WO2014073894A1 - Optical sheet and backlight unit comprising same - Google Patents

Optical sheet and backlight unit comprising same Download PDF

Info

Publication number
WO2014073894A1
WO2014073894A1 PCT/KR2013/010093 KR2013010093W WO2014073894A1 WO 2014073894 A1 WO2014073894 A1 WO 2014073894A1 KR 2013010093 W KR2013010093 W KR 2013010093W WO 2014073894 A1 WO2014073894 A1 WO 2014073894A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
layer
wax
conversion layer
Prior art date
Application number
PCT/KR2013/010093
Other languages
French (fr)
Korean (ko)
Inventor
최정옥
권오관
김병철
Original Assignee
주식회사 엘엠에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130076314A external-priority patent/KR101503290B1/en
Application filed by 주식회사 엘엠에스 filed Critical 주식회사 엘엠에스
Priority to US14/442,079 priority Critical patent/US9884992B2/en
Publication of WO2014073894A1 publication Critical patent/WO2014073894A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0043Inhomogeneous or irregular arrays, e.g. varying shape, size, height
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • G02B3/0068Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between arranged in a single integral body or plate, e.g. laminates or hybrid structures with other optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/54Screens on or from which an image or pattern is formed, picked-up, converted, or stored; Luminescent coatings on vessels
    • H01J1/62Luminescent screens; Selection of materials for luminescent coatings on vessels
    • H01J1/63Luminescent screens; Selection of materials for luminescent coatings on vessels characterised by the luminescent material

Definitions

  • the present invention relates to an optical sheet and a backlight unit including the same, and more particularly, to an optical sheet for a display device and a backlight unit including the same.
  • Nanoluminescent materials including quantum dots, are materials with crystal structures ranging in size from tens to tens of nanometers, and are composed of hundreds to thousands of atoms. Even if a nano light-emitting body formed of the same material is smaller the size of the band gap (band gap), the light emission characteristics are different according to the size of the nano light-emitting body. In addition, even if the nano-luminescent body of the same size, the light emission characteristics vary depending on the material to be formed. The characteristics of the nano light-emitting body is controlled and used in various light emitting devices and electronic devices.
  • the nano light-emitting body is very vulnerable to ultraviolet rays, heat, moisture, etc.
  • when the nano light-emitting body is applied to an electronic device there is a problem that the life of the electronic device is shortened.
  • various methods for protecting the nano light-emitting body from ultraviolet rays, heat, moisture, and the like have been proposed, but there is a limit in blocking the ingress of moisture into the film or sheet.
  • the display device generally uses a white light source that emits white light.
  • the white light source includes a blue light emitting diode chip (LED) emitting blue light and a light converting body which finally emits white light by using blue light.
  • YAG Yttrium Aluminum Garnet
  • YAG Yttrium Aluminum Garnet
  • the phosphor has a broad emission spectrum covering the red light wavelength band and the green light wavelength band, there is a limit in increasing the color purity of the color of the light generated by the white light source using the phosphor passing through the color filter.
  • the color reproducibility of the display device using the white light source to which the phosphor is applied is low.
  • an object of the present invention is to provide an optical sheet having improved stability against ultraviolet rays, heat, moisture and the like.
  • Another object of the present invention is to provide a backlight unit for improving color reproducibility of a display device by using the optical sheet.
  • An optical sheet includes a first transparent film, a first barrier layer, and a light conversion layer.
  • the first barrier layer is formed on one surface of the first transparent film.
  • the light conversion layer is formed on the first barrier layer, and at least one selected from a light emitting composite including a wax particle and a nano light emitting body disposed inside the wax particle and fluorescent particles is dispersed.
  • the optical sheet may further include a second barrier layer disposed on the light conversion layer.
  • the optical sheet may further include a second transparent film disposed on the second barrier layer.
  • the optical sheet may further include an optical layer formed on one surface of the first transparent film and having a light diffusion pattern or a buffer pattern formed on the surface thereof.
  • the optical sheet may further include an optical layer formed on one surface of the first transparent film and having a light collecting pattern or a buffer pattern formed on the surface thereof.
  • the light emitting composite may be a red light emitting composite in which the nano light emitting body is a red nano light emitting body.
  • the nano light-emitting body includes a red nano light-emitting body and a green nano light-emitting body
  • the light emitting composite may be a multi-color light emitting composite in which the wax particles cover the red and green nano light emitting bodies.
  • the wax particles may include first wax particles and second wax particles
  • the nano light emitter may include at least one red nano light emitter and at least one green nano light emitter.
  • the light emitting composite includes a red light emitting composite including the first wax particles and the at least one red nanoluminescent body disposed inside the first wax particles, and the second wax particles and the second wax particles. It may include a green light emitting composite including the at least one green nano light emitting body disposed therein.
  • the fluorescent particles may include a green phosphor.
  • the fluorescent particles may include a green fluorescent composite comprising a third wax particle and at least one green phosphor disposed inside the third wax particle.
  • the wax particles may include first wax particles and second wax particles
  • the nano light emitter may include at least one red nano light emitter and at least one green nano light emitter.
  • the light emitting composite includes a red light emitting composite including the first nanoparticle and the red nanolight emitting body disposed inside the first wax particle, and the second wax particle and the green disposed inside the second wax particle. It may include a green light emitting composite including a nano light emitting body.
  • the light conversion layer may include a first light conversion layer formed on the first barrier layer, and a second light conversion layer disposed between the second barrier layer and the first light conversion layer. have.
  • the light conversion layer may further include an adhesive layer interposed between the first light conversion layer and the second light conversion layer and adhering to the first light conversion layer and the second light conversion layer. have.
  • the adhesive layer may include a moisture absorbent.
  • a backlight unit includes a light emitting device, a light guide plate receiving light generated by the light emitting device, and an optical sheet disposed on the light guide plate, wherein the optical sheet includes a first transparent film and a first barrier. Layer and light conversion layer.
  • the first barrier layer is formed on one surface of the first transparent film.
  • the light conversion layer is formed on the first barrier layer, and at least one selected from a light emitting composite including a wax particle and a nano light emitting body disposed inside the wax particle and fluorescent particles is dispersed.
  • the light emitting composite includes a red light emitting composite wherein the nano light emitting body is a red nano light emitting body, the light emitting device includes a blue light emitting chip and a light conversion layer covering the blue light emitting chip, the light conversion layer May comprise a green phosphor or a green phosphor complex.
  • the light conversion layer includes both the light emitting composite and the fluorescent particles
  • the light emitting device may include a blue light emitting device for emitting blue light.
  • the light emitting device may be a white light emitting device including a blue light emitting chip and a light conversion layer covering the blue light emitting chip.
  • the wax particles include a first wax particle and a second wax particle
  • the nano light emitter is a red nano light emitting body disposed in the first wax particles and a green nano light emitting body disposed in the second wax particles.
  • the light conversion layer may include a red light emitting composite including the first wax particles and the red nano light emitting body, and a green light emitting composite including the second wax particles and the green nano light emitting body.
  • the light emitting device may be a blue light emitting device.
  • the optical sheet is a light emitting composite or fluorescent particles dispersed with a light emitting composite or fluorescent particles having high stability against light, moisture and / or heat in an external environment, etc.
  • a barrier layer protecting the conversion layer itself it is possible to remarkably improve light stability and moisture / thermal stability.
  • the optical sheet not only the color reproduction area of the display device may be increased, but also the color purity and color reproduction of the color displayed by the display device may be improved.
  • FIG. 1 is a cross-sectional view for describing a backlight unit according to an exemplary embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the diffusion sheet shown in FIG. 1.
  • FIG. 3 is a plan view illustrating an example of a light diffusion pattern formed on a surface of the first optical layer of FIG. 2.
  • 4A to 4C and 5A to 5C are cross-sectional views illustrating various structures of the light emitting composite dispersed in the light conversion layer of FIG. 2.
  • FIG. 6 is a partially enlarged cross-sectional view illustrating a structure of the first barrier layer of FIG. 2.
  • FIG. 7 is a cross-sectional view of a diffusion sheet according to another embodiment of the present invention.
  • FIG. 8 is a cross-sectional view for describing a fluorescent composite dispersed in the light conversion layer of FIG. 7.
  • FIG. 9 is a cross-sectional view for describing a diffusion sheet according to another embodiment of the present invention.
  • FIG. 10 is a cross-sectional view for describing a diffusion sheet according to still another embodiment of the present invention.
  • FIG. 11 is a cross-sectional view for describing a diffusion sheet according to still another embodiment of the present invention.
  • FIG. 12 is a cross-sectional view for describing a backlight unit according to still another embodiment of the present invention.
  • FIG. 13 is a cross-sectional view for describing the light conversion sheet of FIG. 12.
  • FIG. 14 is a cross-sectional view for describing a backlight unit according to still another embodiment of the present invention.
  • FIG. 15 is a cross-sectional view for describing the first light collecting sheet of FIG. 14.
  • 16 is a cross-sectional view for describing a backlight unit according to yet another exemplary embodiment of the present invention.
  • 17 is a cross-sectional view for describing the light collecting sheet of FIG. 16.
  • FIG. 18 is a cross-sectional view for describing a backlight unit according to yet another exemplary embodiment of the present invention.
  • 19 is a diagram for describing 24 points of color coordinate uniformity evaluation experiments.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • wax-based compound refers to an organic compound having a melting point (melting point) higher than room temperature in the solid state at room temperature
  • wax particles is formed by the recrystallization of the wax-based compound And shaped or amorphous particles that physically constitute a monolith.
  • Normal temperature here means a temperature in the range of about 15 ° C to about 25 ° C.
  • luminescence refers to a state in which the excited state falls off from the ground state to the excited state after the electrons in the material are transitioned from the ground state to the ground state by the external stimulus. Means a phenomenon of emitting light corresponding to the difference in energy between.
  • luminescent complex means a complex including wax particles together with a nanoluminescent body.
  • red light emitting complex means a light emitting complex including only a red nano light emitting body as a nano light emitting body
  • green light emitting complex refers to a light emitting complex including only green nano light emitting material as a nano light emitting body
  • multicolor light emitting complex refers to a nano light emitting material. It refers to a light emitting composite comprising a red nano light emitting material and a green nano light emitting material as a light emitting body.
  • fluorescent particle is defined as a concept including not only the phosphor itself, but also a fluorescent complex including wax particles together with the phosphor. That is, the "green fluorescent particle” is a concept that includes not only the green phosphor itself, but also a green fluorescent composite including wax particles together with the green phosphor.
  • red nanolumines refers to nanolumines having emission peaks in the red wavelength range of about 600 nm to about 660 nm
  • green nanolumines refers to emission peaks in the green wavelength range of about 520 nm to about 560 nm. It is a general term for the nano-luminescent body which has.
  • Green phosphor is also generic to phosphors having emission peaks in the green wavelength band of about 520 nm to about 560 nm.
  • red light light whose peak wavelength in the emission spectrum belongs to the red wavelength band
  • green light light belonging to the green wavelength band
  • blue light light belonging to the blue wavelength band
  • FIG. 1 is a cross-sectional view for describing a backlight unit according to an exemplary embodiment of the present invention.
  • the backlight unit 1000 may include a light emitting device 1100, a light guide plate 1200, a reflecting plate 1300, a diffusion sheet 1400, a first light collecting sheet 1500, and a second light collecting sheet 1600. Include.
  • the light emitting device 1100 generates light and emits the light toward the light guide plate 1200.
  • the light emitting device 1100 may be a white light emitting device that emits white light.
  • the white light emitting device may include a blue light emitting chip that generates blue light, and a light conversion layer covering the blue light emitting chip.
  • the light conversion layer absorbs a part of the blue light generated by the blue light emitting chip and converts the light into red light and green light so that the white light emitting device finally emits white light.
  • the light conversion layer may include a phosphor including a Yttrium aluminum garnet (YAG).
  • the light conversion layer may include a nano light-emitting body including a quantum dot.
  • the light emitting device 1100 may be a blue light emitting device emitting blue light.
  • the blue light emitting device may include a blue light emitting chip that generates blue light, and blue light generated by the blue light emitting chip may be emitted to the outside of the light emitting device 1100 to provide blue light to the light guide plate 1200.
  • the blue light emitting chip of the light emitting device 1100 includes a light emitting diode that generates blue light.
  • the light emitting diode may include a nitride compound.
  • the nitride compound may include at least one nitride selected from indium (In), gallium (Ga), and aluminum (Al).
  • the light emitting diode may have a stacked structure of an n-type semiconductor layer, an active layer, and a p-type semiconductor layer, each of which includes the nitride compound.
  • the n-type semiconductor layer may be doped with n-type impurities
  • the p-type semiconductor layer may be doped with p-type impurities
  • the active layer may be an undoped layer.
  • the light emitting diode is an n-type semiconductor layer having a GaN / AlGaN double layer structure doped with n-type impurities, an active layer composed of InGaN, and a p-type semiconductor layer having a double layer structure of GaN / AlGaN doped with p-type impurities. It may have a stacked structure.
  • the emission spectrum of the blue light generated by the light emitting diode may have a half width (FWHM) of about 50 nm or less.
  • FWHM half width
  • the emission spectrum of the blue light may have a half width of about 30 nm or less.
  • the light emitting device 1100 may include the blue light emitting chip and a green light emitting layer covering an upper portion of the blue light emitting chip.
  • the green light emitting layer includes green particles, green dyes, or pigments that absorb blue light provided from the blue light emitting chip to emit green light.
  • the green particles may include at least one selected from a green nano light emitting body, a green light emitting composite, a green phosphor, and a green fluorescent composite.
  • As the green dye or pigment a conventionally known compound may be used.
  • Each of the green nano light emitting body, the green phosphor, the green light emitting composite, and the green fluorescent composite is substantially the same as those applied to the diffusion sheet 1400 described below with reference to FIG. 2, and will be described below with reference to the accompanying drawings. .
  • the light guide plate 1200 is disposed adjacent to the light emitting device 1100. Light generated by the light emitting device 1100 may be incident to the light guide plate 1200, and light emitted from the light guide plate 1200 may be incident to the diffusion sheet 1400.
  • the reflective plate 1300 is disposed under the light guide plate 1200.
  • the reflective plate 1300 may increase light utilization efficiency by reflecting light leaking to the lower portion of the light guide plate 1200 back to the light guide plate 1200.
  • the diffusion sheet 1400 may be disposed on the light guide plate 1200 to diffuse light emitted from the light guide plate 1200.
  • the diffusion sheet 1400 will be described later in detail with reference to FIG. 2.
  • the first light collecting sheet 1500 is disposed on the diffusion sheet 1400, and a first light collecting pattern including a plurality of protrusions is formed on a surface of the first light collecting sheet 1500.
  • the first condensing pattern faces the second condensing sheet 1600.
  • the second light collecting sheet 1600 is disposed on the first light collecting sheet 1500 and has a shape substantially the same as a protrusion formed on the first light collecting sheet 1500 on the surface of the second light collecting sheet 1600.
  • a second condensing pattern including a plurality of protrusions having is formed.
  • the second condensing pattern faces the display panel on the backlight unit 1000.
  • the length direction of the protrusion of the first condensing pattern and the length direction of the protrusion of the second condensing pattern may cross each other. In this case, an angle at which the protrusions cross in the longitudinal direction may be about 90 °.
  • FIG. 1 the diffusion sheet 1400 described in FIG. 1 will be described in detail with reference to FIGS. 2, 3, 4A to 4C, and 5A to 5C.
  • FIG. 2 is a cross-sectional view of the diffusion sheet illustrated in FIG. 1
  • FIG. 3 is a plan view illustrating an example of a light diffusion pattern formed on the surface of the first optical layer of FIG. 2.
  • the diffusion sheet 1400 may include a first transparent film 1410, a first optical layer 1420, a light conversion layer 1430, and a first barrier layer 1440. And a second barrier layer 1450.
  • the first transparent film 1410 is a base substrate of the diffusion sheet 1400 that transmits light.
  • the first transparent film 1410 may have a transmittance of about 60% or more with respect to light in the visible light region.
  • the first transparent film 1410 may have a transmittance of about 90% or more with respect to light in the visible light region.
  • the first transparent film 1410 has flexibility and may be formed of an organic material.
  • the organic material forming the first transparent film 1410 include polymethylmethacrylate (PMMA), polyethylene terephthalate (PET), polyethersulfone (PES), polycarbonate, PC), polyethylenenaphthalate (PEN), polyimide (PI), polyarylate, cyclic olefin polymer (COP), cyclic olefic copolymer (COC) ), Polyethylene (PE), polypropylene (PP), methacryl (methacrylic), polyurethane (ployurethane) and the like.
  • the first transparent film 1410 may be formed of an epoxy resin.
  • the first optical layer 1420 is disposed on a first surface of the first transparent film 1410 and includes a light diffusion pattern 1421 formed on a surface of the first optical layer 1420.
  • the light diffusion pattern 1421 may be a continuous pattern in which a plurality of convex portions are continuously connected. Each of the convex portions protrudes in a direction toward the outside of the diffusion sheet 1400.
  • the heights or widths of the convex portions may be different from each other, and may have irregular values.
  • the protrusion height of the convex portion may be about 1 ⁇ m to about 20 ⁇ m
  • the diameter of the convex portion may be about 1 ⁇ m to 40 ⁇ m.
  • the diameter of the convex portion is defined as the maximum value of the distances between two points on the edge of the planar projection shape.
  • the height or diameter of the convex portions may be different from each other, and may have an irregular value within the above range.
  • the convex portion may have a circular shape in planar projection.
  • the convex portions may have various shapes such as ellipses or polygons in planar projection, and the convex portions may have different shapes, protruding heights, and diameters.
  • the light diffusion pattern 1421 may include a plurality of divided regions 1421a (see FIG. 3) in plan view.
  • the divided regions 1421a may be irregularly arranged in an irregular shape, and the light diffusion pattern 1421 may correspond to each of the divided regions 1421a. It may include a convex portion formed.
  • the light diffusion pattern 1421 may be a continuous pattern having a shape in which a plurality of recesses are continuously connected. Each of the recesses is recessed in a direction from the surface of the diffusion sheet 1400 toward the inside of the diffusion sheet 1400 and the first transparent film 1410. The depth or width of the recesses may be appropriately adjusted as needed and the depth or width of each of the recesses may have an irregular value.
  • the light diffusion pattern 1421 may have a form in which concave portions and convex portions are continuously combined, or may be embossed patterns.
  • the light diffusion pattern 1421 may be a discontinuous pattern.
  • the convex portions may have a form in which they are spaced apart from each other, or the concave portions may have a form in which they are spaced apart from each other.
  • the convex portion or the concave portion constituting the discontinuous pattern may have a dot shape when viewed in a plan view.
  • the height, depth, and width of each of the convex portions or the concave portions may have different irregular values.
  • the light conversion layer 1430 is disposed on the second surface of the first transparent film 1410 opposite to the first surface on which the first optical layer 1420 is formed.
  • the light conversion layer 1430 includes a light transmissive resin 1431 and a light emitting composite 1432 dispersed in the light transmissive resin 1431.
  • the translucent resin 1431 is a transparent material that transmits light and is cured by light and / or heat to become a substrate for dispersing the light emitting composite 1432.
  • the translucent resin 1431 may include an acrylic resin, a silicone resin, an epoxy resin, a urethane resin, or the like.
  • the light emitting composite 1432 is dispersed in the light transmissive resin 1431.
  • the light emitting composite 1432 will be described in detail with reference to FIGS. 4A to 4C and 5A to 5C.
  • 4A to 4C and 5A to 5C are cross-sectional views illustrating various structures of the light emitting composite dispersed in the light conversion layer of FIG. 2.
  • the light emitting composite 1432 distributed in the light conversion layer 1430 includes wax particles 110 and at least one nano light emitting body 120 disposed inside the wax particles 110. It may be a light emitting composite 100a having a structure.
  • the wax particles 110 are made of a wax-based compound.
  • the wax particles 110 may encapsulate the nano light emitting body 120 to prevent the nano light emitting body 120 from being damaged by moisture, heat, or light caused by an external environment.
  • the wax particles 110 may stably disperse the nano light emitting body 120 in the light transmitting resin 1431.
  • "encapsulation" means that the nano light-emitting body 120 is disposed inside the wax particle 110, and the nano light-emitting body 120 is wrapped by the wax particle 110. .
  • a van der Waals force may act between the nano light emitting body 120 and the wax particle 110.
  • the wax-based compound constituting the wax particles 110 may be a synthetic wax in the form of a polymer, a copolymer, or an oligomer.
  • the wax-based compound may be polyethylene-based wax, polypropylene-based wax, or amide-based wax.
  • the wax compound when the wax compound is a polyethylene wax or a polypropylene wax, the wax compound may include at least one of units represented by the following Chemical Formulas 1 to 7.
  • R 1 , R 3 , R 5 and R 7 are each independently a single bond or an alkylene group having 1 to 10 carbon atoms (*-(CH 2) x- *, x is an integer of 1 to 10
  • R 2 , R 4 , R 6 and R 8 may be each independently hydrogen or an alkyl group having 1 to 10 carbon atoms
  • R a , R b , R c , R d , R e , R f and R g may be each independently hydrogen or an alkyl group having 1 to 3 carbon atoms.
  • the unit of Formula 1 when R 2 in Formula 1 is hydrogen, the unit of Formula 1 may include a carboxyl group. Alternatively, when R 2 in Formula 1 is an alkyl group having 1 to 10 carbon atoms, Formula 1 The unit of may include an ester group. In addition, when R 4 of Formula 2 is hydrogen, the unit of Formula 2 may include an aldehyde group. Alternatively, when R 4 of Formula 2 is an alkyl group having 1 to 10 carbon atoms, the unit of Formula 2 is It may include a ketone group. In addition, when R 6 of Formula 3 is hydrogen, the monomer of Formula 3 may include a hydroxy group, otherwise, when R 6 of Formula 3 is an alkyl group having 1 to 10 carbon atoms, the unit of Formula 3 May include an ether group.
  • the wax-based compound may be a polyethylene wax.
  • the polyethylene wax may be a polyethylene wax (PE wax) including only a unit in which R g of Formula 7 is hydrogen.
  • the polyethylene wax contains oxygen in which R a , R b , R c , R d , R e and R f in Formulas 1 to 6 are hydrogen as well as units in which R g in Formula 7 is hydrogen. It may be a polyethylene wax further comprising at least one of the units.
  • polyethylene wax including at least one oxygen-containing unit examples include oxidized polyethylene wax (PE wax), an ethylene-acrylic acid copolymer, and ethylene-vinyl, which are oxides of polyethylene.
  • PE wax oxidized polyethylene wax
  • ethylene-acrylic acid copolymer an ethylene-acrylic acid copolymer
  • ethylene-vinyl which are oxides of polyethylene.
  • the wax-based compound may be a polypropylene wax.
  • the polypropylene wax may be a polypropylene wax (PP wax) including only a unit in which R g of Formula 7 is a methyl group.
  • the polypropylene wax contains oxygen in which R a , R b , R c , R d , R e and R f of Formulas 1 to 6 are hydrogen as well as units in which R g of Formula 2 is a methyl group. It may be a polypropylene wax further comprising at least one of the units. Examples of polypropylene waxes containing oxygen-containing units include propylene-maleic anhydride copolymers and the like.
  • the wax-based compound when the wax-based compound is an amide wax, the wax-based compound may be a polymer, copolymer or oligomer whose main chain includes an amide bond (-CONH-).
  • the amide wax may include a unit having 1 to 10 carbon atoms.
  • the amide wax may further include one or more of oxygen-containing units represented by Chemical Formulas 1 to 6.
  • the wax particles 110 may form the nano-luminescent body 120 as compared with the case of including only the unit of Chemical Formula 7. Can be encapsulated more stably. This is because when the wax-based compound includes an oxygen-containing unit, the interaction between the wax particles 110 and the metal constituting the nano-luminescent body 120 by the polarity of oxygen contained in the oxygen-containing unit. This is because the interaction becomes stronger.
  • the wax-based compound includes the unit represented by Chemical Formula 1, particularly a carboxyl group
  • the interaction between the wax particle 110 and the nano light-emitting body 120 may be stronger, so that the wax particle ( 110 is more advantageous for encapsulating the nanoluminescent body 120. Therefore, in one embodiment of the present invention, the wax particles 110 is preferably made of a wax-based compound containing at least a carboxy group as a substituent.
  • the wax-based compound constituting the wax particles 110 may have an acid value of about 1 mg KOH / g to about 200 mg KOH / g.
  • the "acid value" of the wax-based compound refers to the number of mg of potassium hydroxide (KOH) required to neutralize 1 g of the wax-based compound.
  • KOH potassium hydroxide
  • the greater the acid value of the wax-based compound may be a greater amount of carboxyl groups contained in the wax-based compound.
  • the acid value of the wax-based compound is less than about 1 mg KOH / g, the amount of carboxyl groups interacting with the nano-luminescent body 120 is very small, which may cause a problem that the nano-luminescent body 120 cannot be encapsulated stably. have.
  • the acid value of the wax-based compound exceeds about 200 mg KOH / g, there may be a problem that the surface of the nano light-emitting body 120 is oxidized by the carboxy group.
  • the wax-based compound constituting the wax particles 110 may have an acid value of about 5 mg KOH / g to about 50 mg KOH / g in order to stably encapsulate the nano light-emitting body 120.
  • the wax particles 110 may be made of a wax-based compound having a high density of about 0.95 g / cm 3 or more. Since the high density wax compound having a high density of about 0.95 g / cm 3 or more has a higher melting point than the low density wax compound having a low density of less than about 0.95 g / cm 3 , the wax particles composed of the high density wax compound (110) The heat resistance of the light emitting composite (100a) including may be improved. In addition, since the high density wax-based compound has better crystallinity than the low-density wax-based compound when recrystallized, the wax particles 110 made of the high-density wax-based compound may more stably encapsulate the nano light-emitting body 120. .
  • polyethylene (PE) wax is from about 0.95 g / cm high-density PE wax having three or more density (high density PE wax, HDPE wax) and low density PE wax having a density of less than about 0.95 g / cm 3 ( low density PE wax, LDPE wax), and the wax particles 110 may be formed of HDPE wax.
  • the density of the HDPE wax may be about 1.20 g / cm 3 or less, in which case the melting point of the HDPE wax may be about 120 ° C. to about 200 ° C.
  • the melting point of LDPE wax may be about 80 ° C to about 110 ° C. Therefore, the wax particles 110 may further improve the heat resistance of the light emitting composite 100a according to the embodiment of the present invention rather than being formed of HDPE wax from LDPE wax.
  • the wax particles 110 may be formed of a wax-based compound having a weight-average molecular weight of about 1,000 to 20,000.
  • weight average molecular weight means an average molecular weight obtained by averaging the molecular weights of the molecular weights of the component molecular species of the polymer compound having a molecular weight distribution in a weight fraction.
  • weight average molecular weight of the wax-based compound is less than about 1,000, since the wax-based compound is difficult to exist in a solid state at room temperature, it may be difficult to encapsulate the nano light-emitting body 120 at room temperature.
  • the weight average molecular weight of the wax compound exceeds about 20,000, since the recrystallization size (average diameter) of the wax compound is several hundred ⁇ m or more, it is difficult to disperse it in a solvent or a resin even when a composite is prepared using the wax compound. Problems may arise.
  • the wax-based compound exceeds about 20,000, the wax-based compound has a melting point of about 200 ° C or more, so that the nano light-emitting body 120 in the process of encapsulating the nano light-emitting body 120 Can be damaged.
  • nano light emitting body 120 a known nano light emitting body may be used without limitation.
  • a nano light emitting body 120 a nano light emitting body including a center particle and a ligand bound to the surface of the center particle may be used.
  • the central particle may be composed of a Group II-VI compound, a Group II-V compound, a Group III-V compound, a Group III-IV compound, a Group III-VI compound, a Group IV-VI compound, or a mixture thereof.
  • the "mixture” includes not only mixtures mixed, but also all three-component compounds, four-component compounds, and dopants doped in these mixtures.
  • group II-VI compounds include magnesium sulfide (MgS), magnesium selenide (MgSe), magnesium telluride (MgTe), calcium sulfide (CaS), calcium selenide (CaSe), calcium telluride (CaTe), and strontium sulfide (SrS), strontium selenide (SrSe), strontium telluride (SrTe), cadmium sulfide (CdS), cadmium selenide (CdSe), tellurium cadmium (CdTe), zinc sulfide (ZnS), zinc selenide (ZnSe), Zinc telluride (ZnTe), mercury sulfide (HgS), mercury selenide (HgSe), mercury telluride (HgTe), and the like.
  • MgS magnesium sulfide
  • MgSe magnesium selenide
  • MgTe magnesium telluride
  • CaS calcium selenide
  • Group II-V compounds include zinc phosphide (Zn 3 P 2 ), zinc arsenide (Zn 3 As 2 ), cadmium phosphide (Cd 3 P 2 ), cadmium arsenide (Cd 3 As 2 ), and cadmium nitride (Cd 3 N 2 ) or zinc nitride (Zn 3 N 2 ).
  • group III-V compounds include boron phosphide (BP), aluminum phosphide (AlP), aluminum arsenide (AlAs), aluminum antimonide (AlSb), gallium nitride (GaN), gallium phosphide (GaP), and gallium arsenide (GaAs), gallium monoxide (GaSb), indium nitride (InN), indium phosphide (InP), indium arsenide (InAs), indium antimony (InSb), aluminum nitride (AlN) or boron nitride (BN) Etc. can be mentioned.
  • BP boron phosphide
  • AlP aluminum phosphide
  • AlAs aluminum arsenide
  • AlSb aluminum antimonide
  • GaN gallium nitride
  • GaP gallium phosphide
  • GaAs gallium monoxide
  • InN indium nitride
  • III-IV compound examples include boron carbide (B 4 C), aluminum carbide (Al 4 C 3 ), gallium carbide (Ga 4 C), and the like.
  • group III-VI compounds include aluminum sulfide (Al 2 S 3 ), aluminum selenide (Al 2 Se 3 ), aluminum telluride (Al 2 Te 3 ), gallium sulfide (Ga 2 S 3 ), gallium selenide ( Ga 2 Se 3 ), indium sulfide (In 2 S 3 ), indium selenide (In 2 Se 3 ), gallium telluride (Ga 2 Te 3 ), indium telluride (In 2 Te 3 ), and the like.
  • Examples of the group IV-VI compounds include lead sulfide (PbS), lead selenide (PbSe), lead telluride (PbTe), tin sulfide (SnS), tin selenide (SnSe), tin telluride (SnTe), and the like. .
  • the central particle may have a core / shell structure.
  • Each of the core and the shell of the central particle may be composed of the compounds exemplified above.
  • the compounds exemplified above may be used alone or in combination of two or more to constitute the core or shell.
  • the band gap of the compound constituting the core may be narrower than the band gap of the compound constituting the shell, but is not limited thereto.
  • the compound which comprises the said shell differs from the compound which comprises the said core.
  • the central particle may be a CdSe / ZnS (core / shell) structure having a core comprising CdSe and a shell comprising ZnS, or an InP / ZnS (core having a core comprising ZnS and a shell comprising ZnS). / Shell) structure.
  • the central particle may have a core / multishell structure having at least two layers of shells.
  • the central particle has CdSe / ZnSe / ZnS having a core comprising CdSe, a first shell surrounding the surface of the core and comprising ZnSe and a second shell surrounding the surface of the first shell and comprising ZnS It may have a (core / first shell / second shell) structure.
  • the central particle may have a core including InP, ZnSe as a first shell, and ZnS as a second shell (In / Pn / ZnSe / ZnS). .
  • the central particle may be made of only a group II-VI compound or a group III-V compound as a single structure instead of a core / shell structure.
  • the central particle may further include a cluster molecule as a seed.
  • the cluster molecule is a compound that functions as a seed in the process of preparing the center particle, and the center particle may be formed by precursors of the compound constituting the center particle growing on the cluster molecule.
  • examples of the cluster molecule include various compounds disclosed in Korean Laid-Open Publication No. 2007-0064554, and the like, but are not limited thereto.
  • the ligand may prevent the central particles adjacent to each other from aggregation and quenching.
  • the ligand binds to the central particle and may have hydrophobic properties.
  • the amine compound, carboxylic acid compound, etc. which have a C6-C30 alkyl group are mentioned.
  • the amine compound having an alkyl group include hexadecylamine or octylamine.
  • the amine compound, carboxylic acid compound, etc. which have a C6-C30 alkenyl group are mentioned.
  • examples of the ligand include phosphine compounds including trioctylphosphine, triphenolphosphine, t-butylphosphine, and the like; Phosphine oxides such as trioctylphosphine oxide; Pyridine or thiophene etc. are mentioned.
  • the ligand may include a silane compound having a functional group such as a vinyl group, an aryl group, an acryl group, an amine group, a methacrylate group, an epoxy group, or the like.
  • the type of the ligand is not limited to the example exemplified above, and in some cases, the nano light-emitting body 120 may be composed of only the central particle without the ligand.
  • the light emitting composite 100a may have various shapes, and one light emitting composite 100a may include at least one nano light emitting body 120.
  • one nano light emitter 120 may be disposed in one wax particle 110, or two to tens of millions of nano light emitters 120 may be disposed in one wax particle 110.
  • the distance between the nano light emitters 120 may be about 0.1 nm to about 10 nm. Specifically, the distance may be about 0.9 nm to about 1.2 nm.
  • the light emitting complex 100a may have a diameter of about 5 nm to about 50 ⁇ m.
  • the diameter of the light emitting composite 100a may be about 0.5 ⁇ m to about 10 ⁇ m in consideration of the dispersibility of the light emitting composite 100a.
  • the diameter of the light emitting composite 100a is a straight line distance between two points on the surface of the light emitting composite 100a, and a length of an imaginary straight line connecting the two points while passing through the center of gravity of the light emitting composite 100a. to be.
  • the diameter of the light emitting composite 100a is the maximum value among the straight distances. it means.
  • the plurality of nano light emitting bodies 120 disposed inside one wax particle 110 may have emission peaks in the same wavelength range, specifically, in the red wavelength range. That is, the light emitting composite 100a may be a red light emitting composite including red nano light emitting bodies.
  • the plurality of nano light-emitting bodies 120 disposed inside one wax particle 110 have emission peaks in the same wavelength band, but the nano light-emitting bodies disposed in each of the at least two wax particles 110 ( 120 may have emission peaks in different wavelength bands.
  • a red light emitting composite in which red nanoluminescent bodies are covered by one wax particle 110 and a green light emitting composite in which green nanolight emitting bodies are covered by one wax particle 110 are included. Can be mixed and dispersed.
  • the plurality of nano light emitters 120 disposed inside one wax particle 110 may include two or more nano light emitters having emission peaks in different wavelength bands.
  • the light emitting composite 100a may be a multicolor light emitting composite in which a plurality of red nano light emitting bodies and a plurality of green nano light emitting bodies are disposed in one wax particle 110.
  • the light emitting composite 1432 distributed in the light conversion layer 1430 may include wax particles 110, at least one nano light emitting body 120 disposed inside the wax particles 110, and an outer protective film ( Light emitting composite 100b having a structure including 130).
  • the light emitting composite 100b is substantially the same as the light emitting composite 100a illustrated in FIG. 4A except that the light emitting composite 100b further includes the outer protective layer 130, detailed descriptions thereof will be omitted.
  • the light emitting complex 100b may have a diameter of about 50 nm to about 50 ⁇ m.
  • the light emitting composite 100b may be a red light emitting composite or a multicolor light emitting composite.
  • the outer protective layer 130 is formed on the surface of the wax particles 110 to cover the wax particles 110.
  • the outer passivation layer 130 is formed of silicon oxide (SiOx, 1 ⁇ x ⁇ 2).
  • the outer protective layer 130, together with the wax particles 110, may prevent the nano light-emitting body 120 from being damaged by moisture, heat, or light.
  • the outer passivation layer 130 may be formed through hydrolysis and condensation of the silicon oxide precursor material.
  • the outer passivation layer 130 is a mixture of wax particles 110, a silicon oxide precursor material, a catalyst material, and water in which the nano light-emitting body 120 is disposed in an organic solvent to the surface of the wax particles 110. It can be formed by growing silicon oxide.
  • the outer passivation layer 130 may include silica (SiO 2 ).
  • silicon oxide precursor material examples include triethoxysilane (HTEOS), tetraethoxysilane (TEOS), methyltriethoxysilane (MTEOS), dimethyldiethoxysilane, tetramethoxysilane (tetramethoxysilane (TMOS), methyltrimethoxysilane (MTMOS), trimethoxysilane, dimethyldimethoxysilane, phenyltriethoxysilane (PTEOS), phenyltrimethoxysilane ( phenyltrimethoxysilane (PTMOS), diphenyldiethoxysilane, diphenyldimethoxysilane and the like can be used.
  • HTEOS triethoxysilane
  • TEOS tetraethoxysilane
  • MTEOS methyltriethoxysilane
  • TMOS tetramethoxysilane
  • MTMOS methyltrimethoxysilane
  • the silicon oxide precursor material is halosilane, in particular chlorosilane, for example trichlorosilane, methyltrichlorosilane, ethyltrichlorosilane, ethyltrichlorosilane, phenyltrichloro Phenyltrichlorosilane, tetrachlorosilane, dichlorosilane, methyldichlorosilane, dimethyldichlorosilane, chlorotriethoxysilane, chlorotrimethoxysilane Chloromethyltriethoxysilane, chloroethyltriethoxysilane, chlorophenyltriethoxysilane, chlorophenyltriethoxysilane, chloromethyltrimethoxysilane, chloroethyltrimethoxysilane, Chlorophenyltrimethoxysilane (chlorop It may be synthesized using henyltrimeth,
  • organic solvent examples include methanol, ethanol, propanol, butanol, butanol, pentanol, hexanol, methyl cellosolve, butyl cellosolve ( Alcoholic solvents such as butyl cellosolve, propylene glycol, and diethtylene glycol, or toluene may be used.
  • the organic solvent may be used alone or in combination of two or more thereof.
  • an alkaline material such as ammonia (NH 3 ) may be used.
  • ammonia may be used as a catalyst material in the process of forming the external protective film 130 by mixing ammonia water (NH 4 OH) with the organic solvent.
  • the outer protective layer 130 may cover the plurality of wax particles 110.
  • the outer passivation layer 130 may cover at least two wax particles 110 disposed adjacent to each other, and the space between the wax particles 110 may be filled with silicon oxide to form a light emitting composite. 100b can be formed.
  • red nano light-emitting bodies are disposed on each of the first and second wax particles so that the light emitting composite 100b is red.
  • the light emitting composite can be constructed.
  • the first nano light emitting body disposed inside the first wax particles is a red nano light emitting body
  • the disposed second nanolighter may be a green nanolighter.
  • the light emitting composite 100b may be a multicolor light emitting composite.
  • the light emitting composite 1432 distributed in the light conversion layer 1430 includes wax particles 110, at least one nano light emitting body 120, an outer protective layer 130, and a wax layer 140. It may be a light emitting composite 100c having a structure.
  • the light emitting composite 100c is substantially the same as the light emitting composite 100b described with reference to FIG. 4B except for further including the wax layer 140, detailed descriptions thereof will be omitted.
  • the light emitting composite 100c may have a diameter of about 50 nm to about 50 ⁇ m.
  • the wax layer 140 covers the surface of the outer protective layer 130. That is, the wax layer 140 surrounds the wax particles 110 coated with the outer protective layer 130.
  • the wax layer 140 is formed of a wax-based compound. Since the wax-based compound constituting the wax layer 140 is substantially the same as that described in the wax-based compound constituting the wax particle 110, detailed descriptions thereof will be omitted.
  • the wax layer 140 covers one wax particle 110 whose surface is covered by the outer passivation layer 130, but the wax layer 140 includes two or more wax particles.
  • the field 110 may be covered.
  • the outer protective layer 130 covers both the first wax particles having the first nano light-emitting body disposed therein and the second wax particles having the second nano light-emitting body disposed therein.
  • the wax layer 140 may again cover the surface of the outer protective layer 130.
  • the wax layer 140 may cover at least two light emitting composites 100b illustrated in FIG. 4B.
  • the wax-based compound constituting the wax layer 140 fills the space between the light emitting complexes 100b disposed adjacent to each other, thereby filling at least two wax particles respectively covered with the outer protective layer 130 by one wax layer. 140 may cover.
  • the light emitting composite 100c may be a red light emitting composite or a green light emitting composite according to the type of the nano light emitting body 120 included therein.
  • the light emitting composite 100c may be a multicolor light emitting composite including both a red nano light emitting body and a green nano light emitting body.
  • the light emitting composite 1432 distributed in the light conversion layer 1430 may include wax particles 210, at least one nano light emitting body 220 disposed inside the wax particles 210, and an inner passivation layer. It may be a light emitting composite 200a having a structure including 230.
  • the light emitting complex 200a may have a diameter of about 50 nm to about 50 ⁇ m.
  • the inner passivation layer 230 covers the nano light-emitting body 220.
  • the inner passivation layer 230 directly contacts the surface of the nano light-emitting body 220 to cover the nano light-emitting body 220.
  • the nano light-emitting bodies 220 disposed in the wax particles 210 may be individually covered by the inner protective layer 230.
  • one nano light-emitting body 220 may be covered by one internal protective film 230.
  • the inner passivation layer 230 is formed of silicon oxide, and the silicon oxide constituting the inner passivation layer 230 is substantially the same as the silicon oxide constituting the outer passivation layer 130 described with reference to FIG. 4B, detailed descriptions thereof will be omitted. do.
  • the plurality of nano light emitters 220 disposed in the wax particle 210 may be a red nano light emitter. That is, the light emitting composite 200a may be a red light emitting composite.
  • the plurality of nano light emitters 220 disposed inside the wax particle 210 may include red nano light emitters and green nano light emitters. That is, the light emitting composite 200a may be a multicolor light emitting composite.
  • the inner passivation layer 230 may cover two or more nano light-emitting bodies 220.
  • the space between the adjacent nano light emitters 220 may be filled by silicon oxide constituting the inner passivation layer 230.
  • the nano light-emitting bodies 220 coated with one inner passivation layer 230 may be a red nano light-emitting body
  • the light emitting composite 200a may be a red light emitting composite.
  • the nano light-emitting bodies 220 coated with one inner passivation layer 230 include a red nano light-emitting body and a green nano light-emitting body, and the light emitting composite 200a may be a multicolor light emitting composite.
  • the first light-emitting group composed of red nano light-emitting bodies is formed inside one wax particle 210.
  • the second light emitting group consisting of green nano light emitting body may be disposed.
  • the light emitting composite 1432 distributed in the light conversion layer 1430 includes wax particles 210, at least one nano light emitting body 220, an inner passivation layer 230, and an outer passivation layer 240. It may be a light emitting composite 200b having a structure.
  • the diameter of the light emitting composite 200b may be about 50 nm to about 50 ⁇ m.
  • the outer passivation layer 240 may cover the wax particles 210 and be formed of silicon oxide. Since the outer passivation layer 240 is substantially the same as the outer passivation layer 130 described with reference to FIG. 4B, detailed descriptions thereof will be omitted.
  • the outer passivation layer 240 may prevent the nano light-emitting body 220 from being damaged by moisture, heat, light, etc. together with the wax particles 210 and the inner passivation layer 230.
  • the outer passivation layer 240 covers one wax particle 210, but the outer passivation layer 240 may cover the plurality of wax particles 210.
  • the outer passivation layer 240 may cover at least two wax particles 210 disposed adjacent to each other, and the space between the wax particles 210 may be filled with silicon oxide to form a light emitting composite. 200b can be formed.
  • the light emitting composite 200b may be a red light emitting composite or a green light emitting composite according to the type of the nano light emitting body 220 included therein.
  • the light emitting composite 200b may be a multicolor light emitting composite including both a red nano light emitting body and a green nano light emitting body.
  • the light emitting composite 1432 distributed in the light conversion layer 1430 may include wax particles 210, at least one nano light emitter 220, an inner passivation layer 230, an outer passivation layer 240, and a wax layer. It may be a light emitting composite 200c having a structure including 250.
  • the diameter of the light emitting composite 200c may be about 50 nm to about 50 ⁇ m.
  • the wax layer 250 may cover the outer protective layer 240.
  • the wax layer 250 is formed of a wax-based compound. Since the wax-based compound constituting the wax layer 250 is substantially the same as the wax-based compound described with reference to FIG. 4A, detailed descriptions thereof will be omitted.
  • the wax layer 250 covers one wax particle 210 whose surface is covered by the outer protective film 240 as shown in FIG. 5C, or is not shown in the drawing, but the surface is covered by the outer protective film 240.
  • a plurality of the covered wax particles 210 may be coated.
  • the light emitting composite 200c may be a red light emitting composite or a green light emitting composite according to the type of the nano light emitting body 220 included therein.
  • the light emitting composite 200c may be a multicolor light emitting composite including both a red nano light emitting body and a green nano light emitting body.
  • the light conversion layer 1430 may further include diffusion beads.
  • the diffusion beads may be formed of polycarbonate (PC), polyethylene (PE, PE), polypropylene (PP), methacrylic resin, polyethylene terephtalate (PET), or the like. . These may each be used alone or in combination of two or more.
  • the diameter of each of the diffusion beads may be between about 3 ⁇ m and about 30 ⁇ m.
  • the diameter of each of the diffusion beads refers to the diameter measured by the Dynamic Light Scattering method (DLS method) calculated by the Stokes-Einstein equation for the diffusion coefficient.
  • DLS method Dynamic Light Scattering method
  • the first barrier layer 1440 is disposed between the second surface of the first transparent film 1410 and the light conversion layer 1430.
  • the first barrier layer 1440 may protect the light emitting composite 1432 distributed in the light conversion layer 1430 together with the first transparent film 1410 from heat, light, and moisture.
  • the first barrier layer 1440 may prevent moisture caused by an external environment from penetrating into the light conversion layer 1430.
  • the first barrier layer 1440 may have a thickness of about 5 nm to about 40 ⁇ m.
  • the first barrier layer 1440 may include an inorganic film made of an inorganic material.
  • the inorganic material constituting the inorganic film include silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, metal oxide, and metal nitride nitride, metal oxynitride, metal oxycarbide, and the like. These may be used alone or in combination of two or more, respectively.
  • the metal in the metal oxide, metal nitride, metal oxynitride or metal oxide carbide may include aluminum, titanium, indium, tin, tantalum, zirconium, niobium, and the like, and these metals may be each alone or two or more. This can be used in combination.
  • the inorganic film may be a physical vapor deposition method such as sputtering deposition, thermal evaporation, electron beam evaporation, plasma-enhanced chemical vapor deposition (PECVD), atomic layer deposition (atomic layer). It can be formed using a chemical vapor deposition method such as deposition, ALD).
  • a physical vapor deposition method such as sputtering deposition, thermal evaporation, electron beam evaporation, plasma-enhanced chemical vapor deposition (PECVD), atomic layer deposition (atomic layer). It can be formed using a chemical vapor deposition method such as deposition, ALD).
  • the first barrier layer 1440 may have a single layer structure formed of one inorganic layer.
  • the thickness of the first barrier layer 1440 may be about 5 nm to about 10 ⁇ m.
  • the first barrier layer 1440 may have a structure in which two or more inorganic films are stacked, or a structure in which an organic film made of an inorganic film and an organic material is stacked. This will be described with reference to FIG. 6.
  • FIG. 6 is a partially enlarged cross-sectional view for describing a structure of the first barrier layer of FIG. 2.
  • the first barrier layer 1440 may include a first layer 1441 and a second layer 1442.
  • the first layer 1441 may be formed on the first transparent film 1410, and the second layer 1442 may be formed between the first layer 1441 and the light conversion layer 1430. .
  • each of the first layer 1441 and the second layer 1442 may be an inorganic layer formed of different inorganic materials.
  • the first layer 1441 may be an inorganic film formed of silicon nitride
  • the second layer 1442 may be an inorganic film formed of silicon oxide.
  • the first layer 1441 may be an inorganic film formed of silicon oxide
  • the second layer 1442 may be an inorganic film formed of silicon nitride.
  • the first barrier layer 1440 is disposed between the second layer 1442 and the light conversion layer 1430, and a third layer formed of an inorganic material different from the inorganic material forming the second layer 1442. It may further include (not shown).
  • the third layer may be formed of an inorganic material substantially the same as the first layer (1441), or may be formed of an inorganic material different from the first layer (1441).
  • the first layer 1441 may be an inorganic layer
  • the second layer 1442 may be an organic layer formed of an organic material.
  • the thickness of the first barrier layer 1440 may be about 5 nm to about 40 ⁇ m.
  • the second layer 1442 which is an organic film
  • Adhesion can be improved.
  • the second layer 1442 which is an organic layer, may be formed to have a thickness of about 0.5 ⁇ m to about 30 ⁇ m to assist the barrier function of the first barrier layer 1440.
  • the second layer 1442 which is an organic layer, may be formed to a thickness of about 0.5 ⁇ m or less in order to simply increase the adhesion between the first layer 1441 and the light conversion layer 1430.
  • organic material constituting the organic film examples include acrylic polymer resin, epoxy polymer resin, silicone polymer resin, urethane polymer resin, parylene, polyethylene terephthalate (PET), polymethyl methacrylate (polymethylmethacrylate, PMMA). ), Polyethersulfone (PES), polycarbonate (PC), polyethylenenaphthalate (PEN), polyimide (PI), polyarylate, cyclic olefin polymer (cyclic olefin) polymer, COP), cyclic olefin copolymer (cyclic olefic copolymer, COC), polyethylene (PE, PE), polypropylene (PP), methacryl (methacrylic) and the like.
  • PES polyethersulfone
  • PC polycarbonate
  • PEN polyethylenenaphthalate
  • PI polyimide
  • COC cyclic olefin copolymer
  • COC polyethylene
  • PE PE
  • PE polypropylene
  • the organic film may be formed by applying a curable resin to a substrate through a printing process or a coating process, and curing it using heat and / or light.
  • the curable resin may include a photocuring agent or a catalyst together with a curable monomer or a polymer (copolymer).
  • the curable resin may be a printing process such as ink-jetting, pad printing, screen printing, spin-coating, tape casting, slot-die, or the like.
  • Can be applied to the substrate through a coating process such as coating, gravure coating, offset coating, spray coating and the like.
  • the organic film may be formed by applying to the substrate and curing the PECVD or PVD method.
  • the organic layer may be attached to the inorganic layer in the form of a transparent film.
  • the first barrier layer 1440 is between the second layer 1442 and the light conversion layer 1430. It may further comprise a third layer (not shown) disposed and formed of an inorganic material.
  • the third layer may be formed of substantially the same inorganic material as the first layer 1441, or may be formed of another inorganic material.
  • the first layer 1442 may be an organic layer, and the second layer 1442 may be an inorganic layer.
  • the first layer 1441 may include an acrylic polymer resin, and the second layer 1442 may include aluminum oxide, for example, alumina.
  • the first layer 1441 may include hexamethyldisiloxane or parylene, and the second layer 1442 may include aluminum oxide.
  • the first barrier layer 1440 is between the second layer 1442 and the light conversion layer 1430. It may further include a third layer (not shown) disposed and formed of an organic material.
