上記の実施形態では、加工台に載置された板ガラスを溶断する態様となっているが、例えば、オーバーフロー法やフロート法により成形された帯状のガラスリボンを連続的に溶断する態様としてもよいし、ガラスリボンをロール状に巻き取ったガラスロールを用いて、ロールtoロール(ガラスロールからガラスリボンを巻き外して所定の加工を施した後、加工後のガラスリボンを再びガラスロールとして巻き取る態様)により溶断を実施する態様としてもよい。 Furthermore, in said embodiment, although it has become the aspect which melts | melts the plate glass mounted on the processing stand, For example, as an aspect which melts continuously the strip | belt-shaped glass ribbon shape | molded by the overflow method or the float method. It is good to use a glass roll obtained by winding a glass ribbon into a roll, and roll-to-roll (after unwinding the glass ribbon from the glass roll and applying the predetermined processing, the processed glass ribbon is wound again as a glass roll. It is good also as an aspect which carries out fusing by the aspect to take.
 本発明の実施例として、以下の二つの条件の下、レーザー溶断法による板ガラスの切断を試み、切断後の板ガラスにおける切断端部の形状の良否を調査した。 As an example of the present invention, cutting of a plate glass by a laser fusing method was attempted under the following two conditions, and the quality of the shape of the cut end of the cut plate glass was investigated.
 下記の表に板ガラスを切断した際の切断条件を示す。なお、下記の表において、レーザーの媒質の項目で括弧書きとなっているものは、レーザーの波長を示している。また、板ガラスの搬送速度とは、定点固定されたレーザーの照射器、アシストガスの噴射ノズル、整形ガスの噴射ノズルに対して、相対的に板ガラスが移動する速度を表す。さらに、アシストガスの噴射角度、及び整形ガスの噴射角度とは、板ガラスの表面に対するこれらの傾斜角度を表している。加えて、下記の表において、「無」となっている項目は、アシストガス、もしくは、整形ガスを噴射しなかったことを示している。 The following table shows the cutting conditions when the plate glass is cut. In the table below, what is in parentheses in the item of laser medium indicates the wavelength of the laser. Moreover, the conveyance speed of plate glass represents the speed | rate which plate glass moves relatively with respect to the laser irradiator fixed to the fixed point, the injection nozzle of assist gas, and the injection nozzle of shaping gas. Furthermore, the injection angle of the assist gas and the injection angle of the shaping gas represent these inclination angles with respect to the surface of the plate glass. In addition, in the table below, the item “None” indicates that the assist gas or the shaping gas was not injected.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記の表に示した条件下で板ガラスの切断を実施した後、切断後の板ガラスにおける切断端部の形状の良否を調査したところ、実施例1、2の双方において、切断端部が略半円状の良好な形状に形成されていることを確認できた。ここで、これらの条件下において、切断端部が良好な形状に形成されたのは、噴射された整形ガスが板ガラスに順次に形成される切断端部(レーザーの照射部)を通過したことにより、切断端部の表裏面に出っ張りが形成されることを阻止できたためと想定される。 After cutting the plate glass under the conditions shown in the above table, when the quality of the cut end portion in the plate glass after cutting was investigated, in both Examples 1 and 2, the cut end portion was substantially semicircular. It was confirmed that it was formed in a good shape. Here, under these conditions, the cut end was formed in a good shape because the injected shaping gas passed through the cut end (laser irradiation part) formed sequentially on the plate glass. It is assumed that it was possible to prevent the protrusions from being formed on the front and back surfaces of the cut end.
 1     レーザー溶断装置
 2     レーザー照射器
 2a    ガス導入管
 2b    照噴射口
 3     アシストガス噴射ノズル
 4     整形ガス噴射ノズル
 4a    噴射口
 4b    中心線
 4c    交点
 5     加工台
 6     レンズ
 L     レーザー
 A1    ガス
 A2    アシストガス
 A3    整形ガス
 G     板ガラス
 S     板ガラスの表面
 B     板ガラスの裏面
 Ga    板ガラスの切断端部
 Gaa   切断端部の表面
 Gab   切断端部の裏面
 G1    製品部
 G2    非製品部
 M     溶融ガラス
 X     切断予定線
 T     加工台の移動方向
 F     切断端部に作用する力
 P     切断端部に作用する力
DESCRIPTION OF SYMBOLS 1 Laser cutting apparatus 2 Laser irradiator 2a Gas introduction pipe 2b Illumination injection port 3 Assist gas injection nozzle 4 Shaped gas injection nozzle 4a Injection port 4b Center line 4c Intersection 5 Work table 6 Lens L Laser A1 Gas A2 Assist gas A3 Shaped gas G Sheet glass S Surface of sheet glass B Back surface of sheet glass Ga Cutting edge of sheet glass Gaa Surface of cutting edge Gab Back surface of cutting edge G1 Product part G2 Non-product part M Molten glass X Cutting line T Cutting direction of movement F Cutting edge Force acting on the part P Force acting on the cutting edge

Claims (8)

  1.  板ガラスの面方向に延びる切断予定線に沿って表面側からレーザーを照射し、前記板ガラスを切断する板ガラスのレーザー溶断方法であって、
     前記板ガラスの表裏面のうち、少なくとも一方の面に沿う流れを形成するように噴射した整形ガスが、前記レーザーの照射部を通過することを特徴とする板ガラスのレーザー溶断方法。
    A laser fusing method of plate glass that irradiates a laser from the surface side along a planned cutting line extending in the surface direction of the plate glass, and cuts the plate glass,
    A laser fusing method for plate glass, wherein shaping gas injected so as to form a flow along at least one of the front and back surfaces of the plate glass passes through the laser irradiation section.
  2.  前記整形ガスが、前記板ガラスの表面に沿う流れのみを形成することを特徴とする請求項1に記載の板ガラスのレーザー溶断方法。 The method of laser fusing a plate glass according to claim 1, wherein the shaping gas forms only a flow along the surface of the plate glass.
  3.  前記整形ガスの噴射方向と、前記板ガラスの表裏面とが平行であることを特徴とする請求項1又は2に記載の板ガラスのレーザー溶断方法。 3. The method of laser cutting a plate glass according to claim 1 or 2, wherein the shaping gas injection direction and the front and back surfaces of the plate glass are parallel to each other.
  4.  前記整形ガスを噴射する噴射口を備えたガス噴射部材を設け、前記噴射口は前記板ガラスの表裏面と平行な方向に幅広な形状を有することを特徴とする請求項1~3のいずれかに記載の板ガラスのレーザー溶断方法。 The gas injection member having an injection port for injecting the shaping gas is provided, and the injection port has a wide shape in a direction parallel to the front and back surfaces of the plate glass. The method for laser fusing of the described sheet glass.
  5.  前記板ガラスの厚みが500μm以下であることを特徴とする請求項1~4のいずれかに記載の板ガラスのレーザー溶断方法。 5. The method of laser cutting a plate glass according to claim 1, wherein the thickness of the plate glass is 500 μm or less.
  6.  前記板ガラスの表面に対して傾斜した方向から前記レーザーの照射部に向かってアシストガスを噴射することを特徴とする請求項1~5のいずれかに記載の板ガラスのレーザー溶断方法。 6. The method for laser cutting a plate glass according to claim 1, wherein the assist gas is sprayed from a direction inclined with respect to the surface of the plate glass toward the laser irradiation portion.
  7.  前記レーザーをレンズで集光して照射すると共に、該レーザーの照射方向に沿ってガスを噴射することを特徴とする請求項1~6のいずれかに記載の板ガラスのレーザー溶断方法。 The method of laser cutting a plate glass according to any one of claims 1 to 6, wherein the laser is condensed by a lens and irradiated, and gas is jetted along the irradiation direction of the laser.
  8.  前記板ガラスの切断の進行方向と、前記整形ガスが前記レーザーの照射部を通過する方向とを交差させると共に、切断後の両板ガラスのうち、前記整形ガスの噴射元側に位置する板ガラスを製品とし、噴射先側に位置する板ガラスを非製品とすることを特徴とする請求項1~7のいずれかに記載の板ガラスのレーザー溶断方法。 The direction of cutting of the plate glass intersects the direction in which the shaping gas passes through the laser irradiation part, and the plate glass located on the injection source side of the shaping gas among the two plate glasses after cutting is used as a product. The method of laser fusing a sheet glass according to any one of claims 1 to 7, wherein the sheet glass located on the ejection side is a non-product.
PCT/JP2013/077760 2012-11-13 2013-10-11 Laser fusion-cutting method for plate glass WO2014077066A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/441,348 US9725353B2 (en) 2012-11-13 2013-10-11 Laser fusion-cutting method for plate glass
KR1020147035352A KR102073667B1 (en) 2012-11-13 2013-10-11 Laser fusion-cutting method for plate glass
CN201380051856.5A CN104703932B (en) 2012-11-13 2013-10-11 The laser blown method of glass sheet
EP13854446.5A EP2921461B1 (en) 2012-11-13 2013-10-11 Laser fusion-cutting method for glass plates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012249309A JP5975344B2 (en) 2012-11-13 2012-11-13 Laser cutting method for sheet glass
JP2012-249309 2012-11-13

Publications (1)

Publication Number Publication Date
WO2014077066A1 true WO2014077066A1 (en) 2014-05-22

Family

ID=50730987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077760 WO2014077066A1 (en) 2012-11-13 2013-10-11 Laser fusion-cutting method for plate glass

Country Status (7)

Country Link
US (1) US9725353B2 (en)
EP (1) EP2921461B1 (en)
JP (1) JP5975344B2 (en)
KR (1) KR102073667B1 (en)
CN (1) CN104703932B (en)
TW (1) TWI583643B (en)
WO (1) WO2014077066A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105443658A (en) * 2014-09-19 2016-03-30 本田技研工业株式会社 Continuously variable transmission metal ring manufacturing method and manufacturing device thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104619658B (en) * 2012-11-13 2017-10-20 日本电气硝子株式会社 The manufacture method and manufacture device of plate glass
CN107931856A (en) * 2017-11-14 2018-04-20 信利(惠州)智能显示有限公司 Electronic component cutting method, air jet system and cutting machine
KR102030521B1 (en) 2017-11-30 2019-10-10 (주)에스엠텍 Glass surface machining device for solar module using laser
JP7396865B2 (en) * 2019-11-13 2023-12-12 ファナック株式会社 laser welding equipment
CN111151881B (en) * 2020-01-03 2021-10-29 中国航空制造技术研究院 Laser welding assembly, laser welding machine and welding method of special-shaped cylinder component

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619990A (en) * 1984-06-26 1986-01-17 Matsushita Electric Ind Co Ltd Laser beam machining device
JPS62151091U (en) * 1986-03-17 1987-09-25
JPH08141764A (en) 1994-11-16 1996-06-04 Hitachi Ltd Laser beam cutting method
JP2007319893A (en) * 2006-05-31 2007-12-13 Sharp Corp Laser beam cutting device and laser beam cutting method
JP2012143814A (en) * 2012-03-28 2012-08-02 Nitto Denko Corp Laser machining method, and product machined by laser beam
JP2013075818A (en) * 2011-09-15 2013-04-25 Nippon Electric Glass Co Ltd Method for cutting thin plate glass and thin plate glass

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5452143A (en) 1977-10-03 1979-04-24 Toray Ind Inc Textile adhesive
JPS55117013A (en) 1979-02-28 1980-09-09 Toshiba Corp Load runback system
JPS6120684A (en) * 1984-07-10 1986-01-29 Japan Tobacco Inc Laser drilling device
US4711056A (en) * 1984-09-27 1987-12-08 Libbey-Owens-Ford Co. Abrasive fluid jet radius edge cutting of glass
JPS62151091A (en) 1985-12-25 1987-07-06 Nec Corp Remote control system for terminal power source
FR2627409A1 (en) 1988-02-24 1989-08-25 Lectra Systemes Sa LASER CUTTING APPARATUS WITH A FUME EXHAUST DEVICE
JP3292021B2 (en) * 1996-01-30 2002-06-17 三菱電機株式会社 Laser processing method and laser processing apparatus
DE29922544U1 (en) * 1999-12-22 2001-05-03 Kuka Schweissanlagen Gmbh Blowing device for a laser device
JP4366534B2 (en) 2000-02-01 2009-11-18 澁谷工業株式会社 Laser processing method
US8093532B2 (en) * 2008-03-31 2012-01-10 Electro Scientific Industries, Inc. Laser machining of fired ceramic and other hard and/or thick materials
US8539795B2 (en) * 2009-05-13 2013-09-24 Corning Incorporated Methods for cutting a fragile material
WO2013039229A1 (en) * 2011-09-15 2013-03-21 日本電気硝子株式会社 Glass plate cutting method and glass plate cutting device
CN104619658B (en) * 2012-11-13 2017-10-20 日本电气硝子株式会社 The manufacture method and manufacture device of plate glass

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619990A (en) * 1984-06-26 1986-01-17 Matsushita Electric Ind Co Ltd Laser beam machining device
JPS62151091U (en) * 1986-03-17 1987-09-25
JPH08141764A (en) 1994-11-16 1996-06-04 Hitachi Ltd Laser beam cutting method
JP2007319893A (en) * 2006-05-31 2007-12-13 Sharp Corp Laser beam cutting device and laser beam cutting method
JP2013075818A (en) * 2011-09-15 2013-04-25 Nippon Electric Glass Co Ltd Method for cutting thin plate glass and thin plate glass
JP2012143814A (en) * 2012-03-28 2012-08-02 Nitto Denko Corp Laser machining method, and product machined by laser beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105443658A (en) * 2014-09-19 2016-03-30 本田技研工业株式会社 Continuously variable transmission metal ring manufacturing method and manufacturing device thereof

Also Published As

Publication number Publication date
US20150307386A1 (en) 2015-10-29
TWI583643B (en) 2017-05-21
CN104703932A (en) 2015-06-10
KR102073667B1 (en) 2020-02-05
EP2921461B1 (en) 2018-06-13
KR20150086181A (en) 2015-07-27
EP2921461A1 (en) 2015-09-23
TW201422547A (en) 2014-06-16
US9725353B2 (en) 2017-08-08
JP5975344B2 (en) 2016-08-23
EP2921461A4 (en) 2016-10-05
JP2014097906A (en) 2014-05-29
CN104703932B (en) 2017-10-03

Similar Documents

Publication Publication Date Title
WO2014077066A1 (en) Laser fusion-cutting method for plate glass
US9764979B2 (en) Cutting method for glass sheet and glass sheet cutting apparatus
TWI579139B (en) Laminate of glass plate and production method thereof
JP5563430B2 (en) Method for cutting brittle materials
JP5488907B2 (en) Glass film recovery device and recovery method
US10407336B2 (en) Method and apparatus for continuously cutting glass
JP2010195676A (en) Method for scoring sheet of brittle material
CN104619658A (en) Sheet glass manufacturing method and manufacturing device
JP2010150068A (en) Method for breaking brittle material substrate
KR20160013841A (en) Glass substrate cutting method and glass substrate manufacturing method
JP5824998B2 (en) Glass plate cutting method and glass plate cutting device
TW201922601A (en) Apparatus and method for processing a glass sheet
TWI565667B (en) Plate glass
JP2015160769A (en) Method of cutting glass substrate
TWI637920B (en) Glass plate manufacturing method and glass plate manufacturing device
WO2015190281A1 (en) Brittle substrate cleavage method and brittle substrate cleavage device
WO2019138990A1 (en) Method and apparatus for producing glass article, and glass article
TW201325797A (en) Cutting method of brittle material substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854446

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147035352

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013854446

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14441348

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE