JP5540744B2 - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
JP5540744B2
JP5540744B2 JP2010025260A JP2010025260A JP5540744B2 JP 5540744 B2 JP5540744 B2 JP 5540744B2 JP 2010025260 A JP2010025260 A JP 2010025260A JP 2010025260 A JP2010025260 A JP 2010025260A JP 5540744 B2 JP5540744 B2 JP 5540744B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
hidorokino
butyl
ammonium thiocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010025260A
Other languages
Japanese (ja)
Other versions
JP2011165423A (en
Inventor
純一 志熊
尚子 花谷
道太 外尾
敦 横内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2010025260A priority Critical patent/JP5540744B2/en
Publication of JP2011165423A publication Critical patent/JP2011165423A/en
Application granted granted Critical
Publication of JP5540744B2 publication Critical patent/JP5540744B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Description

本発明は、変換効率を高めた色素増感太陽電池用の光電変換素子に関する。   The present invention relates to a photoelectric conversion element for a dye-sensitized solar cell with improved conversion efficiency.

次世代の太陽電池として、低温でより低コストで製造が可能な有機太陽電池の開発が期待されている。有機太陽電池の中でも色素増感太陽電池は、製造コストを大幅に削減できる可能性があること、アモルファスシリコン太陽電池と同等の性能を持つこと、着色透明な太陽電池が作れること等、従来の太陽電池にはない魅力を持つことから、特に注目を浴びている。   As a next-generation solar cell, development of an organic solar cell that can be manufactured at a low temperature and at a lower cost is expected. Among organic solar cells, dye-sensitized solar cells have the potential to significantly reduce manufacturing costs, have the same performance as amorphous silicon solar cells, and can produce colored transparent solar cells. It has attracted particular attention because of its attractiveness not found in batteries.

色素増感太陽電池は、一般に導電性基材上に色素を吸着した半導体からなる光電変換層を持つ半導体電極と、対向して設けられた導電性基材上に触媒層を設けた対向電極と、これら半導体電極と対向電極との間に保持された電解質層から構成されている。電解質には、ヨウ素系酸化還元対を有機溶媒に溶かしたものが一般的に使用されている。ヨウ素系酸化還元対はイオン伝導度が高く、また酸化状態の色素を還元する速度が速い一方、作用極の導電性ガラス表面や酸化チタン表面での反応性が低いなど、優れた性能を有している。   In general, a dye-sensitized solar cell includes a semiconductor electrode having a photoelectric conversion layer made of a semiconductor having a dye adsorbed on a conductive substrate, and a counter electrode having a catalyst layer provided on a conductive substrate provided oppositely. The electrolyte layer is held between the semiconductor electrode and the counter electrode. As the electrolyte, an iodine-based redox couple dissolved in an organic solvent is generally used. Iodine-based redox couples have excellent performance, such as high ion conductivity and a high rate of reducing oxidized dyes, while low reactivity on the conductive glass surface and titanium oxide surface of the working electrode. ing.

しかしながら、ヨウ素系電解質は高い変換効率を得ることができるものの、以下のような問題がある。
・高い揮発性を有するため封止が非常に難しい。
・高い腐食性を有するため、電極として用いることのできる材料が限られている。
・ヨウ素系酸化還元対は可視光領域に非常に大きい吸光度係数を示し、色素の光吸収が阻害され、性能低下の原因となっている他、太陽電池の意匠性を強調する場合、ヨウ素の色が妨げとなり色素の鮮やかさを十分に生かすことができない。
However, although iodine-based electrolyte can obtain high conversion efficiency, it has the following problems.
-It is very difficult to seal because of its high volatility.
-Since it has high corrosivity, the material which can be used as an electrode is limited.
・ Iodine-based redox couples have a very large absorbance coefficient in the visible light region, impeding the light absorption of the dye, causing performance degradation, and when emphasizing the design of solar cells, the iodine color This prevents the vividness of the pigment from being fully utilized.

そのため、ヨウ素系に替わる酸化還元対が求められており、例えば臭素系、硫黄系、セレン系、鉄錯体系、コバルト錯体系、ベンゾキノン/ヒドロキノン系、(SCN)−/(SCN)系、(SeCN)−/(SeCN)系等の検討がなされている(例えば、特許文献1参照)。 Therefore, and redox couple is required to replace the iodine-based, such as bromine compounds, sulfur compounds, selenium, iron complex system, a cobalt complex-based, benzoquinone / hydroquinone system, (SCN) - / (SCN ) 2 system, ( Studies such as SeCN) − / (SeCN) 2 have been made (for example, see Patent Document 1).

特開2008−16442号公報JP 2008-16442 A

しかしながら、ヨウ素系に替わる上記酸化還元対は、何れも安定性、安全性に問題があることや、有色であるため実用性が高いとは言い難い。例えば、ベンゾキノンは非常に濃い赤〜黄色を示して意匠性が悪く、(SCN)は常温で非常に不安定であり、速やかにポリマー化が進行してしまう。 However, it is difficult to say that any of the above-described redox couples that replace iodine is problematic in terms of stability and safety, and because it is colored, it is highly practical. For example, benzoquinone exhibits a very dark red to yellow color and is poorly designed, and (SCN) 2 is very unstable at room temperature and polymerization proceeds rapidly.

そこで、本発明は、色素の光吸収を阻害しないだけでなく、色彩性を損なわない、高効率でなおかつ意匠性に優れた色素増感太陽電池用の光電変換素子を提供することを課題とする。   Then, this invention makes it a subject to provide the photoelectric conversion element for dye-sensitized solar cells which not only does not inhibit the light absorption of a pigment | dye but does not impair color property, and is highly efficient and excellent in design property. .

前記課題を解決するために、本発明は、透明基板の表面に、透明導電膜と、多孔質半導体に増感色素を吸着させた多孔質半導体層とを順次形成してなる半導体電極と、導電性基板の表面に触媒層を形成してなる対向電極との間に、電解質層を保持して構成される光電変換素子であって、前記電解質層が、酸化還元対としてチオシアン酸アンモニウム及び2,5−ジ−t−ブチルヒドロキノンの両方を、共に濃度5.0mM〜100.0mMで含むことを特徴とする光電変換素子を提供する。 In order to solve the above-mentioned problems, the present invention provides a semiconductor electrode formed by sequentially forming a transparent conductive film and a porous semiconductor layer in which a sensitizing dye is adsorbed on a porous semiconductor on the surface of a transparent substrate, A photoelectric conversion element configured by holding an electrolyte layer between a counter electrode formed with a catalyst layer on the surface of a conductive substrate, wherein the electrolyte layer includes ammonium thiocyanate and 2, both 5-di -t- butyl Hidorokino down together to provide a photoelectric conversion element characterized in that it comprises a concentration 5.0MM~100.0MM.

本発明の光電変換素子の電解質層に含まれるヒドロキノン誘導体及びチオシアン酸誘導体は、酸化還元対として高い性能・安定性を有するだけでなく、ほぼ無色透明であるため素子外観も色彩性を損なうことがなく、高効率で、なおかつ意匠性に優れたものとなる。   The hydroquinone derivative and thiocyanic acid derivative contained in the electrolyte layer of the photoelectric conversion element of the present invention not only have high performance and stability as a redox couple, but also are almost colorless and transparent, so that the appearance of the element may impair the color. No high efficiency and excellent design.

本発明の光電変換素子の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the photoelectric conversion element of this invention.

以下、本発明に関して図面を参照して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は、本発明の光電変換素子1の構成を模式的に示す断面図であるが、従来と同様に、半導体電極10と対向電極20との間に、電解質層30を保持して構成される。   FIG. 1 is a cross-sectional view schematically showing a configuration of a photoelectric conversion element 1 according to the present invention, which is configured by holding an electrolyte layer 30 between a semiconductor electrode 10 and a counter electrode 20 as in the prior art. The

〔半導体電極〕
半導体電極10は、透明基板11の一方の表面11aに透明導電膜12を成膜し、更に透明導電膜12の表面12aに多孔質半導体層13を形成したものである。
[Semiconductor electrode]
The semiconductor electrode 10 is obtained by forming a transparent conductive film 12 on one surface 11 a of the transparent substrate 11 and further forming a porous semiconductor layer 13 on the surface 12 a of the transparent conductive film 12.

(透明基板)
透明基板11は、可視光を透過するものであればよく、透明なガラス板やプラスチック板、プラスチックフィルム等を使用できるが、透明なガラス板が好適である。また、透明導電膜12が成膜される表面11aを加工して入射光を散乱させることにより、高効率で入射光を使用できるようになる。透明基板11の厚さは、光電変換素子1の形状や使用条件により異なるため特に限定はされないが、例えばガラスやプラスチックなどを用いた場合では、実使用時の耐久性を考慮して1mm〜1cm程度が好ましく、フレキシブル性が必要とされ、プラスチックフィルムなどを使用した場合は、1μm〜1mm程度が好ましい。
(Transparent substrate)
The transparent substrate 11 only needs to transmit visible light, and a transparent glass plate, plastic plate, plastic film, or the like can be used, but a transparent glass plate is preferable. Further, by processing the surface 11a on which the transparent conductive film 12 is formed to scatter incident light, the incident light can be used with high efficiency. The thickness of the transparent substrate 11 is not particularly limited because it varies depending on the shape and use conditions of the photoelectric conversion element 1. For example, when glass or plastic is used, 1 mm to 1 cm is considered in consideration of durability during actual use. The degree is preferable, flexibility is required, and when a plastic film or the like is used, about 1 μm to 1 mm is preferable.

(透明導電膜)
透明導電膜12としては、可視光を透過して、かつ導電性を有するものが使用できる。このような材料としては、例えば金属酸化物が挙げられる。特に限定はされないが、例えばフッ素をドープした酸化スズ(以下、「FTO」と略記する。)や、酸化インジウム、酸化スズと酸化インジウムの混合体(以下、「ITO」と略記する。)、アンチモンをドープした酸化スズ、酸化亜鉛などを好適に用いることができる。
(Transparent conductive film)
As the transparent conductive film 12, a material that transmits visible light and has conductivity can be used. An example of such a material is a metal oxide. Although not particularly limited, for example, tin oxide doped with fluorine (hereinafter abbreviated as “FTO”), indium oxide, a mixture of tin oxide and indium oxide (hereinafter abbreviated as “ITO”), antimony, and the like. Tin oxide, zinc oxide and the like doped with can be preferably used.

また、透明導電膜12として、分散させるなどの処理により可視光を透過するようにすれば、不透明な導電性材料を用いることもできる。このような材料としては炭素材料や金属が挙げられる。炭素材料としては、特に限定はされないが、例えば黒鉛(グラファイト)、カーボンブラック、グラッシーカーボン、カーボンナノチューブやフラーレンなどが挙げられる。また、金属としては、特に限定はされないが、例えば白金、金、銀、ルテニウム、銅、アルミニウム、ニッケル、コバルト、クロム、鉄、モリブデン、チタン、タンタル、およびそれらの合金などが挙げられる。   Further, as the transparent conductive film 12, an opaque conductive material can be used if visible light is transmitted by a process such as dispersion. Such materials include carbon materials and metals. Although it does not specifically limit as a carbon material, For example, graphite (graphite), carbon black, glassy carbon, a carbon nanotube, fullerene, etc. are mentioned. Further, the metal is not particularly limited, and examples thereof include platinum, gold, silver, ruthenium, copper, aluminum, nickel, cobalt, chromium, iron, molybdenum, titanium, tantalum, and alloys thereof.

透明導電膜12の厚さは、用いる材料により導電性が異なるため特には限定されないが、一般的に使用されるFTO被膜付ガラスでは、0.01μm〜5μmであり、好ましくは0.1μm〜1μmである。また、必要とされる導電性は、使用する電極の面積により異なり、広い電極ほど低抵抗であることが求められるが、一般的にシート抵抗(面抵抗率)で100Ω/□以下、好ましくは10Ω/□以下、より好ましくは5Ω/□以下である。このシート抵抗は、薄膜やフィルム状物質の電気抵抗値であり、単位はΩであるが、シートであることを示すため慣用的に「Ω/□(ohm/square)」と記述している。   The thickness of the transparent conductive film 12 is not particularly limited because the conductivity varies depending on the material to be used, but is generally 0.01 μm to 5 μm, and preferably 0.1 μm to 1 μm in the FTO-coated glass. It is. Further, the required conductivity varies depending on the area of the electrode to be used, and it is required that the wider the electrode, the lower the resistance. In general, the sheet resistance (surface resistivity) is 100Ω / □ or less, preferably 10Ω. / □ or less, more preferably 5Ω / □ or less. This sheet resistance is an electrical resistance value of a thin film or film-like substance, and its unit is Ω, but is conventionally described as “Ω / □ (ohm / square)” to indicate that it is a sheet.

透明基板11と透明導電膜12とを一体化した厚さは、上述のように光電変換素子1の形状や使用条件により異なるため特に限定はされないが、一般的に1μm〜1cm程度である。   Although the thickness which integrated the transparent substrate 11 and the transparent conductive film 12 changes with the shape and use conditions of the photoelectric conversion element 1 as mentioned above, it is not specifically limited, Generally, it is about 1 micrometer-1 cm.

(多孔質半導体層)
多孔質半導体層13は、多孔質金属酸化物半導体に増感色素を吸着させたものである。多孔質金属酸化物半導体としては、特に限定はされないが、酸化チタン、酸化亜鉛、酸化スズなどが挙げられ、特に二酸化チタン、さらにはアナターゼ型二酸化チタンが好適である。また、電気抵抗値を下げるため、金属酸化物の粒界は少ないことが望ましい。更に、増感色素をより多く担持させるために、多孔質金属酸化物半導体は比表面積の大きなものが望ましく、具体的には10〜200m/gが望ましい。
(Porous semiconductor layer)
The porous semiconductor layer 13 is obtained by adsorbing a sensitizing dye to a porous metal oxide semiconductor. Although it does not specifically limit as a porous metal oxide semiconductor, A titanium oxide, a zinc oxide, a tin oxide, etc. are mentioned, Especially titanium dioxide and also anatase type titanium dioxide are suitable. Further, it is desirable that the metal oxide has few grain boundaries in order to reduce the electric resistance value. Furthermore, in order to carry more sensitizing dyes, the porous metal oxide semiconductor desirably has a large specific surface area, specifically 10 to 200 m 2 / g.

増感色素としては、太陽光により励起されて多孔質金属酸化物半導体に電子注入できるものであればよく、一般的に光電変換素子に用いられている色素を用いることができるが、変換効率を向上させるためには、その吸収スペクトルが太陽光スペクトルと広波長域で重なっていて、耐光性が高いことが望ましい。具体的には、例えばルテニウム錯体、鉄錯体、銅錯体などの金属錯体色素が挙げられる。さらに、シアン系色素、ポルフィリン系色素、ポリエン系色素、クマリン系色素、シアニン系色素、スクアリン酸系色素、メチン系色素、キサンテン系色素、インドリン系色素などの有機色素が挙げられる。   As the sensitizing dye, any dye that can be excited by sunlight and can inject electrons into the porous metal oxide semiconductor can be used, and dyes generally used in photoelectric conversion elements can be used. In order to improve, it is desirable that the absorption spectrum overlaps with the sunlight spectrum in a wide wavelength region and has high light resistance. Specific examples include metal complex dyes such as ruthenium complexes, iron complexes, and copper complexes. Further examples include organic dyes such as cyan dyes, porphyrin dyes, polyene dyes, coumarin dyes, cyanine dyes, squaric acid dyes, methine dyes, xanthene dyes, and indoline dyes.

多孔質半導体層13を形成する方法には特に限定はなく、例えばゾルゲル法、分散体ペーストの塗布、電析や電着などにより多孔質金属酸化物半導体を所定厚で堆積し、増感色素を吸着させればよい。   The method for forming the porous semiconductor layer 13 is not particularly limited. For example, a porous metal oxide semiconductor is deposited at a predetermined thickness by a sol-gel method, dispersion paste application, electrodeposition or electrodeposition, and a sensitizing dye is added. What is necessary is just to make it adsorb | suck.

また、多孔質半導体層13の厚さは、用いる酸化物により最適値が異なるため特には限定されないが、0.1μm〜50μm、好ましくは3〜30μmであり、より好ましくは5〜15μmである。   The thickness of the porous semiconductor layer 13 is not particularly limited because the optimum value varies depending on the oxide to be used, but is 0.1 μm to 50 μm, preferably 3 to 30 μm, and more preferably 5 to 15 μm.

〔対向電極〕
対向電極20は、導電性基板21の一方の表面21aに触媒層22を成膜したものである。導電性基板21は、触媒層22の支持体兼集電体として用いられるため、触媒層22が成膜される表面21aが導電性を有していることが好ましく、例えば白金、金、銀、ルテニウム、銅、アルミニウム、ニッケル、コバルト、クロム、鉄、モリブデン、チタン、タンタル、およびそれらの合金から選ばれる金属、例えば黒鉛(グラファイト)、カーボンブラック、グラッシーカーボン、カーボンナノチューブ、フラーレンから選ばれる炭素材料、例えばFTO、ITO、酸化インジウム、酸化亜鉛、酸化アンチモンから選ばれる金属酸化物の薄膜を成膜することができる。また、表面が導電性を有するように処理すれば、ガラスやプラスチックなどの絶縁体も用いることもできる。
[Counter electrode]
The counter electrode 20 is obtained by forming a catalyst layer 22 on one surface 21 a of a conductive substrate 21. Since the conductive substrate 21 is used as a support and current collector of the catalyst layer 22, the surface 21a on which the catalyst layer 22 is formed preferably has conductivity. For example, platinum, gold, silver, Metals selected from ruthenium, copper, aluminum, nickel, cobalt, chromium, iron, molybdenum, titanium, tantalum, and alloys thereof, such as graphite, carbon black, glassy carbon, carbon nanotubes, and fullerenes For example, a metal oxide thin film selected from FTO, ITO, indium oxide, zinc oxide, and antimony oxide can be formed. Further, an insulator such as glass or plastic can also be used if the surface is treated so as to have conductivity.

触媒層22としては、電解質中の酸化還元対の酸化体を還元体に還元する還元反応を速やかに進行させることが可能な電極特性を有するものであれば特に限定されないが、塩化白金酸を塗布、熱処理したものや、白金を蒸着した白金触媒電極、活性炭、グラッシーカーボン、カーボンナノチューブのような炭素材料、硫化コバルトなどの無機硫黄化合物、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性高分子などが使用できるが、その中でも白金触媒電極が好ましく使用できる。また、触媒層22の厚さは、5nm〜5μmが適当であり、特に好ましくは50nm〜2μmである。   The catalyst layer 22 is not particularly limited as long as it has electrode characteristics capable of promptly proceeding with a reduction reaction for reducing the oxidized form of the redox couple in the electrolyte to a reduced form. , Heat treated materials, platinum catalyst electrodes deposited with platinum, carbon materials such as activated carbon, glassy carbon and carbon nanotubes, inorganic sulfur compounds such as cobalt sulfide, conductive polymers such as polythiophene, polypyrrole, and polyaniline can be used. However, among them, a platinum catalyst electrode can be preferably used. The thickness of the catalyst layer 22 is suitably 5 nm to 5 μm, particularly preferably 50 nm to 2 μm.

〔電解質層〕
電解質層30は、酸化還元対として2,5−ジ−t−ブチルヒドロキノンとチオシアン酸アンモニウムとを含有する。
(Electrolyte layer)
The electrolyte layer 30 contains a 2,5-di -t- butyl Hidorokino down and ammonium thiocyanate as an oxidation-reduction pair.

上記2,5−ジ−t−ブチルヒドロキノンとチオシアン酸アンモニウムとの混合比は特に限定されないが、光電変換効率を考慮すると、モル比で、2,5−ジ−t−ブチルヒドロキノン/チオシアン酸アンモニウム=0.05〜20であることが好ましく、より好ましくは0.1〜10である。 The mixing ratio of the 2,5-di -t- butyl Hidorokino down and ammonium thiocyanate is not particularly limited, considering the photoelectric conversion efficiency, the molar ratio of 2,5-di -t- butyl Hidorokino on / thiocyanate It is preferable that it is acid acid ammonium = 0.05-20, More preferably, it is 0.1-10.

電解質層30の残部は溶媒であるが、支持電解質として、リチウム塩やイミダゾリウム塩、4級アンモニウム塩、常温溶融塩などを添加することができる。これらの添加剤は電解質層30の特性を損ねない程度に添加することができる。また、適当なゲル化剤を添加することで物理的、化学的にゲル化することもできる。   The balance of the electrolyte layer 30 is a solvent, but a lithium salt, an imidazolium salt, a quaternary ammonium salt, a room temperature molten salt, or the like can be added as a supporting electrolyte. These additives can be added to such an extent that the characteristics of the electrolyte layer 30 are not impaired. Moreover, it can be gelled physically and chemically by adding an appropriate gelling agent.

尚、溶媒は、2,5−ジ−t−ブチルヒドロキノンとチオシアン酸アンモニウムとを溶解できる化合物であれば特に制限はなく、非水性有機溶媒、常温溶融塩、プロトン性有機溶媒などから任意に選択できる。例えば、アセトニトリル、メトキシアセトニトリル、バレロニトリル、3−メトキシプロピオニトリルなどのニトリル化合物、γ−ブチルラクトンやバレロラクトンなどのラクトン化合物、エチレンカーボネートやプロピレンカーボネートなどのカーボネート化合物、ジオキサンやジエチルエーテル、エチレングリコールジアルキルエーテル、低重合度ポリエチレングリコールなどのエーテル類、メタノール、エタノール等のアルコール類、さらにはジメチルホルムアミドやイミダゾール類などが挙げられ、中でもアセトニトリル、バレロニトリル、3−メトキシプロピオニトリル、プロピレンカーボネート、低重合度ポリエチレングリコールなどを好適に用いることができる。 The solvent is 2,5-di -t- butyl Hidorokino emissions and particularly as long as it is a compound capable of dissolving the ammonium thiocyanate is no limitation, non-aqueous organic solvent, an ambient temperature molten salt, and any of such protic organic solvent You can choose. For example, nitrile compounds such as acetonitrile, methoxyacetonitrile, valeronitrile, 3-methoxypropionitrile, lactone compounds such as γ-butyllactone and valerolactone, carbonate compounds such as ethylene carbonate and propylene carbonate, dioxane, diethyl ether, ethylene glycol Examples include dialkyl ethers, ethers such as low-polymerization polyethylene glycol, alcohols such as methanol and ethanol, dimethylformamide and imidazoles, among which acetonitrile, valeronitrile, 3-methoxypropionitrile, propylene carbonate, low Polymerization degree polyethylene glycol etc. can be used conveniently.

また、電解質層30における2,5−ジ−t−ブチルヒドロキノンの濃度は、溶媒に対して5.0mM〜100.0mMである。濃度が5.0mMより小さい場合、2,5−ジ−t−ブチルヒドロキノンの添加効果がほとんど得られなくなり、光電変換効率の向上はほとんど見られない。一方、濃度を100.0mMより大きくしても、光電変換効率の向上はほとんど見られないだけではなく、ヒドロキノンの酸化体であるベンゾキノンが大量に生成してしまい、変色が生じてしまう虞がある。 The concentration of 2,5-di -t- butyl Hidorokino emissions in the electrolyte layer 30 is a 5.0mM~100.0mM the solvent. If the concentration is 5.0mM less, 2,5-di -t- butyl Hidorokino down effect of adding is not be almost obtained, improvement of photoelectric conversion efficiency hardly observed. On the other hand, even if the concentration is higher than 100.0 mM, not only the photoelectric conversion efficiency is hardly improved, but a large amount of benzoquinone, which is an oxidant of hydroquinone, may be generated, which may cause discoloration. .

チオシアン酸アンモニウムの濃度も同様であり、溶媒に対して5.0mM〜100.0mMである。濃度が5.0mMより小さい場合、チオシアン酸アンモニウムの添加効果がほとんど得られなくなり、光電変換効率の向上はほとんど見られない。一方、濃度が100.0mMより大きくしても、光電変換効率の向上はほとんど見られないだけではなく、チオシアン酸アンモニウムのオリゴマー化やポリマー化が速い速度で進行してしまい、成分の変性が起こってしまう虞がある。
The concentration of ammonium thiocyanate is the same, and is 5.0 mM to 100.0 mM with respect to the solvent. When the concentration is smaller than 5.0 mM, the effect of adding ammonium thiocyanate is hardly obtained, and the photoelectric conversion efficiency is hardly improved. On the other hand, even if the concentration is higher than 100.0 mM, not only the photoelectric conversion efficiency is hardly improved, but also the oligomerization and polymerization of ammonium thiocyanate proceeds at a high speed, and the modification of the components occurs. There is a risk that.

光電変換素子1を作製するには、上記の各構成材料を準備した後、従来公知の方法に従い、半導体電極10と対向電極20とを、多孔質半導体層13と触媒層22とが対向するように配置し、電解質層30を封止して組み上げればよい。尚、封止には、半導体電極10及び対向電極20の側面をエポキシ系接着剤でシールするなどの方法がある。   In order to produce the photoelectric conversion element 1, after preparing the respective constituent materials described above, according to a conventionally known method, the semiconductor electrode 10 and the counter electrode 20 are opposed so that the porous semiconductor layer 13 and the catalyst layer 22 face each other. And the electrolyte layer 30 may be sealed and assembled. The sealing includes a method of sealing the side surfaces of the semiconductor electrode 10 and the counter electrode 20 with an epoxy adhesive.

以下に実施例及び比較例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものではない。   Examples The present invention will be further described below with reference to examples and comparative examples, but the present invention is not limited thereby.

(試験用光電変換素子の作製)
ITO膜付きガラス(スパッタ品;ジオマテック(株)製)を所定のサイズに切り出し、ガラス洗浄剤で洗浄し、洗浄剤を純水で洗い流した後、アセトン、ヘキサン、アセトン、純水、純水の順番で各5分ずつ超音波洗浄を行った。乾燥後、UVオゾン洗浄機を用いて10分間仕上洗浄を行った後、70℃のTiCl水溶液中に30分間浸漬した。続いて、TiCl水溶液から取出し、純水で洗浄して乾燥した後、ITO膜表面にTiOペースト(SOLARONIX社製「Ti-Nanoxide D」)をKコントロールコーター(松尾製作所製)で50μm程度の厚さに塗布した。そして、30分程静置、乾燥させた後、80℃、30min、450℃、30minの順に大気中で焼成し、厚さ10μm程度の多孔質の酸化チタン膜を成膜した。
(Production of test photoelectric conversion element)
Glass with ITO film (sputtered product; manufactured by Geomatek Co., Ltd.) is cut into a predetermined size, washed with a glass detergent, and the detergent is washed away with pure water, followed by acetone, hexane, acetone, pure water, and pure water. In order, ultrasonic cleaning was performed for 5 minutes each. After drying, finish cleaning was performed for 10 minutes using a UV ozone cleaner, and then immersed in an aqueous TiCl 4 solution at 70 ° C. for 30 minutes. Subsequently, after being taken out from the TiCl 4 aqueous solution, washed with pure water and dried, TiO 2 paste (“Ti-Nanoxide D” manufactured by SOLARONIX) was applied to the ITO film surface with a K control coater (manufactured by Matsuo Seisakusho) of about 50 μm. Applied to thickness. And after leaving still and drying for about 30 minutes, it baked in air | atmosphere in order of 80 degreeC, 30 minutes, 450 degreeC, and 30 minutes, and formed the porous titanium oxide film about 10 micrometers thick.

次いで、増感色素としてD102と呼ばれる5−{1,2,3,3a,4,8b−ヘキサハイドロ−4−〔4−(2,2−ジフェニルビニル)フェニル〕−シクロペンタ[b]インドール−7−イルメチレン}−4−オキソ−2−チオキソ−チアゾリジン−3−イル)酢酸(三菱製紙(株)製)を用い、これを0.3mMのt−ブタノール/アセトニトリル溶液(体積比1:1の混合溶媒)に溶解した色素溶液に、上記の多孔質酸化チタン膜を成膜したITO付きガラスを浸漬し、遮光下40℃程度で3時間静置した。その後、エタノール、t−ブタノール/アセトニトリル(体積比1:1の混合溶媒;和光純薬工業(株)製)で余分な色素を洗浄、風乾して多孔質半導体層を形成して半導体電極を得た。   Next, 5- {1,2,3,3a, 4,8b-hexahydro-4- [4- (2,2-diphenylvinyl) phenyl] -cyclopenta [b] indole-7, called D102 as a sensitizing dye -Illmethylene} -4-oxo-2-thioxo-thiazolidin-3-yl) acetic acid (Mitsubishi Paper Co., Ltd.) was used and mixed with a 0.3 mM t-butanol / acetonitrile solution (volume ratio 1: 1). The glass with ITO on which the porous titanium oxide film was formed was immersed in the dye solution dissolved in the solvent, and allowed to stand at about 40 ° C. for 3 hours under light shielding. Thereafter, excess dye is washed with ethanol, t-butanol / acetonitrile (mixed solvent with a volume ratio of 1: 1; manufactured by Wako Pure Chemical Industries, Ltd.), and air-dried to form a porous semiconductor layer to obtain a semiconductor electrode. It was.

対向電極として、ガラス基板の上に白金薄膜膜を真空蒸着法により成膜した。白金薄膜の厚さは約200nmであった。   As a counter electrode, a platinum thin film was formed on a glass substrate by a vacuum deposition method. The thickness of the platinum thin film was about 200 nm.

電解質層用に、チオシアン酸アンモニウム(純正化学(株)製)と、2,5−ジ−t−ブチルヒドロキノン(和光純薬工業(株)製)とを、表1に示す割合にて混合し、凍結脱気をしたアセトニトリル(和光純薬工業(株)製)に溶解して電解質溶液を調製した。また、比較例5〜7では表2に示す電解質溶液を用いた。   For the electrolyte layer, ammonium thiocyanate (manufactured by Junsei Kagaku Co., Ltd.) and 2,5-di-t-butylhydroquinone (manufactured by Wako Pure Chemical Industries, Ltd.) are mixed at the ratio shown in Table 1. An electrolyte solution was prepared by dissolving in freeze-deaerated acetonitrile (manufactured by Wako Pure Chemical Industries, Ltd.). In Comparative Examples 5 to 7, the electrolyte solutions shown in Table 2 were used.

そして、上記の半導体電極と、対向電極との間に電解質溶液を注入し、側面をエポキシ系接着剤でシールして光電変換素子を作製した。なお、この作業はアルゴン置換されたグローブボックス内にて行った。   Then, an electrolyte solution was injected between the semiconductor electrode and the counter electrode, and the side surface was sealed with an epoxy adhesive to produce a photoelectric conversion element. This operation was performed in a glove box substituted with argon.

(光電変換素子の光電変換特性評価)
光電変換特性を、ソーラーシミュレーターを用いて評価した。擬似太陽光はAM1.5条件下で100mW/cmの光を用い、特性評価は開放電圧、短絡電流、フィルファクターから変換効率を算出することで行った。結果を表1に示す。
(Evaluation of photoelectric conversion characteristics of photoelectric conversion elements)
Photoelectric conversion characteristics were evaluated using a solar simulator. The simulated sunlight used light of 100 mW / cm 2 under AM1.5 conditions, and the characteristic evaluation was performed by calculating the conversion efficiency from the open circuit voltage, short circuit current, and fill factor. The results are shown in Table 1.

(光電変換素子の耐久性評価)
耐久性は、光照射1000時間後に再度変換効率を測定し、組立て直後の変換効率との相対比を求めた。結果を表1に示す。
(Durability evaluation of photoelectric conversion elements)
For durability, the conversion efficiency was measured again after 1000 hours of light irradiation, and the relative ratio with the conversion efficiency immediately after assembly was determined. The results are shown in Table 1.

Figure 0005540744
Figure 0005540744

Figure 0005540744
Figure 0005540744

実施例の光電変換素子は、いずれも、2,5−ジ−t−ブチルヒドロキノンのみを加えた比較例3、チオシアン酸アンモニウムのみを加えた比較例4よりも高い変換効率を示しており、特にチオシアン酸アンモニウムの濃度が25.0mM以上の場合、2.5%以上の高い変換効率を示すことがわかった。また、1000時間光照射後も光電変換特性に大きな変化は表れず、十分な耐久性を示している。   The photoelectric conversion elements of the examples all show higher conversion efficiencies than Comparative Example 3 in which only 2,5-di-t-butylhydroquinone was added and Comparative Example 4 in which only ammonium thiocyanate was added. It was found that when the concentration of ammonium thiocyanate was 25.0 mM or more, high conversion efficiency of 2.5% or more was exhibited. Moreover, even after 1000 hours of light irradiation, no significant change in the photoelectric conversion characteristics appears, indicating sufficient durability.

比較例5〜7では従来の電解質を用いた光電変換素子であるが、ヨウ素系電解質を用いた比較例5の光電変換素子は変換効率が高いものの、耐久性に問題があり、比較例6、7の光電変換素子は変換効率が低く、耐久性にも問題がある。特に比較例7の光電変換素子は変換効率及び耐久性が最も悪い。   In Comparative Examples 5-7, although it is a photoelectric conversion element using the conventional electrolyte, although the photoelectric conversion element of the comparative example 5 using an iodine type electrolyte has high conversion efficiency, there exists a problem in durability, Comparative Example 6, 7 has a low conversion efficiency and a problem with durability. In particular, the photoelectric conversion element of Comparative Example 7 has the worst conversion efficiency and durability.

また、意匠面では、実施例の光電変換素子は、電解質層は殆ど無色透明であるため、素子外観も色素の鮮やかさを損なわず、十分な意匠性を示している。これに対し、特に比較例5の光電変換素子では、色素の鮮やかな色にヨウ素系電解質の濃褐色が混ざってしまい、素子外観が濃褐色に変化し、意匠性が大きく損なわれてしまっている。   In terms of design, since the electrolyte layer of the photoelectric conversion element of the example is almost colorless and transparent, the appearance of the element does not impair the vividness of the dye, and exhibits sufficient design properties. On the other hand, in particular, in the photoelectric conversion element of Comparative Example 5, the dark brown color of the iodine-based electrolyte is mixed with the vivid color of the dye, the appearance of the element changes to dark brown, and the design properties are greatly impaired. .

1 光電変換素子
10 半導体電極
11 透明基板
12 透明導電膜
13 多孔質半導体層
20 対向電極
21 導電性基板
22 触媒層
30 電解質層
DESCRIPTION OF SYMBOLS 1 Photoelectric conversion element 10 Semiconductor electrode 11 Transparent substrate 12 Transparent conductive film 13 Porous semiconductor layer 20 Counter electrode 21 Conductive substrate 22 Catalyst layer 30 Electrolyte layer

Claims (2)

透明基板の表面に、透明導電膜と、多孔質半導体に増感色素を吸着させた多孔質半導体層とを順次形成してなる半導体電極と、導電性基板の表面に触媒層を形成してなる対向電極との間に、電解質層を保持して構成される光電変換素子であって、
前記電解質層が、酸化還元対としてチオシアン酸アンモニウム及び2,5−ジ−t−ブチルヒドロキノンの両方を、共に濃度5.0mM〜100.0mMで含むことを特徴とする光電変換素子。
A transparent conductive film and a semiconductor electrode formed by sequentially forming a porous semiconductor layer in which a sensitizing dye is adsorbed on a porous semiconductor are formed on the surface of the transparent substrate, and a catalyst layer is formed on the surface of the conductive substrate. A photoelectric conversion element configured by holding an electrolyte layer between a counter electrode,
Wherein the electrolyte layer, both of ammonium thiocyanate and 2,5-di -t- butyl Hidorokino in as oxidation-reduction pair, a photoelectric conversion element characterized by containing both a concentration 5.0MM~100.0MM.
チオシアン酸アンモニウム2,5−ジ−t−ブチルヒドロキノンとの組成比が、モル比で、2,5−ジ−t−ブチルヒドロキノン/チオシアン酸アンモニウム=0.1〜10であることを特徴とする請求項1記載の光電変換素子。 The composition ratio of ammonium thiocyanate and 2,5-di -t- butyl Hidorokino emissions is, in molar ratio, 2,5-di -t- butyl Hidorokino on / ammonium thiocyanate = 0.1 to 10 The photoelectric conversion element according to claim 1.
JP2010025260A 2010-02-08 2010-02-08 Photoelectric conversion element Expired - Fee Related JP5540744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010025260A JP5540744B2 (en) 2010-02-08 2010-02-08 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010025260A JP5540744B2 (en) 2010-02-08 2010-02-08 Photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2011165423A JP2011165423A (en) 2011-08-25
JP5540744B2 true JP5540744B2 (en) 2014-07-02

Family

ID=44595878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010025260A Expired - Fee Related JP5540744B2 (en) 2010-02-08 2010-02-08 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP5540744B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5589770B2 (en) * 2010-10-29 2014-09-17 日本精工株式会社 Photoelectric conversion element
JP6159066B2 (en) * 2012-08-27 2017-07-05 inQs株式会社 Composite solar cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293541A (en) * 2001-04-03 2002-10-09 Sony Corp Titanium oxide membrane, method for producing the same and photoelectric conversion element
JP4843904B2 (en) * 2004-03-12 2011-12-21 ソニー株式会社 Photoelectric conversion element and manufacturing method thereof
JP4676733B2 (en) * 2004-09-14 2011-04-27 Jx日鉱日石エネルギー株式会社 Method for manufacturing titanium oxide electrode and method for manufacturing photoelectric conversion element
JP4887694B2 (en) * 2005-09-06 2012-02-29 ソニー株式会社 PHOTOELECTRIC CONVERSION ELEMENT AND ITS MANUFACTURING METHOD, PHOTOELECTRIC CONVERSION ELEMENT MODULE, ELECTRONIC DEVICE, MOBILE BODY, POWER GENERATION SYSTEM, DISPLAY AND MANUFACTURING METHOD
JP4938288B2 (en) * 2005-11-04 2012-05-23 エレクセル株式会社 Dye-sensitized solar cell

Also Published As

Publication number Publication date
JP2011165423A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5023866B2 (en) Dye-sensitized photoelectric conversion element, method for producing the same, and electronic device
JP5143476B2 (en) Photoelectric conversion element
JP5084730B2 (en) Dye-sensitized solar cell
JP5237664B2 (en) Photoelectric conversion element
EP2442401A1 (en) Dye-sensitized photoelectric converter, manufacturing method thereof, and electronic device
JP5475145B2 (en) Photoelectric conversion element
JP6224003B2 (en) Photoelectric conversion element
JPWO2003103085A1 (en) Photoelectric conversion element
JP2010009786A (en) Dye sensitized solar cell, and dye sensitized solar cell module
JP5320853B2 (en) Photoelectric conversion element
JP5678801B2 (en) Photoelectric conversion element
JP5702394B2 (en) Additive for electrolyte composition, electrolyte composition using this additive, and dye-sensitized solar cell
JP5540744B2 (en) Photoelectric conversion element
JP5655591B2 (en) Photoelectric conversion element
JP2008186669A (en) Manufacturing method of dye-sensitized solar cell
JP2007073346A (en) Dye-sensitized solar cell
JP2015141955A (en) photoelectric conversion element
JP5589770B2 (en) Photoelectric conversion element
KR102089819B1 (en) Redox pair, and photoelectric conversion element produced using same
JP6821956B2 (en) Photoelectric conversion element
JP2014154498A (en) Photoelectric conversion element
JP2015222793A (en) Photoelectric conversion device
JP6415380B2 (en) Photoelectric conversion element
JP6620488B2 (en) Wireless sensor transmitter
JP2016100470A (en) Photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5540744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees