WO2014075414A1 - 一种风机电机 - Google Patents

一种风机电机 Download PDF

Info

Publication number
WO2014075414A1
WO2014075414A1 PCT/CN2013/073227 CN2013073227W WO2014075414A1 WO 2014075414 A1 WO2014075414 A1 WO 2014075414A1 CN 2013073227 W CN2013073227 W CN 2013073227W WO 2014075414 A1 WO2014075414 A1 WO 2014075414A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
power
unit
power input
Prior art date
Application number
PCT/CN2013/073227
Other languages
English (en)
French (fr)
Inventor
陈云生
边文清
赵勇
Original Assignee
中山大洋电机股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大洋电机股份有限公司 filed Critical 中山大洋电机股份有限公司
Publication of WO2014075414A1 publication Critical patent/WO2014075414A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P4/00Arrangements specially adapted for regulating or controlling the speed or torque of electric motors that can be connected to two or more different electric power supplies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/08Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/07DC-DC step-up or step-down converter inserted between the power supply and the inverter supplying the motor, e.g. to control voltage source fluctuations, to vary the motor speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to a fan motor, and the main application is in a civil mining ventilation and air conditioning (HVAC) system.
  • HVAC civil mining ventilation and air conditioning
  • HVAC system considerably reduces the use of energy.
  • many efficient stoves, air conditioners, and air handlers now have an efficiency (AFUE rating of one AFUE annual fuel utilization efficiency) of more than 90%.
  • AFUE rating of one AFUE annual fuel utilization efficiency AFUE rating of one AFUE annual fuel utilization efficiency
  • fan motors used to move the air in these systems have not seen significant efficiency improvements and are too inefficient.
  • the stove and the air conditioner are more efficient, the share of the total energy consumption of the HVAC system belonging to the fan motor is increased, thus making the fan motor a larger contributor to the use of energy throughout the system.
  • the object of the present invention is to provide a fan motor, which adopts a plurality of voltage detecting units, a plurality of on-road half-bridge rectifying units and a lower-half bridge rectifying unit to realize isolation of a plurality of power input lines to obtain a plurality of power inputs by detecting voltage means.
  • the power-on state of the line, the circuit structure is simple and reasonable, the wiring is convenient, the layout is simple, and the scale production is convenient.
  • a fan motor comprising a variable speed motor and a motor controller
  • the motor controller comprises a microprocessor, an inverter unit, a gear position detecting unit and a power supply part
  • the motor controller is externally connected to the neutral line and a plurality of power input lines, and a plurality of power inputs Only one line of the line is selected to be in the on state with power input, and the other lines are selected to be in the off state without power.
  • the input parts of the power supply part are supplied with power, and the gear position detecting unit is connected with multiple power input lines, gear positions.
  • the detecting unit comprises a plurality of voltage detecting units and a plurality of rectifying and isolating circuits, a plurality of rectifying and isolating circuits, a plurality of on-channel half-bridge rectifying units and a second-half-bridge rectifying unit, each of the power input lines being connected to the input end of the half-bridge rectifying unit on one way
  • the neutral line is connected to the input end of the lower half bridge rectifier unit, the lower half bridge rectifier unit is combined with any half bridge rectifier unit on the way to form a full bridge rectifier circuit, and the output end of the full bridge rectifier circuit is connected to the input end of the power supply part, and each voltage detection is performed.
  • the input terminals of the unit are respectively connected to the neutral line and one power input line to detect the zero line and the power transmission of the line
  • the voltage of the line, the output end of each voltage detecting unit is connected to the input end of the microprocessor, and the microprocessor selects the operating parameter of the motor according to the detected power status signal of each power input line, and controls the operation of the variable speed motor according to the selection.
  • the parameters are run.
  • the voltage detecting unit described above is a photoelectric coupling detecting unit.
  • the operating parameters of the motor described above are the speed parameters, and the conduction state of each power input line corresponds to one speed.
  • the operating parameter of the motor described above is a torque parameter, and the conduction state of each power input line corresponds to a torque.
  • the operating parameter of the motor described above is an air volume parameter, and the conduction state of each power input line corresponds to an air volume.
  • the microprocessor described above is also connected with a Hall element, which sends a signal of the rotor position of the motor to the microprocessor, the output signal of the microprocessor controls the inverter circuit, and the output of the inverter circuit is connected to the motor winding.
  • the multi-channel power input line described above refers to 5 channels, and a plurality of road voltage detecting units refer to 5 channels, and a plurality of upper half-bridge rectifying units refer to 5 channels.
  • the multi-channel power input line described above refers to three paths, and several voltage detecting units refer to three paths, and a plurality of upper half-bridge rectifying units refer to three paths.
  • the microprocessor, the inverter circuit, the gear position detecting circuit and the power supply portion described above are integrated on the circuit board, and the circuit board is mounted on the control box.
  • the power supply part described above comprises a voltage stabilizing circuit and a DC-DC buck circuit, the voltage stabilizing circuit is connected to the input end of the power supply part, and the output end of the voltage stabilizing circuit provides a bus voltage and an input terminal of the DC-DC buck circuit, DC
  • the DC low voltage power supply is provided at the output of the -DC step-down circuit.
  • the power supply part described above includes a voltage doubling circuit and a DC-DC step-down circuit.
  • the voltage doubling circuit is connected to the input end of the power supply portion, and the output terminal of the voltage doubling circuit provides the bus voltage and the input terminal of the DC-DC buck circuit.
  • the DC low voltage power supply is provided at the output of the -DC step-down circuit.
  • the invention has the following effects:
  • the gear position detecting unit comprises a plurality of road voltage detecting units, a plurality of road half bridge rectifying units and a lower half bridge rectifying unit, each of the power input lines is connected to the input end of the half bridge rectifying unit on one way, and the zero line is connected to the lower half bridge.
  • the input end of the rectifying unit, the lower half bridge rectifying unit and any one-way half bridge rectifying unit are combined into a full bridge rectifying circuit and the output end of the full bridge rectifying circuit is connected to the input end of the power supply part to realize isolation of each power input line, each way
  • the input terminals of the voltage detection unit are respectively connected to the neutral line and one power transmission Into the line to detect the voltage of the neutral line and the power input line of the road, the circuit structure is simple and reasonable, the wiring is convenient, the layout is simple, and the scale production is convenient, and the space of the motor controller is hardly occupied;
  • the power supply part uses a voltage doubler circuit to increase the bus voltage
  • Figure 1 is a schematic block diagram of Embodiment 1 of the present invention.
  • Figure 2a is a partial circuit diagram corresponding to Figure 1;
  • Figure 2b Figure 1 corresponds to another part of the circuit diagram
  • FIG. 3 is a schematic block diagram of Embodiment 2 of the present invention.
  • Figure 4 is a partial circuit diagram corresponding to Figure 3.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the motor controller includes a microprocessor MCU, an inverter unit IPM, a gear position detecting unit and a power source
  • the microprocessor MCU is also connected with a Hall detecting unit HALL, and the Hall detecting unit HALL sends a signal of the motor rotor position to the microprocessor MCU, and the microprocessor MCU outputs a signal to control the inverter unit IPM, and the inverter unit IPM outputs.
  • the motor is connected to the motor winding.
  • the motor controller is connected to the neutral line N, the ground line E and several power input lines Ll, L2, L3, L4, L5. Only one of the several power input lines L1, L2, L3, L4, L5 is When the selected state is in the on state, there is power input, and the remaining channels are selected to be in the off state without power.
  • the input parts of the power supply part are supplied with power, and the gear position detecting unit is connected to the multiple power input lines L1, L2, L3, L4.
  • the gear position detecting unit comprises a plurality of way voltage detecting units and a multi-way rectifying isolating circuit
  • the multi-way rectifying and isolating circuit comprises a plurality of on-road half-bridge rectifying units and one-way lower half-bridges
  • the rectifier unit each power input line is connected to the input end of the half bridge rectifier unit on the way, the neutral line is connected to the input end of the lower half bridge rectifier unit, and the lower half bridge rectifier unit is combined with any half bridge rectifier unit on the way to form a full bridge rectifier circuit.
  • the output end of the full-bridge rectifier circuit is connected to the input end of the power supply part, and the input end of each voltage detecting unit is respectively connected with the neutral line N and one power input line to detect the voltage of the neutral line and the power input line of the road, and each voltage detection
  • the output end of the unit is connected to the input end of the microprocessor MCU, and the microprocessor MCU selects the operating parameter of the motor according to the detected power status signal of each power input line, and controls the variable speed motor to operate according to the selected operating parameter, including the variable speed motor and Motor controller, the operating parameter of the motor is the speed parameter, the conduction state of each power input line corresponds to one speed; the operating parameter of the motor can also be the torque parameter, and the conduction state of each power input line corresponds to a torque; The operating parameter may also be an air volume parameter, and the conduction state of each power input line corresponds to an air volume.
  • the microprocessor MCU, the inverter circuit IPM, the gear position detecting circuit and the power supply section are
  • the power supply part includes a voltage stabilizing circuit and a DC-DC step-down circuit.
  • the voltage stabilizing circuit is connected to the input end of the power supply part, and the output end of the voltage stabilizing circuit provides a bus voltage VDC and an input terminal of the DC-DC buck circuit, DC-DC drop.
  • the output of the voltage circuit provides a +15V, +5V DC low voltage power supply.
  • the voltage regulator circuit includes inductor L101; resistors R107, R108, R109, R1 10; capacitors C107, C106; voltage control protector VAR7.
  • the half bridge rectifier unit on the first road is formed by connecting the diode D1 and the diode D2 in series.
  • the first power input line L1 is connected between the diode D1 and the diode D2, and the lower half rectifier unit is connected by the second stage.
  • the tube D11 and the diode D12 are connected in series, the zero line N is connected between the diode D1 1 and the diode D12, and the diode D1 and the diode D2 are formed between the diode D11 and the diode D12.
  • the full bridge rectifier circuit and the output of the full bridge rectifier circuit are connected to the input terminal of the voltage regulator circuit.
  • the first voltage detecting unit includes a photocoupler chip U601, resistors R602 and R604, and a capacitor C601.
  • the second bridge half-bridge rectifier unit is formed by connecting diode D3 and diode D4 in series, and the second power transmission
  • the incoming line L2 is connected between the diode D3 and the diode D4, and the lower half bridge rectifier unit is formed by connecting the diode D11 and the diode D12 in series, and the neutral line N is connected to the diode D11 and the diode D12.
  • the second voltage detecting unit includes a photocoupler chip brain 2, resistors R606, R608, and a capacitor C602.
  • the third bridge half-bridge rectifier unit is formed by connecting diode D5 and diode D6 in series.
  • the third power input line L3 is connected between diode D5 and diode D6, and the lower half bridge rectifier unit is connected by two.
  • the tube D11 and the diode D12 are connected in series, the neutral line N is connected between the diode D11 and the diode D12, and the diode D5 and the diode D6 are formed between the diode D11 and the diode D12.
  • the bridge rectifier circuit and the output of the full bridge rectifier circuit are connected to the input terminal of the voltage regulator circuit.
  • the voltage detecting unit of the third path includes a photocoupler chip brain 3, resistors R610, R612, and a capacitor C603.
  • the fourth bridge half-bridge rectifier unit is formed by connecting diode D7 and diode D8 in series.
  • the fourth power input line L4 is connected between diode D7 and diode D8, and the lower half bridge rectifier unit is connected by two.
  • the tube D11 and the diode D12 are connected in series, the neutral line N is connected between the diode D11 and the diode D12, and the diode D7 and the diode D8 are formed between the diode D11 and the diode D12.
  • the bridge rectifier circuit and the output of the full bridge rectifier circuit are connected to the input terminal of the voltage regulator circuit.
  • the voltage detecting unit of the fourth path includes a photocoupler chip brain 4, resistors R614 and R616, and a capacitor C604.
  • the fifth bridge half-bridge rectifier unit is formed by connecting diode D9 and diode D10 in series, and the fifth power input line L5 is connected between the diode D9 and the diode D10, and the lower half rectifier unit is connected by the second stage.
  • the tube D11 and the diode D12 are connected in series, the neutral line N is connected between the diode D11 and the diode D12, and the diode D9 and the diode D10 are formed between the diode D1 1 and the diode D12.
  • the full bridge rectifier circuit and the output of the full bridge rectifier circuit are connected to the input terminal of the voltage regulator circuit.
  • the voltage detecting unit of the fifth path includes a photocoupler chip U605, resistors R618, R620, and a capacitor C605.
  • the working principle of the invention is that the motor controller is externally connected to the neutral line N and a plurality of power input lines L1, L2, L3, L4, L5, and only one of the plurality of power input lines L1, L2, L3, L4, L5 is selected. There is power input in the on state, and the remaining channels are selected to be in the off state without electricity.
  • the gear position detecting unit includes a plurality of voltage detecting units and a multi-way rectifying isolating circuit
  • the multi-way rectifying and isolating circuit includes a plurality of on-road half-bridge rectification Unit and one lower half bridge rectifier unit, each power input line is connected to the input end of the half bridge rectifier unit on the way, the zero line is connected to the input end of the lower half bridge rectifier unit, the lower half bridge rectifier unit and any half way bridge rectifier
  • the unit is combined into a full bridge rectifier circuit and the output end of the full bridge rectifier circuit is connected to the input end of the power supply part, and the input ends of each voltage detecting unit are respectively connected with the neutral line N and one power input line to detect the zero line and the power input line of the road.
  • each voltage detection unit is connected to the input of the microprocessor MCU, and the multi-channel rectification isolation circuit isolates several power input lines Ll, L2, L3 L4, L5, so that the measured multiple channels of power input line voltage energized state detection means through a multiplexer (e.g. photocoupler).
  • a multiplexer e.g. photocoupler
  • Embodiment 2 As shown in FIG. 3 and FIG. 4, this embodiment is basically the same as Embodiment 1. The only difference is that the power supply part is improved:
  • the power supply part includes a voltage doubler circuit and a DC-DC step-down circuit, and the voltage is doubled.
  • the circuit is connected to the input end of the power supply section, the output of the voltage doubler circuit provides the bus voltage and the input terminal of the DC-DC buck circuit, and the output of the DC-DC buck circuit provides the DC low voltage power supply.
  • the voltage doubler circuit includes an inductor L101; resistors R107, R108, R109, and R110; capacitors C107 and C106; and a voltage regulator protector VAR7.
  • the resistors R107, R108, R109, and R110 are connected in series with the first tap on the right side of the inductor L101 and the third tap on the right side.
  • the capacitors C107 and C106 are connected in series and the two ends of the inductor are connected to the first tap of the inductor L101.
  • the third tap on the right side, the first tap on the left side of the inductor L101 and the third tap on the left side are connected to the output end of the full bridge rectifier circuit, and the second tap on the right side of the inductor L101 is connected to the capacitor C107 and the capacitor C106.
  • Embodiment 3 This embodiment is basically the same as the first embodiment, and the only difference is: The embodiment only has the power input lines L1, L2, L3;
  • the half bridge rectifier unit on the first road is formed by connecting the diode D1 and the diode D2 in series.
  • the first power input line L1 is connected between the diode D1 and the diode D2, and the lower half rectifier unit is connected by the second stage.
  • the tube D11 and the diode D12 are connected in series, the zero line N is connected between the diode D1 1 and the diode D12, and the diode D1 and the diode D2 are formed between the diode D11 and the diode D12.
  • the full bridge rectifier circuit and the output of the full bridge rectifier circuit are connected to the input terminal of the voltage regulator circuit.
  • the first voltage detecting unit includes a photocoupler chip U601, resistors R602 and R604, and a capacitor C601.
  • the second bridge half-bridge rectifier unit is formed by connecting the diode D3 and the diode D4 in series, the second power input line L2 is connected between the diode D3 and the diode D4, and the second half rectifier unit is connected by the second stage.
  • the tube D11 and the diode D12 are connected in series, the neutral line N is connected between the diode D11 and the diode D12, and the diode D3 and the diode D4 are formed between the diode D11 and the diode D12.
  • the bridge rectifier circuit and the output of the full bridge rectifier circuit are connected to the input terminal of the voltage regulator circuit.
  • the second voltage detecting unit includes a photocoupler chip brain 2, resistors R606, R608, and a capacitor C602.
  • the third bridge half-bridge rectifier unit is formed by connecting diode D5 and diode D6 in series.
  • the third power input line L3 is connected between diode D5 and diode D6, and the lower half bridge rectifier unit is connected by two.
  • the tube D11 and the diode D12 are connected in series, the neutral line N is connected between the diode D11 and the diode D12, and the diode D5 and the diode D6 are formed between the diode D11 and the diode D12.
  • the bridge rectifier circuit and the output of the full bridge rectifier circuit are connected to the input terminal of the voltage regulator circuit.
  • the voltage detecting unit of the third path includes a photocoupler chip brain 3, resistors R610, R612, and a capacitor C603.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种风机电机,电机控制器包括微处理器、逆变单元、档位检测单元和电源部分,档位检测单元包括若干路电压检测单元和多路整流隔离电路,多路整流隔离电路包括若干路上半桥整流单元和一路下半桥整流单元,每路电力输入线连接在一路上半桥整流单元的输入端,零线连接下半桥整流单元的输入端,下半桥整流单元与任何一路上半桥整流单元组合成全桥整流电路且全桥整流电路的输出端连接电源部分的输入端,每路电压检测单元的输入端分别连接零线和一路电力输入线以检测零线与该路电力输入线的电压,每路电压检测单元的输出端连接微处理器的输入端,微处理器控制变速电机运行,它电路结构简单合理,接线方便,布局简单,便于规模生产,几乎不占用电机控制器的空间。

Description

一种风机电机
技术领域 :
本发明涉及一种风机电机, 主用应用在民用采暧通风空调 (HVAC)系统中。 背景技术 :
HVAC系统效率的提升相当大地降低了能量的使用。 例如, 许多高效炉具、 空调器和空气处理器, 现在的效率 (AFUE额定值一 AFUE年度燃料利用效率)高 于 90%。 然而, 用于移动这些系统中空气的风机电机, 尚未看到明显的效率改 进, 且效率太低。 当炉具和空调器更为有效时, 属于风机电机的 HVAC系统总 能量消耗的份额增大, 因此, 使得风机电机成为对整个系统能量的使用的较大 贡献者。
许多上述低效率来自 HVAC系统中使用的风机电机类型是固定速度的或多 速固定分相电容器式 (PSC)电机。 因为上述 PSC电机的低效,许多更新的 HVAC 系统使用变速电机, 例如无刷永磁电机 (BPM)和相应的带电子控制器的变速电 机 BPM, 用变速电机取代现有的 PSC电机, 在成本、 耗时、 机械、 布线或系统 的控制构型中的复杂变化中都是需要的。
对现存的 PSC电机的限制是, HVAC OEM经常需要配置唯一参数的电机(转 矩负载、 风扇转速、 转动方向等), 优化 HVAC组件的性能。 多速 PSC电机提供 某些选项, 制造之后许多运行参数被固定下来, 不能轻易变更。
因此, 就希望对现有 HVAC系统中的 PSC电机提供一项改进过的 "嵌入的" 替代物, 实现风机电机的长处, 不需要明显改变原来的 HVAC系统。 更为有益 的是, 利用简单的控制电路, 降低这类替代系统的复杂性, 取消附加的布线、 如在连接常规变速电机和现有的替代变速电机中使用的。这给风机电机提出更 加高的要求。 发明内容 :
本发明的目的是提供一种风机电机, 采用若干路电压检测单元、 若干路 上半桥整流单元和一路下半桥整流单元,实现若干路电力输入线的隔离以通过 检测电压手段得到若干路电力输入线的通电状态, 电路结构简单合理,接线方 便, 布局简单, 便于规模生产。
本发明的目的是通过下述技术方案予以实现的:
一种风机电机, 包括变速电机和电机控制器, 电机控制器包括微处理器、 逆变单元、档位检测单元和电源部分, 电机控制器外接零线和若干路电力输入 线, 若干路电力输入线只有一路被选定处于导通状态有电力输入, 其余各路被 选定处于断开状态没有电, 电源部分的输入端各部分电路供电, 档位检测单元 连接多路电力输入线,档位检测单元包括若干路电压检测单元和多路整流隔离 电路, 多路整流隔离电路若干路上半桥整流单元和一路下半桥整流单元, 每路 电力输入线连接在一路上半桥整流单元的输入端,零线连接下半桥整流单元的 输入端,下半桥整流单元与任何一路上半桥整流单元组合成全桥整流电路且全 桥整流电路的输出端连接电源部分的输入端,每路电压检测单元的输入端分别 连接零线和一路电力输入线以检测零线与该路电力输入线的电压,每路电压检 测单元的输出端连接微处理器的输入端,微处理器根据检测到的各路电力输入 线的通电状态信号选择电机的运行参数,并控制变速电机按选择的运行参数运 行。
上述所述的电压检测单元是光电耦合检测单元。
上述所述的电机的运行参数是转速参数, 每路电力输入线的导通状态对应 一个转速。
上述所述的电机的运行参数是力矩参数,每路电力输入线的导通状态对应 一个力矩。 上述所述的电机的运行参数是风量参数, 每路电力输入线的导通状态对应 一个风量。
上述所述的微处理器还连接有霍尔元件 ,霍尔元件将电机转子位置的信 号送到微处理器,微处理器输出信号控制逆变电路,逆变电路输出端连接电机 绕组。
上述所述的多路电力输入线指 5路, 若干路电压检测单元指 5路, 若干路 上半桥整流单元指 5路。
上述所述的多路电力输入线指 3路, 若干路电压检测单元指 3路, 若干路 上半桥整流单元指 3路。
上述所述的微处理器、逆变电路、档位检测电路和电源部分集成在线路板 上, 线路板安装在控制盒上。
上述所述的电源部分包括稳压电路和 DC-DC降压电路,稳压电路连接电源 部分的输入端,稳压电路的输出端提供母线电压和作为 DC-DC降压电路的输入 端, DC-DC降压电路的输出端提供直流低压电源。
上述所述的电源部分包括倍压电路和 DC-DC降压电路,倍压电路连接电源 部分的输入端,倍压电路的输出端提供母线电压和作为 DC-DC降压电路的输入 端, DC-DC降压电路的输出端提供直流低压电源。
本发明与现有技术相比, 具有如下效果:
1 ) 档位检测单元包括若干路电压检测单元、 若干路上半桥整流单元和一 路下半桥整流单元, 每路电力输入线连接在一路上半桥整流单元的输入端, 零 线连接下半桥整流单元的输入端,下半桥整流单元与任何一路上半桥整流单元 组合成全桥整流电路且全桥整流电路的输出端连接电源部分的输入端,实现各 路电力输入线的隔离,每路电压检测单元的输入端分别连接零线和一路电力输 入线以检测零线与该路电力输入线的电压, 电路结构简单合理, 接线方便, 布 局简单, 便于规模生产, 几乎不占用电机控制器的空间;
2 ) 电源部分采用倍压电路, 可以提高母线电压;
3 ) 微处理器、 逆变电路、 档位检测电路和电源部分集成在线路板上, 线 路板安装在控制盒上, 便于规模生产, 集成度高。
附图说明:
图 1 是本发明的实施例一的原理方框图;
图 2a 是图 1对应的一部分电路图;
图 2b图 1对应的另一部分电路图
图 3是本发明的实施例二的原理方框图;
图 4 是图 3对应的一部分电路图。
具体实施方式:
下面通过具体实施例并结合附图对本发明作进一步详细的描述。
实施例一:
如图 1、 图 2a、 图 2b所示, 一种风机电机, 一种风机电机, 包括变速电 机和电机控制器, 电机控制器包括微处理器 MCU、 逆变单元 IPM、 档位检测单 元和电源部分,微处理器 MCU还连接有霍尔检测单元 HALL,霍尔检测单元 HALL 将电机转子位置的信号送到微处理器 MCU, 微处理器 MCU输出信号控制逆变单 元 IPM, 逆变单元 IPM输出端连接电机绕组, 电机控制器外接零线 N、 地线 E 和若干路电力输入线 Ll、 L2、 L3、 L4、 L5, 若干路电力输入线 Ll、 L2、 L3、 L4、 L5 中只有一路被选定处于导通状态有电力输入, 其余各路被选定处于断 开状态没有电, 电源部分的输入端各部分电路供电, 档位检测单元连接多路电 力输入线 Ll、 L2、 L3、 L4、 L5, 档位检测单元包括若干路电压检测单元和多 路整流隔离电路,多路整流隔离电路包括若干路上半桥整流单元和一路下半桥 整流单元, 每路电力输入线连接在一路上半桥整流单元的输入端, 零线连接下 半桥整流单元的输入端,下半桥整流单元与任何一路上半桥整流单元组合成全 桥整流电路且全桥整流电路的输出端连接电源部分的输入端,每路电压检测单 元的输入端分别连接零线 N和一路电力输入线以检测零线与该路电力输入线 的电压, 每路电压检测单元的输出端连接微处理器 MCU 的输入端, 微处理器 MCU根据检测到的各路电力输入线的通电状态信号选择电机的运行参数, 并控 制变速电机按选择的运行参数运行包括变速电机和电机控制器,电机的运行参 数是转速参数, 每路电力输入线的导通状态对应一个转速; 电机的运行参数也 可以是力矩参数, 每路电力输入线的导通状态对应一个力矩; 电机的运行参数 还可以是风量参数,每路电力输入线的导通状态对应一个风量。微处理器 MCU、 逆变电路 IPM、 档位检测电路和电源部分集成在线路板上, 线路板安装在控制 盒上。
电源部分包括稳压电路和 DC-DC降压电路,稳压电路连接电源部分的输入 端, 稳压电路的输出端提供母线电压 VDC和作为 DC-DC降压电路的输入端, DC-DC 降压电路的输出端提供 +15V、 +5V 直流低压电源。 稳压电路包括电感 L101 ; 电阻 R107、 R108、 R109、 R1 10; 电容 C107、 C106; 压控保护器 VAR7。
第一路上半桥整流单元由二级管 D1和二级管 D2串联而成, 第一路电力 输入线 L1连接在二级管 D1和二级管 D2之间, 下半桥整流单元由二级管 D11 和二级管 D12串联而成, 零线 N连接二级管 D1 1和二级管 D12之间, 二级管 D1和二级管 D2与二级管 D11和二级管 D12之间组成全桥整流电路且全桥整流 电路的输出端连接稳压电路的输入端。第一路的电压检测单元包括光电耦合器 芯片 U601、 电阻 R602、 R604; 电容 C601。
第二路上半桥整流单元由二级管 D3和二级管 D4串联而成,第二路电力输 入线 L2连接在二级管 D3和二级管 D4之间, 下半桥整流单元由二级管 D11和 二级管 D12串联而成, 零线 N连接二级管 D11和二级管 D12之间, 二级管 D3 和二级管 D4与二级管 D11和二级管 D12之间组成全桥整流电路且全桥整流电 路的输出端连接稳压电路的输入端。第二路的电压检测单元包括光电耦合器芯 片腦2、 电阻 R606、 R608; 电容 C602。
第三路上半桥整流单元由二级管 D5和二级管 D6串联而成,第三路电力输 入线 L3连接在二级管 D5和二级管 D6之间, 下半桥整流单元由二级管 D11和 二级管 D12串联而成, 零线 N连接二级管 D11和二级管 D12之间, 二级管 D5 和二级管 D6与二级管 D11和二级管 D12之间组成全桥整流电路且全桥整流电 路的输出端连接稳压电路的输入端。第三路的电压检测单元包括光电耦合器芯 片腦3、 电阻 R610、 R612 ; 电容 C603。
第四路上半桥整流单元由二级管 D7和二级管 D8串联而成,第四路电力输 入线 L4连接在二级管 D7和二级管 D8之间, 下半桥整流单元由二级管 D11和 二级管 D12串联而成, 零线 N连接二级管 D11和二级管 D12之间, 二级管 D7 和二级管 D8与二级管 D11和二级管 D12之间组成全桥整流电路且全桥整流电 路的输出端连接稳压电路的输入端。第四路的电压检测单元包括光电耦合器芯 片腦4、 电阻 R614、 R616; 电容 C604。
第五路上半桥整流单元由二级管 D9和二级管 D10串联而成, 第五路电力 输入线 L5连接在二级管 D9和二级管 D10之间, 下半桥整流单元由二级管 D11 和二级管 D12串联而成, 零线 N连接二级管 D11和二级管 D12之间, 二级管 D9和二级管 D10与二级管 D1 1和二级管 D12之间组成全桥整流电路且全桥整 流电路的输出端连接稳压电路的输入端。第五路的电压检测单元包括光电耦合 器芯片 U605、 电阻 R618、 R620; 电容 C605。 本发明的其工作原理是:电机控制器外接零线 N和若干路电力输入线 Ll、 L2、 L3、 L4、 L5, 若干路电力输入线 Ll、 L2、 L3、 L4、 L5中只有一路被选定 处于导通状态有电力输入, 其余各路被选定处于断开状态没有电, 档位检测单 元包括若干路电压检测单元和多路整流隔离电路,多路整流隔离电路包括若干 路上半桥整流单元和一路下半桥整流单元,每路电力输入线连接在一路上半桥 整流单元的输入端, 零线连接下半桥整流单元的输入端, 下半桥整流单元与任 何一路上半桥整流单元组合成全桥整流电路且全桥整流电路的输出端连接电 源部分的输入端,每路电压检测单元的输入端分别连接零线 N和一路电力输入 线以检测零线与该路电力输入线的电压,每路电压检测单元的输出端连接微处 理器 MCU的输入端, 多路整流隔离电路隔离若干路电力输入线 Ll、 L2、 L3、 L4、 L5, 从而通过多路电压检测单元(例如光电耦合器)测量出若干路电力输 入线通电状态。
实施例二: 如图 3和图 4所示, 本实施例基本与实施例一基本相同, 唯一不 同点是电源部分作了改进: 电源部分包括倍压电路和 DC-DC降压电路,倍压电 路连接电源部分的输入端,倍压电路的输出端提供母线电压和作为 DC-DC降压 电路的输入端, DC-DC降压电路的输出端提供直流低压电源。 倍压电路包括电 感 L101 ; 电阻 R107、 R108、 R109、 R110; 电容 C107、 C106; 压控保护器 VAR7。 电阻 R107、 R108、 R109、 R110串联起来两端分别连接电感 L101的右侧第一个 抽头和右侧第三个抽头, 电容 C107、 C106串联起来两端分别连接电感 L101的 右侧第一个抽头和右侧第三个抽头, 电感 L101的左侧第一个抽头和左侧第三 个抽头连接全桥整流电路的输出端, 电感 L101的右侧第二个抽头连接在电容 C107与电容 C106之间,电阻 R108与电阻 R109之间连接电感 L101的右侧第二个 抽头, 电感 L101的左侧第二个抽头连接零线 N。 实施例三: 本实施例基本与实施例一基本相同, 唯一不同点式: 本实施例 只有路电力输入线 Ll、 L2、 L3 ;
第一路上半桥整流单元由二级管 D1和二级管 D2串联而成, 第一路电力 输入线 L1连接在二级管 D1和二级管 D2之间, 下半桥整流单元由二级管 D11 和二级管 D12串联而成, 零线 N连接二级管 D1 1和二级管 D12之间, 二级管 D1和二级管 D2与二级管 D11和二级管 D12之间组成全桥整流电路且全桥整流 电路的输出端连接稳压电路的输入端。第一路的电压检测单元包括光电耦合器 芯片 U601、 电阻 R602、 R604; 电容 C601。
第二路上半桥整流单元由二级管 D3和二级管 D4串联而成,第二路电力输 入线 L2连接在二级管 D3和二级管 D4之间, 下半桥整流单元由二级管 D11和 二级管 D12串联而成, 零线 N连接二级管 D11和二级管 D12之间, 二级管 D3 和二级管 D4与二级管 D11和二级管 D12之间组成全桥整流电路且全桥整流电 路的输出端连接稳压电路的输入端。第二路的电压检测单元包括光电耦合器芯 片腦2、 电阻 R606、 R608; 电容 C602。
第三路上半桥整流单元由二级管 D5和二级管 D6串联而成,第三路电力输 入线 L3连接在二级管 D5和二级管 D6之间, 下半桥整流单元由二级管 D11和 二级管 D12串联而成, 零线 N连接二级管 D11和二级管 D12之间, 二级管 D5 和二级管 D6与二级管 D11和二级管 D12之间组成全桥整流电路且全桥整流电 路的输出端连接稳压电路的输入端。第三路的电压检测单元包括光电耦合器芯 片腦3、 电阻 R610、 R612 ; 电容 C603。

Claims

权利要求
1、 一种风机电机, 包括变速电机和电机控制器, 电机控制器包括微处理 器、逆变单元、档位检测单元和电源部分, 电机控制器外接零线和若干路电力 输入线, 若干路电力输入线只有一路被选定处于导通状态有电力输入, 其余各 路被选定处于断开状态没有电, 电源部分的输入端各部分电路供电, 档位检测 单元连接多路电力输入线, 其特征在于: 档位检测单元包括若干路电压检测单 元和多路整流隔离电路,多路整流隔离电路包括若干路上半桥整流单元和一路 下半桥整流单元, 每路电力输入线连接在一路上半桥整流单元的输入端, 零线 连接下半桥整流单元的输入端,下半桥整流单元与任何一路上半桥整流单元组 合成全桥整流电路且全桥整流电路的输出端连接电源部分的输入端,每路电压 检测单元的输入端分别连接零线和一路电力输入线以检测零线与该路电力输 入线的电压, 每路电压检测单元的输出端连接微处理器的输入端,微处理器根 据检测到的各路电力输入线的通电状态信号选择电机的运行参数,并控制变速 电机按选择的运行参数运行。
2. 根据权利要求 1所述的一种风机电机, 其特征在于: 电压检测单元是 光电耦合检测单元。
3. 根据权利要求 1所述的一种风机电机, 其特征在于: 电机的运行参数 是转速参数, 每路电力输入线的导通状态对应一个转速。
4.根据权利要求 1所述的一种风机电机, 其特征在于: 电机的运行参数 是力矩参数, 每路电力输入线的导通状态对应一个力矩。
5. 根据权利要求 1所述的一种风机电机, 其特征在于: 电机的运行参数 是风量参数, 每路电力输入线的导通状态对应一个风量。
6. 根据权利要求 1或 2或 3或 4或 5所述的一种风机电机,其特征在于: 微处理器还连接有霍尔元件 ,霍尔元件将电机转子位置的信号送到微处理器, 微处理器输出信号控制逆变电路, 逆变电路输出端连接电机绕组。
7、根据权利要求 1或 2或 3或 4或 5所述的一种风机电机,其特征在于: 多路电力输入线指 5路, 若干路电压检测单元指 5路, 若干路上半桥整流单元 指 5路。
8、根据权利要求 1或 2或 3或 4或 5所述的一种风机电机,其特征在于: 多路电力输入线指 3路, 若干路电压检测单元指 3路, 若干路上半桥整流单元 指 3路。
9、 根据权利要求 6所述的一种风机电机, 其特征在于: 微处理器、 逆变 电路、 档位检测电路和电源部分集成在线路板上, 线路板安装在控制盒上。
10、 根据权利要求 1或 2或 3或 4或 5所述的一种风机电机, 其特征在 于: 电源部分包括稳压电路和 DC-DC降压电路, 稳压电路连接电源部分的输入 端, 稳压电路的输出端提供母线电压和作为 DC-DC降压电路的输入端, DC-DC 降压电路的输出端提供直流低压电源。
11、根据权利要求 1或 2或 3或 4或 5所述的一种风机电机,其特征在于: 电源部分包括倍压电路和 DC-DC降压电路, 倍压电路连接电源部分的输入端, 倍压电路的输出端提供母线电压和作为 DC-DC降压电路的输入端, DC-DC降压 电路的输出端提供直流低压电源。
PCT/CN2013/073227 2012-11-16 2013-03-26 一种风机电机 WO2014075414A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210466420.XA CN103825504B (zh) 2012-11-16 2012-11-16 一种风机电机
CN201210466420.X 2012-11-16

Publications (1)

Publication Number Publication Date
WO2014075414A1 true WO2014075414A1 (zh) 2014-05-22

Family

ID=50730546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073227 WO2014075414A1 (zh) 2012-11-16 2013-03-26 一种风机电机

Country Status (2)

Country Link
CN (1) CN103825504B (zh)
WO (1) WO2014075414A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11773375B2 (en) * 2016-03-25 2023-10-03 Ncardia B.V. In vivo method for differentiating human pluripotent stem cells into atrial cardiomyocytes

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105444340B (zh) * 2014-08-30 2018-08-24 中山大洋电机股份有限公司 一种带滤网堵塞检测功能的电器设备
CN112468026A (zh) * 2020-11-16 2021-03-09 常州市乐丰电机有限公司 一种三档定速可调无刷电机及其工作方法
CN112290839A (zh) * 2020-11-16 2021-01-29 常州市乐丰电机有限公司 一种三档定速可调无刷电机控制电路及工作方法
CN113364360B (zh) * 2021-06-15 2022-11-04 中山大洋电机股份有限公司 Ecm电机档位切换方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222417A (ja) * 2002-01-30 2003-08-08 Matsushita Electric Ind Co Ltd 空気調和機
CN101005267A (zh) * 2001-11-23 2007-07-25 丹福斯驱动器公司 用于不同电源电压的频率转换器
CN200949899Y (zh) * 2005-12-23 2007-09-19 余清 一种变频环保节能水冷空调控制器
CN101939244A (zh) * 2008-03-14 2011-01-05 通力股份公司 输送机系统
RU2465714C1 (ru) * 2011-06-15 2012-10-27 Закрытое акционерное общество "Электропривод и силовая Электроника" Способ управления частотно-регулируемым электроприводом

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020770A (ja) * 1983-07-14 1985-02-02 Nec Corp 整流電源回路
US6385064B1 (en) * 2001-05-07 2002-05-07 Rockwell Technologies, Llc Harmonic blocking reactor for nine-phase converter system
CN201491314U (zh) * 2009-07-09 2010-05-26 苏州贵耀电子科技有限公司 Led日光灯驱动电路
CN201918941U (zh) * 2010-12-06 2011-08-03 中山大洋电机股份有限公司 一种电子换向电机接口信号转换子线路板
CN202172378U (zh) * 2011-08-04 2012-03-21 中山大洋电机制造有限公司 用交流电信号控制电机恒转速运转的直流无刷电机控制器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005267A (zh) * 2001-11-23 2007-07-25 丹福斯驱动器公司 用于不同电源电压的频率转换器
JP2003222417A (ja) * 2002-01-30 2003-08-08 Matsushita Electric Ind Co Ltd 空気調和機
CN200949899Y (zh) * 2005-12-23 2007-09-19 余清 一种变频环保节能水冷空调控制器
CN101939244A (zh) * 2008-03-14 2011-01-05 通力股份公司 输送机系统
RU2465714C1 (ru) * 2011-06-15 2012-10-27 Закрытое акционерное общество "Электропривод и силовая Электроника" Способ управления частотно-регулируемым электроприводом

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11773375B2 (en) * 2016-03-25 2023-10-03 Ncardia B.V. In vivo method for differentiating human pluripotent stem cells into atrial cardiomyocytes

Also Published As

Publication number Publication date
CN103825504A (zh) 2014-05-28
CN103825504B (zh) 2018-02-06

Similar Documents

Publication Publication Date Title
CA2828312C (en) Variable speed fan motor
WO2014075414A1 (zh) 一种风机电机
CN106154871B (zh) 一种电器设备的通风管道堵塞程度实时显示控制方法
CN203608132U (zh) 一种变速风机电机
WO2015123833A1 (zh) 一种多功能ecm电机及其应用的hvac系统
CN205725556U (zh) 一种电机控制器及应用其的ecm电机
CN106160587B (zh) 一种电机的控制方法及应用其的带有风道的电器设备的控制方法
WO2016101467A1 (zh) 一种隔离调速接口电路及应用其的电器设备系统
WO2012114702A1 (ja) 空気調和機
CN205490281U (zh) 一种基于重复控制的无电解电容逆变器永磁同步电机控制装置
CA2824610C (en) Fan motor
CN108931041B (zh) 电控组件及空调器
CN101237215A (zh) 车辆空调变频控制系统及其方法
WO2015062126A1 (zh) 电子换相电机及其控制方法和hvac调试系统
CN202940761U (zh) 一种六相电机驱动系统
CN201697268U (zh) 变频空调控制器
WO2014000481A1 (zh) 一种直流无刷电机
CN201032709Y (zh) 车辆空调变频控制装置
CN202303686U (zh) 混合控制的交直流风机空调室外机
WO2016015397A1 (zh) 一种ecm电机
CN203883719U (zh) 可用于交流电源的直流无刷马达控制系统
CN105216580A (zh) 越野车载高集成双路变频空调设备
CN204835999U (zh) 一种转接线路板及其应用的电器控制系统
EP3786540A1 (en) Air conditioner electric control assembly and air conditioner
TWI555324B (zh) DC brushless motor control system for AC power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13854376

Country of ref document: EP

Kind code of ref document: A1