WO2014076896A1 - Redox pair, and photoelectric conversion element produced using same - Google Patents

Redox pair, and photoelectric conversion element produced using same Download PDF

Info

Publication number
WO2014076896A1
WO2014076896A1 PCT/JP2013/006439 JP2013006439W WO2014076896A1 WO 2014076896 A1 WO2014076896 A1 WO 2014076896A1 JP 2013006439 W JP2013006439 W JP 2013006439W WO 2014076896 A1 WO2014076896 A1 WO 2014076896A1
Authority
WO
WIPO (PCT)
Prior art keywords
tetrazole
general formula
mercapto
butyl
photoelectric conversion
Prior art date
Application number
PCT/JP2013/006439
Other languages
French (fr)
Japanese (ja)
Inventor
恭輝 齊藤
温彦 日比野
一正 船曳
Original Assignee
国立大学法人岐阜大学
第一工業製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岐阜大学, 第一工業製薬株式会社 filed Critical 国立大学法人岐阜大学
Priority to KR1020157011648A priority Critical patent/KR102089819B1/en
Priority to CN201380059883.7A priority patent/CN104813423B/en
Publication of WO2014076896A1 publication Critical patent/WO2014076896A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/06Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with radicals, containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/58Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D257/04Five-membered rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2018Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte characterised by the ionic charge transport species, e.g. redox shuttles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to an organic redox couple and a photoelectric conversion element using the same.
  • a dye-sensitized solar cell generally includes a semiconductor electrode having a photoelectric conversion layer made of a semiconductor having a dye adsorbed on a conductive substrate, and a catalyst layer provided on the conductive substrate provided facing the semiconductor electrode. And an electrolyte layer held between the semiconductor electrode and the counter electrode.
  • the electrolyte of the dye-sensitized solar cell generally uses an iodine redox couple dissolved in an organic solvent.
  • Iodine-based redox couples have excellent performance, such as high ion conductivity and a high rate of reducing oxidized dyes, while low reactivity on the conductive glass surface and titanium oxide surface of the working electrode. ing.
  • iodine-based redox couple when used, it is difficult to seal the element due to the high sublimation property of iodine, which causes a decrease in element durability under high temperature conditions.
  • iodine since iodine has high corrosiveness to many metals, there is a problem that the metal that can be used for the element substrate is limited, and an expensive substrate such as conductive glass must be used.
  • a metal current collector is often provided on the substrate for higher performance. In that case, in order to prevent corrosion of the metal current collector, contact between the electrolyte and the current collector is prevented. Processing is required, and the work process becomes complicated, and the effective area of the element is reduced.
  • iodine-based redox couples have strong absorption in the visible light range, and when high-viscosity solvents such as ionic liquids are used, it is necessary to increase the concentration of iodine-based redox couples in order to operate sufficiently as a solar cell element. As a result, light absorption of the dye is hindered, causing performance degradation, and when using various dyes to emphasize the colorfulness of solar cells, especially in the case of blue elements, the color of iodine It is a hindrance and it cannot be said that it is suitable for element design.
  • Non-Patent Documents 1 to 3 have proposed using a cobalt complex as a redox pair. Although the performance is equivalent to that of an iodine-based redox couple under weak light conditions, the movement speed of the redox couple is slow due to the large molecular size, and the performance is reduced to about half under simulated sunlight irradiation conditions.
  • Non-Patent Document 4 reports good performance by using a redox counter electrolytic solution in which a dye having a specific structure and a cobalt complex are dissolved in a low-viscosity and high-volatile organic solvent. There is no mention of the property, and since a highly volatile organic solvent is used, high durability cannot be expected. Further, the cobalt complex is expensive with respect to iodine, which is not practical.
  • Non-Patent Documents 5 and 6 have proposed using (SCN) 2 / SCN ⁇ and (SeCN) 2 / SeCN ⁇ as the redox pair.
  • (SCN) 2 / SCN ⁇ operates as a redox couple, it can provide only half or less of the performance of an iodine-based redox couple .
  • (SeCN) 2 / SeCN ⁇ shows higher performance than that, but has a problem in safety and cannot be said to have high practicality.
  • Other redox pairs that can be used for photoelectric conversion elements other than iodine include Br 2 / Br ⁇ , Fe (CN) 6 4 ⁇ / Fe (CN) 6 3 ⁇ , Fe 2+ / Fe 3+ , S 2 ⁇ / S.
  • n 2-, Se 2- / Se n 2-, V 2+ / V 3+, quinone / hydroquinone such as, but are exemplified, performance, is stable, problems such as safety, have performance obtained comparable to iodine Absent.
  • Non-Patent Document 7 achieves high photoelectric conversion performance by using a sulfide-based redox couple and an organic solvent as an electrolyte.
  • Non-Patent Document 7 when a volatile organic solvent such as acetonitrile and ethylene carbonate as shown in Non-Patent Document 7 is used as the electrolyte solution of the dye-sensitized solar cell, it is difficult to seal the electrolyte solution, which is practical. It is difficult to obtain element durability. Therefore, in many cases, an ionic liquid having very low volatility is used as an electrolyte solvent. However, since the ionic liquid has a higher viscosity than a general volatile organic solvent, the device performance is organic as described in Patent Document 1. The problem is that it is lower than the solvent electrolyte.
  • the disulfide compound that is an oxidant of the redox couple has particularly low solubility in an electrolyte solvent such as an ionic liquid and low volatility.
  • an electrolyte solvent such as an ionic liquid
  • the concentration of the redox couple is increased, there is a problem that the stability of the redox itself is lowered.
  • the sulfide compound having a tetrazole skeleton as the redox pair described in Patent Document 2 has improved solubility and improved solar cell element performance as compared with the sulfide compound of Patent Document 1, but the solubility of the oxidized disulfide compound is improved. The problem remained that was still inadequate.
  • Non-Patent Document 7 shows that a tetramethylammonium salt of a sulfide compound is used as a reductant of a redox pair. Even in this case, a satisfactory element is insufficient in solubility in an ionic liquid. There is a problem that performance cannot be demonstrated. Accordingly, there is a need for an iodine substitute electrolyte solution that does not have sublimation property or light absorption property in the visible light region, has high solubility in an electrolyte solution solvent, and is stable and high performance in the solvent.
  • the present invention has been made in view of the above points, and has higher transparency than iodine-based redox couples, that is, less absorption in the visible light region, easy sealing, and high-performance redox couples. And a highly practical photoelectric conversion element using the redox couple thereof.
  • the redox pair of the present invention is composed of a compound represented by the general formula (1) and a compound represented by the general formula (2).
  • A is Li, K, or Na, or an ammonium compound represented by the general formula (3), an imidazolium compound represented by the general formula (4), or a general formula (5).
  • the pyrrolidinium compound is shown.
  • R 1 in the general formula (1) and the general formula (2) represents a linear alkyl group having 4 to 8 carbon atoms, and the plurality of R 1 are the same or partly or completely different from each other. .
  • R 2 represents an alkyl group having 1 to 12 carbon atoms
  • R 3 represents H or a methyl group.
  • the plurality of R 2 are the same as each other or part or all of them are different.
  • the photoelectric conversion element of the present invention is a photoelectric conversion element comprising a semiconductor electrode, a counter electrode, and an electrolyte layer held between these two electrodes, and the electrolyte layer comprises the redox pair of the present invention. It is assumed that the counter electrode contains a catalyst having catalytic activity for this redox pair.
  • the electrolyte layer may contain an ionic liquid having a bis (fluorosulfonyl) imide anion represented by the following formula (6).
  • the catalyst contained in the counter electrode may be a conductive polymer containing a polymer of 3,4-ethylenedioxythiophene or a derivative thereof.
  • the photoelectric conversion device of the present invention has photoelectric conversion efficiency and stability comparable to devices using conventional iodine-based redox couples, and solves the coloring problem that was a weak point of conventional iodine-based redox couples. be able to. Specifically, since the redox couple of the present invention does not have strong absorption in the visible light region, not only the design of the device is improved, but also the ionic liquid is dissolved in a low-volatile ionic liquid at a high concentration. Even when is used as a solvent, the device performance does not deteriorate due to the light absorption of the electrolyte layer as seen in the iodine-based redox couple. Accordingly, it is possible to provide a highly practical photoelectric conversion element.
  • FIG. 1 is a schematic cross-sectional view showing an example of the photoelectric conversion element 10 of the present invention.
  • reference numeral 1 is a transparent substrate
  • reference numeral 2 is a transparent conductive film
  • reference numeral 3 is a porous metal oxide semiconductor layer
  • reference numeral 4 is a sensitizing dye
  • reference numeral 5 is an electrolyte layer
  • reference numeral 6 is a catalyst layer
  • reference numeral 7 is Reference numeral 6 denotes an electrode substrate
  • reference numeral 8 denotes an electrode substrate
  • reference numeral 9 denotes a counter electrode.
  • a porous metal oxide semiconductor layer 3 is formed on the surface of an electrode substrate 8 comprising a transparent substrate 1 and a transparent conductive film 2 formed thereon, and this porous metal oxide semiconductor is further formed.
  • the sensitizing dye 4 is adsorbed on the surface 3.
  • the counter electrode 9 in which the catalyst layer 6 was formed on the surface of the electrode base material 7 is arrange
  • a suitable form is demonstrated about each structural material of this photoelectric conversion element 10.
  • Transparent substrate As the transparent substrate 1 constituting the electrode substrate 8, one that transmits visible light can be used, and transparent glass can be suitably used. Moreover, what processed the glass surface and scattered incident light can also be used. Moreover, not only glass but a plastic plate, a plastic film, etc. can be used if it transmits light.
  • the thickness of the transparent substrate 1 is not particularly limited because it varies depending on the shape of the photoelectric conversion element 10 and usage conditions. For example, when glass or plastic is used, 1 mm to 1 cm is considered in consideration of durability during actual use. When a plastic film or the like is used, the thickness is preferably about 1 ⁇ m to 1 mm.
  • Transparent conductive film As the transparent conductive film 2, a material that transmits visible light and has conductivity can be used.
  • a material that transmits visible light and has conductivity is a metal oxide.
  • tin oxide doped with fluorine hereinafter abbreviated as “FTO”
  • ITO indium oxide
  • ITO indium oxide
  • antimony antimony
  • Tin oxide, zinc oxide and the like doped with can be preferably used.
  • an opaque conductive material can also be used if visible light is transmitted by a treatment such as dispersion.
  • Such materials include carbon materials and metals. Although it does not specifically limit as a carbon material, For example, graphite (graphite), carbon black, glassy carbon, a carbon nanotube, fullerene, etc. are mentioned.
  • the metal is not particularly limited, and examples thereof include platinum, gold, silver, ruthenium, copper, aluminum, nickel, cobalt, chromium, iron, molybdenum, titanium, tantalum, and alloys thereof.
  • the electrode substrate 8 can be formed by providing a conductive material made of at least one of the above-described conductive materials on the surface of the transparent substrate 1.
  • a conductive material made of at least one of the above-described conductive materials on the surface of the transparent substrate 1.
  • the transparent conductive film 2 on the transparent substrate 1 when using a metal oxide, there are a liquid layer method such as a sol-gel method, a gas phase method such as sputtering or CVD, and a coating of a dispersion paste. Moreover, when using an opaque electroconductive material, the method of fixing powder etc. with a transparent binder etc. is mentioned.
  • the transparent substrate 1 and the transparent conductive film 2 there is a method of mixing the conductive film material as a conductive filler when the transparent substrate 1 is molded.
  • the thickness of the transparent conductive film 2 is not particularly limited because the conductivity varies depending on the material to be used. However, in the glass with FTO film generally used, it is 0.01 ⁇ m to 5 ⁇ m, preferably 0.1 ⁇ m to 1 ⁇ m. It is. Further, the required conductivity varies depending on the area of the electrode to be used, and a wider electrode is required to have a lower resistance, but is generally 100 ⁇ / ⁇ or less, preferably 10 ⁇ / ⁇ or less, more preferably 5 ⁇ . / ⁇ or less.
  • the thickness of the electrode substrate 8 composed of the transparent substrate 1 and the transparent conductive film 2 or the electrode substrate 8 in which the transparent substrate 1 and the transparent conductive film 2 are integrated is the shape and use of the photoelectric conversion element 10 as described above. Although it is not particularly limited because it varies depending on conditions, it is generally about 1 ⁇ m to 1 cm.
  • porous metal oxide semiconductor examples include, but are not limited to, titanium oxide, zinc oxide, tin oxide, and the like.
  • titanium dioxide and further anatase type titanium dioxide are suitable.
  • the metal oxide has few grain boundaries in order to reduce the electric resistance value.
  • the semiconductor layer preferably has a large specific surface area, specifically 10 to 200 m 2 / g.
  • the particle size of the oxide to be used is widened to scatter light, or large oxide semiconductor particles having a particle size of about 300 to 400 nm are formed in the porous layer. It is desirable to provide it as a reflective layer on top.
  • Such a porous metal oxide semiconductor layer 3 is not particularly limited and can be provided on the transparent conductive film 2 by a known method.
  • a sol-gel method for example, there are a sol-gel method, dispersion paste application, electrodeposition and electrodeposition.
  • the thickness of the semiconductor layer 3 is not particularly limited because the optimum value varies depending on the oxide to be used, but is usually 0.1 ⁇ m to 50 ⁇ m, preferably 3 to 30 ⁇ m.
  • sensitizing dye any dye that can be excited by sunlight and can inject electrons into the metal oxide semiconductor 3 can be used, and a dye generally used in a photoelectric conversion element can be used. In order to improve the light intensity, it is desirable that the absorption spectrum overlaps with the sunlight spectrum in a wide wavelength range and has high light resistance.
  • the sensitizing dye 4 is not particularly limited, but is preferably a ruthenium complex, particularly a ruthenium polypyridine-based complex, and more preferably a ruthenium complex represented by Ru (L) 2 (X) 2 .
  • L is 4,4′-dicarboxy-2,2′-bipyridine, or a quaternary ammonium salt thereof, and a polypyridine-based ligand into which a carboxyl group is introduced
  • X is SCN, Cl, CN.
  • Examples thereof include bis (4,4′-dicarboxy-2,2′-bipyridine) diisothiocyanate ruthenium complex.
  • dyes examples include metal complex dyes other than ruthenium, such as iron complexes and copper complexes.
  • Further examples include organic dyes such as cyan dyes, porphyrin dyes, polyene dyes, coumarin dyes, cyanine dyes, squaric acid dyes, styryl dyes, eosin dyes, and indoline dyes.
  • These dyes desirably have a bonding group with the metal oxide semiconductor 3 in order to improve the electron injection efficiency into the metal oxide semiconductor 3.
  • the bonding group is not particularly limited, but a carboxyl group, a sulfonic acid group, a hydroxyl group and the like are desirable.
  • a blue or transparent photoelectric conversion element can be produced, and uses that require colorfulness, etc.
  • the use application of the device can be increased.
  • the solvent used for dissolving the dye examples include alcohols such as ethanol, nitrogen compounds such as acetonitrile, ketones such as acetone, ethers such as diethyl ether, halogenated aliphatic hydrocarbons such as chloroform, hexane Aliphatic hydrocarbons such as benzene, aromatic hydrocarbons such as benzene, and esters such as ethyl acetate.
  • the concentration of the dye in the solution can be appropriately adjusted depending on the kind of the dye and the solvent to be used. In order to sufficiently adsorb on the semiconductor surface, it is desirable that the concentration is somewhat high. For example, a concentration of 4 ⁇ 10 ⁇ 5 mol / L or more is desirable.
  • the method for adsorbing the sensitizing dye 4 to the porous metal oxide semiconductor 3 is not particularly limited.
  • the porous metal is dissolved in a solution in which the dye is dissolved at room temperature and atmospheric pressure.
  • a method of immersing the electrode substrate 8 on which the oxide semiconductor 3 is formed may be mentioned.
  • the immersion time is preferably adjusted as appropriate so that the monomolecular film of the sensitizing dye 4 is uniformly formed on the semiconductor layer 3 according to the type of semiconductor, dye, solvent, and dye concentration used.
  • suction can be performed efficiently by performing the immersion under a heating.
  • the electrolyte layer 5 used in the present invention includes a redox couple composed of a compound represented by the following general formula (1) and a compound represented by the general formula (2).
  • the compound shown by General formula (1) is a reduced form
  • the compound shown by General formula (2) is an oxidant.
  • A is Li, K, or Na, or an ammonium compound represented by the following general formula (3), an imidazolium compound represented by general formula (4), or general formula (5)
  • the pyrrolidinium compound represented by these is shown.
  • R 1 in the general formulas (1) and (2) represents a linear alkyl group having 4 to 8 carbon atoms, and the plurality of R 1 may be the same or different from each other.
  • R 2 represents an alkyl group having 1 to 12 carbon atoms
  • R 3 represents H or a methyl group.
  • a plurality of R 2 may be the same as or different from each other.
  • the compound represented by the formula (1) include 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: lithium salt (Li-BTZT), 1-n-butyl-5 -Mercapto-1,2,3,4-tetrazole: potassium salt (K-BTTZT), 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: tetramethylammonium salt (TMA-BTZT) 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: tetraethylammonium salt (TEA-BTZT), 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: Tetrapropylammonium salt (TPA-BTZT), 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: Tetrabutylammonium salt (TBA-BTZT) 1-n-butyl-5-mercapto-1,2,3,4-
  • Examples of the compound represented by the formula (2) include 5,5′-dithiobis (1-n-butyl-1H-tetrazole) (BTZT) 2 .
  • the solvent for dissolving the redox couple can be used without particular limitation as long as it is a compound capable of dissolving the redox couple, and can be arbitrarily selected from a non-aqueous organic solvent, a room temperature molten salt, a protic organic solvent, and the like.
  • nitrile compounds such as acetonitrile, methoxyacetonitrile, valeronitrile, 3-methoxypropionitrile, lactone compounds such as ⁇ -butyllactone and valerolactone, carbonate compounds such as ethylene carbonate and propylene carbonate, dioxane and diethyl ether And ethers such as ethylene glycol dialkyl ether, alcohols such as methanol and ethanol, and dimethylformamide and imidazoles.
  • a solvent containing an ionic liquid having a bis (fluorosulfonyl) imide anion represented by the formula (6) is preferably used.
  • the ionic liquid include 1-methyl-3-ethylimidazolium bis (fluorosulfonyl) imide, 1,3-dimethylimidazolium bis (fluorosulfonyl) imide, 1-methyl-3-propylimidazolium bis (fluoro Sulfonyl) imide, 1-methyl-3-butylimidazolium bis (fluorosulfonyl) imide, 1-methyl-3-hexylimidazolium bis (fluorosulfonyl) imide, 1,2-dimethyl-3-propylimidazolium bis (fluoro Sulfonyl) imide, 1,2-dimethyl-3-butylimidazolium bis (fluorosulfonyl) imide, 1,2-dimethyl-3-hexylimidazolium bis (fluorosulfonyl) imide, 1-methyl-1-ethylpyrrolidinium Bis (fluorosulfo ) Imide, 1,
  • the above-mentioned oxidation-reduction pair and ionic liquid can be commercially available, or can be synthesized from commercially available materials by a known method.
  • the concentration of the compound represented by the general formula (1) or the general formula (2) in the electrolyte layer (solvent) is 0.01 mol / L to 2 mol / L. It is preferable. If the concentration of the compound represented by the general formula (1) or the general formula (2) is less than 0.01 mol / L, the charge transporting ability of the redox pair is insufficient, and the current value of the device may be reduced. When it exceeds 2 mol / L, the viscosity of the electrolytic solution increases, so that the charge transporting ability of the redox couple is lowered, and the device performance may be lowered.
  • the concentration of the compound represented by the general formula (1) in the electrolyte layer (solvent) is preferably 0.5 mol / L or more, preferably 0.5 to 3 mol. / L is more preferable.
  • concentration of the compound represented by the general formula (1) is less than 0.5 mol / L, the charge transport ability of the redox couple is insufficient, and the current value of the device may be reduced.
  • the viscosity of the electrolytic solution is increased, the charge transport capability of the redox couple may be reduced, and the device performance may be reduced.
  • the concentration of the compound represented by the general formula (2) in the electrolyte layer (solvent) is preferably 0.5 mol / L or more, and preferably 0.5 to 2 mol / L. More preferably. If the concentration of the compound represented by the general formula (2) is less than 0.5 mol / L, the charge transport capability of the redox couple is insufficient, and the current value of the device may be reduced. If the concentration exceeds 2 mol / L In addition, since the viscosity of the electrolytic solution is increased, the charge transport capability of the oxidation-reduction pair is decreased, and the device performance may be decreased.
  • the lower limit of the ratio (molar ratio) of the compound represented by the general formula (2) to the compound represented by the general formula (1) is preferably 0.8 or more, more preferably 1 or more. More preferably, it is 2 or more. Further, the upper limit is preferably 5 or less, and more preferably 3 or less.
  • a supporting electrolyte, an additive, and the like can be further added as necessary without departing from the object of the present invention and without impairing the characteristics of the electrolyte layer.
  • the supporting electrolyte include lithium salts, imidazolium salts, and quaternary ammonium salts.
  • the additive include bases such as t-butylpyridine, N-methylimidazole, N-methylbenzimidazole and N-methylpyrrolidone, and thiocyanates such as guanidinium thiocyanate.
  • it can also be gelatinized physically or chemically by adding a suitable gelling agent.
  • the counter electrode 9 has a structure in which the catalyst layer 6 is formed on the surface of the electrode substrate 7. Since this electrode base material 7 is used as a support and current collector of the catalyst layer 6, it is preferable that the surface portion has conductivity.
  • a conductive metal or metal oxide, a carbon material, a conductive polymer, or the like is preferably used.
  • the metal include platinum, gold, silver, ruthenium, copper, aluminum, nickel, cobalt, chromium, iron, molybdenum, titanium, tantalum, and alloys thereof.
  • a carbon material For example, graphite (graphite), carbon black, glassy carbon, a carbon nanotube, fullerene etc. are mentioned.
  • a metal oxide such as FTO, ITO, indium oxide, zinc oxide or antimony oxide is used, the amount of incident light to the sensitizing dye layer 4 can be increased because it is transparent or translucent.
  • an insulator such as glass or plastic can be used as long as at least the surface of the electrode substrate 7 is treated.
  • a treatment method for maintaining conductivity in such an insulator a method of covering a part or the entire surface of the insulating material with the above-described conductive material, for example, when using a metal, plating, electrodeposition, etc.
  • a gas phase method such as a sputtering method or a vacuum deposition method is used.
  • a sol-gel method or the like can be used.
  • the method of mixing with an insulating material using 1 type or multiple types of the said powder of an electroconductive material, etc. is mentioned.
  • the catalyst layer 6 is provided on the base material 7, so that the catalyst layer 6 can be used alone as a current collector and a catalyst. Both of these functions can be fulfilled and can be used as the counter electrode 9.
  • the shape of the electrode substrate 7 is not particularly limited because it can be changed according to the shape of the photoelectric conversion element 10 used as the catalyst electrode, and may be a plate shape or a film shape that can be curved. Furthermore, although the electrode base material 7 may be transparent or opaque, it is possible to increase the amount of light incident on the sensitizing dye layer 4 and, in some cases, to improve the design, so that it may be transparent or translucent. desirable.
  • the thickness of the conductive layer is particularly limited. Not.
  • the thickness is 0.01 ⁇ m to 5 ⁇ m, preferably 0.1 ⁇ m to 1 ⁇ m.
  • the required conductivity varies depending on the area of the electrode to be used, and a wider electrode is required to have a lower resistance, but is generally 100 ⁇ / ⁇ or less, preferably 10 ⁇ / ⁇ or less, more preferably 5 ⁇ . / ⁇ or less.
  • the thickness of the electrode substrate 7 is not particularly limited because it varies depending on the shape and use conditions of the photoelectric conversion element 10 as described above, but is generally about 1 ⁇ m to 1 cm.
  • the catalyst layer 6 is not particularly limited as long as it has electrode characteristics capable of promptly proceeding with a reduction reaction for reducing the oxidized form of the redox couple in the electrolyte to a reduced form. , Heat treated materials, platinum catalyst electrodes deposited with platinum, carbon materials such as activated carbon, glassy carbon and carbon nanotubes, inorganic sulfur compounds such as cobalt sulfide, conductive polymers such as polythiophene, polypyrrole and polyaniline, etc. Of these, a conductive polymer catalyst is preferably used.
  • the monomer constituting the conductive polymer catalyst used in the present invention include a thiophene compound represented by the following general formula (7).
  • R 4 and R 5 are each independently a hydrogen atom, an alkyl or alkoxy group having 1 to 8 carbon atoms, an aryl group having 6 to 12 carbon atoms, a cyano group, a thiocyano group, a halogen atom.
  • a group, a nitro group, an amino group, a carboxyl group, a sulfo group, or a phosphonium group, R 4 and R 5 may be linked to form a ring.
  • thiophene, tetradecylthiophene, isothianaphthene, 3-phenylthiophene, 3,4-ethylenedioxythiophene and their derivatives can be preferably used, and among them, 3,4-ethylenedioxythiophene and The derivative can be preferably used.
  • 3,4-ethylenedioxythiophene examples include hydroxymethyl-3,4-ethylenedioxythiophene, aminomethyl-3,4-ethylenedioxythiophene, hexyl-3,4-ethylenedioxythiophene, and octyl. -3,4-ethylenedioxythiophene.
  • these thiophene compounds may be used individually by 1 type, and the conductive polymer catalyst layer 6 may be formed using 2 or more types.
  • the monomer used to form the conductive polymer catalyst layer 6 is preferably one having a conductivity of 10 ⁇ 9 S / cm or more as a polymerized film.
  • a dopant to the conductive polymer catalyst layer 6 in order to improve conductivity.
  • a known material can be used without any particular limitation.
  • the dopant include halogen anions such as iodine, bromine and chlorine, hexafluorolin, hexafluoroarsenic, hexafluoroantimony, tetrafluoroboron, halide anions such as perchloric acid, methanesulfonic acid, dodecylsulfonic acid and the like.
  • Alkyl group-substituted organic sulfonate anions such as camphor sulfonate, benzene sulfonate, para-toluene sulfonate, dodecyl benzene sulfonate, benzene disulfonate, etc.
  • the dopant of the low molecular compound is higher than the dopant of the high molecular compound because the catalytic activity for the redox couple of the present invention is high.
  • Specific examples include p-toluenesulfonic acid, dodecylbenzenesulfonic acid, naphthalenesulfonic acid, and the like.
  • the amount of dopant used in the conductive polymer catalyst layer is not particularly limited because the optimum value varies depending on the type of dopant used, but is preferably 5 to 60% by mass, more preferably 10 to 45% by mass.
  • Such a dopant can coexist with a monomer of a conductive polymer when forming the conductive polymer catalyst layer.
  • the conductive polymer catalyst layer 6 is formed on the electrode substrate 7.
  • the formation method is not particularly limited, and examples thereof include a method of forming a film from a solution in which a conductive polymer is in a molten state or dissolved.
  • the monomer is chemically or electrochemically oxidatively polymerized in a state where the solution containing the conductive polymer monomer and the electrode substrate 7 are in contact with each other. Is preferably used.
  • a method of forming the conductive polymer powder on the electrode substrate 7 by screen printing, spray coating, brush coating, etc. after processing the conductive polymer powder into a paste or emulsion or a mixture containing a polymer solution and a binder. can also be used.
  • the method for forming the conductive polymer catalyst layer 6 is preferably an electrolytic polymerization method or a chemical polymerization method, and particularly preferably a chemical polymerization method.
  • the chemical polymerization method is a method in which a polymerization monomer is oxidatively polymerized using an oxidizing agent.
  • the electrolytic polymerization method is a method of forming a conductive polymer film on an electrode made of metal or the like by performing electrolytic oxidation in a solution containing a polymerization monomer.
  • the oxidizing agent used in the chemical polymerization method includes iodine, bromine, bromine iodide, chlorine dioxide, iodic acid, periodic acid, chlorous acid and other halides, antimony pentafluoride, phosphorus pentachloride, phosphorus pentafluoride.
  • Metal halides such as aluminum chloride, molybdenum chloride, permanganate, dichromate, chromic anhydride, ferric salt, cupric salt and other high-valent metal salts, sulfuric acid, nitric acid, trifluoromethanesulfuric acid
  • Protonic acids such as oxygen compounds such as sulfur trioxide and nitrogen dioxide, peroxo acids such as hydrogen peroxide, ammonium persulfate and sodium perborate or salts thereof, or molybdophosphoric acid, tungstophosphoric acid, tungstomolybdophosphoric acid
  • heteropolyacids or salts thereof there are heteropolyacids or salts thereof, and at least one of them can be used.
  • the electrode substrate 7 is immersed in a solution containing either an aromatic compound monomer or an oxidizing agent, or after applying the solution to them, the electrode substrate 7 is subsequently immersed or applied in a solution in which the other component is dissolved. For example, it is desirable that the polymerization proceeds on the surface of the electrode substrate 7 to form a conductive polymer.
  • an additive that lowers the polymerization rate is added to the mixed solution of the monomer and polymerization initiator, and after forming into a film under conditions where polymerization does not occur at room temperature, a porous conductive polymer film is produced by heating reaction. can do.
  • the method for forming a film is not particularly limited, and examples thereof include a spin coating method, a casting method, a squeegee method, and a screen printing method.
  • the additive for reducing the polymerization rate when the polymerization initiator is a high-valent metal salt, for example, Fe (III) salt, Fe (III) salt Since the oxidation potential changes depending on the pH, the polymerization rate can be slowed by adding a base.
  • the base include imidazole and dimethyl sulfoxide.
  • the solvent for dissolving / mixing the monomer, the polymerization initiator, and the additive is not particularly limited as long as it dissolves the compound to be used and does not dissolve the electrode substrate 7 and the polymer.
  • methanol, ethanol, propanol examples include alcohols such as normal butanol.
  • the mixing ratio of the monomer, the polymerization initiator, and the additive varies depending on the compound used, the target degree of polymerization, and the polymerization rate, but the molar ratio to the monomer, that is, the monomer: polymerization initiator is from 1: 0.3 to 1:
  • the molar ratio to the polymerization initiator is between 10, ie, the polymerization initiator: additive is between 1: 0.05 and 1: 4.
  • the heating conditions in the case of heat polymerization after coating the above mixed solution vary depending on the monomer used, the polymerization catalyst, the type of additives and their mixing ratio, concentration, coating film thickness, etc.
  • the heating temperature is 25 ° C. to 120 ° C.
  • the heating time is between 1 minute and 12 hours.
  • a conductive polymer film is formed on the surface of the electrode substrate 7 or the electrode substrate with the conductive film, and then subjected to the above chemical polymerization to conduct the conductivity.
  • a method of growing polymer particles can also be used.
  • the thickness of the catalyst layer 6 in the counter electrode 9 is suitably 5 nm to 5 ⁇ m, particularly preferably 50 nm to 2 ⁇ m.
  • the photoelectric conversion element 10 can be completed by assembling the metal oxide semiconductor electrode and the catalyst electrode so as to face each other through an electrolyte by a conventionally known method.
  • a porous metal oxide semiconductor layer 3 was formed on a transparent conductive film 2 formed by vacuum deposition of a transparent conductive film 2 made of SnO 2 doped with fluorine on a transparent substrate 1 made of glass.
  • FTO glass manufactured by Nippon Sheet Glass Co., Ltd.
  • the electrode substrate 8 having the transparent conductive film 2 formed on the transparent substrate 1 is used as the electrode substrate 8 having the transparent conductive film 2 formed on the transparent substrate 1, and a commercially available titanium oxide paste (manufactured by Catalyst Kasei Co., Ltd., trade name TSP-18NR, A particle size of 20 nm) is printed on the transparent conductive film 2 side by a screen printing method with a film thickness of about 6 ⁇ m and an area of about 5 mm ⁇ 10 mm, and a commercially available titanium oxide paste (Catalytic Chemical Co., Ltd.) with the same area on the surface.
  • a commercially available titanium oxide paste manufactured by Catalyst Kasei Co., Ltd., trade name TSP-18NR, A particle size of 20 nm
  • sensitizing dye 4 bis (4-carboxy-4′-tetrabutylammoniumcarboxy-2,2′-bipyridine) diisothiocyanate ruthenium complex (manufactured by Solaronix) generally called N719 dye was used.
  • the porous titanium oxide semiconductor electrode was immersed in an absolute ethanol solution having a pigment concentration of 0.4 mmol / L and allowed to stand overnight under light shielding. Thereafter, excess pigment was washed with absolute ethanol and then air-dried to produce a semiconductor electrode of a solar cell.
  • counter electrode As the counter electrode 9, a poly (3,4-ethylenedioxythiophene) (hereinafter referred to as PEDOT-PTS) counter electrode doped with p-toluenesulfonic acid was used.
  • PEDOT-PTS poly (3,4-ethylenedioxythiophene)
  • FTO-coated glass manufactured by Asahi Glass Co., Ltd., ⁇ 10 ⁇ / ⁇
  • the electrode substrate cleaned ultrasonically in an organic solvent was subjected to 3,4-ethylenedioxythiophene, iron tris-p-toluenesulfonate ( III)
  • a reaction solution in which dimethyl sulfoxide was dissolved in n-butanol at a weight ratio of 1: 8: 1 was applied by spin coating. The spin coating was performed at 2000 rpm for 30 seconds, and the concentration of 3,4-ethylenedioxythiophene in the solution was 0.48M.
  • the electrode substrate coated with the solution was placed in a thermostat kept at 110 ° C., heated for 5 minutes, polymerized, and then washed with methanol to produce a counter electrode.
  • the film thickness of the produced PEDOT thin film was about 0.3 ⁇ m.
  • the counter electrode 9 produced as described above is provided with a 1 mm ⁇ electrolyte injection hole at an appropriate position with an electric drill, and then the titanium oxide film 3 on the transparent substrate 1 provided with the transparent conductive film 2 produced as described above.
  • a thermoplastic sheet (Himiran 1652: made by Mitsui DuPont Polychemical Co., Ltd., film thickness 25 ⁇ m) was sandwiched between the electrode substrate 8 (working electrode) made of the above and the counter electrode, and both electrodes were bonded by thermocompression bonding.
  • Example 2 As the electrolyte layer 5, 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: 1-n-butyl-5 instead of 1-methyl-3-ethylimidazolium salt (EMIm-BTZT) A solar cell element was produced in the same manner as in Example 1 except that -mercapto-1,2,3,4-tetrazole: 1-methyl-1-propylpyrrolidinium salt (MPPy-BTZT) was used.
  • MPPy-BTZT 1-methyl-1-propylpyrrolidinium salt
  • Example 3 As the electrolyte layer 5, instead of 1-methyl-5-mercapto-1,2,3,4-tetrazole: 1-methyl-3-ethylimidazolium salt (EMIm-MTZT), 1-methyl-5-mercapto-1 , 2,3,4-tetrazole: 1,2-dimethyl-3-propylimidazolium salt (DMPIm-BTZT) was used to produce a solar cell element in the same manner as in Example 1.
  • EMIm-MTZT 1-methyl-5-mercapto-1,2,3,4-tetrazole: 1-methyl-3-ethylimidazolium salt (EMIm-MTZT)
  • EMIm-MTZT 1-methyl-5-mercapto-1 , 2,3,4-tetrazole: 1,2-dimethyl-3-propylimidazolium salt (DMPIm-BTZT) was used to produce a solar cell element in the same manner as in Example 1.
  • DMPIm-BTZT 1,2-dimethyl-3-prop
  • Example 4 As electrolyte layer 5, the same as Example 1 except that the concentration of 5,5′-dithiobis (1-n-butyl-1H-tetrazole) (BTZT) 2 was changed from 0.8 mol / L to 1.6 mol / L A solar cell element was prepared.
  • BTZT 5,5′-dithiobis (1-n-butyl-1H-tetrazole
  • Example 5 As the electrolyte layer 5, 3-methoxypropionitrile was used as a solvent, and 0.4 M 5,5′-dithiobis (1-n-butyl-1H-tetrazole) (BTZT) 2 , 0.05 mol / L of 1 -N-butyl-5-mercapto-1,2,3,4-tetrazole: lithium salt (Li-BTZT), 0.75 mol / L 1-n-butyl-5-mercapto-1,2,3,4
  • a solar cell element was produced in the same manner as in Example 1 except that tetramethylammonium salt (TMA-BTZT) and 0.2 mol / L t-butylpyridine (tBP) were used.
  • TMA-BTZT tetramethylammonium salt
  • tBP t-butylpyridine
  • Example 6 As the electrolyte layer 5, instead of 1-n-butyl-5-mercapto-1,2,3,4-tetramethylammonium salt (TMA-BTZT), 1-n-butyl-5-mercapto-1,2,3 , 4-tetrazole: 1-methyl-3-ethylimidazolium salt (EMIm-BTZT) was used to produce a solar cell element in the same manner as in Example 5.
  • TMA-BTZT 1-n-butyl-5-mercapto-1,2,3,4-tetramethylammonium salt
  • EMIm-BTZT 1-methyl-3-ethylimidazolium salt
  • Example 7 As electrolyte layer 5, the concentration of 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: tetramethylammonium salt (TMA-BTZT) was changed from 0.75 mol / L to 0.35 mol / L. A solar cell element was produced in the same manner as in Example 5 except that.
  • TMA-BTZT tetramethylammonium salt
  • Example 8 As the electrolyte layer 5, the concentration of 1-n-butyl-5-mercapto-1,2,3,4-tetramethylammonium salt (TMA-BTZT) was changed from 0.75 mol / L to 0.95 mol / L, A solar cell element was produced in the same manner as in Example 5 except that the concentration of 5′-dithiobis (1-n-butyl-1H-tetrazole) (BTZT) 2 was changed from 0.4 M to 1.0 M.
  • TMA-BTZT 1-n-butyl-5-mercapto-1,2,3,4-tetramethylammonium salt
  • Example 9 As the sensitizing dye 4, a heptamethine cyanine dye represented by the following formula (8) is used in place of the N719 dye, and 3-methoxypropionitrile is used as a solvent as the electrolyte layer 5, and 0.1M of 5, 5′-dithiobis (1-n-butyl-1H-tetrazole) (BTZT) 2 , 0.05 mol / L 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: lithium salt (Li -BTZT), 0.05 mol / L of 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: 1-methyl-3-ethylimidazolium salt (EMIm-BTZT) dissolved
  • a solar cell element was produced in the same manner as in Example 1 except that was used.
  • a solar cell element was produced in the same manner as in Comparative Example 1 except that a Pt counter electrode (manufactured by Geomatec) obtained by depositing Pt on ITO conductive glass by sputtering was used.
  • a Pt counter electrode manufactured by Geomatec
  • the oxidation-reduction pairs used in the above examples and comparative examples were synthesized by the following method. However, the synthesis method is not limited to these.
  • the ether layer was dried over anhydrous sodium sulfate, the solvent was removed, and the target substance 1-sec-butyl-5-mercapto-1,2,3,4 was obtained in a yield of 59% (3.10 g, 19.6 mmol).
  • -Tetrazole was obtained.
  • the evaluation value of the solar cell includes open circuit voltage Voc (V), short circuit current density Jsc (mA / cm 2 ), form factor FF ( ⁇ ), conversion efficiency ⁇ (%). was evaluated based on the degree of conversion efficiency. In addition, the device performance retention rate in the dark and at room temperature was also evaluated.
  • the light irradiation intensity was calculated by using a spectrum analyzer (LS-100, manufactured by Eihiro Seiki Co., Ltd.) by comparing the integrated value of irradiation light in the region of ⁇ : 400 to 800 nm with the value of reference sunlight.
  • LS-100 manufactured by Eihiro Seiki Co., Ltd.
  • Table 1 shows the results of IV characteristic evaluation and stability evaluation of the photoelectric conversion elements of Examples and Comparative Examples using an ionic liquid as a solvent for the electrolyte layer 5 under simulated sunlight irradiation conditions.
  • the photoelectric conversion elements of Examples 1 to 4 according to the present invention are equivalent to the element of Comparative Example 1 using the same ionic liquid as a solvent and using a conventional iodine-based redox pair.
  • the above photoelectric conversion performance is shown under simulated sunlight irradiation conditions.
  • 5,5′-dithiobis (1-methyl- Compared with Comparative Example 2 using 1H-tetrazole) as the redox couple, Example 1 of the present invention shows higher device performance.
  • Example 1 and Example 4 when Example 1 and Example 4 are compared, the compound (reduced form) represented by the general formula (2) is excessive with respect to 1 mol of the compound (oxidized form) represented by the general formula (1). It can be seen that the device performance is better when used. The reason for this is not clear, but when the reductant is used in excess, the oxidant (T 2 ) and the reductant (T ⁇ ) become a charge transfer complex (denoted as T 2 ⁇ T ⁇ ⁇ T 3 ⁇ ). It is considered that the charge transfer performance is improved by promoting the formation of. Another reason is that the charge exchange reaction between the oxidant and the reductant is more likely to occur when the reductant is excessive.
  • Comparative Example 3 using a Pt electrode as the counter electrode is inferior in element performance to Example 1 using a PEDOT electrode as the counter electrode, and in particular, the value of FF is lowered.
  • PEDOT has higher catalytic activity for the sulfide-based redox couple used in the present invention than Pt. This is also confirmed from the interface reaction resistance analysis by impedance measurement. Therefore, it can be said that the photoelectric conversion element which shows high photoelectric conversion efficiency can be produced by using together the oxidation-reduction pair of this invention, and electroconductive polymer catalysts, such as PEDOT.
  • Comparative Example 4 using 1-methyl-5-mercapto-1,2,3,4-tetrazole: tetramethylammonium salt shown in Non-Patent Document 6 as a reductant is obtained by adding a reductant to an ionic liquid. Since solubility is lower than the compound of this invention, it can melt
  • Comparative Example 5 using a sulfide redox having a thiadiazole skeleton disclosed in Patent Document 1 as a redox pair has a low solubility in a solvent of a disulfide compound that is an oxidant, and therefore, compared with Example 1. Since the photoelectric conversion performance was inferior and the electrolyte was unstable under high concentration conditions, the device performance retention after 30 days was reduced to about 50%. On the other hand, in Examples 1 to 3 of the present invention, the device performance hardly deteriorates even after 30 days. Therefore, a practical photoelectric conversion element can be produced by combining the redox couple of the present invention, a conductive polymer catalyst, and an ionic liquid.
  • Table 2 shows the results of IV characteristic evaluation under simulated sunlight irradiation conditions of the photoelectric conversion elements of Examples and Comparative Examples using 3-methoxypropionitrile, which is an organic solvent, as the solvent of the electrolyte layer 5.
  • the photoelectric conversion element of the present invention shown in Example 5 using the oxidation-reduction pair of the present invention is the same as that of Comparative Example 6 using the same 3-methoxypropionitrile as a solvent and a conventional iodine-based redox pair.
  • this phenomenon greatly contributes to the effect of suppressing the reverse electron transfer from the working electrode to the electrolyte solution due to the steric hindrance effect by extending the alkyl chain length of the sulfide compound. It is thought that.
  • Example 5 When Example 5 and Example 6 are compared, Example 5 in which the counter cation is a TMA salt shows superior photoelectric conversion performance than Example 6 in which the counter cation of the reductant is an EMIm salt. This is presumably because the TMA salt having a smaller cation molecular size has a lower viscosity of the electrolyte and improved carrier mobility.
  • Table 3 shows the results of IV characteristic evaluation and stability evaluation under the simulated sunlight irradiation conditions of the photoelectric conversion elements of Examples and Comparative Examples using heptamethine cyanine dyes that absorb near infrared light as sensitizing dyes. Shown in
  • the photoelectric conversion element using the oxidation-reduction pair of the present invention shown in Example 9 uses 1-methyl-5-mercapto-1 shown in Non-Patent Document 6 using the same 3-methoxypropionitrile as a solvent.
  • 2,3,4-tetrazole an excellent photoelectric conversion performance as compared with Comparative Example 8 in which the counter cation of tetramethylammonium salt was changed to the same 1-methyl-3-ethylimidazolium salt as in Example 9. Yes.
  • Comparative Example 8 Similar to the results in Table 2 using N719 dye, comparing each characteristic value shows that the open circuit voltage value (Voc) and the short circuit current value (Jsc) are improved. Therefore, it can be seen that the redox couple of the present invention also shows excellent performance for photoelectric conversion elements using heptamethine cyanine dyes.
  • Comparative Example 9 uses a redazole pair in which the tetrazole group substituent is a sec-butyl- group, but the short-circuit current value is inferior to that of Example 9.
  • the adverse effect of the decrease in carrier mobility accompanying the increase in the viscosity of the electrolyte due to the increase in the molecular size is greater than that of the redox couple having the linear alkyl group of the present invention. The reason is considered.
  • the photoelectric conversion device of the present invention is superior to the conventional iodine-based redox couple in terms of device performance and transparency, and the redox couple, ionic liquid, and organic conductivity of the present invention are high.
  • the molecular counter electrode By using the molecular counter electrode, a highly practical solar cell element excellent in performance, durability, cost, and design can be provided.
  • the photoelectric conversion element according to the present invention is suitably used as a photoelectric conversion element that can be used indoors and outdoors. Further, by utilizing the characteristics of the electrolyte of the present invention, it is particularly suitable for consumer equipment and the like that are required to be designed. Can be used. Furthermore, it can be used not only as a photoelectric conversion element but also as an optical sensor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

Provided are: a redox pair which does not have strong absorption in a visible region unlike a iodine redox pair, can be sealed readily, and has high performance; and a photoelectric conversion element which is produced using the redox pair and has high practical availability. A redox pair composed of a compound represented by general formula (1) and a compound represented by general formula (2) is used. In general formula (1), A represents Li, K, Na, an ammonium compound, an imidazolium compound or a pyrrolidinium compound. In general formulae (1) and (2), R1 represents a linear alkyl group having 4 to 8 carbon atoms, wherein multiple R1's are the same as or different from each other or some or all of the multiple R1's are different from each other. AA General formula

Description

酸化還元対およびそれを用いた光電変換素子Redox couple and photoelectric conversion device using the same
 本発明は、有機酸化還元対、およびそれを用いた光電変換素子に関するものである。 The present invention relates to an organic redox couple and a photoelectric conversion element using the same.
 近年、光エネルギーを電気エネルギーに変換する光電変換素子として、種々の太陽電池が提案されている。その中で、1991年にスイスのローザンヌ大学のグレッツェルらによって「Nature」1991,353,p737-740等で発表された色素増感太陽電池は、使用する材料・プロセスが安価であることから低コスト太陽電池としてその実用化が期待されている。 In recent years, various solar cells have been proposed as photoelectric conversion elements that convert light energy into electrical energy. Among them, the dye-sensitized solar cell announced in 1991 by Gretzel et al. At the University of Lausanne in Switzerland in “Nature” 1991, 353, p737-740, etc. is low in cost because the materials and processes used are low. Practical use is expected as a solar cell.
 色素増感太陽電池は、一般に導電性基材上に色素を吸着した半導体からなる光電変換層を持つ半導体電極と、該半導体電極に対向して設けられた導電性基材上に触媒層を設けた対向電極と、これら半導体電極と対向電極との間に保持された電解質層から構成されている。 A dye-sensitized solar cell generally includes a semiconductor electrode having a photoelectric conversion layer made of a semiconductor having a dye adsorbed on a conductive substrate, and a catalyst layer provided on the conductive substrate provided facing the semiconductor electrode. And an electrolyte layer held between the semiconductor electrode and the counter electrode.
 色素増感太陽電池の電解質にはヨウ素系酸化還元対を有機溶媒に溶解させたものが一般的に使用されている。ヨウ素系酸化還元対はイオン伝導度が高く、また酸化状態の色素を還元する速度が速い一方、作用極の導電性ガラス表面や酸化チタン表面での反応性が低いなど、優れた性能を有している。 The electrolyte of the dye-sensitized solar cell generally uses an iodine redox couple dissolved in an organic solvent. Iodine-based redox couples have excellent performance, such as high ion conductivity and a high rate of reducing oxidized dyes, while low reactivity on the conductive glass surface and titanium oxide surface of the working electrode. ing.
 しかし、ヨウ素系酸化還元対を用いた場合、ヨウ素の昇華性が高いために素子封止が難しく、高温条件での素子耐久性低下の原因となっている。またヨウ素は多くの金属に対する高い腐食性を有しているため、素子基板に使用できる金属が限られ、導電性ガラス等の高価な基板を使用しなければならない等の問題がある。また、特に大面積素子の場合、高性能化のために基板上に金属集電線を設けることが多いが、その場合、金属集電線の腐食を防ぐために電解液と集電線の接触を防ぐ等の処理が必要であり、作業工程が煩雑になる他、素子の有効面積が低下するなどの問題が生じる。 However, when an iodine-based redox couple is used, it is difficult to seal the element due to the high sublimation property of iodine, which causes a decrease in element durability under high temperature conditions. In addition, since iodine has high corrosiveness to many metals, there is a problem that the metal that can be used for the element substrate is limited, and an expensive substrate such as conductive glass must be used. In particular, in the case of a large area element, a metal current collector is often provided on the substrate for higher performance. In that case, in order to prevent corrosion of the metal current collector, contact between the electrolyte and the current collector is prevented. Processing is required, and the work process becomes complicated, and the effective area of the element is reduced.
 さらに、ヨウ素系酸化還元対は可視光領域に強い吸収を持ち、イオン性液体など高粘度の溶媒を使用した場合、太陽電池素子として十分に動作するためにヨウ素系酸化還元対濃度を高くする必要があり、それにより、色素の光吸収が阻害され、性能低下の原因となっている他、種々の色素を使用し太陽電池のカラフル性を強調する場合、特に青色素子の場合、ヨウ素の色が妨げとなり素子デザイン上もふさわしいとは言えない。 In addition, iodine-based redox couples have strong absorption in the visible light range, and when high-viscosity solvents such as ionic liquids are used, it is necessary to increase the concentration of iodine-based redox couples in order to operate sufficiently as a solar cell element. As a result, light absorption of the dye is hindered, causing performance degradation, and when using various dyes to emphasize the colorfulness of solar cells, especially in the case of blue elements, the color of iodine It is a hindrance and it cannot be said that it is suitable for element design.
 このように、ヨウ素系酸化還元対は酸化還元対としての性能は高いものの、欠点も有しているため、ヨウ素系に替わる酸化還元対が求められており、いくつかの検討がなされている(例えば、非特許文献1~7、特許文献1,2)。 Thus, although the iodine-based redox couple has high performance as a redox couple, it also has drawbacks, so a redox couple that replaces the iodine-based system is required, and several studies have been made ( For example, Non-Patent Documents 1 to 7, Patent Documents 1 and 2).
 非特許文献1~3には、コバルト錯体を酸化還元対に用いた提案がなされている。微弱光条件下では、ヨウ素系酸化還元対と同等の性能を示すとあるが、分子サイズが大きいために酸化還元対の移動速度が遅く、擬似太陽光照射条件では性能が半分程度に低下する。非特許文献4には、特定の構造を有する色素とコバルト錯体を低粘度高揮発性有機溶媒に溶解させた酸化還元対電解液を用いることにより、良好な性能が報告されているが、素子耐久性についての言及がなく、また高揮発性有機溶媒を使用しているため高い耐久性は望めず、さらにヨウ素に対してコバルト錯体は高価であり、実用的とは言えない。 Non-Patent Documents 1 to 3 have proposed using a cobalt complex as a redox pair. Although the performance is equivalent to that of an iodine-based redox couple under weak light conditions, the movement speed of the redox couple is slow due to the large molecular size, and the performance is reduced to about half under simulated sunlight irradiation conditions. Non-Patent Document 4 reports good performance by using a redox counter electrolytic solution in which a dye having a specific structure and a cobalt complex are dissolved in a low-viscosity and high-volatile organic solvent. There is no mention of the property, and since a highly volatile organic solvent is used, high durability cannot be expected. Further, the cobalt complex is expensive with respect to iodine, which is not practical.
 非特許文献5,6には、(SCN)/SCN、(SeCN)/SeCNを酸化還元対に用いた提案がなされている。(SCN)/SCNは酸化還元対として動作するものの、ヨウ素系酸化還元対に比べると半分以下の性能しか得られない。(SeCN)/SeCNはそれに比べると高い性能を示しているが、安全性に問題があり、実用性が高いとは言えない。その他のヨウ素以外の光電変換素子に使用できる酸化還元対としては、Br/Br、Fe(CN) 4-/Fe(CN) 3-、Fe2+/Fe3+、S2-/S 2-、Se2-/Se 2-、V2+/V3+、キノン/ハイドロキノンなどが挙げられるが、性能、安定性、安全性などに問題があり、ヨウ素に匹敵する性能は得られていない。 Non-Patent Documents 5 and 6 have proposed using (SCN) 2 / SCN and (SeCN) 2 / SeCN as the redox pair. Although (SCN) 2 / SCN operates as a redox couple, it can provide only half or less of the performance of an iodine-based redox couple . (SeCN) 2 / SeCN shows higher performance than that, but has a problem in safety and cannot be said to have high practicality. Other redox pairs that can be used for photoelectric conversion elements other than iodine include Br 2 / Br , Fe (CN) 6 4− / Fe (CN) 6 3− , Fe 2+ / Fe 3+ , S 2− / S. n 2-, Se 2- / Se n 2-, V 2+ / V 3+, quinone / hydroquinone such as, but are exemplified, performance, is stable, problems such as safety, have performance obtained comparable to iodine Absent.
 出願人らは、特許文献1,2に示すように、酸化還元対として可視光領域の光吸収が少ないスルフィド系化合物を用い、対極触媒として導電性高分子を用いることで、光電変換素子として有効に働くことを明らかにしている。また、非特許文献7は、スルフィド系酸化還元対と有機溶媒を電解液に用いることで高い光電変換性能を達成している。 As shown in Patent Documents 1 and 2, the applicants use a sulfide-based compound that absorbs less light in the visible light region as a redox pair, and use a conductive polymer as a counter electrode catalyst, thereby being effective as a photoelectric conversion element. It is clear that it works. Non-Patent Document 7 achieves high photoelectric conversion performance by using a sulfide-based redox couple and an organic solvent as an electrolyte.
 しかし、色素増感太陽電池の電解液として、非特許文献7で示されるようなアセトニトリル、エチレンカーボネート等の揮発性の有機溶媒を使用した場合、電解液の封止が困難であり、実用的な素子耐久性を得ることが難しい。そのため、揮発性の非常に低いイオン液体を電解液溶媒に用いる例が多いが、イオン液体は一般的な揮発性有機溶媒よりも粘度が高いため、特許文献1にあるように、素子性能が有機溶媒電解液よりも低くなることが問題である。 However, when a volatile organic solvent such as acetonitrile and ethylene carbonate as shown in Non-Patent Document 7 is used as the electrolyte solution of the dye-sensitized solar cell, it is difficult to seal the electrolyte solution, which is practical. It is difficult to obtain element durability. Therefore, in many cases, an ionic liquid having very low volatility is used as an electrolyte solvent. However, since the ionic liquid has a higher viscosity than a general volatile organic solvent, the device performance is organic as described in Patent Document 1. The problem is that it is lower than the solvent electrolyte.
 また、特許文献1に記載の酸化還元対としてチアジアゾール骨格を有するスルフィド化合物では、酸化還元対の酸化体であるジスルフィド化合物が特にイオン液体などの電解液溶媒への溶解性が低く、揮発性が低いが粘度の高いイオン液体などの溶媒を用いたときに素子性能が低下するという問題があった。また、酸化還元対の濃度を高くした場合に、レドックス自身の安定性が低下するという問題もあった。 In addition, in the sulfide compound having a thiadiazole skeleton as the redox couple described in Patent Document 1, the disulfide compound that is an oxidant of the redox couple has particularly low solubility in an electrolyte solvent such as an ionic liquid and low volatility. However, when a solvent such as an ionic liquid having a high viscosity is used, there is a problem that the device performance deteriorates. In addition, when the concentration of the redox couple is increased, there is a problem that the stability of the redox itself is lowered.
 また、特許文献2に記載の酸化還元対としてテトラゾール骨格を有するスルフィド化合物では、特許文献1のスルフィド化合物よりも溶解度が向上し、太陽電池素子性能が向上したが、酸化体のジスルフィド化合物の溶解性はまだ不十分であるという問題が残っていた。 Further, the sulfide compound having a tetrazole skeleton as the redox pair described in Patent Document 2 has improved solubility and improved solar cell element performance as compared with the sulfide compound of Patent Document 1, but the solubility of the oxidized disulfide compound is improved. The problem remained that was still inadequate.
 さらに、非特許文献7にはスルフィド化合物のテトラメチルアンモニウム塩を酸化還元対の還元体に用いることが示されているが、この場合でもイオン液体への溶解性が不十分であり、満足する素子性能を発揮できないという問題がある。よって、昇華性、可視光領域の光吸収性を持たず、電解液溶媒への溶解度が高く、溶媒中で安定かつ高性能なヨウ素代替電解質溶液が求められている。 Further, Non-Patent Document 7 shows that a tetramethylammonium salt of a sulfide compound is used as a reductant of a redox pair. Even in this case, a satisfactory element is insufficient in solubility in an ionic liquid. There is a problem that performance cannot be demonstrated. Accordingly, there is a need for an iodine substitute electrolyte solution that does not have sublimation property or light absorption property in the visible light region, has high solubility in an electrolyte solution solvent, and is stable and high performance in the solvent.
特開2008-016442号公報JP 2008-016442 A WO2012/096170A1WO2012 / 096170A1
 本発明は、以上の点に鑑みてなされたものであり、ヨウ素系酸化還元対よりも透明性が高く、すなわち可視光領域の吸収が少なく、封止が容易であり、高性能な酸化還元対、及びその酸化還元対を用いた実用性の高い光電変換素子を提供することを課題とする。 The present invention has been made in view of the above points, and has higher transparency than iodine-based redox couples, that is, less absorption in the visible light region, easy sealing, and high-performance redox couples. And a highly practical photoelectric conversion element using the redox couple thereof.
 本発明の酸化還元対は、上記の課題を解決するために、一般式(1)で表される化合物と一般式(2)で表される化合物とからなるものとする。
Figure JPOXMLDOC01-appb-C000001
In order to solve the above problems, the redox pair of the present invention is composed of a compound represented by the general formula (1) and a compound represented by the general formula (2).
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、AはLi、K、若しくはNa、又は一般式(3)で表されるアンモニウム化合物、一般式(4)で表されるイミダゾリウム化合物、若しくは一般式(5)で表されるピロリジニウム化合物を示す。一般式(1)及び一般式(2)中のRは炭素数4~8の直鎖アルキル基を示し、複数のRは相互に同じか、一部又は全部が異なっているものとする。
Figure JPOXMLDOC01-appb-C000002
In the general formula (1), A is Li, K, or Na, or an ammonium compound represented by the general formula (3), an imidazolium compound represented by the general formula (4), or a general formula (5). The pyrrolidinium compound is shown. R 1 in the general formula (1) and the general formula (2) represents a linear alkyl group having 4 to 8 carbon atoms, and the plurality of R 1 are the same or partly or completely different from each other. .
Figure JPOXMLDOC01-appb-C000002
 一般式(3)~(5)中、Rは炭素数1~12のアルキル基を示し、RはH又はメチル基を示す。複数のRは相互に同じか、一部又は全部が異なっているものとする。 In the general formulas (3) to (5), R 2 represents an alkyl group having 1 to 12 carbon atoms, and R 3 represents H or a methyl group. The plurality of R 2 are the same as each other or part or all of them are different.
 また、本発明の光電変換素子は、半導体電極と、対向電極と、これら両極間に保持された電解質層とを備えた光電変換素子であって、電解質層が、上記本発明の酸化還元対を含有し、対向電極がこの酸化還元対に対する触媒活性を有する触媒を含有しているものとする。 Moreover, the photoelectric conversion element of the present invention is a photoelectric conversion element comprising a semiconductor electrode, a counter electrode, and an electrolyte layer held between these two electrodes, and the electrolyte layer comprises the redox pair of the present invention. It is assumed that the counter electrode contains a catalyst having catalytic activity for this redox pair.
 上記光電変換素子において、電解質層は次式(6)で表されるビス(フルオロスルホニル)イミドアニオンを有するイオン液体を含有しているものとすることができる。
Figure JPOXMLDOC01-appb-C000003
In the above photoelectric conversion element, the electrolyte layer may contain an ionic liquid having a bis (fluorosulfonyl) imide anion represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000003
 また、上記対向電極に含有される触媒は、3,4-エチレンジオキシチオフェン又はその誘導体の重合物を含む導電性高分子であるものとすることができる。 The catalyst contained in the counter electrode may be a conductive polymer containing a polymer of 3,4-ethylenedioxythiophene or a derivative thereof.
 本発明の光電変換素子は、従来のヨウ素系酸化還元対を使用した素子に匹敵する光電変換効率と安定性を有すると共に、従来のヨウ素系酸化還元対の弱点であった着色の問題を解決することができる。具体的には、本発明の酸化還元対は可視光領域に強い吸収を持たないため、素子のデザイン性が向上するのみならず、揮発性の低いイオン液体に高濃度に溶解するため、イオン液体を溶媒に用いた場合でもヨウ素系酸化還元対で見られたような電解質層の光吸収による素子性能の低下を生じない。従って、実用性の高い光電変換素子を提供することが可能となる。 The photoelectric conversion device of the present invention has photoelectric conversion efficiency and stability comparable to devices using conventional iodine-based redox couples, and solves the coloring problem that was a weak point of conventional iodine-based redox couples. be able to. Specifically, since the redox couple of the present invention does not have strong absorption in the visible light region, not only the design of the device is improved, but also the ionic liquid is dissolved in a low-volatile ionic liquid at a high concentration. Even when is used as a solvent, the device performance does not deteriorate due to the light absorption of the electrolyte layer as seen in the iodine-based redox couple. Accordingly, it is possible to provide a highly practical photoelectric conversion element.
本発明の実施形態に係る光電変換素子の基本構造を示す模式断面図である。It is a schematic cross section which shows the basic structure of the photoelectric conversion element which concerns on embodiment of this invention.
 以下、本発明を実施するための形態について図面に基づき詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.
 図1は、本発明の光電変換素子10の一例を表す模式断面図である。 FIG. 1 is a schematic cross-sectional view showing an example of the photoelectric conversion element 10 of the present invention.
 図1において、符号1は透明基体、符号2は透明導電膜、符号3は多孔質金属酸化物半導体層、符号4は増感色素、符号5は電解質層、符号6は触媒層、符号7は符号6を担持する電極基材、符号8は電極基体、符号9は対向電極をそれぞれ示す。 In FIG. 1, reference numeral 1 is a transparent substrate, reference numeral 2 is a transparent conductive film, reference numeral 3 is a porous metal oxide semiconductor layer, reference numeral 4 is a sensitizing dye, reference numeral 5 is an electrolyte layer, reference numeral 6 is a catalyst layer, reference numeral 7 is Reference numeral 6 denotes an electrode substrate, reference numeral 8 denotes an electrode substrate, and reference numeral 9 denotes a counter electrode.
 図1に示すように、透明基体1とその上に形成された透明導電膜2からなる電極基体8の表面に、多孔質金属酸化物半導体層3が形成され、さらにこの多孔質金属酸化物半導体3の表面には、増感色素4が吸着されている。そして、本発明の電解質層5を介して、電極基材7の表面に触媒層6が形成された対向電極9が配置され、光電変換素子10を形成している。以下、この光電変換素子10の各構成材料について、好適な形態を説明する。 As shown in FIG. 1, a porous metal oxide semiconductor layer 3 is formed on the surface of an electrode substrate 8 comprising a transparent substrate 1 and a transparent conductive film 2 formed thereon, and this porous metal oxide semiconductor is further formed. The sensitizing dye 4 is adsorbed on the surface 3. And the counter electrode 9 in which the catalyst layer 6 was formed on the surface of the electrode base material 7 is arrange | positioned through the electrolyte layer 5 of this invention, and the photoelectric conversion element 10 is formed. Hereinafter, a suitable form is demonstrated about each structural material of this photoelectric conversion element 10. FIG.
[透明基体]
 電極基体8を構成する透明基体1は、可視光を透過するものが使用でき、透明なガラスが好適に利用できる。また、ガラス表面を加工して入射光を散乱させるようにしたものも使用できる。また、ガラスに限らず、光を透過するものであればプラスチック板やプラスチックフィルム等も使用できる。
[Transparent substrate]
As the transparent substrate 1 constituting the electrode substrate 8, one that transmits visible light can be used, and transparent glass can be suitably used. Moreover, what processed the glass surface and scattered incident light can also be used. Moreover, not only glass but a plastic plate, a plastic film, etc. can be used if it transmits light.
 透明基体1の厚さは、光電変換素子10の形状や使用条件により異なるため特に限定はされないが、例えばガラスやプラスチックなどを用いた場合では、実使用時の耐久性を考慮して1mm~1cm程度が好ましく、フレキシブル性が必要とされ、プラスチックフィルムなどを使用した場合は、1μm~1mm程度が好ましい。 The thickness of the transparent substrate 1 is not particularly limited because it varies depending on the shape of the photoelectric conversion element 10 and usage conditions. For example, when glass or plastic is used, 1 mm to 1 cm is considered in consideration of durability during actual use. When a plastic film or the like is used, the thickness is preferably about 1 μm to 1 mm.
[透明導電膜]
 透明導電膜2としては、可視光を透過して、かつ導電性を有するものが使用できる。このような材料としては、例えば金属酸化物が挙げられる。特に限定はされないが、例えばフッ素をドープした酸化スズ(以下、「FTO」と略記する。)や、酸化インジウム、酸化スズと酸化インジウムの混合体(以下、「ITO」と略記する。)、アンチモンをドープした酸化スズ、酸化亜鉛などを好適に用いることができる。
[Transparent conductive film]
As the transparent conductive film 2, a material that transmits visible light and has conductivity can be used. An example of such a material is a metal oxide. Although not particularly limited, for example, tin oxide doped with fluorine (hereinafter abbreviated as “FTO”), indium oxide, a mixture of tin oxide and indium oxide (hereinafter abbreviated as “ITO”), antimony, and the like. Tin oxide, zinc oxide and the like doped with can be preferably used.
 また、分散させるなどの処理により可視光が透過すれば、不透明な導電性材料を用いることもできる。このような材料としては炭素材料や金属が挙げられる。炭素材料としては、特に限定はされないが、例えば黒鉛(グラファイト)、カーボンブラック、グラッシーカーボン、カーボンナノチューブやフラーレンなどが挙げられる。また、金属としては、特に限定はされないが、例えば白金、金、銀、ルテニウム、銅、アルミニウム、ニッケル、コバルト、クロム、鉄、モリブデン、チタン、タンタル、およびそれらの合金などが挙げられる。 Further, an opaque conductive material can also be used if visible light is transmitted by a treatment such as dispersion. Such materials include carbon materials and metals. Although it does not specifically limit as a carbon material, For example, graphite (graphite), carbon black, glassy carbon, a carbon nanotube, fullerene, etc. are mentioned. Further, the metal is not particularly limited, and examples thereof include platinum, gold, silver, ruthenium, copper, aluminum, nickel, cobalt, chromium, iron, molybdenum, titanium, tantalum, and alloys thereof.
 したがって、電極基体8としては、上述の導電性材料のうち少なくとも1種類以上からなる導電材料を、透明基体1の表面に設けて形成することができる。あるいは透明基体1を構成する材料の中へ上記導電性材料を組み込んで、透明基体1と透明導電膜2とを一体化して電極基体8とすることも可能である。 Therefore, the electrode substrate 8 can be formed by providing a conductive material made of at least one of the above-described conductive materials on the surface of the transparent substrate 1. Alternatively, it is also possible to incorporate the conductive material into the material constituting the transparent substrate 1 and integrate the transparent substrate 1 and the transparent conductive film 2 to form the electrode substrate 8.
 透明基体1上に透明導電膜2を形成する方法として、金属酸化物を使用する場合は、ゾルゲル法などの液層法や、スパッタやCVDなどの気相法、分散ペーストのコーティングなどがある。また、不透明な導電性材料を使用する場合は、粉体などを、透明なバインダーなどとともに固着させる方法が挙げられる。 As a method of forming the transparent conductive film 2 on the transparent substrate 1, when using a metal oxide, there are a liquid layer method such as a sol-gel method, a gas phase method such as sputtering or CVD, and a coating of a dispersion paste. Moreover, when using an opaque electroconductive material, the method of fixing powder etc. with a transparent binder etc. is mentioned.
 また、透明基体1と透明導電膜2とを一体化させるには、透明基体1の成型時に導電性のフィラーとして上記導電膜材料を混合させる方法などがある。 Further, in order to integrate the transparent substrate 1 and the transparent conductive film 2, there is a method of mixing the conductive film material as a conductive filler when the transparent substrate 1 is molded.
 透明導電膜2の厚さは、用いる材料により導電性が異なるため特には限定されないが、一般的に使用されるFTO被膜付ガラスでは、0.01μm~5μmであり、好ましくは0.1μm~1μmである。また、必要とされる導電性は、使用する電極の面積により異なり、広い電極ほど低抵抗であることが求められるが、一般的に100Ω/□以下、好ましくは10Ω/□以下、より好ましくは5Ω/□以下である。 The thickness of the transparent conductive film 2 is not particularly limited because the conductivity varies depending on the material to be used. However, in the glass with FTO film generally used, it is 0.01 μm to 5 μm, preferably 0.1 μm to 1 μm. It is. Further, the required conductivity varies depending on the area of the electrode to be used, and a wider electrode is required to have a lower resistance, but is generally 100Ω / □ or less, preferably 10Ω / □ or less, more preferably 5Ω. / □ or less.
 透明基体1及び透明導電膜2から構成される電極基体8、又は透明基体1と透明導電膜2とを一体化した電極基体8の厚さは、上述のように光電変換素子10の形状や使用条件により異なるため特に限定はされないが、一般的に1μm~1cm程度である。 The thickness of the electrode substrate 8 composed of the transparent substrate 1 and the transparent conductive film 2 or the electrode substrate 8 in which the transparent substrate 1 and the transparent conductive film 2 are integrated is the shape and use of the photoelectric conversion element 10 as described above. Although it is not particularly limited because it varies depending on conditions, it is generally about 1 μm to 1 cm.
[多孔質金属酸化物半導体]
 多孔質金属酸化物半導体3としては、特に限定はされないが、酸化チタン、酸化亜鉛、酸化スズなどが挙げられ、特に二酸化チタン、さらにはアナターゼ型二酸化チタンが好適である。
[Porous metal oxide semiconductor]
Examples of the porous metal oxide semiconductor 3 include, but are not limited to, titanium oxide, zinc oxide, tin oxide, and the like. In particular, titanium dioxide and further anatase type titanium dioxide are suitable.
 また、電気抵抗値を下げるため、金属酸化物の粒界は少ないことが望ましい。また、増感色素をより多く吸着させるために、当該半導体層は比表面積の大きなものが望ましく、具体的には10~200m/gが望ましい。また、増感色素の光吸収量を増加させるため、使用する酸化物の粒径に幅を持たせて光を散乱させたり、粒径300~400nm程度の大きな酸化物半導体粒子を多孔質層の上に反射層として設けたりすることが望ましい。 Further, it is desirable that the metal oxide has few grain boundaries in order to reduce the electric resistance value. In order to adsorb more sensitizing dye, the semiconductor layer preferably has a large specific surface area, specifically 10 to 200 m 2 / g. Further, in order to increase the light absorption amount of the sensitizing dye, the particle size of the oxide to be used is widened to scatter light, or large oxide semiconductor particles having a particle size of about 300 to 400 nm are formed in the porous layer. It is desirable to provide it as a reflective layer on top.
 このような多孔質金属酸化物半導体層3は、特に限定されず既知の方法で透明導電膜2上に設けることができる。例えば、ゾルゲル法や、分散体ペーストの塗布、また、電析や電着させる方法がある。 Such a porous metal oxide semiconductor layer 3 is not particularly limited and can be provided on the transparent conductive film 2 by a known method. For example, there are a sol-gel method, dispersion paste application, electrodeposition and electrodeposition.
 このような半導体層3の厚さは、用いる酸化物により最適値が異なるため特には限定されないが、通常は0.1μm~50μmであり、好ましくは3~30μmである。 The thickness of the semiconductor layer 3 is not particularly limited because the optimum value varies depending on the oxide to be used, but is usually 0.1 μm to 50 μm, preferably 3 to 30 μm.
[増感色素]
 増感色素4としては、太陽光により励起されて上記金属酸化物半導体3に電子注入できるものであればよく、一般的に光電変換素子に用いられている色素を用いることができるが、変換効率を向上させるためには、その吸収スペクトルが太陽光スペクトルと広波長域で重なっていて、耐光性が高いことが望ましい。
[Sensitizing dye]
As the sensitizing dye 4, any dye that can be excited by sunlight and can inject electrons into the metal oxide semiconductor 3 can be used, and a dye generally used in a photoelectric conversion element can be used. In order to improve the light intensity, it is desirable that the absorption spectrum overlaps with the sunlight spectrum in a wide wavelength range and has high light resistance.
 増感色素4としては、特に限定はされないが、ルテニウム錯体、特にルテニウムポリピリジン系錯体が望ましく、さらに望ましいのは、Ru(L)(X)で表されるルテニウム錯体が望ましい。ここで、Lは、4,4’-ジカルボキシ-2,2’-ビピリジン、もしくはその4級アンモニウム塩、およびカルボキシル基が導入されたポリピリジン系配位子であり、また、Xは、SCN、Cl、CNである。例えばビス(4,4’-ジカルボキシ-2,2’-ビピリジン)ジイソチオシアネートルテニウム錯体などが挙げられる。 The sensitizing dye 4 is not particularly limited, but is preferably a ruthenium complex, particularly a ruthenium polypyridine-based complex, and more preferably a ruthenium complex represented by Ru (L) 2 (X) 2 . Here, L is 4,4′-dicarboxy-2,2′-bipyridine, or a quaternary ammonium salt thereof, and a polypyridine-based ligand into which a carboxyl group is introduced, and X is SCN, Cl, CN. Examples thereof include bis (4,4′-dicarboxy-2,2′-bipyridine) diisothiocyanate ruthenium complex.
 他の色素としては、ルテニウム以外の金属錯体色素、例えば鉄錯体、銅錯体などが挙げられる。さらに、シアン系色素、ポルフィリン系色素、ポリエン系色素、クマリン系色素、シアニン系色素、スクアリン酸系色素、スチリル系色素、エオシン系色素、インドリン系色素などの有機色素が挙げられる。 Examples of other dyes include metal complex dyes other than ruthenium, such as iron complexes and copper complexes. Further examples include organic dyes such as cyan dyes, porphyrin dyes, polyene dyes, coumarin dyes, cyanine dyes, squaric acid dyes, styryl dyes, eosin dyes, and indoline dyes.
 これらの色素は、金属酸化物半導体3への電子注入効率を向上させるため、その金属酸化物半導体3との結合基を有していることが望ましい。その結合基としては、特に限定はされないが、カルボキシル基、スルホン酸基、ヒドロキシル基などが望ましい。 These dyes desirably have a bonding group with the metal oxide semiconductor 3 in order to improve the electron injection efficiency into the metal oxide semiconductor 3. The bonding group is not particularly limited, but a carboxyl group, a sulfonic acid group, a hydroxyl group and the like are desirable.
 また、赤色領域や近赤外領域を吸収する色素と本発明の可視光透明性電解質とを組み合わせることにより、青色や透明色の光電変換素子を作製することができ、カラフル性が求められる用途など、素子の使用用途を増大させることができる。 In addition, by combining a dye that absorbs a red region or a near infrared region with the visible light transparent electrolyte of the present invention, a blue or transparent photoelectric conversion element can be produced, and uses that require colorfulness, etc. The use application of the device can be increased.
 上記色素を溶解するために用いる溶媒の例としては、エタノールなどのアルコール類、アセトニトリルなどの窒素化合物、アセトンなどのケトン類、ジエチルエーテルなどのエーテル類、クロロホルムなどのハロゲン化脂肪族炭化水素、ヘキサンなどの脂肪族炭化水素、ベンゼンなどの芳香族炭化水素、酢酸エチルなどのエステル類などが挙げられる。溶液中の色素濃度は、使用する色素及び溶媒の種類により適宜調整することができ、半導体表面に十分吸着させるためには、ある程度高濃度である方が望ましい。例えば、4×10-5mol/L以上の濃度が望ましい。 Examples of the solvent used for dissolving the dye include alcohols such as ethanol, nitrogen compounds such as acetonitrile, ketones such as acetone, ethers such as diethyl ether, halogenated aliphatic hydrocarbons such as chloroform, hexane Aliphatic hydrocarbons such as benzene, aromatic hydrocarbons such as benzene, and esters such as ethyl acetate. The concentration of the dye in the solution can be appropriately adjusted depending on the kind of the dye and the solvent to be used. In order to sufficiently adsorb on the semiconductor surface, it is desirable that the concentration is somewhat high. For example, a concentration of 4 × 10 −5 mol / L or more is desirable.
 多孔質金属酸化物半導体3へ増感色素4を吸着させる方法は、特に限定されるものではなく、例としては、室温・大気圧条件下において、色素を溶解させた溶液中に上記多孔質金属酸化物半導体3を形成させた電極基体8を浸漬する方法が挙げられる。浸漬時間は使用する半導体、色素、溶媒の種類、色素の濃度により、半導体層3に増感色素4の単分子膜が均一に形成されるよう、適宜調節することが好ましい。なお、加熱下での浸漬を行うことにより、吸着を効率的に行うことができる。 The method for adsorbing the sensitizing dye 4 to the porous metal oxide semiconductor 3 is not particularly limited. For example, the porous metal is dissolved in a solution in which the dye is dissolved at room temperature and atmospheric pressure. A method of immersing the electrode substrate 8 on which the oxide semiconductor 3 is formed may be mentioned. The immersion time is preferably adjusted as appropriate so that the monomolecular film of the sensitizing dye 4 is uniformly formed on the semiconductor layer 3 according to the type of semiconductor, dye, solvent, and dye concentration used. In addition, adsorption | suction can be performed efficiently by performing the immersion under a heating.
[電解質層]
 本発明で用いる電解質層5は、次の一般式(1)で表される化合物および一般式(2)で表される化合物からなる酸化還元対を含むものである。なお、一般式(1)で示される化合物が還元体であり、一般式(2)で示される化合物が酸化体である。
Figure JPOXMLDOC01-appb-C000004
[Electrolyte layer]
The electrolyte layer 5 used in the present invention includes a redox couple composed of a compound represented by the following general formula (1) and a compound represented by the general formula (2). In addition, the compound shown by General formula (1) is a reduced form, and the compound shown by General formula (2) is an oxidant.
Figure JPOXMLDOC01-appb-C000004
 一般式(1)中、AはLi、K、若しくはNa、又は次の一般式(3)で表されるアンモニウム化合物、一般式(4)で表されるイミダゾリウム化合物、若しくは一般式(5)で表されるピロリジニウム化合物を示す。一般式(1)及び一般式(2)中のRは、炭素数4~8の直鎖アルキル基を示し、複数のRは相互に同じでも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000005
In general formula (1), A is Li, K, or Na, or an ammonium compound represented by the following general formula (3), an imidazolium compound represented by general formula (4), or general formula (5) The pyrrolidinium compound represented by these is shown. R 1 in the general formulas (1) and (2) represents a linear alkyl group having 4 to 8 carbon atoms, and the plurality of R 1 may be the same or different from each other.
Figure JPOXMLDOC01-appb-C000005
 一般式(3)~(5)中、Rは炭素数1~12のアルキル基を示し、RはH又はメチル基を示す。複数のRは相互に同じでも異なっていてもよい。 In the general formulas (3) to (5), R 2 represents an alkyl group having 1 to 12 carbon atoms, and R 3 represents H or a methyl group. A plurality of R 2 may be the same as or different from each other.
 式(1)で表される化合物の具体例としては、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:リチウム塩(Li-BTZT)、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:カリウム塩(K-BTZT)、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:テトラメチルアンモニウム塩(TMA-BTZT)、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:テトラエチルアンモニウム塩(TEA-BTZT)、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:テトラプロピルアンモニウム塩(TPA-BTZT)、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:テトラブチルアンモニウム塩(TBA-BTZT)、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:テトラヘキシルアンモニウム塩(THA-BTZT)、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:トリメチルプロピルアンモニウム塩、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:トリメチルブチルアンモニウム塩、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:トリメチルヘキシルアンモニウム塩、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:トリエチルプロピルアンモニウム塩、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:トリエチルブチルアンモニウム塩、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:トリエチルヘキシルプロピルアンモニウム塩、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:1-メチル-3-エチルイミダゾリウム塩(EMIm-BTZT)、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:1,2-ジメチル-3-プロピルイミダゾリウム塩(DMPIm-BTZT)、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:1-メチル-1-プロピルピロリジニウム塩(MPPy-BTZT)、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:1-メチル-3-プロピルイミダゾリウム塩、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:1-メチル-3-ブチルイミダゾリウム塩、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:1-メチル-3-ヘキシルイミダゾリウム塩、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:1,2-ジメチル-3-ブチルイミダゾリウム塩、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:1,2-ジメチル-3-ヘキシルイミダゾリウム塩、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:1-メチル-1-エチルピロリジニウム塩、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:1-メチル-1-ブチルピロリジニウム塩、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:1-メチル-1-ヘキシルピロリジニウム塩等が挙げられる。 Specific examples of the compound represented by the formula (1) include 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: lithium salt (Li-BTZT), 1-n-butyl-5 -Mercapto-1,2,3,4-tetrazole: potassium salt (K-BTTZT), 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: tetramethylammonium salt (TMA-BTZT) 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: tetraethylammonium salt (TEA-BTZT), 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: Tetrapropylammonium salt (TPA-BTZT), 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: Tetrabutylammonium salt (TBA-BTZT) 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: tetrahexylammonium salt (THA-BTZT), 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: Trimethylpropylammonium salt, 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: Trimethylbutylammonium salt, 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: Trimethylhexylammonium salt, 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: Triethylpropylammonium salt, 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: Triethylbutylammonium salt, 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: triethylhex Rupropylammonium salt, 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: 1-methyl-3-ethylimidazolium salt (EMIm-BTZT), 1-n-butyl-5-mercapto -1,2,3,4-tetrazole: 1,2-dimethyl-3-propylimidazolium salt (DMPIm-BTZT), 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: 1 -Methyl-1-propylpyrrolidinium salt (MPPy-BTZT), 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: 1-methyl-3-propylimidazolium salt, 1-n -Butyl-5-mercapto-1,2,3,4-tetrazole: 1-methyl-3-butylimidazolium salt, 1-n-butyl-5-mercapto-1,2,3,4-te Tolazole: 1-methyl-3-hexylimidazolium salt, 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: 1,2-dimethyl-3-butylimidazolium salt, 1-n- Butyl-5-mercapto-1,2,3,4-tetrazole: 1,2-dimethyl-3-hexylimidazolium salt, 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: 1 -Methyl-1-ethylpyrrolidinium salt, 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: 1-methyl-1-butylpyrrolidinium salt, 1-n-butyl-5 -Mercapto-1,2,3,4-tetrazole: 1-methyl-1-hexylpyrrolidinium salt and the like.
 また、式(2)で表される化合物の例としては、5,5’-ジチオビス(1-n-ブチル-1H-テトラゾール)(BTZT)が挙げられる。 Examples of the compound represented by the formula (2) include 5,5′-dithiobis (1-n-butyl-1H-tetrazole) (BTZT) 2 .
 また、上記酸化還元対を溶解させる溶媒は、酸化還元対を溶解できる化合物であれば特に制限なく用いることができ、非水性有機溶媒、常温溶融塩、プロトン性有機溶媒などから任意に選択できる。例えば有機溶媒として、アセトニトリル、メトキシアセトニトリル、バレロニトリル、3-メトキシプロピオニトリルなどのニトリル化合物、γ-ブチルラクトンやバレロラクトンなどのラクトン化合物、エチレンカーボネートやプロピレンカーボネートなどのカーボネート化合物、ジオキサンやジエチルエーテル、エチレングリコールジアルキルエーテルなどのエーテル類、メタノール、エタノール等のアルコール類、さらにはジメチルホルムアミドやイミダゾール類などが挙げられ、中でもアセトニトリル、バレロニトリル、3-メトキシプロピオニトリル、メトキシアセトニトリル、プロピレンカーボネートなどを好適に用いることができる。 Further, the solvent for dissolving the redox couple can be used without particular limitation as long as it is a compound capable of dissolving the redox couple, and can be arbitrarily selected from a non-aqueous organic solvent, a room temperature molten salt, a protic organic solvent, and the like. For example, as organic solvents, nitrile compounds such as acetonitrile, methoxyacetonitrile, valeronitrile, 3-methoxypropionitrile, lactone compounds such as γ-butyllactone and valerolactone, carbonate compounds such as ethylene carbonate and propylene carbonate, dioxane and diethyl ether And ethers such as ethylene glycol dialkyl ether, alcohols such as methanol and ethanol, and dimethylformamide and imidazoles. Among them, acetonitrile, valeronitrile, 3-methoxypropionitrile, methoxyacetonitrile, propylene carbonate, etc. It can be used suitably.
 また、上記酸化還元対を溶解させる溶媒として、特に式(6)で表されるビス(フルオロスルホニル)イミドアニオンを有するイオン液体を含むものが好適に用いられる。
Figure JPOXMLDOC01-appb-C000006
As the solvent for dissolving the redox couple, a solvent containing an ionic liquid having a bis (fluorosulfonyl) imide anion represented by the formula (6) is preferably used.
Figure JPOXMLDOC01-appb-C000006
 イオン液体の具体例としては、1-メチル-3-エチルイミダゾリウムビス(フルオロスルホニル)イミド、1,3-ジメチルイミダゾリウムビス(フルオロスルホニル)イミド、1-メチル-3-プロピルイミダゾリウムビス(フルオロスルホニル)イミド、1-メチル-3-ブチルイミダゾリウムビス(フルオロスルホニル)イミド、1-メチル-3-ヘキシルイミダゾリウムビス(フルオロスルホニル)イミド、1,2-ジメチル-3-プロピルイミダゾリウムビス(フルオロスルホニル)イミド、1,2-ジメチル-3-ブチルイミダゾリウムビス(フルオロスルホニル)イミド、1,2-ジメチル-3-ヘキシルイミダゾリウムビス(フルオロスルホニル)イミド、1-メチル-1-エチルピロリジニウムビス(フルオロスルホニル)イミド、1-メチル-1-プロピルピロリジニウムビス(フルオロスルホニル)イミド、1-メチル-1-ブチルピロリジニウムビス(フルオロスルホニル)イミド、1-メチル-1-ヘキシルピロリジニウムビス(フルオロスルホニル)イミド等が挙げられる。 Specific examples of the ionic liquid include 1-methyl-3-ethylimidazolium bis (fluorosulfonyl) imide, 1,3-dimethylimidazolium bis (fluorosulfonyl) imide, 1-methyl-3-propylimidazolium bis (fluoro Sulfonyl) imide, 1-methyl-3-butylimidazolium bis (fluorosulfonyl) imide, 1-methyl-3-hexylimidazolium bis (fluorosulfonyl) imide, 1,2-dimethyl-3-propylimidazolium bis (fluoro Sulfonyl) imide, 1,2-dimethyl-3-butylimidazolium bis (fluorosulfonyl) imide, 1,2-dimethyl-3-hexylimidazolium bis (fluorosulfonyl) imide, 1-methyl-1-ethylpyrrolidinium Bis (fluorosulfo ) Imide, 1-methyl-1-propylpyrrolidinium bis (fluorosulfonyl) imide, 1-methyl-1-butylpyrrolidinium bis (fluorosulfonyl) imide, 1-methyl-1-hexylpyrrolidinium bis ( Fluorosulfonyl) imide and the like.
 上記酸化還元対及びイオン液体は、市販されているものを使用することができ、あるいは市販の材料から公知の方法で合成したものを使用することもできる。 The above-mentioned oxidation-reduction pair and ionic liquid can be commercially available, or can be synthesized from commercially available materials by a known method.
 ニトリル化合物などの有機溶媒を溶媒に用いた場合、電解質層(溶媒)中における一般式(1)又は一般式(2)で示される化合物の濃度は、0.01mol/L~2mol/Lであることが好ましい。一般式(1)又は一般式(2)で示される化合物の濃度が0.01mol/L未満であると、酸化還元対の電荷輸送能力が足りず、素子の電流値が低下するおそれがあり、2mol/Lを超えると、電解液の粘度が高くなるため、酸化還元対の電荷輸送能力が低下し、素子の性能が低下するおそれがある。 When an organic solvent such as a nitrile compound is used as the solvent, the concentration of the compound represented by the general formula (1) or the general formula (2) in the electrolyte layer (solvent) is 0.01 mol / L to 2 mol / L. It is preferable. If the concentration of the compound represented by the general formula (1) or the general formula (2) is less than 0.01 mol / L, the charge transporting ability of the redox pair is insufficient, and the current value of the device may be reduced. When it exceeds 2 mol / L, the viscosity of the electrolytic solution increases, so that the charge transporting ability of the redox couple is lowered, and the device performance may be lowered.
 上記のようなイオン液体を溶媒に用いた場合、電解質層(溶媒)中における一般式(1)で示される化合物の濃度は、0.5mol/L以上であることが好ましく、0.5~3mol/Lであることがより好ましい。一般式(1)で示される化合物の濃度が0.5mol/L未満であると、酸化還元対の電荷輸送能力が足りず、素子の電流値が低下するおそれがあり、3mol/Lを超えると、電解液の粘度が高くなるため、酸化還元対の電荷輸送能力が低下し素子の性能が低下するおそれがある。 When the ionic liquid as described above is used as a solvent, the concentration of the compound represented by the general formula (1) in the electrolyte layer (solvent) is preferably 0.5 mol / L or more, preferably 0.5 to 3 mol. / L is more preferable. When the concentration of the compound represented by the general formula (1) is less than 0.5 mol / L, the charge transport ability of the redox couple is insufficient, and the current value of the device may be reduced. In addition, since the viscosity of the electrolytic solution is increased, the charge transport capability of the redox couple may be reduced, and the device performance may be reduced.
 上記イオン液体を溶媒に用いた場合、電解質層(溶媒)中における一般式(2)で示される化合物の濃度は、0.5mol/L以上であることが好ましく、0.5~2mol/Lであることがより好ましい。一般式(2)で示される化合物の濃度が0.5mol/L未満であると、酸化還元対の電荷輸送能力が足りず、素子の電流値が低下するおそれがあり、2mol/Lを超えると、電解液の粘度が高くなるため、酸化還元対の電荷輸送能力が低下し、素子の性能が低下するおそれがある。 When the ionic liquid is used as a solvent, the concentration of the compound represented by the general formula (2) in the electrolyte layer (solvent) is preferably 0.5 mol / L or more, and preferably 0.5 to 2 mol / L. More preferably. If the concentration of the compound represented by the general formula (2) is less than 0.5 mol / L, the charge transport capability of the redox couple is insufficient, and the current value of the device may be reduced. If the concentration exceeds 2 mol / L In addition, since the viscosity of the electrolytic solution is increased, the charge transport capability of the oxidation-reduction pair is decreased, and the device performance may be decreased.
 また、一般式(1)で示される化合物に対する一般式(2)で示される化合物の割合(モル比)の下限は0.8以上であることが好ましく、1以上であることがより好ましく、1.2以上であることがさらに好ましい。また、上限は5以下であることが好ましく、3以下であることがより好ましい。 The lower limit of the ratio (molar ratio) of the compound represented by the general formula (2) to the compound represented by the general formula (1) is preferably 0.8 or more, more preferably 1 or more. More preferably, it is 2 or more. Further, the upper limit is preferably 5 or less, and more preferably 3 or less.
 上記電解質層5には、本発明の目的を離れず、電解質層の特性を損ねない範囲で、支持電解質や添加剤等を必要に応じてさらに添加することができる。支持電解質としては、リチウム塩やイミダゾリウム塩、4級アンモニウム塩などが挙げられる。また、添加剤としては、t-ブチルピリジン、N-メチルイミダゾール、N-メチルベンズイミダゾール、N-メチルピロリドンなどの塩基、グアニジウムチオシアネート等のチオシアネート類等が挙げられる。また、適当なゲル化剤を添加することで、物理的又は化学的にゲル化することもできる。 In the electrolyte layer 5, a supporting electrolyte, an additive, and the like can be further added as necessary without departing from the object of the present invention and without impairing the characteristics of the electrolyte layer. Examples of the supporting electrolyte include lithium salts, imidazolium salts, and quaternary ammonium salts. Examples of the additive include bases such as t-butylpyridine, N-methylimidazole, N-methylbenzimidazole and N-methylpyrrolidone, and thiocyanates such as guanidinium thiocyanate. Moreover, it can also be gelatinized physically or chemically by adding a suitable gelling agent.
[対向電極]
 対向電極9は、電極基材7の表面に触媒層6が形成された構造をしている。この電極基材7は、触媒層6の支持体兼集電体として用いられるため、表面部分に導電性を有していることが好ましい。
[Counter electrode]
The counter electrode 9 has a structure in which the catalyst layer 6 is formed on the surface of the electrode substrate 7. Since this electrode base material 7 is used as a support and current collector of the catalyst layer 6, it is preferable that the surface portion has conductivity.
 このような材質としては、例えば導電性を有する金属や金属酸化物、炭素材料や導電性高分子などが好適に用いられる。金属としては、例えば白金、金、銀、ルテニウム、銅、アルミニウム、ニッケル、コバルト、クロム、鉄、モリブデン、チタン、タンタル、およびそれらの合金などが挙げられる。炭素材料としては、特に限定はされないが、例えば黒鉛(グラファイト)、カーボンブラック、グラッシーカーボン、カーボンナノチューブ、フラーレンなどが挙げられる。また、FTO、ITO、酸化インジウム、酸化亜鉛、酸化アンチモンなどの金属酸化物を用いた場合、透明又は半透明であるため、増感色素層4への入射光量を増加させることができる。 As such a material, for example, a conductive metal or metal oxide, a carbon material, a conductive polymer, or the like is preferably used. Examples of the metal include platinum, gold, silver, ruthenium, copper, aluminum, nickel, cobalt, chromium, iron, molybdenum, titanium, tantalum, and alloys thereof. Although it does not specifically limit as a carbon material, For example, graphite (graphite), carbon black, glassy carbon, a carbon nanotube, fullerene etc. are mentioned. Further, when a metal oxide such as FTO, ITO, indium oxide, zinc oxide or antimony oxide is used, the amount of incident light to the sensitizing dye layer 4 can be increased because it is transparent or translucent.
 なお、少なくとも該電極基材7の表面が導電性を有するように処理すれば、例えばガラスやプラスチックなどの絶縁体を用いることもできる。このような絶縁体に導電性を保持させる処理方法としては、上記の導電性材料にて、この絶縁性材料表面の一部もしくは全面を被覆する方法、例えば金属を用いる場合、メッキや電析などの溶液法、また、スパッタ法や真空蒸着等の気相法が用いられ、金属酸化物を用いる場合はゾルゲル法などを用いることができる。また、上記導電性材料の粉末などを一種もしくは複数種用いて絶縁性材料と混和させるなどの方法が挙げられる。 It should be noted that an insulator such as glass or plastic can be used as long as at least the surface of the electrode substrate 7 is treated. As a treatment method for maintaining conductivity in such an insulator, a method of covering a part or the entire surface of the insulating material with the above-described conductive material, for example, when using a metal, plating, electrodeposition, etc. In addition, a gas phase method such as a sputtering method or a vacuum deposition method is used. When a metal oxide is used, a sol-gel method or the like can be used. Moreover, the method of mixing with an insulating material using 1 type or multiple types of the said powder of an electroconductive material, etc. is mentioned.
 さらに、対向電極9の基材7として絶縁性材料を用いた場合でも、この基材7上に導電性の高い触媒層6を設けることで、該触媒層6が単独で集電体と触媒との双方の機能を果たすことができ、対向電極9として使用することができる。 Furthermore, even when an insulating material is used as the base material 7 of the counter electrode 9, the catalyst layer 6 is provided on the base material 7, so that the catalyst layer 6 can be used alone as a current collector and a catalyst. Both of these functions can be fulfilled and can be used as the counter electrode 9.
 また、電極基材7の形状は、触媒電極として用いる光電変換素子10の形状に応じて変更することができるため特には限定されず、板状としてもフィルム状で湾曲できるものでもよい。さらに、電極基材7は透明でも不透明でもよいが、増感色素層4への入射光量を増加させることができるため、また、場合によっては意匠性が向上できるため透明又は半透明であることが望ましい。 The shape of the electrode substrate 7 is not particularly limited because it can be changed according to the shape of the photoelectric conversion element 10 used as the catalyst electrode, and may be a plate shape or a film shape that can be curved. Furthermore, although the electrode base material 7 may be transparent or opaque, it is possible to increase the amount of light incident on the sensitizing dye layer 4 and, in some cases, to improve the design, so that it may be transparent or translucent. desirable.
 電極基材7として一般的には、FTO被膜付ガラスやITO膜付PET、ITO膜付PENフィルムが用いられているが、用いる材料により導電性が異なるため、導電層の厚さについて特には限定されない。例えば、FTO被膜付ガラスでは、0.01μm~5μmであり、好ましくは0.1μm~1μmである。 In general, glass with an FTO film, PET with an ITO film, and a PEN film with an ITO film are used as the electrode substrate 7. However, since the conductivity differs depending on the material used, the thickness of the conductive layer is particularly limited. Not. For example, for FTO-coated glass, the thickness is 0.01 μm to 5 μm, preferably 0.1 μm to 1 μm.
 また、必要とされる導電性は、使用する電極の面積により異なり、広い電極ほど低抵抗であることが求められるが、一般的に100Ω/□以下、好ましくは10Ω/□以下、より好ましくは5Ω/□以下である。 Further, the required conductivity varies depending on the area of the electrode to be used, and a wider electrode is required to have a lower resistance, but is generally 100Ω / □ or less, preferably 10Ω / □ or less, more preferably 5Ω. / □ or less.
 電極基材7の厚さは、上述のように光電変換素子10の形状や使用条件により異なるため特に限定はされないが、一般的に1μm~1cm程度である。 The thickness of the electrode substrate 7 is not particularly limited because it varies depending on the shape and use conditions of the photoelectric conversion element 10 as described above, but is generally about 1 μm to 1 cm.
 触媒層6としては、電解質中の酸化還元対の酸化体を還元体に還元する還元反応を速やかに進行させることが可能な電極特性を有するものであれば特に限定されないが、塩化白金酸を塗布、熱処理したものや、白金を蒸着した白金触媒電極、活性炭、グラッシーカーボン、カーボンナノチューブのような炭素材料、硫化コバルトなどの無機硫黄化合物、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性高分子などが使用でき、その中でも導電性高分子触媒が好ましく使用できる。 The catalyst layer 6 is not particularly limited as long as it has electrode characteristics capable of promptly proceeding with a reduction reaction for reducing the oxidized form of the redox couple in the electrolyte to a reduced form. , Heat treated materials, platinum catalyst electrodes deposited with platinum, carbon materials such as activated carbon, glassy carbon and carbon nanotubes, inorganic sulfur compounds such as cobalt sulfide, conductive polymers such as polythiophene, polypyrrole and polyaniline, etc. Of these, a conductive polymer catalyst is preferably used.
 本発明で使用する導電性高分子触媒を構成するモノマーの好ましい具体例としては、次の一般式(7)で表されるチオフェン化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
Preferable specific examples of the monomer constituting the conductive polymer catalyst used in the present invention include a thiophene compound represented by the following general formula (7).
Figure JPOXMLDOC01-appb-C000007
 一般式(7)中、R、Rはそれぞれ独立に、水素原子、炭素原子数1~8のアルキル基又はアルコキシ基、炭素原子数6~12のアリール基、シアノ基、チオシアノ基、ハロゲン基、ニトロ基、アミノ基、カルボキシル基、スルホ基、又はホスホニウム基を示し、RとRは連結して環を形成していてもよい。 In the general formula (7), R 4 and R 5 are each independently a hydrogen atom, an alkyl or alkoxy group having 1 to 8 carbon atoms, an aryl group having 6 to 12 carbon atoms, a cyano group, a thiocyano group, a halogen atom. A group, a nitro group, an amino group, a carboxyl group, a sulfo group, or a phosphonium group, R 4 and R 5 may be linked to form a ring.
 より具体的には、チオフェン、テトラデシルチオフェン、イソチアナフテン、3-フェニルチオフェン、3,4-エチレンジオキシチオフェン及びそれらの誘導体などが好適に使用でき、中でも3,4-エチレンジオキシチオフェンとその誘導体を好ましく使用することができる。3,4-エチレンジオキシチオフェンの誘導体としては、例えばヒドロキシメチル-3,4-エチレンジオキシチオフェン、アミノメチル-3,4-エチレンジオキシチオフェン、ヘキシル-3,4-エチレンジオキシチオフェン、オクチル-3,4-エチレンジオキシチオフェン等を挙げることができる。なお、これらチオフェン化合物は1種を単独で使用してもよく、2種以上用いて導電性高分子触媒層6を形成してもよい。 More specifically, thiophene, tetradecylthiophene, isothianaphthene, 3-phenylthiophene, 3,4-ethylenedioxythiophene and their derivatives can be preferably used, and among them, 3,4-ethylenedioxythiophene and The derivative can be preferably used. Examples of derivatives of 3,4-ethylenedioxythiophene include hydroxymethyl-3,4-ethylenedioxythiophene, aminomethyl-3,4-ethylenedioxythiophene, hexyl-3,4-ethylenedioxythiophene, and octyl. -3,4-ethylenedioxythiophene. In addition, these thiophene compounds may be used individually by 1 type, and the conductive polymer catalyst layer 6 may be formed using 2 or more types.
 導電性高分子触媒層6を形成するのに用いるモノマーは、重合した膜としての電導度が10-9S/cm以上を示すものが望ましい。 The monomer used to form the conductive polymer catalyst layer 6 is preferably one having a conductivity of 10 −9 S / cm or more as a polymerized film.
 また、導電性高分子触媒層6には、電導度を向上させるためにドーパントを添加することが望ましい。このドーパントとしては、公知の材料が特に限定なく使用できる。 In addition, it is desirable to add a dopant to the conductive polymer catalyst layer 6 in order to improve conductivity. As this dopant, a known material can be used without any particular limitation.
 ドーパントの具体例としては、ヨウ素、臭素、塩素等のハロゲンアニオン、ヘキサフロロリン、ヘキサフロロヒ素、ヘキサフロロアンチモン、テトラフロロホウ素、過塩素酸等のハロゲン化物アニオン、メタンスルホン酸、ドデシルスルホン酸等のアルキル基置換有機スルホン酸アニオン、カンファースルホン酸等の環状スルホン酸アニオン、ベンゼンスルホン酸、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸、ベンゼンジスルホン酸等のアルキル基置換又は無置換のベンゼンモノ又はジスルホン酸アニオン、2-ナフタレンスルホン酸、1,7-ナフタレンジスルホン酸等のスルホン酸基1~3を置換させたナフタレンスルホン酸のアルキル基置換又は無置換アニオン、アントラセンスルホン酸、アントラキノンスルホン酸、アルキルビフェニルスルホン酸、ビフェニルジスルホン酸等のアルキル基置換又は無置換のビフェニルスルホン酸イオン、ポリスチレンスルホン酸、ナフタレンスルホン酸ホルマリン縮合体等の高分子スルホン酸アニオン、置換又は無置換の芳香族スルホン酸アニオン、ビスサルチレートホウ素、ビスカテコレートホウ素等のホウ素化合物アニオン、あるいはモリブドリン酸、タングストリン酸、タングストモリブドリン酸等のヘテロポリ酸アニオン、イミド酸等が挙げられる。ドーパントは1種あるいは2種以上を組み合わせて使用することができる。 Specific examples of the dopant include halogen anions such as iodine, bromine and chlorine, hexafluorolin, hexafluoroarsenic, hexafluoroantimony, tetrafluoroboron, halide anions such as perchloric acid, methanesulfonic acid, dodecylsulfonic acid and the like. Alkyl group-substituted organic sulfonate anions, cyclic sulfonate anions such as camphor sulfonate, benzene sulfonate, para-toluene sulfonate, dodecyl benzene sulfonate, benzene disulfonate, etc. Alkyl group substituted or unsubstituted anions of naphthalenesulfonic acid substituted with sulfonic acid groups 1 to 3, such as 2-naphthalenesulfonic acid and 1,7-naphthalenedisulfonic acid, anthracenesulfonic acid, anthraquinonesulfonic acid, Alkyl group-substituted or unsubstituted biphenyl sulfonate ions such as alkyl biphenyl sulfonic acid and biphenyl disulfonic acid, polymer sulfonate anions such as polystyrene sulfonate and naphthalene sulfonate formalin condensate, substituted or unsubstituted aromatic sulfonate anions And boron compound anions such as bis-saltylate boron and biscatecholate boron, heteropoly acid anions such as molybdophosphoric acid, tungstophosphoric acid, tungstomolybdophosphoric acid, and imido acid. A dopant can be used 1 type or in combination of 2 or more types.
 ドーパントの脱離を抑制するため、無機アニオンよりも有機酸アニオンであることが望ましく、熱分解などが起きにくいことが望ましい。また高分子化合物のドーパントよりも低分子化合物のドーパントである方が本発明の酸化還元対に対する触媒活性が高いため望ましい。具体的には、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸、ナフタレンスルホン酸等が挙げられる。 In order to suppress the desorption of the dopant, it is desirable that it is an organic acid anion rather than an inorganic anion, and it is desirable that thermal decomposition does not occur easily. Further, it is desirable that the dopant of the low molecular compound is higher than the dopant of the high molecular compound because the catalytic activity for the redox couple of the present invention is high. Specific examples include p-toluenesulfonic acid, dodecylbenzenesulfonic acid, naphthalenesulfonic acid, and the like.
 導電性高分子触媒層におけるドーパントの使用量は、使用するドーパント種により最適値が異なるため特に限定されないが、好ましくは5~60質量%、さらに好ましくは10~45質量%である。 The amount of dopant used in the conductive polymer catalyst layer is not particularly limited because the optimum value varies depending on the type of dopant used, but is preferably 5 to 60% by mass, more preferably 10 to 45% by mass.
 このようなドーパントは導電性高分子触媒層を形成させる際に、導電性高分子のモノマーと共存させておくことができる。 Such a dopant can coexist with a monomer of a conductive polymer when forming the conductive polymer catalyst layer.
 上記導電性高分子触媒層6は、電極基材7上に形成される。形成方法は特に限定されないが、例えば、導電性高分子を溶融状態もしくは溶解させた溶液から成膜する方法が挙げられる。 The conductive polymer catalyst layer 6 is formed on the electrode substrate 7. The formation method is not particularly limited, and examples thereof include a method of forming a film from a solution in which a conductive polymer is in a molten state or dissolved.
 また、より大きな表面積を有する多孔質状態であることが望ましいため、例えば導電性高分子のモノマーを含む溶液と電極基材7を接触させた状態で、モノマーを化学的もしくは電気化学的に酸化重合する方法が好適に用いられる。 In addition, since it is desirable that the porous state has a larger surface area, for example, the monomer is chemically or electrochemically oxidatively polymerized in a state where the solution containing the conductive polymer monomer and the electrode substrate 7 are in contact with each other. Is preferably used.
 また、導電性高分子粉末を、ペースト状、もしくはエマルジョン状、もしくは高分子溶液およびバインダーを含む混合物形態に処理した後に、電極基材7上へスクリーン印刷、スプレー塗布、刷毛塗りなどにより形成させる方法も使用可能である。 Also, a method of forming the conductive polymer powder on the electrode substrate 7 by screen printing, spray coating, brush coating, etc. after processing the conductive polymer powder into a paste or emulsion or a mixture containing a polymer solution and a binder. Can also be used.
 上記導電性高分子触媒層6の形成方法としては、上記の中でも電解重合法もしくは化学重合法が好ましく、特に化学重合法が好ましい。化学重合法は、酸化剤を用いて重合モノマーを酸化重合させる方法である。一方、電解重合法は、重合モノマーを含む溶液中で電解酸化を行うことにより、金属などの電極上に導電性高分子の膜を形成する方法である。 Among the above, the method for forming the conductive polymer catalyst layer 6 is preferably an electrolytic polymerization method or a chemical polymerization method, and particularly preferably a chemical polymerization method. The chemical polymerization method is a method in which a polymerization monomer is oxidatively polymerized using an oxidizing agent. On the other hand, the electrolytic polymerization method is a method of forming a conductive polymer film on an electrode made of metal or the like by performing electrolytic oxidation in a solution containing a polymerization monomer.
 化学重合法に用いられる酸化剤としては、ヨウ素、臭素、ヨウ化臭素、二酸化塩素、ヨウ素酸、過ヨウ素酸、亜塩素酸等のハロゲン化物、五フッ化アンチモン、五塩化リン、五フッ化リン、塩化アルミニウム、塩化モリブデン等の金属ハロゲン化物、過マンガン酸塩、重クロム酸塩、無水クロム酸、第二鉄塩、第二銅塩等の高原子価金属塩、硫酸、硝酸、トリフルオロメタン硫酸等のプロトン酸、三酸化硫黄、二酸化窒素等の酸素化合物、過酸化水素、過硫酸アンモニウム、過ホウ酸ナトリウム等のペルオキソ酸又はその塩、あるいはモリブドリン酸、タングストリン酸、タングストモリブドリン酸等のヘテロポリ酸又はその塩などがあり、これらの少なくとも1種を用いることができる。 The oxidizing agent used in the chemical polymerization method includes iodine, bromine, bromine iodide, chlorine dioxide, iodic acid, periodic acid, chlorous acid and other halides, antimony pentafluoride, phosphorus pentachloride, phosphorus pentafluoride. , Metal halides such as aluminum chloride, molybdenum chloride, permanganate, dichromate, chromic anhydride, ferric salt, cupric salt and other high-valent metal salts, sulfuric acid, nitric acid, trifluoromethanesulfuric acid Protonic acids such as oxygen compounds such as sulfur trioxide and nitrogen dioxide, peroxo acids such as hydrogen peroxide, ammonium persulfate and sodium perborate or salts thereof, or molybdophosphoric acid, tungstophosphoric acid, tungstomolybdophosphoric acid There are heteropolyacids or salts thereof, and at least one of them can be used.
 上記の化学重合法は大量生産向きであるものの、芳香族化合物モノマーを含有する溶液中で酸化剤と作用させると、得られる高分子は粒子状もしくは塊状の形態になってしまい、所望の多孔性を発現させ、電極形状に成型することは困難である。したがって、電極基材7を芳香族化合物モノマーもしくは酸化剤のどちらかを含む溶液に浸漬するか、それらに該溶液を塗布した後、続いてもう一方の成分を溶解させた溶液に浸漬もしくは塗布するなどして、上記電極基材7表面で重合が進行するようにし、導電性高分子を形成させることが望ましい。 Although the above chemical polymerization method is suitable for mass production, when the polymer is reacted with an oxidizing agent in a solution containing an aromatic compound monomer, the resulting polymer is in the form of particles or lumps, and the desired porosity It is difficult to develop and form into an electrode shape. Therefore, the electrode substrate 7 is immersed in a solution containing either an aromatic compound monomer or an oxidizing agent, or after applying the solution to them, the electrode substrate 7 is subsequently immersed or applied in a solution in which the other component is dissolved. For example, it is desirable that the polymerization proceeds on the surface of the electrode substrate 7 to form a conductive polymer.
 もしくは、モノマーと重合開始剤を混ぜた溶液に重合速度を低下させる添加剤を加え、室温で重合が起こらない条件下で膜化した後、加熱反応させることで多孔質導電性高分子膜を作製することができる。膜化の方法については特に限定されないが、例としてスピンコート法、キャスト法、スキージ法、スクリーンプリント法などが挙げられる。 Alternatively, an additive that lowers the polymerization rate is added to the mixed solution of the monomer and polymerization initiator, and after forming into a film under conditions where polymerization does not occur at room temperature, a porous conductive polymer film is produced by heating reaction. can do. The method for forming a film is not particularly limited, and examples thereof include a spin coating method, a casting method, a squeegee method, and a screen printing method.
 重合速度を低下させる添加剤については、公知文献「Synthetic Metals」66,(1994)263によると、重合開始剤が高原子価金属塩、例えばFe(III)塩の場合、Fe(III)塩の酸化電位がpHによって変化するため、塩基を加えることで重合速度を遅くさせることができる。塩基の例としては、イミダゾールやジメチルスルホキシドなどが挙げられる。 Regarding the additive for reducing the polymerization rate, according to the publicly known document “Synthetic Metals” 66, (1994) 263, when the polymerization initiator is a high-valent metal salt, for example, Fe (III) salt, Fe (III) salt Since the oxidation potential changes depending on the pH, the polymerization rate can be slowed by adding a base. Examples of the base include imidazole and dimethyl sulfoxide.
 上記モノマーと重合開始剤、添加剤を溶解・混合させる溶媒は、用いる化合物を溶解し、電極基材7および重合物を溶解しないものであれば特に制限はないが、例えばメタノール、エタノール、プロパノール、ノルマルブタノールなどのアルコール類が挙げられる。 The solvent for dissolving / mixing the monomer, the polymerization initiator, and the additive is not particularly limited as long as it dissolves the compound to be used and does not dissolve the electrode substrate 7 and the polymer. For example, methanol, ethanol, propanol, Examples include alcohols such as normal butanol.
 上記モノマーと重合開始剤、添加剤の混合比は、用いる化合物、目的とする重合度、重合速度により変化するが、モノマーに対するモル比、すなわちモノマー:重合開始剤が1:0.3から1:10の間、重合開始剤に対するモル比、すなわち重合開始剤:添加剤が1:0.05から1:4の間が好ましい。 The mixing ratio of the monomer, the polymerization initiator, and the additive varies depending on the compound used, the target degree of polymerization, and the polymerization rate, but the molar ratio to the monomer, that is, the monomer: polymerization initiator is from 1: 0.3 to 1: Preferably, the molar ratio to the polymerization initiator is between 10, ie, the polymerization initiator: additive is between 1: 0.05 and 1: 4.
 また、上記混合溶液を塗布した後加熱重合する場合の加熱条件は、用いるモノマー、重合触媒、添加剤の種類およびそれらの混合比、濃度、塗布膜厚などにより異なるが、好適な条件としては、空気中加熱で加熱温度が25℃から120℃、加熱時間が1分から12時間の間である。 In addition, the heating conditions in the case of heat polymerization after coating the above mixed solution vary depending on the monomer used, the polymerization catalyst, the type of additives and their mixing ratio, concentration, coating film thickness, etc. When heated in air, the heating temperature is 25 ° C. to 120 ° C., and the heating time is between 1 minute and 12 hours.
 また、別途作製した導電性高分子粒子分散液やペーストなどを用いて、電極基材7もしくは導電膜付きの電極基材表面に導電性高分子膜を形成後、上記化学重合を行って導電性高分子粒子を成長させる方法を用いることもできる。 Further, using a separately prepared conductive polymer particle dispersion or paste, a conductive polymer film is formed on the surface of the electrode substrate 7 or the electrode substrate with the conductive film, and then subjected to the above chemical polymerization to conduct the conductivity. A method of growing polymer particles can also be used.
 対向電極9における触媒層6の厚さは、5nm~5μmが適当であり、特に好ましくは50nm~2μmである。 The thickness of the catalyst layer 6 in the counter electrode 9 is suitably 5 nm to 5 μm, particularly preferably 50 nm to 2 μm.
 以上説明したような各構成要素材料を準備した後、従来公知の方法で金属酸化物半導体電極と触媒電極とを電解質を介して対向させるように組み上げ、光電変換素子10を完成させることができる。 After preparing each constituent material as described above, the photoelectric conversion element 10 can be completed by assembling the metal oxide semiconductor electrode and the catalyst electrode so as to face each other through an electrolyte by a conventionally known method.
 以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下において「%」は、特に指定しない限り、質量基準とする。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples. In the following, “%” is based on mass unless otherwise specified.
[実施例1]
[多孔質金属酸化物半導体の作製]
 ガラスからなる透明基板1上にフッ素をドープしたSnOからなる透明導電膜2を真空蒸着により形成した透明導電膜2上に、以下の方法で多孔質金属酸化物半導体層3を形成した。
[Example 1]
[Preparation of porous metal oxide semiconductor]
A porous metal oxide semiconductor layer 3 was formed on a transparent conductive film 2 formed by vacuum deposition of a transparent conductive film 2 made of SnO 2 doped with fluorine on a transparent substrate 1 made of glass.
 透明基板1上に透明導電膜2が形成された電極基体8としてFTOガラス(日本板硝子株式会社製)を用い、その表面に市販の酸化チタンペースト(触媒化成株式会社製、商品名TSP-18NR、粒子サイズ20nm)をスクリーン印刷法で6μm程度の膜厚、5mm×10mm程度の面積で、透明導電膜2側に印刷し、さらにその上に同面積で、市販の酸化チタンペースト(触媒化成株式会社製、商品名TSP-400C、粒子サイズ400nm)をスクリーン印刷法で、4μm程度の膜厚に塗布し、500℃で30分間、大気中で焼成した。その結果、膜厚が10μm程度の酸化チタン膜(多孔質金属化半導体膜3)が得られた。 FTO glass (manufactured by Nippon Sheet Glass Co., Ltd.) is used as the electrode substrate 8 having the transparent conductive film 2 formed on the transparent substrate 1, and a commercially available titanium oxide paste (manufactured by Catalyst Kasei Co., Ltd., trade name TSP-18NR, A particle size of 20 nm) is printed on the transparent conductive film 2 side by a screen printing method with a film thickness of about 6 μm and an area of about 5 mm × 10 mm, and a commercially available titanium oxide paste (Catalytic Chemical Co., Ltd.) with the same area on the surface. (Product name: TSP-400C, particle size: 400 nm) was applied to a film thickness of about 4 μm by screen printing, and baked in the air at 500 ° C. for 30 minutes. As a result, a titanium oxide film (porous metallized semiconductor film 3) having a thickness of about 10 μm was obtained.
[増感色素の吸着]
 増感色素4として、一般にN719色素と呼ばれるビス(4-カルボキシ-4’-テトラブチルアンモニウムカルボキシ-2、2’-ビピリジン)ジイソチオシアネートルテニウム錯体(Solaronix社製)を使用した。上記多孔質酸化チタン半導体電極を色素濃度0.4mmol/Lの無水エタノール溶液中に浸漬し、遮光下で1晩静置した。その後無水エタノールにて余分な色素を洗浄してから風乾することで太陽電池の半導体電極を作製した。
[Adsorption of sensitizing dye]
As the sensitizing dye 4, bis (4-carboxy-4′-tetrabutylammoniumcarboxy-2,2′-bipyridine) diisothiocyanate ruthenium complex (manufactured by Solaronix) generally called N719 dye was used. The porous titanium oxide semiconductor electrode was immersed in an absolute ethanol solution having a pigment concentration of 0.4 mmol / L and allowed to stand overnight under light shielding. Thereafter, excess pigment was washed with absolute ethanol and then air-dried to produce a semiconductor electrode of a solar cell.
[電解液の調整]
 次に、電解質層5を構成する電解液を調製した。溶媒として1-メチル-3-エチルイミダゾリウムビス(フルオロスルホニル)イミド(EMIm-FSI、第一工業製薬(株)製の製品名エレクセルIL-110)を用い、それに0.8mol/Lの5,5’‐ジチオビス(1-n-ブチル1H-テトラゾール)(BTZT)、0.1mol/Lの1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:リチウム塩、(Li-BTZT)、1.5mol/Lの1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:1-メチル-3-エチルイミダゾリウム塩(EMIm-BTZT)、0.5mol/LのN-メチルベンズイミダゾール(NMBI)を溶かすことにより作製した。なお、上記の化合物は市販の材料、もしくは市販の材料から公知の方法や上記合成例に従い合成したものを用いた。
[Electrolyte adjustment]
Next, an electrolytic solution constituting the electrolyte layer 5 was prepared. 1-Methyl-3-ethylimidazolium bis (fluorosulfonyl) imide (EMIm-FSI, product name Elexel IL-110 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was used as a solvent, and 0.8 mol / L of 5, 5′-dithiobis (1-n-butyl 1H-tetrazole) (BTZT) 2 , 0.1 mol / L 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: lithium salt, (Li -BTZT), 1.5 mol / L of 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: 1-methyl-3-ethylimidazolium salt (EMIm-BTZT), 0.5 mol / L Prepared by dissolving L N-methylbenzimidazole (NMBI). In addition, said compound used what was synthesize | combined according to the well-known method or the said synthesis example from commercially available material or commercially available material.
[対向電極(対極)の作製]
 対向電極9として、p-トルエンスルホン酸がドープされたポリ(3,4-エチレンジオキシチオフェン)(以下PEDOT-PTS)対極を使用した。電極基体7としてFTO被膜付きガラス(旭硝子製、~10Ω/□)を用い、有機溶媒中で超音波洗浄した電極基体に、3,4-エチレンジオキシチオフェン、トリス-p-トルエンスルホン酸鉄(III)、ジメチルスルホキシドを1:8:1の重量比でn-ブタノールに溶解させた反応溶液をスピンコート法にて塗布した。スピンコートの回転条件は2000rpmで30秒の条件で行い、溶液における3,4-エチレンジオキシチオフェンの濃度は0.48Mであった。つづいて、溶液を塗布した電極基板を110℃に保持した恒温槽に入れ、5分間加熱させることで重合後、メタノールで洗浄することで対向電極を作製した。作製したPEDOT薄膜の膜厚はそれぞれ約0.3μmであった。
[Production of counter electrode (counter electrode)]
As the counter electrode 9, a poly (3,4-ethylenedioxythiophene) (hereinafter referred to as PEDOT-PTS) counter electrode doped with p-toluenesulfonic acid was used. As the electrode substrate 7, FTO-coated glass (manufactured by Asahi Glass Co., Ltd., ˜10Ω / □) was used, and the electrode substrate cleaned ultrasonically in an organic solvent was subjected to 3,4-ethylenedioxythiophene, iron tris-p-toluenesulfonate ( III) A reaction solution in which dimethyl sulfoxide was dissolved in n-butanol at a weight ratio of 1: 8: 1 was applied by spin coating. The spin coating was performed at 2000 rpm for 30 seconds, and the concentration of 3,4-ethylenedioxythiophene in the solution was 0.48M. Subsequently, the electrode substrate coated with the solution was placed in a thermostat kept at 110 ° C., heated for 5 minutes, polymerized, and then washed with methanol to produce a counter electrode. The film thickness of the produced PEDOT thin film was about 0.3 μm.
[太陽電池セルの組み立て]
 上記のように作製した対向電極9に電気ドリルで1mmφの電解液注入孔を適当な位置に設けたのち、上記のように作製した透明導電膜2を具備した透明基板1上の酸化チタン膜3からなる電極基体8(作用極)と、対向電極の間に熱可塑性シート(ハイミラン1652:三井・デュポンポリケミカル製、膜厚25μm)を挟み、熱圧着する事により両電極を接着した。次に、前記のように作製した電解液を両電極間に注入した後、電解液注入孔上に1mm厚のガラス板を置き、その上にUVシール剤(スリーボンド社製の開発品 31X-727)を塗布し、UV光を100mW/cmの強度で30秒照射することで封止を実施し、太陽電池素子を作製した。
[Assembly of solar cells]
The counter electrode 9 produced as described above is provided with a 1 mmφ electrolyte injection hole at an appropriate position with an electric drill, and then the titanium oxide film 3 on the transparent substrate 1 provided with the transparent conductive film 2 produced as described above. A thermoplastic sheet (Himiran 1652: made by Mitsui DuPont Polychemical Co., Ltd., film thickness 25 μm) was sandwiched between the electrode substrate 8 (working electrode) made of the above and the counter electrode, and both electrodes were bonded by thermocompression bonding. Next, after the electrolyte prepared as described above was injected between both electrodes, a 1 mm thick glass plate was placed on the electrolyte injection hole, and a UV sealant (developed product 31X-727 manufactured by ThreeBond Co., Ltd.) was placed thereon. ) Was applied, and UV light was applied at an intensity of 100 mW / cm 2 for 30 seconds to perform sealing, thereby producing a solar cell element.
[実施例2]
 電解質層5として、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:1-メチル-3-エチルイミダゾリウム塩(EMIm-BTZT)の代わりに1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:1-メチル-1-プロピルピロリジニウム塩(MPPy-BTZT)を使用した以外は実施例1と同様に太陽電池素子を作製した。
[Example 2]
As the electrolyte layer 5, 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: 1-n-butyl-5 instead of 1-methyl-3-ethylimidazolium salt (EMIm-BTZT) A solar cell element was produced in the same manner as in Example 1 except that -mercapto-1,2,3,4-tetrazole: 1-methyl-1-propylpyrrolidinium salt (MPPy-BTZT) was used.
[実施例3]
 電解質層5として、1-メチル-5-メルカプト-1,2,3,4-テトラゾール:1-メチル-3-エチルイミダゾリウム塩(EMIm-MTZT)の代わりに1-メチル-5-メルカプト-1,2,3,4-テトラゾール:1,2-ジメチル-3-プロピルイミダゾリウム塩(DMPIm-BTZT)を使用した以外は実施例1と同様に太陽電池素子を作製した。
[Example 3]
As the electrolyte layer 5, instead of 1-methyl-5-mercapto-1,2,3,4-tetrazole: 1-methyl-3-ethylimidazolium salt (EMIm-MTZT), 1-methyl-5-mercapto-1 , 2,3,4-tetrazole: 1,2-dimethyl-3-propylimidazolium salt (DMPIm-BTZT) was used to produce a solar cell element in the same manner as in Example 1.
[実施例4]
 電解質層5として、5,5’-ジチオビス(1-n-ブチル-1H-テトラゾール)(BTZT)の濃度を0.8mol/Lから1.6mol/Lに変更した以外は実施例1と同様に太陽電池素子を作製した。
[Example 4]
As electrolyte layer 5, the same as Example 1 except that the concentration of 5,5′-dithiobis (1-n-butyl-1H-tetrazole) (BTZT) 2 was changed from 0.8 mol / L to 1.6 mol / L A solar cell element was prepared.
[実施例5]
 電解質層5として、3-メトキシプロピオニトリルを溶媒として用い、それに0.4Mの5,5’-ジチオビス(1-n-ブチル-1H-テトラゾール)(BTZT)、0.05mol/Lの1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:リチウム塩(Li-BTZT)、0.75mol/Lの1-n-ブチル-5-メルカプト-1,2,3,4-テトラメチルアンモニウム塩(TMA-BTZT)、0.2mol/Lのt-ブチルピリジン(tBP)を溶解させたものを使用した以外は実施例1と同様に太陽電池素子を作製した。
[Example 5]
As the electrolyte layer 5, 3-methoxypropionitrile was used as a solvent, and 0.4 M 5,5′-dithiobis (1-n-butyl-1H-tetrazole) (BTZT) 2 , 0.05 mol / L of 1 -N-butyl-5-mercapto-1,2,3,4-tetrazole: lithium salt (Li-BTZT), 0.75 mol / L 1-n-butyl-5-mercapto-1,2,3,4 A solar cell element was produced in the same manner as in Example 1 except that tetramethylammonium salt (TMA-BTZT) and 0.2 mol / L t-butylpyridine (tBP) were used.
[実施例6]
 電解質層5として、1-n-ブチル-5-メルカプト-1,2,3,4-テトラメチルアンモニウム塩(TMA-BTZT)のかわりに1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:1-メチル-3-エチルイミダゾリウム塩(EMIm-BTZT)を使用した以外は実施例5と同様に太陽電池素子を作製した。
[Example 6]
As the electrolyte layer 5, instead of 1-n-butyl-5-mercapto-1,2,3,4-tetramethylammonium salt (TMA-BTZT), 1-n-butyl-5-mercapto-1,2,3 , 4-tetrazole: 1-methyl-3-ethylimidazolium salt (EMIm-BTZT) was used to produce a solar cell element in the same manner as in Example 5.
[実施例7]
 電解質層5として、1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:テトラメチルアンモニウム塩(TMA-BTZT)の濃度を0.75mol/Lから0.35mol/Lに変更した以外は実施例5と同様に太陽電池素子を作製した。
[Example 7]
As electrolyte layer 5, the concentration of 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: tetramethylammonium salt (TMA-BTZT) was changed from 0.75 mol / L to 0.35 mol / L. A solar cell element was produced in the same manner as in Example 5 except that.
[実施例8]
 電解質層5として、1-n-ブチル-5-メルカプト-1,2,3,4-テトラメチルアンモニウム塩(TMA-BTZT)の濃度を0.75mol/Lから0.95mol/Lに、5,5’-ジチオビス(1-n-ブチル-1H-テトラゾール)(BTZT)の濃度を0.4Mから1.0Mに変更した以外は実施例5と同様に太陽電池素子を作製した。
[Example 8]
As the electrolyte layer 5, the concentration of 1-n-butyl-5-mercapto-1,2,3,4-tetramethylammonium salt (TMA-BTZT) was changed from 0.75 mol / L to 0.95 mol / L, A solar cell element was produced in the same manner as in Example 5 except that the concentration of 5′-dithiobis (1-n-butyl-1H-tetrazole) (BTZT) 2 was changed from 0.4 M to 1.0 M.
[実施例9]
 増感色素4として、N719色素に代えて次式(8)で表されるヘプタメチンシアニン色素を用い、電解質層5として、3-メトキシプロピオニトリルを溶媒として用い、それに0.1Mの5,5’‐ジチオビス(1-n-ブチル-1H-テトラゾール)(BTZT)、0.05mol/Lの1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:リチウム塩(Li-BTZT)、0.05mol/Lの1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:1-メチル-3-エチルイミダゾリウム塩(EMIm-BTZT)を溶解させたものを使用した以外は実施例1と同様に太陽電池素子を作製した。
Figure JPOXMLDOC01-appb-C000008
[Example 9]
As the sensitizing dye 4, a heptamethine cyanine dye represented by the following formula (8) is used in place of the N719 dye, and 3-methoxypropionitrile is used as a solvent as the electrolyte layer 5, and 0.1M of 5, 5′-dithiobis (1-n-butyl-1H-tetrazole) (BTZT) 2 , 0.05 mol / L 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: lithium salt (Li -BTZT), 0.05 mol / L of 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: 1-methyl-3-ethylimidazolium salt (EMIm-BTZT) dissolved A solar cell element was produced in the same manner as in Example 1 except that was used.
Figure JPOXMLDOC01-appb-C000008
[比較例1]
 電解質層5として、1-メチル-3-エチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(EMIm-FSI)を溶媒として用い、それに0.2mol/Lのヨウ素、2.0mol/Lの1,2-ジメチル-3-エチルイミダゾリウムアイオダイド(DMPIm-I)、0.5mol/LのN-メチルベンズイミダゾール(NMBI)を溶解させたものを使用した以外は実施例1と同様に太陽電池素子を作製した。
[Comparative Example 1]
As the electrolyte layer 5, 1-methyl-3-ethylimidazolium bis (trifluoromethanesulfonyl) imide (EMIm-FSI) was used as a solvent, 0.2 mol / L iodine, 2.0 mol / L 1,2- A solar cell element was produced in the same manner as in Example 1 except that dimethyl-3-ethylimidazolium iodide (DMPIm-I) and 0.5 mol / L N-methylbenzimidazole (NMBI) were used. did.
[比較例2]
 電解質層5として、1-メチル-3-エチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(EMIm-FSI)を溶媒として用い、それに0.8mol/Lの5,5’‐ジチオビス(1-メチル-1H-テトラゾール)(MTZT)、0.1mol/Lの1-メチル-5-メルカプト-1,2,3,4-テトラゾール:リチウム塩、(Li-MTZT)1.5mol/Lの1-メチル-5-メルカプト-1,2,3,4-テトラゾール:1-メチル-3-エチルイミダゾリウム塩(EMIm-MTZT)、0.5mol/LのN-メチルベンズイミダゾール(NMBI)を溶かしたものを使用した以外は実施例1と同様に太陽電池素子を作製した。
[Comparative Example 2]
As the electrolyte layer 5, 1-methyl-3-ethylimidazolium bis (trifluoromethanesulfonyl) imide (EMIm-FSI) was used as a solvent, and 0.8 mol / L of 5,5′-dithiobis (1-methyl-1H) was used. -Tetrazole) (MTZT) 2 , 0.1 mol / L of 1-methyl-5-mercapto-1,2,3,4-tetrazole: lithium salt, (Li-MTZT) 1.5 mol / L of 1-methyl- 5-mercapto-1,2,3,4-tetrazole: 1-methyl-3-ethylimidazolium salt (EMIm-MTZT) dissolved in 0.5 mol / L N-methylbenzimidazole (NMBI) A solar cell element was produced in the same manner as in Example 1 except that.
[比較例3]
 対向電極9として、スパッタ法によりITO導電性ガラス上にスパッタ法によりPtを蒸着したPt対極(ジオマテック製)を使用した以外は比較例1と同様に太陽電池素子を作製した。
[Comparative Example 3]
As a counter electrode 9, a solar cell element was produced in the same manner as in Comparative Example 1 except that a Pt counter electrode (manufactured by Geomatec) obtained by depositing Pt on ITO conductive glass by sputtering was used.
[比較例4]
 電解質層5として、1-メチル-3-エチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(EMIm-FSI)を溶媒として用い、それに0.5mol/Lの1-メチル-5-メルカプト-1,2,3,4-テトラゾール:テトラメチルアンモニウム塩、0.5mol/Lの2,2’-ジチオビス(5-メチル-1,3,4-チアジアゾール)、0.5mol/LのN-メチルベンズイミダゾール(NMBI)を溶解させたものを使用した以外は実施例1と同様に太陽電池素子を作製した。
[Comparative Example 4]
As the electrolyte layer 5, 1-methyl-3-ethylimidazolium bis (trifluoromethanesulfonyl) imide (EMIm-FSI) was used as a solvent, and 0.5 mol / L of 1-methyl-5-mercapto-1,2, 3,4-tetrazole: tetramethylammonium salt, 0.5 mol / L 2,2′-dithiobis (5-methyl-1,3,4-thiadiazole), 0.5 mol / L N-methylbenzimidazole (NMBI) ) Was used to prepare a solar cell element in the same manner as in Example 1.
[比較例5]
 電解質層5として、1-メチル-3-エチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(EMIm-FSI)を溶媒として用い、それに2mol/Lの5-メチル-2-メルカプト-1,3,4-チアジアゾール:1-メチル-3-エチルイミダゾリウム塩、0.2Mの2,2’-ジチオビス(5-メチル-1,3,4-チアジアゾール)、0.5mol/LのN-メチルベンズイミダゾール(NMBI)を溶解させたものを使用した以外は実施例1と同様に太陽電池素子を作製した。
[Comparative Example 5]
As the electrolyte layer 5, 1-methyl-3-ethylimidazolium bis (trifluoromethanesulfonyl) imide (EMIm-FSI) was used as a solvent, and 2 mol / L of 5-methyl-2-mercapto-1,3,4- Thiadiazole: 1-methyl-3-ethylimidazolium salt, 0.2 M 2,2′-dithiobis (5-methyl-1,3,4-thiadiazole), 0.5 mol / L N-methylbenzimidazole (NMBI) ) Was used to prepare a solar cell element in the same manner as in Example 1.
[比較例6]
 電解質層5として、3-メトキシプロピオニトリルを溶媒として用い、それに0.15mol/Lのヨウ素、0.8mol/Lの1,2-ジメチル-3-エチルイミダゾリウムアイオダイド(DMPIm-I)、0.2mol/Lのt-ブチルピリジン(tBP)を溶解させたものを使用した以外は実施例5と同様に太陽電池素子を作製した。
[Comparative Example 6]
As the electrolyte layer 5, 3-methoxypropionitrile was used as a solvent, and 0.15 mol / L iodine, 0.8 mol / L 1,2-dimethyl-3-ethylimidazolium iodide (DMPIm-I), A solar cell element was produced in the same manner as in Example 5 except that 0.2 mol / L t-butylpyridine (tBP) dissolved was used.
[比較例7]
 電解質層5として、3-メトキシプロピオニトリルを溶媒として用い、それに0.4Mの5,5’-ジチオビス(1-メチル-1H-テトラゾール)(MTZT)、0.05mol/Lの1-メチル-5-メルカプト-1,2,3,4-テトラゾール:リチウム塩(Li-MTZT)、0.35mol/Lの1-メチル-5-メルカプト-1,2,3,4-テトラメチルアンモニウム塩(TMA-BTZT)、0.2mol/Lのt-ブチルピリジン(tBP)を溶解させたものを使用した以外は実施例5と同様に太陽電池素子を作製した。
[Comparative Example 7]
As the electrolyte layer 5, 3-methoxypropionitrile was used as a solvent, and 0.4 M 5,5′-dithiobis (1-methyl-1H-tetrazole) (MTZT) 2 , 0.05 mol / L 1-methyl was used. -5-mercapto-1,2,3,4-tetrazole: lithium salt (Li-MTZT), 0.35 mol / L 1-methyl-5-mercapto-1,2,3,4-tetramethylammonium salt ( A solar cell element was produced in the same manner as in Example 5 except that TMA-BTZT) and 0.2 mol / L t-butylpyridine (tBP) dissolved therein were used.
[比較例8]
 電解質層5として、3-メトキシプロピオニトリルを溶媒として用い、それに0.1Mの5,5’-ジチオビス(1-メチル-1H-テトラゾール)(MTZT)、0.05mol/Lの1-メチル-5-メルカプト-1,2,3,4-テトラゾール:リチウム塩(Li-MTZT)、0.05mol/Lの1-メチル-5-メルカプト-1,2,3,4-テトラゾール:1-メチル-3-エチルイミダゾリウム塩(EMIm-MTZT)を溶解させたものを使用した以外は実施例9と同様に太陽電池素子を作製した。
[Comparative Example 8]
As the electrolyte layer 5, 3-methoxypropionitrile was used as a solvent, and 0.1 M 5,5′-dithiobis (1-methyl-1H-tetrazole) (MTZT) 2 , 0.05 mol / L 1-methyl was used as the electrolyte layer 5. -5-mercapto-1,2,3,4-tetrazole: lithium salt (Li-MTZT), 0.05 mol / L 1-methyl-5-mercapto-1,2,3,4-tetrazole: 1-methyl A solar cell element was produced in the same manner as in Example 9 except that a solution in which -3-ethylimidazolium salt (EMIm-MTZT) was dissolved was used.
[比較例9]
 電解質層5として、3-メトキシプロピオニトリルを溶媒として用い、それに0.1Mの5,5’-ジチオビス(1-sec-ブチル-1H-テトラゾール)(sBTZT)、0.05mol/Lの1-sec-ブチル-5-メルカプト-1,2,3,4-テトラゾール:リチウム塩(Li-sBTZT)、0.05mol/Lの1-sec-ブチル-5-メルカプト-1,2,3,4-テトラゾール:1-メチル-3-エチルイミダゾリウム塩(EMIm-sBTZT)を溶解させたものを使用した以外は実施例9と同様に太陽電池素子を作製した。
[Comparative Example 9]
As the electrolyte layer 5, 3-methoxypropionitrile was used as a solvent, and 0.1 M 5,5′-dithiobis (1-sec-butyl-1H-tetrazole) (sBTTZT) 2 , 0.05 mol / L of 1 -Sec-butyl-5-mercapto-1,2,3,4-tetrazole: lithium salt (Li-sBTZT), 0.05 mol / L 1-sec-butyl-5-mercapto-1,2,3,4 -Tetrazole: A solar cell element was produced in the same manner as in Example 9 except that 1-methyl-3-ethylimidazolium salt (EMIm-sBTTZT) was used.
 上記実施例・比較例で使用した酸化還元対を以下の方法で合成した。但し、合成法はこれらに限定されない。 The oxidation-reduction pairs used in the above examples and comparative examples were synthesized by the following method. However, the synthesis method is not limited to these.
[製造例1](実施例1~9・比較例3の酸化還元対前駆体(1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール)の合成)
 n-ブチルイソチオシアナート3.84g(33.3mmol)とアジ化ナトリウム3.25g(50.0mmol)を純水25ml中で5時間反応させた。反応後、ジエチルエーテルを用いて抽出を行い、不純物を除去した。水層を濃硫酸で酸性にした後(pH=1)、再度ジエチルエーテルを用いて抽出を三回行った。エーテル層を無水硫酸ナトリウムで乾燥した後、溶媒を除去し、収率75%(3.97g,25.1mmol)で目的物質の1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾールを得た。生成物の同定には高速液体クロマトグラフィー(条件:溶媒として、ヘキサン:2-プロパノール=95:5を流速1ml/minで流し、237nmの波長照射下で検出)を用いた。また、融点(m.p.)測定、IR分析、H-NMR及び13C-NMR分析も行った。測定条件及び結果を次に示す。
[Production Example 1] (Synthesis of redox couple precursors (1-n-butyl-5-mercapto-1,2,3,4-tetrazole) in Examples 1 to 9 and Comparative Example 3)
n-Butyl isothiocyanate (3.84 g, 33.3 mmol) and sodium azide (3.25 g, 50.0 mmol) were reacted in 25 ml of pure water for 5 hours. After the reaction, extraction was performed using diethyl ether to remove impurities. The aqueous layer was acidified with concentrated sulfuric acid (pH = 1), and extracted again with diethyl ether three times. The ether layer was dried over anhydrous sodium sulfate, the solvent was removed, and the target substance 1-n-butyl-5-mercapto-1,2,3,4 was obtained in a yield of 75% (3.97 g, 25.1 mmol). -Tetrazole was obtained. For identification of the product, high performance liquid chromatography (conditions: hexane: 2-propanol = 95: 5 as a solvent was passed at a flow rate of 1 ml / min and detection was performed under irradiation with a wavelength of 237 nm) was used. Melting point (mp) measurement, IR analysis, 1 H-NMR and 13 C-NMR analysis were also performed. The measurement conditions and results are shown below.
HPLC 4.0 min; m.p. = 37.5 ℃; IR (KBr) 2600 (-SH); 1H NMR (CDCl3) δ 0.97 (t, J = 7.18 Hz, 3H), 1.40 (sex, J = 7.18 Hz, 2H), 1.90 (quin, J = 7.18 Hz, 2H), 4.28 (t, J = 7.18 Hz, 2H), 14.0 (br s, 1H); 13C NMR (CDCl3) δ 13.51, 19.66, 30.00, 47.28, 163.77.  HPLC 4.0 min; mp = 37.5 ° C; IR (KBr) 2600 (-SH); 1 H NMR (CDCl 3 ) δ 0.97 (t, J = 7.18 Hz, 3H), 1.40 (sex, J = 7.18 Hz, 2H) , 1.90 (quin, J = 7.18 Hz, 2H), 4.28 (t, J = 7.18 Hz, 2H), 14.0 (br s, 1H); 13 C NMR (CDCl 3 ) δ 13.51, 19.66, 30.00, 47.28, 163.77 .
[製造例2](実施例1~9・比較例3の酸化還元対前駆体(1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:カリウム塩)の合成)
 上記製造例1で得られた1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール0.208g(1.31mmol)と炭酸カリウム0.0898g(0.650mmol)をメタノール15ml中、超音波照射下で1時間反応させた。とけ残った固体をろ過し、溶媒除去後、ジクロロメタンで洗浄し、乾燥させ、収率98%(0.2531g,1.29mmol)で目的物質の1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:カリウム塩を得た。生成物の融点測定及びH-NMR及び13C-NMR分析を行った結果を次に示す。
[Production Example 2] (Synthesis of redox couple precursors of Examples 1 to 9 and Comparative Example 3 (1-n-butyl-5-mercapto-1,2,3,4-tetrazole: potassium salt))
0.28 g (1.31 mmol) of 1-n-butyl-5-mercapto-1,2,3,4-tetrazole obtained in Preparation Example 1 and 0.0898 g (0.650 mmol) of potassium carbonate in 15 ml of methanol The mixture was reacted for 1 hour under ultrasonic irradiation. The remaining solid was filtered, and after removing the solvent, washed with dichloromethane, dried, and the target substance 1-n-butyl-5-mercapto-1,2, in a yield of 98% (0.2531 g, 1.29 mmol). , 3,4-tetrazole: potassium salt was obtained. The results of melting point measurement and 1 H-NMR and 13 C-NMR analysis of the product are shown below.
m.p. = 195.0 ℃; 1H NMR (CD3OD) δ 0.93 (t, J = 7.18 Hz, 3H), 1.34 (sex, J = 7.18 Hz, 2H), 1.82 (quin, J = 7.18 Hz, 2H), 4.24 (t, J = 7.18 Hz, 2H); 13C NMR (CD3OD) δ 12.68, 19.42, 30.63, 45.81, 165.63. mp = 195.0 ° C; 1 H NMR (CD 3 OD) δ 0.93 (t, J = 7.18 Hz, 3H), 1.34 (sex, J = 7.18 Hz, 2H), 1.82 (quin, J = 7.18 Hz, 2H), 4.24 (t, J = 7.18 Hz, 2H); 13 C NMR (CD 3 OD) δ 12.68, 19.42, 30.63, 45.81, 165.63.
[製造例3](実施例1~9・比較例3の酸化体(5,5’‐ジチオビス(1-n-ブチル1H-テトラゾール))の合成)
 上記製造例2で得られた1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:カリウム塩2.95g(15.0mmol)とヨウ素1.91g(7.50mmol)を、メタノール30ml中、室温で1時間反応させた。溶媒除去後、水10mlを加え、ジクロロメタンで分液(20ml×3回)を行い、ジクロロメタン層を回収し、シリカゲルカラムクロマトグラフィー(ジエチルエーテル:ヘキサン=5:1)にて濾過を行い、ヨウ素と原料のカリウム塩を取り除き、収率35%(1.65g,5.25mmol)で目的物質の5,5’‐ジチオビス(1-n-ブチル1H-テトラゾール)を得た。生成物の同定には高速液体クロマトグラフィー(条件:溶媒として、ヘキサン:2-プロパノール=95:5を流速1ml/minで流し、237nmの波長照射下で検出)を用いた。また、融点測定、H-NMR及び13C-NMR分析も行った。測定条件及び結果を次に示す。
[Production Example 3] (Synthesis of oxidized form (5,5'-dithiobis (1-n-butyl1H-tetrazole)) of Examples 1 to 9 and Comparative Example 3)
2.95 g (15.0 mmol) of 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: potassium salt obtained in Production Example 2 and 1.91 g (7.50 mmol) of iodine were The reaction was carried out in 30 ml of methanol at room temperature for 1 hour. After removal of the solvent, 10 ml of water was added, liquid separation was performed with dichloromethane (20 ml × 3 times), the dichloromethane layer was collected, filtered through silica gel column chromatography (diethyl ether: hexane = 5: 1), and iodine and The starting potassium salt was removed, and the target substance 5,5′-dithiobis (1-n-butyl 1H-tetrazole) was obtained in a yield of 35% (1.65 g, 5.25 mmol). For identification of the product, high performance liquid chromatography (conditions: hexane: 2-propanol = 95: 5 as a solvent was passed at a flow rate of 1 ml / min and detection was performed under irradiation with a wavelength of 237 nm) was used. Melting point measurement, 1 H-NMR and 13 C-NMR analysis were also performed. The measurement conditions and results are shown below.
HPLC 18.9 min; 1H NMR (CDCl3) δ 0.84 (t, J = 7.46 Hz, 6H) 1.23 (sex, J = 7.46 Hz, 4H) 1.78 (quin, J = 7.46 Hz, 4H), 4.35 (t, J = 7.46 Hz, 4H); 13C NMR (CDCl3) δ 13.39, 19.59, 31.47, 48.36, 151.75. HPLC 18.9 min; 1 H NMR (CDCl 3 ) δ 0.84 (t, J = 7.46 Hz, 6H) 1.23 (sex, J = 7.46 Hz, 4H) 1.78 (quin, J = 7.46 Hz, 4H), 4.35 (t, J = 7.46 Hz, 4H); 13 C NMR (CDCl 3 ) δ 13.39, 19.59, 31.47, 48.36, 151.75.
[製造例4](実施例1~9・比較例3の還元体(1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:リチウム塩)の合成)
 上記製造例1で得られた1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール0.404g(2.55mmol)と炭酸リチウム0.0922g(1.28mmol)をメタノール15ml中、超音波照射下で1時間反応させた。とけ残った固体をろ過し、溶媒除去後、ジクロロメタンで洗浄し、乾燥させ、収率34%(0.145g,0.867mmol)で目的物質の1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:リチウム塩を得た。生成物の融点測定、H-NMR及び13C-NMR分析を行った結果を次に示す。
[Production Example 4] (Synthesis of reduced products of Examples 1 to 9 and Comparative Example 3 (1-n-butyl-5-mercapto-1,2,3,4-tetrazole: lithium salt))
0.404 g (2.55 mmol) of 1-n-butyl-5-mercapto-1,2,3,4-tetrazole obtained in Preparation Example 1 and 0.0922 g (1.28 mmol) of lithium carbonate in 15 ml of methanol The mixture was reacted for 1 hour under ultrasonic irradiation. The remaining solid was filtered, and after removing the solvent, washed with dichloromethane, dried, and the target substance 1-n-butyl-5-mercapto-1,2, in a yield of 34% (0.145 g, 0.867 mmol). , 3,4-tetrazole: lithium salt was obtained. The results of melting point measurement, 1 H-NMR and 13 C-NMR analysis of the product are shown below.
m.p. = 93.0 ℃; 1H NMR (DMSO) δ 0.83 (t, J = 7.18 Hz, 3H), 1.19 (sex, J = 7.18 Hz, 2H), 1.63 (quin, J = 7.18 Hz, 2H), 4.02 (t, J = 7.18 Hz, 2H); 13C NMR (DMSO) δ 14.06, 19.75, 31.03, 45.05, 167.69. mp = 93.0 ° C; 1 H NMR (DMSO) δ 0.83 (t, J = 7.18 Hz, 3H), 1.19 (sex, J = 7.18 Hz, 2H), 1.63 (quin, J = 7.18 Hz, 2H), 4.02 ( t, J = 7.18 Hz, 2H); 13 C NMR (DMSO) δ 14.06, 19.75, 31.03, 45.05, 167.69.
[製造例5](実施例1,4,6,9・比較例3の還元体(1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:1-メチル-3-エチルイミダゾリウム塩)の合成)
 上記製造例1で得られた1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール0.174g(1.10mmol)をメタノール3mlに溶かしたものを水溶媒中の1-エチル-3-メチルイミダゾリウム炭酸塩(0.330g,1.00mmol,52.2%inHOw/w)に滴下していき、1分間反応させた。溶媒を除去し、収率98%(0.263g,0.980mmol)で目的物質の1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:1-メチル-3-エチルイミダゾリウム塩を得た。生成物のH-NMR及び13C-NMR分析を行った結果を次に示す。
[Production Example 5] (reduced form of Examples 1, 4, 6, 9 and Comparative Example 3 (1-n-butyl-5-mercapto-1,2,3,4-tetrazole: 1-methyl-3-ethyl Synthesis of imidazolium salt)
A solution of 0.174 g (1.10 mmol) of 1-n-butyl-5-mercapto-1,2,3,4-tetrazole obtained in Preparation Example 1 in 3 ml of methanol was dissolved in 1-ethyl in an aqueous solvent. The solution was added dropwise to -3-methylimidazolium carbonate (0.330 g, 1.00 mmol, 52.2% inH 2 Ow / w) and allowed to react for 1 minute. The solvent was removed and the target substance 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: 1-methyl-3-ethylimidazo was obtained in a yield of 98% (0.263 g, 0.980 mmol). A lithium salt was obtained. The results of 1 H-NMR and 13 C-NMR analyzes of the product are shown below.
1H NMR (CDCl3) δ 0.94 (t, J = 7.18 Hz 3H), 1.37 (sex, J = 7.18 Hz, 2H), 1.52 (t, J = 7.37 Hz, 3H), 1.85 (quin, J = 7.18 Hz, 2H), 4.05 (s, 3H), 4.26 (t, J = 7.18 Hz, 2H), 4.36 (q, J = 7.37 Hz, 2H), 7.56 (d, J = 1.80 Hz, 2H), 9.90 (s, 1H); 13C NMR (CDCl3) δ , 13.28, 15.11, 19.33, 30.46, 35.96, 44.61, 45.46, 121.65, 123.33, 136.15, 166.04. 1 H NMR (CDCl 3 ) δ 0.94 (t, J = 7.18 Hz 3H), 1.37 (sex, J = 7.18 Hz, 2H), 1.52 (t, J = 7.37 Hz, 3H), 1.85 (quin, J = 7.18 Hz, 2H), 4.05 (s, 3H), 4.26 (t, J = 7.18 Hz, 2H), 4.36 (q, J = 7.37 Hz, 2H), 7.56 (d, J = 1.80 Hz, 2H), 9.90 ( s, 1H); 13 C NMR (CDCl 3 ) δ, 13.28, 15.11, 19.33, 30.46, 35.96, 44.61, 45.46, 121.65, 123.33, 136.15, 166.04.
[製造例6](実施例5,7,8の還元体(1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:テトラメチルアンモニウム塩)の合成)
 上記製造例1で得られた1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール1モル等量をメタノール3mlに溶かしたものをテトラメチルアンモニウム1モル等量の50%メタノール溶液)に滴下していき、1時間反応させた。溶媒を除去し、収率95%で目的物質の1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール:テトラメチルアンモニウム塩を得た。生成物のH-NMR及び13C-NMR分析を行った結果を次に示す。
[Production Example 6] (Synthesis of reduced products of Examples 5, 7, and 8 (1-n-butyl-5-mercapto-1,2,3,4-tetrazole: tetramethylammonium salt))
1 mol equivalent of 1-n-butyl-5-mercapto-1,2,3,4-tetrazole obtained in Preparation Example 1 dissolved in 3 ml of methanol is 1 mol equivalent of 50% methanol of tetramethylammonium. The solution was added dropwise to the solution and allowed to react for 1 hour. The solvent was removed, and the target substance 1-n-butyl-5-mercapto-1,2,3,4-tetrazole: tetramethylammonium salt was obtained in a yield of 95%. The results of 1 H-NMR and 13 C-NMR analyzes of the product are shown below.
1H NMR (CDCl3) δ 0.94 (t, 3H), 1.36 (sex, 2H), 1.85 (quin, 2H), 3.4 (s, 12H), 4.24 (t, 2H), 13C NMR (CDCl3) δ, 13.66, 19.84, 30.97, 55.73,166.6 1 H NMR (CDCl 3 ) δ 0.94 (t, 3H), 1.36 (sex, 2H), 1.85 (quin, 2H), 3.4 (s, 12H), 4.24 (t, 2H), 13 C NMR (CDCl 3 ) δ, 13.66, 19.84, 30.97, 55.73, 166.6
[製造例7](実施例2の還元体(1-メチル-5-メルカプト-1,2,3,4-テトラゾール:MPPy塩)の合成)
 上記製造例1で得られた1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール1モル等量をメタノールに溶解させたものと1-メチル-1-プロピルピロリジニウムヒドロキシド(MPPy-OH)1モル当量をメタノールに溶解させたものを混合し、3時間攪拌後、溶媒をロータリーエバポレーターにより留去することにより、常温で液体の1-メチル-5-メルカプト-1,2,3,4-テトラゾール:MPPy塩を合成した。反応収率は95%であった。生成物のH-NMR分析を行った結果を次に示す。
[Production Example 7] (Synthesis of reduced product of Example 2 (1-methyl-5-mercapto-1,2,3,4-tetrazole: MPPy salt))
1 mol equivalent of 1-n-butyl-5-mercapto-1,2,3,4-tetrazole obtained in Production Example 1 dissolved in methanol and 1-methyl-1-propylpyrrolidinium hydroxy 1 mol equivalent of methanol (MPPy-OH) dissolved in methanol was mixed, stirred for 3 hours, and then the solvent was distilled off by a rotary evaporator, whereby liquid 1-methyl-5-mercapto-1, 2,3,4-tetrazole: MPPy salt was synthesized. The reaction yield was 95%. The results of 1 H-NMR analysis of the product are shown below.
1H NMR (CDCl3) δ 0.94 (t, 3H), 1.10 (t, 3H), 1.36 (sex, 2H), 1.85 (m, 4H), 2.28 (m, 4H), 3.26 (quin, 2H), 3.61 (m, 2H) 3.80 (m, 4H), 4.26 (t, 2H), 1 H NMR (CDCl 3 ) δ 0.94 (t, 3H), 1.10 (t, 3H), 1.36 (sex, 2H), 1.85 (m, 4H), 2.28 (m, 4H), 3.26 (quin, 2H), 3.61 (m, 2H) 3.80 (m, 4H), 4.26 (t, 2H),
[製造例8](実施例3の還元体(1-メチル-5-メルカプト-1,2,3,4-テトラゾール:DMPIm塩)の合成)
 上記製造例1で得られた1-n-ブチル-5-メルカプト-1,2,3,4-テトラゾール1モル等量をメタノールに溶解させたものと1,2-ジメチル-3-プロピルイミダゾリウムヒドロキシド(DMPIm-OH)1モル当量をメタノールに溶解させたものを混合し、3時間攪拌後、溶媒をロータリーエバポレーターにより留去することにより、常温で液体の1-メチル-5-メルカプト-1,2,3,4-テトラゾール:DMPIm塩を合成した。反応収率は98%であった。生成物のH-NMR分析を行った結果を次に示す。
[Production Example 8] (Synthesis of reduced product of Example 3 (1-methyl-5-mercapto-1,2,3,4-tetrazole: DMPIm salt))
1 mol equivalent of 1-n-butyl-5-mercapto-1,2,3,4-tetrazole obtained in Production Example 1 and 1,2-dimethyl-3-propylimidazolium dissolved in methanol 1 mol equivalent of hydroxide (DMPIm-OH) dissolved in methanol was mixed, stirred for 3 hours, and then the solvent was distilled off with a rotary evaporator, whereby 1-methyl-5-mercapto-1 which was liquid at room temperature was obtained. , 2,3,4-Tetrazole: DMPIm salt was synthesized. The reaction yield was 98%. The results of 1 H-NMR analysis of the product are shown below.
1H NMR (CDCl3) δ 0.94 (t, 3H), 1.02 (t, 3H) 1.37 (sex, 2H), 1.85 (quin, 2H), 1.91(sex, 2H)., 2.82 (s, 3H), 4.00 (s, 3H), 4.18 (t, 2H), 4.25 (t, 2H), 7.51 (d, 1H), 7.62 (d, 1H), 1 H NMR (CDCl 3 ) δ 0.94 (t, 3H), 1.02 (t, 3H) 1.37 (sex, 2H), 1.85 (quin, 2H), 1.91 (sex, 2H)., 2.82 (s, 3H), 4.00 (s, 3H), 4.18 (t, 2H), 4.25 (t, 2H), 7.51 (d, 1H), 7.62 (d, 1H),
[比較製造例1](比較例9の酸化還元対前駆体(1-sec-ブチル-5-メルカプト-1,2,3,4-テトラゾール)の合成)
 sec-ブチルイソチオシアナート3.84g(33.4mmol)とアジ化ナトリウム3.25g(50.0mmol)を純水25ml中で5時間反応させた。反応後、ジエチルエーテルを用いて抽出を行い、不純物を除去した。水層を濃硫酸で酸性にした後(pH=1)、再度ジエチルエーテルを用いて抽出を三回行った。エーテル層を無水硫酸ナトリウムで乾燥した後、溶媒を除去し、収率59%(3.10g,19.6mmol)で目的物質の1-sec-ブチル-5-メルカプト-1,2,3,4-テトラゾールを得た。生成物の同定には高速液体クロマトグラフィー(条件:溶媒として、ヘキサン:2-プロパノール=95:5を流速1ml/minで流し、237nmの波長照射下で検出)を用いた。また、目的物質のIR測定、H-NMR及び13C-NMR分析を行った。結果を次に示す。
[Comparative Production Example 1] (Synthesis of oxidation-reduction pair precursor (1-sec-butyl-5-mercapto-1,2,3,4-tetrazole) of Comparative Example 9)
3.84 g (33.4 mmol) of sec-butyl isothiocyanate and 3.25 g (50.0 mmol) of sodium azide were reacted in 25 ml of pure water for 5 hours. After the reaction, extraction was performed using diethyl ether to remove impurities. The aqueous layer was acidified with concentrated sulfuric acid (pH = 1), and extracted again with diethyl ether three times. The ether layer was dried over anhydrous sodium sulfate, the solvent was removed, and the target substance 1-sec-butyl-5-mercapto-1,2,3,4 was obtained in a yield of 59% (3.10 g, 19.6 mmol). -Tetrazole was obtained. For identification of the product, high performance liquid chromatography (conditions: hexane: 2-propanol = 95: 5 as a solvent was passed at a flow rate of 1 ml / min and detection was performed under irradiation with a wavelength of 237 nm) was used. Further, IR measurement, 1 H-NMR and 13 C-NMR analysis of the target substance were performed. The results are shown below.
HPLC 4.0 min; m.p. = 67.0 ℃; IR (KBr) 2758 (-SH); 1H NMR (CDCl3) δ 0.90 (t, J = 7.56 Hz, 3H), 1.52 (d, J = 6.78 Hz, 3H), 1.84-2.08 (m, 2H), 4.80 (sex, J = 6.78 Hz, 1H), 14.17 (br s, 1H); 13C NMR (CDCl3) δ 10.47, 19.23, 28.57, 56.11, 163.40. HPLC 4.0 min; mp = 67.0 ° C; IR (KBr) 2758 (-SH); 1 H NMR (CDCl 3 ) δ 0.90 (t, J = 7.56 Hz, 3H), 1.52 (d, J = 6.78 Hz, 3H) , 1.84-2.08 (m, 2H), 4.80 (sex, J = 6.78 Hz, 1H), 14.17 (br s, 1H); 13 C NMR (CDCl 3 ) δ 10.47, 19.23, 28.57, 56.11, 163.40.
[比較製造例2](比較例9の酸化還元対前駆体(1-sec-ブチル-5-メルカプト-1,2,3,4-テトラゾール:カリウム塩)の合成)
 比較製造例1で得られた1-sec-ブチル-5-メルカプト-1,2,3,4-テトラゾール0.272g(1.72mmol)と炭酸カリウム0.113g(0.816mmol)をメタノール(15ml)中、超音波照射下で1時間反応させた。とけ残った固体をろ過し、溶媒除去後、ジクロロメタンで洗浄し、乾燥させ、収率96%(0.323g,1.64mmol)で目的物質の1-sec-ブチル-5-メルカプト-1,2,3,4-テトラゾール:カリウム塩を得た。生成物の融点測定、H-NMR及び13C-NMR分析を行った結果を次に示す。
[Comparative Production Example 2] (Synthesis of oxidation-reduction pair precursor (1-sec-butyl-5-mercapto-1,2,3,4-tetrazole: potassium salt) of Comparative Example 9)
0.272 g (1.72 mmol) of 1-sec-butyl-5-mercapto-1,2,3,4-tetrazole obtained in Comparative Production Example 1 and 0.113 g (0.816 mmol) of potassium carbonate were mixed with methanol (15 ml). ), And reacted for 1 hour under ultrasonic irradiation. The residual solid was filtered, the solvent was removed, washed with dichloromethane, dried, and the target substance 1-sec-butyl-5-mercapto-1,2, in a yield of 96% (0.323 g, 1.64 mmol). , 3,4-tetrazole: potassium salt was obtained. The results of melting point measurement, 1 H-NMR and 13 C-NMR analysis of the product are shown below.
m.p. = 162.0 ℃; 1H NMR (DMSO) δ 0.70 (t, J = 7.47 Hz , 3H), 1.25 (d, J = 7.05 Hz, 3H), 1.63-1.83 (m, 2H), 4.69 (sex, J = 7.05 Hz, 1H); 13C NMR (DMSO) δ 11.01, 20.24, 29.06, 52.69, 167.36. mp = 162.0 ° C; 1 H NMR (DMSO) δ 0.70 (t, J = 7.47 Hz, 3H), 1.25 (d, J = 7.05 Hz, 3H), 1.63-1.83 (m, 2H), 4.69 (sex, J = 7.05 Hz, 1H); 13 C NMR (DMSO) δ 11.01, 20.24, 29.06, 52.69, 167.36.
[比較製造例3](比較例9の酸化体(5,5’‐ジチオビス(1-sec-ブチル1H-テトラゾール)の合成)
 比較製造例2で得られた1-sec-ブチル-5-メルカプト-1,2,3,4-テトラゾール:カリウム塩2.81g(14.4mmol)とヨウ素1.82g(7.18mmol)を、メタノール30ml中、室温で1時間反応させた。溶媒除去後、水10mlを加え、ジクロロメタンで分液(20ml×3回)を行い、ジクロロメタン層を回収し、シリカゲルカラムクロマトグラフィー(ジエチルエーテル:ヘキサン=5:1)にて濾過を行い、ヨウ素を取り除き、再結晶(ヘキサン:2-プロパノール=95:5)にて原料のカリウム塩を取り除き、収率29%(1.31g,4.14mmol)で目的物質の5,5’‐ジチオビス(1-sec-ブチル1H-テトラゾールを得た。生成物の同定には高速液体クロマトグラフィー(条件:溶媒として、ヘキサン:2-プロパノール=95:5を流速1ml/minで流し、237nmの波長照射下で検出)を用いた。また、目的物質の融点測定、H-NMR及び13C-NMR分析を行った。結果を次に示す。
[Comparative Production Example 3] (Synthesis of Oxide of Comparative Example 9 (5,5′-dithiobis (1-sec-butyl1H-tetrazole))
1-sec-butyl-5-mercapto-1,2,3,4-tetrazole: 2.81 g (14.4 mmol) of potassium salt and 1.82 g (7.18 mmol) of iodine obtained in Comparative Production Example 2, The reaction was carried out in 30 ml of methanol at room temperature for 1 hour. After removing the solvent, 10 ml of water was added, liquid separation was performed with dichloromethane (20 ml × 3 times), and the dichloromethane layer was collected and filtered with silica gel column chromatography (diethyl ether: hexane = 5: 1) to remove iodine. The starting potassium salt was removed by recrystallization (hexane: 2-propanol = 95: 5), and the target substance 5,5′-dithiobis (1- (1)) was obtained in a yield of 29% (1.31 g, 4.14 mmol). sec-Butyl 1H-tetrazole was obtained, and the product was identified by high performance liquid chromatography (condition: hexane: 2-propanol = 95: 5 as a solvent at a flow rate of 1 ml / min and detection under irradiation at a wavelength of 237 nm. In addition, the melting point of the target substance, 1 H-NMR and 13 C-NMR analysis were performed, and the results are shown below.
HPLC 14.80 min; m.p. = 67.0 ℃; 1H NMR (CDCl3) δ 0.79 (t, J = 7.46 Hz, 6H) 1.59 (d, J = 6.68 Hz, 6H) 1.86-2.05 (m, 4H), 4.70 (sex, J = 6.68 Hz, 2H); 13C NMR (CDCl3) δ 10.51, 20.59, 29.80, 58.30, 150.60. HPLC 14.80 min; mp = 67.0 ° C; 1 H NMR (CDCl 3 ) δ 0.79 (t, J = 7.46 Hz, 6H) 1.59 (d, J = 6.68 Hz, 6H) 1.86-2.05 (m, 4H), 4.70 ( sex, J = 6.68 Hz, 2H); 13 C NMR (CDCl 3 ) δ 10.51, 20.59, 29.80, 58.30, 150.60.
[比較製造例4](比較例9の還元体(1-sec-ブチル-5-メルカプト-1,2,3,4-テトラゾール:リチウム塩)の合成)
 比較製造例1で得られた1-sec-ブチル-5-メルカプト-1,2,3,4-テトラゾール0.267g(1.69mmol)と炭酸リチウム0.0626g(0.847mmol)をメタノール15ml中、超音波照射下で1時間反応させた。とけ残った固体をろ過し、溶媒除去後、ジクロロメタンで洗浄し、乾燥させ、収率14%(0.0380g,0.231mmol)で目的物質の1-sec-ブチル-5-メルカプト-1,2,3,4-テトラゾール:リチウム塩を得た。目的物質の融点測定、H-NMR及び13C-NMR分析を行った結果を次に示す。
[Comparative Production Example 4] (Synthesis of reduced product of Comparative Example 9 (1-sec-butyl-5-mercapto-1,2,3,4-tetrazole: lithium salt))
0.267 g (1.69 mmol) of 1-sec-butyl-5-mercapto-1,2,3,4-tetrazole obtained in Comparative Production Example 1 and 0.0626 g (0.847 mmol) of lithium carbonate in 15 ml of methanol The mixture was reacted for 1 hour under ultrasonic irradiation. The remaining solid was filtered, the solvent was removed, washed with dichloromethane, dried, and the target substance 1-sec-butyl-5-mercapto-1,2, in a yield of 14% (0.0380 g, 0.231 mmol). , 3,4-tetrazole: lithium salt was obtained. The results of melting point measurement, 1 H-NMR and 13 C-NMR analysis of the target substance are shown below.
m.p. = 270.0 ℃以上; 1H NMR (DMSO) δ 0.71 (t, J = 7.47 Hz, 3H), 1.26 (d, J = 6.58 Hz, 3H), 1.64-1.84 (m, 2H), 4.70 (sex, J = 6.58 Hz, 1H); 13C NMR (DMSO) δ 11.06, 20.25, 29.08, 52.68, 167.36. mp = 270.0 ° C or higher; 1 H NMR (DMSO) δ 0.71 (t, J = 7.47 Hz, 3H), 1.26 (d, J = 6.58 Hz, 3H), 1.64-1.84 (m, 2H), 4.70 (sex, J = 6.58 Hz, 1H); 13 C NMR (DMSO) δ 11.06, 20.25, 29.08, 52.68, 167.36.
[比較製造例5](比較例9の還元体(1-sec-ブチル-5-メルカプト-1,2,3,4-テトラゾール:1-メチル-3-エチルイミダゾリウム塩)の合成)
 比較製造例1で得られた1-sec-ブチル-5-メルカプト-1,2,3,4-テトラゾール0.171g(1.09mmol)をメタノール3mlに溶かしたものを水溶媒中の1-エチル-3-メチルイミダゾリウム炭酸塩(0.330g,1.00mmol,52.2wt%水溶液)を滴下していき、1分間反応させた。溶媒を除去し、収率96%(0.258g,0.960mmol)で目的物質の1-sec-ブチル-5-メルカプト-1,2,3,4-テトラゾール:1-メチル-3-エチルイミダゾリウム塩を得た。目的物質の融点測定、H-NMR及び13C-NMR分析を行った結果を次に示す。
[Comparative Production Example 5] (Synthesis of reduced product of Comparative Example 9 (1-sec-butyl-5-mercapto-1,2,3,4-tetrazole: 1-methyl-3-ethylimidazolium salt))
A solution of 0.171 g (1.09 mmol) of 1-sec-butyl-5-mercapto-1,2,3,4-tetrazole obtained in Comparative Production Example 1 in 3 ml of methanol was dissolved in 1-ethyl in an aqueous solvent. -3-Methylimidazolium carbonate (0.330 g, 1.00 mmol, 52.2 wt% aqueous solution) was added dropwise and reacted for 1 minute. The solvent was removed, and the target substance 1-sec-butyl-5-mercapto-1,2,3,4-tetrazole: 1-methyl-3-ethylimidazo in a yield of 96% (0.258 g, 0.960 mmol) A lithium salt was obtained. The results of melting point measurement, 1 H-NMR and 13 C-NMR analysis of the target substance are shown below.
1H NMR (CDCl3) δ 0.84 (t, J = 7.18 Hz, 3H), 1.42 (d, J = 7.05 Hz, 3H), 1.53 (t, J = 6.70 Hz, 3H), 1.80-1.99 (m, 2H), 4.06 (s, 3H), 4.37 (q, J = 6.70 Hz, 2H), 4.88 (sex, J = 7.05 Hz, 1H), 7.60 (d, J = 1.80 Hz, 2H), 10.00 (s, 1H); 13C NMR (CDCl3) δ 10.48, 15.40, 19.65, 28.92, 36.29, 44.96, 53.60, 121.77, 123.50, 136.83, 165.88. 1 H NMR (CDCl 3 ) δ 0.84 (t, J = 7.18 Hz, 3H), 1.42 (d, J = 7.05 Hz, 3H), 1.53 (t, J = 6.70 Hz, 3H), 1.80-1.99 (m, 2H), 4.06 (s, 3H), 4.37 (q, J = 6.70 Hz, 2H), 4.88 (sex, J = 7.05 Hz, 1H), 7.60 (d, J = 1.80 Hz, 2H), 10.00 (s, 1H); 13 C NMR (CDCl 3 ) δ 10.48, 15.40, 19.65, 28.92, 36.29, 44.96, 53.60, 121.77, 123.50, 136.83, 165.88.
 また、比較例1、2、4、5、6、7,8で用いた酸化還元対は、それぞれ非特許文献6、特許文献1,2の記載に基づき合成したもの、もしくは市販の材料を使用した。 The redox couples used in Comparative Examples 1, 2, 4, 5, 6, 7, and 8 were synthesized based on the descriptions in Non-Patent Document 6, Patent Documents 1 and 2, or commercially available materials, respectively. did.
[太陽電池の光電変換効率・耐久性評価]
 上記により作製した太陽電池の評価を以下の手法で実施した。性能評価には、AMフィルターを具備したキセノンランプのソーラーシュミレーターXES-502S(関西科学機械株式会社より購入)にて、AM1.5Gのスペクトル調整後、100mW/cmの照射条件下で、ポテンシオスタットによる負荷特性(I-V特性)を評価した。
[Photoelectric conversion efficiency and durability evaluation of solar cells]
Evaluation of the solar cell produced by the above was implemented with the following method. For performance evaluation, a xenon lamp solar simulator with AM filter XES-502S (purchased from Kansai Scientific Machinery Co., Ltd.), after adjusting the spectrum of AM1.5G, under the irradiation condition of 100 mW / cm 2 , the potentio The load characteristic (IV characteristic) by the stat was evaluated.
 太陽電池の評価値は、開放電圧Voc(V)、短絡電流密度Jsc(mA/cm)、形状因子FF(-)、変換効率η(%)が挙げられるが、最終的な太陽電池の性能の良否は、変換効率の大小で評価した。また、暗所、室温条件下での素子性能保持率を合わせて評価した。 The evaluation value of the solar cell includes open circuit voltage Voc (V), short circuit current density Jsc (mA / cm 2 ), form factor FF (−), conversion efficiency η (%). Was evaluated based on the degree of conversion efficiency. In addition, the device performance retention rate in the dark and at room temperature was also evaluated.
 なお、光照射強度はスペクトルアナライザー(英弘精機製、LS-100)を用いてλ:400~800nmの領域の照射光積分値を基準太陽光の値と比較して算出した。 The light irradiation intensity was calculated by using a spectrum analyzer (LS-100, manufactured by Eihiro Seiki Co., Ltd.) by comparing the integrated value of irradiation light in the region of λ: 400 to 800 nm with the value of reference sunlight.
[イオン液体電解液系での評価]
 イオン液体を電解質層5の溶媒に用いた各実施例及び比較例の光電変換素子の擬似太陽光照射条件でのI-V特性評価結果および安定性評価結果を表1に示す。
[Evaluation with ionic liquid electrolyte system]
Table 1 shows the results of IV characteristic evaluation and stability evaluation of the photoelectric conversion elements of Examples and Comparative Examples using an ionic liquid as a solvent for the electrolyte layer 5 under simulated sunlight irradiation conditions.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示された結果からわかる通り、本発明に係る実施例1~4の光電変換素子は、同じイオン液体を溶媒とし、従来のヨウ素系酸化還元対を使用した比較例1の素子と同等以上の光電変換性能を擬似太陽光照射条件で示している。また、特許文献2で示された1-メチル-5-メルカプト-1,2,3,4-テトラゾール:1-メチル-3-エチルイミダゾリウム塩、および5,5’-ジチオビス(1-メチル-1H-テトラゾール)を酸化還元対に用いた比較例2と比べても、本発明の実施例1の方が高い素子性能を示している。このことより、テトラゾール環のメチル基をn-ブチル-基に変更することによる、分子サイズの増加によるキャリア移動度の低下の悪影響よりも、立体障害効果による作用極から電解液への逆電子移動抑制効果による電荷分離効率の向上の寄与の方が大きいと考えられる。 As can be seen from the results shown in Table 1, the photoelectric conversion elements of Examples 1 to 4 according to the present invention are equivalent to the element of Comparative Example 1 using the same ionic liquid as a solvent and using a conventional iodine-based redox pair. The above photoelectric conversion performance is shown under simulated sunlight irradiation conditions. Further, 1-methyl-5-mercapto-1,2,3,4-tetrazole: 1-methyl-3-ethylimidazolium salt shown in Patent Document 2, and 5,5′-dithiobis (1-methyl- Compared with Comparative Example 2 using 1H-tetrazole) as the redox couple, Example 1 of the present invention shows higher device performance. This indicates that the reverse electron transfer from the working electrode to the electrolyte due to the steric hindrance effect rather than the adverse effect of the decrease in carrier mobility due to the increase in molecular size due to the change of the methyl group of the tetrazole ring to the n-butyl group. It is considered that the contribution of improving the charge separation efficiency due to the suppression effect is greater.
 また、実施例1と実施例4とを比較すると、一般式(1)で表される化合物(酸化体)1モルに対して一般式(2)で表される化合物(還元体)を過剰に用いた方がより良好な素子性能を示すことがわかる。この理由は定かではないが、還元体を過剰に用いた場合、酸化体(T)と還元体(T)とが電荷移動錯体(T・T → T と表記される)の形成が促進されることにより、電荷移動性能が向上したものと考えられる。また、酸化体と還元体の間で起こる電荷の交換反応が還元体過剰の方が起こりやすいことも理由として挙げられる。 Moreover, when Example 1 and Example 4 are compared, the compound (reduced form) represented by the general formula (2) is excessive with respect to 1 mol of the compound (oxidized form) represented by the general formula (1). It can be seen that the device performance is better when used. The reason for this is not clear, but when the reductant is used in excess, the oxidant (T 2 ) and the reductant (T ) become a charge transfer complex (denoted as T 2 · T → T 3 ). It is considered that the charge transfer performance is improved by promoting the formation of. Another reason is that the charge exchange reaction between the oxidant and the reductant is more likely to occur when the reductant is excessive.
 対向電極としてPt電極を使用した比較例3は対向電極にPEDOT電極を使用した実施例1よりも素子性能が劣っており、特にFFの値が低下している。これは本発明で使用しているスルフィド系酸化還元対に対する触媒活性がPtよりもPEDOTの方が高いためである。これはインピーダンス測定による界面反応抵抗解析からも確認される。よって、本発明の酸化還元対とPEDOT等の導電性高分子触媒を併用することで、高い光電変換効率を示す光電変換素子を作製できると言える。 Comparative Example 3 using a Pt electrode as the counter electrode is inferior in element performance to Example 1 using a PEDOT electrode as the counter electrode, and in particular, the value of FF is lowered. This is because PEDOT has higher catalytic activity for the sulfide-based redox couple used in the present invention than Pt. This is also confirmed from the interface reaction resistance analysis by impedance measurement. Therefore, it can be said that the photoelectric conversion element which shows high photoelectric conversion efficiency can be produced by using together the oxidation-reduction pair of this invention, and electroconductive polymer catalysts, such as PEDOT.
 また、非特許文献6で示された1-メチル-5-メルカプト-1,2,3,4-テトラゾール:テトラメチルアンモニウム塩を還元体に用いた比較例4は、還元体のイオン液体への溶解度が本発明の化合物より低いため、0.5M程度しか溶解することができず、その結果、実施例1と比較して光電変換性能が劣っている。 Further, Comparative Example 4 using 1-methyl-5-mercapto-1,2,3,4-tetrazole: tetramethylammonium salt shown in Non-Patent Document 6 as a reductant is obtained by adding a reductant to an ionic liquid. Since solubility is lower than the compound of this invention, it can melt | dissolve only about 0.5M, As a result, compared with Example 1, the photoelectric conversion performance is inferior.
 また、特許文献1で示されたチアジアゾール骨格を有するスルフィドレドックスを酸化還元対に用いた比較例5は、酸化体であるジスルフィド化合物の溶媒への溶解性が低いため、実施例1と比較して光電変換性能が劣っており、また高濃度条件で電解液が不安定であるため、30日後の素子性能保持率が50%程度と低下した。一方、本発明の実施例1~3は30日後も素子性能の劣化はほとんど見られない。よって、本発明の酸化還元対、導電性高分子触媒、イオン液体を組み合わせることで、実用的な光電変換素子を作製することができる。 Further, Comparative Example 5 using a sulfide redox having a thiadiazole skeleton disclosed in Patent Document 1 as a redox pair has a low solubility in a solvent of a disulfide compound that is an oxidant, and therefore, compared with Example 1. Since the photoelectric conversion performance was inferior and the electrolyte was unstable under high concentration conditions, the device performance retention after 30 days was reduced to about 50%. On the other hand, in Examples 1 to 3 of the present invention, the device performance hardly deteriorates even after 30 days. Therefore, a practical photoelectric conversion element can be produced by combining the redox couple of the present invention, a conductive polymer catalyst, and an ionic liquid.
[有機溶媒電解液系での評価]
 有機溶媒である3-メトキシプロピオニトリルを電解質層5の溶媒に用いた各実施例、比較例の光電変換素子の擬似太陽光照射条件でのI-V特性評価結果を表2に示す。
[Evaluation in organic solvent electrolyte system]
Table 2 shows the results of IV characteristic evaluation under simulated sunlight irradiation conditions of the photoelectric conversion elements of Examples and Comparative Examples using 3-methoxypropionitrile, which is an organic solvent, as the solvent of the electrolyte layer 5.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の酸化還元対を使用した実施例5に示されている本発明の光電変換素子は、同じ3-メトキシプロピオニトリルを溶媒とし、従来のヨウ素系酸化還元対を使用した比較例6の素子に近い光電変換性能を示している他、非特許文献6で示された1-メチル-5-メルカプト-1,2,3,4-テトラゾール:テトラメチルアンモニウム塩を還元体に用いた比較例7と比較して明らかに優れた性能を示している。各特性値を比較すると、開放電圧値(Voc)と短絡電流値(Jsc)が向上していることが分かる。この現象は、上記のイオン液体電解液系での結果と同様に、スルフィド化合物のアルキル鎖長を延長することにより、立体障害効果による作用極から電解液への逆電子移動抑制効果が大きく寄与していると考えられる。 The photoelectric conversion element of the present invention shown in Example 5 using the oxidation-reduction pair of the present invention is the same as that of Comparative Example 6 using the same 3-methoxypropionitrile as a solvent and a conventional iodine-based redox pair. Comparative example using 1-methyl-5-mercapto-1,2,3,4-tetrazole: tetramethylammonium salt shown in Non-Patent Document 6 as a reductant in addition to the photoelectric conversion performance close to the device Compared with 7, the performance is clearly superior. Comparing the characteristic values, it can be seen that the open circuit voltage value (Voc) and the short circuit current value (Jsc) are improved. Similar to the results in the above ionic liquid electrolyte system, this phenomenon greatly contributes to the effect of suppressing the reverse electron transfer from the working electrode to the electrolyte solution due to the steric hindrance effect by extending the alkyl chain length of the sulfide compound. It is thought that.
 実施例5と実施例6とを比較すると、還元体の対カチオンがEMIm塩である実施例6よりも対カチオンがTMA塩である実施例5の方が優れた光電変換性能を示している。これは、カチオンの分子サイズが小さいTMA塩の方が電解液の粘度が低くなり、キャリア移動度が向上したためと考えられる。 When Example 5 and Example 6 are compared, Example 5 in which the counter cation is a TMA salt shows superior photoelectric conversion performance than Example 6 in which the counter cation of the reductant is an EMIm salt. This is presumably because the TMA salt having a smaller cation molecular size has a lower viscosity of the electrolyte and improved carrier mobility.
 また、イオン液体電解液系での結果と同様に、実施例5、実施例7,8の結果から、還元体濃度が酸化体濃度よりも高い方が良好な素子性能を示したことが分かる。 Further, similarly to the results in the ionic liquid electrolyte system, the results of Examples 5 and 7 and 8 show that the device performance is better when the reductant concentration is higher than the oxidant concentration.
[ヘプタメチンシアニン色素を用いた場合の評価]
 増感色素として近赤外光を吸収するヘプタメチンシアニン色素を用いた各実施例、比較例の光電変換素子の擬似太陽光照射条件でのI-V特性評価結果および安定性評価結果を表3に示す。
[Evaluation using heptamethine cyanine dye]
Table 3 shows the results of IV characteristic evaluation and stability evaluation under the simulated sunlight irradiation conditions of the photoelectric conversion elements of Examples and Comparative Examples using heptamethine cyanine dyes that absorb near infrared light as sensitizing dyes. Shown in
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例9に示されている本発明の酸化還元対を使用した光電変換素子は、同じ3-メトキシプロピオニトリルを溶媒とし、非特許文献6に示された1-メチル-5-メルカプト-1,2,3,4-テトラゾール:テトラメチルアンモニウム塩の対カチオンを実施例9と同じ1-メチル-3-エチルイミダゾリウム塩に変更した比較例8と比べて、優れた光電変換性能を示している。N719色素を使用した表2での結果と同様に、各特性値を比較すると、開放電圧値(Voc)と短絡電流値(Jsc)が向上していることが分かる。よって、ヘプタメチンシアニン色素を使った光電変換素子についても、本発明の酸化還元対は優れた性能を示すことがわかる。 The photoelectric conversion element using the oxidation-reduction pair of the present invention shown in Example 9 uses 1-methyl-5-mercapto-1 shown in Non-Patent Document 6 using the same 3-methoxypropionitrile as a solvent. , 2,3,4-tetrazole: an excellent photoelectric conversion performance as compared with Comparative Example 8 in which the counter cation of tetramethylammonium salt was changed to the same 1-methyl-3-ethylimidazolium salt as in Example 9. Yes. Similar to the results in Table 2 using N719 dye, comparing each characteristic value shows that the open circuit voltage value (Voc) and the short circuit current value (Jsc) are improved. Therefore, it can be seen that the redox couple of the present invention also shows excellent performance for photoelectric conversion elements using heptamethine cyanine dyes.
 比較例9は、酸化還元対として、テトラゾール基の置換基をsec-ブチル-基としたものを用いたものであるが、実施例9と比較して、短絡電流値が劣る結果となった。この結果は、分岐アルキル基を有する酸化還元対の場合、分子サイズの増加による電解液粘度上昇にともなるキャリア移動度の低下の悪影響が本発明の直鎖アルキル基を有する酸化還元対よりも大きいことが理由として考えられる。 Comparative Example 9 uses a redazole pair in which the tetrazole group substituent is a sec-butyl- group, but the short-circuit current value is inferior to that of Example 9. As a result, in the case of the redox couple having a branched alkyl group, the adverse effect of the decrease in carrier mobility accompanying the increase in the viscosity of the electrolyte due to the increase in the molecular size is greater than that of the redox couple having the linear alkyl group of the present invention. The reason is considered.
 以上のように、本発明の光電変換素子は素子性能、透明性の観点で、従来のヨウ素系酸化還元対よりも優れており、本発明で示した酸化還元対、イオン液体と有機導電性高分子対極を使用することにより、性能、耐久性、コスト、デザイン性に優れた実用性の高い太陽電池素子を提供することができる。 As described above, the photoelectric conversion device of the present invention is superior to the conventional iodine-based redox couple in terms of device performance and transparency, and the redox couple, ionic liquid, and organic conductivity of the present invention are high. By using the molecular counter electrode, a highly practical solar cell element excellent in performance, durability, cost, and design can be provided.
 本発明にかかる光電変換素子は、屋内外で使用できる光電変換素子して好適に用いられるものであり、さらに本発明の電解質の特性を生かすことで、特にデザイン性が求められる民生用機器等への利用が可能である。さらに光電変換素子だけでなく、光センサーなどとしても利用することが出来る。 The photoelectric conversion element according to the present invention is suitably used as a photoelectric conversion element that can be used indoors and outdoors. Further, by utilizing the characteristics of the electrolyte of the present invention, it is particularly suitable for consumer equipment and the like that are required to be designed. Can be used. Furthermore, it can be used not only as a photoelectric conversion element but also as an optical sensor.
 1 ・・・透明基体
 2 ・・・透明導電膜
 3 ・・・多孔質金属酸化物半導体(層)
 4 ・・・増感色素
 5 ・・・電解質層
 6 ・・・触媒層
 7 ・・・電極基材
 8 ・・・電極基体(作用極)
 9 ・・・対向電極
 10・・・光電変換素子
DESCRIPTION OF SYMBOLS 1 ... Transparent base | substrate 2 ... Transparent electrically conductive film 3 ... Porous metal oxide semiconductor (layer)
4 ... Sensitizing dye 5 ... Electrolyte layer 6 ... Catalyst layer 7 ... Electrode substrate 8 ... Electrode substrate (working electrode)
9 ... Counter electrode 10 ... Photoelectric conversion element

Claims (4)

  1.  一般式(1)で表される化合物と一般式(2)で表される化合物とからなる酸化還元対。
    Figure JPOXMLDOC01-appb-C000009
     一般式(1)中、AはLi、K、若しくはNa、又は一般式(3)で表されるアンモニウム化合物、一般式(4)で表されるイミダゾリウム化合物、若しくは一般式(5)で表されるピロリジニウム化合物を示す。一般式(1)及び一般式(2)中のRは炭素数4~8の直鎖アルキル基を示し、複数のRは相互に同じか、一部又は全部が異なっているものとする。
    Figure JPOXMLDOC01-appb-C000010
     一般式(3)~(5)中、Rは炭素数1~12のアルキル基を示し、RはH又はメチル基を示す。複数のRは相互に同じか、一部又は全部が異なっているものとする。
    A redox couple comprising a compound represented by the general formula (1) and a compound represented by the general formula (2).
    Figure JPOXMLDOC01-appb-C000009
    In the general formula (1), A is Li, K, or Na, or an ammonium compound represented by the general formula (3), an imidazolium compound represented by the general formula (4), or a general formula (5). The pyrrolidinium compound is shown. R 1 in the general formula (1) and the general formula (2) represents a linear alkyl group having 4 to 8 carbon atoms, and the plurality of R 1 are the same or partly or completely different from each other. .
    Figure JPOXMLDOC01-appb-C000010
    In the general formulas (3) to (5), R 2 represents an alkyl group having 1 to 12 carbon atoms, and R 3 represents H or a methyl group. The plurality of R 2 are the same as each other or part or all of them are different.
  2.  半導体電極と、対向電極と、これら両極間に保持された電解質層とを備えた光電変換素子であって、前記電解質層が、請求項1に記載された酸化還元対を含有し、前記対向電極がこの酸化還元対に対する触媒活性を有する触媒を含有していることを特徴とする、光電変換素子。 It is a photoelectric conversion element provided with the semiconductor electrode, the counter electrode, and the electrolyte layer hold | maintained between these both electrodes, Comprising: The said electrolyte layer contains the oxidation-reduction pair described in Claim 1, The said counter electrode Contains a catalyst having catalytic activity for this redox pair.
  3.  前記電解質層が次式(6)で表されるビス(フルオロスルホニル)イミドアニオンを有するイオン液体を含有していることを特徴とする、請求項2に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000011
    The photoelectric conversion element according to claim 2, wherein the electrolyte layer contains an ionic liquid having a bis (fluorosulfonyl) imide anion represented by the following formula (6).
    Figure JPOXMLDOC01-appb-C000011
  4.  前記対向電極に含有される触媒が、3,4-エチレンジオキシチオフェン又はその誘導体の重合物を含む導電性高分子であることを特徴とする、請求項2又は3に記載の光電変換素子。 The photoelectric conversion element according to claim 2 or 3, wherein the catalyst contained in the counter electrode is a conductive polymer containing a polymer of 3,4-ethylenedioxythiophene or a derivative thereof.
PCT/JP2013/006439 2012-11-15 2013-10-30 Redox pair, and photoelectric conversion element produced using same WO2014076896A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157011648A KR102089819B1 (en) 2012-11-15 2013-10-30 Redox pair, and photoelectric conversion element produced using same
CN201380059883.7A CN104813423B (en) 2012-11-15 2013-10-30 Redox couple and use its photo-electric conversion element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-251412 2012-11-15
JP2012251412A JP5960033B2 (en) 2012-11-15 2012-11-15 Redox couple and photoelectric conversion device using the same

Publications (1)

Publication Number Publication Date
WO2014076896A1 true WO2014076896A1 (en) 2014-05-22

Family

ID=50730831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006439 WO2014076896A1 (en) 2012-11-15 2013-10-30 Redox pair, and photoelectric conversion element produced using same

Country Status (5)

Country Link
JP (1) JP5960033B2 (en)
KR (1) KR102089819B1 (en)
CN (1) CN104813423B (en)
TW (1) TW201422595A (en)
WO (1) WO2014076896A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6315796B2 (en) * 2014-06-18 2018-04-25 カーリットホールディングス株式会社 Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell using the same
KR102556651B1 (en) * 2022-11-03 2023-07-19 한양대학교 산학협력단 Pressure sensor and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056776A1 (en) * 2006-11-10 2008-05-15 Nagoya Industrial Science Research Institute Mesoionic compound, ionic liquid composed of mesoionic compound, and method for producing mesoionic compound
JP2009531336A (en) * 2006-03-29 2009-09-03 第一工業製薬株式会社 Redox couples, compositions, and their uses
WO2012096170A1 (en) * 2011-01-13 2012-07-19 第一工業製薬株式会社 Photoelectric conversion element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051343A (en) * 2001-08-03 2003-02-21 Fuji Photo Film Co Ltd Photoelectric conversion element, photocell and complex dye
JP2004331521A (en) * 2003-04-30 2004-11-25 Toyo Kasei Kogyo Co Ltd Ionic liquid
KR20070118000A (en) * 2006-06-09 2007-12-13 다이이치 고교 세이야쿠 가부시키가이샤 Photoelectric conversion element
JP5143476B2 (en) 2006-06-09 2013-02-13 第一工業製薬株式会社 Photoelectric conversion element
JP2010113988A (en) * 2008-11-07 2010-05-20 Sekisui Jushi Co Ltd Dye-sensitized solar cell
JP5350851B2 (en) * 2009-03-26 2013-11-27 日本化学工業株式会社 Composition for photoelectric conversion element and photoelectric conversion element using the same
KR101140784B1 (en) * 2010-01-25 2012-05-03 한국과학기술연구원 Preparation method of dye-sensitized solar cell module including scattering layers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009531336A (en) * 2006-03-29 2009-09-03 第一工業製薬株式会社 Redox couples, compositions, and their uses
WO2008056776A1 (en) * 2006-11-10 2008-05-15 Nagoya Industrial Science Research Institute Mesoionic compound, ionic liquid composed of mesoionic compound, and method for producing mesoionic compound
WO2012096170A1 (en) * 2011-01-13 2012-07-19 第一工業製薬株式会社 Photoelectric conversion element

Also Published As

Publication number Publication date
CN104813423B (en) 2017-08-11
JP5960033B2 (en) 2016-08-02
KR102089819B1 (en) 2020-03-16
JP2014099364A (en) 2014-05-29
TW201422595A (en) 2014-06-16
CN104813423A (en) 2015-07-29
KR20150082274A (en) 2015-07-15

Similar Documents

Publication Publication Date Title
JP5143476B2 (en) Photoelectric conversion element
JP4187782B2 (en) Electrolyte for photoelectric conversion element
JP5215314B2 (en) Method for producing conductive polymer electrode and dye-sensitized solar cell provided with the same
JP5475145B2 (en) Photoelectric conversion element
WO2011093253A1 (en) Electrolyte solution for dye sensitized solar cell, and dye sensitized solar cell using same
KR20150133258A (en) Dye-sensitized solar-cell element
JP2007317446A (en) Dye-sensitized solar cell
KR20070118000A (en) Photoelectric conversion element
JP5960033B2 (en) Redox couple and photoelectric conversion device using the same
JP5755724B2 (en) Photoelectric conversion element and dye-sensitized solar cell
JP2015141955A (en) photoelectric conversion element
JP5996255B2 (en) Photoelectric conversion element and π-conjugated organic radical compound
JP5540744B2 (en) Photoelectric conversion element
JP2012099230A (en) Photoelectric conversion element
KR100970321B1 (en) Photoelectric conversion element
JP2016100470A (en) Photoelectric conversion element
JP2016111049A (en) Photoelectric conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157011648

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13854673

Country of ref document: EP

Kind code of ref document: A1