  • the third layer may be formed of an organic material substantially the same as the first layer 1441, or may be formed of another kind of organic material.
  • the first barrier layer 1440 may have a structure in which these units are repeatedly stacked using a combination of the first and second layers 1442 and 1442 described above as a unit.
  • the first barrier layer 1440 is disposed between the repeating stacked structure and the light conversion layer 1430 and corresponds to a combination of the first and second layers 1441 and 1442 described above. It may further include.
  • first barrier layer 1440 has been described with reference to FIG. 6, the structure of the first barrier layer 1440 is not limited thereto and may have various structures.
  • the second barrier layer 1450 is disposed on the light conversion layer 1430. That is, the light conversion layer 1430 is disposed between the first barrier layer 1440 and the second barrier layer 1450.
  • the second barrier layer 1450 may have a single inorganic film structure, or may have a structure in which two or more inorganic films are stacked.
  • the second barrier layer 1450 may have a structure in which an organic layer and an inorganic layer are sequentially stacked from the light conversion layer 1430, or a structure in which an inorganic layer and an organic layer are sequentially stacked.
  • the structure of the second barrier layer 1450 may be the same as that of the first barrier layer 1440 or may have a different stacked structure. In this case, each of the inorganic layer and the organic layer constituting the second barrier layer 1450 is substantially the same as that described in the first barrier layer 1440, and thus detailed descriptions thereof will be omitted.
  • the diffusion sheet 1400 includes the light guide plate 1200 such that the first optical layer 1420 faces the light guide plate 1200 and the second barrier layer 1450 faces the first light collection sheet 1500. ) And the first light collecting sheet 1500 may be disposed. In contrast, the diffusion sheet 1400 may include the light guide plate such that the second barrier layer 1450 faces the light guide plate 1200 and the first optical layer 1420 faces the first light collecting sheet 1500. 1200 may be disposed between the first light collecting sheet 1500.
  • the backlight unit 1000 described above uses the diffusion sheet 1400 including the light conversion layer 1430 to widen the color reproduction area of the display device and to improve the color purity and color reproducibility of colors displayed by the display device. Can be.
  • the light conversion layer 1430 uses the light emitting composite 1432 having high stability against light, moisture, and / or heat in an external environment, and protects the first and second barrier layers 1440 and 1450. By using the light stability and the moisture / thermal stability of the diffusion sheet 1400 can be significantly improved.
  • FIGS. 7 to 11 backlight units according to other exemplary embodiments of the present invention will be described with reference to FIGS. 7 to 11.
  • Each of the backlight units according to other exemplary embodiments of the present disclosure is substantially the same as the backlight unit described with reference to FIG. 1 except for the diffusion sheet, and thus descriptions thereof will not be repeated.
  • FIG. 7 is a cross-sectional view of a diffusion sheet according to another exemplary embodiment of the present invention
  • FIG. 8 is a cross-sectional view illustrating a fluorescent composite dispersed in the light conversion layer of FIG. 7.
  • the diffusion sheet 2400 applied to the backlight unit may include a first transparent film 2410, a first optical layer 2420, and a light conversion. Layer 2430, a first barrier layer 2440, and a second barrier layer 2450.
  • the diffusion sheet 2400 is substantially the same as the diffusion sheet 1400 described with reference to FIG. 2 except for the light conversion layer 2430, detailed descriptions thereof will be omitted.
  • the light conversion layer 2430 is interposed between the first and second barrier layers 2440 and 2450, and includes a light transmissive resin 2431, a light emitting composite 2432 dispersed in the light transmissive resin 2431, and a fluorescent light. Particles 2433.
  • the light conversion layer 2430 may further include diffusion beads (not shown).
  • the light emitting composite 2432 has a structure substantially the same as that described with reference to FIGS. 4A to 4C and 5A to 5C, and may be a red light emitting composite in which red nano-light emitting bodies are disposed in the wax particles.
  • the light emitting composite 2432 may be a multicolor light emitting composite having both a red nano and a green nano light emitting body disposed inside one wax particle.
  • the fluorescent particles 2433 may include a green phosphor.
  • the green phosphor is a compound that emits green light, and the green light emitted by the green phosphor may have an emission spectrum having a full width at half maximum (FWHM) of about 80 nm or less.
  • FWHM full width at half maximum
  • the emission spectrum of the green light may have a half width of about 70 nm or less. More preferably, the emission spectrum of the green light may have a half width of about 60 nm or less.
  • silicate-based phosphors silicon oxynitride-based phosphors, sulfide-based phosphors, sialon-based phosphors, oxide-based phosphors, etc. may be used, and these may be used alone or in combination of two or more.
  • the silicate-based phosphor may be represented by "MSi x O y : Re" (x and y are each independently an integer of 1 or more).
  • M represents barium (Ba), strontium (Sr), calcium (Ca) or magnesium (Mg), and these may be included alone or in combination of two or more.
  • an element ratio of M to Si, O, and Re may have various values.
  • an element ratio between elements constituting M may also have various values.
  • Re is europium (Eu), yttrium (Y), lanthanum (La), cerium (Ce), neodymium (Nd), promethium (Pm), samarium (Sm), gadolinium (Gd), terbium (Tb), dysprosium ( Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), fluorine (F), chlorine (Cl), bromine (Br) or iodine (I) These may be included alone or in combination of two or more, respectively. When Re includes two or more elements in the silicate phosphor, an element ratio between elements constituting Re may have various values.
  • the silicate-based phosphor may include Ba 2 SiO 4 : Eu, Ca 2 SiO 4 : Eu, Sr 2 SiO 4 : Eu, Ba 2 SrSiO 4 : Eu, Ca 8 Mg (SiO 4 ) 4 Cl 2 : Eu , Ca 2 Sr 2 MgSi 2 O 7 : Eu, Ca 3 Sc 2 Si 3 O 12 : Ce and the like can be used.
  • the silicon oxynitride-based phosphor may be represented by "MSi x O y N z : Re" (x, y and z are each independently an integer of 1 or more). At this time, since M and Re are substantially the same as described above, overlapping descriptions are omitted.
  • the silicon oxynitride-based phosphor may include BaSi 2 O 2 N 2 : Eu, SrSi 2 O 2 N 2 : Eu, CaSi 2 O 2 N 2 : Eu, Ba 3 Si 6 O 12 N 2 : Eu, and the like. This can be used.
  • the sulfide-based phosphor may be represented by "MA x D y : Re" (x and y are each independently an integer of 1 or more). At this time, since M and Re are substantially the same as described above, overlapping descriptions are omitted.
  • A represents gallium (Ga), aluminum (Al) or indium (In), and these may be included alone or in combination of two or more.
  • the element ratio between the elements constituting A may have various values.
  • D represents sulfur (S), selenium (Se) or tellurium (Te), and these may be included alone or in combination of two or more.
  • an element ratio between elements constituting D may have various values.
  • SrGa 2 S 4: Eu, BaGa 2 S 4: Eu, SrAl 2 S 4: Eu There are the like can be used.
  • the sialon-based phosphor may be represented by " ⁇ -SiAlON: Re". In this case, since Re is substantially the same as described above, redundant description is omitted. As a specific example, ⁇ -SiAlON: Eu or the like may be used as the sialon-based phosphor.
  • the oxide phosphor may be represented by "MG x O y : Re '" (x and y are each independently an integer of 1 or more). At this time, since M is substantially the same as described above, overlapping description is omitted.
  • G represents scandium (Sc), yttrium (Y), gadolinium (Gd), lanthanum (La), lutetium (Lu), aluminum (Al) or indium (In), each of which may be included alone or in combination of two or more. Can be.
  • the element ratio between the elements constituting G may have various values.
  • the element ratio between the elements constituting Re' may have various values.
  • Sr 4 Al 14 O 25 : Eu, CaSc 2 O 4 : Ce, SrAl 2 O 4 : Eu, and the like may be used as the oxide-based phosphor.
  • the green phosphor may have a diameter of about 5 ⁇ m to about 55 ⁇ m. In order to uniformly disperse the green phosphor in the light transmitting resin forming the light conversion layer 1131, the diameter of the green phosphor may be about 8 ⁇ m to about 15 ⁇ m.
  • the diameter of the green phosphor refers to the diameter measured by the Dynamic Light Scattering method (DLS method) calculated by the Stokes-Einstein equation for the diffusion coefficient.
  • the fluorescent particles 2433 may include the green fluorescent composite 300 as shown in FIG. 8.
  • the green fluorescent composite 300 includes wax particles Wx and green phosphors Px disposed inside the wax particles Wx.
  • the wax particles Wx are formed of a wax compound. Since the wax-based compound is substantially the same as that described in FIG. 2, detailed descriptions thereof will be omitted.
  • At least one green phosphor Px may be disposed in the wax particle Wx. Since the green phosphor Px is substantially the same as the green phosphor described with reference to FIG. 7, detailed descriptions thereof will be omitted.
  • the green fluorescent composite 300 may have a diameter of about 10 ⁇ m to about 70 ⁇ m. In order to uniformly disperse the green fluorescent composite 300 in the light conversion layer 2430, the diameter of the green fluorescent composite 300 may be about 15 ⁇ m to about 35 ⁇ m.
  • the diameter of the green fluorescent composite 300 refers to the diameter measured by the dynamic light scattering method (DLS method), such as the diameter of the green phosphor.
  • the first optical layer 2420 having the light diffusion pattern 2421 formed on the surface thereof faces the light guide plate 1200
  • the second barrier layer 2450 is disposed on the first light collecting sheet
  • the light guide plate 1200 and the first light collecting sheet 1500 may be disposed to face 1500.
  • the diffusion sheet 2400 may include the light guide plate such that the second barrier layer 2450 faces the light guide plate 1200 and the first optical layer 2420 faces the first light collecting sheet 1500. 1200 may be disposed between the first light collecting sheet 1500.
  • the backlight unit 2000 described above uses the diffusion sheet 2400 including the light conversion layer 2430 to widen the color reproduction area of the display device and to improve color purity and color reproducibility of colors displayed by the display device.
  • the light conversion layer 2430 uses a light emitting composite 2432 and fluorescent particles 2433 having high stability against light, moisture, and / or heat in an external environment, and protects the first and second barrier layers.
  • the fields 2440 and 2450 the light stability and the moisture / thermal stability of the diffusion sheet 2400 may be significantly improved.
  • FIG. 9 is a cross-sectional view for describing a diffusion sheet according to another embodiment of the present invention.
  • the diffusion sheet 3400 applied to the backlight unit may include a first transparent film 3410, a first optical layer 3420, and a light conversion layer ( 3430, a first barrier layer 3440, a second barrier layer 3450, a second transparent film 3460, and a second optical layer 3470.
  • the first optical layer 3420 having the first transparent film 3410, the first and second barrier layers 3440 and 3450, and the light diffusion pattern 3421 formed thereon is substantially the same as that described with reference to FIG. 2. Same as Therefore, redundant descriptions are omitted.
  • the light conversion layer 3430 is substantially the same as the light conversion layer 1430 described with reference to FIG. 2 or the light conversion layer 2430 described with reference to FIG. 7.
  • the light conversion layer 3430 may include a red light emitting composite as described in FIG. 2.
  • the light conversion layer 3430 may include a green light emitting composite together with a red light emitting composite, or may include a multicolor light emitting composite having a structure in which a red nano light emitting body and a green nano light emitting body are covered by one wax particle.
  • the light conversion layer 3430 may further include at least one of a green light emitting composite and a red light emitting composite.
  • the light conversion layer 3430 may include a green phosphor together with the red light emitting composite as described with reference to FIG. 7.
  • the light conversion layer 3430 may include a green fluorescent composite together with the red light emitting composite.
  • the light conversion layer 3430 may further include at least one of a red light emitting composite, a green light emitting composite, and a multicolor light emitting composite together with the green phosphor or the green fluorescent composite.
  • the second transparent film 3460 is disposed on the second barrier layer 3450, so that the second barrier layer 3450 is between the second transparent film 3460 and the light conversion layer 3430. Is placed on. Since the material forming the second transparent film 3460 is substantially the same as the material forming the first transparent film 1410 described with reference to FIG. 2, detailed descriptions thereof will be omitted.
  • the second optical layer 3470 is disposed on the second transparent film 3460, so that the second transparent film 3460 is the second optical layer 3470 and the second barrier layer 3450. Is placed in between.
  • the second optical layer 3470 includes a light diffusion pattern 3471 formed on the surface thereof. Since the light diffusion pattern 3471 of the second optical layer 3470 is substantially the same as the light diffusion pattern 341 of the first optical layer 3420, detailed descriptions thereof will be omitted. However, the light diffusion patterns 341 and 3471 of the first and second optical layers 3420 and 3470 may have the same shape or may have different shapes.
  • the second optical layer 3470 is formed and described on the second transparent film 3460, but the second optical layer 3470 may be omitted.
  • FIG. 10 is a cross-sectional view for describing a diffusion sheet according to still another embodiment of the present invention.
  • the diffusion sheet 4400 applied to the backlight unit may include a first transparent film 4410, a first barrier layer 4440, and a light conversion layer ( 4430, a second barrier layer 4450, a second transparent film 4460, a first optical layer 4420, and a second optical layer 4470.
  • the light conversion layer 4430 is disposed between the first light conversion layer 4431 and the first light conversion layer 4431 and the second barrier layer 4450 disposed on the first barrier layer 4440.
  • a second light conversion layer 4432 is disposed between the first light conversion layer 4431 and the first light conversion layer 4431 and the second barrier layer 4450 disposed on the first barrier layer 4440.
  • the first light conversion layer 4431 may include at least one of a green light emitting composite and green fluorescent particles.
  • the green light emitting composite has a structure substantially the same as that described with reference to FIGS. 4A to 4C and 5A to 5C and includes green nano light-emitting bodies.
  • the green fluorescent particles include a green fluorescent substance substantially the same as that described in FIG. 7 or a green fluorescent composite substantially the same as that described in FIG. 8. Therefore, redundant descriptions are omitted.
  • the second light conversion layer 4432 may include at least one of a red light emitting composite and a multicolor light emitting composite.
  • the red light-emitting composite has a structure substantially the same as that described with reference to FIGS. 4A to 4C and 5A to 5C and includes a red nano light-emitting body.
  • the multicolor light-emitting composite has a structure substantially the same as that described in FIGS. 4A to 4C and 5A to 5C, and includes both a red nano light emitting body and a green nano light emitting body.
  • the second light conversion layer 4432 may further include at least one of the green light emitting composite and the green fluorescent particles together with the red light emitting composite and / or the multicolor light emitting composite.
  • the light conversion layer 4430 includes the first and second light conversion layers 4431 and 4432 stacked sequentially, and the light emitted from the light guide plate 1200 may pass through the first light conversion layer 4431.
  • the second light conversion layer 4432 After passing through the second light conversion layer 4432 after the passage, a part of the green light generated by the first light conversion layer 4431 is transmitted to the red light emitting composite and / or of the second light conversion layer 4432.
  • the red nano light-emitting body of the multi-color light emitting complex is excited. Accordingly, the red light emitting composite of the second light conversion layer 4432 and / or the red nano light emitting body of the multicolor light emitting composite may not only provide light provided by the light emitting device 1100, but also the first light converting layer 4431.
  • the red light emitting composite of the second light conversion layer 4432 and / or the red nano light emitting body of the multicolor light emitting composite is sufficient to be excited from the first light conversion layer 4431 and the light emitting device 1100.
  • Light may be provided.
  • the green light emitting composite is dispersed in the first light conversion layer 4431, since the green light emitting composite receives light primarily from the light emitting device 1100, the second light conversion layer 4432. Relatively high energy can be delivered, and thus the power density of light generated by the green light-emitting composite can be maximized.
  • the first light conversion layer 4431 includes at least one of the red light emitting composite and the multicolor light emitting composite
  • the second light conversion layer 4432 includes the green light emitting composite, the green phosphor and It may include at least one of the green fluorescent complex.
  • At least one of the first and second photoconversion layers 4431 and 4432 may further include diffusion beads.
  • the first and second optical layers 4420 and 4470 may be omitted.
  • FIG. 11 is a cross-sectional view for describing a diffusion sheet according to still another embodiment of the present invention.
  • the diffusion sheet 5400 applied to the backlight unit may include a first transparent film 5410, a first barrier layer 5440, and a light conversion layer ( 5430, a second barrier layer 5450, a second transparent film 5460, a first optical layer 5520, and a second optical layer 5470. Since the diffusion sheet 5400 is substantially the same as the diffusion sheet 4400 described with reference to FIG. 10 except for the light conversion layer 5430, detailed descriptions thereof will be omitted.
  • the photoconversion layer 5430 is disposed between the first barrier layer 5440 and the second barrier layer 5450, and includes a first photoconversion layer 5431 formed on the first barrier layer 5440, Between the first light conversion layer 5431 and the second barrier layer 5450, the second light conversion layer (5432) and between the first light conversion layer (5431) and the second light conversion layer (5432) And an adhesive layer 5433 interposed therebetween.
  • first light conversion layer 5431 and the second light conversion layer 5432 are substantially the same as those described with reference to FIG. 10, detailed description thereof will be omitted.
  • the adhesive layer 5433 serves to bond the first light conversion layer 5431 and the second light conversion layer 5432.
  • the adhesive layer 5433 may bond the first light conversion layer 5431 and the second light conversion layer 5432 while the adhesive compound is cured.
  • the adhesive layer 5433 is not particularly limited and may be formed using any conventionally known resin as long as it is a resin that transmits light and has adhesiveness.
  • the adhesive layer 5433 may include a moisture absorbent.
  • the moisture absorbent may absorb and remove moisture introduced into each of the first and second light conversion layers 5431 and 5432.
  • Examples of the moisture absorbent include metal oxides such as calcium oxide, barium oxide, strontium oxide, magnesium oxide, calcium carbonate, and magnesium sulfate.
  • organometallic compounds such as aluminum oxide acylate, aluminum oxide alkoxide and aluminum oxide alylate, zeolites, and the like. These can be used individually or in mixture of 2 or more, respectively.
  • the adhesive layer 5433 is disposed between the first and second light conversion layers 5431 and 5432 as an example, but the light conversion layer 5430 is the first barrier layer. It may include an adhesive layer disposed between the 5440 and the first light conversion layer (5431), or may include an adhesive layer disposed between the second barrier layer 5450 and the second light conversion layer (5432). . Alternatively, the light conversion layer 5430 may additionally include the first barrier layer 5440 and the first light conversion layer in addition to the adhesive layer 5433 disposed between the first and second light conversion layers 5431 and 5432. The adhesive layer may further include one or more of an adhesive layer disposed between the 5453 and an adhesive layer disposed between the second barrier layer 5450 and the second light conversion layer 5432.
  • the diffusion sheet 5400 uses a light emitting composite such as a red light emitting composite and / or a green light emitting composite, so that the white light provided by the backlight unit passes through the color filter of the display device. Can improve.
  • a light emitting composite such as a red light emitting composite and / or a green light emitting composite
  • the diffusion sheet 5400 uses the light emitting composite together with the first and second barrier layers 5431 and 5432 to minimize damage to the nano light-emitting body by light, moisture, and / or heat of an external environment. can do. That is, the nano light-emitting body may be protected from the external environment by the first and second barrier layers 5431 and 5432 as well as the wax particles constituting the light-emitting composite. In addition, the nano light-emitting body may be protected from the external environment by applying the adhesive layer 5433 including the moisture absorbent to the light conversion layer 5430.
  • the green fluorescent composite is uniformly dispersed in the light conversion layer 5430, but the dispersion stability is good because the manufacturing of the light conversion layer 5430 Reliability and product reliability can be improved.
  • FIG. 12 is a cross-sectional view for describing a backlight unit according to still another embodiment of the present invention
  • FIG. 13 is a cross-sectional view for explaining the light conversion sheet of FIG. 12.
  • the backlight unit 6000 may include a light emitting element 6100, a light guide plate 6200, a reflecting plate 6300, a light conversion film 6700, a diffusion sheet 6400, and a first light collecting sheet 6500. ) And the second light collecting sheet 6600.
  • the backlight unit 6000 is substantially the same as the backlight unit 1000 described with reference to FIG. 1 except for the light conversion film 6700 and the diffusion sheet 6400. Therefore, redundant descriptions are omitted.
  • the diffusion sheet 6400 is a conventional diffusion sheet including a base film and a light diffusion layer.
  • the light diffusing layer may be formed on one surface of the base film or on both surfaces thereof.
  • the light diffusion layer may include a light diffusion pattern formed on a surface thereof, and the light diffusion pattern may be substantially the same as the light diffusion pattern 1421 of the first optical layer 1420 described with reference to FIG. 2.
  • the light diffusing layer may include diffusion beads. When the light diffusing layer includes the diffusion beads, the surface of the light diffusing layer may be a planarized surface.
  • the light conversion film 6700 may be disposed between the light guide plate 6200 and the diffusion sheet 6400.
  • the light conversion film 6700 may include a first transparent film 6710, a first barrier layer 6740, a light conversion layer 6730, a second barrier layer 6750, and a second transparent film 6560.
  • Each of the first transparent film 6710 and the second transparent film 6560 is substantially the same as the first and second transparent films 3410 and 3460 described with reference to FIG. 9.
  • Each of the first barrier layer 6740 and the second barrier layer 6750 is substantially the same as the first and second barrier layers 1440 and 1450 described with reference to FIG. 2.
  • the light conversion layer 6730 has the same structure as that of the light conversion layer 4430 described with reference to FIG. 10 or the light conversion layers 1430, 2430, described with reference to FIGS. 2 to 9 and 11, as shown in FIG. 13. It may have any one of the structures of 3430, 5430. Therefore, redundant descriptions are omitted. Meanwhile, any one of the first transparent film 6710 and the second transparent film 6760 may be omitted.
  • the light conversion film 6700 may include a first optical layer (not shown) formed on one surface of the first transparent film 6710 and a second optical layer formed on one surface of the second transparent film 6760. Not shown) may be further included.
  • the first optical layer is formed on one surface of the first transparent film 6710 facing the surface on which the first barrier layer 6740 is formed
  • the second optical layer is formed on the second barrier layer 6750. It may be formed on one surface of the second transparent film (6760) facing the formed surface.
  • 12 and 13 illustrate the case where the light conversion film 6700 is disposed between the light guide plate 6200 and the diffusion sheet 6400, but the light conversion film 6700 is described above.
  • the diffusion sheet 6400 and the first light collecting sheet 6500 may be disposed.
  • the light conversion film 6700 is a separate optical sheet independent of the light guide plate 6200, the diffusion sheet 6400, and the first and second light collecting sheets 6500 and 6600. It may be included in the backlight unit 6000.
  • the backlight unit 6000 may improve the color reproducibility of the display device, and at the same time, the light conversion layer may be formed by the first and second barrier layers 6740 and 6750. 6730 can be minimized to damage by light, moisture and / or heat of the external environment.
  • FIG. 14 is a cross-sectional view for describing a backlight unit according to still another embodiment of the present invention
  • FIG. 15 is a cross-sectional view for explaining a first light collecting sheet of FIG. 14.
  • the backlight unit 7000 may include a light emitting element 7100, a light guide plate 7200, a reflecting plate 7300, a diffusion sheet 7400, a first light collecting sheet 7500, and a second light collecting sheet ( 7600).
  • the backlight unit 7000 is substantially the same as the backlight unit 1000 described with reference to FIG. 1 except for the diffusion sheet 7400 and the first light collecting sheet 7500, and the diffusion sheet 7400 is illustrated in FIG. 12. It is substantially the same as the diffusion sheet 6400 described above. Therefore, redundant descriptions are omitted.
  • the first light collecting sheet 7500 may include a first transparent film 7510, a first barrier layer 7750, a light conversion layer 7530, a second barrier layer 7750, a second transparent film 7560, and a first transparent film 7510.
  • Optical layer 7570 may be included in the first light collecting sheet 7500.
  • Each of the first transparent film 7510 and the second transparent film 7560 is substantially the same as the first and second transparent films 3410 and 3460 described with reference to FIG. 9, and the first barrier layer 7540.
  • each of the second barrier layers 7750 is substantially the same as the first and second barrier layers 1440 and 1450 described with reference to FIG. 2, and the light conversion layer 7530 is the first light conversion layer 7531.
  • a second light conversion layer 7532 is substantially the same as each of the first and second photoconversion layers 4431 and 4432 described with reference to FIG. 10, and thus descriptions thereof will be omitted.
  • the light conversion layer 7530 may have any one of the structures of the light conversion layers 1430, 2430, 3430, and 5430 described with reference to FIGS. 2 to 9 and 11. Therefore, detailed description thereof will be omitted.
  • the first optical layer 7570 is formed on the second transparent film 7560. Accordingly, the second transparent film 7560 may be disposed between the first optical layer 7570 and the second barrier layer 7750.
  • the first optical layer 7570 includes a light collecting pattern 7551 formed on a surface thereof.
  • the condensing pattern 7551 may have a cross-sectional shape that may refract light passing through the second transparent film 7560 in a vertical direction.
  • the condensing pattern 7551 may include a plurality of protrusions, and each of the protrusions may have a triangular shape.
  • the protrusions extend in a first direction and may be continuously arranged in a second direction crossing the first direction.
  • each of the protrusions may have a triangular pillar shape having a constant height.
  • the height of each of the protrusions may vary along the first direction.
  • the height of the protrusion may be changed linearly or non-linearly along the first direction.
  • the height of the protrusions may be changed to have a predetermined period but may be changed irregularly. In this case, the height of each protrusion may be changed independently of each other.
  • the vertex angle of each protrusion constituting the condensing pattern 7551 may be about 90 °, but may be appropriately adjusted as necessary. When the height of the protrusion changes along the first direction, the vertex angle may vary according to the position.
  • a second optical layer may be further formed on the first transparent film 7510.
  • the first transparent film 7510 may be disposed between the second optical layer and the first barrier layer 7540.
  • the second optical layer includes a light diffusion pattern formed on a surface thereof, and the light diffusion pattern is substantially the same as the light diffusion pattern 1421 described with reference to FIG.
  • the first light collecting sheet 1500 may be the first light collecting sheet 1500 of the backlight unit 1000 described with reference to FIG. 1.
  • the second light collecting sheet 7600 disposed on the first light collecting sheet 7500 may be formed in the structure described with reference to FIGS. 14 and 15 to configure the backlight unit 7000.
  • each of the first light collecting sheet 7500 and the second light collecting sheet 7600 may include a first transparent film, a first barrier layer, a light conversion layer, a second barrier layer, a second transparent film, and a first optical layer.
  • a green light emitting composite, a green phosphor, and a green fluorescent composite are dispersed in the light conversion layer of the first light collecting sheet 7500, and red in the light conversion layer of the second light collecting sheet 7700.
  • the light emitting complex may be configured to be dispersed.
  • the multi-color light emitting composite including the red nano light emitting body and the green nano light emitting body instead of the red light emitting composite, or the multi-color light emitting composite together with the red light emitting composite may be dispersed.
  • at least one of the green light emitting composite, the green phosphor, and the green fluorescent composite may be dispersed in the light conversion layer of the second light collecting sheet 7600 together with the red light emitting composite.
  • FIG. 16 is a cross-sectional view illustrating a backlight unit according to still another embodiment of the present invention
  • FIG. 17 is a cross-sectional view illustrating the light collecting sheet of FIG. 16.
  • the backlight unit 8000 includes a light emitting element 8100, a light guide plate 8200, a reflecting plate 8300, and an inverted prism sheet 8500.
  • the light emitting device 8100, the light guide plate 8200, and the reflecting plate 8300 are substantially the same as the light emitting device 1100, the light guide plate 1200, and the reflecting plate 1300 described with reference to FIG. 1. Therefore, redundant descriptions are omitted.
  • the reverse prism sheet 8500 is disposed on the light guide plate 8200. Specifically, the reverse prism sheet 8500 is disposed on the light guide plate 8200 so as to face the reflective plate 8300 with the light guide plate 8200 interposed therebetween.
  • the anti-prism sheet 8500 may include a first transparent film 8510, a first barrier layer 8540, a light conversion layer 8530, a second barrier layer 8850, a second transparent film 8560, first and Second optical layers 8520 and 8570.
  • Each of the first transparent film 8510 and the second transparent film 8560 is substantially the same as the first and second transparent films 3410 and 3460 described with reference to FIG. 9, and the first barrier layer 8404 is used.
  • each of the second barrier layers 8850 is substantially the same as the first and second barrier layers 1440 and 1450 described with reference to FIG. 2, and the light conversion layer 8530 is illustrated in FIG. 17.
  • the structure of the light conversion layer 4430 described with reference to FIG. 10 may be the same as that of any one of the structures of the light conversion layers 1430, 2430, 3430, and 5430 described with reference to FIGS. 2 through 9 and 11. Therefore, detailed description thereof will be omitted.
  • the first optical layer 8520 is formed on the first transparent film 8510.
  • the first optical layer 8520 is formed on an opposite surface of one surface of the first transparent film 8510 on which the first barrier layer 8540 is formed, and thus the first transparent film 8510 is formed on the first surface.
  • the barrier layer 8540 is disposed between the first optical layer 8520 and the first optical layer 8520.
  • the first optical layer 8520 includes a light collecting pattern 8251 formed on a surface thereof.
  • the condensing pattern 8251 is substantially the same as the condensing pattern 7551 of the first optical layer 7570 described with reference to FIG. 15, and thus a detailed description thereof will be omitted.
  • the second optical layer 8070 is formed on the second transparent film 8560.
  • the second optical layer 8070 is formed on an opposite surface of one surface of the second transparent film 8560 on which the second barrier layer 8850 is formed, and thus the second transparent film 8560 is formed of the second optical layer 8560. 2 is disposed between the optical layer (8570) and the second barrier layer (8550).
  • the second optical layer 8070 includes a light diffusion pattern 8571 formed on a surface thereof. Since the light diffusion pattern 8571 is substantially the same as the light diffusion pattern 1421 of the first optical layer 1420 described with reference to FIG. 2, detailed description thereof will be omitted.
  • the anti-prism sheet 8500 may face the first optical layer 8520 including the light collecting pattern 8251, and face the light guide plate 8200, and include the second optical layer 8070. Is disposed on the light guide plate 8200 so as to face the display panel (not shown).
  • the reverse prism sheet 8500 When the reverse prism sheet 8500 having the above configuration is disposed on the light guide plate 8200, the reverse prism sheet 8500 may replace two light collecting sheets and a diffusion sheet.
  • the light guide plate 8200 may further include a prism pattern.
  • the prism pattern may have a shape substantially the same as that of the condensing pattern 8521 of the inverse prism sheet 8500, but an extension direction of the condensation pattern 8251 may be disposed to cross the extension direction of the prism pattern.
  • the prism pattern may have a protrusion having a vertex angle of about 90 °, or a lenticular pattern having a protrusion having a round shape.
  • the prism pattern of the light guide plate 8200 may be disposed to intersect the condensing pattern of the inverse prism sheet 8500, and the condensing direction of the light emitting element 8100 and the condensing pattern of the inverse prism sheet 8500.
  • the extending direction of the pattern 8251 may be disposed to coincide.
  • the inverted prism sheet 8500 includes the light conversion layer 8530, white light provided by the backlight unit 8000 is passed through the color filter of the display device by a light emitting composite such as a red light emitting composite and / or a green light emitting composite. The color reproducibility of the displayed image can be improved.
  • FIG. 18 is a cross-sectional view for describing a backlight unit according to yet another exemplary embodiment of the present invention.
  • the backlight unit 9000 includes a light emitting element 9100, a light guide plate 9200, a reflecting plate 9300, an inverted prism sheet 9500, and a protective sheet 9600.
  • the light emitting element 9100, the light guide plate 9200, and the reflecting plate 9300 are substantially the same as the light emitting element 8100, the light guide plate 8200, and the reflecting plate 8300 described with reference to FIG. 17. Therefore, redundant descriptions are omitted.
  • the anti-prism sheet 9500 is disposed on the light guide plate 9200, and is formed on a base substrate 9510 and one surface of the base substrate 9510, and a light collecting layer 9520 having a light collecting pattern 9521 formed on a surface thereof. It includes. Since the condensing pattern 9521 is substantially the same as the condensing pattern 7551 described with reference to FIG. 15, detailed description thereof will be omitted.
  • the reverse prism sheet 9500 may be disposed on the light guide plate 9200 so that the light collecting pattern 9521 faces the light guide plate 9200.
  • the protective sheet 9600 is disposed between the light guide plate 9200 and the reverse prism sheet 9500, and prevents damage of the light collecting pattern 9521 of the reverse prism sheet 9500 to prevent the damage of the light guide plate 9200.
  • the emitted light is transferred to the inverse prism sheet 9500.
  • the protective sheet 9600 may include a first transparent film 9610, a first barrier layer 9940, a light conversion layer 9630, a second barrier layer 9650, a second transparent film 9960, first and second agents. Two optical layers 9620, 9670.
  • Each of the first transparent film 9610 and the second transparent film 9960 may be substantially the same as the first and second transparent films 3410 and 3460 described with reference to FIG. 9, and the first barrier layer 9940 may be used.
  • the second barrier layer 9650 is substantially the same as each of the first and second barrier layers 1440 and 1450 described with reference to FIG. 2, and the light conversion layer 9630 includes the light described with reference to FIGS. 2 through 11.
  • the structure of the conversion layers 1430, 2430, 3430, 4430, and 5430 may be the same as the structure of any one. Therefore, detailed description thereof will be omitted.
  • the first optical layer 9620 is formed on the first transparent film 9610. That is, the first optical layer 9620 is formed on one surface of the first transparent film 9610 to face the first barrier layer 9940 with the first transparent film 9610 interposed therebetween.
  • the first optical layer 9620 includes a first buffer pattern 9621 formed on a surface thereof.
  • the first buffer pattern 9621 may extend in substantially the same direction as the condensing pattern 9521 of the inverse prism sheet 9500.
  • the first buffer pattern 9621 is coated with a curable resin on one surface of the first transparent film 9610, and then pressurized with a stamp having a pattern having a shape corresponding to that of the first buffer pattern 9621. And / or by curing using heat.
  • the pitch P2 of the first buffer pattern 9621 may be larger than the pitch P1 of the condensing pattern 9521 formed on the inverse prism sheet 9500.
  • the pitch of each of the light collecting pattern and the first buffer pattern may be defined as a distance between vertices or a valley between the light collecting patterns.
  • the pitch P2 of the first buffer pattern 9621 may be about 50 ⁇ m to 170 ⁇ m
  • the pitch P1 of the condensing pattern 9521 may be about 10 ⁇ m to 60 ⁇ m.
  • the height H2 of the first buffer pattern 9621 may be relatively smaller than the height H1 of the condensing pattern 9521.
  • the height of each of the light collecting pattern and the first buffer pattern may be defined as a vertical distance from the planes D1 and D2 where the valleys of the light collecting pattern are located.
  • the height H2 of the first buffer pattern 9621 may be about 1 ⁇ m to 5 ⁇ m
  • the height H1 of the condensing pattern 9521 may be about 5 ⁇ m to 40 ⁇ m.
  • the internal angle C2 of the first buffer pattern 9621 may be relatively smaller than the internal angle C1 of the condensing pattern 9521.
  • the inner sides C1 and C2 of the light converging pattern and the first buffer pattern may have a side surface E1 and E2 constituting a side surface of the light converging pattern or the first buffer pattern in which the valleys of the light converging pattern are located.
  • D1 and D2) may be defined as an angle.
  • the internal angle C2 of the first buffer pattern 9621 may be about 0.5 ° to 7 °
  • the internal angle C1 of the condensing pattern 9521 may be about 25 ° to 65 °.
  • the first buffer pattern 9621 may have a refractive index different from that of the condensing pattern 9521.
  • the refractive index of the first buffer pattern 9621 may have a smaller value than the refractive index of the condensing pattern 9521.
  • the refractive index of the first buffer pattern 9621 may be about 1.4 to 1.6, and the refractive index of the light collecting pattern 9521 may be about 1.45 to 1.65.
  • the first buffer pattern 9621 and the light collecting pattern 9521 may be formed of materials having different strengths.
  • the first buffer pattern 9621 may be formed of a flexible material having a lower strength than the light collecting pattern 9521.
  • the first buffer pattern 9621 may be formed of a material having the same strength as that of the light guide plate 9200 or may be formed of a flexible material having a lower strength than that of the light guide plate 9200.
  • the second optical layer 9706 is formed on the second transparent film 9960.
  • the second optical layer 9706 is formed on one surface of the second transparent film 9960 to face the second barrier layer 9650 with the second transparent film 9960 interposed therebetween.
  • the second optical layer 9706 may include diffusion beads (not shown) including a second buffer pattern 9671 formed on a surface thereof or dispersed therein.
  • the second buffer pattern 9671 may be formed of the light diffusion pattern 1421 of the first optical layer 1420 described with reference to FIG. 2. Since it is substantially the same, overlapping detailed description thereof will be omitted.
  • the second buffer pattern 9671 may perform a light diffusion function.
  • the second buffer pattern 9671 may not be formed on the surface of the second optical layer 9706. In contrast, even when the second optical layer 9706 includes light diffusion beads dispersed therein, the second buffer pattern 9671 may be formed on the surface of the second optical layer 9700.
  • the protective sheet 9600 may include the light guide plate 9200 and the first buffer pattern 9621 facing the light guide plate 9200 and the second buffer pattern 9671 facing the inverse prism sheet 9500. It is disposed between the anti-prism sheet 9500.
  • 'Wet-Out' is a phenomenon that occurs when the change of the refractive index is removed when two sheet surfaces are optically contacted with each other and light is transmitted from one sheet to another sheet. Or a phenomenon recognized as a defective part.
  • the reverse prism sheet 9500 does not include a light emitting composite or fluorescent particles.
  • the reverse prism sheet 9500 has the reverse prism described with reference to FIG. 17. May be replaced by a sheet 8500.
  • a blue light emitting device showing an emission peak at about 444 nm was used as a light source.
  • a benzotriazole UV absorber (trade name: Tinuvin-329, BASF, Germany) and a hindered amine light stabilizer (trade name: Tinuvin-770, BASF, Germany) based on 100 parts by weight of the methyl methacrylate polymer.
  • a pellet-type resin was prepared by using an extruder (inner diameter: 27 mm, L / D: 40, Leistritz. Co.), which was extruded using a sheet extruder to produce a light guide plate having a thickness of about 0.4 mm.
  • an extruder inner diameter: 27 mm, L / D: 40, Leistritz. Co.
  • a wax (trade name: Licowax PED 136 wax, Clariant, Switzerland) having an acid value of about 30 mg KOH / g as an oxidized HDPE wax as a wax-based compound in 1 ml of toluene.
  • the wax-based compound was dissolved by raising the temperature to about 130 °C to prepare a wax solution.
  • a solution containing about 20 mg of CdSe-based red nanoluminescent material (trade name: Nanodot-HE-610, QD solution, Korea) in 1 ml of toluene was added to the wax solution, mixed, and cooled to room temperature
  • a first solution in which the light emitting complex was dispersed was prepared.
  • CdSe-based green nano light-emitting body (trade name: Nanodot-HE-530, QD solution, Korea) was dispersed in 1 ml of toluene was added to the wax solution prepared in the process of preparing the red light-emitting composite. After addition and mixing, the mixture was cooled to room temperature to prepare a second solution in which the green light-emitting composite was dispersed.
  • the first and second solutions were mixed with a urethane acrylate purchased from BASF (company name, Germany) and a photoinitiator (diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) purchased from BASF).
  • TPO was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate.
  • toluene was removed using an evaporator to prepare a coating composition in which urethane acrylate, the red light emitting composite, the green light emitting composite, and the photoinitiator were mixed.
  • about 0.4 parts by weight of the red light-emitting composite was included, and about 4.9 parts by weight of the green light-emitting composite based on 100 parts by weight of urethane acrylate.
  • a first inorganic layer having a thickness of about 0.8 ⁇ m made of silicon carbide (SiOC) is formed by plasma chemical vapor deposition, and the first inorganic film is formed.
  • a second barrier layer made of aluminum oxide (Al 2 O 3 ) and having a thickness of about 50 nm was formed on the inorganic layer by using an atomic layer deposition method to form a first barrier layer.
  • the coating composition was coated to a thickness of about 100 ⁇ m on the second inorganic layer of the first barrier layer and cured to form a light conversion layer.
  • An aluminum oxide film (Al 2 O 3 ) having a thickness of about 50 nm was formed as a second barrier layer on the light conversion layer by an ALD method (atomic layer deposition method).
  • the total average was used by using a composition having TPO mixed at about 0.8 parts by weight with respect to 100 parts by weight of urethane acrylate.
  • An optical layer having a light diffusion pattern having a thickness of about 7 ⁇ m was formed to prepare a diffusion sheet.
  • the coating composition was prepared by mixing with epoxy acrylate and TPO purchased from BASF (company name, Germany). In this case, the photoinitiator was mixed in about 0.8 parts by weight based on 100 parts by weight of epoxy acrylate.
  • the coating composition was coated on a PET film having a thickness of about 75 ⁇ m, and then pressed with a molding roll to prepare a light collecting pattern having a height of about 25 ⁇ m on the PET film, thereby preparing a first light collecting sheet.
  • the second light collecting sheet was manufactured through a process substantially the same as the method of manufacturing the first light collecting sheet.
  • the backlight unit according to the first exemplary embodiment of the present invention was prepared by assembling the light emitting device prepared as described above, the light guide plate, the diffusion sheet, and the first and second light collecting sheets sequentially stacked.
  • the diffusion sheet is disposed on the light guide plate such that the optical layer of the diffusion sheet faces the light guide plate and the second barrier layer faces the first light collection sheet.
  • the light emitting device, the light guide plate, the first and the second light collecting sheets were prepared substantially the same as in the backlight unit according to the first embodiment.
  • a first barrier layer formed on the first transparent film was prepared in substantially the same manner as in the preparation of the diffusion sheet of Example 1, and the urethane acrylate, the red light emitting composite, the green light emitting composite and A coating layer was formed by coating a coating composition substantially the same as the coating composition prepared in the manufacturing process of the diffusion sheet of Example 1, in which the photoinitiator was mixed, to a thickness of about 100 ⁇ m.
  • the photoconversion layer was formed by hardening.
  • the total thickness is about 7 ⁇ m.
  • the 1st optical layer and the 2nd optical layer which have a pattern were formed, and the diffusion sheet was prepared.
  • the diffusion sheet in which the first optical layer, the first transparent film, the first barrier layer, the light conversion layer formed by curing the coating layer, the second barrier layer, the second transparent film, and the second optical layer are sequentially stacked Prepared.
  • the backlight unit according to Example 2 of the present invention was prepared by assembling the light emitting device prepared as described above, the light guide plate, the diffusion sheet, and the first and second light collecting sheets sequentially stacked.
  • the diffusion sheet was disposed on the light guide plate such that a first optical layer faced the light guide plate and the second optical layer faced the first light collecting sheet.
  • the light emitting device, the light guide plate, the first and the second light collecting sheets were prepared substantially the same as the backlight unit according to the first embodiment.
  • Urethane acryl purchased from BASF (Company, Germany) for the first solution used in the process for producing the diffusion sheet of Example 1 and the green phosphor LP-F525 (trade name) purchased from LWB (company name, Germany) Mixed with rate and TPO.
  • TPO was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate.
  • toluene was removed using an evaporator to prepare a coating composition in which urethane acrylate, a red light emitting composite, a green phosphor, and a photoinitiator were mixed.
  • the green phosphor contained about 11.2 parts by weight.
  • a first inorganic layer having a thickness of about 0.8 ⁇ m made of silicon carbide (SiOC) is formed by plasma chemical vapor deposition, and the first inorganic film is formed.
  • a second barrier layer made of aluminum oxide (Al 2 O 3 ) and having a thickness of about 50 nm was formed on the inorganic layer by using an atomic layer deposition method to form a first barrier layer.
  • the coating composition was coated to a thickness of about 100 ⁇ m on the second inorganic layer of the first barrier layer to form a coating layer.
  • the photoconversion layer was formed by hardening.
  • the total thickness is about 7 ⁇ m.
  • the 1st optical layer and the 2nd optical layer which have a pattern were formed, and the diffusion sheet was prepared.
  • the diffusion sheet in which the first optical layer, the first transparent film, the first barrier layer, the light conversion layer formed by curing the coating layer, the second barrier layer, the second transparent film, and the second optical layer are sequentially stacked Prepared.
  • the backlight unit according to the third exemplary embodiment of the present invention was prepared by assembling the light emitting device prepared as described above, the light guide plate, the diffusion sheet, and the first and second light collecting sheets sequentially stacked.
  • the diffusion sheet was disposed on the light guide plate such that a first optical layer faced the light guide plate and the second optical layer faced the first light collecting sheet.
  • the light emitting device, the light guide plate, the first and the second light collecting sheets were prepared substantially the same as in the backlight unit according to the first embodiment.
  • oxidized HDPE wax (trade name: Licowax PED 136 wax, Clariant, Switzerland) having an acid value of about 30 mg KOH / g was mixed with 1 ml of toluene.
  • the wax-based compound was dissolved by raising the temperature to about 130 ° C. to prepare a wax solution.
  • a toluene solution in which 20 mg of green phosphor LP-F525 (trade name) purchased from LWB (company name, Germany) and 1 ml of toluene was mixed was added and mixed.
  • the mixed solution of the wax solution and the toluene solution was cooled to room temperature to prepare a dispersion solution in which a fluorescent complex including wax particles and the green phosphor was dispersed.
  • the first solution and the dispersion solution used in the process for producing the diffusion sheet of Example 1 were mixed with urethane acrylate and TPO purchased from BASF (Company name, Germany). TPO was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate. Then, toluene was removed using an evaporator to prepare a coating composition in which urethane acrylate, a red light emitting composite, a fluorescent composite, and a photoinitiator were mixed. In this case, about 100 parts by weight of the urethane acrylate, the red light-emitting composite contained about 0.3 parts by weight, and the fluorescent composite contained about 11.2 parts by weight.
  • a first barrier layer formed on the first transparent film was prepared in substantially the same manner as in the preparation of the diffusion sheet of Example 1, and the coating composition was coated on the first barrier layer to a thickness of about 100 ⁇ m to form a coating layer. Formed.
  • the photoconversion layer was formed by hardening.
  • the total thickness is about 7 ⁇ m.
  • the 1st optical layer and the 2nd optical layer which have a pattern were formed, and the diffusion sheet was prepared.
  • the diffusion sheet in which the first optical layer, the first transparent film, the first barrier layer, the light conversion layer formed by curing the coating layer, the second barrier layer, the second transparent film, and the second optical layer are sequentially stacked Prepared.
  • the backlight unit according to Example 4 of the present invention was prepared by assembling the light emitting device prepared as described above, the light guide plate, the diffusion sheet, and the first and second light collecting sheets sequentially stacked.
  • the diffusion sheet was disposed on the light guide plate such that a first optical layer faced the light guide plate and the second optical layer faced the first light collecting sheet.
  • the light emitting device, the light guide plate, the first and the second light collecting sheets were prepared substantially the same as in the backlight unit according to the first embodiment.
  • a wax (trade name: Licowax PED 136 wax, Clariant, Switzerland) having an acid value of about 30 mg KOH / g as an oxidized HDPE wax as a wax-based compound in 1 ml of toluene. After mixing, the wax-based compound was dissolved by raising the temperature to about 130 ° C. to prepare a wax solution.
  • the solution in which the multicolored light-emitting composite was dispersed was mixed with urethane acrylate and TPO purchased from BASF (company name, Germany). TPO was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate. Thereafter, toluene was removed using an evaporator to prepare a coating composition in which urethane acrylate, the multicolored light-emitting composite, and the photoinitiator were mixed. In this case, in the coating composition, about 5.3 parts by weight of the multicolor light-emitting composite was included based on 100 parts by weight of urethane acrylate.
  • a first inorganic layer having a thickness of about 0.8 ⁇ m made of silicon carbide (SiOC) is formed by plasma chemical vapor deposition, and the first inorganic film is formed.
  • a second barrier layer made of aluminum oxide (Al 2 O 3 ) and having a thickness of about 50 nm was formed on the inorganic layer by using an atomic layer deposition method to form a first barrier layer.
  • the coating composition was coated to a thickness of about 100 ⁇ m on the second inorganic layer of the first barrier layer to form a coating layer.
  • the photoconversion layer was formed by hardening.
  • the total thickness is about 7 ⁇ m.
  • the 1st optical layer and the 2nd optical layer which have a pattern were formed, and the diffusion sheet was prepared.
  • the diffusion sheet in which the first optical layer, the first transparent film, the first barrier layer, the light conversion layer formed by curing the coating layer, the second barrier layer, the second transparent film, and the second optical layer are sequentially stacked Prepared.
  • the backlight unit according to the fifth embodiment of the present invention was prepared by assembling the light emitting device prepared as described above, the light guide plate, the diffusion sheet, and the first and second light collecting sheets sequentially stacked.
  • the diffusion sheet was disposed on the light guide plate such that a first optical layer faced the light guide plate and the second optical layer faced the first light collecting sheet.
  • the light guide plate, the first and the second light collecting sheets were prepared substantially the same as in the backlight unit according to the first embodiment.
  • a wax-based compound (trade name: Licowax PED 136 wax, Clariant, Switzerland) consisting of oxidized HDPE wax having an acid value of about 30 mg KOH / g was added to 1 ml of toluene. After mixing, the wax-based compound was dissolved by raising the temperature to about 130 ° C. to prepare a wax solution.
  • a light-emitting device was manufactured by molding a mixture of a thermosetting silicone resin in which A kits and B kits were mixed at a ratio of 1: 4 and curing at 150 ° C. for 2 hours.
  • a wax (trade name: Licowax PED 136 wax, Clariant, Switzerland) having an acid value of about 30 mg KOH / g as an oxidized HDPE wax as a wax-based compound in 1 ml of toluene.
  • the wax-based compound was dissolved by raising the temperature to about 130 °C to prepare a wax solution.
  • a solution containing about 20 mg of CdSe-based red nanoluminescent material (trade name: Nanodot-HE-610, QD solution, Korea) in 1 ml of toluene was added to the wax solution, mixed, and cooled to room temperature A solution in which the light emitting complex was dispersed was prepared.
  • the solution was mixed with urethane acrylate purchased from BASF (Company, Germany) and TPO purchased from BASF. TPO was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate. Thereafter, toluene was removed using an evaporator to prepare a coating composition in which urethane acrylate, the red light-emitting composite, and the photoinitiator were mixed.
  • a first inorganic layer having a thickness of about 0.8 ⁇ m made of silicon carbide (SiOC) is formed by plasma chemical vapor deposition, and the first inorganic film is formed.
  • a second barrier layer made of aluminum oxide (Al 2 O 3 ) and having a thickness of about 50 nm was formed on the inorganic layer by using an atomic layer deposition method to form a first barrier layer.
  • the coating composition was coated to a thickness of about 100 ⁇ m on the second inorganic layer of the first barrier layer to form a coating layer.
  • the photoconversion layer was formed by hardening.
  • the total thickness is about 7 ⁇ m.
  • the 1st optical layer and the 2nd optical layer which have a pattern were formed, and the diffusion sheet was prepared.
  • the diffusion sheet in which the first optical layer, the first transparent film, the first barrier layer, the light conversion layer formed by curing the coating layer, the second barrier layer, the second transparent film, and the second optical layer are sequentially stacked Prepared.
  • the backlight unit according to the sixth embodiment of the present invention was prepared by assembling the light emitting device prepared as described above, the light guide plate, the diffusion sheet, and the first and second light collecting sheets sequentially stacked.
  • the diffusion sheet was disposed on the light guide plate such that a first optical layer faced the light guide plate and the second optical layer faced the first light collecting sheet.
  • the light emitting device, the light guide plate, the first and the second light collecting sheets were prepared substantially the same as in the backlight unit according to the first embodiment.
  • the second solution containing the green luminescent composite prepared in the production process of the diffusion sheet of Example 1 was mixed with urethane acrylate and TPO purchased from BASF Corporation (company name, Germany). TPO was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate. Then, toluene was removed using an evaporator to prepare a first coating composition in which urethane acrylate, the green light-emitting composite, and the photoinitiator were mixed. In the first coating composition, about 9.8 parts by weight of the green light emitting composite was included based on 100 parts by weight of urethane acrylate.
  • a first barrier layer formed on the first transparent film was prepared in substantially the same manner as in the preparation of the diffusion sheet of Example 1, and the first coating composition was coated on the first barrier layer and cured so that the thickness was about the same.
  • a first light conversion layer having a thickness of 50 ⁇ m was formed.
  • the first solution containing the red light-emitting composite prepared in the manufacturing process of the diffusion sheet of Example 1 was mixed with urethane acrylate and TPO purchased from BASF (company name, Germany). TPO was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate. Then, toluene was removed using an evaporator to prepare a second coating composition in which urethane acrylate, the red light-emitting composite, and the photoinitiator were mixed. In the second coating composition, about 0.8 parts by weight of the red light-emitting composite was included based on 100 parts by weight of urethane acrylate. Prepare a second transparent film and a second barrier layer substantially the same as the first transparent film and the first barrier layer to coat and cure the second coating composition on the second barrier layer to a thickness of about 50 ⁇ m A second light conversion layer was formed.
  • a composition in which a urethane acrylate and TPO as an adhesive is mixed in a weight ratio of about 100: 0.8 between the first and second photoconversion layers.
  • the assembly was interposed and irradiated with light to form an adhesive layer between the first and second light conversion layers.
  • the thickness of the adhesive layer was about 3 ⁇ m.
  • the total thickness is about 7 ⁇ m.
  • the 1st optical layer and the 2nd optical layer which have a pattern were formed, and the diffusion sheet was prepared.
  • the first optical layer, the first transparent film, the first barrier layer, the first light conversion layer, the adhesive layer, the second light conversion layer, the second barrier layer, the second transparent film and the second optical layer Diffusion sheets stacked sequentially were prepared.
  • the backlight unit according to the seventh exemplary embodiment of the present invention was prepared by assembling the light emitting device prepared as described above, the light guide plate, the diffusion sheet, and the first and second light collecting sheets sequentially stacked.
  • the diffusion sheet was disposed on the light guide plate such that a first optical layer faced the light guide plate and the second optical layer faced the first light collecting sheet.
  • the light emitting device, the light guide plate, the first and the second light collecting sheets were prepared substantially the same as in the backlight unit according to the first embodiment.
  • a wax-based compound (trade name: Licowax PED 136 wax, Clariant, Switzerland) consisting of oxidized HDPE wax having an acid value of about 30 mg KOH / g was added to 1 ml of toluene. After mixing, the wax-based compound was dissolved by raising the temperature to about 130 ° C. to prepare a wax solution.
  • the dispersion solution was mixed with urethane acrylate and TPO purchased from BASF (company name, Germany). TPO was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate. Then, toluene was removed using an evaporator to prepare a third coating composition in which urethane acrylate, the fluorescent composite, and the photoinitiator were mixed. In the third coating composition, the fluorescent composite contained about 22.4 parts by weight based on 100 parts by weight of urethane acrylate.
  • a first barrier layer formed on the first transparent film was prepared substantially the same as in the preparation of the diffusion sheet of Example 1, and the third coating composition was coated on the first barrier layer and cured so that the thickness was about the same.
  • a first light conversion layer having a thickness of 50 ⁇ m was formed.
  • a red light-emitting composite prepared in Example 7, urethane acrylate, and the like prepared on the second barrier layer by preparing a second transparent film and a second barrier layer substantially the same as the first transparent film and the first barrier layer.
  • a second coating composition comprising TPO was coated and cured to form a second light conversion layer having a thickness of about 50 ⁇ m.
  • a composition in which a urethane acrylate and TPO as an adhesive is mixed in a weight ratio of about 100: 0.8 between the first and second photoconversion layers.
  • the assembly was interposed and irradiated with light to form an adhesive layer between the first and second light conversion layers.
  • the thickness of the adhesive layer was about 3 ⁇ m.
  • the total thickness is about 7 ⁇ m.
  • the 1st optical layer and the 2nd optical layer which have a pattern were formed, and the diffusion sheet was prepared.
  • the first optical layer, the first transparent film, the first barrier layer, the first light conversion layer, the adhesive layer, the second light conversion layer, the second barrier layer, the second transparent film and the second optical layer Diffusion sheets stacked sequentially were prepared.
  • the backlight unit according to the eighth embodiment of the present invention was prepared by assembling the light emitting device prepared as described above, the light guide plate, the diffusion sheet, and the first and second light collecting sheets sequentially stacked.
  • the diffusion sheet was disposed on the light guide plate such that a first optical layer faced the light guide plate and the second optical layer faced the first light collecting sheet.
  • the light emitting device, the light guide plate, the first and the second light collecting sheets were prepared substantially the same as in the backlight unit according to the first embodiment.
  • the coating composition was prepared by mixing urethane acrylate and TPO purchased from BASF (company name, Germany). TPO was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate.
  • the coating composition was coated on a PET film having a thickness of about 38 ⁇ m and cured to form a light diffusion layer on the surface thereof, thereby preparing a diffusion sheet including a base substrate and the light diffusion layer, wherein the average thickness of the light diffusion layer was about 50 ⁇ m. It was.
  • a first coating composition including a green light emitting composite prepared in a manufacturing process of the diffusion sheet of Example 7 was prepared.
  • a first barrier layer formed on the first transparent film was prepared in substantially the same manner as in the preparation of the diffusion sheet of Example 1, and the first coating composition was coated on the first barrier layer and cured so that the thickness was about the same.
  • a first light conversion layer having a thickness of 50 ⁇ m was formed.
  • a second coating composition including the red light-emitting composite prepared in the manufacturing process of the diffusion sheet of Example 7 was prepared.
  • a second light conversion layer was formed.
  • a composition in which a urethane acrylate and TPO as an adhesive is mixed in a weight ratio of about 100: 0.8 between the first and second photoconversion layers.
  • the assembly was interposed and irradiated with light to form an adhesive layer between the first and second light conversion layers.
  • the thickness of the adhesive layer was about 3 ⁇ m.
  • the light emitting device prepared as described above, the light guide plate, the light conversion film, the diffusion sheet, the first and the second light collecting sheets were sequentially assembled to prepare a backlight unit according to the ninth embodiment of the present invention.
  • the light conversion film was disposed on the light guide plate such that a first transparent film faces the light guide plate and a second transparent film faces the diffusion sheet.
  • the light guide plate, the first and the second light collecting sheets were prepared substantially the same as in the backlight unit according to the first embodiment.
  • a light emitting device substantially the same as the light emitting device prepared in Example 6 was prepared.
  • a diffusion sheet substantially the same as the diffusion sheet prepared in Example 9 was prepared.
  • a second coating composition including a red light emitting composite prepared in a manufacturing process of the diffusion sheet of Example 7 was prepared.
  • a second transparent film and a second barrier layer were prepared, the coating layer was covered in contact with the second barrier layer, and then cured to form a light conversion layer having a thickness of about 100 ⁇ m.
  • a light emitting device prepared as described above, a light guide plate, the light conversion film, a diffusion sheet, a first and a second light collecting sheet were sequentially assembled to prepare a backlight unit according to Example 10 of the present invention.
  • the light conversion film was disposed on the light guide plate such that a first transparent film faces the light guide plate and a second transparent film faces the diffusion sheet.
  • the light emitting device was prepared in substantially the same manner as in the backlight unit according to the first embodiment.
  • a composition in which an epoxy acrylate and TPO obtained from BASF Co., Ltd. (Germany) and TPO are mixed at a weight ratio of about 100: 0.8 is coated and cured to have a height of about 3 ⁇ m.
  • a second transparent film and a second barrier layer substantially the same as the first transparent film and the first barrier layer were prepared, and the second coating composition prepared in Example 7 was coated on the second barrier layer. This was cured to form a second light conversion layer having a thickness of about 50 ⁇ m.
  • a composition in which a urethane acrylate and TPO as an adhesive is mixed in a weight ratio of about 100: 0.8 between the first and second photoconversion layers.
  • the assembly was interposed and irradiated with light to form an adhesive layer between the first and second light conversion layers.
  • the thickness of the adhesive layer was about 3 ⁇ m.
  • the first optical layer having a light collecting pattern having a height of about 25 ⁇ m was formed on the surface of the first transparent film by coating and curing a composition in which epoxy acrylate and TPO were mixed at a weight ratio of about 100: 0.8. .
  • a composition in which urethane acrylate and TPO were mixed at a weight ratio of about 100: 0.8 was coated and cured to form a second optical layer having a light diffusion pattern formed on a surface thereof.
  • a benzotriazole UV absorber (trade name: Tinuvin-329, BASF, Germany) and a hindered amine light stabilizer (trade name: Tinuvin-770, BASF, Germany) based on 100 parts by weight of the methyl methacrylate polymer.
  • 0.5 parts by weight was mixed to prepare a composition for manufacturing a light guide plate.
  • the light guide plate manufacturing composition was injected into a mold to prepare a light guide plate having a thickness of about 200 ⁇ m.
  • the mold includes an embossed pattern forming a prism pattern having a shape substantially the same as the condensing pattern of the inverted prism sheet, and by using the mold, one surface of the light guide plate has a prism having a shape substantially the same as the condensing pattern of the inverse prism sheet. A pattern was formed.
  • the backlight unit according to the eleventh embodiment of the present invention was prepared by assembling the light emitting device prepared as above, the light guide plate, the reverse prism protective sheet, and the reverse prism sheet sequentially stacked.
  • the reverse prism sheet such that the optical layer of the anti-prism protective sheet faces the reverse prism sheet, the buffer pattern of the reverse prism protective sheet faces the light guide plate, and the first optical layer faces the optical layer of the reverse prism protective sheet.
  • the anti-prism protective sheet was disposed on the light guide plate.
  • the prism pattern of the light guide plate is disposed to face the anti-prism protection sheet, and the arrangement direction of the light emitting element and the extension direction of the condensing pattern of the reverse prism sheet correspond to each other, and the prism pattern of the light guide plate is the inverse prism sheet. It was arranged to intersect with the condensing pattern of.
  • the light emitting element and the light guide plate were prepared substantially the same as in the backlight unit according to the eleventh embodiment.
  • a second transparent film and a second barrier layer substantially the same as the first transparent film and the first barrier layer were prepared, and the second coating composition prepared in Example 7 was coated on the second barrier layer. This was cured to form a second light conversion layer having a thickness of about 50 ⁇ m.
  • a composition in which a urethane acrylate and TPO are mixed in an adhesive ratio of about 100: 0.8 by weight is interposed between the first and second layers. Assembly and irradiation with light to form an adhesive layer between the first and second light conversion layer.
  • the thickness of the adhesive layer was about 3 ⁇ m.
  • the first optical layer having a buffer pattern having a height of about 3 ⁇ m was formed on the surface of the first transparent film by coating and curing a composition in which epoxy acrylate and TPO were mixed at a weight ratio of about 100: 0.8. .
  • a composition in which urethane acrylate and TPO were mixed at a weight ratio of about 100: 0.8 was coated and cured to form a second optical layer having a light diffusion pattern formed on a surface thereof.
  • a composition in which an epoxy acrylate and TPO obtained from BASF Co., Ltd. (Germany) and TPO are mixed at a weight ratio of about 100: 0.8 is coated and then cured to have a height of about 25 ⁇ m.
  • a light emitting device prepared as described above, a light guide plate, a reverse prism protective sheet, and a reverse prism sheet sequentially stacked were assembled to prepare a backlight unit according to a twelfth embodiment of the present invention.
  • a first optical layer of the anti-prism protective sheet faces the light guide plate
  • a second optical layer of the anti-prism protective sheet faces the anti-prism sheet
  • an optical layer of the anti-prism sheet The reverse prism sheet and the reverse prism protective sheet were disposed on the light guide plate so as to face the second optical layer.
  • a backlight unit substantially the same as the backlight unit according to Example 1 was prepared as a backlight unit according to Comparative Example 1, except that the diffusion sheet described in Example 9 was used as the diffusion sheet and a light emitting device was prepared as follows. It was.
  • the light emitting device is a YAG phosphor (YAG Phosphor) purchased from Nichia (Japan) and Dow Corning (company name) on a blue light emitting chip having an emission peak at about 444 nm purchased from Nichia (Japan).
  • YAG Phosphor YAG Phosphor
  • A) and B kit of OE-6630 purchased from the United States was prepared by molding a mixture of a thermosetting silicone resin mixed in a 1: 4 ratio and then cured at 150 °C for 2 hours.
  • a back light unit substantially the same as the back light unit according to Example 9 was prepared as a back light unit according to Comparative Example 2, except that an optical sheet prepared as described below was used as the light conversion film.
  • red nano light-emitting body (trade name: Nanodot-HE-610, QD solution, Korea) and green nano light-emitting body (trade name: Nanodot-HE-530, QD solution, Korea) about 100 parts by weight of urethane acrylate
  • a coating composition was prepared by mixing with 0.8 parts by weight of a composition having a mixed TPO.
  • a second base substrate substantially identical to the first base substrate is disposed on the coating layer, and the coating layer is cured to thereby convert the light.
  • a film was prepared.
  • a backlight unit substantially the same as the backlight unit according to Example 1 was prepared as a backlight unit according to Comparative Example 3, except that a diffusion sheet prepared as described below was used as the diffusion sheet.
  • the coating composition prepared in Comparative Example 2 was coated on a PET film having a thickness of about 38 ⁇ m, and then a barrier layer and a transparent film were sequentially stacked, and then the coating layer was cured to form a light conversion layer.
  • the barrier layer and the transparent film were prepared to be substantially the same as the first transparent film and the first barrier layer prepared in Example 1.
  • a coating of a urethane acrylate and TPO obtained from BASF Co., Ltd. (Germany) and TPO in a weight ratio of about 100: 0.8 is coated, followed by curing.
  • the optical layer in which the diffusion pattern was formed was formed.
  • Each of the backlight units according to Examples 1 to 12 and Comparative Examples 1 to 3 of the present invention was assembled with a display panel of an iPhone 4 (trade name, Apple, USA) to prepare display devices 1 to 12 and comparison devices 1 to 3. .
  • Color gamut, luminance and color coordinates (red, green) using SR-3AR (product name, TOPCON, Japan) as a spectroradiometer for each of the display devices 1 to 12 and the comparison devices 1 to 3. , Blue) was measured.
  • the red, green, and blue color coordinates were obtained by recording the color coordinates indicated by the spectrophotometer after allowing the display panel of the iPhone 4 to display red, green, and blue, respectively.
  • Each of the luminance and the color coordinates means an average value of values measured at nine points in the display area in which the light guide plate, the diffusion sheet, and the first and second light collecting sheets are laminated, except for the portion where the light emitting element is disposed in the backlight unit. do.
  • the measured luminance and color coordinate results are shown in Table 1 below.
  • each of the red, green, and blue color coordinates is represented based on the CIE 1931 color coordinate system, and the gamut ratio is shown for each display device and the comparison device for the gamut range (hereinafter referred to as NTSC gamut range) based on the National Television Systems Committee (NTSC).
  • NTSC gamut range based on the National Television Systems Committee (NTSC).
  • the gamut ratio of the comparison apparatus 1 including the backlight unit according to Comparative Example 1 is about 51.3% of the NTSC gamut range, whereas the gamut ratio of the display devices 1 to 12 is about 73.6% of the NTSC gamut range. From about 87.8%, it can be seen that the display devices 1 to 12 have a significantly wider color reproduction area than the comparison device 1.
  • the gamut ratios of the comparison devices 2 and 3 including the backlight units according to Comparative Examples 2 and 3 are about 61% and 62.2%, respectively, and the display devices 1 to 12 have a significantly wider color than the comparison devices 2 and 3. It can be seen that it has a reproduction area. Since the comparison device 1 uses the backlight unit to which the nano light-emitting body is not applied, the comparison device 1 has the narrowest color reproduction region among the display devices 1 to 12 and the comparison devices 1 to 3.
  • each of the comparative apparatuses 2 and 3 although nanolumines are applied to the backlight unit, agglomeration between the nanolumines in the step of forming a coating layer including the nanolumines in the process of manufacturing the diffusion sheet.
  • the green color coordinates of the comparison devices 2 and 3 have a value smaller than the green x coordinate of the comparison device 1 and a value larger than the green y coordinate of the comparison device 1, but are significantly larger than the green x coordinates of the display devices 1 to 12.
  • the display devices 1 to 12 according to the present invention use a light-emitting composite or fluorescent particles containing a nano light-emitting body, the aggregation phenomenon hardly occurs and thus there is no problem of the wavelength shift.
  • the display devices 1 to 12 have a wider color reproduction area and higher luminance than the comparison devices 1 to 3, among the display devices 1 to 12, the green y coordinates of the display devices 3, 4, 6, 8, and 10 are displayed. It can be seen that the device 1, 2, 5, 7, 9, 11 and 12 has a small value compared to the green y coordinate. In addition, it can be seen that the green x coordinate of the display devices 3, 4, 6, 8, and 10 has a larger value than the green x coordinate of the display devices 1, 2, 5, 7, 9, 11, and 12.
  • the color purity of green represented by the display devices 1, 2, 5, 7, 9, 11, and 12 to which the green nano light-emitting body having a half width smaller than that of the green fluorescent particles is applied is displayed to the display devices 3, 4, 6, It turns out that it is good compared with the green color purity which 8 and 10 show.
  • a first barrier layer formed on the first transparent film was prepared in substantially the same manner as in the preparation of the diffusion sheet of Example 2, and the urethane acrylate, the red light emitting composite, the green light emitting composite and A coating layer was formed by coating a coating composition substantially the same as the coating composition prepared in the manufacturing process of the diffusion sheet of Example 1, in which the photoinitiator was mixed, to a thickness of about 100 ⁇ m.
  • the photoconversion layer was formed by hardening.
  • a flat sheet sheet 1 in which a first transparent film, a first barrier layer, a light conversion layer formed by curing the coating layer, a second barrier layer, and a second transparent film were sequentially stacked was manufactured.
  • the coating composition in which the urethane acrylate, the red light-emitting composite, the fluorescent composite, and the photoinitiator were mixed in the process for producing the diffusion sheet of Example 4 was mixed with the first barrier of the first transparent film and the first barrier layer described in Example 1. Coating on the layer to a thickness of about 100 ⁇ m to form a coating layer. Preparing a first transparent film and a second transparent film and a second barrier layer substantially the same as the first barrier layer to cover the coating layer on the coating layer in contact with the second barrier layer, by irradiating light to the coating layer The photoconversion layer was formed by hardening.
  • a flat sheet sheet 2 in which a first transparent film, a first barrier layer, a light conversion layer formed by curing the coating layer, a second barrier layer, and a second transparent film were sequentially stacked was manufactured.
  • the coating composition was prepared by mixing with a composition having a negatively mixed TPO.
  • the coating composition was coated on a first PET film having a thickness of about 38 ⁇ m, covered with a second PET film having a thickness of about 38 ⁇ m, and then cured to prepare Comparative Sheet 1 including a light conversion layer having a thickness of about 100 ⁇ m. Prepared.
  • the quantum efficiency immediately after the production of the flat sheet 1 is about 90.1%, and the quantum efficiency immediately after the production of the flat sheet 2 is about 75.7%, while the quantum efficiency immediately after the production of the comparative sheet 1 is about It can be seen that it is 60.8%.
  • the quantum efficiency after 30 days has elapsed under severe conditions of ultraviolet rays is about 86.2% for flat sheet 1, about 71.8% for flat sheet 2, and cannot be measured in the case of comparative sheet 1. That is, even under the harsh conditions of UV light, the quantum efficiency is only about 4.3% lower than the initial quantum efficiency when the initial quantum efficiency is 100%, and the flat sheet 2 is about 5.2% lower than the initial quantum efficiency.
  • the nano light-emitting body applied to Comparative Sheet 1 is damaged by ultraviolet rays and does not emit light.
  • Comparative Sheet 1 is not ready to measure the quantum efficiency at about 9 days, that is, the nano light-emitting body is damaged, whereas the flat sheet 1 or 2 according to the present invention even under severe conditions of ultraviolet light It can be seen that the degree of damage is minimal.
  • the quantum efficiency after 30 days under severe conditions with a temperature of 85 ° C. and a relative humidity of 85% is about 84.3% for flat sheet 1, about 64.9% for flat sheet 2, and for comparative sheet 1 It can be seen that it cannot be measured.
  • the flat sheet 1 has a quantum efficiency of about 90.1% to about 84.3% and a difference of about 5.8% even under the harsh conditions of 85 ° C. and 85% relative humidity. It is only about 6.4% lower than quantum efficiency.
  • the flat sheet 2 is reduced by about 14.2% compared to the initial quantum efficiency when the initial quantum efficiency is 100% under severe conditions of 85 ° C. and 85% relative humidity.
  • Comparative Sheet 1 it can be seen that the nano light-emitting body applied to Comparative Sheet 1 does not emit light under the influence of high temperature / high humidity.
  • Comparative sheet 1 is not already able to measure the quantum efficiency at the time of about 4 days, that is, the nano light-emitting body is damaged, whereas the flat sheet 1 or 2 according to the present invention under the harsh conditions of high temperature / high humidity It can also be seen that the degree of damage is minimal.
  • the heat / moisture stability of the flat sheet 1 or 2 which concerns on this invention can be said to be very high.
  • the luminescent composite applied to the optical sheet according to the present invention is not only very stable to light, heat or moisture by itself by including wax particles, but also the optical sheet includes a barrier layer. As a result, stability to light and heat / moisture can be improved. In addition, it can be seen that the light-emitting composite applied to the optical sheet according to the present invention is hardly damaged even when the sheet is manufactured by mixing and curing the composition for manufacturing a sheet such as urethane acrylate.
  • the light source is represented by "LS”
  • the display area in which the light guide plate, the diffusion sheet, and the first and second light collecting sheets are stacked is represented by "DS"
  • DS is a point adjacent to the light source LS in the display area DS.
  • 1, 2, 3 and 4 are light incidence parts
  • points 21, 22, 23 and 24 opposite to the light incidence part are light incidence parts.
  • points 1, 5, 9, 13, 17 and 21 each from the third edge connecting the first and second edges are spaced apart by “b / 8” and from the fourth edge facing the third edge.
  • Points 4, 8, 12, 16, 20 and 24 are each spaced apart by "b / 8".
  • Points 1, 2, 3, and 4 are each “a / 6” apart from points 5, 6, 7, and 8, and points 5, 6, 7, and 8 are each of points 9, 10, 11, and 12, and “ a / 6 "apart, points 9, 10, 11, and 12 are each spaced 13, 14, 15, and 16" a / 6 "apart, and points 13, 14, 15, and 16 are each spaced 17, Spaces "a / 6” with 18, 19 and 20 respectively, and points 17, 18, 19 and 20 are spaced "a / 6" with each of points 21, 22, 23 and 24 respectively.
  • points 1, 5, 9, 13, 17, and 21 are each spaced apart by "b / 4" from points 2, 6, 10, 14, 18, and 22, respectively, and points 2, 6, 10, 14, 18, and 22 are each “b / 4” apart from points 3, 7, 11, 15, 19, and 23, and each of points 3, 7, 11, 15, 19, and 23 is 4, 8, 12, 16, 20, respectively.
  • points 1, 5, 9, 13, 17, and 21 are each spaced apart by "b / 4" from points 2, 6, 10, 14, 18, and 22, respectively, and points 2, 6, 10, 14, 18, and 22 are each “b / 4” apart from points 3, 7, 11, 15, 19, and 23, and each of points 3, 7, 11, 15, 19, and 23 is 4, 8, 12, 16, 20, respectively.
  • points 1, 5, 9, 13, 17, and 21 are each spaced apart by "b / 4" from points 2, 6, 10, 14, 18, and 22, respectively, and points 2, 6, 10, 14, 18, and 22 are each “b / 4” apart from points 3, 7, 11, 15, 19, and 23, and each of points 3, 7, 11, 15, 19, and 23 is 4, 8, 12, 16, 20, respectively.
  • points 1, 5, 9, 13, 17, and 21 are each spaced apart by "b
  • Example 4 One 0.274,0.280 0.272,0.274 0.279,0.283 0.277,0.285 2 0.276,0.281 0.274,0.271 0.279,0.282 0.279,0.283 3 0.279,0.283 0.272,0.273 0.281,0.284 0.282,0.285 4 0.276,0.285 0.274,0.275 0.286,0.287 0.285,0.283 5 0.275,0.284 0.272,0.274 0.295,0.288 0.290,0.289 6 0.276,0.282 0.276,0.275 0.294,0.289 0.286,0.286 7 0.276,0.283 0.275,0.276 0.296,0.290 0.287,0.287 8 0.277,0.284 0.276,0.274 0.301,0.291 0.288,0.288 9 0.279,0.282 0.274,0.272 0.302,0.292 0.284,0.291 10 0.278,0.285 0.275,0.275 0.297,0.289 0.285,0.2
  • Example 6 Example 7
  • Example 8 One 0.275,0.273 0.274,0.282 0.273,0.277 0.275,0.283 2 0.275,0.272 0.278,0.281 0.275,0.280 0.277,0.284 3 0.273,0.272 0.283,0.284 0.278,0.282 0.279,0.286 4 0.273,0.274 0.284,0.285 0.277,0.283 0.282,0.283 5 0.273,0.273 0.291,0.290 0.276,0.284 0.285,0.285 6 0.275,0.275 0.287,0.288 0.275,0.283 0.286,0.287 7 0.274,0.275 0.287,0.287 0.277,0.283 0.285,0.286 8 0.277,0.275 0.287,0.288 0.277,0.285 0.288,0.287 9 0.276,0.273 0.285,0.292 0.279,0.284 0.285,0.290 10 0.275,0.275 0.284,0.283 0.277,0.285 0.286,0.284 11
  • Example 11 Example 12 One 0.275,0.269 0.287,0.277 0.274,0.269 0.273,0.273 2 0.276,0.273 0.284,0.280 0.274,0.268 0.275,0.271 3 0.273,0.273 0.285,0.282 0.275,0.268 0.272,0.272 4 0.275,0.275 0.287,0.285 0.277,0.269 0.273,0.275 5 0.274,0.275 0.291,0.287 0.276,0.271 0.275,0.275 6 0.276,0.275 0.293,0.288 0.277,0.273 0.274,0.275 7 0.277,0.273 0.296,0.291 0.276,0.275 0.276,0.275 8 0.276,0.274 0.301,0.292 0.277,0.276 0.277,0.276 9 0.275,0.273 0.300,0.291 0.279,0.274 0.276,0.273 10 0.274,0.275 0.298,0.288 0.276,0.275 0.274,0.275 11 0.
  • the light units closer to the light source that is, the color coordinates of points 1 to 4 are x-coordinates than the color coordinates of points 21 to 24, which are light units facing the light receiver.
  • ⁇ x is 0.018 and ⁇ y is 0.023 while both y coordinates have small values.
  • ⁇ x may be 0.017 or less, and ⁇ y may be 0.019 or less. That is, it can be seen that the color coordinate uniformity of the backlight unit according to Examples 1, 2, 4 to 9, 11, and 12 is better than that of the backlight unit according to Comparative Example 1.
  • the backlight unit according to Examples 1, 2, 4 to 9, 11, and 12 of the present invention reduces ⁇ x and ⁇ y as compared with Comparative Example 1, thereby improving color coordinate uniformity.
  • ⁇ x is 0.008 or less and ⁇ y is 0.009 or less in the backlight unit according to Embodiments 1, 2, 5, 7, 9, 11, and 12.
  • ⁇ y has a relatively small value.
  • the color coordinate uniformity of the backlight units according to Embodiments 1, 2, 5, 7, 9, 11, and 12 is good.
  • the backlight units according to Comparative Examples 2 and 3 have smaller ⁇ x and ⁇ y than the backlight units according to Comparative Example 1, but compared to Examples 1, 2, 4, 5, 7, 9, 11 and 12, respectively. Since x and ⁇ y have large values, it can be seen that the color coordinate uniformity of the backlight unit according to Examples 1, 2, 4, 5, 7, 9, 11 and 12 is better than that of the backlight units according to Comparative Examples 2 and 3. have. That is, the backlight unit according to Comparative Examples 2 and 3 to which the nano light-emitting body is applied has better color coordinate uniformity than the backlight unit according to Comparative Example 1, which is commonly used, but the examples 1, 2, 4, 5, 7, 9, 11 and It can be seen that it is worse than the color coordinate uniformity of the backlight unit according to 12.
  • the backlight unit according to the third embodiment of the present invention as described in Table 1, the color gamut ratio or brightness is better than the backlight units according to Comparative Examples 1 to 3, it can be seen that the color coordinate uniformity is relatively low.
  • the fluorescent particles can be more uniformly dispersed in the light conversion layer when the green phosphor is used as a fluorescent composite coated with wax particles, rather than using the green phosphor as it is. It can be inferred that the uniformity is better.
  • the diffusion sheet was separated from each of the backlight units according to Examples 1 to 8, the light conversion film was separated from each of Examples 9 and 10, and the anti-prism sheet was separated from the backlight unit according to Example 11.
  • the protective sheet was 480 under severe conditions of a temperature of 85 ° C. and a relative humidity of 85%. It was left for hours.
  • the results are shown in Tables 8, 9, 10, and 11.
  • Example 2 Example 3
  • Example 4 One 0.213,0.212 0.263,0.263 0.246,0.241 0.201,0.242 2 0.212,0.213 0.262,0.262 0.248,0.243 0.207,0.246 3 0.214,0.211 0.265,0.265 0.249,0.245 0.209,0.245 4 0.212,0.214 0.262,0.264 0.245,0.242 0.205,0.243 5 0.216,0.215 0.263,0.263 0.245,0.248 0.206,0.243 6 0.258,0.260 0.271,0.271 0.261,0.255 0.249,0.245 7 0.257,0.259 0.273,0.273 0.263,0.258 0.251,0.247 8 0.214,0.216 0.266,0.264 0.247,0.247 0.205,0.244 9 0.215,0.217 0.265,0.263 0.246,0.246 0.202,0.241 10 0.267,0.270 0.272,0.272 0.272,0.269 0.265,0.262 11 0.266,
  • Example 6 Example 7
  • Example 8 One 0.262,0.261 0.282,0.260 0.260,0.258 0.245,0.258 2 0.265,0.267 0.290,0.263 0.263,0.263 0.247,0.260 3 0.264,0.262 0.291,0.262 0.264,0.262 0.249,0.261 4 0.263,0.264 0.293,0.261 0.261,0.260 0.243,0.260 5 0.263,0.264 0.291,0.260 0.263,0.261 0.245,0.263 6 0.269,0.265 0.287,0.277 0.270,0.273 0.249,0.277 7 0.268,0.267 0.286,0.273 0.271,0.275 0.248,0.276 8 0.267,0.265 0.293,0.265 0.262,0.262 0.248,0.247 9 0.264,0.264 0.288,0.269 0.262,0.259 0.246,0.262 10 0.271,0.271 0.293,0.279 0.274,0.279 0.256,0.281 11
  • Example 11 Example 12 One 0.258,0.253 0.287,0.263 0.252,0.251 0.255,0.252 2 0.261,0.260 0.285,0.265 0.256,0.254 0.259,0.255 3 0.262,0.261 0.289,0.263 0.255,0.256 0.257,0.253 4 0.256,0.254 0.288,0.261 0.253,0.250 0.256,0.249 5 0.254,0.255 0.288,0.264 0.256,0.253 0.255,0.256 6 0.264,0.269 0.292,0.279 0.262,0.262 0.260,0.260 7 0.263,0.268 0.295,0.278 0.261,0.261 0.261,0.261 8 0.256,0.255 0.295,0.262 0.257,0.255 0.256,0.254 9 0.255,0.256 0.299,0.265 0.254,0.255 0.252,0.253 10 0.264,0.271 0.297,0.281 0.268,0.265 0.264,0.268 11 0.265,0.272
  • the difference in the initial / final color coordinates of the points 1 to 4 and the points 21 to 24 of the backlight units according to Comparative Examples 2 and 3 compared to the difference of the initial / final color coordinates of the backlight units according to Examples 1 to 12 It can be seen that very large, which can be inferred that the nano light-emitting body applied to the diffusion sheet is damaged by high temperature / high humidity. Since the backlight unit according to Comparative Example 1 is a conventional backlight unit to which no nano light emitter is applied, the diffusion sheet may be partially damaged by high temperature / high humidity, but the difference between the initial and final color coordinates is substantially the same as that of the backlight units according to Examples 1 to 12. It can be seen that the level is similar.
  • the diffusion sheet, the light conversion film, the inverted prism sheet and the protective sheet were left under high temperature / high humidity conditions, and then ⁇ x and ⁇ y of the backlight units according to Examples 1 to 12 and the backlight units according to Comparative Examples 1 to 3, respectively. It can be seen that also changes. In particular, it can be seen that ⁇ x and ⁇ y of the backlight units according to Comparative Examples 2 and 3 are significantly different from ⁇ x and ⁇ y of the backlight units according to Examples 2 to 12. That is, although the final color coordinates change because the backlight units according to Examples 2 to 12 are placed under high temperature / high humidity conditions, the uniformity of color coordinates is better than that of the backlight units according to Comparative Examples 2 and 3.
  • the backlight unit according to Example 1 exhibits ⁇ x and ⁇ y at levels similar to those of Comparative Examples 2 and 3 after being subjected to high temperature / humidity conditions, but the difference of the initial / final color coordinates at points 10, 11, 14 and 15 is shown in Comparative Example 2 And it can be seen that significantly lower than the backlight unit according to 3. That is, since the diffusion sheet applied to the backlight unit according to Example 1 covers the light conversion layer only with the second barrier layer without the second transparent film, the light emitting composite in the light conversion layer is compared with the backlight units according to Examples 2 to 12. Although relatively more damaged, it can be seen that the internal area of the display area DS is not significantly damaged.
  • the photoconversion layer is primarily damaged by ultraviolet rays, heat, moisture, etc. by using the photoconversion layer including the fluorescent particles and / or the light emitting complex including the phosphor or the fluorescent complex.
  • the fluorescent particles and / or the light emitting composite may be secondarily prevented from being damaged by ultraviolet rays, heat, moisture, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Led Device Packages (AREA)

Abstract

In an optical sheet and a backlight unit comprising same, the optical sheet comprises: a first transparent film; a first barrier layer; and an optical conversion layer, wherein the first barrier layer is formed on one surface of the first transparent film, the light conversion layer is formed on top of the first barrier layer, and wherein at least one of a wax particle, a light-emitting composite including a nano light-emitting body that is arranged inside the wax particle, and a fluorescent particle is dispersed.

Description

광학 시트 및 이를 포함하는 백라이트 유닛Optical sheet and backlight unit including same
본 발명은 광학 시트 및 이를 포함하는 백라이트 유닛에 관한 것으로, 구체적으로는 표시 장치용 광학 시트 및 이를 포함하는 백라이트 유닛에 관한 것이다.The present invention relates to an optical sheet and a backlight unit including the same, and more particularly, to an optical sheet for a display device and a backlight unit including the same.
양자점 등을 포함하는 나노발광체는, 수 내지 수십 나노미터 크기의 결정 구조를 가진 물질로, 수백에서 수천 개 정도의 원자로 구성된다. 동일한 재료로 형성된 나노발광체라도 그 크기가 작아질수록 밴드 갭(band gap)이 커지기 때문에, 나노발광체의 크기에 따라 발광 특성이 달라진다. 또한, 동일한 크기의 나노발광체라 하더라도 형성하는 재료에 따라 발광 특성이 달라진다. 이러한 나노발광체의 특성을 조절하여 각종 발광 소자 및 전자 장치에 다양하게 이용하고 있다.Nanoluminescent materials, including quantum dots, are materials with crystal structures ranging in size from tens to tens of nanometers, and are composed of hundreds to thousands of atoms. Even if a nano light-emitting body formed of the same material is smaller the size of the band gap (band gap), the light emission characteristics are different according to the size of the nano light-emitting body. In addition, even if the nano-luminescent body of the same size, the light emission characteristics vary depending on the material to be formed. The characteristics of the nano light-emitting body is controlled and used in various light emitting devices and electronic devices.
하지만 나노발광체는 자외선, 열, 수분 등에 매우 취약하므로, 나노발광체를 전자 장치 등에 적용시키면 전자 장치의 수명이 짧아지는 문제점이 있다. 특히, 나노발광체를 포함하는 필름이나 시트에서, 나노발광체를 자외선, 열, 수분 등으로부터 보호하고자 하는 다양한 방안들이 제시되고 있으나, 필름이나 시트 내로 수분이 침투하는 것을 원천적으로 차단하는데 한계가 있다.However, since the nano light-emitting body is very vulnerable to ultraviolet rays, heat, moisture, etc., when the nano light-emitting body is applied to an electronic device, there is a problem that the life of the electronic device is shortened. In particular, in a film or sheet including a nano light-emitting body, various methods for protecting the nano light-emitting body from ultraviolet rays, heat, moisture, and the like have been proposed, but there is a limit in blocking the ingress of moisture into the film or sheet.
한편, 표시 장치는 일반적으로 백색광을 방출하는 백색 광원을 이용한다. 백색광이 컬러필터를 통과함으로써, 상기 표시 장치를 관찰하는 사용자는 컬러 영상을 볼 수 있다. 상기 백색 광원은, 청색광을 방출하는 청색 LED 칩(light-emitting diode chip) 및 청색광을 이용하여 최종적으로 광원이 백색광을 방출하도록 하는 광전환체를 포함한다. 상기 광전환체로서 형광체인 YAG(Yttrium Aluminum Garnet)를 주로 이용하고 있다. 그러나, 상기 형광체는 적색광 파장대역과 녹색광 파장대역에 걸친 넓은 범위의 발광 스펙트럼을 갖기 때문에, 상기 형광체를 이용한 백색 광원이 생성하는 광이 컬러필터를 통과하여 나타내는 컬러의 색순도를 높이는데 한계가 있다. 또한, 상기 형광체가 적용된 백색 광원을 이용하는 표시 장치의 색재현성은 낮은 편이다.On the other hand, the display device generally uses a white light source that emits white light. As the white light passes through the color filter, a user who observes the display device may see a color image. The white light source includes a blue light emitting diode chip (LED) emitting blue light and a light converting body which finally emits white light by using blue light. YAG (Yttrium Aluminum Garnet), which is a phosphor, is mainly used as the light conversion body. However, since the phosphor has a broad emission spectrum covering the red light wavelength band and the green light wavelength band, there is a limit in increasing the color purity of the color of the light generated by the white light source using the phosphor passing through the color filter. In addition, the color reproducibility of the display device using the white light source to which the phosphor is applied is low.
표시 장치의 색재현성을 향상시키기 위해, 최근에 반치폭(full width at half maximum, FWHM)이 좁고 파워 밀도가 높은 발광 스펙트럼을 갖는 나노발광체를 표시 장치에 적용하기 위한 다양한 연구가 진행되고 있다.In order to improve color reproducibility of a display device, various studies have recently been conducted to apply a nano light-emitting body having a light emission spectrum having a narrow full width at half maximum (FWHM) and a high power density to a display device.
본 발명의 기술적 과제는 이러한 점에서 착안된 것으로서, 본 발명의 일 목적은 자외선, 열, 수분 등에 대한 안정성이 향상된 광학 시트를 제공하는 것이다.The technical problem of the present invention was conceived in this respect, and an object of the present invention is to provide an optical sheet having improved stability against ultraviolet rays, heat, moisture and the like.
본 발명의 다른 목적은 상기 광학 시트를 이용함으로써 표시 장치의 색재현성을 향상시키는 백라이트 유닛을 제공하는 것이다.Another object of the present invention is to provide a backlight unit for improving color reproducibility of a display device by using the optical sheet.
본 발명의 일 실시예에 따른 광학 시트는 제1 투명 필름, 제1 배리어층 및 광변환층을 포함한다. 상기 제1 배리어층은 상기 제1 투명 필름의 일 면에 형성된다. 상기 광변환층은 상기 제1 배리어층 상에 형성되고, 왁스 입자 및 상기 왁스 입자 내부에 배치된 나노발광체를 포함하는 발광 복합체 및 형광 입자 중 선택된 적어도 하나가 분산된다.An optical sheet according to an embodiment of the present invention includes a first transparent film, a first barrier layer, and a light conversion layer. The first barrier layer is formed on one surface of the first transparent film. The light conversion layer is formed on the first barrier layer, and at least one selected from a light emitting composite including a wax particle and a nano light emitting body disposed inside the wax particle and fluorescent particles is dispersed.
일 실시예에서, 상기 광학 시트는 상기 광변환층 상에 배치된 제2 배리어층을 더 포함할 수 있다.In one embodiment, the optical sheet may further include a second barrier layer disposed on the light conversion layer.
일 실시예에서, 상기 광학 시트는 상기 제2 배리어층 상에 배치된 제2 투명 필름을 더 포함할 수 있다.In one embodiment, the optical sheet may further include a second transparent film disposed on the second barrier layer.
일 실시예에서, 상기 광학 시트는 상기 제1 투명 필름의 일면 상에 형성되고 표면에 광확산 패턴 또는 버퍼 패턴이 형성된 광학층을 더 포함할 수 있다.In an embodiment, the optical sheet may further include an optical layer formed on one surface of the first transparent film and having a light diffusion pattern or a buffer pattern formed on the surface thereof.
일 실시예에서, 상기 광학 시트는 상기 제1 투명 필름의 일면 상에 형성되고 표면에 집광 패턴 또는 버퍼 패턴이 형성된 광학층을 더 포함할 수 있다.In an embodiment, the optical sheet may further include an optical layer formed on one surface of the first transparent film and having a light collecting pattern or a buffer pattern formed on the surface thereof.
일 실시예에서, 상기 발광 복합체는 상기 나노발광체가 적색 나노발광체인 적색 발광 복합체일 수 있다.In one embodiment, the light emitting composite may be a red light emitting composite in which the nano light emitting body is a red nano light emitting body.
일 실시예에서, 상기 나노발광체는 적색 나노발광체 및 녹색 나노발광체를 포함하고, 상기 발광 복합체는 상기 왁스 입자가 상기 적색 및 녹색 나노발광체들을 피복하는 다색 발광 복합체일 수 있다.In one embodiment, the nano light-emitting body includes a red nano light-emitting body and a green nano light-emitting body, the light emitting composite may be a multi-color light emitting composite in which the wax particles cover the red and green nano light emitting bodies.
일 실시예에서, 상기 왁스 입자는 제1 왁스 입자 및 제2 왁스 입자를 포함하고, 상기 나노발광체는 적어도 1개의 적색 나노발광체 및 적어도 1개의 녹색 나노발광체를 포함할 수 있다. 이때, 상기 발광 복합체는, 상기 제1 왁스 입자와 상기 제1 왁스 입자의 내부에 배치된 상기 적어도 1개의 적색 나노발광체를 포함하는 적색 발광 복합체와, 상기 제2 왁스 입자 및 상기 제2 왁스 입자의 내부에 배치된 상기 적어도 1개의 녹색 나노발광체를 포함하는 녹색 발광 복합체를 포함할 수 있다.In one embodiment, the wax particles may include first wax particles and second wax particles, and the nano light emitter may include at least one red nano light emitter and at least one green nano light emitter. In this case, the light emitting composite includes a red light emitting composite including the first wax particles and the at least one red nanoluminescent body disposed inside the first wax particles, and the second wax particles and the second wax particles. It may include a green light emitting composite including the at least one green nano light emitting body disposed therein.
일 실시예에서, 상기 형광 입자는 녹색 형광체를 포함할 수 있다.In one embodiment, the fluorescent particles may include a green phosphor.
일 실시예에서, 상기 형광 입자는 제3 왁스 입자와, 상기 제3 왁스 입자 내부에 배치된 적어도 1개의 녹색 형광체를 포함하는 녹색 형광 복합체를 포함할 수 있다.In one embodiment, the fluorescent particles may include a green fluorescent composite comprising a third wax particle and at least one green phosphor disposed inside the third wax particle.
일 실시예에서, 상기 왁스 입자는 제1 왁스 입자 및 제2 왁스 입자를 포함하고, 상기 나노발광체는 적어도 1개의 적색 나노발광체 및 적어도 1개의 녹색 나노발광체를 포함할 수 있다. 이때, 상기 발광 복합체는 상기 제1 왁스 입자와 상기 제1 왁스 입자의 내부에 배치된 상기 적색 나노발광체를 포함하는 적색 발광 복합체와, 상기 제2 왁스 입자와 상기 제2 왁스 입자 내부에 배치된 녹색 나노발광체를 포함하는 녹색 발광 복합체를 포함할 수 있다.In one embodiment, the wax particles may include first wax particles and second wax particles, and the nano light emitter may include at least one red nano light emitter and at least one green nano light emitter. In this case, the light emitting composite includes a red light emitting composite including the first nanoparticle and the red nanolight emitting body disposed inside the first wax particle, and the second wax particle and the green disposed inside the second wax particle. It may include a green light emitting composite including a nano light emitting body.
일 실시예에서, 상기 광변환층은 상기 제1 배리어층 상에 형성된 제1 광변환층과, 상기 제2 배리어층과 상기 제1 광변환층 사이에 배치된 제2 광변환층을 포함할 수 있다.The light conversion layer may include a first light conversion layer formed on the first barrier layer, and a second light conversion layer disposed between the second barrier layer and the first light conversion layer. have.
일 실시예에서, 상기 광변환층은 상기 제1 광변환층과 상기 제2 광변환층 사이에 개재되고, 상기 제1 광변환층 및 상기 제2 광변환층과 접착하는 접착층을 더 포함할 수 있다.In example embodiments, the light conversion layer may further include an adhesive layer interposed between the first light conversion layer and the second light conversion layer and adhering to the first light conversion layer and the second light conversion layer. have.
일 실시예에서, 상기 접착층은 흡습제를 포함할 수 있다.In one embodiment, the adhesive layer may include a moisture absorbent.
본 발명의 다른 실시예에 따른 백라이트 유닛은 발광 소자, 상기 발광 소자가 생성하는 광을 제공받는 도광판 및 상기 도광판 상에 배치된 광학 시트를 포함하고, 상기 광학 시트는 제1 투명 필름, 제1 배리어층 및 광변환층을 포함한다. 상기 제1 배리어층은 상기 제1 투명 필름의 일 면에 형성된다. 상기 광변환층은 상기 제1 배리어층 상에 형성되고, 왁스 입자 및 상기 왁스 입자 내부에 배치된 나노발광체를 포함하는 발광 복합체 및 형광 입자 중 선택된 적어도 하나가 분산된다.According to another embodiment of the present invention, a backlight unit includes a light emitting device, a light guide plate receiving light generated by the light emitting device, and an optical sheet disposed on the light guide plate, wherein the optical sheet includes a first transparent film and a first barrier. Layer and light conversion layer. The first barrier layer is formed on one surface of the first transparent film. The light conversion layer is formed on the first barrier layer, and at least one selected from a light emitting composite including a wax particle and a nano light emitting body disposed inside the wax particle and fluorescent particles is dispersed.
일 실시예에서, 상기 발광복합체는 상기 나노발광체가 적색 나노발광체인 적색 발광 복합체를 포함하고, 상기 발광 소자는 청색 발광칩 및 상기 청색 발광칩을 커버하는 광전환층을 포함하며, 상기 광전환층은 녹색 형광체 또는 녹색 형광 복합체를 포함할 수 있다.In one embodiment, the light emitting composite includes a red light emitting composite wherein the nano light emitting body is a red nano light emitting body, the light emitting device includes a blue light emitting chip and a light conversion layer covering the blue light emitting chip, the light conversion layer May comprise a green phosphor or a green phosphor complex.
일 실시예에서, 상기 광변환층은 상기 발광 복합체 및 상기 형광 입자를 모두 포함하고, 상기 발광 소자는 청색광을 방출하는 청색광 발광 소자를 포함할 수 있다. 이와 달리, 상기 발광 소자는 청색 발광칩 및 상기 청색 발광칩을 커버하는 광전환층을 포함하는 백색광 발광 소자일 수 있다.In one embodiment, the light conversion layer includes both the light emitting composite and the fluorescent particles, the light emitting device may include a blue light emitting device for emitting blue light. Alternatively, the light emitting device may be a white light emitting device including a blue light emitting chip and a light conversion layer covering the blue light emitting chip.
일 실시예에서, 상기 왁스 입자는 제1 왁스 입자 및 제2 왁스 입자를 포함하고, 상기 나노발광체는 상기 제1 왁스 입자 내에 배치된 적색 나노발광체 및 상기 제2 왁스 입자 내에 배치된 녹색 나노발광체를 포함하며, 상기 광변환층은 상기 제1 왁스 입자 및 상기 적색 나노발광체를 포함하는 적색 발광 복합체와, 상기 제2 왁스 입자 및 상기 녹색 나노발광체를 포함하는 녹색 발광 복합체가 분산될 수 있다. 이때, 상기 발광 소자는 청색광 발광 소자일 수 있다.In one embodiment, the wax particles include a first wax particle and a second wax particle, and the nano light emitter is a red nano light emitting body disposed in the first wax particles and a green nano light emitting body disposed in the second wax particles. The light conversion layer may include a red light emitting composite including the first wax particles and the red nano light emitting body, and a green light emitting composite including the second wax particles and the green nano light emitting body. In this case, the light emitting device may be a blue light emitting device.
본 발명의 광학 시트 및 이를 포함하는 백라이트 유닛에 따르면, 광학 시트가 외부 환경의 광, 수분 및/또는 열 등에 대한 안정성이 높은 발광 복합체나 형광 입자와 함께, 상기 발광 복합체나 형광 입자가 분산된 광변환층 자체를 보호하는 배리어층을 포함함으로써 광 안정성 및 수분/열 안정성을 현저하게 향상시킬 수 있다.According to the optical sheet and the backlight unit including the optical sheet of the present invention, the optical sheet is a light emitting composite or fluorescent particles dispersed with a light emitting composite or fluorescent particles having high stability against light, moisture and / or heat in an external environment, etc. By including a barrier layer protecting the conversion layer itself, it is possible to remarkably improve light stability and moisture / thermal stability.
또한, 상기 광학 시트를 이용함으로써 표시 장치의 색재현 영역을 증가시킬 수 있을 뿐만 아니라 표시 장치가 표시하는 컬러의 색순도 및 색재현성도 향상시킬 수 있다.In addition, by using the optical sheet, not only the color reproduction area of the display device may be increased, but also the color purity and color reproduction of the color displayed by the display device may be improved.
도 1은 본 발명의 일 실시예에 따른 백라이트 유닛을 설명하기 위한 단면도이다. 1 is a cross-sectional view for describing a backlight unit according to an exemplary embodiment of the present invention.
도 2는 도 1에 도시된 확산 시트의 단면도이다. FIG. 2 is a cross-sectional view of the diffusion sheet shown in FIG. 1.
도 3은 도 2의 제1 광학층 표면에 형성된 광확산 패턴의 일 예를 설명하기 위한 평면도이다. 3 is a plan view illustrating an example of a light diffusion pattern formed on a surface of the first optical layer of FIG. 2.
도 4a 내지 도 4c 및 도 5a 내지 도 5c는 도 2의 광변환층에 분산된 발광 복합체의 다양한 구조들을 설명하기 위한 단면도들이다. 4A to 4C and 5A to 5C are cross-sectional views illustrating various structures of the light emitting composite dispersed in the light conversion layer of FIG. 2.
도 6는 도 2의 제1 배리어층의 일 구조를 설명하기 위한 부분 확대 단면도이다.FIG. 6 is a partially enlarged cross-sectional view illustrating a structure of the first barrier layer of FIG. 2.
도 7은 본 발명의 다른 실시예에 따른 확산 시트의 단면도이다. 7 is a cross-sectional view of a diffusion sheet according to another embodiment of the present invention.
도 8은 도 7의 광변환층에 분산된 형광 복합체를 설명하기 위한 단면도이다.FIG. 8 is a cross-sectional view for describing a fluorescent composite dispersed in the light conversion layer of FIG. 7.
도 9는 본 발명의 또 다른 실시예에 따른 확산 시트를 설명하기 위한 단면도이다.9 is a cross-sectional view for describing a diffusion sheet according to another embodiment of the present invention.
도 10은 본 발명의 또 다른 실시예에 따른 확산 시트를 설명하기 위한 단면도이다.10 is a cross-sectional view for describing a diffusion sheet according to still another embodiment of the present invention.
도 11은 본 발명의 또 다른 실시예에 따른 확산 시트를 설명하기 위한 단면도이다.11 is a cross-sectional view for describing a diffusion sheet according to still another embodiment of the present invention.
도 12는 본 발명의 또 다른 실시예에 따른 백라이트 유닛을 설명하기 위한 단면도이다. 12 is a cross-sectional view for describing a backlight unit according to still another embodiment of the present invention.
도 13은 도 12의 광변환 시트를 설명하기 위한 단면도이다.FIG. 13 is a cross-sectional view for describing the light conversion sheet of FIG. 12.
도 14는 본 발명의 또 다른 실시예에 따른 백라이트 유닛을 설명하기 위한 단면도이다. 14 is a cross-sectional view for describing a backlight unit according to still another embodiment of the present invention.
도 15는 도 14의 제1 집광 시트를 설명하기 위한 단면도이다.FIG. 15 is a cross-sectional view for describing the first light collecting sheet of FIG. 14.
도 16은 본 발명의 또 다른 실시예에 따른 백라이트 유닛을 설명하기 위한 단면도이다. 16 is a cross-sectional view for describing a backlight unit according to yet another exemplary embodiment of the present invention.
도 17은 도 16의 집광 시트를 설명하기 위한 단면도이다.17 is a cross-sectional view for describing the light collecting sheet of FIG. 16.
도 18은 본 발명의 또 다른 실시예에 따른 백라이트 유닛을 설명하기 위한 단면도이다.18 is a cross-sectional view for describing a backlight unit according to yet another exemplary embodiment of the present invention.
도 19는 색좌표 균일도 평가 실험의 24개의 지점들을 설명하기 위한 도면이다.19 is a diagram for describing 24 points of color coordinate uniformity evaluation experiments.
이하, 첨부한 도면을 참조하여 본 발명의 실시예들에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태로 한정하려는 것은 아니며, 본 발명은 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대 또는 축소하여 도시한 것이다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific form disclosed, it is to be understood that the present invention includes all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In the accompanying drawings, the dimensions of the structures are shown to be enlarged or reduced than actual for clarity of the invention.
"제1, 제2" 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. Terms such as "first and second" may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로서 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present application, the terms "comprise", "comprise" or "have" are intended to indicate that there is a feature, step, operation, component, part, or combination thereof described on the specification, and one or the same. It is to be understood that the present invention does not exclude in advance the possibility of the presence or the addition of other features, steps, operations, components, parts or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
본 발명에 있어서, "왁스계 화합물"이라 함은 상온에서 고체 상태이고 상온보다 높은 녹는점(Melting point)을 가지는 유기 화합물을 의미하고, "왁스 입자"라 함은 왁스계 화합물의 재결정화로 인하여 형성되고 물리적으로 단일체를 구성하는 정형 또는 부정형의 입자를 의미한다. 여기서 "상온"은 약 15 ℃ 내지 약 25 ℃ 범위 내의 온도를 의미한다. 또한, 본 발명에 있어서, "발광(luminescence)"이라 함은 물질 중의 전자가 외부 자극에 의해 바닥상태에서 들뜬 상태로 천이된 후 들뜬 상태의 전자가 다시 안정한 바닥 상태로 떨어지면서 바닥 상태와 들뜬 상태 사이의 에너지 차이에 해당하는 광을 방출하는 현상을 의미한다.In the present invention, "wax-based compound" refers to an organic compound having a melting point (melting point) higher than room temperature in the solid state at room temperature, "wax particles" is formed by the recrystallization of the wax-based compound And shaped or amorphous particles that physically constitute a monolith. "Normal temperature" here means a temperature in the range of about 15 ° C to about 25 ° C. In addition, in the present invention, the term "luminescence" refers to a state in which the excited state falls off from the ground state to the excited state after the electrons in the material are transitioned from the ground state to the ground state by the external stimulus. Means a phenomenon of emitting light corresponding to the difference in energy between.
또한, 본 발명에서, "발광 복합체"는 나노발광체와 함께 왁스 입자를 포함하는 복합체를 의미한다. 그리고 "적색 발광 복합체"는 나노발광체로서 적색 나노발광체만 포함하는 발광 복합체를 의미하고, "녹색 발광 복합체"는 나노발광체로서 녹색 나노발광체만 포함하는 발광 복합체를 의미하며, "다색 발광 복합체"는 나노발광체로서 적색 나노발광체 및 녹색 나노발광체를 포함하는 발광 복합체를 의미한다.In addition, in the present invention, "luminescent complex" means a complex including wax particles together with a nanoluminescent body. And “red light emitting complex” means a light emitting complex including only a red nano light emitting body as a nano light emitting body, and “green light emitting complex” refers to a light emitting complex including only green nano light emitting material as a nano light emitting body, and “multicolor light emitting complex” refers to a nano light emitting material. It refers to a light emitting composite comprising a red nano light emitting material and a green nano light emitting material as a light emitting body.
본 발명에서, "형광 입자"는 형광체 그 자체뿐만 아니라, 형광체와 함께 왁스 입자를 포함하는 형광 복합체도 포함하는 개념으로 정의한다. 즉, "녹색 형광 입자"는 녹색 형광체 그 자체뿐만 아니라, 녹색 형광체와 함께 왁스 입자를 포함하는 녹색 형광 복합체도 포함하는 개념이다.In the present invention, "fluorescent particle" is defined as a concept including not only the phosphor itself, but also a fluorescent complex including wax particles together with the phosphor. That is, the "green fluorescent particle" is a concept that includes not only the green phosphor itself, but also a green fluorescent composite including wax particles together with the green phosphor.
이하에서, "적색 나노발광체"는 약 600 nm 내지 약 660 nm의 적색 파장대에서 발광 피크를 갖는 나노발광체를 총칭하고, "녹색 나노발광체"는 약 520 nm 내지 약 560 nm의 녹색 파장대에서 발광 피크를 갖는 나노발광체를 총칭하는 것이다. 또한, "녹색 형광체" 또한 약 520 nm 내지 약 560 nm의 녹색 파장대에서 발광 피크를 갖는 형광체를 총칭하는 것이다.Hereinafter, "red nanolumines" refers to nanolumines having emission peaks in the red wavelength range of about 600 nm to about 660 nm, and "green nanolumines" refers to emission peaks in the green wavelength range of about 520 nm to about 560 nm. It is a general term for the nano-luminescent body which has. "Green phosphor" is also generic to phosphors having emission peaks in the green wavelength band of about 520 nm to about 560 nm.
한편, 발광 스펙트럼에서의 피크 파장이 상기 적색 파장대에 속하는 광을 "적색광"이라고 하고, 상기 녹색 파장대에 속하는 광을 "녹색광"이라고 지칭하여 설명한다. 또한, 발광 스펙트럼에서의 피크 파장이 약 430 nm 내지 약 470 nm의 파장대에 속하는 광을 "청색광"이라고 지칭하여 설명한다.On the other hand, light whose peak wavelength in the emission spectrum belongs to the red wavelength band is referred to as "red light", and light belonging to the green wavelength band is referred to as "green light". In addition, the light whose peak wavelength in the emission spectrum belongs to a wavelength band of about 430 nm to about 470 nm is described as "blue light".
도 1은 본 발명의 일 실시예에 따른 백라이트 유닛을 설명하기 위한 단면도이다. 1 is a cross-sectional view for describing a backlight unit according to an exemplary embodiment of the present invention.
도 1을 참조하면, 백라이트 유닛(1000)은 발광 소자(1100), 도광판(1200), 반사판(1300), 확산 시트(1400), 제1 집광 시트(1500) 및 제2 집광 시트(1600)를 포함한다.Referring to FIG. 1, the backlight unit 1000 may include a light emitting device 1100, a light guide plate 1200, a reflecting plate 1300, a diffusion sheet 1400, a first light collecting sheet 1500, and a second light collecting sheet 1600. Include.
상기 발광 소자(1100)는 광을 생성하여 상기 도광판(1200) 방향으로 방출한다. The light emitting device 1100 generates light and emits the light toward the light guide plate 1200.
일 예로서, 상기 발광 소자(1100)는 백색광을 방출하는 백색 발광 소자일 수 있다. 상기 백색 발광 소자는 청색광을 생성하는 청색 발광칩과, 상기 청색 발광칩을 커버하는 광전환층을 포함할 수 있다. 상기 광전환층은 상기 청색 발광칩이 생성하는 청색광의 일부를 흡수한 후 이를 적색광 및 녹색광으로 변환시킴으로써 상기 백색 발광 소자는 최종적으로는 백색광을 방출한다. 상기 광전환층은 YAG(Yttrium aluminum garnet) 등을 포함하는 형광체를 포함할 수 있다. 이와 달리, 상기 광전환층은 양자점 등을 포함하는 나노발광체를 포함할 수 있다.As an example, the light emitting device 1100 may be a white light emitting device that emits white light. The white light emitting device may include a blue light emitting chip that generates blue light, and a light conversion layer covering the blue light emitting chip. The light conversion layer absorbs a part of the blue light generated by the blue light emitting chip and converts the light into red light and green light so that the white light emitting device finally emits white light. The light conversion layer may include a phosphor including a Yttrium aluminum garnet (YAG). Alternatively, the light conversion layer may include a nano light-emitting body including a quantum dot.
다른 예로서, 상기 발광 소자(1100)는 청색광을 방출하는 청색 발광 소자일 수 있다. 상기 청색 발광 소자는 청색광을 생성하는 청색 발광칩을 포함하고, 상기 청색 발광칩에서 생성된 청색광이 상기 발광 소자(1100) 외부로 방출됨으로써 상기 도광판(1200)에 청색광을 제공할 수 있다.As another example, the light emitting device 1100 may be a blue light emitting device emitting blue light. The blue light emitting device may include a blue light emitting chip that generates blue light, and blue light generated by the blue light emitting chip may be emitted to the outside of the light emitting device 1100 to provide blue light to the light guide plate 1200.
상기 발광 소자(1100)의 청색 발광칩은 청색광을 생성하는 발광 다이오드를 포함한다. 상기 발광 다이오드는 질화물계 화합물을 포함할 수 있다. 상기 질화물계 화합물은 인듐(In), 갈륨(Ga) 및 알루미늄(Al) 중에서 선택된 적어도 하나의 질화물을 포함할 수 있다. 예를 들어, 상기 질화물계 화합물은 "IniGajAlkN"로 나타낼 수 있고, 이때, 0≤i이고, 0≤j이고, 0≤k이며, i+j+k=1이다.The blue light emitting chip of the light emitting device 1100 includes a light emitting diode that generates blue light. The light emitting diode may include a nitride compound. The nitride compound may include at least one nitride selected from indium (In), gallium (Ga), and aluminum (Al). For example, the nitride compound may be represented by "In i Ga j Al k N", where 0≤i, 0≤j, 0≤k, and i + j + k = 1.
일례로, 상기 발광 다이오드는 각각이 상기 질화물계 화합물을 포함하는 n형 반도체층, 활성층 및 p형 반도체층의 적층 구조를 가질 수 있다. 이때, 상기 n형 반도체층은 n형 불순물이 도핑되고, p형 반도체층은 p형 불순물이 도핑되며, 활성층은 비도핑층일 수 있다. 구체적인 예로서, 상기 발광 다이오드는 n형 불순물이 도핑된 GaN/AlGaN의 이중층 구조의 n형 반도체층, InGaN으로 구성된 활성층 및 p형 불순물이 도핑된 GaN/AlGaN의 이중층 구조의 p형 반도체층이 순차적으로 적층된 구조를 가질 수 있다.For example, the light emitting diode may have a stacked structure of an n-type semiconductor layer, an active layer, and a p-type semiconductor layer, each of which includes the nitride compound. The n-type semiconductor layer may be doped with n-type impurities, the p-type semiconductor layer may be doped with p-type impurities, and the active layer may be an undoped layer. As a specific example, the light emitting diode is an n-type semiconductor layer having a GaN / AlGaN double layer structure doped with n-type impurities, an active layer composed of InGaN, and a p-type semiconductor layer having a double layer structure of GaN / AlGaN doped with p-type impurities. It may have a stacked structure.
상기 발광 다이오드가 생성하는 청색광의 발광 스펙트럼은 약 50 nm 이하의 반치폭(FWHM)을 가질 수 있다. 바람직하게는, 청색광의 발광 스펙트럼은 약 30 nm 이하의 반치폭을 가질 수 있다.The emission spectrum of the blue light generated by the light emitting diode may have a half width (FWHM) of about 50 nm or less. Preferably, the emission spectrum of the blue light may have a half width of about 30 nm or less.
또 다른 예로서, 상기 발광 소자(1100)는 상기 청색 발광칩과 상기 청색 발광칩의 상부를 커버하는 녹색 발광층을 포함할 수 있다. 상기 녹색 발광층은 상기 청색 발광칩으로부터 제공받은 청색광을 흡수하여 녹색광을 방출하는 녹색 입자, 녹색 염료 또는 안료 등를 포함한다. 상기 녹색 입자는 녹색 나노발광체, 녹색 발광 복합체, 녹색 형광체 및 녹색 형광 복합체 중 선택된 하나 이상을 포함할 수 있다. 상기 녹색 염료 또는 안료로는 통상적으로 알려진 화합물을 이용할 수 있다. 상기 녹색 나노발광체, 상기 녹색 형광체, 상기 녹색 발광 복합체 및 상기 녹색 형광 복합체 각각에 대해서는, 도 2 이하에서 설명할 확산 시트(1400)에 적용되는 것들과 실질적으로 동일하므로 도면을 참조하여 후술하기로 한다.As another example, the light emitting device 1100 may include the blue light emitting chip and a green light emitting layer covering an upper portion of the blue light emitting chip. The green light emitting layer includes green particles, green dyes, or pigments that absorb blue light provided from the blue light emitting chip to emit green light. The green particles may include at least one selected from a green nano light emitting body, a green light emitting composite, a green phosphor, and a green fluorescent composite. As the green dye or pigment, a conventionally known compound may be used. Each of the green nano light emitting body, the green phosphor, the green light emitting composite, and the green fluorescent composite is substantially the same as those applied to the diffusion sheet 1400 described below with reference to FIG. 2, and will be described below with reference to the accompanying drawings. .
상기 도광판(1200)은 상기 발광 소자(1100)에 인접하게 배치된다. 상기 발광 소자(1100)에서 생성된 광은 상기 도광판(1200)으로 입사되고, 상기 도광판(1200)에서 출사된 광은 확산 시트(1400)로 입사될 수 있다.The light guide plate 1200 is disposed adjacent to the light emitting device 1100. Light generated by the light emitting device 1100 may be incident to the light guide plate 1200, and light emitted from the light guide plate 1200 may be incident to the diffusion sheet 1400.
상기 반사판(1300)은 상기 도광판(1200) 하부에 배치된다. 상기 반사판(1300)은 상기 도광판(1200)의 하부로 누설되는 광을 상기 도광판(1200) 측으로 다시 반사시킴으로써 광의 이용 효율을 증가시킬 수 있다.The reflective plate 1300 is disposed under the light guide plate 1200. The reflective plate 1300 may increase light utilization efficiency by reflecting light leaking to the lower portion of the light guide plate 1200 back to the light guide plate 1200.
상기 확산 시트(1400)는 상기 도광판(1200)의 상부에 배치되고, 상기 도광판(1200)에서 출사된 광을 확산시킬 수 있다. 상기 확산 시트(1400)에 대해서는 도 2 이하를 참조하여 상세하게 후술하기로 한다.The diffusion sheet 1400 may be disposed on the light guide plate 1200 to diffuse light emitted from the light guide plate 1200. The diffusion sheet 1400 will be described later in detail with reference to FIG. 2.
상기 제1 집광 시트(1500)는 상기 확산 시트(1400) 상부에 배치되고, 상기 제1 집광 시트(1500)의 표면에는 복수의 돌출부들을 포함하는 제1 집광 패턴이 형성된다. 상기 제1 집광 패턴은 상기 제2 집광 시트(1600)와 마주한다. 상기 제2 집광 시트(1600)는 상기 제1 집광 시트(1500) 상부에 배치되며, 상기 제2 집광 시트(1600)의 표면에는 상기 제1 집광 시트(1500)에 형성된 돌출부와 실질적으로 동일한 형상을 갖는 복수의 돌출부들을 포함하는 제2 집광 패턴이 형성된다. 상기 제2 집광 패턴은 상기 백라이트 유닛(1000) 상에 배치되는 표시 패널과 마주한다. 상기 제1 집광 패턴의 돌출부의 길이 방향과 상기 제2 집광 패턴의 돌출부의 길이 방향은 교차될 수 있다. 이 경우 상기 돌출부들의 길이 방향이 교차되는 각도는 약 90°일 수 있다.The first light collecting sheet 1500 is disposed on the diffusion sheet 1400, and a first light collecting pattern including a plurality of protrusions is formed on a surface of the first light collecting sheet 1500. The first condensing pattern faces the second condensing sheet 1600. The second light collecting sheet 1600 is disposed on the first light collecting sheet 1500 and has a shape substantially the same as a protrusion formed on the first light collecting sheet 1500 on the surface of the second light collecting sheet 1600. A second condensing pattern including a plurality of protrusions having is formed. The second condensing pattern faces the display panel on the backlight unit 1000. The length direction of the protrusion of the first condensing pattern and the length direction of the protrusion of the second condensing pattern may cross each other. In this case, an angle at which the protrusions cross in the longitudinal direction may be about 90 °.
이하 도 2, 도 3, 도 4a 내지 도 4c 및 도 5a 내지 도 5c를 참조하여 도 1에서 설명한 상기 확산 시트(1400)에 대해 상세하게 설명한다. Hereinafter, the diffusion sheet 1400 described in FIG. 1 will be described in detail with reference to FIGS. 2, 3, 4A to 4C, and 5A to 5C.
도 2는 도 1에 도시된 확산 시트의 단면도이고, 도 3은 도 2의 제1 광학층 표면에 형성된 광확산 패턴의 일 예를 설명하기 위한 평면도이다.2 is a cross-sectional view of the diffusion sheet illustrated in FIG. 1, and FIG. 3 is a plan view illustrating an example of a light diffusion pattern formed on the surface of the first optical layer of FIG. 2.
도 2 및 도 3을 도 1과 함께 참조하면, 상기 확산 시트(1400)는 제1 투명 필름(1410), 제1 광학층(1420), 광변환층(1430), 제1 배리어층(1440) 및 제2 배리어층(1450)을 포함한다. 2 and 3 together with FIG. 1, the diffusion sheet 1400 may include a first transparent film 1410, a first optical layer 1420, a light conversion layer 1430, and a first barrier layer 1440. And a second barrier layer 1450.
상기 제1 투명 필름(1410)은 광을 투과시키는 상기 확산 시트(1400)의 베이스 기재이다. 상기 제1 투명 필름(1410)은 가시광 영역의 광에 대해 약 60% 이상의 투과도를 가질 수 있다. 예를 들어, 상기 제1 투명 필름(1410)은 가시광 영역의 광에 대해 약 90% 이상의 투과도를 가질 수 있다.The first transparent film 1410 is a base substrate of the diffusion sheet 1400 that transmits light. The first transparent film 1410 may have a transmittance of about 60% or more with respect to light in the visible light region. For example, the first transparent film 1410 may have a transmittance of about 90% or more with respect to light in the visible light region.
상기 제1 투명 필름(1410)은 유연성을 갖고, 유기 재료로 형성될 수 있다. 상기 제1 투명 필름(1410)을 형성하는 유기 재료의 예로서는, 폴리메틸메타크릴레이트 (polymethylmethacrylate, PMMA), 폴리에틸렌테레프탈레이트(polyethyleneterephthalate, PET), 폴리에테르설폰(polyethersulfone, PES), 폴리카보네이트(polycarbonate, PC), 폴리에틸렌나프탈레이트(polyethylenenaphthalate, PEN), 폴리이미드(polyimide, PI), 폴리아릴레이트(polyarylate), 사이클릭 올레핀 폴리머(cyclic olefin polymer, COP), 사이클릭 올레핀 코폴리머(cyclic olefic copolymer, COC), 폴리에틸렌(polyethylene, PE), 폴리프로필렌(polypropylene, PP), 메타크릴(methacrylic), 폴리우레탄(ployurethane) 등을 들 수 있다. 이와 달리, 상기 제1 투명 필름(1410)은 에폭시 수지로 형성될 수 있다.The first transparent film 1410 has flexibility and may be formed of an organic material. Examples of the organic material forming the first transparent film 1410 include polymethylmethacrylate (PMMA), polyethylene terephthalate (PET), polyethersulfone (PES), polycarbonate, PC), polyethylenenaphthalate (PEN), polyimide (PI), polyarylate, cyclic olefin polymer (COP), cyclic olefic copolymer (COC) ), Polyethylene (PE), polypropylene (PP), methacryl (methacrylic), polyurethane (ployurethane) and the like. Alternatively, the first transparent film 1410 may be formed of an epoxy resin.
상기 제1 광학층(1420)은 상기 제1 투명 필름(1410)의 제1 면 상에 위치하고, 표면에 형성된 광확산 패턴(1421)을 포함한다. The first optical layer 1420 is disposed on a first surface of the first transparent film 1410 and includes a light diffusion pattern 1421 formed on a surface of the first optical layer 1420.
일 예로, 상기 광확산 패턴(1421)은 복수의 볼록부들이 연속적으로 이어진 형태의 연속 패턴일 수 있다. 상기 볼록부들 각각은 상기 확산 시트(1400)의 외부를 향하는 방향으로 돌출된다. 상기 볼록부들의 높이 또는 폭은 서로 상이할 수 있으며, 불규칙한 값을 가질 수 있다. 예를 들어, 상기 볼록부의 돌출 높이는 약 1 ㎛ 내지 약 20 ㎛일 수 있고, 상기 볼록부의 직경은 약 1 ㎛ 내지 40 ㎛일 수 있다. 여기서 상기 볼록부의 직경이란 평면 투영 형상의 테두리 상의 두 지점 사이의 거리들 중 최대값으로 정의된다. 상기 볼록부들의 높이 또는 직경은 서로 상이할 수 있으며, 상기의 범위 내에서 불규칙한 값을 가질 수 있다. 이때, 상기 볼록부는 평면 투영시 원형을 가질 수 있다. 이와 달리, 상기 볼록부는 평면 투영시 타원형 또는 다각형 등 다양한 형상을 가질 수 있고 각각의 볼록부들의 형상, 돌출 높이, 직경은 서로 다를 수 있다.For example, the light diffusion pattern 1421 may be a continuous pattern in which a plurality of convex portions are continuously connected. Each of the convex portions protrudes in a direction toward the outside of the diffusion sheet 1400. The heights or widths of the convex portions may be different from each other, and may have irregular values. For example, the protrusion height of the convex portion may be about 1 μm to about 20 μm, and the diameter of the convex portion may be about 1 μm to 40 μm. Here, the diameter of the convex portion is defined as the maximum value of the distances between two points on the edge of the planar projection shape. The height or diameter of the convex portions may be different from each other, and may have an irregular value within the above range. In this case, the convex portion may have a circular shape in planar projection. In contrast, the convex portions may have various shapes such as ellipses or polygons in planar projection, and the convex portions may have different shapes, protruding heights, and diameters.
구체 예로서, 상기 광확산 패턴(1421)은 평면에서 볼 때, 복수의 분할 영역들(1421a, 도 3 참조)을 포함할 수 있다. 상기 광확산 패턴(1421)을 평면 투영하는 경우 상기 분할 영역들(1421a)은 부정형을 가지면서 불규칙하게 배열될 수 있고, 상기 광확산 패턴(1421)은 상기 분할 영역들(1421a) 각각에 대응하여 형성된 볼록부를 포함할 수 있다.As a specific example, the light diffusion pattern 1421 may include a plurality of divided regions 1421a (see FIG. 3) in plan view. In the case of planar projection of the light diffusion pattern 1421, the divided regions 1421a may be irregularly arranged in an irregular shape, and the light diffusion pattern 1421 may correspond to each of the divided regions 1421a. It may include a convex portion formed.
다른 예로서, 상기 광확산 패턴(1421)은 복수의 오목부들이 연속으로 이어진 형태를 갖는 연속 패턴일 수 있다. 상기 오목부들 각각은 상기 확산 시트(1400)의 표면으로부터 상기 확산 시트(1400)의 내부, 상기 제1 투명 필름(1410)을 향하는 방향으로 함입된다. 상기 오목부들의 깊이 또는 폭은 필요에 따라 적절히 조절될 수 있고 오목부들 각각의 깊이 또는 폭은 불규칙한 값을 가질 수 있다. 이와 달리, 상기 광확산 패턴(1421)은 오목부와 볼록부가 연속적으로 조합된 형태를 가질 수도 있고, 엠보싱 패턴일 수도 있다.As another example, the light diffusion pattern 1421 may be a continuous pattern having a shape in which a plurality of recesses are continuously connected. Each of the recesses is recessed in a direction from the surface of the diffusion sheet 1400 toward the inside of the diffusion sheet 1400 and the first transparent film 1410. The depth or width of the recesses may be appropriately adjusted as needed and the depth or width of each of the recesses may have an irregular value. On the contrary, the light diffusion pattern 1421 may have a form in which concave portions and convex portions are continuously combined, or may be embossed patterns.
또 다른 예로서, 상기 광확산 패턴(1421)은 불연속 패턴일 수 있다. 상기 불연속 패턴에서는 볼록부들이 서로 이격되어 배치된 형태를 가지거나, 오목부들이 서로 이격되어 배치된 형태를 가질 수 있다. 상기 불연속 패턴을 구성하는 볼록부나 오목부는 평면에서 볼 때, 도트 형상을 가질 수 있다. 상기 각각의 볼록부나 오목부의 높이나 깊이, 폭은 서로 상이한 불규칙적인 값을 가질 수 있다.As another example, the light diffusion pattern 1421 may be a discontinuous pattern. In the discontinuous pattern, the convex portions may have a form in which they are spaced apart from each other, or the concave portions may have a form in which they are spaced apart from each other. The convex portion or the concave portion constituting the discontinuous pattern may have a dot shape when viewed in a plan view. The height, depth, and width of each of the convex portions or the concave portions may have different irregular values.
상기 광변환층(1430)은 상기 제1 광학층(1420)이 형성된 제1 면에 대향하는 제1 투명 필름(1410)의 제2 면 상부에 배치된다. 상기 광변환층(1430)은 투광성 수지(1431) 및 상기 투광성 수지(1431) 내부에 분산된 발광 복합체(1432)를 포함한다.The light conversion layer 1430 is disposed on the second surface of the first transparent film 1410 opposite to the first surface on which the first optical layer 1420 is formed. The light conversion layer 1430 includes a light transmissive resin 1431 and a light emitting composite 1432 dispersed in the light transmissive resin 1431.
상기 투광성 수지(1431)는 광을 투과시키는 투명한 물질로서, 광 및/또는 열에 의해 경화되어 상기 발광 복합체(1432)를 분산시키는 기재가 된다. 예를 들어, 상기 투광성 수지(1431)는 아크릴계 수지, 실리콘계 수지, 에폭시계 수지, 우레탄계 수지 등을 포함할 수 있다.The translucent resin 1431 is a transparent material that transmits light and is cured by light and / or heat to become a substrate for dispersing the light emitting composite 1432. For example, the translucent resin 1431 may include an acrylic resin, a silicone resin, an epoxy resin, a urethane resin, or the like.
상기 발광 복합체(1432)는 상기 투광성 수지(1431) 내부에 분산된다. 상기 발광 복합체(1432)에 대해서는 도 4a 내지 도 4c 및 도 5a 내지 도 5c를 참조하여 구체적으로 설명한다.The light emitting composite 1432 is dispersed in the light transmissive resin 1431. The light emitting composite 1432 will be described in detail with reference to FIGS. 4A to 4C and 5A to 5C.
도 4a 내지 도 4c 및 도 5a 내지 도 5c는 도 2의 광변환층에 분산된 발광 복합체의 다양한 구조들을 설명하기 위한 단면도들이다.4A to 4C and 5A to 5C are cross-sectional views illustrating various structures of the light emitting composite dispersed in the light conversion layer of FIG. 2.
도 4a를 참조하면, 상기 광변환층(1430)에 분산되는 발광 복합체(1432)는, 왁스 입자(110) 및 상기 왁스 입자(110) 내부에 배치된 적어도 1개의 나노발광체(120)를 포함하는 구조를 갖는 발광 복합체(100a)일 수 있다. Referring to FIG. 4A, the light emitting composite 1432 distributed in the light conversion layer 1430 includes wax particles 110 and at least one nano light emitting body 120 disposed inside the wax particles 110. It may be a light emitting composite 100a having a structure.
상기 왁스 입자(110)는 왁스계 화합물로 이루어진다. 상기 왁스 입자(110)는 상기 나노발광체(120)를 캡슐화(encapsulation)하여, 상기 나노발광체(120)가 외부 환경에 의한 수분, 열, 광 등에 의하여 손상되는 것을 방지할 수 있다. 또한, 상기 나노발광체(120)가 상기 왁스 입자(110)의 내부에 위치됨에 따라 상기 왁스 입자(110)는 상기 나노발광체(120)를 투광성 수지(1431)에 안정적으로 분산시킬 수 있다. 본 발명에 있어서, "캡슐화"라 함은 상기 나노발광체(120)가 상기 왁스 입자(110)의 내부에 배치되고, 상기 왁스 입자(110)에 의해서 상기 나노발광체(120)가 감싸지는 것을 의미한다. 이때, 상기 나노발광체(120)와 상기 왁스 입자(110) 사이에는 반데르발스 힘(Van der Waals force)이 작용할 수 있다. The wax particles 110 are made of a wax-based compound. The wax particles 110 may encapsulate the nano light emitting body 120 to prevent the nano light emitting body 120 from being damaged by moisture, heat, or light caused by an external environment. In addition, as the nano light emitting body 120 is positioned inside the wax particle 110, the wax particles 110 may stably disperse the nano light emitting body 120 in the light transmitting resin 1431. In the present invention, "encapsulation" means that the nano light-emitting body 120 is disposed inside the wax particle 110, and the nano light-emitting body 120 is wrapped by the wax particle 110. . In this case, a van der Waals force may act between the nano light emitting body 120 and the wax particle 110.
상기 왁스 입자(110)를 구성하는 상기 왁스계 화합물로는 폴리머, 코폴리머 또는 올리고머 형태의 합성 왁스(synthetic wax)가 사용될 수 있다. 예를 들면, 상기 왁스계 화합물로는 폴리에틸렌계 왁스(polyethylene-based wax), 폴리프로필렌계 왁스(polypropylene-based wax) 또는 아마이드계 왁스(amide-based wax)가 사용될 수 있다. The wax-based compound constituting the wax particles 110 may be a synthetic wax in the form of a polymer, a copolymer, or an oligomer. For example, the wax-based compound may be polyethylene-based wax, polypropylene-based wax, or amide-based wax.
하나의 실시예로서, 상기 왁스계 화합물이 폴리에틸렌계 왁스 또는 폴리프로필렌계 왁스인 경우, 상기 왁스계 화합물은 하기 화학식 1 내지 화학식 7로 나타내는 단위체 중 적어도 1종을 포함할 수 있다. As one embodiment, when the wax compound is a polyethylene wax or a polypropylene wax, the wax compound may include at least one of units represented by the following Chemical Formulas 1 to 7.
[화학식 1] [Formula 1]
Figure PCTKR2013010093-appb-I000001
Figure PCTKR2013010093-appb-I000001
[화학식 2][Formula 2]
Figure PCTKR2013010093-appb-I000002
Figure PCTKR2013010093-appb-I000002
[화학식 3][Formula 3]
Figure PCTKR2013010093-appb-I000003
Figure PCTKR2013010093-appb-I000003
[화학식 4][Formula 4]
Figure PCTKR2013010093-appb-I000004
Figure PCTKR2013010093-appb-I000004
[화학식 5][Formula 5]
Figure PCTKR2013010093-appb-I000005
Figure PCTKR2013010093-appb-I000005
[화학식 6][Formula 6]
Figure PCTKR2013010093-appb-I000006
Figure PCTKR2013010093-appb-I000006
[화학식 7][Formula 7]
Figure PCTKR2013010093-appb-I000007
Figure PCTKR2013010093-appb-I000007
상기 화학식 1 내지 7에 있어서, R1, R3, R5 및 R7은 각각 독립적으로 단일 결합 또는 탄소수 1 내지 10의 알킬렌기(*-(CH2)x-*, x는 1 내지 10의 정수)일 수 있고, R2, R4, R6 및 R8은 각각 독립적으로 수소 또는 탄소수 1 내지 10의 알킬기일 수 있으며, Ra, Rb, Rc, Rd, Re, Rf 및 Rg는 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기일 수 있다. In Formulas 1 to 7, R 1 , R 3 , R 5 and R 7 are each independently a single bond or an alkylene group having 1 to 10 carbon atoms (*-(CH 2) x- *, x is an integer of 1 to 10 R 2 , R 4 , R 6 and R 8 may be each independently hydrogen or an alkyl group having 1 to 10 carbon atoms, and R a , R b , R c , R d , R e , R f and R g may be each independently hydrogen or an alkyl group having 1 to 3 carbon atoms.
구체예로서, 상기 화학식 1의 R2가 수소인 경우, 상기 화학식 1의 단위체는 카르복시기를 포함할 수 있고, 이와 달리, 상기 화학식 1의 R2가 탄소수 1 내지 10의 알킬기인 경우, 상기 화학식 1의 단위체는 에스테르기를 포함할 수 있다. 그리고 상기 화학식 2의 R4가 수소인 경우, 상기 화학식 2의 단위체는 알데히드기를 포함할 수 있고, 이와 달리, 상기 화학식 2의 R4가 탄소수 1 내지 10의 알킬기인 경우, 상기 화학식 2의 단위체는 케톤기를 포함할 수 있다. 또한, 상기 화학식 3의 R6이 수소인 경우, 상기 화학식 3의 단위체는 히드록시기를 포함할 수 있고, 이와 달리, 상기 화학식 3의 R6이 탄소수 1 내지 10의 알킬기인 경우, 상기 화학식 3의 단위체는 에테르기를 포함할 수 있다.In an embodiment, when R 2 in Formula 1 is hydrogen, the unit of Formula 1 may include a carboxyl group. Alternatively, when R 2 in Formula 1 is an alkyl group having 1 to 10 carbon atoms, Formula 1 The unit of may include an ester group. In addition, when R 4 of Formula 2 is hydrogen, the unit of Formula 2 may include an aldehyde group. Alternatively, when R 4 of Formula 2 is an alkyl group having 1 to 10 carbon atoms, the unit of Formula 2 is It may include a ketone group. In addition, when R 6 of Formula 3 is hydrogen, the monomer of Formula 3 may include a hydroxy group, otherwise, when R 6 of Formula 3 is an alkyl group having 1 to 10 carbon atoms, the unit of Formula 3 May include an ether group.
상기 화학식 1 내지 7의 Ra, Rb, Rc, Rd, Re, Rf 및 Rg가 모두 수소인 경우, 상기 왁스계 화합물은 폴리에틸렌계 왁스일 수 있다. 일례로, 상기 폴리에틸렌계 왁스는 상기 화학식 7의 Rg가 수소인 단위체만을 포함하는 폴리에틸렌 왁스(polyethylene wax, PE 왁스)일 수 있다. 이와 달리, 상기 폴리에틸렌계 왁스는, 상기 화학식 7의 Rg가 수소인 단위체뿐만 아니라, 상기 화학식 1 내지 6의 Ra, Rb, Rc, Rd, Re 및 Rf가 수소인 산소 함유 단위체들 중에서 적어도 1종을 더 포함하는 폴리에틸렌 왁스일 수 있다. 적어도 1종의 산소 함유 단위체를 포함하는 폴리에틸렌계 왁스의 예로는, 폴리에틸렌의 산화물인 산화 폴리에틸렌 왁스(oxidized polyethylene wax, 산화 PE 왁스), 에틸렌-아크릴산 코폴리머(ethylene-acrylic acid copolymer), 에틸렌-비닐 아세테이트 코폴리머(ethylene-vinyl acetate copolymer), 에틸렌-무수말레산 코폴리머(ethylene-maleic anhydride copolymer) 등이 있다.When R a , R b , R c , R d , R e , R f and R g of Formulas 1 to 7 are all hydrogen, the wax-based compound may be a polyethylene wax. For example, the polyethylene wax may be a polyethylene wax (PE wax) including only a unit in which R g of Formula 7 is hydrogen. On the contrary, the polyethylene wax contains oxygen in which R a , R b , R c , R d , R e and R f in Formulas 1 to 6 are hydrogen as well as units in which R g in Formula 7 is hydrogen. It may be a polyethylene wax further comprising at least one of the units. Examples of the polyethylene wax including at least one oxygen-containing unit include oxidized polyethylene wax (PE wax), an ethylene-acrylic acid copolymer, and ethylene-vinyl, which are oxides of polyethylene. Ethylene-vinyl acetate copolymer, ethylene-maleic anhydride copolymer, and the like.
또한, 상기 화학식 1 내지 7의 Ra, Rb, Rc, Rd, Re, Rf 및 Rg가 각각 독립적으로 탄소수 1을 갖는 메틸기인 경우, 상기 왁스계 화합물은 폴리프로필렌계 왁스일 수 있다. 일례로, 폴리프로필렌계 왁스는 상기 화학식 7의 Rg가 메틸기인 단위체만을 포함하는 폴리프로필렌 왁스(polypropylene wax, PP 왁스)일 수 있다. 이와 달리, 상기 폴리프로필렌계 왁스는 상기 화학식 2의 Rg가 메틸기인 단위체뿐만 아니라, 상기 화학식 1 내지 6의 Ra, Rb, Rc, Rd, Re 및 Rf가 수소인 산소 함유 단위체들 중 적어도 1종을 더 포함하는 폴리프로필렌 왁스일 수 있다. 산소 함유 단위체를 포함하는 폴리프로필렌계 왁스의 예로서는, 프로필렌-무수말레산 코폴리머 등이 있다.In addition, when R a , R b , R c , R d , R e , R f and R g of Formulas 1 to 7 are each independently a methyl group having 1 carbon atom, the wax-based compound may be a polypropylene wax. Can be. For example, the polypropylene wax may be a polypropylene wax (PP wax) including only a unit in which R g of Formula 7 is a methyl group. On the contrary, the polypropylene wax contains oxygen in which R a , R b , R c , R d , R e and R f of Formulas 1 to 6 are hydrogen as well as units in which R g of Formula 2 is a methyl group. It may be a polypropylene wax further comprising at least one of the units. Examples of polypropylene waxes containing oxygen-containing units include propylene-maleic anhydride copolymers and the like.
다른 하나의 실시예로서, 상기 왁스계 화합물이 아마이드계 왁스인 경우, 상기 왁스계 화합물은 주쇄가 아미드 결합(amide bond, -CONH-)을 포함하는 폴리머, 코폴리머 또는 올리고머일 수 있다. 상기 아마이드계 왁스는 탄소수 1 내지 10의 단위체를 포함할 수 있다. 상기 아마이드계 왁스는 상기 화학식 1 내지 6으로 나타내는 산소 함유 단위체 중 1종 이상을 더 포함할 수 있다.In another embodiment, when the wax-based compound is an amide wax, the wax-based compound may be a polymer, copolymer or oligomer whose main chain includes an amide bond (-CONH-). The amide wax may include a unit having 1 to 10 carbon atoms. The amide wax may further include one or more of oxygen-containing units represented by Chemical Formulas 1 to 6.
상기 왁스계 화합물이 상기 화학식 1 내지 6의 단위체들 중 적어도 1종의 산소 함유 단위체를 포함하는 경우, 상기 화학식 7의 단위체만을 포함하는 경우에 비해서 상기 왁스 입자(110)는 상기 나노발광체(120)를 더욱 안정적으로 캡슐화 할 수 있다. 이는 상기 왁스계 화합물이 산소 함유 단위체를 포함하는 경우, 상기 산소 함유 단위체에 포함된 산소의 극성(polarity)에 의해 상기 왁스 입자(110)와 상기 나노발광체(120)를 구성하는 금속 사이의 상호 작용(interaction)이 강해지기 때문이다. When the wax-based compound includes at least one oxygen-containing unit of the units of Chemical Formulas 1 to 6, the wax particles 110 may form the nano-luminescent body 120 as compared with the case of including only the unit of Chemical Formula 7. Can be encapsulated more stably. This is because when the wax-based compound includes an oxygen-containing unit, the interaction between the wax particles 110 and the metal constituting the nano-luminescent body 120 by the polarity of oxygen contained in the oxygen-containing unit. This is because the interaction becomes stronger.
상기 왁스계 화합물이 상기 산소 함유 단위체 중에서도, 상기 화학식 1로 나타내는 단위체, 특히 카르복시기를 포함하는 경우, 상기 왁스 입자(110)와 상기 나노발광체(120) 사이의 상호 작용이 더욱 강해지므로 상기 왁스 입자(110)가 상기 나노발광체(120)를 캡슐화 하는데 더욱 유리하다. 따라서 본 발명의 하나의 실시예에 있어서, 상기 왁스 입자(110)는 치환기로서 적어도 카르복시기를 포함하는 왁스계 화합물로 이루어지는 것이 바람직하다.In the case where the wax-based compound includes the unit represented by Chemical Formula 1, particularly a carboxyl group, the interaction between the wax particle 110 and the nano light-emitting body 120 may be stronger, so that the wax particle ( 110 is more advantageous for encapsulating the nanoluminescent body 120. Therefore, in one embodiment of the present invention, the wax particles 110 is preferably made of a wax-based compound containing at least a carboxy group as a substituent.
상기 왁스 입자(110)를 구성하는 왁스계 화합물은 약 1 mg KOH/g 내지 약 200 mg KOH/g의 산가(acid value)를 가질 수 있다. 본 발명에 있어서, 상기 왁스계 화합물의 "산가(acid value)"는 상기 왁스계 화합물 1g을 중화하는데 필요한 수산화칼륨(KOH)의 mg 수를 말한다. 상기 왁스계 화합물의 산가가 클수록 상기 왁스계 화합물에 포함된 카르복시기의 양이 많을 수 있다. 상기 왁스계 화합물의 산가가 약 1 mg KOH/g 미만인 경우에는 상기 나노발광체(120)와 상호 작용을 하는 카르복시기의 양이 매우 미미하여 상기 나노발광체(120)를 안정적으로 캡슐화 할 수 없는 문제점이 발생할 수 있다. 또한, 상기 왁스계 화합물의 산가가 약 200 mg KOH/g을 초과하는 경우, 카르복시기에 의해서 오히려 상기 나노발광체(120)의 표면이 산화되는 문제점이 발생할 수 있다. 구체예로서, 상기 나노발광체(120)를 안정적으로 캡슐화하기 위하여, 상기 왁스 입자(110)를 구성하는 왁스계 화합물은 약 5 mg KOH/g 내지 약 50 mg KOH/g의 산가를 가질 수 있다.The wax-based compound constituting the wax particles 110 may have an acid value of about 1 mg KOH / g to about 200 mg KOH / g. In the present invention, the "acid value" of the wax-based compound refers to the number of mg of potassium hydroxide (KOH) required to neutralize 1 g of the wax-based compound. The greater the acid value of the wax-based compound may be a greater amount of carboxyl groups contained in the wax-based compound. When the acid value of the wax-based compound is less than about 1 mg KOH / g, the amount of carboxyl groups interacting with the nano-luminescent body 120 is very small, which may cause a problem that the nano-luminescent body 120 cannot be encapsulated stably. have. In addition, when the acid value of the wax-based compound exceeds about 200 mg KOH / g, there may be a problem that the surface of the nano light-emitting body 120 is oxidized by the carboxy group. In an embodiment, the wax-based compound constituting the wax particles 110 may have an acid value of about 5 mg KOH / g to about 50 mg KOH / g in order to stably encapsulate the nano light-emitting body 120.
상기 왁스 입자(110)는 약 0.95 g/cm3 이상의 고밀도를 가진 왁스계 화합물로 이루어질 수 있다. 약 0.95 g/cm3 이상의 고밀도를 갖는 고밀도 왁스계 화합물은 약 0.95 g/cm3 미만의 저밀도를 갖는 저밀도 왁스계 화합물에 비해서 녹는점이 상대적으로 높기 때문에, 상기 고밀도 왁스계 화합물로 이루어진 왁스 입자(110)를 포함하는 발광 복합체(100a)의 내열성이 향상될 수 있다. 또한, 상기 고밀도 왁스계 화합물은 재결정시 결정성이 상기 저밀도 왁스계 화합물에 비해 우수하기 때문에, 고밀도 왁스계 화합물로 이루어진 왁스 입자(110)는 상기 나노발광체(120)를 보다 안정적으로 캡슐화할 수 있다.The wax particles 110 may be made of a wax-based compound having a high density of about 0.95 g / cm 3 or more. Since the high density wax compound having a high density of about 0.95 g / cm 3 or more has a higher melting point than the low density wax compound having a low density of less than about 0.95 g / cm 3 , the wax particles composed of the high density wax compound (110) The heat resistance of the light emitting composite (100a) including may be improved. In addition, since the high density wax-based compound has better crystallinity than the low-density wax-based compound when recrystallized, the wax particles 110 made of the high-density wax-based compound may more stably encapsulate the nano light-emitting body 120. .
하나의 구체예로서, 폴리에틸렌(PE) 왁스는 약 0.95 g/cm3 이상의 밀도를 가지는 고밀도 PE 왁스(high density PE wax, HDPE 왁스)와 약 0.95 g/cm3 미만의 밀도를 가지는 저밀도 PE 왁스(low density PE wax, LDPE 왁스)로 구분될 수 있고, 상기 왁스 입자(110)는 HDPE 왁스로 형성될 수 있다. HDPE 왁스의 밀도는 약 1.20 g/cm3 이하일 수 있고, 이 경우, HDPE 왁스의 녹는점은 약 120 ℃ 내지 약 200 ℃일 수 있다. 이에 반해, LDPE 왁스의 녹는점은 약 80 ℃ 내지 약 110 ℃일 수 있다. 따라서 상기 왁스 입자(110)는 HDPE 왁스로 형성되는 것이 LDPE 왁스로 형성되는 것보다 본 발명의 실시예에 따른 발광 복합체(100a)의 내열성을 더욱 향상시킬 수 있다. One as a specific example, polyethylene (PE) wax is from about 0.95 g / cm high-density PE wax having three or more density (high density PE wax, HDPE wax) and low density PE wax having a density of less than about 0.95 g / cm 3 ( low density PE wax, LDPE wax), and the wax particles 110 may be formed of HDPE wax. The density of the HDPE wax may be about 1.20 g / cm 3 or less, in which case the melting point of the HDPE wax may be about 120 ° C. to about 200 ° C. In contrast, the melting point of LDPE wax may be about 80 ° C to about 110 ° C. Therefore, the wax particles 110 may further improve the heat resistance of the light emitting composite 100a according to the embodiment of the present invention rather than being formed of HDPE wax from LDPE wax.
상기 왁스 입자(110)는 중량 평균 분자량(weight-average molecular weight)이 약 1,000 내지 20,000인 왁스계 화합물로 형성될 수 있다. 본 발명에 있어서, "중량 평균 분자량"은 분자량 분포가 있는 고분자 화합물의 성분 분자종의 분자량을 중량 분율로 평균하여 얻어지는 평균 분자량을 의미한다. 상기 왁스계 화합물의 중량 평균 분자량이 약 1,000 미만인 경우, 상기 왁스계 화합물은 상온에서 고체인 상태로 존재하기 어려우므로, 상온에서 상기 나노발광체(120)를 캡슐화하기 어려운 문제가 발생할 수 있다. 또한, 상기 왁스계 화합물의 중량 평균 분자량이 약 20,000을 초과하는 경우, 상기 왁스계 화합물의 재결정 크기(평균 지름)가 수백 μm 이상이 되므로, 이를 이용하여 복합체를 제조하더라도 용매나 수지에 분산시키기 어려운 문제가 발생할 수 있다. 뿐만 아니라, 상기 왁스계 화합물의 분자량이 약 20,000을 초과하는 경우, 상기 왁스계 화합물은 약 200℃ 이상의 녹는점을 가지므로, 상기 나노발광체(120)를 캡슐화하는 공정에서 상기 나노발광체(120)가 손상될 수 있다.The wax particles 110 may be formed of a wax-based compound having a weight-average molecular weight of about 1,000 to 20,000. In the present invention, "weight average molecular weight" means an average molecular weight obtained by averaging the molecular weights of the molecular weights of the component molecular species of the polymer compound having a molecular weight distribution in a weight fraction. When the weight average molecular weight of the wax-based compound is less than about 1,000, since the wax-based compound is difficult to exist in a solid state at room temperature, it may be difficult to encapsulate the nano light-emitting body 120 at room temperature. In addition, when the weight average molecular weight of the wax compound exceeds about 20,000, since the recrystallization size (average diameter) of the wax compound is several hundred μm or more, it is difficult to disperse it in a solvent or a resin even when a composite is prepared using the wax compound. Problems may arise. In addition, when the molecular weight of the wax-based compound exceeds about 20,000, the wax-based compound has a melting point of about 200 ° C or more, so that the nano light-emitting body 120 in the process of encapsulating the nano light-emitting body 120 Can be damaged.
상기 나노발광체(120)로는 공지의 나노발광체가 제한 없이 사용될 수 있다. 일 예로, 상기 나노발광체(120)로는 중심 입자 및 상기 중심 입자의 표면에 결합된 리간드를 포함하는 나노발광체가 사용될 수 있다. As the nano light emitting body 120, a known nano light emitting body may be used without limitation. For example, as the nano light emitting body 120, a nano light emitting body including a center particle and a ligand bound to the surface of the center particle may be used.
상기 중심 입자는 II-VI족 화합물, II-V족 화합물, III-V족 화합물, III-IV족 화합물, III-VI족 화합물, IV-VI족 화합물 또는 이들의 혼합물로 이루어질 수 있다. 상기 "혼합물"은 단순히 혼합된 혼합물(mixture)뿐만 아니라, 삼성분계 화합물, 사성분계 화합물, 이들 혼합물에 도펀트가 도핑된 경우도 모두 포함한다.The central particle may be composed of a Group II-VI compound, a Group II-V compound, a Group III-V compound, a Group III-IV compound, a Group III-VI compound, a Group IV-VI compound, or a mixture thereof. The "mixture" includes not only mixtures mixed, but also all three-component compounds, four-component compounds, and dopants doped in these mixtures.
II-VI족 화합물의 예로서는, 황화마그네슘(MgS), 셀렌화마그네슘(MgSe), 텔루르화마그네슘(MgTe), 황화칼슘(CaS), 셀렌화칼슘(CaSe), 텔루르화칼슘(CaTe), 황화스트론튬(SrS), 셀렌화스트론튬(SrSe), 텔루르화스트론튬(SrTe), 황화카드뮴(CdS), 셀렌화카드뮴(CdSe), 텔루르카드뮴(CdTe), 황화아연(ZnS), 셀렌화아연(ZnSe), 텔루르화아연(ZnTe), 황화수은(HgS), 셀렌화수은(HgSe) 또는 텔루르화수은(HgTe) 등을 들 수 있다.Examples of group II-VI compounds include magnesium sulfide (MgS), magnesium selenide (MgSe), magnesium telluride (MgTe), calcium sulfide (CaS), calcium selenide (CaSe), calcium telluride (CaTe), and strontium sulfide (SrS), strontium selenide (SrSe), strontium telluride (SrTe), cadmium sulfide (CdS), cadmium selenide (CdSe), tellurium cadmium (CdTe), zinc sulfide (ZnS), zinc selenide (ZnSe), Zinc telluride (ZnTe), mercury sulfide (HgS), mercury selenide (HgSe), mercury telluride (HgTe), and the like.
II-V족 화합물의 예로서는, 인화아연(Zn3P2), 비소화아연(Zn3As2), 인화카드뮴(Cd3P2), 비소화카드뮴(Cd3As2), 질화카드뮴(Cd3N2) 또는 질화아연(Zn3N2) 등을 들 수 있다.Examples of Group II-V compounds include zinc phosphide (Zn 3 P 2 ), zinc arsenide (Zn 3 As 2 ), cadmium phosphide (Cd 3 P 2 ), cadmium arsenide (Cd 3 As 2 ), and cadmium nitride (Cd 3 N 2 ) or zinc nitride (Zn 3 N 2 ).
III-V족 화합물의 예로서는, 인화붕소(BP), 인화알루미늄(AlP), 비소화알루미늄(AlAs), 안티모니화알루미늄(AlSb), 질화갈륨(GaN), 인화갈륨(GaP), 비소화갈륨(GaAs), 안티모니화갈륨(GaSb), 질화인듐(InN), 인화인듐(InP), 비소화인듐(InAs), 안티모니화인듐(InSb), 질화알루미늄(AlN) 또는 질화붕소(BN) 등을 들 수 있다.Examples of group III-V compounds include boron phosphide (BP), aluminum phosphide (AlP), aluminum arsenide (AlAs), aluminum antimonide (AlSb), gallium nitride (GaN), gallium phosphide (GaP), and gallium arsenide (GaAs), gallium monoxide (GaSb), indium nitride (InN), indium phosphide (InP), indium arsenide (InAs), indium antimony (InSb), aluminum nitride (AlN) or boron nitride (BN) Etc. can be mentioned.
III-IV족 화합물의 예로서는, 탄화붕소(B4C), 탄화알루미늄(Al4C3), 탄화갈륨(Ga4C) 등을 들 수 있다. Examples of the III-IV compound include boron carbide (B 4 C), aluminum carbide (Al 4 C 3 ), gallium carbide (Ga 4 C), and the like.
III-VI족 화합물의 예로서는, 황화알루미늄(Al2S3), 셀렌화알루미늄(Al2Se3), 텔루르화알루미늄(Al2Te3), 황화갈륨(Ga2S3), 셀렌화갈륨(Ga2Se3), 황화인듐(In2S3), 셀렌화인듐(In2Se3), 텔루르화갈륨(Ga2Te3) 또는 텔루르화인듐(In2Te3) 등을 들 수 있다.Examples of group III-VI compounds include aluminum sulfide (Al 2 S 3 ), aluminum selenide (Al 2 Se 3 ), aluminum telluride (Al 2 Te 3 ), gallium sulfide (Ga 2 S 3 ), gallium selenide ( Ga 2 Se 3 ), indium sulfide (In 2 S 3 ), indium selenide (In 2 Se 3 ), gallium telluride (Ga 2 Te 3 ), indium telluride (In 2 Te 3 ), and the like.
IV-VI족 화합물의 예로서는, 황화납(PbS), 셀렌화납(PbSe), 텔루르화납(PbTe), 황화주석(SnS), 셀렌화주석(SnSe) 또는 텔루르화주석(SnTe) 등을 들 수 있다.Examples of the group IV-VI compounds include lead sulfide (PbS), lead selenide (PbSe), lead telluride (PbTe), tin sulfide (SnS), tin selenide (SnSe), tin telluride (SnTe), and the like. .
일례로, 상기 중심 입자는 코어/쉘(core/shell) 구조를 가질 수 있다. 상기 중심 입자의 코어 및 쉘 각각은 상기 예시한 화합물들로 이루어질 수 있다. 상기 예시한 화합물들은 각각 단독으로 또는 2 이상이 조합되어 상기 코어나 쉘을 구성할 수 있다. 상기 코어를 구성하는 화합물의 밴드 갭이 상기 쉘을 구성하는 화합물의 밴드 갭보다 좁을 수 있으나, 이에 제한되지 않는다. 다만, 상기 중심 입자가 코어/쉘 구조를 갖는 경우, 상기 쉘을 구성하는 화합물은 상기 코어를 구성하는 화합물과 다르다. 예를 들어, 상기 중심 입자는 CdSe를 포함하는 코어 및 ZnS를 포함하는 쉘을 갖는 CdSe/ZnS(코어/쉘) 구조나, InP를 포함하는 코어 및 ZnS를 포함하는 쉘을 갖는 InP/ZnS(코어/쉘) 구조를 가질 수 있다. In one example, the central particle may have a core / shell structure. Each of the core and the shell of the central particle may be composed of the compounds exemplified above. The compounds exemplified above may be used alone or in combination of two or more to constitute the core or shell. The band gap of the compound constituting the core may be narrower than the band gap of the compound constituting the shell, but is not limited thereto. However, when the said central particle has a core / shell structure, the compound which comprises the said shell differs from the compound which comprises the said core. For example, the central particle may be a CdSe / ZnS (core / shell) structure having a core comprising CdSe and a shell comprising ZnS, or an InP / ZnS (core having a core comprising ZnS and a shell comprising ZnS). / Shell) structure.
다른 예로서, 상기 중심 입자는 적어도 2층 이상의 쉘을 갖는 코어/다중쉘 구조를 가질 수 있다. 예를 들어, 상기 중심 입자는 CdSe를 포함하는 코어, 상기 코어의 표면을 감싸고 ZnSe를 포함하는 제1 쉘 및 상기 제1 쉘의 표면을 감싸며 ZnS를 포함하는 제2 쉘을 갖는 CdSe/ZnSe/ZnS(코어/제1 쉘/제2 쉘) 구조를 가질 수 있다. 또한, 상기 중심 입자는 InP를 포함하는 코어, 제1 쉘로서 ZnSe을 포함하고, 제2 쉘로서 ZnS를 포함하는 InP/ZnSe/ZnS(코어/제1 쉘/제2 쉘) 구조를 가질 수 있다.As another example, the central particle may have a core / multishell structure having at least two layers of shells. For example, the central particle has CdSe / ZnSe / ZnS having a core comprising CdSe, a first shell surrounding the surface of the core and comprising ZnSe and a second shell surrounding the surface of the first shell and comprising ZnS It may have a (core / first shell / second shell) structure. In addition, the central particle may have a core including InP, ZnSe as a first shell, and ZnS as a second shell (In / Pn / ZnSe / ZnS). .
또 다른 예로서, 상기 중심 입자는 코어/쉘 구조가 아닌 단일 구조로서, II-VI족 화합물로만 이루어지거나, III-V족 화합물로만 이루어질 수 있다.As another example, the central particle may be made of only a group II-VI compound or a group III-V compound as a single structure instead of a core / shell structure.
도면으로 도시하지 않았으나, 상기 중심 입자는 시드(seed)로서 클러스터 분자(cluster molecule)을 더 포함할 수 있다. 상기 클러스터 분자는 상기 중심 입자를 제조하는 공정 중에서 시드 역할을 하는 화합물로서, 상기 중심 입자를 구성하는 화합물의 전구체들이 상기 클러스터 분자 상에서 성장함으로써 상기 중심 입자가 형성될 수 있다. 이때, 상기 클러스터 분자의 예로서는, 한국 공개 공보 2007-0064554에서 개시하고 있는 다양한 화합물 등을 들 수 있고, 이들에 제한되지 않는다.Although not shown in the drawings, the central particle may further include a cluster molecule as a seed. The cluster molecule is a compound that functions as a seed in the process of preparing the center particle, and the center particle may be formed by precursors of the compound constituting the center particle growing on the cluster molecule. In this case, examples of the cluster molecule include various compounds disclosed in Korean Laid-Open Publication No. 2007-0064554, and the like, but are not limited thereto.
상기 리간드는 서로 인접한 중심 입자가 서로 응집되어 소광(quenching)되는 것을 방지할 수 있다. 상기 리간드는 상기 중심 입자와 결합하며 소수성(hydrophobic) 성질을 가질 수 있다. The ligand may prevent the central particles adjacent to each other from aggregation and quenching. The ligand binds to the central particle and may have hydrophobic properties.
상기 리간드의 예로는, 탄소수 6 내지 30의 알킬기를 갖는 아민계 화합물이나 카르복시산 화합물 등을 들 수 있다. 알킬기를 갖는 아민계 화합물의 예로서, 헥사데실아민(hexadecylamine) 또는 옥틸아민(octylamine) 등을 들 수 있다. 상기 리간드의 다른 하나의 예로는, 탄소수 6 내지 30의 알케닐기를 갖는 아민계 화합물이나 카르복시산 화합물 등을 들 수 있다. 이와 달리, 상기 리간드의 예로서는, 트리옥틸포스핀(trioctylphosphine), 트리페놀포스핀(triphenolphosphine), t-부틸포스핀(t-butylphosphine) 등을 포함하는 포스핀 화합물(phosphine compound); 트라이옥틸포스핀 산화물(trioctylphosphine oxide) 등의 포스핀 산화물(phosphine oxide); 피리딘(pyridine) 또는 싸이오펜 (thiophene) 등을 들 수 있다. As an example of the said ligand, the amine compound, carboxylic acid compound, etc. which have a C6-C30 alkyl group are mentioned. Examples of the amine compound having an alkyl group include hexadecylamine or octylamine. As another example of the said ligand, the amine compound, carboxylic acid compound, etc. which have a C6-C30 alkenyl group are mentioned. Alternatively, examples of the ligand include phosphine compounds including trioctylphosphine, triphenolphosphine, t-butylphosphine, and the like; Phosphine oxides such as trioctylphosphine oxide; Pyridine or thiophene etc. are mentioned.
상기 리간드는 비닐기, 아릴기, 아크릴기, 아민기, 메타크릴레이트기, 에폭시기 등의 작용기를 갖는 실란계 화합물을 포함할 수 있다.The ligand may include a silane compound having a functional group such as a vinyl group, an aryl group, an acryl group, an amine group, a methacrylate group, an epoxy group, or the like.
상기 리간드의 종류는 상기에서 예시한 것에 한정되지 않고, 경우에 따라서 상기 나노발광체(120)는 상기 리간드 없이 상기 중심 입자만으로 구성될 수도 있다.The type of the ligand is not limited to the example exemplified above, and in some cases, the nano light-emitting body 120 may be composed of only the central particle without the ligand.
본 발명의 실시예에 따른 발광 복합체(100a)는 다양한 형상을 가질 수 있고, 하나의 발광 복합체(100a)는 적어도 1개의 나노발광체(120)를 포함할 수 있다. 예를 들면, 하나의 왁스 입자(110) 내에는 1개의 나노발광체(120)가 배치되거나, 하나의 왁스 입자(110) 내에 2개 내지 수천만 개의 나노발광체들(120)이 배치될 수 있다. 상기 왁스 입자(110) 내에 복수개의 나노발광체들(120)이 배치되는 경우, 상기 나노발광체들(120) 사이의 거리는 약 0.1 nm 내지 약 10 nm일 수 있다. 구체적으로, 상기 거리는 약 0.9 nm 내지 약 1.2 nm일 수 있다.The light emitting composite 100a according to the embodiment of the present invention may have various shapes, and one light emitting composite 100a may include at least one nano light emitting body 120. For example, one nano light emitter 120 may be disposed in one wax particle 110, or two to tens of millions of nano light emitters 120 may be disposed in one wax particle 110. When the plurality of nano light emitters 120 are disposed in the wax particles 110, the distance between the nano light emitters 120 may be about 0.1 nm to about 10 nm. Specifically, the distance may be about 0.9 nm to about 1.2 nm.
상기 발광 복합체(100a)의 직경은 약 5 nm 내지 약 50 ㎛일 수 있다. 상기 발광 복합체(100a)를 포함하는 코팅용 조성물에서, 상기 발광 복합체(100a)의 분산성을 고려할 때 상기 발광 복합체(100a)의 직경은 약 0.5 ㎛ 내지 약 10 ㎛일 수 있다. 상기 발광 복합체(100a)의 직경은, 상기 발광 복합체(100a)의 표면 상의 2개 지점간의 직선 거리로서, 상기 발광 복합체(100a)의 무게중심을 통과하면서 상기 2개의 지점을 연결하는 가상 직선의 길이이다. 다만, 상기 발광 복합체(100a)의 표면에 굴곡이 존재하거나 계란 형상 등과 같이 2개 지점의 위치에 따라 상기 직선 거리가 달라지는 경우, 상기 발광 복합체(100a)의 직경은 상기 직선 거리들 중에서 최대값을 의미한다.The light emitting complex 100a may have a diameter of about 5 nm to about 50 μm. In the coating composition including the light emitting composite 100a, the diameter of the light emitting composite 100a may be about 0.5 μm to about 10 μm in consideration of the dispersibility of the light emitting composite 100a. The diameter of the light emitting composite 100a is a straight line distance between two points on the surface of the light emitting composite 100a, and a length of an imaginary straight line connecting the two points while passing through the center of gravity of the light emitting composite 100a. to be. However, in the case where the curvature is present on the surface of the light emitting composite 100a or the linear distance varies according to the position of two points such as an egg shape, the diameter of the light emitting composite 100a is the maximum value among the straight distances. it means.
한편, 하나의 왁스 입자(110)의 내부에 배치된 복수의 나노발광체들(120)은 서로 동일한 파장대(wavelength range), 구체적으로는 적색 파장대에서 발광 피크를 가질 수 있다. 즉, 상기 발광 복합체(100a)는 적색 나노발광체들을 포함하는 적색 발광 복합체일 수 있다.Meanwhile, the plurality of nano light emitting bodies 120 disposed inside one wax particle 110 may have emission peaks in the same wavelength range, specifically, in the red wavelength range. That is, the light emitting composite 100a may be a red light emitting composite including red nano light emitting bodies.
이와 달리, 하나의 왁스 입자(110) 내부에 배치된 복수의 나노발광체들(120)은 서로 동일한 파장대에서 발광 피크를 가지되, 적어도 2개의 왁스 입자들(110) 각각에 배치된 나노발광체들(120)은 서로 다른 파장대에서 발광 피크를 가질 수 있다. 예를 들어, 상기 광변환층(1430)에는, 적색 나노발광체들이 하나의 왁스 입자(110)에 의해 피복된 적색 발광 복합체와 녹색 나노발광체들이 하나의 왁스 입자(110)에 의해 피복된 녹색 발광 복합체가 혼합되어 분산될 수 있다.On the contrary, the plurality of nano light-emitting bodies 120 disposed inside one wax particle 110 have emission peaks in the same wavelength band, but the nano light-emitting bodies disposed in each of the at least two wax particles 110 ( 120 may have emission peaks in different wavelength bands. For example, in the light conversion layer 1430, a red light emitting composite in which red nanoluminescent bodies are covered by one wax particle 110 and a green light emitting composite in which green nanolight emitting bodies are covered by one wax particle 110 are included. Can be mixed and dispersed.
이와 또 달리, 하나의 왁스 입자(110) 내부에 배치된 복수의 나노발광체들(120)은 서로 다른 파장대에서 발광 피크를 갖는 2종 이상의 나노발광체들을 포함할 수 있다. 구체적으로는, 상기 발광 복합체(100a)는 하나의 왁스 입자(110) 내부에 복수개의 적색 나노발광체들과 복수개의 녹색 나노발광체들이 배치된 다색 발광 복합체일 수 있다.Alternatively, the plurality of nano light emitters 120 disposed inside one wax particle 110 may include two or more nano light emitters having emission peaks in different wavelength bands. Specifically, the light emitting composite 100a may be a multicolor light emitting composite in which a plurality of red nano light emitting bodies and a plurality of green nano light emitting bodies are disposed in one wax particle 110.
도 4b를 참조하면, 상기 광변환층(1430)에 분산되는 발광 복합체(1432)는 왁스 입자(110), 상기 왁스 입자(110) 내부에 배치된 적어도 1개의 나노발광체(120) 및 외부 보호막(130)을 포함하는 구조를 갖는 발광 복합체(100b)일 수 있다. Referring to FIG. 4B, the light emitting composite 1432 distributed in the light conversion layer 1430 may include wax particles 110, at least one nano light emitting body 120 disposed inside the wax particles 110, and an outer protective film ( Light emitting composite 100b having a structure including 130).
상기 발광 복합체(100b)는 상기 외부 보호막(130)을 더 포함하는 것을 제외하고는 도 4a에 도시된 발광 복합체(100a)와 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다. 상기 발광 복합체(100b)의 직경은 약 50 nm 내지 약 50 ㎛일 수 있다. 상기 발광 복합체(100b)는 적색 발광 복합체이거나 다색 발광 복합체일 수 있다.Since the light emitting composite 100b is substantially the same as the light emitting composite 100a illustrated in FIG. 4A except that the light emitting composite 100b further includes the outer protective layer 130, detailed descriptions thereof will be omitted. The light emitting complex 100b may have a diameter of about 50 nm to about 50 μm. The light emitting composite 100b may be a red light emitting composite or a multicolor light emitting composite.
상기 외부 보호막(130)은 상기 왁스 입자(110)의 표면에 형성되어 상기 왁스 입자(110)를 피복한다. 상기 외부 보호막(130)은 실리콘 산화물(SiOx, 1≤x≤2)로 형성된다. 상기 외부 보호막(130)은, 상기 왁스 입자(110)와 함께, 수분, 열, 광 등에 의해 상기 나노발광체(120)가 손상되는 것을 방지할 수 있다.The outer protective layer 130 is formed on the surface of the wax particles 110 to cover the wax particles 110. The outer passivation layer 130 is formed of silicon oxide (SiOx, 1 ≦ x ≦ 2). The outer protective layer 130, together with the wax particles 110, may prevent the nano light-emitting body 120 from being damaged by moisture, heat, or light.
상기 외부 보호막(130)은 실리콘 산화물 전구체 물질의 가수분해와 축합 반응을 통하여 형성될 수 있다. 예를 들어, 상기 외부 보호막(130)은 유기용매에 나노발광체(120)가 내부에 배치된 왁스 입자(110), 실리콘 산화물 전구체 물질, 촉매 물질 및 물을 혼합하여 상기 왁스 입자(110) 표면에 산화 실리콘을 성장시킴으로써 형성될 수 있다. 이 경우, 상기 외부 보호막(130)은 실리카(SiO2)를 포함할 수 있다.The outer passivation layer 130 may be formed through hydrolysis and condensation of the silicon oxide precursor material. For example, the outer passivation layer 130 is a mixture of wax particles 110, a silicon oxide precursor material, a catalyst material, and water in which the nano light-emitting body 120 is disposed in an organic solvent to the surface of the wax particles 110. It can be formed by growing silicon oxide. In this case, the outer passivation layer 130 may include silica (SiO 2 ).
상기 실리콘 산화물 전구체 물질의 예로서는 트리에톡시실란(triethoxysilane, HTEOS), 테트라에톡시실란(tetraethoxysilane, TEOS), 메틸트리에톡시실란(methyltriethoxysilane, MTEOS), 디메틸디에톡시실란(dimethyldiethoxysilane), 테트라메톡시실란(tetramethoxysilane, TMOS), 메틸트리메톡시실란(methyltrimethoxysilane, MTMOS), 트리메톡시실란(trimethoxysilane), 디메틸디메톡시실란(dimethyldimethoxysilane), 페닐트리에톡시실란 (phenyltriethoxysilane, PTEOS), 페닐트리메톡시실란(phenyltrimethoxysilane, PTMOS), 디페닐디에톡시실란(diphenyldiethoxysilane), 디페닐디메톡시실란(diphenyldimethoxysilane) 등이 사용될 수 있다. 또한, 상기 실리콘 산화물 전구체 물질은 할로실란(halosilane), 특히 클로로실란(chlorosilane), 예를 들어, 트리클로로실란(trichlorosilane), 메틸트리클로로실란(methyltrichlorosilane), 에틸트리클로로실란(ethyltrichlorosilane), 페닐트리클로로실란(phenyltrichlorosilane), 테트라클로로실란(tetrachlorosilane), 디클로로실란(dichlorosilane), 메틸디클로로실란(methyldichlorosilane), 디메틸디클로로실란(dimethyldichlorosilane), 클로로트리에톡시실란(chlorotriethoxysilane), 클로로트리메톡시실란(chlorotrimethoxysilane), 클로로메틸트리에톡시실란(chloromethyltriethoxysilane), 클로로에틸트리에톡시실란(chloroethyltriethoxysilane), 클로로페닐트리에톡시실란(chlorophenyltriethoxysilane, 클로로메틸트리메톡시실란(chloromethyltrimethoxysilane), 클로로에틸트리메톡시실란(chloroethyltrimethoxysilane), 클로로페닐트리메톡시실란(chlorophenyltrimethoxysilane) 등을 이용하여 합성할 수도 있고, 폴리실록산(polysiloxane), 폴리실라잔(polysilazane) 등을 이용하여 합성할 수도 있다. Examples of the silicon oxide precursor material include triethoxysilane (HTEOS), tetraethoxysilane (TEOS), methyltriethoxysilane (MTEOS), dimethyldiethoxysilane, tetramethoxysilane (tetramethoxysilane (TMOS), methyltrimethoxysilane (MTMOS), trimethoxysilane, dimethyldimethoxysilane, phenyltriethoxysilane (PTEOS), phenyltrimethoxysilane ( phenyltrimethoxysilane (PTMOS), diphenyldiethoxysilane, diphenyldimethoxysilane and the like can be used. In addition, the silicon oxide precursor material is halosilane, in particular chlorosilane, for example trichlorosilane, methyltrichlorosilane, ethyltrichlorosilane, ethyltrichlorosilane, phenyltrichloro Phenyltrichlorosilane, tetrachlorosilane, dichlorosilane, methyldichlorosilane, dimethyldichlorosilane, chlorotriethoxysilane, chlorotrimethoxysilane Chloromethyltriethoxysilane, chloroethyltriethoxysilane, chlorophenyltriethoxysilane, chlorophenyltriethoxysilane, chloromethyltrimethoxysilane, chloroethyltrimethoxysilane, Chlorophenyltrimethoxysilane (chlorop It may be synthesized using henyltrimethoxysilane, or the like, or may be synthesized using polysiloxane, polysilazane, or the like.
상기 유기 용매의 예로서는, 메탄올(methanol), 에탄올(ethanol), 프로판올(propanol), 부탄올(butanol), 펜타놀(pentanol), 헥사놀(hexanol), 메틸 셀로솔브(methyl cellosolve), 부틸 셀로솔브(butyl cellosolve), 프로필렌 글리콜(propylene glycol), 디에틸렌 글리콜(diethtylene glycol) 등의 알콜성 용매 또는 톨루엔(toluene)이 사용될 수 있다. 상기 유기 용매는 단독으로 또는 2 이상이 혼합되어 사용될 수 있다. Examples of the organic solvent include methanol, ethanol, propanol, butanol, butanol, pentanol, hexanol, methyl cellosolve, butyl cellosolve ( Alcoholic solvents such as butyl cellosolve, propylene glycol, and diethtylene glycol, or toluene may be used. The organic solvent may be used alone or in combination of two or more thereof.
상기 촉매 물질로는, 알칼리성 물질, 예를 들면, 암모니아(NH3)가 사용될 수 있다. 이 경우, 암모니아수(NH4OH)를 상기 유기 용매에 혼합함으로써 상기 외부 보호막(130)을 형성하는 공정에서 암모니아를 촉매 물질로서 이용할 수 있다.As the catalyst material, an alkaline material such as ammonia (NH 3 ) may be used. In this case, ammonia may be used as a catalyst material in the process of forming the external protective film 130 by mixing ammonia water (NH 4 OH) with the organic solvent.
한편, 도면으로 도시하지 않았으나, 상기 외부 보호막(130)은 복수의 왁스 입자들(110)을 피복할 수 있다. 예를 들어, 상기 외부 보호막(130)은 서로 인접하게 배치된 적어도 2개의 왁스 입자들(110)을 피복할 수 있고, 상기 왁스 입자들(110) 사이의 이격 공간에는 산화 실리콘이 채워짐으로써 발광 복합체(100b)를 형성할 수 있다. Although not illustrated in the drawings, the outer protective layer 130 may cover the plurality of wax particles 110. For example, the outer passivation layer 130 may cover at least two wax particles 110 disposed adjacent to each other, and the space between the wax particles 110 may be filled with silicon oxide to form a light emitting composite. 100b can be formed.
예를 들면, 상기 외부 보호막(130)이 제1 왁스 입자 및 제2 왁스 입자를 피복하는 경우, 상기 제1 및 제2 왁스 입자들 각각에 적색 나노발광체들이 배치되어 상기 발광 복합체(100b)는 적색 발광 복합체를 구성할 수 있다.For example, when the outer protective layer 130 covers the first wax particles and the second wax particles, red nano light-emitting bodies are disposed on each of the first and second wax particles so that the light emitting composite 100b is red. The light emitting composite can be constructed.
이와 달리, 상기 외부 보호막(130)이 제1 왁스 입자 및 제2 왁스 입자를 피복하는 경우, 상기 제1 왁스 입자 내부에 배치된 제1 나노발광체는 적색 나노발광체이고, 상기 제2 왁스 입자 내부에 배치된 제2 나노발광체는 녹색 나노발광체일 수 있다. 이에 따라, 상기 발광 복합체(100b)는 다색 발광 복합체일 수 있다.On the other hand, when the outer protective layer 130 covers the first wax particles and the second wax particles, the first nano light emitting body disposed inside the first wax particles is a red nano light emitting body, and the inside of the second wax particles The disposed second nanolighter may be a green nanolighter. Accordingly, the light emitting composite 100b may be a multicolor light emitting composite.
도 4c를 참조하면, 상기 광변환층(1430)에 분산되는 발광 복합체(1432)는 왁스 입자(110), 적어도 1개의 나노발광체(120), 외부 보호막(130) 및 왁스층(140)을 포함하는 구조를 갖는 발광 복합체(100c)일 수 있다.Referring to FIG. 4C, the light emitting composite 1432 distributed in the light conversion layer 1430 includes wax particles 110, at least one nano light emitting body 120, an outer protective layer 130, and a wax layer 140. It may be a light emitting composite 100c having a structure.
상기 발광 복합체(100c)는 상기 왁스층(140)을 더 포함하는 것을 제외하고는 도 4b에서 설명한 발광 복합체(100b)와 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다. 상기 발광 복합체(100c)의 직경은 약 50nm 내지 약 50 ㎛일 수 있다.Since the light emitting composite 100c is substantially the same as the light emitting composite 100b described with reference to FIG. 4B except for further including the wax layer 140, detailed descriptions thereof will be omitted. The light emitting composite 100c may have a diameter of about 50 nm to about 50 μm.
상기 왁스층(140)은 상기 외부 보호막(130)의 표면을 피복한다. 즉, 상기 왁스층(140)은 상기 외부 보호막(130)으로 피복된 상기 왁스 입자(110)를 감싼다. 상기 왁스층(140)은 왁스계 화합물로 형성된다. 상기 왁스층(140)을 구성하는 왁스계 화합물은 상기 왁스 입자(110)를 구성하는 왁스계 화합물에서 설명한 것과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다. The wax layer 140 covers the surface of the outer protective layer 130. That is, the wax layer 140 surrounds the wax particles 110 coated with the outer protective layer 130. The wax layer 140 is formed of a wax-based compound. Since the wax-based compound constituting the wax layer 140 is substantially the same as that described in the wax-based compound constituting the wax particle 110, detailed descriptions thereof will be omitted.
도 4c에서는 상기 왁스층(140)이 상기 외부 보호막(130)에 의해 표면이 커버된 하나의 상기 왁스 입자(110)를 피복하는 것을 도시하여 설명하였으나, 상기 왁스층(140)은 2개 이상의 상기 왁스 입자들(110)을 피복할 수 있다. 예를 들어, 도 4b를 참조하여 외부 보호막(130)이 제1 나노발광체가 내부에 배치된 제1 왁스 입자 및 제2 나노발광체가 내부에 배치된 제2 왁스 입자를 모두 피복하는 하는 경우를 설명하였는데, 그 외부 보호막(130)의 표면을 상기 왁스층(140)이 다시 피복할 수 있다.In FIG. 4C, the wax layer 140 covers one wax particle 110 whose surface is covered by the outer passivation layer 130, but the wax layer 140 includes two or more wax particles. The field 110 may be covered. For example, referring to FIG. 4B, the outer protective layer 130 covers both the first wax particles having the first nano light-emitting body disposed therein and the second wax particles having the second nano light-emitting body disposed therein. The wax layer 140 may again cover the surface of the outer protective layer 130.
또한, 상기 왁스층(140)은 도 4b에 도시된 발광 복합체(100b)를 적어도 2개 피복할 수 있다. 상기 왁스층(140)을 구성하는 상기 왁스계 화합물이 서로 인접하게 배치된 발광 복합체들(100b) 사이의 이격 공간을 채움으로써 외부 보호막(130)으로 각각 피복되어 있는 적어도 2개의 왁스 입자들을 하나의 왁스층(140)이 피복할 수 있다.In addition, the wax layer 140 may cover at least two light emitting composites 100b illustrated in FIG. 4B. The wax-based compound constituting the wax layer 140 fills the space between the light emitting complexes 100b disposed adjacent to each other, thereby filling at least two wax particles respectively covered with the outer protective layer 130 by one wax layer. 140 may cover.
상기 발광 복합체(100c)는 내부에 포함된 나노발광체(120)의 종류에 따라서 적색 발광 복합체 또는 녹색 발광 복합체일 수 있다. 이와 달리, 상기 발광 복합체(100c)는 적색 나노발광체 및 녹색 나노발광체를 모두 포함하는 다색 발광 복합체일 수 있다.The light emitting composite 100c may be a red light emitting composite or a green light emitting composite according to the type of the nano light emitting body 120 included therein. In contrast, the light emitting composite 100c may be a multicolor light emitting composite including both a red nano light emitting body and a green nano light emitting body.
도 5a를 참조하면, 상기 광변환층(1430)에 분산되는 발광 복합체(1432)는 왁스 입자(210), 상기 왁스 입자(210)의 내부에 배치된 적어도 1개의 나노발광체(220) 및 내부 보호막(230)을 포함하는 구조를 갖는 발광 복합체(200a)일 수 있다.Referring to FIG. 5A, the light emitting composite 1432 distributed in the light conversion layer 1430 may include wax particles 210, at least one nano light emitting body 220 disposed inside the wax particles 210, and an inner passivation layer. It may be a light emitting composite 200a having a structure including 230.
상기 왁스 입자(210) 및 나노발광체(220)는 도 4a에서 설명한 왁스 입자(110) 및 나노발광체(120)와 각각 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다. 상기 발광 복합체(200a)의 직경은 약 50nm 내지 약 50 ㎛일 수 있다.Since the wax particles 210 and the nano light emitter 220 are substantially the same as the wax particles 110 and the nano light emitter 120 described with reference to FIG. 4A, detailed descriptions thereof will be omitted. The light emitting complex 200a may have a diameter of about 50 nm to about 50 μm.
상기 내부 보호막(230)은 상기 나노발광체(220)를 피복한다. 상기 내부 보호막(230)은 상기 나노발광체(220)의 표면과 직접적으로 접촉하여 상기 나노발광체(220)을 피복한다. 이때, 상기 왁스 입자(210)의 내부에 배치된 상기 나노발광체들(220)은 개별적으로 상기 내부 보호막(230)에 의해 피복될 수 있다. 예를 들면, 1개의 나노발광체(220)는 1개의 내부 보호막(230)에 의해 피복될 수 있다. The inner passivation layer 230 covers the nano light-emitting body 220. The inner passivation layer 230 directly contacts the surface of the nano light-emitting body 220 to cover the nano light-emitting body 220. In this case, the nano light-emitting bodies 220 disposed in the wax particles 210 may be individually covered by the inner protective layer 230. For example, one nano light-emitting body 220 may be covered by one internal protective film 230.
상기 내부 보호막(230)은 실리콘 산화물로 형성되고, 상기 내부 보호막(230)을 구성하는 실리콘 산화물은 도 4b에서 설명한 외부 보호막(130)을 구성하는 실리콘 산화물과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.Since the inner passivation layer 230 is formed of silicon oxide, and the silicon oxide constituting the inner passivation layer 230 is substantially the same as the silicon oxide constituting the outer passivation layer 130 described with reference to FIG. 4B, detailed descriptions thereof will be omitted. do.
일례로, 상기 왁스 입자(210)의 내부에 배치된 복수의 나노발광체들(220)은 적색 나노발광체일 수 있다. 즉, 상기 발광 복합체(200a)는 적색 발광 복합체일 수 있다.For example, the plurality of nano light emitters 220 disposed in the wax particle 210 may be a red nano light emitter. That is, the light emitting composite 200a may be a red light emitting composite.
이와 달리, 상기 왁스 입자(210)의 내부에 배치된 복수의 나노발광체들(220)은 적색 나노발광체 및 녹색 나노발광체를 포함할 수 있다. 즉, 상기 발광 복합체(200a)는 다색 발광 복합체일 수 있다.Alternatively, the plurality of nano light emitters 220 disposed inside the wax particle 210 may include red nano light emitters and green nano light emitters. That is, the light emitting composite 200a may be a multicolor light emitting composite.
한편, 도면으로 도시하지 않았으나, 상기 내부 보호막(230)은 2개 이상의 나노발광체들(220)을 피복할 수도 있다. 2개 이상의 나노발광체들(220)이 상기 내부 보호막(230)에 의해 피복되는 경우, 서로 인접한 나노발광체들(220) 사이의 이격 공간은 상기 내부 보호막(230)을 구성하는 실리콘 산화물에 의해 채워질 수 있다. 이때, 하나의 내부 보호막(230)으로 피복된 나노발광체들(220)은 적색 나노발광체로서, 상기 발광 복합체(200a)는 적색 발광 복합체일 수 있다. 이와 달리, 하나의 내부 보호막(230)으로 피복된 나노발광체들(220)은 적색 나노발광체 및 녹색 나노발광체를 포함하여, 상기 발광 복합체(200a)는 다색 발광 복합체일 수 있다.Although not shown in the drawings, the inner passivation layer 230 may cover two or more nano light-emitting bodies 220. When two or more nano light emitters 220 are covered by the inner passivation layer 230, the space between the adjacent nano light emitters 220 may be filled by silicon oxide constituting the inner passivation layer 230. have. In this case, the nano light-emitting bodies 220 coated with one inner passivation layer 230 may be a red nano light-emitting body, and the light emitting composite 200a may be a red light emitting composite. On the contrary, the nano light-emitting bodies 220 coated with one inner passivation layer 230 include a red nano light-emitting body and a green nano light-emitting body, and the light emitting composite 200a may be a multicolor light emitting composite.
한편, 하나의 내부 보호막(230)에 의해 피복된 2개 이상의 나노발광체들(220)을 "발광 그룹"으로 정의할 때, 하나의 왁스 입자(210) 내부에는 적색 나노발광체로 구성된 제1 발광 그룹과, 녹색 나노발광체로 구성된 제2 발광 그룹이 배치될 수 있다.Meanwhile, when defining two or more nano light-emitting bodies 220 coated by one inner passivation layer 230 as a "light-emitting group", the first light-emitting group composed of red nano light-emitting bodies is formed inside one wax particle 210. And, the second light emitting group consisting of green nano light emitting body may be disposed.
도 5b를 참조하면, 상기 광변환층(1430)에 분산되는 발광 복합체(1432)는 왁스 입자(210), 적어도 1개의 나노발광체(220), 내부 보호막(230) 및 외부 보호막(240)을 포함하는 구조를 갖는 발광 복합체(200b)일 수 있다.Referring to FIG. 5B, the light emitting composite 1432 distributed in the light conversion layer 1430 includes wax particles 210, at least one nano light emitting body 220, an inner passivation layer 230, and an outer passivation layer 240. It may be a light emitting composite 200b having a structure.
상기 발광 복합체(200b)는 상기 외부 보호막(240)을 더 포함하는 것을 제외하고는 도 5a에서 설명한 발광 복합체(200a)와 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다. 상기 발광 복합체(200b)의 직경은 약 50 nm 내지 약 50 ㎛일 수 있다.Since the light emitting composite 200b is substantially the same as the light emitting composite 200a described with reference to FIG. 5A except that the light emitting composite 200b further includes the outer protective layer 240, detailed descriptions thereof will be omitted. The diameter of the light emitting composite 200b may be about 50 nm to about 50 μm.
상기 외부 보호막(240)은 상기 왁스 입자(210)를 피복하고 실리콘 산화물로 형성될 수 있다. 상기 외부 보호막(240)은 도 4b에서 설명한 외부 보호막(130)과 실질적으로 동일하므로 중복되는 구체적인 설명은 생략한다. 상기 외부 보호막(240)은 상기 왁스 입자(210) 및 상기 내부 보호막(230)과 함께 수분, 열, 광 등에 의해 상기 나노발광체(220)가 손상되는 것을 방지할 수 있다. The outer passivation layer 240 may cover the wax particles 210 and be formed of silicon oxide. Since the outer passivation layer 240 is substantially the same as the outer passivation layer 130 described with reference to FIG. 4B, detailed descriptions thereof will be omitted. The outer passivation layer 240 may prevent the nano light-emitting body 220 from being damaged by moisture, heat, light, etc. together with the wax particles 210 and the inner passivation layer 230.
도 5b에서는 상기 외부 보호막(240)이 하나의 왁스 입자(210)를 피복한 것을 도시하였으나, 상기 외부 보호막(240)은 복수의 왁스 입자들(210)을 피복할 수 있다. 예를 들어, 상기 외부 보호막(240)은 서로 인접하게 배치된 적어도 2개의 왁스 입자들(210)을 피복할 수 있고, 상기 왁스 입자들(210) 사이의 이격 공간에는 산화 실리콘이 채워짐으로써 발광 복합체(200b)를 형성할 수 있다.In FIG. 5B, the outer passivation layer 240 covers one wax particle 210, but the outer passivation layer 240 may cover the plurality of wax particles 210. For example, the outer passivation layer 240 may cover at least two wax particles 210 disposed adjacent to each other, and the space between the wax particles 210 may be filled with silicon oxide to form a light emitting composite. 200b can be formed.
상기 발광 복합체(200b)는 내부에 포함된 나노발광체(220)의 종류에 따라서 적색 발광 복합체 또는 녹색 발광 복합체일 수 있다. 이와 달리, 상기 발광 복합체(200b)는 적색 나노발광체 및 녹색 나노발광체를 모두 포함하는 다색 발광 복합체일 수 있다.The light emitting composite 200b may be a red light emitting composite or a green light emitting composite according to the type of the nano light emitting body 220 included therein. Alternatively, the light emitting composite 200b may be a multicolor light emitting composite including both a red nano light emitting body and a green nano light emitting body.
도 5c를 참조하면, 상기 광변환층(1430)에 분산되는 발광 복합체(1432)는 왁스 입자(210), 적어도 하나의 나노발광체(220), 내부 보호막(230), 외부 보호막(240) 및 왁스층(250)을 포함하는 구조를 갖는 발광 복합체(200c)일 수 있다. Referring to FIG. 5C, the light emitting composite 1432 distributed in the light conversion layer 1430 may include wax particles 210, at least one nano light emitter 220, an inner passivation layer 230, an outer passivation layer 240, and a wax layer. It may be a light emitting composite 200c having a structure including 250.
상기 발광 복합체(200c)는 상기 왁스층(250)을 더 포함하는 것을 제외하고는 도 5b에서 설명한 발광 복합체(200b)와 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다. 상기 발광 복합체(200c)의 직경은 약 50nm 내지 약 50 ㎛일 수 있다.Since the light emitting composite 200c is substantially the same as the light emitting composite 200b described with reference to FIG. 5B except for further including the wax layer 250, detailed descriptions thereof will be omitted. The diameter of the light emitting composite 200c may be about 50 nm to about 50 μm.
상기 왁스층(250)은 상기 외부 보호막(240)을 피복할 수 있다. 상기 왁스층(250)은 왁스계 화합물로 형성된다. 상기 왁스층(250)을 구성하는 상기 왁스계 화합물은 도 4a에서 설명한 왁스계 화합물과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다. The wax layer 250 may cover the outer protective layer 240. The wax layer 250 is formed of a wax-based compound. Since the wax-based compound constituting the wax layer 250 is substantially the same as the wax-based compound described with reference to FIG. 4A, detailed descriptions thereof will be omitted.
상기 왁스층(250)은 도 5c에 도시된 것과 같이 상기 외부 보호막(240)에 의해 표면이 커버된 1개의 왁스 입자(210)를 피복하거나, 도면으로 도시하지 않았으나 상기 외부 보호막(240)에 의해 표면이 커버된 왁스 입자(210) 복수개를 피복할 수 있다.The wax layer 250 covers one wax particle 210 whose surface is covered by the outer protective film 240 as shown in FIG. 5C, or is not shown in the drawing, but the surface is covered by the outer protective film 240. A plurality of the covered wax particles 210 may be coated.
상기 발광 복합체(200c)는 내부에 포함된 나노발광체(220)의 종류에 따라서 적색 발광 복합체 또는 녹색 발광 복합체일 수 있다. 이와 달리, 상기 발광 복합체(200c)는 적색 나노발광체 및 녹색 나노발광체를 모두 포함하는 다색 발광 복합체일 수 있다.The light emitting composite 200c may be a red light emitting composite or a green light emitting composite according to the type of the nano light emitting body 220 included therein. Alternatively, the light emitting composite 200c may be a multicolor light emitting composite including both a red nano light emitting body and a green nano light emitting body.
다시 도 2를 참조하면, 상기 광변환층(1430)은 확산 비드들을 더 포함할 수 있다. 상기 확산 비드들은 폴리카보네이트(polycarbonate, PC), 폴리에틸렌(polyethylene, PE), 폴리프로필렌(polypropylene, PP), 메타크릴 수지(metacrylic resin), 폴리에틸렌 테레프탈레이트(polyethylene terephtalate, PET) 등으로 형성될 수 있다. 이는 각각 단독으로 또는 2 이상이 조합되어 이용될 수 있다. Referring back to FIG. 2, the light conversion layer 1430 may further include diffusion beads. The diffusion beads may be formed of polycarbonate (PC), polyethylene (PE, PE), polypropylene (PP), methacrylic resin, polyethylene terephtalate (PET), or the like. . These may each be used alone or in combination of two or more.
상기 확산 비드들 각각의 직경은 약 3 ㎛ 내지 약 30 ㎛일 수 있다. 상기 확산 비드들 각각의 직경은 확산 계수에 관한 스토크스-아인슈타인 방정식(Stokes-Einstein equation)으로 산출하는 동적 광산란법(Dynamic Light Scattering method, DLS법)에 의해 측정된 직경을 의미한다. 상기 광변환층(1430)이 상기 확산 비드들을 더 포함하는 경우, 상기 확산 시트(1400)에 있어서 상기 제1 광학층(1420)은 생략될 수 있다.The diameter of each of the diffusion beads may be between about 3 μm and about 30 μm. The diameter of each of the diffusion beads refers to the diameter measured by the Dynamic Light Scattering method (DLS method) calculated by the Stokes-Einstein equation for the diffusion coefficient. When the light conversion layer 1430 further includes the diffusion beads, the first optical layer 1420 may be omitted in the diffusion sheet 1400.
상기 제1 배리어층(1440)은 상기 제1 투명 필름(1410)의 상기 제2 면과 상기 광변환층(1430) 사이에 배치된다. 상기 제1 배리어층(1440)은 상기 제1 투명 필름(1410)과 함께 상기 광변환층(1430)에 분산된 상기 발광 복합체(1432)를 열, 광, 수분 등으로부터 보호할 수 있다. 특히, 상기 제1 배리어층(1440)은 외부 환경에 의한 수분이 상기 광변환층(1430)으로 침투하는 것을 방지할 수 있다. 상기 제1 배리어층(1440)은 약 5 nm 내지 약 40 ㎛의 두께를 가질 수 있다.The first barrier layer 1440 is disposed between the second surface of the first transparent film 1410 and the light conversion layer 1430. The first barrier layer 1440 may protect the light emitting composite 1432 distributed in the light conversion layer 1430 together with the first transparent film 1410 from heat, light, and moisture. In particular, the first barrier layer 1440 may prevent moisture caused by an external environment from penetrating into the light conversion layer 1430. The first barrier layer 1440 may have a thickness of about 5 nm to about 40 μm.
상기 제1 배리어층(1440)은 무기물로 이루어진 무기막을 포함할 수 있다. 상기 무기막을 구성하는 무기물의 예로서는, 실리콘 산화물(silicon oxide), 실리콘 질화물(silicon nitride), 실리콘 산화질화물(silicon oxynitride), 실리콘 산화탄화물(silicon oxycarbide), 금속 산화물(metal oxide), 금속 질화물(metal nitride), 금속 산화질화물(metal oxynitride), 금속 산화탄화물(metal oxycarbide) 등을 들 수 있다. 이들은 각각 단독으로 또는 2 이상이 조합되어 이용될 수 있다. 이때, 금속 산화물, 금속 질화물, 금속 산화질화물 또는 금속 산화탄화물에서의 금속은, 알루미늄, 티타늄, 인듐, 주석, 탄탈륨, 지르코늄, 니오븀 등을 포함할 할 수 있고, 이들 금속은 각각 단독으로 또는 2 이상이 조합되어 이용될 수 있다.The first barrier layer 1440 may include an inorganic film made of an inorganic material. Examples of the inorganic material constituting the inorganic film include silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, metal oxide, and metal nitride nitride, metal oxynitride, metal oxycarbide, and the like. These may be used alone or in combination of two or more, respectively. In this case, the metal in the metal oxide, metal nitride, metal oxynitride or metal oxide carbide may include aluminum, titanium, indium, tin, tantalum, zirconium, niobium, and the like, and these metals may be each alone or two or more. This can be used in combination.
상기 무기막은 스퍼터링법(sputtering deposition), 열증착법(thermal evaporation), 전자빔 증착법(electron beam evaporation) 등의 물리적 증착법이나, 플라즈마 화학 증착법(plasma-enhanced chemical vapor deposition, PECVD), 원자층 증착법(atomic layer deposition, ALD) 등의 화학적 증착법을 이용하여 형성할 수 있다.The inorganic film may be a physical vapor deposition method such as sputtering deposition, thermal evaporation, electron beam evaporation, plasma-enhanced chemical vapor deposition (PECVD), atomic layer deposition (atomic layer). It can be formed using a chemical vapor deposition method such as deposition, ALD).
일 예로, 상기 제1 배리어층(1440)은 하나의 무기막으로 이루어진 단일층 구조를 가질 수 있다. 이 경우, 상기 제1 배리어층(1440)의 두께는 약 5 nm 내지 약 10 ㎛일 수 있다.For example, the first barrier layer 1440 may have a single layer structure formed of one inorganic layer. In this case, the thickness of the first barrier layer 1440 may be about 5 nm to about 10 μm.
다른 예로, 상기 제1 배리어층(1440)은 둘 이상의 무기막이 적층된 구조를 갖거나, 무기막과 유기물로 이루어진 유기막이 적층된 구조를 가질 수 있다. 이에 대해서는 도 6을 참조하여 설명한다.As another example, the first barrier layer 1440 may have a structure in which two or more inorganic films are stacked, or a structure in which an organic film made of an inorganic film and an organic material is stacked. This will be described with reference to FIG. 6.
도 6은 도 2의 제1 배리어층의 일 구조를 설명하기 위한 부분 확대 단면도이다.FIG. 6 is a partially enlarged cross-sectional view for describing a structure of the first barrier layer of FIG. 2.
도 6을 참조하면, 상기 제1 배리어층(1440)은 제1 층(1441) 및 제2 층(1442)을 포함할 수 있다. 상기 제1 층(1441)은 상기 제1 투명 필름(1410) 상에 형성되고, 상기 제2 층(1442)은 상기 제1 층(1441)과 상기 광변환층(1430) 사이에 형성될 수 있다.Referring to FIG. 6, the first barrier layer 1440 may include a first layer 1441 and a second layer 1442. The first layer 1441 may be formed on the first transparent film 1410, and the second layer 1442 may be formed between the first layer 1441 and the light conversion layer 1430. .
일 예로, 상기 제1 층(1441) 및 제2 층(1442) 각각은 서로 다른 무기물로 형성된 무기막일 수 있다. 예를 들어, 상기 제1 층(1441)은 실리콘 질화물로 형성된 무기막이고, 상기 제2 층(1442)은 실리콘 산화물로 형성된 무기막일 수 있다. 이와 달리, 상기 제1 층(1441)은 실리콘 산화물로 형성된 무기막이고, 상기 제2 층(1442)은 실리콘 질화물로 형성된 무기막일 수 있다.For example, each of the first layer 1441 and the second layer 1442 may be an inorganic layer formed of different inorganic materials. For example, the first layer 1441 may be an inorganic film formed of silicon nitride, and the second layer 1442 may be an inorganic film formed of silicon oxide. Alternatively, the first layer 1441 may be an inorganic film formed of silicon oxide, and the second layer 1442 may be an inorganic film formed of silicon nitride.
상기 제1 배리어층(1440)은 상기 제2 층(1442)과 상기 광변환층(1430) 사이에 배치되고, 상기 제2 층(1442)을 형성하는 무기물과 다른 종류의 무기물로 형성된 제3 층(미도시)을 더 포함할 수 있다. 이때, 상기 제3 층은 상기 제1 층(1441)과 실질적으로 동일한 무기물로 형성되거나, 상기 제1 층(1441)과 다른 무기물로 형성될 수 있다.The first barrier layer 1440 is disposed between the second layer 1442 and the light conversion layer 1430, and a third layer formed of an inorganic material different from the inorganic material forming the second layer 1442. It may further include (not shown). In this case, the third layer may be formed of an inorganic material substantially the same as the first layer (1441), or may be formed of an inorganic material different from the first layer (1441).
다른 예로, 상기 제1 층(1441)은 무기막이고, 상기 제2 층(1442)은 유기물로 형성된 유기막일 수 있다. 이 경우, 상기 제1 배리어층(1440)의 두께는 약 5 nm 내지 약 40 ㎛일 수 있다. 유기막인 상기 제2 층(1442)이 상기 광변환층(1430)과 접착된 경우, 상기 제2 층(1442)에 의해서 상기 제1 배리어층(1440)과 상기 광변환층(1430) 사이의 접착력이 향상될 수 있다. 유기막인 상기 제2 층(1442)은 상기 제1 배리어층(1440)의 배리어 기능을 보조하기 위해 약 0.5 ㎛ 내지 약 30 ㎛의 두께로 형성될 수 있다. 이와 달리, 유기막인 상기 제2 층(1442)은 단순히 상기 제1 층(1441)과 상기 광변환층(1430) 사이의 접착력을 증가시키기 위해서 약 0.5 ㎛ 이하의 두께로 형성될 수도 있다.As another example, the first layer 1441 may be an inorganic layer, and the second layer 1442 may be an organic layer formed of an organic material. In this case, the thickness of the first barrier layer 1440 may be about 5 nm to about 40 μm. When the second layer 1442, which is an organic film, is bonded to the light conversion layer 1430, a gap between the first barrier layer 1440 and the light conversion layer 1430 by the second layer 1442. Adhesion can be improved. The second layer 1442, which is an organic layer, may be formed to have a thickness of about 0.5 μm to about 30 μm to assist the barrier function of the first barrier layer 1440. Alternatively, the second layer 1442, which is an organic layer, may be formed to a thickness of about 0.5 μm or less in order to simply increase the adhesion between the first layer 1441 and the light conversion layer 1430.
상기 유기막을 구성하는 유기물의 예로서는, 아크릴계 고분자 수지, 에폭시계 고분자 수지, 실리콘계 고분자 수지, 우레탄계 고분자 수지, 파릴렌(parylene), 폴리에틸렌테레프탈레이트(polyethyleneterephthalate, PET), 폴리메틸메타크릴레이트 (polymethylmethacrylate, PMMA), 폴리에테르설폰(polyethersulfone, PES), 폴리카보네이트(polycarbonate, PC), 폴리에틸렌나프탈레이트(polyethylenenaphthalate, PEN), 폴리이미드(polyimide, PI), 폴리아릴레이트(polyarylate), 사이클릭 올레핀 폴리머(cyclic olefin polymer, COP), 사이클릭 올레핀 코폴리머(cyclic olefic copolymer, COC), 폴리에틸렌(polyethylene, PE), 폴리프로필렌(polypropylene, PP), 메타크릴(methacrylic) 등을 들 수 있다.Examples of the organic material constituting the organic film include acrylic polymer resin, epoxy polymer resin, silicone polymer resin, urethane polymer resin, parylene, polyethylene terephthalate (PET), polymethyl methacrylate (polymethylmethacrylate, PMMA). ), Polyethersulfone (PES), polycarbonate (PC), polyethylenenaphthalate (PEN), polyimide (PI), polyarylate, cyclic olefin polymer (cyclic olefin) polymer, COP), cyclic olefin copolymer (cyclic olefic copolymer, COC), polyethylene (PE, PE), polypropylene (PP), methacryl (methacrylic) and the like.
상기 유기막은 경화성 수지를 인쇄 공정 또는 코팅 공정을 통하여 기재에 도포하고, 이를 열 및/또는 광을 이용하여 경화시킴으로서 형성할 수 있다. 상기 경화성 수지는 경화성 모노머나 폴리머(코폴리머)와 함께 광경화제 또는 촉매를 포함할 수 있다. 이때, 상기 경화성 수지는 잉크젯팅(ink-jetting), 패드 프린팅(pad printing), 스크린 프린팅(screen printing) 등의 인쇄 공정이나, 스핀 코팅(spin-coating), 테이프 캐스팅, 슬롯다이(slot-die) 코팅, 그라비아 코팅, 오프셋 코팅, 스프레이 코팅 등의 코팅 공정을 통해서 기재에 도포될 수 있다. 이와 달리, 상기 유기막은 PECVD 또는 PVD 방식으로 기재에 도포하고 이를 경화시킴으로써 형성될 수 있다. 또는, 상기 유기막은 투명 필름의 형태로 상기 무기막 상에 부착되어 형성될 수 있다.The organic film may be formed by applying a curable resin to a substrate through a printing process or a coating process, and curing it using heat and / or light. The curable resin may include a photocuring agent or a catalyst together with a curable monomer or a polymer (copolymer). In this case, the curable resin may be a printing process such as ink-jetting, pad printing, screen printing, spin-coating, tape casting, slot-die, or the like. ) Can be applied to the substrate through a coating process such as coating, gravure coating, offset coating, spray coating and the like. Alternatively, the organic film may be formed by applying to the substrate and curing the PECVD or PVD method. Alternatively, the organic layer may be attached to the inorganic layer in the form of a transparent film.
상기 제1 층(1441)이 무기막이고 상기 제2 층(1442)이 유기막인 경우, 상기 제1 배리어층(1440)은 상기 제2 층(1442)과 상기 광변환층(1430) 사이에 배치되고 무기물로 형성된 제3 층(미도시)을 더 포함할 수 있다. 상기 제3 층은 상기 제1 층(1441)과 실질적으로 동일한 무기물로 형성되거나, 다른 무기물로 형성될 수 있다.When the first layer 1441 is an inorganic layer and the second layer 1442 is an organic layer, the first barrier layer 1440 is between the second layer 1442 and the light conversion layer 1430. It may further comprise a third layer (not shown) disposed and formed of an inorganic material. The third layer may be formed of substantially the same inorganic material as the first layer 1441, or may be formed of another inorganic material.
또 다른 예로, 상기 제1 층(1441)은 유기막이고, 상기 제2 층(1442)은 무기막일 수 있다. 예를 들어, 상기 제1 층(1441)은 아크릴 고분자 수지를 포함하고, 상기 제2 층(1442)은 알루미늄 산화물, 예를 들면, 알루미나를 포함할 수 있다. 이와 달리, 상기 제1 층(1441)은 헥사메틸디실록산(hexamethyldisiloxane) 또는 파릴렌을 포함하고, 상기 제2 층(1442)은 알루미늄 산화물을 포함할 수 있다. As another example, the first layer 1442 may be an organic layer, and the second layer 1442 may be an inorganic layer. For example, the first layer 1441 may include an acrylic polymer resin, and the second layer 1442 may include aluminum oxide, for example, alumina. Alternatively, the first layer 1441 may include hexamethyldisiloxane or parylene, and the second layer 1442 may include aluminum oxide.
상기 제1 층(1441)이 유기막이고 상기 제2 층(1442)이 무기막인 경우, 상기 제1 배리어층(1440)은 상기 제2 층(1442)과 상기 광변환층(1430) 사이에 배치되고 유기물로 형성된 제3 층(미도시)을 더 포함할 수 있다. 상기 제3 층은 상기 제1 층(1441)과 실질적으로 동일한 유기물로 형성되거나, 다른 종류의 유기물로 형성될 수 있다.When the first layer 1441 is an organic layer and the second layer 1442 is an inorganic layer, the first barrier layer 1440 is between the second layer 1442 and the light conversion layer 1430. It may further include a third layer (not shown) disposed and formed of an organic material. The third layer may be formed of an organic material substantially the same as the first layer 1441, or may be formed of another kind of organic material.
또 다른 예로, 상기 제1 배리어층(1440)은 앞에서 설명한 상기 제1 및 제2 층들(1441, 1442)의 조합을 단위체로하여 이들 단위체가 반복 적층된 구조를 가질 수 있다. 이 경우, 상기 제1 배리어층(1440)은 상기 반복 적층 구조와 상기 광변환층(1430) 사이에 배치되고 앞에서 설명한 상기 제1 및 제2 층들(1441, 1442)의 조합에 대응하는 제3 층을 더 포함할 수 있다. As another example, the first barrier layer 1440 may have a structure in which these units are repeatedly stacked using a combination of the first and second layers 1442 and 1442 described above as a unit. In this case, the first barrier layer 1440 is disposed between the repeating stacked structure and the light conversion layer 1430 and corresponds to a combination of the first and second layers 1441 and 1442 described above. It may further include.
상기 제1 배리어층(1440)에 대해서 도 6을 참조하여 설명하였으나, 상기 제1 배리어층(1440)의 구조는 이에 한정되지 않고 다양한 구조를 가질 수 있다.Although the first barrier layer 1440 has been described with reference to FIG. 6, the structure of the first barrier layer 1440 is not limited thereto and may have various structures.
다시 도 2를 참조하면, 상기 제2 배리어층(1450)은 상기 광변환층(1430) 상에 배치된다. 즉, 상기 광변환층(1430)은 상기 제1 배리어층(1440)과 상기 제2 배리어층(1450) 사이에 배치된다. 상기 제2 배리어층(1450)은 단일 무기막 구조를 가지거나, 2층 이상의 무기막들이 적층된 구조를 가질 수 있다. 이와 달리, 상기 제2 배리어층(1450)은 상기 광변환층(1430)으로부터 유기막 및 무기막이 순차적으로 적층된 구조를 가지거나, 무기막 및 유기막이 순차적으로 적층된 구조를 가질 수 있다. 상기 제2 배리어층(1450)의 구조는 상기 제1 배리어층(1440)의 구조와 동일하거나, 다른 적층 구조를 가질 수 있다. 이때, 상기 제2 배리어층(1450)을 구성하는 무기막 및 유기막 각각은 상기 제1 배리어층(1440)에서 설명한 것과 실질적으로 동일하므로 중복되는 구체적인 설명은 생략한다.Referring back to FIG. 2, the second barrier layer 1450 is disposed on the light conversion layer 1430. That is, the light conversion layer 1430 is disposed between the first barrier layer 1440 and the second barrier layer 1450. The second barrier layer 1450 may have a single inorganic film structure, or may have a structure in which two or more inorganic films are stacked. Alternatively, the second barrier layer 1450 may have a structure in which an organic layer and an inorganic layer are sequentially stacked from the light conversion layer 1430, or a structure in which an inorganic layer and an organic layer are sequentially stacked. The structure of the second barrier layer 1450 may be the same as that of the first barrier layer 1440 or may have a different stacked structure. In this case, each of the inorganic layer and the organic layer constituting the second barrier layer 1450 is substantially the same as that described in the first barrier layer 1440, and thus detailed descriptions thereof will be omitted.
상기 확산 시트(1400)는, 상기 제1 광학층(1420)이 상기 도광판(1200)과 마주보고, 상기 제2 배리어층(1450)이 상기 제1 집광 시트(1500)와 마주보도록 상기 도광판(1200)과 상기 제1 집광 시트(1500) 사이에 배치될 수 있다. 이와 달리, 상기 확산 시트(1400)는 상기 제2 배리어층(1450)이 상기 도광판(1200)과 마주보고 상기 제1 광학층(1420)이 상기 제1 집광 시트(1500)와 마주보도록 상기 도광판(1200)과 상기 제1 집광 시트(1500) 사이에 배치될 수 있다.The diffusion sheet 1400 includes the light guide plate 1200 such that the first optical layer 1420 faces the light guide plate 1200 and the second barrier layer 1450 faces the first light collection sheet 1500. ) And the first light collecting sheet 1500 may be disposed. In contrast, the diffusion sheet 1400 may include the light guide plate such that the second barrier layer 1450 faces the light guide plate 1200 and the first optical layer 1420 faces the first light collecting sheet 1500. 1200 may be disposed between the first light collecting sheet 1500.
상기에서 설명한 백라이트 유닛(1000)은 상기 광변환층(1430)을 포함하는 상기 확산 시트(1400)를 이용함으로써 표시 장치의 색재현 영역을 넓히고 표시 장치가 표시하는 컬러의 색순도 및 색재현성을 향상시킬 수 있다. 이때, 상기 광변환층(1430)이 외부 환경의 광, 수분 및/또는 열 등에 대한 안정성이 높은 발광 복합체(1432)를 이용하고, 이를 보호하는 제1 및 제2 배리어층들(1440, 1450)을 이용함으로써 상기 확산 시트(1400)의 광 안정성 및 수분/열 안정성을 현저하게 향상시킬 수 있다.The backlight unit 1000 described above uses the diffusion sheet 1400 including the light conversion layer 1430 to widen the color reproduction area of the display device and to improve the color purity and color reproducibility of colors displayed by the display device. Can be. In this case, the light conversion layer 1430 uses the light emitting composite 1432 having high stability against light, moisture, and / or heat in an external environment, and protects the first and second barrier layers 1440 and 1450. By using the light stability and the moisture / thermal stability of the diffusion sheet 1400 can be significantly improved.
이하에서는, 도 7 내지 도 11을 참조하여 본 발명의 다른 실시예에 따른 백라이트 유닛들을 설명한다. 본 발명의 다른 실시예들에 따른 백라이트 유닛들 각각은 확산 시트를 제외하고는 도 1에서 설명한 백라이트 유닛과 실질적으로 동일하므로 중복되는 설명은 생략한다. Hereinafter, backlight units according to other exemplary embodiments of the present invention will be described with reference to FIGS. 7 to 11. Each of the backlight units according to other exemplary embodiments of the present disclosure is substantially the same as the backlight unit described with reference to FIG. 1 except for the diffusion sheet, and thus descriptions thereof will not be repeated.
도 7은 본 발명의 다른 실시예에 따른 확산 시트의 단면도이고, 도 8은 도 7의 광변환층에 분산된 형광 복합체를 설명하기 위한 단면도이다.7 is a cross-sectional view of a diffusion sheet according to another exemplary embodiment of the present invention, and FIG. 8 is a cross-sectional view illustrating a fluorescent composite dispersed in the light conversion layer of FIG. 7.
도 7 및 도 8을 도 1과 함께 참조하면, 본 발명의 다른 실시예에 따른 백라이트 유닛에 적용되는 확산 시트(2400)는 제1 투명 필름(2410), 제1 광학층(2420), 광변환층(2430), 제1 배리어층(2440) 및 제2 배리어층(2450)을 포함한다. Referring to FIGS. 7 and 8 together with FIG. 1, the diffusion sheet 2400 applied to the backlight unit according to another exemplary embodiment may include a first transparent film 2410, a first optical layer 2420, and a light conversion. Layer 2430, a first barrier layer 2440, and a second barrier layer 2450.
상기 확산 시트(2400)는 상기 광변환층(2430)을 제외하고는, 도 2에서 설명한 확산 시트(1400)와 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.Since the diffusion sheet 2400 is substantially the same as the diffusion sheet 1400 described with reference to FIG. 2 except for the light conversion layer 2430, detailed descriptions thereof will be omitted.
상기 광변환층(2430)은 상기 제1 및 제2 배리어층들(2440, 2450) 사이에 개재되고, 투광성 수지(2431), 상기 투광성 수지(2431) 내부에 분산된 발광 복합체(2432) 및 형광 입자(2433)를 포함한다. 이때, 상기 광변환층(2430)은 확산 비드들(미도시)을 더 포함할 수 있다.The light conversion layer 2430 is interposed between the first and second barrier layers 2440 and 2450, and includes a light transmissive resin 2431, a light emitting composite 2432 dispersed in the light transmissive resin 2431, and a fluorescent light. Particles 2433. In this case, the light conversion layer 2430 may further include diffusion beads (not shown).
상기 발광 복합체(2432)는 도 4a 내지 도 4c 및 도 5a 내지 도 5c에서 설명한 것과 실질적으로 동일한 구조를 갖되, 왁스 입자의 내부에 적색 나노발광체들이 배치된 적색 발광 복합체일 수 있다. 이와 달리, 상기 발광 복합체(2432)는 하나의 왁스 입자 내부에 적색 나노발광체 및 녹색 나노발광체가 모두 배치된 다색 발광 복합체일 수 있다.The light emitting composite 2432 has a structure substantially the same as that described with reference to FIGS. 4A to 4C and 5A to 5C, and may be a red light emitting composite in which red nano-light emitting bodies are disposed in the wax particles. Alternatively, the light emitting composite 2432 may be a multicolor light emitting composite having both a red nano and a green nano light emitting body disposed inside one wax particle.
일 실시예로서, 상기 형광 입자(2433)는 녹색 형광체를 포함할 수 있다. In one embodiment, the fluorescent particles 2433 may include a green phosphor.
상기 녹색 형광체는 녹색광을 발광하는 화합물로서, 상기 녹색 형광체가 발광하는 녹색광은 약 80 nm 이하의 반치폭(FWHM)을 갖는 발광 스펙트럼을 가질 수 있다. 바람직하게는, 녹색광의 발광 스펙트럼은 약 70 nm 이하의 반치폭을 가질 수 있다. 보다 바람직하게는, 녹색광의 발광 스펙트럼은 약 60 nm 이하의 반치폭을 가질 수 있다.The green phosphor is a compound that emits green light, and the green light emitted by the green phosphor may have an emission spectrum having a full width at half maximum (FWHM) of about 80 nm or less. Preferably, the emission spectrum of the green light may have a half width of about 70 nm or less. More preferably, the emission spectrum of the green light may have a half width of about 60 nm or less.
상기 녹색 형광체로는 실리케이트계 형광체, 실리콘 산화질화물계 형광체, 황화물계 형광체, 시알론(sialon)계 형광체, 산화물계 형광체 등이 사용될 수 있고, 이들은 각각 단독으로 또는 2 이상이 조합되어 사용될 수 있다.As the green phosphor, silicate-based phosphors, silicon oxynitride-based phosphors, sulfide-based phosphors, sialon-based phosphors, oxide-based phosphors, etc. may be used, and these may be used alone or in combination of two or more.
상기 실리케이트계 형광체는 "MSixOy:Re"(x 및 y는 각각 독립적으로 1 이상의 정수)로 나타낼 수 있다. 이때, M은 바륨(Ba), 스트론튬(Sr), 칼슘(Ca) 또는 마그네슘(Mg)을 나타내고, 이들은 각각 단독으로 또는 2 이상이 조합되어 포함될 수 있다. 상기 실리케이트 형광체에서, Si, O 및 Re 각각에 대한 M의 원소비는 다양한 값을 가질 수 있다. 또한, 상기 실리케이트 형광체에서 M이 2 이상의 원소를 포함하는 경우, M을 구성하는 원소들 사이의 원소비도 다양한 값을 가질 수 있다. Re는 유로피움(Eu), 이트륨(Y), 란탄(La), 세륨(Ce), 네오디뮴(Nd), 프로메튬(Pm), 사마륨(Sm), 가돌리늄(Gd), 터븀(Tb), 디스프로슘(Dy), 홀뮴(Ho), 에르븀(Er), 툴륨(Tm), 이테르븀(Yb), 루테튬(Lu), 불소(F), 염소(Cl), 브롬(Br) 또는 요오드(I)를 나타내고, 이들은 각각 단독으로 또는 2 이상이 조합되어 포함될 수 있다. 상기 실리케이트 형광체에서 Re가 2 이상의 원소를 포함하는 경우, Re를 구성하는 원소들 사이의 원소비는 다양한 값을 가질 수 있다. 구체적인 예로서, 상기 실리케이트계 형광체로는 Ba2SiO4:Eu, Ca2SiO4:Eu, Sr2SiO4:Eu, Ba2SrSiO4:Eu, Ca8Mg(SiO4)4Cl2:Eu, Ca2Sr2MgSi2O7:Eu, Ca3Sc2Si3O12:Ce 등이 사용될 수 있다.The silicate-based phosphor may be represented by "MSi x O y : Re" (x and y are each independently an integer of 1 or more). In this case, M represents barium (Ba), strontium (Sr), calcium (Ca) or magnesium (Mg), and these may be included alone or in combination of two or more. In the silicate phosphor, an element ratio of M to Si, O, and Re may have various values. In addition, when M includes two or more elements in the silicate phosphor, an element ratio between elements constituting M may also have various values. Re is europium (Eu), yttrium (Y), lanthanum (La), cerium (Ce), neodymium (Nd), promethium (Pm), samarium (Sm), gadolinium (Gd), terbium (Tb), dysprosium ( Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), fluorine (F), chlorine (Cl), bromine (Br) or iodine (I) These may be included alone or in combination of two or more, respectively. When Re includes two or more elements in the silicate phosphor, an element ratio between elements constituting Re may have various values. As a specific example, the silicate-based phosphor may include Ba 2 SiO 4 : Eu, Ca 2 SiO 4 : Eu, Sr 2 SiO 4 : Eu, Ba 2 SrSiO 4 : Eu, Ca 8 Mg (SiO 4 ) 4 Cl 2 : Eu , Ca 2 Sr 2 MgSi 2 O 7 : Eu, Ca 3 Sc 2 Si 3 O 12 : Ce and the like can be used.
상기 규소 산화질화물계 형광체는 "MSixOyNz:Re"(x, y 및 z는 각각독립적으로 1 이상의 정수)로 나타낼 수 있다. 이때, M 및 Re 각각은 상기에서 설명한 것과 실질적으로 동일하므로 중복되는 설명은 생략한다. 구체적인 예로서, 상기 규소 산화질화물계 형광체로는 BaSi2O2N2:Eu, SrSi2O2N2:Eu, CaSi2O2N2:Eu, Ba3Si6O12N2:Eu 등이 사용될 수 있다.The silicon oxynitride-based phosphor may be represented by "MSi x O y N z : Re" (x, y and z are each independently an integer of 1 or more). At this time, since M and Re are substantially the same as described above, overlapping descriptions are omitted. As a specific example, the silicon oxynitride-based phosphor may include BaSi 2 O 2 N 2 : Eu, SrSi 2 O 2 N 2 : Eu, CaSi 2 O 2 N 2 : Eu, Ba 3 Si 6 O 12 N 2 : Eu, and the like. This can be used.
상기 황화물계 형광체는 "MAxDy:Re"(x 및 y는 각각 독립적으로 1 이상의 정수)로 나타낼 수 있다. 이때, M 및 Re 각각은 상기에서 설명한 것과 실질적으로 동일하므로 중복되는 설명은 생략한다. A는 갈륨(Ga), 알루미늄(Al) 또는 인듐(In)을 나타내고, 이들은 각각 단독으로 또는 2 이상이 조합되어 포함될 수 있다. 상기 황화물계 형광체에서 A가 2이상의 원소를 포함하는 경우, A를 구성하는 원소들 사이의 원소비는 다양한 값을 가질 수 있다. D는 황(S), 셀레늄(Se) 또는 텔루륨(Te)을 나타내고, 이들은 각각 단독으로 또는 2 이상이 조합되어 포함될 수 있다. 상기 황화물계 형광체에서 D가 2이상의 원소를 포함하는 경우, D를 구성하는 원소들 사이의 원소비는 다양한 값을 가질 수 있다. 구체적인 예로서, 상기 황화물계 형광체로는 SrGa2S4:Eu, BaGa2S4:Eu, SrAl2S4:Eu 등이 사용될 수 있다.The sulfide-based phosphor may be represented by "MA x D y : Re" (x and y are each independently an integer of 1 or more). At this time, since M and Re are substantially the same as described above, overlapping descriptions are omitted. A represents gallium (Ga), aluminum (Al) or indium (In), and these may be included alone or in combination of two or more. When A includes two or more elements in the sulfide-based phosphor, the element ratio between the elements constituting A may have various values. D represents sulfur (S), selenium (Se) or tellurium (Te), and these may be included alone or in combination of two or more. When D includes two or more elements in the sulfide-based phosphor, an element ratio between elements constituting D may have various values. As a specific example, in the sulfide-based phosphor is SrGa 2 S 4: Eu, BaGa 2 S 4: Eu, SrAl 2 S 4: Eu There are the like can be used.
상기 시알론계 형광체는 "β-SiAlON:Re"로 나타낼 수 있다. 이때, Re는 상기에서 설명한 것과 실질적으로 동일하므로 중복되는 설명은 생략한다. 구체적인 예로서, 상기 시알론계 형광체로는 β-SiAlON:Eu 등이 사용될 수 있다.The sialon-based phosphor may be represented by "β-SiAlON: Re". In this case, since Re is substantially the same as described above, redundant description is omitted. As a specific example, β-SiAlON: Eu or the like may be used as the sialon-based phosphor.
상기 산화물계 형광체는 "MGxOy:Re'"(x 및 y는 각각 독립적으로 1 이상의 정수)로 나타낼 수 있다. 이때, M은 상기에서 설명한 것과 실질적으로 동일하므로 중복되는 설명은 생략한다. G는 스칸듐(Sc), 이트륨(Y), 가돌리늄(Gd), 란탄(La), 루테튬(Lu), 알루미늄(Al) 또는 인듐(In)을 나타내고, 이들은 각각 단독으로 또는 2 이상이 조합되어 포함될 수 있다. 상기 산화물계 형광체에서 G가 2이상의 원소를 포함하는 경우, G를 구성하는 원소들 사이의 원소비는 다양한 값을 가질 수 있다. Re'는 세륨(Ce), 네오디뮴(Nd), 프로메튬(Pm), 사마륨(Sm), 터븀(Tb), 디스프로슘(Dy), 홀뮴(Ho), 에르븀(Er), 툴륨(Tm), 이테르븀(Yb), 불소(F), 염소(Cl), 브롬(Br) 또는 요오드(I)를 나타내고, 이들은 각각 단독으로 또는 2 이상이 조합되어 포함될 수 있다. 상기 산화물계 형광체에서, Re'가 2 이상의 원소를 포함하는 경우, Re'를 구성하는 원소들 사이의 원소비는 다양한 값을 가질 수 있다. 구체적인 예로서, 상기 산화물계 형광체로는 Sr4Al14O25:Eu, CaSc2O4:Ce, SrAl2O4:Eu 등이 사용될 수 있다.The oxide phosphor may be represented by "MG x O y : Re '" (x and y are each independently an integer of 1 or more). At this time, since M is substantially the same as described above, overlapping description is omitted. G represents scandium (Sc), yttrium (Y), gadolinium (Gd), lanthanum (La), lutetium (Lu), aluminum (Al) or indium (In), each of which may be included alone or in combination of two or more. Can be. When G includes two or more elements in the oxide-based phosphor, the element ratio between the elements constituting G may have various values. Re 'is cerium (Ce), neodymium (Nd), promethium (Pm), samarium (Sm), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium ( Yb), fluorine (F), chlorine (Cl), bromine (Br) or iodine (I), each of which may be included alone or in combination of two or more. In the oxide-based phosphor, when Re 'includes two or more elements, the element ratio between the elements constituting Re' may have various values. As a specific example, Sr 4 Al 14 O 25 : Eu, CaSc 2 O 4 : Ce, SrAl 2 O 4 : Eu, and the like may be used as the oxide-based phosphor.
상기 녹색 형광체의 직경은 약 5 ㎛ 내지 약 55 ㎛일 수 있다. 상기 광전환층(1131)을 형성하는 투광성 수지에 상기 녹색 형광체가 균일하게 분산되기 위해서, 상기 녹색 형광체의 직경은 약 8 ㎛ 내지 약 15 ㎛일 수 있다. 상기 녹색 형광체의 직경은 확산 계수에 관한 스토크스-아인슈타인 방정식(Stokes-Einstein equation)으로 산출하는 동적 광산란법(Dynamic Light Scattering method, DLS법)에 의해 측정된 직경을 의미한다.The green phosphor may have a diameter of about 5 μm to about 55 μm. In order to uniformly disperse the green phosphor in the light transmitting resin forming the light conversion layer 1131, the diameter of the green phosphor may be about 8 μm to about 15 μm. The diameter of the green phosphor refers to the diameter measured by the Dynamic Light Scattering method (DLS method) calculated by the Stokes-Einstein equation for the diffusion coefficient.
다른 실시예로서, 상기 형광 입자(2433)는 도 8에 도시된 바와 같은 녹색 형광 복합체(300)를 포함할 수 있다. In another embodiment, the fluorescent particles 2433 may include the green fluorescent composite 300 as shown in FIG. 8.
상기 녹색 형광 복합체(300)는 왁스 입자(Wx) 및 상기 왁스 입자(Wx)의 내부에 배치된 녹색 형광체(Px)를 포함한다. The green fluorescent composite 300 includes wax particles Wx and green phosphors Px disposed inside the wax particles Wx.
상기 왁스 입자(Wx)는 왁스계 화합물로 형성된다. 상기 왁스계 화합물은 도 2에서 설명한 것과 실질적으로 동일하므로 중복되는 구체적인 설명은 생략한다.The wax particles Wx are formed of a wax compound. Since the wax-based compound is substantially the same as that described in FIG. 2, detailed descriptions thereof will be omitted.
상기 녹색 형광체(Px)는 적어도 1개가 상기 왁스 입자(Wx) 내에 배치될 수 있다. 상기 녹색 형광체(Px)는 도 7에서 설명한 녹색 형광체와 실질적으로 동일하므로 중복되는 구체적인 설명은 생략한다.At least one green phosphor Px may be disposed in the wax particle Wx. Since the green phosphor Px is substantially the same as the green phosphor described with reference to FIG. 7, detailed descriptions thereof will be omitted.
상기 녹색 형광 복합체(300)의 직경은 약 10㎛ 내지 약 70㎛일 수 있다. 상기 녹색 형광 복합체(300)가 상기 광변환층(2430)에 균일하게 분산시키기 위해서, 상기 녹색 형광 복합체(300)의 직경은 약 15㎛ 내지 약 35㎛일 수 있다. 상기 녹색 형광 복합체(300)의 직경은 상기 녹색 형광체의 직경과 같이 동적 광산란법(DLS법)에 의해 측정된 직경을 의미한다.The green fluorescent composite 300 may have a diameter of about 10 μm to about 70 μm. In order to uniformly disperse the green fluorescent composite 300 in the light conversion layer 2430, the diameter of the green fluorescent composite 300 may be about 15 μm to about 35 μm. The diameter of the green fluorescent composite 300 refers to the diameter measured by the dynamic light scattering method (DLS method), such as the diameter of the green phosphor.
상기 확산 시트(2400)는 표면에 광확산 패턴(2421)이 형성된 상기 제1 광학층(2420)이 상기 도광판(1200)과 마주보고, 상기 제2 배리어층(2450)이 상기 제1 집광 시트(1500)와 마주보도록 상기 도광판(1200)과 상기 제1 집광 시트(1500) 사이에 배치될 수 있다. 이와 달리, 상기 확산 시트(2400)는 상기 제2 배리어층(2450)이 상기 도광판(1200)과 마주보고 상기 제1 광학층(2420)이 상기 제1 집광 시트(1500)와 마주보도록 상기 도광판(1200)과 상기 제1 집광 시트(1500) 사이에 배치될 수 있다.In the diffusion sheet 2400, the first optical layer 2420 having the light diffusion pattern 2421 formed on the surface thereof faces the light guide plate 1200, and the second barrier layer 2450 is disposed on the first light collecting sheet ( The light guide plate 1200 and the first light collecting sheet 1500 may be disposed to face 1500. In contrast, the diffusion sheet 2400 may include the light guide plate such that the second barrier layer 2450 faces the light guide plate 1200 and the first optical layer 2420 faces the first light collecting sheet 1500. 1200 may be disposed between the first light collecting sheet 1500.
상기에서 설명한 백라이트 유닛(2000)은 상기 광변환층(2430)을 포함하는 상기 확산 시트(2400)를 이용함으로써 표시 장치의 색재현 영역을 넓히고 표시 장치가 표시하는 컬러의 색순도 및 색재현성을 향상시킬 수 있다. 이때, 상기 광변환층(2430)이 외부 환경의 광, 수분 및/또는 열 등에 대한 안정성이 높은 발광 복합체(2432) 및 형광 입자(2433)를 이용하고, 이를 보호하는 제1 및 제2 배리어층들(2440, 2450)을 이용함으로써 상기 확산 시트(2400)의 광 안정성 및 수분/열 안정성을 현저하게 향상시킬 수 있다.The backlight unit 2000 described above uses the diffusion sheet 2400 including the light conversion layer 2430 to widen the color reproduction area of the display device and to improve color purity and color reproducibility of colors displayed by the display device. Can be. In this case, the light conversion layer 2430 uses a light emitting composite 2432 and fluorescent particles 2433 having high stability against light, moisture, and / or heat in an external environment, and protects the first and second barrier layers. By using the fields 2440 and 2450, the light stability and the moisture / thermal stability of the diffusion sheet 2400 may be significantly improved.
도 9는 본 발명의 또 다른 실시예에 따른 확산 시트를 설명하기 위한 단면도이다.9 is a cross-sectional view for describing a diffusion sheet according to another embodiment of the present invention.
도 9를 도 1과 함께 참조하면, 본 발명의 또 다른 실시예에 따른 백라이트 유닛에 적용되는 확산 시트(3400)는 제1 투명 필름(3410), 제1 광학층(3420), 광변환층(3430), 제1 배리어층(3440), 제2 배리어층(3450), 제2 투명 필름(3460) 및 제2 광학층(3470)을 포함한다. Referring to FIG. 9 together with FIG. 1, the diffusion sheet 3400 applied to the backlight unit according to another exemplary embodiment may include a first transparent film 3410, a first optical layer 3420, and a light conversion layer ( 3430, a first barrier layer 3440, a second barrier layer 3450, a second transparent film 3460, and a second optical layer 3470.
상기 제1 투명 필름(3410), 상기 제1 및 제2 배리어층들(3440, 3450) 및 광확산 패턴(3421)이 그 표면에 형성된 상기 제1 광학층(3420)은 도 2에서 설명한 것과 실질적으로 동일하다. 따라서, 중복되는 상세한 설명은 생략한다.The first optical layer 3420 having the first transparent film 3410, the first and second barrier layers 3440 and 3450, and the light diffusion pattern 3421 formed thereon is substantially the same as that described with reference to FIG. 2. Same as Therefore, redundant descriptions are omitted.
상기 광변환층(3430)은 도 2에서 설명한 광변환층(1430) 또는 도 7에서 설명한 광변환층(2430)과 실질적으로 동일하다. The light conversion layer 3430 is substantially the same as the light conversion layer 1430 described with reference to FIG. 2 or the light conversion layer 2430 described with reference to FIG. 7.
일 예로, 상기 광변환층(3430)은 도 2에서 설명한 것과 같이 적색 발광 복합체를 포함할 수 있다. 또는, 상기 광변환층(3430)은 적색 발광 복합체와 함께 녹색 발광 복합체를 포함하거나, 적색 나노발광체 및 녹색 나노발광체가 하나의 왁스 입자에 의해 피복된 구조를 갖는 다색 발광 복합체를 포함할 수 있다. 상기 광변환층(3430)이 상기 다색 발광 복합체를 포함하는 경우, 상기 광변환층(3430)은 녹색 발광 복합체 및 적색 발광 복합체 중 적어도 하나를 더 포함할 수 있다.For example, the light conversion layer 3430 may include a red light emitting composite as described in FIG. 2. Alternatively, the light conversion layer 3430 may include a green light emitting composite together with a red light emitting composite, or may include a multicolor light emitting composite having a structure in which a red nano light emitting body and a green nano light emitting body are covered by one wax particle. When the light conversion layer 3430 includes the multicolor light emitting composite, the light conversion layer 3430 may further include at least one of a green light emitting composite and a red light emitting composite.
이와 달리, 상기 광변환층(3430)은 도 7에서 설명한 바와 같이 상기 적색 발광 복합체와 함께 녹색 형광체를 포함할 수 있다. 또는, 상기 광변환층(3430)은 상기 적색 발광 복합체와 함께 녹색 형광 복합체를 포함할 수 있다. 또는, 상기 광변환층(3430)은 상기 녹색 형광체나 상기 녹색 형광 복합체와 함께 적색 발광 복합체, 녹색 발광 복합체 및 다색 발광 복합체 중 적어도 하나를 더 포함할 수 있다.In contrast, the light conversion layer 3430 may include a green phosphor together with the red light emitting composite as described with reference to FIG. 7. Alternatively, the light conversion layer 3430 may include a green fluorescent composite together with the red light emitting composite. Alternatively, the light conversion layer 3430 may further include at least one of a red light emitting composite, a green light emitting composite, and a multicolor light emitting composite together with the green phosphor or the green fluorescent composite.
상기 제2 투명 필름(3460)은 상기 제2 배리어층(3450) 상부에 배치되고, 이에 따라 상기 제2 배리어층(3450)은 상기 제2 투명 필름(3460)과 상기 광변환층(3430) 사이에 배치된다. 상기 제2 투명 필름(3460)을 형성하는 재료는 도 2에서 설명한 제1 투명 필름(1410)을 형성하는 재료와 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.The second transparent film 3460 is disposed on the second barrier layer 3450, so that the second barrier layer 3450 is between the second transparent film 3460 and the light conversion layer 3430. Is placed on. Since the material forming the second transparent film 3460 is substantially the same as the material forming the first transparent film 1410 described with reference to FIG. 2, detailed descriptions thereof will be omitted.
상기 제2 광학층(3470)은 상기 제2 투명 필름(3460) 상부에 배치되고, 이에 따라 상기 제2 투명 필름(3460)은 상기 제2 광학층(3470)과 상기 제2 배리어층(3450) 사이에 배치된다. 상기 제2 광학층(3470)은 그 표면에 형성된 광확산 패턴(3471)을 포함한다. 상기 제2 광학층(3470)의 광확산 패턴(3471)은 상기 제1 광학층(3420)의 광확산 패턴(3421)과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다. 다만, 상기 제1 및 제2 광학층들(3420, 3470)의 광확산 패턴들(3421, 3471)은 서로 동일한 형상을 가질 수 있고, 서로 다른 형상을 가질 수도 있다.The second optical layer 3470 is disposed on the second transparent film 3460, so that the second transparent film 3460 is the second optical layer 3470 and the second barrier layer 3450. Is placed in between. The second optical layer 3470 includes a light diffusion pattern 3471 formed on the surface thereof. Since the light diffusion pattern 3471 of the second optical layer 3470 is substantially the same as the light diffusion pattern 341 of the first optical layer 3420, detailed descriptions thereof will be omitted. However, the light diffusion patterns 341 and 3471 of the first and second optical layers 3420 and 3470 may have the same shape or may have different shapes.
한편, 상기 확산 시트(3400)에서는 상기 제2 투명 필름(3460) 상에 상기 제2 광학층(3470)이 형성된 것을 도시하고 설명하였으나, 상기 제2 광학층(3470)은 생략될 수 있다.In the diffusion sheet 3400, the second optical layer 3470 is formed and described on the second transparent film 3460, but the second optical layer 3470 may be omitted.
도 10은 본 발명의 또 다른 실시예에 따른 확산 시트를 설명하기 위한 단면도이다.10 is a cross-sectional view for describing a diffusion sheet according to still another embodiment of the present invention.
도 10을 도 1과 함께 참조하면, 본 발명의 또 다른 실시예에 따른 백라이트 유닛에 적용되는 확산 시트(4400)는 제1 투명 필름(4410), 제1 배리어층(4440), 광변환층(4430), 제2 배리어층(4450), 제2 투명 필름(4460), 제1 광학층(4420) 및 제2 광학층(4470)을 포함한다.Referring to FIG. 10 together with FIG. 1, the diffusion sheet 4400 applied to the backlight unit according to another exemplary embodiment may include a first transparent film 4410, a first barrier layer 4440, and a light conversion layer ( 4430, a second barrier layer 4450, a second transparent film 4460, a first optical layer 4420, and a second optical layer 4470.
상기 광변환층(4430)을 제외하고는, 도 9에서 설명한 확산 시트(3400)와 실질적으로 동일하므로 차이가 있는 점들을 중심으로 설명하고, 중복되는 상세한 설명은 생략한다.Except for the light conversion layer 4430, since it is substantially the same as the diffusion sheet 3400 described with reference to FIG. 9, differences will be described based on differences and detailed description thereof will be omitted.
상기 광변환층(4430)은 상기 제1 배리어층(4440) 상부에 배치된 제1 광변환층(4431) 및 상기 제1 광변환층(4431)과 상기 제2 배리어층(4450) 사이에 배치된 제2 광변환층(4432)을 포함한다.The light conversion layer 4430 is disposed between the first light conversion layer 4431 and the first light conversion layer 4431 and the second barrier layer 4450 disposed on the first barrier layer 4440. A second light conversion layer 4432.
일 예로서, 상기 제1 광변환층(4431)은 녹색 발광 복합체 및 녹색 형광 입자 중 적어도 하나를 포함할 수 있다. 상기 녹색 발광 복합체는 도 4a 내지 도 4c 및 도 5a 내지 도 5c에서 설명한 것과 실질적으로 동일한 구조를 갖고 녹색 나노발광체를 포함한다. 또한, 상기 녹색 형광 입자는 도 7에서 설명한 것과 실질적으로 동일한 녹색 형광체 또는 도 8에서 설명한 것과 실질적으로 동일한 녹색 형광 복합체를 포함한다. 따라서, 중복되는 상세한 설명은 생략한다.As an example, the first light conversion layer 4431 may include at least one of a green light emitting composite and green fluorescent particles. The green light emitting composite has a structure substantially the same as that described with reference to FIGS. 4A to 4C and 5A to 5C and includes green nano light-emitting bodies. In addition, the green fluorescent particles include a green fluorescent substance substantially the same as that described in FIG. 7 or a green fluorescent composite substantially the same as that described in FIG. 8. Therefore, redundant descriptions are omitted.
그리고 상기 제2 광변환층(4432)은 적색 발광 복합체 및 다색 발광 복합체 중 적어도 하나를 포함할 수 있다. 상기 적색 발광 복합체는 도 4a 내지 도 4c 및 도 5a 내지 도 5c에서 설명한 것과 실질적으로 동일한 구조를 갖고 적색 나노발광체를 포함한다. 또한, 상기 다색 발광 복합체는 도 4a 내지 도 4c 및 도 5a 내지 도 5c에서 설명한 것과 실질적으로 동일한 구조를 갖되, 적색 나노발광체와 녹색 나노발광체를 모두 포함한다. The second light conversion layer 4432 may include at least one of a red light emitting composite and a multicolor light emitting composite. The red light-emitting composite has a structure substantially the same as that described with reference to FIGS. 4A to 4C and 5A to 5C and includes a red nano light-emitting body. In addition, the multicolor light-emitting composite has a structure substantially the same as that described in FIGS. 4A to 4C and 5A to 5C, and includes both a red nano light emitting body and a green nano light emitting body.
한편, 상기 제2 광변환층(4432)은 상기 적색 발광 복합체 및/또는 상기 다색 발광 복합체와 함께, 상기 녹색 발광 복합체 및 상기 녹색 형광 입자 중 적어도 하나를 더 포함할 수 있다.Meanwhile, the second light conversion layer 4432 may further include at least one of the green light emitting composite and the green fluorescent particles together with the red light emitting composite and / or the multicolor light emitting composite.
상기 광변환층(4430)이 순차적으로 적층된 상기 제1 및 제2 광변환층들(4431, 4432)을 포함하고, 도광판(1200)에서 출사된 광이 상기 제1 광변환층(4431)을 통과한 후에 상기 제2 광변환층(4432)을 통과하는 경우, 상기 제1 광변환층(4431)에서 생성되는 녹색광의 일부가 상기 제2 광변환층(4432)의 상기 적색 발광 복합체 및/또는 상기 다색 발광 복합체의 적색 나노발광체를 여기(excitation)시키게 된다. 이에 따라, 상기 제2 광변환층(4432)의 상기 적색 발광 복합체 및/또는 상기 다색 발광 복합체의 상기 적색 나노발광체는 발광 소자(1100)가 제공하는 광뿐만 아니라, 상기 제1 광변환층(4431)에서 생성된 녹색광의 일부에 의해서 여기될 수 있다. 즉, 상기 제2 광변환층(4432)의 상기 적색 발광 복합체 및/또는 상기 다색 발광 복합체의 상기 적색 나노발광체는 상기 제1 광변환층(4431) 및 상기 발광 소자(1100)로부터 여기 되기에 충분한 광을 제공받을 수 있다. 뿐만 아니라, 상기 제1 광변환층(4431)에 상기 녹색 발광 복합체가 분산되는 경우, 상기 녹색 발광 복합체는 상기 발광 소자(1100)로부터 1차적으로 광을 제공받으므로 상기 제2 광변환층(4432)에 비해 상대적으로 높은 에너지를 전달받을 수 있어 상기 녹색 발광 복합체가 생성하는 광의 파워 밀도(power density)를 극대화시킬 수 있다.The light conversion layer 4430 includes the first and second light conversion layers 4431 and 4432 stacked sequentially, and the light emitted from the light guide plate 1200 may pass through the first light conversion layer 4431. When passing through the second light conversion layer 4432 after the passage, a part of the green light generated by the first light conversion layer 4431 is transmitted to the red light emitting composite and / or of the second light conversion layer 4432. The red nano light-emitting body of the multi-color light emitting complex is excited. Accordingly, the red light emitting composite of the second light conversion layer 4432 and / or the red nano light emitting body of the multicolor light emitting composite may not only provide light provided by the light emitting device 1100, but also the first light converting layer 4431. May be excited by some of the green light produced by That is, the red light emitting composite of the second light conversion layer 4432 and / or the red nano light emitting body of the multicolor light emitting composite is sufficient to be excited from the first light conversion layer 4431 and the light emitting device 1100. Light may be provided. In addition, when the green light emitting composite is dispersed in the first light conversion layer 4431, since the green light emitting composite receives light primarily from the light emitting device 1100, the second light conversion layer 4432. Relatively high energy can be delivered, and thus the power density of light generated by the green light-emitting composite can be maximized.
다른 예로서, 상기 제1 광변환층(4431)이 상기 적색 발광 복합체 및 상기 다색 발광 복합체 중 적어도 어느 하나를 포함하고, 상기 제2 광변환층(4432)이 상기 녹색 발광 복합체, 상기 녹색 형광체 및 상기 녹색 형광 복합체 중 적어도 하나를 포함할 수 있다.As another example, the first light conversion layer 4431 includes at least one of the red light emitting composite and the multicolor light emitting composite, and the second light conversion layer 4432 includes the green light emitting composite, the green phosphor and It may include at least one of the green fluorescent complex.
한편, 상기 제1 및 제2 광변환층들(4431, 4432) 중 적어도 어느 하나는 확산 비드들을 더 포함할 수 있다. 상기 광변환층(4430)이 상기 확산 비드들을 포함하는 경우, 상기 제1 및 제2 광학층들(4420, 4470)은 생략될 수 있다.Meanwhile, at least one of the first and second photoconversion layers 4431 and 4432 may further include diffusion beads. When the light conversion layer 4430 includes the diffusion beads, the first and second optical layers 4420 and 4470 may be omitted.
도 11은 본 발명의 또 다른 실시예에 따른 확산 시트를 설명하기 위한 단면도이다.11 is a cross-sectional view for describing a diffusion sheet according to still another embodiment of the present invention.
도 11을 도 1과 함께 참조하면, 본 발명의 또 다른 실시예에 따른 백라이트 유닛에 적용되는 확산 시트(5400)는 제1 투명 필름(5410), 제1 배리어층(5440), 광변환층(5430), 제2 배리어층(5450), 제2 투명 필름(5460), 제1 광학층(5420) 및 제2 광학층(5470)을 포함한다. 상기 확산 시트(5400)는 상기 광변환층(5430)을 제외하고는 도 10에서 설명한 확산 시트(4400)와 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.Referring to FIG. 11 together with FIG. 1, the diffusion sheet 5400 applied to the backlight unit according to another exemplary embodiment may include a first transparent film 5410, a first barrier layer 5440, and a light conversion layer ( 5430, a second barrier layer 5450, a second transparent film 5460, a first optical layer 5520, and a second optical layer 5470. Since the diffusion sheet 5400 is substantially the same as the diffusion sheet 4400 described with reference to FIG. 10 except for the light conversion layer 5430, detailed descriptions thereof will be omitted.
상기 광변환층(5430)은 상기 제1 배리어층(5440)과 상기 제2 배리어층(5450) 사이에 배치되고, 상기 제1 배리어층(5440) 상에 형성된 제1 광변환층(5431), 상기 제1 광변환층(5431)과 상기 제2 배리어층(5450) 사이에 형성된 제2 광변환층(5432) 및 상기 제1 광변환층(5431)과 상기 제2 광변환층(5432) 사이에 개재된 접착층(5433)을 포함한다.The photoconversion layer 5430 is disposed between the first barrier layer 5440 and the second barrier layer 5450, and includes a first photoconversion layer 5431 formed on the first barrier layer 5440, Between the first light conversion layer 5431 and the second barrier layer 5450, the second light conversion layer (5432) and between the first light conversion layer (5431) and the second light conversion layer (5432) And an adhesive layer 5433 interposed therebetween.
상기 제1 광변환층(5431)과 상기 제2 광변환층(5432)은 도 10에서 설명한 것과 실질적으로 동일하므로, 이에 대한 중복되는 상세한 설명은 생략한다.Since the first light conversion layer 5431 and the second light conversion layer 5432 are substantially the same as those described with reference to FIG. 10, detailed description thereof will be omitted.
상기 접착층(5433)은 상기 제1 광변환층(5431)과 상기 제2 광변환층(5432)을 접착시키는 역할을 한다. 상기 접착층(5433)은 접착성 화합물이 경화되면서 상기 제1 광변환층(5431)과 상기 제2 광변환층(5432)을 접착시킬 수 있다. 상기 접착층(5433)은 특별히 한정되지 않고, 광을 투과하며 접착성을 갖는 수지이면 통상적으로 알려진 것을 제한 없이 이용하여 형성할 수 있다.The adhesive layer 5433 serves to bond the first light conversion layer 5431 and the second light conversion layer 5432. The adhesive layer 5433 may bond the first light conversion layer 5431 and the second light conversion layer 5432 while the adhesive compound is cured. The adhesive layer 5433 is not particularly limited and may be formed using any conventionally known resin as long as it is a resin that transmits light and has adhesiveness.
상기 접착층(5433)은 흡습제를 포함할 수 있다. 상기 흡습제는 상기 제1 및 제2 광변환층들(5431, 5432) 각각으로 유입된 수분을 흡수하여 제거할 수 있다. 상기 흡습제의 예로서는, 산화칼슘(calcium oxide), 산화바륨(barium oxide), 산화스트론튬(strontium oxide), 산화마그네슘(magnesium oxide), 탄산칼슘(calcium carbonate), 황산마그네슘(magnesium sulfate) 등의 금속 산화물, 산화알루미늄 아실레이트(aluminium oxide acylate), 산화알루미늄 알콕사이드(aluminum oxide alkoxide), 산화알루미늄 알킬레이트(aluminum oxide alylate) 등의 유기금속화합물이나 제올라이트(zeolite) 등을 들 수 있다. 이들은 각각 단독으로 또는 2 이상을 혼합하여 이용할 수 있다.The adhesive layer 5433 may include a moisture absorbent. The moisture absorbent may absorb and remove moisture introduced into each of the first and second light conversion layers 5431 and 5432. Examples of the moisture absorbent include metal oxides such as calcium oxide, barium oxide, strontium oxide, magnesium oxide, calcium carbonate, and magnesium sulfate. And organometallic compounds such as aluminum oxide acylate, aluminum oxide alkoxide and aluminum oxide alylate, zeolites, and the like. These can be used individually or in mixture of 2 or more, respectively.
도 11에서는, 상기 접착층(5433)이 상기 제1 및 제2 광변환층들(5431, 5432) 사이에 배치된 것을 일례로 도시하여 설명하였으나, 상기 광변환층(5430)은 상기 제1 배리어층(5440)과 상기 제1 광변환층(5431) 사이에 배치된 접착층을 포함하거나, 상기 제2 배리어층(5450)과 상기 제2 광변환층(5432) 사이에 배치된 접착층을 포함할 수 있다. 또는, 상기 광변환층(5430)은 상기 제1 및 제2 광변환층들(5431, 5432) 사이에 배치된 접착층(5433) 외에 추가적으로 상기 제1 배리어층(5440)과 상기 제1 광변환층(5431) 사이에 배치된 접착층 및 상기 제2 배리어층(5450)과 상기 제2 광변환층(5432) 사이에 배치된 접착층 중 하나 이상을 더 포함할 수 있다.In FIG. 11, the adhesive layer 5433 is disposed between the first and second light conversion layers 5431 and 5432 as an example, but the light conversion layer 5430 is the first barrier layer. It may include an adhesive layer disposed between the 5440 and the first light conversion layer (5431), or may include an adhesive layer disposed between the second barrier layer 5450 and the second light conversion layer (5432). . Alternatively, the light conversion layer 5430 may additionally include the first barrier layer 5440 and the first light conversion layer in addition to the adhesive layer 5433 disposed between the first and second light conversion layers 5431 and 5432. The adhesive layer may further include one or more of an adhesive layer disposed between the 5453 and an adhesive layer disposed between the second barrier layer 5450 and the second light conversion layer 5432.
상기에서 설명한 바에 따르면, 상기 확산 시트(5400)는 적색 발광 복합체 및/또는 녹색 발광 복합체와 같은 발광 복합체를 이용함으로써 백라이트 유닛이 제공하는 백색광이 표시 장치의 컬러필터를 통과하여 구현되는 영상의 색재현성을 향상시킬 수 있다.As described above, the diffusion sheet 5400 uses a light emitting composite such as a red light emitting composite and / or a green light emitting composite, so that the white light provided by the backlight unit passes through the color filter of the display device. Can improve.
동시에, 상기 확산 시트(5400)는 상기 발광 복합체를 상기 제1 및 제2 배리어층들(5431, 5432)과 함께 이용함으로써 나노발광체가 외부 환경의 광, 수분 및/또는 열 등에 의해서 손상되는 것을 최소화할 수 있다. 즉, 상기 나노발광체는 상기 발광 복합체를 구성하는 왁스 입자뿐만 아니라 상기 제1 및 제2 배리어층들(5431, 5432)에 의해서 외부 환경으로부터 보호될 수 있다. 나아가, 추가적으로 상기 광변환층(5430)에 상기 흡습제를 포함하는 접착층(5433)을 적용함으로써 상기 나노발광체가 외부 환경으로부터 보호될 수 있다.At the same time, the diffusion sheet 5400 uses the light emitting composite together with the first and second barrier layers 5431 and 5432 to minimize damage to the nano light-emitting body by light, moisture, and / or heat of an external environment. can do. That is, the nano light-emitting body may be protected from the external environment by the first and second barrier layers 5431 and 5432 as well as the wax particles constituting the light-emitting composite. In addition, the nano light-emitting body may be protected from the external environment by applying the adhesive layer 5433 including the moisture absorbent to the light conversion layer 5430.
또한, 상기 광변환층(5430)이 상기 녹색 형광 복합체를 포함하는 경우, 상기 녹색 형광 복합체가 상기 광변환층(5430)에 균일하게 분산되면서도 분산 안정성이 좋기 때문에 상기 광변환층(5430)의 제조 신뢰성 및 제품 신뢰성을 향상시킬 수 있다.In addition, when the light conversion layer 5430 includes the green fluorescent composite, the green fluorescent composite is uniformly dispersed in the light conversion layer 5430, but the dispersion stability is good because the manufacturing of the light conversion layer 5430 Reliability and product reliability can be improved.
도 12는 본 발명의 또 다른 실시예에 따른 백라이트 유닛을 설명하기 위한 단면도이고, 도 13은 도 12의 광변환 시트를 설명하기 위한 단면도이다.12 is a cross-sectional view for describing a backlight unit according to still another embodiment of the present invention, and FIG. 13 is a cross-sectional view for explaining the light conversion sheet of FIG. 12.
도 12 및 도 13을 참조하면, 백라이트 유닛(6000)은 발광 소자(6100), 도광판(6200), 반사판(6300), 광변환 필름(6700), 확산 시트(6400), 제1 집광 시트(6500) 및 제2 집광 시트(6600)를 포함한다.12 and 13, the backlight unit 6000 may include a light emitting element 6100, a light guide plate 6200, a reflecting plate 6300, a light conversion film 6700, a diffusion sheet 6400, and a first light collecting sheet 6500. ) And the second light collecting sheet 6600.
상기 백라이트 유닛(6000)은 상기 광변환 필름(6700) 및 상기 확산 시트(6400)를 제외하고는 도 1에서 설명한 백라이트 유닛(1000)과 실질적으로 동일하다. 따라서, 중복되는 상세한 설명은 생략한다.The backlight unit 6000 is substantially the same as the backlight unit 1000 described with reference to FIG. 1 except for the light conversion film 6700 and the diffusion sheet 6400. Therefore, redundant descriptions are omitted.
상기 확산 시트(6400)는 베이스 필름 및 광확산층을 포함하는 통상의 확산 시트이다. 상기 광확산층은 상기 베이스 필름의 일 면에 형성되거나, 양면에 각각 형성될 수 있다. 상기 광확산층은 그 표면에 형성된 광확산 패턴을 포함하고, 상기 광확산 패턴은 도 2에서 설명한 제1 광학층(1420)의 광확산 패턴(1421)과 실질적으로 동일할 수 있다. 이와 달리, 상기 광확산층은 확산 비드들을 포함할 수 있다. 상기 광확산층이 상기 확산 비드를 포함하는 경우, 상기 광확산층의 표면은 평탄면(planarized surface)일 수 있다.The diffusion sheet 6400 is a conventional diffusion sheet including a base film and a light diffusion layer. The light diffusing layer may be formed on one surface of the base film or on both surfaces thereof. The light diffusion layer may include a light diffusion pattern formed on a surface thereof, and the light diffusion pattern may be substantially the same as the light diffusion pattern 1421 of the first optical layer 1420 described with reference to FIG. 2. Alternatively, the light diffusing layer may include diffusion beads. When the light diffusing layer includes the diffusion beads, the surface of the light diffusing layer may be a planarized surface.
상기 광변환 필름(6700)은 상기 도광판(6200)과 상기 확산 시트(6400) 사이에 배치될 수 있다. 상기 광변환 필름(6700)은 제1 투명 필름(6710), 제1 배리어층(6740), 광변환층(6730), 제2 배리어층(6750) 및 제2 투명 필름(6760)을 포함한다.The light conversion film 6700 may be disposed between the light guide plate 6200 and the diffusion sheet 6400. The light conversion film 6700 may include a first transparent film 6710, a first barrier layer 6740, a light conversion layer 6730, a second barrier layer 6750, and a second transparent film 6560.
상기 제1 투명 필름(6710) 및 상기 제2 투명 필름(6760) 각각은 도 9에서 설명한 제1 및 제2 투명 필름들(3410, 3460)과 실질적으로 동일하다. 상기 제1 배리어층(6740) 및 상기 제2 배리어층(6750) 각각은 도 2에서 설명한 제1 및 제2 배리어층들(1440, 1450)과 실질적으로 동일하다. 또한, 상기 광변환층(6730)은 도 13에 도시된 바와 같이 도 10에서 설명한 광변환층(4430)의 구조와 동일하거나 도 2 내지 도 9 및 도 11에서 설명한 광변환층(1430, 2430, 3430, 5430)의 구조들 중 어느 하나의 구조를 가질 수 있다. 따라서, 중복되는 상세한 설명은 생략한다. 한편, 상기 제1 투명 필름(6710) 및 상기 제2 투명 필름(6760) 중 어느 하나는 생략될 수 있다.Each of the first transparent film 6710 and the second transparent film 6560 is substantially the same as the first and second transparent films 3410 and 3460 described with reference to FIG. 9. Each of the first barrier layer 6740 and the second barrier layer 6750 is substantially the same as the first and second barrier layers 1440 and 1450 described with reference to FIG. 2. In addition, the light conversion layer 6730 has the same structure as that of the light conversion layer 4430 described with reference to FIG. 10 or the light conversion layers 1430, 2430, described with reference to FIGS. 2 to 9 and 11, as shown in FIG. 13. It may have any one of the structures of 3430, 5430. Therefore, redundant descriptions are omitted. Meanwhile, any one of the first transparent film 6710 and the second transparent film 6760 may be omitted.
한편, 상기 광변환 필름(6700)은 상기 제1 투명 필름(6710)의 일면 상에 형성된 제1 광학층(미도시) 및 상기 제2 투명 필름(6760)의 일면 상에 형성된 제2 광학층(미도시) 중 적어도 하나를 더 포함할 수 있다. 상기 제1 광학층은 상기 제1 배리어층(6740)이 형성된 면과 대향하는 상기 제1 투명 필름(6710)의 일면 상에 형성되고, 상기 제2 광학층은 상기 제2 배리어층(6750)이 형성된 면과 대향하는 상기 제2 투명 필름(6760)의 일면 상에 형성될 수 있다.Meanwhile, the light conversion film 6700 may include a first optical layer (not shown) formed on one surface of the first transparent film 6710 and a second optical layer formed on one surface of the second transparent film 6760. Not shown) may be further included. The first optical layer is formed on one surface of the first transparent film 6710 facing the surface on which the first barrier layer 6740 is formed, and the second optical layer is formed on the second barrier layer 6750. It may be formed on one surface of the second transparent film (6760) facing the formed surface.
한편, 도 12 및 도 13에서는, 상기 광변환 필름(6700)이 상기 도광판(6200)과 상기 확산 시트(6400) 사이에 배치된 경우를 일례로 들어 설명하였으나, 상기 광변환 필름(6700)은 상기 확산 시트(6400)와 상기 제1 집광 시트(6500) 사이에 배치될 수 있다.12 and 13 illustrate the case where the light conversion film 6700 is disposed between the light guide plate 6200 and the diffusion sheet 6400, but the light conversion film 6700 is described above. The diffusion sheet 6400 and the first light collecting sheet 6500 may be disposed.
상기에서 설명한 바에 따르면, 상기 광변환 필름(6700)은 상기 도광판(6200), 상기 확산 시트(6400), 상기 제1 및 제2 집광 시트들(6500, 6600)과 독립한 별도의 광학 시트로서 상기 백라이트 유닛(6000)에 포함될 수 있다. 상기 백라이트 유닛(6000)이 상기 광변환 필름(6700)을 이용함으로써 표시 장치의 색재현성을 향상시킬 수 있고, 동시에 상기 제1 및 제2 배리어층들(6740, 6750)에 의해 상기 광변환층(6730)이 외부 환경의 광, 수분 및/또는 열 등에 의해서 손상되는 것을 최소화할 수 있다.As described above, the light conversion film 6700 is a separate optical sheet independent of the light guide plate 6200, the diffusion sheet 6400, and the first and second light collecting sheets 6500 and 6600. It may be included in the backlight unit 6000. By using the light conversion film 6700, the backlight unit 6000 may improve the color reproducibility of the display device, and at the same time, the light conversion layer may be formed by the first and second barrier layers 6740 and 6750. 6730 can be minimized to damage by light, moisture and / or heat of the external environment.
도 14는 본 발명의 또 다른 실시예에 따른 백라이트 유닛을 설명하기 위한 단면도이고, 도 15는 도 14의 제1 집광 시트를 설명하기 위한 단면도이다.14 is a cross-sectional view for describing a backlight unit according to still another embodiment of the present invention, and FIG. 15 is a cross-sectional view for explaining a first light collecting sheet of FIG. 14.
도 14 및 도 15를 참조하면, 백라이트 유닛(7000)은 발광 소자(7100), 도광판(7200), 반사판(7300), 확산 시트(7400), 제1 집광 시트(7500) 및 제2 집광 시트(7600)를 포함한다. 상기 백라이트 유닛(7000)은 상기 확산 시트(7400) 및 상기 제1 집광 시트(7500)를 제외하고는 도 1에서 설명한 백라이트 유닛(1000)과 실질적으로 동일하고, 상기 확산 시트(7400)는 도 12에서 설명한 확산 시트(6400)와 실질적으로 동일하다. 따라서, 중복되는 상세한 설명은 생략한다.14 and 15, the backlight unit 7000 may include a light emitting element 7100, a light guide plate 7200, a reflecting plate 7300, a diffusion sheet 7400, a first light collecting sheet 7500, and a second light collecting sheet ( 7600). The backlight unit 7000 is substantially the same as the backlight unit 1000 described with reference to FIG. 1 except for the diffusion sheet 7400 and the first light collecting sheet 7500, and the diffusion sheet 7400 is illustrated in FIG. 12. It is substantially the same as the diffusion sheet 6400 described above. Therefore, redundant descriptions are omitted.
상기 제1 집광 시트(7500)는 제1 투명 필름(7510), 제1 배리어층(7540), 광변환층(7530), 제2 배리어층(7550), 제2 투명 필름(7560) 및 제1 광학층(7570)을 포함한다.The first light collecting sheet 7500 may include a first transparent film 7510, a first barrier layer 7750, a light conversion layer 7530, a second barrier layer 7750, a second transparent film 7560, and a first transparent film 7510. Optical layer 7570.
상기 제1 투명 필름(7510) 및 상기 제2 투명 필름(7560) 각각은 도 9에서 설명한 제1 및 제2 투명 필름들(3410, 3460)과 실질적으로 동일하고, 상기 제1 배리어층(7540) 및 상기 제2 배리어층(7550) 각각은 도 2에서 설명한 제1 및 제2 배리어층들(1440, 1450)과 실질적으로 동일하며, 상기 광변환층(7530)은 제1 광변환층(7531) 및 제2 광변환층(7532)을 포함할 수 있다. 상기 제1 및 제2 광변환층들(7531, 7532) 각각은 도 10에서 설명한 제1 및 제2 광변환층들(4431, 4432) 각각과 실질적으로 동일하므로 중복되는 설명은 생략한다. 이와 달리, 상기 광변환층(7530)은 도 2 내지 도 9와 도 11에서 설명한 광변환층(1430, 2430, 3430, 5430)의 구조들 중 어느 하나의 구조를 가질 수 있다. 따라서, 이들에 대한 중복되는 상세한 설명은 생략한다.Each of the first transparent film 7510 and the second transparent film 7560 is substantially the same as the first and second transparent films 3410 and 3460 described with reference to FIG. 9, and the first barrier layer 7540. And each of the second barrier layers 7750 is substantially the same as the first and second barrier layers 1440 and 1450 described with reference to FIG. 2, and the light conversion layer 7530 is the first light conversion layer 7531. And a second light conversion layer 7532. Each of the first and second photoconversion layers 7531 and 7532 is substantially the same as each of the first and second photoconversion layers 4431 and 4432 described with reference to FIG. 10, and thus descriptions thereof will be omitted. Alternatively, the light conversion layer 7530 may have any one of the structures of the light conversion layers 1430, 2430, 3430, and 5430 described with reference to FIGS. 2 to 9 and 11. Therefore, detailed description thereof will be omitted.
상기 제1 광학층(7570)은 상기 제2 투명 필름(7560) 상에 형성된다. 이에 따라, 상기 제2 투명 필름(7560)이 상기 제1 광학층(7570)과 상기 제2 배리어층(7550) 사이에 배치될 수 있다. 상기 제1 광학층(7570)은 그 표면에 형성된 집광 패턴(7571)을 포함한다. 상기 집광 패턴(7571)은 상기 제2 투명 필름(7560)을 통과한 광을 수직 방향으로 굴절시킬 수 있는 단면 형상을 가질 수 있다.The first optical layer 7570 is formed on the second transparent film 7560. Accordingly, the second transparent film 7560 may be disposed between the first optical layer 7570 and the second barrier layer 7750. The first optical layer 7570 includes a light collecting pattern 7551 formed on a surface thereof. The condensing pattern 7551 may have a cross-sectional shape that may refract light passing through the second transparent film 7560 in a vertical direction.
예를 들어, 상기 집광 패턴(7571)은 복수의 돌출부들을 포함하고, 상기 돌출부들 각각의 단면은 삼각형 형상을 가질 수 있다. 상기 돌출부들은 제1 방향으로 연장되고, 상기 제1 방향과 교차하는 제2 방향을 따라 연속적으로 배열될 수 있다. 일례로, 상기 돌출부들 각각은 높이가 일정한 삼각 기둥 형상을 가질 수 있다. 이와 달리, 상기 돌출부들 각각의 높이는 상기 제1 방향을 따라 변화될 수 있다. 이때, 상기 돌출부의 높이는 상기 제1 방향을 따라 선형적으로 변화될 수도 있고 비선형적으로 변화될 수 있다. 나아가, 돌출부의 높이는 소정의 주기를 갖도록 변화될 수 있으나 불규칙적으로 변화될 수도 있다. 이 경우, 각각의 돌출부의 높이는 서로 독립적으로 변화될 수도 있다. 상기 집광 패턴(7571)을 구성하는 각 돌출부의 꼭지각은 약 90°일 수 있으나, 필요에 따라 적절히 조절될 수 있다. 상기 제1 방향을 따라서 돌출부의 높이가 변화되는 경우에는 위치에 따라 꼭지각이 달라질 수 있다.For example, the condensing pattern 7551 may include a plurality of protrusions, and each of the protrusions may have a triangular shape. The protrusions extend in a first direction and may be continuously arranged in a second direction crossing the first direction. For example, each of the protrusions may have a triangular pillar shape having a constant height. In contrast, the height of each of the protrusions may vary along the first direction. In this case, the height of the protrusion may be changed linearly or non-linearly along the first direction. Furthermore, the height of the protrusions may be changed to have a predetermined period but may be changed irregularly. In this case, the height of each protrusion may be changed independently of each other. The vertex angle of each protrusion constituting the condensing pattern 7551 may be about 90 °, but may be appropriately adjusted as necessary. When the height of the protrusion changes along the first direction, the vertex angle may vary according to the position.
한편, 도면에 도시되지 않았지만, 상기 제1 투명 필름(7510) 상에는 제2 광학층(미도시)이 더 형성될 수 있다. 이 경우, 상기 제1 투명 필름(7510)이 상기 제2 광학층과 상기 제1 배리어층(7540) 사이에 배치될 수 있다. 상기 제2 광학층은 그 표면에 형성된 광확산 패턴을 포함하고, 상기 광확산 패턴은 도 2에서 설명한 광확산 패턴(1421)과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.Although not shown in the drawings, a second optical layer (not shown) may be further formed on the first transparent film 7510. In this case, the first transparent film 7510 may be disposed between the second optical layer and the first barrier layer 7540. The second optical layer includes a light diffusion pattern formed on a surface thereof, and the light diffusion pattern is substantially the same as the light diffusion pattern 1421 described with reference to FIG.
한편, 도 14 및 도 15에서는 상기 제1 집광 시트(7500)를 일례로 들어 설명하였으나, 상기 제1 집광 시트(7500)로는 도 1에서 설명한 백라이트 유닛(1000)에서의 제1 집광 시트(1500)를 이용하고, 상기 제1 집광 시트(7500) 상에 배치되는 제2 집광 시트(7600)를 도 14 및 도 15에서 설명된 구조로 형성하여 백라이트 유닛(7000)을 구성할 수도 있다.14 and 15 illustrate the first light collecting sheet 7500 as an example, the first light collecting sheet 1500 may be the first light collecting sheet 1500 of the backlight unit 1000 described with reference to FIG. 1. The second light collecting sheet 7600 disposed on the first light collecting sheet 7500 may be formed in the structure described with reference to FIGS. 14 and 15 to configure the backlight unit 7000.
또 다른 한편, 제1 집광 시트(7500) 및 제2 집광 시트(7600) 각각을 제1 투명 필름, 제1 배리어층, 광변환층, 제2 배리어층, 제2 투명 필름 및 제1 광학층을 포함하도록 구성하되, 상기 제1 집광 시트(7500)의 광변환층에는 녹색 발광 복합체, 녹색 형광체 및 녹색 형광 복합체 중 적어도 어느 하나가 분산되고, 상기 제2 집광 시트(7600)의 광변환층에는 적색 발광 복합체가 분산되도록 구성할 수 있다. 이때, 상기 제2 집광 시트(7600)의 광변환층에는 적색 발광 복합체 대신 적색 나노발광체 및 녹색 나노발광체를 포함하는 다색 발광 복합체나, 상기 적색 발광 복합체와 함께 상기 다색 발광 복합체가 분산될 수 있다. 이와 달리, 상기 제2 집광 시트(7600)의 광변환층에는 상기 적색 발광 복합체와 함께, 상기 녹색 발광 복합체, 상기 녹색 형광체 및 상기 녹색 형광 복합체 중 적어도 하나가 분산될 수 있다.On the other hand, each of the first light collecting sheet 7500 and the second light collecting sheet 7600 may include a first transparent film, a first barrier layer, a light conversion layer, a second barrier layer, a second transparent film, and a first optical layer. And a green light emitting composite, a green phosphor, and a green fluorescent composite are dispersed in the light conversion layer of the first light collecting sheet 7500, and red in the light conversion layer of the second light collecting sheet 7700. The light emitting complex may be configured to be dispersed. In this case, in the light conversion layer of the second light collecting sheet 7600, the multi-color light emitting composite including the red nano light emitting body and the green nano light emitting body instead of the red light emitting composite, or the multi-color light emitting composite together with the red light emitting composite may be dispersed. Alternatively, at least one of the green light emitting composite, the green phosphor, and the green fluorescent composite may be dispersed in the light conversion layer of the second light collecting sheet 7600 together with the red light emitting composite.
도 16은 본 발명의 또 다른 실시예에 따른 백라이트 유닛을 설명하기 위한 단면도이고, 도 17은 도 16의 집광 시트를 설명하기 위한 단면도이다.FIG. 16 is a cross-sectional view illustrating a backlight unit according to still another embodiment of the present invention, and FIG. 17 is a cross-sectional view illustrating the light collecting sheet of FIG. 16.
도 16 및 도 17을 참조하면, 백라이트 유닛(8000)은 발광 소자(8100), 도광판(8200), 반사판(8300) 및 역프리즘 시트(8500)를 포함한다.16 and 17, the backlight unit 8000 includes a light emitting element 8100, a light guide plate 8200, a reflecting plate 8300, and an inverted prism sheet 8500.
상기 발광 소자(8100), 상기 도광판(8200) 및 상기 반사판(8300)은 도 1에서 설명한 발광 소자(1100), 도광판(1200) 및 반사판(1300)과 실질적으로 동일하다. 따라서, 중복되는 상세한 설명은 생략한다.The light emitting device 8100, the light guide plate 8200, and the reflecting plate 8300 are substantially the same as the light emitting device 1100, the light guide plate 1200, and the reflecting plate 1300 described with reference to FIG. 1. Therefore, redundant descriptions are omitted.
상기 역프리즘 시트(8500)는 상기 도광판(8200) 상부에 배치된다. 구체적으로, 상기 역프리즘 시트(8500)는 상기 도광판(8200)을 사이에 두고 상기 반사판(8300)과 마주보도록 상기 도광판(8200) 상부에 배치된다. The reverse prism sheet 8500 is disposed on the light guide plate 8200. Specifically, the reverse prism sheet 8500 is disposed on the light guide plate 8200 so as to face the reflective plate 8300 with the light guide plate 8200 interposed therebetween.
상기 역프리즘 시트(8500)는 제1 투명 필름(8510), 제1 배리어층(8540), 광변환층(8530), 제2 배리어층(8550), 제2 투명 필름(8560), 제1 및 제2 광학층들(8520, 8570)을 포함한다.The anti-prism sheet 8500 may include a first transparent film 8510, a first barrier layer 8540, a light conversion layer 8530, a second barrier layer 8850, a second transparent film 8560, first and Second optical layers 8520 and 8570.
상기 제1 투명 필름(8510) 및 상기 제2 투명 필름(8560) 각각은 도 9에서 설명한 제1 및 제2 투명 필름들(3410, 3460)과 실질적으로 동일하고, 상기 제1 배리어층(8540) 및 상기 제2 배리어층(8550) 각각은 도 2에서 설명한 제1 및 제2 배리어층들(1440, 1450)과 실질적으로 동일하며, 상기 광변환층(8530)은 도 17에 도시된 바와 같이 도 10에서 설명한 광변환층(4430)의 구조와 동일하거나 도 2 내지 도 9와 도 11에서 설명한 광변환층(1430, 2430, 3430, 5430)의 구조들 중 어느 하나의 구조와 동일할 수 있다. 따라서, 이들에 대한 중복되는 상세한 설명은 생략한다.Each of the first transparent film 8510 and the second transparent film 8560 is substantially the same as the first and second transparent films 3410 and 3460 described with reference to FIG. 9, and the first barrier layer 8404 is used. And each of the second barrier layers 8850 is substantially the same as the first and second barrier layers 1440 and 1450 described with reference to FIG. 2, and the light conversion layer 8530 is illustrated in FIG. 17. The structure of the light conversion layer 4430 described with reference to FIG. 10 may be the same as that of any one of the structures of the light conversion layers 1430, 2430, 3430, and 5430 described with reference to FIGS. 2 through 9 and 11. Therefore, detailed description thereof will be omitted.
상기 제1 광학층(8520)은 상기 제1 투명 필름(8510) 상에 형성된다. 상기 제1 광학층(8520)은 상기 제1 배리어층(8540)이 형성된 상기 제1 투명 필름(8510)의 일면의 반대면에 형성되고, 이에 따라 상기 제1 투명 필름(8510)은 상기 제1 배리어층(8540)과 상기 제1 광학층(8520) 사이에 배치된다. 상기 제1 광학층(8520)은 표면에 형성된 집광 패턴(8521)을 포함한다. 상기 집광 패턴(8521)은 도 15에서 설명한 제1 광학층(7570)의 집광 패턴(7571)과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다. The first optical layer 8520 is formed on the first transparent film 8510. The first optical layer 8520 is formed on an opposite surface of one surface of the first transparent film 8510 on which the first barrier layer 8540 is formed, and thus the first transparent film 8510 is formed on the first surface. The barrier layer 8540 is disposed between the first optical layer 8520 and the first optical layer 8520. The first optical layer 8520 includes a light collecting pattern 8251 formed on a surface thereof. The condensing pattern 8251 is substantially the same as the condensing pattern 7551 of the first optical layer 7570 described with reference to FIG. 15, and thus a detailed description thereof will be omitted.
상기 제2 광학층(8570)은 상기 제2 투명 필름(8560) 상에 형성된다. 상기 제2 광학층(8570)은 상기 제2 배리어층(8550)이 형성된 상기 제2 투명 필름(8560)의 일 면의 반대면에 형성되고, 이에 따라 상기 제2 투명 필름(8560)은 상기 제2 광학층(8570)과 상기 제2 배리어층(8550) 사이에 배치된다. 상기 제2 광학층(8570)은 표면에 형성된 광확산 패턴(8571)을 포함한다. 상기 광확산 패턴(8571)은 도 2에서 설명한 제1 광학층(1420)의 광확산 패턴(1421)과 실질적으로 동일하므로, 이에 대한 중복되는 상세한 설명은 생략한다. The second optical layer 8070 is formed on the second transparent film 8560. The second optical layer 8070 is formed on an opposite surface of one surface of the second transparent film 8560 on which the second barrier layer 8850 is formed, and thus the second transparent film 8560 is formed of the second optical layer 8560. 2 is disposed between the optical layer (8570) and the second barrier layer (8550). The second optical layer 8070 includes a light diffusion pattern 8571 formed on a surface thereof. Since the light diffusion pattern 8571 is substantially the same as the light diffusion pattern 1421 of the first optical layer 1420 described with reference to FIG. 2, detailed description thereof will be omitted.
상기 역프리즘 시트(8500)는 상기 집광 패턴(8521)을 포함하는 제1 광학층(8520)을 상기 도광판(8200)과 마주하고 상기 광확산 패턴(8571)을 포함하는 제2 광학층(8570)을 상기 표시 패널(미도시)과 마주하도록 상기 도광판(8200) 상에 배치된다. The anti-prism sheet 8500 may face the first optical layer 8520 including the light collecting pattern 8251, and face the light guide plate 8200, and include the second optical layer 8070. Is disposed on the light guide plate 8200 so as to face the display panel (not shown).
상기와 같은 구성의 역프리즘 시트(8500)를 상기 도광판(8200) 상부에 배치시키는 경우, 상기 역프리즘 시트(8500)는 2장의 집광 시트들 및 확산 시트를 대체할 수 있다. 이때, 상기 도광판(8200)은 프리즘 패턴을 더 포함할 수 있다. 상기 프리즘 패턴은 상기 역프리즘 시트(8500)의 집광 패턴(8521)과 실질적으로 동일한 형상을 가지되 상기 집광 패턴(8521)의 연장 방향은 상기 프리즘 패턴의 연장 방향과 서로 교차하도록 배치될 수 있다. 상기 프리즘 패턴은 꼭지각이 약 90°인 돌출부를 갖거나, 돌출부가 라운드형을 갖는 렌티큘러 패턴일 수 있다. 예를 들어, 상기 도광판(8200)의 프리즘 패턴은 상기 역프리즘 시트(8500)의 집광 패턴과 교차하도록 배치될 수 있고, 상기 발광 소자(8100)의 배열 방향과 상기 역프리즘 시트(8500)의 집광 패턴(8521)의 연장 방향이 일치하도록 배치될 수 있다.When the reverse prism sheet 8500 having the above configuration is disposed on the light guide plate 8200, the reverse prism sheet 8500 may replace two light collecting sheets and a diffusion sheet. In this case, the light guide plate 8200 may further include a prism pattern. The prism pattern may have a shape substantially the same as that of the condensing pattern 8521 of the inverse prism sheet 8500, but an extension direction of the condensation pattern 8251 may be disposed to cross the extension direction of the prism pattern. The prism pattern may have a protrusion having a vertex angle of about 90 °, or a lenticular pattern having a protrusion having a round shape. For example, the prism pattern of the light guide plate 8200 may be disposed to intersect the condensing pattern of the inverse prism sheet 8500, and the condensing direction of the light emitting element 8100 and the condensing pattern of the inverse prism sheet 8500. The extending direction of the pattern 8251 may be disposed to coincide.
상기 역프리즘 시트(8500)가 상기 광변환층(8530)을 포함함으로써 적색 발광 복합체 및/또는 녹색 발광 복합체와 같은 발광 복합체에 의해 백라이트 유닛(8000)이 제공하는 백색광이 표시 장치의 컬러필터를 통과하여 표시하는 영상의 색재현성을 향상시킬 수 있다.Since the inverted prism sheet 8500 includes the light conversion layer 8530, white light provided by the backlight unit 8000 is passed through the color filter of the display device by a light emitting composite such as a red light emitting composite and / or a green light emitting composite. The color reproducibility of the displayed image can be improved.
도 18은 본 발명의 또 다른 실시예에 따른 백라이트 유닛을 설명하기 위한 단면도이다.18 is a cross-sectional view for describing a backlight unit according to yet another exemplary embodiment of the present invention.
도 18을 참조하면, 백라이트 유닛(9000)은 발광 소자(9100), 도광판(9200), 반사판(9300), 역프리즘 시트(9500) 및 보호 시트(9600)를 포함한다.Referring to FIG. 18, the backlight unit 9000 includes a light emitting element 9100, a light guide plate 9200, a reflecting plate 9300, an inverted prism sheet 9500, and a protective sheet 9600.
상기 발광 소자(9100), 상기 도광판(9200) 및 상기 반사판(9300)은 도 17에서 설명한 발광 소자(8100), 도광판(8200) 및 반사판(8300)과 실질적으로 동일하다. 따라서, 중복되는 상세한 설명은 생략한다.The light emitting element 9100, the light guide plate 9200, and the reflecting plate 9300 are substantially the same as the light emitting element 8100, the light guide plate 8200, and the reflecting plate 8300 described with reference to FIG. 17. Therefore, redundant descriptions are omitted.
상기 역프리즘 시트(9500)는 상기 도광판(9200) 상부에 배치되고, 베이스 기재(9510) 및 상기 베이스 기재(9510)의 일면 상에 형성되고 표면에 집광 패턴(9521)이 형성된 집광층(9520)을 포함한다. 상기 집광 패턴(9521)은 도 15에서 설명한 집광 패턴(7571)과 실질적으로 동일하므로 이에 대한 중복되는 상세한 설명은 생략한다. 상기 역프리즘 시트(9500)는 상기 집광 패턴(9521)이 상기 도광판(9200)을 향하도록 상기 도광판(9200) 상부에 배치될 수 있다. The anti-prism sheet 9500 is disposed on the light guide plate 9200, and is formed on a base substrate 9510 and one surface of the base substrate 9510, and a light collecting layer 9520 having a light collecting pattern 9521 formed on a surface thereof. It includes. Since the condensing pattern 9521 is substantially the same as the condensing pattern 7551 described with reference to FIG. 15, detailed description thereof will be omitted. The reverse prism sheet 9500 may be disposed on the light guide plate 9200 so that the light collecting pattern 9521 faces the light guide plate 9200.
상기 보호 시트(9600)는 상기 도광판(9200)과 상기 역프리즘 시트(9500) 사이에 배치되어, 상기 역프리즘 시트(9500)의 상기 집광 패턴(9521)의 손상을 방지하면서 상기 도광판(9200)에서 출사된 광을 상기 역프리즘 시트(9500)로 전달한다.The protective sheet 9600 is disposed between the light guide plate 9200 and the reverse prism sheet 9500, and prevents damage of the light collecting pattern 9521 of the reverse prism sheet 9500 to prevent the damage of the light guide plate 9200. The emitted light is transferred to the inverse prism sheet 9500.
상기 보호 시트(9600)는 제1 투명 필름(9610), 제1 배리어층(9640), 광변환층(9630), 제2 배리어층(9650), 제2 투명 필름(9660), 제1 및 제2 광학층들(9620, 9670)을 포함한다.The protective sheet 9600 may include a first transparent film 9610, a first barrier layer 9940, a light conversion layer 9630, a second barrier layer 9650, a second transparent film 9960, first and second agents. Two optical layers 9620, 9670.
상기 제1 투명 필름(9610) 및 상기 제2 투명 필름(9660) 각각은 도 9에서 설명한 제1 및 제2 투명 필름들(3410, 3460)과 실질적으로 동일하고, 상기 제1 배리어층(9640) 및 상기 제2 배리어층(9650)은 도 2에서 설명한 제1 및 제2 배리어층들(1440, 1450)과 각각 실질적으로 동일하며, 상기 광변환층(9630)은 도 2 내지 도 11에서 설명한 광변환층(1430, 2430, 3430, 4430, 5430)의 구조들 중 어느 하나의 구조와 동일할 수 있다. 따라서, 이들에 대한 중복되는 상세한 설명은 생략한다.Each of the first transparent film 9610 and the second transparent film 9960 may be substantially the same as the first and second transparent films 3410 and 3460 described with reference to FIG. 9, and the first barrier layer 9940 may be used. And the second barrier layer 9650 is substantially the same as each of the first and second barrier layers 1440 and 1450 described with reference to FIG. 2, and the light conversion layer 9630 includes the light described with reference to FIGS. 2 through 11. The structure of the conversion layers 1430, 2430, 3430, 4430, and 5430 may be the same as the structure of any one. Therefore, detailed description thereof will be omitted.
상기 제1 광학층(9620)은 상기 제1 투명 필름(9610) 상에 형성된다. 즉, 상기 제1 광학층(9620)은 상기 제1 투명 필름(9610)을 사이에 두고 상기 제1 배리어층(9640)과 대향하도록 상기 제1 투명 필름(9610)의 일면에 형성된다. 상기 제1 광학층(9620)은 표면에 형성된 제1 버퍼 패턴(9621)을 포함한다. 상기 제1 버퍼 패턴(9621)은 상기 역프리즘 시트(9500)의 상기 집광 패턴(9521)과 실질적으로 동일한 방향으로 연장될 수 있다. 상기 제1 버퍼 패턴(9621)은 상기 제1 투명 필름(9610)의 일면 상에 경화성 레진을 도포한 후 상기 제1 버퍼 패턴(9621)과 대응하는 형상의 패턴이 형성된 스탬프로 가압을 하고 자외선 및/또는 열을 이용하여 경화시킴으로써 형성할 수 있다.The first optical layer 9620 is formed on the first transparent film 9610. That is, the first optical layer 9620 is formed on one surface of the first transparent film 9610 to face the first barrier layer 9940 with the first transparent film 9610 interposed therebetween. The first optical layer 9620 includes a first buffer pattern 9621 formed on a surface thereof. The first buffer pattern 9621 may extend in substantially the same direction as the condensing pattern 9521 of the inverse prism sheet 9500. The first buffer pattern 9621 is coated with a curable resin on one surface of the first transparent film 9610, and then pressurized with a stamp having a pattern having a shape corresponding to that of the first buffer pattern 9621. And / or by curing using heat.
상기 제1 버퍼 패턴(9621)의 피치(P2)는 상기 역프리즘 시트(9500)에 형성된 상기 집광 패턴(9521)의 피치(P1)에 비해 클 수 있다. 여기서, 집광 패턴 및 제1 버퍼 패턴 각각의 피치는 집광 패턴의 정점간의 거리 또는 골간의 거리로 정의될 수 있다. 일 예로, 상기 제1 버퍼 패턴(9621)의 피치(P2)는 약 50 ㎛ 내지 170 ㎛일 수 있고, 상기 집광 패턴(9521)의 피치(P1)는 약 10 ㎛ 내지 60 ㎛일 수 있다. The pitch P2 of the first buffer pattern 9621 may be larger than the pitch P1 of the condensing pattern 9521 formed on the inverse prism sheet 9500. Here, the pitch of each of the light collecting pattern and the first buffer pattern may be defined as a distance between vertices or a valley between the light collecting patterns. For example, the pitch P2 of the first buffer pattern 9621 may be about 50 μm to 170 μm, and the pitch P1 of the condensing pattern 9521 may be about 10 μm to 60 μm.
또한, 상기 제1 버퍼 패턴(9621)의 높이(H2)는 상기 집광 패턴(9521)의 높이(H1)에 비해 상대적으로 작을 수 있다. 여기서, 집광 패턴 및 제1 버퍼 패턴 각각의 높이는 집광 패턴의 골들이 위치하는 평면(D1, D2)에서 정점까지의 수직거리로 정의될 수 있다. 일 예로, 상기 제1 버퍼 패턴(9621)의 높이(H2)는 약 1 ㎛ 내지 5 ㎛이고, 상기 집광 패턴(9521)의 높이(H1)는 약 5 ㎛ 내지 40 ㎛일 수 있다.In addition, the height H2 of the first buffer pattern 9621 may be relatively smaller than the height H1 of the condensing pattern 9521. Here, the height of each of the light collecting pattern and the first buffer pattern may be defined as a vertical distance from the planes D1 and D2 where the valleys of the light collecting pattern are located. For example, the height H2 of the first buffer pattern 9621 may be about 1 μm to 5 μm, and the height H1 of the condensing pattern 9521 may be about 5 μm to 40 μm.
또한, 상기 제1 버퍼 패턴(9621)의 내각(C2)은 상기 집광 패턴(9521)의 내각(C1)에 비해 상대적으로 작을 수 있다. 여기서, 상기 집광 패턴 및 상기 제1 버퍼 패턴의 내각(C1, C2)은 상기 집광 패턴이나 상기 제1 버퍼 패턴의 측면을 구성하는 측변(E1, E2)이 상기 집광 패턴의 골들이 위치하는 평면(D1, D2)과 이루는 각으로 정의될 수 있다. 일 예로, 상기 제1 버퍼 패턴(9621)의 내각(C2)은 약 0.5° 내지 7°이고, 상기 집광 패턴(9521)의 내각(C1)은 약 25° 내지 65°일 수 있다. In addition, the internal angle C2 of the first buffer pattern 9621 may be relatively smaller than the internal angle C1 of the condensing pattern 9521. Here, the inner sides C1 and C2 of the light converging pattern and the first buffer pattern may have a side surface E1 and E2 constituting a side surface of the light converging pattern or the first buffer pattern in which the valleys of the light converging pattern are located. D1 and D2) may be defined as an angle. For example, the internal angle C2 of the first buffer pattern 9621 may be about 0.5 ° to 7 °, and the internal angle C1 of the condensing pattern 9521 may be about 25 ° to 65 °.
또한, 상기 제1 버퍼 패턴(9621)은 상기 집광 패턴(9521)과 다른 굴절률을 가질 수 있다. 일 예로, 상기 제1 버퍼 패턴(9621)의 굴절률이 상기 집광 패턴(9521)의 굴절률보다 작은 값을 가질 수 있다. 예를 들면, 상기 제1 버퍼 패턴(9621)의 굴절률은 약 1.4 내지 1.6이고, 상기 집광 패턴(9521)의 굴절률은 약 1.45 내지 1.65일 수 있다. In addition, the first buffer pattern 9621 may have a refractive index different from that of the condensing pattern 9521. For example, the refractive index of the first buffer pattern 9621 may have a smaller value than the refractive index of the condensing pattern 9521. For example, the refractive index of the first buffer pattern 9621 may be about 1.4 to 1.6, and the refractive index of the light collecting pattern 9521 may be about 1.45 to 1.65.
또한, 상기 제1 버퍼 패턴(9621)과 상기 집광 패턴(9521)은 강도가 서로 다른 재질로 형성될 수 있다. 일 예로, 상기 제1 버퍼 패턴(9621)은 상기 집광 패턴(9521)에 비해 강도가 낮은 연성 재질로 형성될 수 있다. 예를 들면, 상기 제1 버퍼 패턴(9621)은 상기 도광판(9200)과 동일한 강도의 재질로 형성되거나, 상기 도광판(9200)보다 강도가 낮은 연성 재질로 형성될 수 있다.In addition, the first buffer pattern 9621 and the light collecting pattern 9521 may be formed of materials having different strengths. For example, the first buffer pattern 9621 may be formed of a flexible material having a lower strength than the light collecting pattern 9521. For example, the first buffer pattern 9621 may be formed of a material having the same strength as that of the light guide plate 9200 or may be formed of a flexible material having a lower strength than that of the light guide plate 9200.
상기 제2 광학층(9670)은 상기 제2 투명 필름(9660) 상에 형성된다. 상기 제2 광학층(9670)은 상기 제2 투명 필름(9660)을 사이에 두고 상기 제2 배리어층(9650)과 대향하도록 상기 제2 투명 필름(9660)의 일면에 형성된다. 상기 제2 광학층(9670)은 표면에 형성된 제2 버퍼 패턴(9671)을 포함하거나 내부에 분산된 확산 비드들(미도시)을 포함할 수 있다. 상기 제2 광학층(9670)이 상기 제2 버퍼 패턴(9671)을 포함하는 경우, 상기 제2 버퍼 패턴(9671)은 도 2에서 설명한 제1 광학층(1420)의 광확산 패턴(1421)과 실질적으로 동일하므로, 이에 대한 중복되는 상세한 설명은 생략한다. 상기 제2 버퍼 패턴(9671)은 광확산 기능을 수행할 수 있다. 상기 제2 광학층(9670)이 내부에 분산된 광확산 비드들을 포함하는 경우, 상기 제2 광학층(9670)의 표면에는 상기 제2 버퍼 패턴(9671)이 형성되지 않을 수 있다. 이와 달리, 상기 제2 광학층(9670)이 내부에 분산된 광확산 비드들을 포함하는 경우에도 상기 제2 광학층(9670)의 표면에는 상기 제2 버퍼 패턴(9671)이 형성될 수 있다. The second optical layer 9706 is formed on the second transparent film 9960. The second optical layer 9706 is formed on one surface of the second transparent film 9960 to face the second barrier layer 9650 with the second transparent film 9960 interposed therebetween. The second optical layer 9706 may include diffusion beads (not shown) including a second buffer pattern 9671 formed on a surface thereof or dispersed therein. When the second optical layer 9706 includes the second buffer pattern 9671, the second buffer pattern 9671 may be formed of the light diffusion pattern 1421 of the first optical layer 1420 described with reference to FIG. 2. Since it is substantially the same, overlapping detailed description thereof will be omitted. The second buffer pattern 9671 may perform a light diffusion function. When the second optical layer 9706 includes the light diffusion beads dispersed therein, the second buffer pattern 9671 may not be formed on the surface of the second optical layer 9706. In contrast, even when the second optical layer 9706 includes light diffusion beads dispersed therein, the second buffer pattern 9671 may be formed on the surface of the second optical layer 9700.
상기 보호 시트(9600)는 상기 제1 버퍼 패턴(9621)이 상기 도광판(9200)과 마주보고 상기 제2 버퍼 패턴(9671)이 상기 역프리즘 시트(9500)와 마주보도록 상기 도광판(9200)과 상기 역프리즘 시트(9500) 사이에 배치된다. The protective sheet 9600 may include the light guide plate 9200 and the first buffer pattern 9621 facing the light guide plate 9200 and the second buffer pattern 9671 facing the inverse prism sheet 9500. It is disposed between the anti-prism sheet 9500.
상기 보호 시트(9600)의 상부면이 제2 버퍼 패턴(9671)을 가질 경우, 상기 역프리즘 시트(9500)에 형성된 집광 패턴(9521)의 정점과 상기 보호 시트(9600)의 접촉면적을 줄일 수 있고, 그 결과, 'Wet-Out'과 같은 광학적 결함을 감소시킬 수 있다. 여기서, 'Wet-Out'이란 두 개의 시트 표면이 서로 광학적으로 접촉하여 하나의 시트로부터 다른 시트로 광이 전달될 때 굴절률의 변화가 제거되는 경우에 일어나는 현상으로서, 외관상 디스플레이의 명암이 변화되어 비정상 또는 결함이 있는 부분으로 인식되는 현상을 의미한다.When the upper surface of the protective sheet 9600 has the second buffer pattern 9671, it is possible to reduce the contact area between the top of the condensing pattern 9521 formed on the inverse prism sheet 9500 and the protective sheet 9600. As a result, optical defects such as 'Wet-Out' can be reduced. Here, 'Wet-Out' is a phenomenon that occurs when the change of the refractive index is removed when two sheet surfaces are optically contacted with each other and light is transmitted from one sheet to another sheet. Or a phenomenon recognized as a defective part.
도 18에서는, 상기 역프리즘 시트(9500)가 발광 복합체나 형광 입자를 포함하지 않는 경우를 일례로 들어 설명하였으나, 도 18에서 설명한 백라이트 유닛에서 상기 역프리즘 시트(9500)는 도 17에서 설명한 역프리즘 시트(8500)로 대체될 수 있다.In FIG. 18, the reverse prism sheet 9500 does not include a light emitting composite or fluorescent particles. For example, in the backlight unit illustrated in FIG. 18, the reverse prism sheet 9500 has the reverse prism described with reference to FIG. 17. May be replaced by a sheet 8500.
이하에서는, 실시예들 및 비교예들에 따른 광학 시트들 및 이를 포함하는 백라이트 유닛 및 표시 장치의 색좌표 및 색재현 영역 평가를 통해서 본 발명의 효과를 설명하기로 한다.Hereinafter, the effects of the present invention will be described through evaluation of color coordinates and color reproduction regions of the optical sheets and the backlight unit and the display device including the optical sheets according to the embodiments and the comparative examples.
백라이트 유닛의 제조Manufacture of backlight unit
[실시예 1]Example 1
(1) 광원의 준비(1) Preparation of the light source
약 444nm에서 발광 피크를 나타내는 청색광 발광 소자를 광원으로 사용하였다.A blue light emitting device showing an emission peak at about 444 nm was used as a light source.
(2) 도광판의 준비(2) Preparation of the light guide plate
메틸메타크릴레이트 중합체 100 중량부에 대해서, 벤조트리아졸계 자외선 흡수제(상품명: Tinuvin-329, BASF사, 독일) 0.5 중량부 및 힌더드 아민계 광안정제(상품명: Tinuvin-770, BASF사, 독일) 0.5 중량부를 혼합한 후, 압출기(내경: 27 mm, L/D: 40, Leistritz. Co.)를 이용하여 펠렛 형태의 수지를 제조하였고, 이를 시트 압출기를 이용하여 압출하여 약 0.4 mm 두께의 도광판을 제조하였다.0.5 parts by weight of a benzotriazole UV absorber (trade name: Tinuvin-329, BASF, Germany) and a hindered amine light stabilizer (trade name: Tinuvin-770, BASF, Germany) based on 100 parts by weight of the methyl methacrylate polymer. After mixing 0.5 parts by weight, a pellet-type resin was prepared by using an extruder (inner diameter: 27 mm, L / D: 40, Leistritz. Co.), which was extruded using a sheet extruder to produce a light guide plate having a thickness of about 0.4 mm. Was prepared.
(3) 확산 시트의 준비(3) Preparation of Diffusion Sheet
먼저, 톨루엔 1 ml에 왁스계 화합물로서 산화 고밀도 폴리에틸렌 왁스(oxidized HDPE wax)로서 산가(acid value)가 약 30 mg KOH/g인 왁스(상품명: Licowax PED 136 왁스, Clariant사, 스위스)를 20 mg을 혼합한 후, 약 130 ℃로 온도를 상승시킴으로써 상기 왁스계 화합물을 용해시켜 왁스 용액을 제조하였다. 톨루엔 1 ml에 약 20 mg의 CdSe계의 적색 나노발광체(상품명: Nanodot-HE-610, QD solution사, 한국)가 분산된 용액을, 상기 왁스 용액에 첨가하여 혼합한 후, 상온으로 냉각시켜 적색 발광 복합체가 분산된 제1 용액을 제조하였다.First, 20 mg of a wax (trade name: Licowax PED 136 wax, Clariant, Switzerland) having an acid value of about 30 mg KOH / g as an oxidized HDPE wax as a wax-based compound in 1 ml of toluene. After mixing, the wax-based compound was dissolved by raising the temperature to about 130 ℃ to prepare a wax solution. A solution containing about 20 mg of CdSe-based red nanoluminescent material (trade name: Nanodot-HE-610, QD solution, Korea) in 1 ml of toluene was added to the wax solution, mixed, and cooled to room temperature A first solution in which the light emitting complex was dispersed was prepared.
이어서, 톨루엔 1 ml에 약 20 mg의 CdSe계의 녹색 나노발광체(상품명: Nanodot-HE-530, QD solution사, 한국)가 분산된 용액을 상기 적색 발광 복합체를 제조하는 공정에서 준비한 상기 왁스 용액에 첨가하여 혼합한 후, 상온으로 냉각시켜 녹색 발광 복합체가 분산된 제2 용액을 제조하였다.Subsequently, a solution in which about 20 mg of CdSe-based green nano light-emitting body (trade name: Nanodot-HE-530, QD solution, Korea) was dispersed in 1 ml of toluene was added to the wax solution prepared in the process of preparing the red light-emitting composite. After addition and mixing, the mixture was cooled to room temperature to prepare a second solution in which the green light-emitting composite was dispersed.
상기 제1 및 제2 용액들을, BASF사(회사명, 독일)에서 구입한 우레탄아크릴레이트 및 BASF사에서 구입한 광개시제(diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, TPO)와 혼합하였다. TPO는 우레탄아크릴레이트 100 중량부에 대해 약 0.8 중량부 혼합하였다. 이후 증발기(evaporator)를 이용하여 톨루엔을 제거하여 우레탄아크릴레이트, 상기 적색 발광 복합체, 상기 녹색 발광 복합체 및 광개시제가 혼합된 코팅 조성물을 제조하였다. 이때, 상기 코팅 조성물에서, 우레탄아크릴레이트 100 중량부에 대해서, 상기 적색 발광 복합체는 약 0.4 중량부가 포함되고, 상기 녹색 발광 복합체는 약 4.9 중량부가 포함되었다.The first and second solutions were mixed with a urethane acrylate purchased from BASF (company name, Germany) and a photoinitiator (diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) purchased from BASF). TPO was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate. Then, toluene was removed using an evaporator to prepare a coating composition in which urethane acrylate, the red light emitting composite, the green light emitting composite, and the photoinitiator were mixed. At this time, in the coating composition, about 0.4 parts by weight of the red light-emitting composite was included, and about 4.9 parts by weight of the green light-emitting composite based on 100 parts by weight of urethane acrylate.
제1 투명 필름으로서 약 38 ㎛의 두께를 갖는 PET(polyethylene terephthalate) 필름 상에, 플라즈마화학증착법을 이용하여 탄화산화실리콘(SiOC)로 이루어진 약 0.8 ㎛ 두께의 제1 무기막을 형성하고, 상기 제1 무기막 상에 원자층 증착법을 이용하여 산화 알루미늄(Al2O3)으로 이루어지고 약 50 nm의 두께를 갖는 제2 무기막을 형성하여 제1 배리어층을 형성하였다.On the polyethylene terephthalate (PET) film having a thickness of about 38 μm as a first transparent film, a first inorganic layer having a thickness of about 0.8 μm made of silicon carbide (SiOC) is formed by plasma chemical vapor deposition, and the first inorganic film is formed. A second barrier layer made of aluminum oxide (Al 2 O 3 ) and having a thickness of about 50 nm was formed on the inorganic layer by using an atomic layer deposition method to form a first barrier layer.
상기 코팅 조성물을 상기 제1 배리어층의 상기 제2 무기막 상에 약 100㎛ 두께로 코팅하고 이를 경화시켜 광변환층을 형성하였다.The coating composition was coated to a thickness of about 100 μm on the second inorganic layer of the first barrier layer and cured to form a light conversion layer.
상기 광변환층 상에 ALD 방법(atomic layer deposition method)로 약 50 nm의 두께를 갖는 산화 알루미늄막(Al2O3)을 제2 배리어층으로 형성하였다.An aluminum oxide film (Al 2 O 3 ) having a thickness of about 50 nm was formed as a second barrier layer on the light conversion layer by an ALD method (atomic layer deposition method).
이어서, 상기 제1 투명 필름에서 상기 제1 배리어층 및 상기 광변환층이 형성된 면의 반대면에, 우레탄아크릴레이트 100 중량부에 대해서 약 0.8 중량부로 혼합된 TPO를 갖는 조성물을 이용하여 전체의 평균 두께가 약 7 ㎛인 광확산 패턴을 갖는 광학층을 형성하여, 확산 시트를 준비하였다.Subsequently, on the opposite side of the surface on which the first barrier layer and the light conversion layer were formed in the first transparent film, the total average was used by using a composition having TPO mixed at about 0.8 parts by weight with respect to 100 parts by weight of urethane acrylate. An optical layer having a light diffusion pattern having a thickness of about 7 μm was formed to prepare a diffusion sheet.
(4) 제1 및 제2 집광 시트들의 준비(4) Preparation of the first and second light collecting sheets
BASF사(회사명, 독일)에서 구입한 에폭시아크릴레이트 및 TPO와 혼합하여 코팅 조성물을 준비하였다. 이때, 상기 광개시제는 에폭시아크릴레이트 100 중량부에 대해 약 0.8 중량부 혼합하였다. 상기 코팅 조성물을, 약 75 ㎛ 두께의 PET 필름 상에 도포한 후 성형롤로 가압하여 PET 필름 상에 높이가 약 25 ㎛인 집광 패턴을 제조하여, 제1 집광 시트를 제조하였다.The coating composition was prepared by mixing with epoxy acrylate and TPO purchased from BASF (company name, Germany). In this case, the photoinitiator was mixed in about 0.8 parts by weight based on 100 parts by weight of epoxy acrylate. The coating composition was coated on a PET film having a thickness of about 75 μm, and then pressed with a molding roll to prepare a light collecting pattern having a height of about 25 μm on the PET film, thereby preparing a first light collecting sheet.
상기 제1 집광 시트를 제조하는 방법과 실질적으로 동일한 공정을 통해 제2 집광 시트를 제조하였다.The second light collecting sheet was manufactured through a process substantially the same as the method of manufacturing the first light collecting sheet.
(5) 백라이트 유닛의 준비(5) Preparation of the backlight unit
상기와 같이 준비된 발광 소자와, 순차적으로 적층된 도광판, 확산 시트, 제1 및 제2 집광 시트를 어셈블리하여 본 발명의 실시예 1에 따른 백라이트 유닛을 준비하였다. 이때, 상기 확산 시트의 상기 광학층이 상기 도광판과 마주하고, 상기 제2 배리어층이 상기 제1 집광 시트와 마주하도록 상기 확산 시트를 상기 도광판 상에 배치하였다.The backlight unit according to the first exemplary embodiment of the present invention was prepared by assembling the light emitting device prepared as described above, the light guide plate, the diffusion sheet, and the first and second light collecting sheets sequentially stacked. In this case, the diffusion sheet is disposed on the light guide plate such that the optical layer of the diffusion sheet faces the light guide plate and the second barrier layer faces the first light collection sheet.
[실시예 2]Example 2
(1) 발광 소자, 도광판, 제1 및 제2 집광 시트들의 준비(1) Preparation of light emitting element, light guide plate, first and second light collecting sheets
발광 소자, 도광판, 제1 및 제2 집광 시트들은 실시예 1에 따른 백라이트 유닛에서와 실질적으로 동일하게 준비하였다.The light emitting device, the light guide plate, the first and the second light collecting sheets were prepared substantially the same as in the backlight unit according to the first embodiment.
(2) 확산 시트의 준비(2) Preparation of Diffusion Sheet
제1 투명 필름 상에 형성된 제1 배리어층을 실시예 1의 확산 시트의 제조에서와 실질적으로 동일하게 준비하고, 상기 제1 배리어층 상에 우레탄아크릴레이트, 상기 적색 발광 복합체, 상기 녹색 발광 복합체 및 광개시제가 혼합된 실시예 1의 확산 시트의 제조 공정에서 준비한 코팅 조성물과 실질적으로 동일한 코팅 조성물을 약 100㎛의 두께로 코팅하여 코팅층을 형성하였다.A first barrier layer formed on the first transparent film was prepared in substantially the same manner as in the preparation of the diffusion sheet of Example 1, and the urethane acrylate, the red light emitting composite, the green light emitting composite and A coating layer was formed by coating a coating composition substantially the same as the coating composition prepared in the manufacturing process of the diffusion sheet of Example 1, in which the photoinitiator was mixed, to a thickness of about 100 μm.
상기 제1 투명 필름 및 상기 제1 배리어층과 실질적으로 동일한 제2 투명 필름 및 제2 배리어층을 준비하여 상기 코팅층 상에 상기 코팅층이 상기 제2 배리어층과 접촉하도록 덮고, 광을 조사하여 상기 코팅층을 경화시킴으로써 광변환층을 형성하였다.Preparing a first transparent film and a second transparent film and a second barrier layer substantially the same as the first barrier layer to cover the coating layer on the coating layer in contact with the second barrier layer, by irradiating light to the coating layer The photoconversion layer was formed by hardening.
이어서, 상기 제1 투명 필름 및 상기 제2 투명 필름 각각의 외측면에 우레탄아크릴레이트 100 중량부에 대해서 약 0.8 중량부로 혼합된 TPO를 갖는 조성물을 이용하여 전체의 평균 두께가 약 7 ㎛인 광확산 패턴을 갖는 제1 광학층 및 제2 광학층을 형성하여, 확산 시트를 준비하였다.Subsequently, using a composition having a TPO mixed at about 0.8 parts by weight with respect to 100 parts by weight of urethane acrylate on the outer surfaces of each of the first transparent film and the second transparent film, the total thickness is about 7 μm. The 1st optical layer and the 2nd optical layer which have a pattern were formed, and the diffusion sheet was prepared.
이에 따라, 제1 광학층, 제1 투명 필름, 제1 배리어층, 상기 코팅층의 경화로 형성된 광변환층, 제2 배리어층, 제2 투명 필름 및 제2 광학층이 순차적으로 적층된 확산 시트를 제조하였다.Accordingly, the diffusion sheet in which the first optical layer, the first transparent film, the first barrier layer, the light conversion layer formed by curing the coating layer, the second barrier layer, the second transparent film, and the second optical layer are sequentially stacked Prepared.
(3) 백라이트 유닛의 준비(3) Preparation of the backlight unit
상기와 같이 준비된 발광 소자와, 순차적으로 적층된 도광판, 확산 시트, 제1 및 제2 집광 시트를 어셈블리하여 본 발명의 실시예 2에 따른 백라이트 유닛을 준비하였다. 이때, 제1 광학층이 상기 도광판과 마주하고, 상기 제2 광학층이 상기 제1 집광 시트와 마주하도록 상기 확산 시트를 상기 도광판 상에 배치하였다.The backlight unit according to Example 2 of the present invention was prepared by assembling the light emitting device prepared as described above, the light guide plate, the diffusion sheet, and the first and second light collecting sheets sequentially stacked. In this case, the diffusion sheet was disposed on the light guide plate such that a first optical layer faced the light guide plate and the second optical layer faced the first light collecting sheet.
[실시예 3]Example 3
(1) 발광 소자, 도광판, 제1 및 제2 집광 시트들의 준비(1) Preparation of light emitting element, light guide plate, first and second light collecting sheets
발광 소자, 도광판, 제1 및 제2 집광 시트들은 실시예 1에 따른 백라이트 유닛과 실질적으로 동일하게 준비하였다.The light emitting device, the light guide plate, the first and the second light collecting sheets were prepared substantially the same as the backlight unit according to the first embodiment.
(2) 확산 시트의 준비(2) Preparation of Diffusion Sheet
실시예 1의 확산 시트를 제조하는 공정에서 이용한 제1 용액과 LWB사(회사명, 독일)에서 구입한 녹색 형광체 LP-F525(상품명)을, BASF사(회사명, 독일)에서 구입한 우레탄아크릴레이트 및 TPO와 혼합하였다. TPO는 우레탄아크릴레이트 100 중량부에 대해 약 0.8 중량부 혼합하였다. 이후 증발기(evaporator)를 이용하여 톨루엔을 제거하여 우레탄아크릴레이트, 적색 발광 복합체, 녹색 형광체 및 광개시제가 혼합된 코팅 조성물을 제조하였다. 이때, 우레탄아크릴레이트 100 중량부에 대해, 상기 적색 발광 복합체는 약 0.3 중량부가 포함되고, 상기 녹색 형광체는 약 11.2 중량부가 포함되었다.Urethane acryl purchased from BASF (Company, Germany) for the first solution used in the process for producing the diffusion sheet of Example 1 and the green phosphor LP-F525 (trade name) purchased from LWB (company name, Germany) Mixed with rate and TPO. TPO was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate. Then, toluene was removed using an evaporator to prepare a coating composition in which urethane acrylate, a red light emitting composite, a green phosphor, and a photoinitiator were mixed. At this time, about 100 parts by weight of the urethane acrylate, the red light emitting composite contained about 0.3 parts by weight, the green phosphor contained about 11.2 parts by weight.
제1 투명 필름으로서 약 38 ㎛의 두께를 갖는 PET(polyethylene terephthalate) 필름 상에, 플라즈마화학증착법을 이용하여 탄화산화실리콘(SiOC)로 이루어진 약 0.8 ㎛ 두께의 제1 무기막을 형성하고, 상기 제1 무기막 상에 원자층 증착법을 이용하여 산화 알루미늄(Al2O3)으로 이루어지고 약 50 nm의 두께를 갖는 제2 무기막을 형성하여 제1 배리어층을 형성하였다.On the polyethylene terephthalate (PET) film having a thickness of about 38 μm as a first transparent film, a first inorganic layer having a thickness of about 0.8 μm made of silicon carbide (SiOC) is formed by plasma chemical vapor deposition, and the first inorganic film is formed. A second barrier layer made of aluminum oxide (Al 2 O 3 ) and having a thickness of about 50 nm was formed on the inorganic layer by using an atomic layer deposition method to form a first barrier layer.
상기 코팅 조성물을 상기 제1 배리어층의 상기 제2 무기막 상에 약 100㎛ 두께로 코팅하여 코팅층을 형성하였다. 상기 제1 투명 필름 및 상기 제1 배리어층과 실질적으로 동일한 제2 투명 필름 및 제2 배리어층을 준비하여 상기 코팅층 상에 상기 코팅층이 상기 제2 배리어층과 접촉하도록 덮고, 광을 조사하여 상기 코팅층을 경화시킴으로써 광변환층을 형성하였다.The coating composition was coated to a thickness of about 100 μm on the second inorganic layer of the first barrier layer to form a coating layer. Preparing a first transparent film and a second transparent film and a second barrier layer substantially the same as the first barrier layer to cover the coating layer on the coating layer in contact with the second barrier layer, by irradiating light to the coating layer The photoconversion layer was formed by hardening.
이어서, 상기 제1 투명 필름 및 상기 제2 투명 필름 각각의 외측면에 우레탄아크릴레이트 100 중량부에 대해서 약 0.8 중량부로 혼합된 TPO를 갖는 조성물을 이용하여 전체의 평균 두께가 약 7 ㎛인 광확산 패턴을 갖는 제1 광학층 및 제2 광학층을 형성하여, 확산 시트를 준비하였다.Subsequently, using a composition having a TPO mixed at about 0.8 parts by weight with respect to 100 parts by weight of urethane acrylate on the outer surfaces of each of the first transparent film and the second transparent film, the total thickness is about 7 μm. The 1st optical layer and the 2nd optical layer which have a pattern were formed, and the diffusion sheet was prepared.
이에 따라, 제1 광학층, 제1 투명 필름, 제1 배리어층, 상기 코팅층의 경화로 형성된 광변환층, 제2 배리어층, 제2 투명 필름 및 제2 광학층이 순차적으로 적층된 확산 시트를 제조하였다.Accordingly, the diffusion sheet in which the first optical layer, the first transparent film, the first barrier layer, the light conversion layer formed by curing the coating layer, the second barrier layer, the second transparent film, and the second optical layer are sequentially stacked Prepared.
(3) 백라이트 유닛의 준비(3) Preparation of the backlight unit
상기와 같이 준비된 발광 소자와, 순차적으로 적층된 도광판, 확산 시트, 제1 및 제2 집광 시트를 어셈블리하여 본 발명의 실시예 3에 따른 백라이트 유닛을 준비하였다. 이때, 제1 광학층이 상기 도광판과 마주하고, 상기 제2 광학층이 상기 제1 집광 시트와 마주하도록 상기 확산 시트를 상기 도광판 상에 배치하였다.The backlight unit according to the third exemplary embodiment of the present invention was prepared by assembling the light emitting device prepared as described above, the light guide plate, the diffusion sheet, and the first and second light collecting sheets sequentially stacked. In this case, the diffusion sheet was disposed on the light guide plate such that a first optical layer faced the light guide plate and the second optical layer faced the first light collecting sheet.
[실시예 4]Example 4
(1) 발광 소자, 도광판, 제1 및 제2 집광 시트들의 준비(1) Preparation of light emitting element, light guide plate, first and second light collecting sheets
발광 소자, 도광판, 제1 및 제2 집광 시트들은 실시예 1에 따른 백라이트 유닛에서와 실질적으로 동일하게 준비하였다.The light emitting device, the light guide plate, the first and the second light collecting sheets were prepared substantially the same as in the backlight unit according to the first embodiment.
(2) 확산 시트의 준비(2) Preparation of Diffusion Sheet
먼저, 톨루엔 1 ml에 왁스계 화합물로서 산가(acid value)가 약 30 mg KOH/g인 산화 고밀도 폴리에틸렌 왁스(oxidized HDPE wax)(상품명: Licowax PED 136 왁스, Clariant사, 스위스)를 20 mg을 혼합한 후, 약 130 ℃로 온도를 상승시킴으로써 상기 왁스계 화합물을 용해시켜 왁스 용액을 제조하였다. 상기 왁스 용액에, LWB사(회사명, 독일)에서 구입한 녹색 형광체 LP-F525(상품명) 20 mg과 톨루엔 1 ml가 혼합된 톨루엔 용액을 첨가하여 혼합하였다. 상기 왁스 용액 및 상기 톨루엔 용액의 혼합 용액을 상온으로 냉각시켜 왁스 입자 및 상기 녹색 형광체를 포함하는 형광 복합체가 분산된 분산 용액을 제조하였다.First, 20 mg of oxidized HDPE wax (trade name: Licowax PED 136 wax, Clariant, Switzerland) having an acid value of about 30 mg KOH / g was mixed with 1 ml of toluene. After that, the wax-based compound was dissolved by raising the temperature to about 130 ° C. to prepare a wax solution. To the wax solution, a toluene solution in which 20 mg of green phosphor LP-F525 (trade name) purchased from LWB (company name, Germany) and 1 ml of toluene was mixed was added and mixed. The mixed solution of the wax solution and the toluene solution was cooled to room temperature to prepare a dispersion solution in which a fluorescent complex including wax particles and the green phosphor was dispersed.
실시예 1의 확산 시트를 제조하는 공정에서 이용한 제1 용액과 상기 분산 용액을, BASF사(회사명, 독일)에서 구입한 우레탄아크릴레이트 및 TPO와 혼합하였다. TPO는 우레탄아크릴레이트 100 중량부에 대해 약 0.8 중량부 혼합하였다. 이후 증발기(evaporator)를 이용하여 톨루엔을 제거하여 우레탄아크릴레이트, 적색 발광 복합체, 형광 복합체 및 광개시제가 혼합된 코팅 조성물을 제조하였다. 이때, 우레탄아크릴레이트 100 중량부에 대해, 상기 적색 발광 복합체는 약 0.3 중량부가 포함되고, 상기 형광 복합체는 약 11.2 중량부가 포함되었다.The first solution and the dispersion solution used in the process for producing the diffusion sheet of Example 1 were mixed with urethane acrylate and TPO purchased from BASF (Company name, Germany). TPO was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate. Then, toluene was removed using an evaporator to prepare a coating composition in which urethane acrylate, a red light emitting composite, a fluorescent composite, and a photoinitiator were mixed. In this case, about 100 parts by weight of the urethane acrylate, the red light-emitting composite contained about 0.3 parts by weight, and the fluorescent composite contained about 11.2 parts by weight.
제1 투명 필름 상에 형성된 제1 배리어층을 실시예 1의 확산 시트의 제조에서와 실질적으로 동일하게 준비하고, 상기 제1 배리어층 상에 상기 코팅 조성물을 약 100 ㎛의 두께로 코팅하여 코팅층을 형성하였다.A first barrier layer formed on the first transparent film was prepared in substantially the same manner as in the preparation of the diffusion sheet of Example 1, and the coating composition was coated on the first barrier layer to a thickness of about 100 μm to form a coating layer. Formed.
상기 제1 투명 필름 및 상기 제1 배리어층과 실질적으로 동일한 제2 투명 필름 및 제2 배리어층을 준비하여 상기 코팅층 상에 상기 코팅층이 상기 제2 배리어층과 접촉하도록 덮고, 광을 조사하여 상기 코팅층을 경화시킴으로써 광변환층을 형성하였다.Preparing a first transparent film and a second transparent film and a second barrier layer substantially the same as the first barrier layer to cover the coating layer on the coating layer in contact with the second barrier layer, by irradiating light to the coating layer The photoconversion layer was formed by hardening.
이어서, 상기 제1 투명 필름 및 상기 제2 투명 필름 각각의 외측면에 우레탄아크릴레이트 100 중량부에 대해서 약 0.8 중량부로 혼합된 TPO를 갖는 조성물을 이용하여 전체의 평균 두께가 약 7 ㎛인 광확산 패턴을 갖는 제1 광학층 및 제2 광학층을 형성하여, 확산 시트를 준비하였다.Subsequently, using a composition having a TPO mixed at about 0.8 parts by weight with respect to 100 parts by weight of urethane acrylate on the outer surfaces of each of the first transparent film and the second transparent film, the total thickness is about 7 μm. The 1st optical layer and the 2nd optical layer which have a pattern were formed, and the diffusion sheet was prepared.
이에 따라, 제1 광학층, 제1 투명 필름, 제1 배리어층, 상기 코팅층의 경화로 형성된 광변환층, 제2 배리어층, 제2 투명 필름 및 제2 광학층이 순차적으로 적층된 확산 시트를 제조하였다.Accordingly, the diffusion sheet in which the first optical layer, the first transparent film, the first barrier layer, the light conversion layer formed by curing the coating layer, the second barrier layer, the second transparent film, and the second optical layer are sequentially stacked Prepared.
(3) 백라이트 유닛의 준비(3) Preparation of the backlight unit
상기와 같이 준비된 발광 소자와, 순차적으로 적층된 도광판, 확산 시트, 제1 및 제2 집광 시트를 어셈블리하여 본 발명의 실시예 4에 따른 백라이트 유닛을 준비하였다. 이때, 제1 광학층이 상기 도광판과 마주하고, 상기 제2 광학층이 상기 제1 집광 시트와 마주하도록 상기 확산 시트를 상기 도광판 상에 배치하였다.The backlight unit according to Example 4 of the present invention was prepared by assembling the light emitting device prepared as described above, the light guide plate, the diffusion sheet, and the first and second light collecting sheets sequentially stacked. In this case, the diffusion sheet was disposed on the light guide plate such that a first optical layer faced the light guide plate and the second optical layer faced the first light collecting sheet.
[실시예 5]Example 5
(1) 발광 소자, 도광판, 제1 및 제2 집광 시트들의 준비(1) Preparation of light emitting element, light guide plate, first and second light collecting sheets
발광 소자, 도광판, 제1 및 제2 집광 시트들은 실시예 1에 따른 백라이트 유닛에서와 실질적으로 동일하게 준비하였다.The light emitting device, the light guide plate, the first and the second light collecting sheets were prepared substantially the same as in the backlight unit according to the first embodiment.
(2) 확산 시트의 준비(2) Preparation of Diffusion Sheet
먼저, 톨루엔 1 ml에 왁스계 화합물로서 산화 고밀도 폴리에틸렌 왁스(oxidized HDPE wax)로서 산가(acid value)가 약 30 mg KOH/g인 왁스(상품명: Licowax PED 136 왁스, Clariant사, 스위스)를 20 mg 혼합한 후, 약 130 ℃로 온도를 상승시킴으로써 상기 왁스계 화합물을 용해시켜 왁스 용액을 제조하였다. 이어서, 톨루엔 1 ml에 약 1.34 mg의 CdSe계의 적색 나노발광체(상품명: Nanodot-HE-610, QD solution사, 한국)가 분산된 용액과, 톨루엔 1 ml에 약 18.66 mg의 CdSe계의 녹색 나노발광체(상품명: Nanodot-HE-530, QD solution사, 한국)가 분산된 용액을 준비하였다. 상기와 같이 준비된 2가지 용액들을 상기 왁스 용액에 첨가하여 혼합한 후, 상온으로 냉각시켜 하나의 왁스 입자에 의해 상기 적색 나노발광체와 상기 녹색 나노발광체가 피복된 다색 발광 복합체가 분산된 용액을 제조하였다.First, 20 mg of a wax (trade name: Licowax PED 136 wax, Clariant, Switzerland) having an acid value of about 30 mg KOH / g as an oxidized HDPE wax as a wax-based compound in 1 ml of toluene. After mixing, the wax-based compound was dissolved by raising the temperature to about 130 ° C. to prepare a wax solution. Subsequently, a solution in which about 1.34 mg of CdSe-based red nanoluminescent material (trade name: Nanodot-HE-610, QD solution, Korea) was dispersed in 1 ml of toluene, and about 18.66 mg of CdSe-based green nanoparticles in 1 ml of toluene A solution in which a light emitter (trade name: Nanodot-HE-530, QD solution, Korea) was dispersed was prepared. Two solutions prepared as described above were added to the wax solution, mixed, and cooled to room temperature to prepare a solution in which the red nanoluminescent body and the green nanoluminescent body were coated with one wax particle. .
상기 다색 발광 복합체가 분산된 용액을, BASF사(회사명, 독일)에서 구입한 우레탄아크릴레이트 및 TPO와 혼합하였다. TPO는 우레탄아크릴레이트 100 중량부에 대해 약 0.8 중량부 혼합하였다. 이후 증발기(evaporator)를 이용하여 톨루엔을 제거하여 우레탄아크릴레이트, 상기 다색 발광 복합체 및 상기 광개시제가 혼합된 코팅 조성물을 제조하였다. 이때, 상기 코팅 조성물에서, 우레탄아크릴레이트 100 중량부에 대해서, 상기 다색 발광 복합체는 약 5.3 중량부가 포함되었다.The solution in which the multicolored light-emitting composite was dispersed was mixed with urethane acrylate and TPO purchased from BASF (company name, Germany). TPO was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate. Thereafter, toluene was removed using an evaporator to prepare a coating composition in which urethane acrylate, the multicolored light-emitting composite, and the photoinitiator were mixed. In this case, in the coating composition, about 5.3 parts by weight of the multicolor light-emitting composite was included based on 100 parts by weight of urethane acrylate.
제1 투명 필름으로서 약 38 ㎛의 두께를 갖는 PET(polyethylene terephthalate) 필름 상에, 플라즈마화학증착법을 이용하여 탄화산화실리콘(SiOC)로 이루어진 약 0.8 ㎛ 두께의 제1 무기막을 형성하고, 상기 제1 무기막 상에 원자층 증착법을 이용하여 산화 알루미늄(Al2O3)으로 이루어지고 약 50 nm의 두께를 갖는 제2 무기막을 형성하여 제1 배리어층을 형성하였다.On the polyethylene terephthalate (PET) film having a thickness of about 38 μm as a first transparent film, a first inorganic layer having a thickness of about 0.8 μm made of silicon carbide (SiOC) is formed by plasma chemical vapor deposition, and the first inorganic film is formed. A second barrier layer made of aluminum oxide (Al 2 O 3 ) and having a thickness of about 50 nm was formed on the inorganic layer by using an atomic layer deposition method to form a first barrier layer.
상기 코팅 조성물을 상기 제1 배리어층의 상기 제2 무기막 상에 약 100㎛ 두께로 코팅하여 코팅층을 형성하였다. 상기 제1 투명 필름 및 상기 제1 배리어층과 실질적으로 동일한 제2 투명 필름 및 제2 배리어층을 준비하여 상기 코팅층 상에 상기 코팅층이 상기 제2 배리어층과 접촉하도록 덮고, 광을 조사하여 상기 코팅층을 경화시킴으로써 광변환층을 형성하였다.The coating composition was coated to a thickness of about 100 μm on the second inorganic layer of the first barrier layer to form a coating layer. Preparing a first transparent film and a second transparent film and a second barrier layer substantially the same as the first barrier layer to cover the coating layer on the coating layer in contact with the second barrier layer, by irradiating light to the coating layer The photoconversion layer was formed by hardening.
이어서, 상기 제1 투명 필름 및 상기 제2 투명 필름 각각의 외측면에 우레탄아크릴레이트 100 중량부에 대해서 약 0.8 중량부로 혼합된 TPO를 갖는 조성물을 이용하여 전체의 평균 두께가 약 7 ㎛인 광확산 패턴을 갖는 제1 광학층 및 제2 광학층을 형성하여, 확산 시트를 준비하였다.Subsequently, using a composition having a TPO mixed at about 0.8 parts by weight with respect to 100 parts by weight of urethane acrylate on the outer surfaces of each of the first transparent film and the second transparent film, the total thickness is about 7 μm. The 1st optical layer and the 2nd optical layer which have a pattern were formed, and the diffusion sheet was prepared.
이에 따라, 제1 광학층, 제1 투명 필름, 제1 배리어층, 상기 코팅층의 경화로 형성된 광변환층, 제2 배리어층, 제2 투명 필름 및 제2 광학층이 순차적으로 적층된 확산 시트를 제조하였다.Accordingly, the diffusion sheet in which the first optical layer, the first transparent film, the first barrier layer, the light conversion layer formed by curing the coating layer, the second barrier layer, the second transparent film, and the second optical layer are sequentially stacked Prepared.
(3) 백라이트 유닛의 준비(3) Preparation of the backlight unit
상기와 같이 준비된 발광 소자와, 순차적으로 적층된 도광판, 확산 시트, 제1 및 제2 집광 시트를 어셈블리하여 본 발명의 실시예 5에 따른 백라이트 유닛을 준비하였다. 이때, 제1 광학층이 상기 도광판과 마주하고, 상기 제2 광학층이 상기 제1 집광 시트와 마주하도록 상기 확산 시트를 상기 도광판 상에 배치하였다.The backlight unit according to the fifth embodiment of the present invention was prepared by assembling the light emitting device prepared as described above, the light guide plate, the diffusion sheet, and the first and second light collecting sheets sequentially stacked. In this case, the diffusion sheet was disposed on the light guide plate such that a first optical layer faced the light guide plate and the second optical layer faced the first light collecting sheet.
[실시예 6]Example 6
(1) 도광판, 제1 및 제2 집광 시트들의 준비(1) Preparation of Light Guide Plate, First and Second Condensing Sheets
도광판, 제1 및 제2 집광 시트들은 실시예 1에 따른 백라이트 유닛에서와 실질적으로 동일하게 준비하였다.The light guide plate, the first and the second light collecting sheets were prepared substantially the same as in the backlight unit according to the first embodiment.
(2) 발광 소자의 준비(2) Preparation of Light-Emitting Element
먼저, 톨루엔 1 ml에 산가(acid value)가 약 30 mg KOH/g인 산화 고밀도 폴리에틸렌 왁스(oxidized HDPE wax)로 이루어진 왁스계 화합물(상품명: Licowax PED 136 왁스, Clariant사, 스위스)를 20 mg을 혼합한 후, 약 130 ℃로 온도를 상승시킴으로써 상기 왁스계 화합물을 용해시켜 왁스 용액을 제조하였다. 상기 왁스 용액에, LWB사(회사명, 독일)에서 구입한 녹색 형광체 LP-F525(상품명) 20 mg과 톨루엔 1 ml가 혼합된 톨루엔 용액을 첨가하여 혼합한 후, 상온으로 냉각시켜 왁스 입자 및 상기 녹색 형광체를 포함하는 형광 복합체가 분산된 분산 용액을 제조하였다.First, 20 mg of a wax-based compound (trade name: Licowax PED 136 wax, Clariant, Switzerland) consisting of oxidized HDPE wax having an acid value of about 30 mg KOH / g was added to 1 ml of toluene. After mixing, the wax-based compound was dissolved by raising the temperature to about 130 ° C. to prepare a wax solution. To the wax solution, 20 mg of a green phosphor LP-F525 (trade name) purchased from LWB (company name, Germany) and a toluene solution containing 1 ml of toluene were added and mixed, followed by cooling to room temperature to form wax particles and the A dispersion solution in which a fluorescent complex including a green phosphor was dispersed was prepared.
니치아사(회사명, 일본)에서 구입한 약 444 nm에서 발광 피크를 갖는 청색 발광칩 상에 상기와 같이 제조된 형광 복합체와 다우코닝사(회사명, 미국)에서 구입한 OE-6630(상품명)의 A kit 및 B kit가 1:4 비율로 혼합된 열경화성 실리콘 수지의 혼합물을 몰딩한 후 150 ℃에서 2시간 동안 경화시켜 발광 소자를 제조하였다.On the blue light emitting chip having an emission peak at about 444 nm purchased from Nichia (Japan) and OE-6630 (trade name) purchased from Dow Corning (USA). A light-emitting device was manufactured by molding a mixture of a thermosetting silicone resin in which A kits and B kits were mixed at a ratio of 1: 4 and curing at 150 ° C. for 2 hours.
(3) 확산 시트의 준비(3) Preparation of Diffusion Sheet
먼저, 톨루엔 1 ml에 왁스계 화합물로서 산화 고밀도 폴리에틸렌 왁스(oxidized HDPE wax)로서 산가(acid value)가 약 30 mg KOH/g인 왁스(상품명: Licowax PED 136 왁스, Clariant사, 스위스)를 20 mg을 혼합한 후, 약 130 ℃로 온도를 상승시킴으로써 상기 왁스계 화합물을 용해시켜 왁스 용액을 제조하였다. 톨루엔 1 ml에 약 20 mg의 CdSe계의 적색 나노발광체(상품명: Nanodot-HE-610, QD solution사, 한국)가 분산된 용액을, 상기 왁스 용액에 첨가하여 혼합한 후, 상온으로 냉각시켜 적색 발광 복합체가 분산된 용액을 제조하였다.First, 20 mg of a wax (trade name: Licowax PED 136 wax, Clariant, Switzerland) having an acid value of about 30 mg KOH / g as an oxidized HDPE wax as a wax-based compound in 1 ml of toluene. After mixing, the wax-based compound was dissolved by raising the temperature to about 130 ℃ to prepare a wax solution. A solution containing about 20 mg of CdSe-based red nanoluminescent material (trade name: Nanodot-HE-610, QD solution, Korea) in 1 ml of toluene was added to the wax solution, mixed, and cooled to room temperature A solution in which the light emitting complex was dispersed was prepared.
상기 용액을, BASF사(회사명, 독일)에서 구입한 우레탄아크릴레이트 및 BASF사에서 구입한 TPO와 혼합하였다. TPO는 우레탄아크릴레이트 100 중량부에 대해 약 0.8 중량부 혼합하였다. 이후 증발기(evaporator)를 이용하여 톨루엔을 제거하여 우레탄아크릴레이트, 상기 적색 발광 복합체 및 광개시제가 혼합된 코팅 조성물을 제조하였다.The solution was mixed with urethane acrylate purchased from BASF (Company, Germany) and TPO purchased from BASF. TPO was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate. Thereafter, toluene was removed using an evaporator to prepare a coating composition in which urethane acrylate, the red light-emitting composite, and the photoinitiator were mixed.
제1 투명 필름으로서 약 38 ㎛의 두께를 갖는 PET(polyethylene terephthalate) 필름 상에, 플라즈마화학증착법을 이용하여 탄화산화실리콘(SiOC)로 이루어진 약 0.8 ㎛ 두께의 제1 무기막을 형성하고, 상기 제1 무기막 상에 원자층 증착법을 이용하여 산화 알루미늄(Al2O3)으로 이루어지고 약 50 nm의 두께를 갖는 제2 무기막을 형성하여 제1 배리어층을 형성하였다.On the polyethylene terephthalate (PET) film having a thickness of about 38 μm as a first transparent film, a first inorganic layer having a thickness of about 0.8 μm made of silicon carbide (SiOC) is formed by plasma chemical vapor deposition, and the first inorganic film is formed. A second barrier layer made of aluminum oxide (Al 2 O 3 ) and having a thickness of about 50 nm was formed on the inorganic layer by using an atomic layer deposition method to form a first barrier layer.
상기 코팅 조성물을 상기 제1 배리어층의 상기 제2 무기막 상에 약 100㎛ 두께로 코팅하여 코팅층을 형성하였다. 상기 제1 투명 필름 및 상기 제1 배리어층과 실질적으로 동일한 제2 투명 필름 및 제2 배리어층을 준비하여 상기 코팅층 상에 상기 코팅층이 상기 제2 배리어층과 접촉하도록 덮고, 광을 조사하여 상기 코팅층을 경화시킴으로써 광변환층을 형성하였다.The coating composition was coated to a thickness of about 100 μm on the second inorganic layer of the first barrier layer to form a coating layer. Preparing a first transparent film and a second transparent film and a second barrier layer substantially the same as the first barrier layer to cover the coating layer on the coating layer in contact with the second barrier layer, by irradiating light to the coating layer The photoconversion layer was formed by hardening.
이어서, 상기 제1 투명 필름 및 상기 제2 투명 필름 각각의 외측면에 우레탄아크릴레이트 100 중량부에 대해서 약 0.8 중량부로 혼합된 TPO를 갖는 조성물을 이용하여 전체의 평균 두께가 약 7 ㎛인 광확산 패턴을 갖는 제1 광학층 및 제2 광학층을 형성하여, 확산 시트를 준비하였다.Subsequently, using a composition having a TPO mixed at about 0.8 parts by weight with respect to 100 parts by weight of urethane acrylate on the outer surfaces of each of the first transparent film and the second transparent film, the total thickness is about 7 μm. The 1st optical layer and the 2nd optical layer which have a pattern were formed, and the diffusion sheet was prepared.
이에 따라, 제1 광학층, 제1 투명 필름, 제1 배리어층, 상기 코팅층의 경화로 형성된 광변환층, 제2 배리어층, 제2 투명 필름 및 제2 광학층이 순차적으로 적층된 확산 시트를 제조하였다.Accordingly, the diffusion sheet in which the first optical layer, the first transparent film, the first barrier layer, the light conversion layer formed by curing the coating layer, the second barrier layer, the second transparent film, and the second optical layer are sequentially stacked Prepared.
(4) 백라이트 유닛의 준비(4) Preparation of the backlight unit
상기와 같이 준비된 발광 소자와, 순차적으로 적층된 도광판, 확산 시트, 제1 및 제2 집광 시트를 어셈블리하여 본 발명의 실시예 6에 따른 백라이트 유닛을 준비하였다. 이때, 제1 광학층이 상기 도광판과 마주하고, 상기 제2 광학층이 상기 제1 집광 시트와 마주하도록 상기 확산 시트를 상기 도광판 상에 배치하였다.The backlight unit according to the sixth embodiment of the present invention was prepared by assembling the light emitting device prepared as described above, the light guide plate, the diffusion sheet, and the first and second light collecting sheets sequentially stacked. In this case, the diffusion sheet was disposed on the light guide plate such that a first optical layer faced the light guide plate and the second optical layer faced the first light collecting sheet.
[실시예 7]Example 7
(1) 발광 소자, 도광판, 제1 및 제2 집광 시트들의 준비(1) Preparation of light emitting element, light guide plate, first and second light collecting sheets
발광 소자, 도광판, 제1 및 제2 집광 시트들은 실시예 1에 따른 백라이트 유닛에서와 실질적으로 동일하게 준비하였다.The light emitting device, the light guide plate, the first and the second light collecting sheets were prepared substantially the same as in the backlight unit according to the first embodiment.
(2) 확산 시트의 준비(2) Preparation of Diffusion Sheet
실시예 1의 확산 시트의 제조 공정에서 준비한 녹색 발광 복합체를 포함하는 제2 용액을, BASF사(회사명, 독일)에서 구입한 우레탄아크릴레이트 및 TPO와 혼합하였다. TPO는 우레탄아크릴레이트 100 중량부에 대해 약 0.8 중량부 혼합하였다. 이후 증발기(evaporator)를 이용하여 톨루엔을 제거하여 우레탄아크릴레이트, 상기 녹색 발광 복합체 및 광개시제가 혼합된 제1 코팅 조성물을 제조하였다. 상기 제1 코팅 조성물에서, 우레탄아크릴레이트 100 중량부에 대해서, 상기 녹색 발광 복합체는 약 9.8 중량부가 포함되었다. 제1 투명 필름 상에 형성된 제1 배리어층을 실시예 1의 확산 시트의 제조에서와 실질적으로 동일하게 준비하고, 상기 제1 배리어층 상에 상기 제1 코팅 조성물을 코팅하고 이를 경화시켜 두께가 약 50 ㎛인 제1 광변환층을 형성하였다.The second solution containing the green luminescent composite prepared in the production process of the diffusion sheet of Example 1 was mixed with urethane acrylate and TPO purchased from BASF Corporation (company name, Germany). TPO was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate. Then, toluene was removed using an evaporator to prepare a first coating composition in which urethane acrylate, the green light-emitting composite, and the photoinitiator were mixed. In the first coating composition, about 9.8 parts by weight of the green light emitting composite was included based on 100 parts by weight of urethane acrylate. A first barrier layer formed on the first transparent film was prepared in substantially the same manner as in the preparation of the diffusion sheet of Example 1, and the first coating composition was coated on the first barrier layer and cured so that the thickness was about the same. A first light conversion layer having a thickness of 50 μm was formed.
이어서, 실시예 1의 확산 시트의 제조 공정에서 준비한 적색 발광 복합체를 포함하는 제1 용액을 BASF사(회사명, 독일)에서 구입한 우레탄아크릴레이트 및 TPO와 혼합하였다. TPO는 우레탄아크릴레이트 100 중량부에 대해 약 0.8 중량부 혼합하였다. 이후 증발기(evaporator)를 이용하여 톨루엔을 제거하여 우레탄아크릴레이트, 상기 적색 발광 복합체 및 광개시제가 혼합된 제2 코팅 조성물을 제조하였다. 상기 제2 코팅 조성물에서, 우레탄아크릴레이트 100 중량부에 대해서, 상기 적색 발광 복합체는 약 0.8 중량부가 포함되었다. 상기 제1 투명 필름 및 상기 제1 배리어층과 실질적으로 동일한 제2 투명 필름 및 제2 배리어층을 준비하여 상기 제2 배리어층 상에 상기 제2 코팅 조성물을 코팅하고 이를 경화시켜 두께가 약 50 ㎛인 제2 광변환층을 형성하였다.Subsequently, the first solution containing the red light-emitting composite prepared in the manufacturing process of the diffusion sheet of Example 1 was mixed with urethane acrylate and TPO purchased from BASF (company name, Germany). TPO was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate. Then, toluene was removed using an evaporator to prepare a second coating composition in which urethane acrylate, the red light-emitting composite, and the photoinitiator were mixed. In the second coating composition, about 0.8 parts by weight of the red light-emitting composite was included based on 100 parts by weight of urethane acrylate. Prepare a second transparent film and a second barrier layer substantially the same as the first transparent film and the first barrier layer to coat and cure the second coating composition on the second barrier layer to a thickness of about 50 ㎛ A second light conversion layer was formed.
상기 제1 광변환층과 상기 제2 광변환층이 서로 마주하도록 배치한 후, 상기 제1 및 제2 광변환층들 사이에 접착제로서 우레탄아크릴레이트 및 TPO가 약 100:0.8 중량비로 혼합된 조성물이 개재되도록 어셈블리하고 광을 조사하여 상기 제1 및 제2 광변환층들 사이에 접착층을 형성하였다. 상기 접착층의 두께는 약 3 ㎛이었다.After the first photoconversion layer and the second photoconversion layer are disposed to face each other, a composition in which a urethane acrylate and TPO as an adhesive is mixed in a weight ratio of about 100: 0.8 between the first and second photoconversion layers. The assembly was interposed and irradiated with light to form an adhesive layer between the first and second light conversion layers. The thickness of the adhesive layer was about 3 μm.
이어서, 상기 제1 투명 필름 및 상기 제2 투명 필름 각각의 외측면에 우레탄아크릴레이트 100 중량부에 대해서 약 0.8 중량부로 혼합된 TPO를 갖는 조성물을 이용하여 전체의 평균 두께가 약 7 ㎛인 광확산 패턴을 갖는 제1 광학층 및 제2 광학층을 형성하여, 확산 시트를 준비하였다.Subsequently, using a composition having a TPO mixed at about 0.8 parts by weight with respect to 100 parts by weight of urethane acrylate on the outer surfaces of each of the first transparent film and the second transparent film, the total thickness is about 7 μm. The 1st optical layer and the 2nd optical layer which have a pattern were formed, and the diffusion sheet was prepared.
이에 따라, 제1 광학층, 제1 투명 필름, 제1 배리어층, 상기 제1 광변환층, 상기 접착층, 상기 제2 광변환층, 제2 배리어층, 제2 투명 필름 및 제2 광학층이 순차적으로 적층된 확산 시트를 제조하였다.Accordingly, the first optical layer, the first transparent film, the first barrier layer, the first light conversion layer, the adhesive layer, the second light conversion layer, the second barrier layer, the second transparent film and the second optical layer Diffusion sheets stacked sequentially were prepared.
(3) 백라이트 유닛의 준비(3) Preparation of the backlight unit
상기와 같이 준비된 발광 소자와, 순차적으로 적층된 도광판, 확산 시트, 제1 및 제2 집광 시트들을 어셈블리하여 본 발명의 실시예 7에 따른 백라이트 유닛을 준비하였다. 이때, 제1 광학층이 상기 도광판과 마주하고, 상기 제2 광학층이 상기 제1 집광 시트와 마주하도록 상기 확산 시트를 상기 도광판 상에 배치하였다.The backlight unit according to the seventh exemplary embodiment of the present invention was prepared by assembling the light emitting device prepared as described above, the light guide plate, the diffusion sheet, and the first and second light collecting sheets sequentially stacked. In this case, the diffusion sheet was disposed on the light guide plate such that a first optical layer faced the light guide plate and the second optical layer faced the first light collecting sheet.
[실시예 8]Example 8
(1) 발광 소자, 도광판, 제1 및 제2 집광 시트들의 준비(1) Preparation of light emitting element, light guide plate, first and second light collecting sheets
발광 소자, 도광판, 제1 및 제2 집광 시트들은 실시예 1에 따른 백라이트 유닛에서와 실질적으로 동일하게 준비하였다.The light emitting device, the light guide plate, the first and the second light collecting sheets were prepared substantially the same as in the backlight unit according to the first embodiment.
(2) 확산 시트의 준비(2) Preparation of Diffusion Sheet
먼저, 톨루엔 1 ml에 산가(acid value)가 약 30 mg KOH/g인 산화 고밀도 폴리에틸렌 왁스(oxidized HDPE wax)로 이루어진 왁스계 화합물(상품명: Licowax PED 136 왁스, Clariant사, 스위스)를 20 mg을 혼합한 후, 약 130 ℃로 온도를 상승시킴으로써 상기 왁스계 화합물을 용해시켜 왁스 용액을 제조하였다. 상기 왁스 용액에, LWB사(회사명, 독일)에서 구입한 녹색 형광체 LP-F525(상품명) 20 mg과 톨루엔 1 ml가 혼합된 톨루엔 용액을 첨가하여 혼합한 후, 상온으로 냉각시켜 왁스 입자 및 상기 녹색 형광체를 포함하는 형광 복합체가 분산된 분산 용액을 제조하였다.First, 20 mg of a wax-based compound (trade name: Licowax PED 136 wax, Clariant, Switzerland) consisting of oxidized HDPE wax having an acid value of about 30 mg KOH / g was added to 1 ml of toluene. After mixing, the wax-based compound was dissolved by raising the temperature to about 130 ° C. to prepare a wax solution. To the wax solution, 20 mg of a green phosphor LP-F525 (trade name) purchased from LWB (company name, Germany) and a toluene solution containing 1 ml of toluene were added and mixed, followed by cooling to room temperature to form wax particles and the A dispersion solution in which a fluorescent complex including a green phosphor was dispersed was prepared.
상기 분산 용액을, BASF사(회사명, 독일)에서 구입한 우레탄아크릴레이트 및 TPO와 혼합하였다. TPO는 우레탄아크릴레이트 100 중량부에 대해 약 0.8 중량부 혼합하였다. 이후 증발기(evaporator)를 이용하여 톨루엔을 제거하여 우레탄아크릴레이트, 상기 형광 복합체 및 광개시제가 혼합된 제3 코팅 조성물을 제조하였다. 상기 제3 코팅 조성물에서, 우레탄아크릴레이트 100 중량부에 대해서, 상기 형광 복합체는 약 22.4 중량부가 포함되었다. 제1 투명 필름 상에 형성된 제1 배리어층을 실시예 1의 확산 시트의 제조에서와 실질적으로 동일하게 준비하고, 상기 제1 배리어층 상에 상기 제3 코팅 조성물을 코팅하고 이를 경화시켜 두께가 약 50 ㎛인 제1 광변환층을 형성하였다.The dispersion solution was mixed with urethane acrylate and TPO purchased from BASF (company name, Germany). TPO was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate. Then, toluene was removed using an evaporator to prepare a third coating composition in which urethane acrylate, the fluorescent composite, and the photoinitiator were mixed. In the third coating composition, the fluorescent composite contained about 22.4 parts by weight based on 100 parts by weight of urethane acrylate. A first barrier layer formed on the first transparent film was prepared substantially the same as in the preparation of the diffusion sheet of Example 1, and the third coating composition was coated on the first barrier layer and cured so that the thickness was about the same. A first light conversion layer having a thickness of 50 μm was formed.
이어서, 상기 제1 투명 필름 및 상기 제1 배리어층과 실질적으로 동일한 제2 투명 필름 및 제2 배리어층을 준비하여 상기 제2 배리어층 상에 실시예 7에서 제조된 적색 발광 복합체, 우레탄아크릴레이트 및 TPO를 포함하는 제2 코팅 조성물을 코팅하고 이를 경화시켜 두께가 약 50 ㎛인 제2 광변환층을 형성하였다.Subsequently, a red light-emitting composite prepared in Example 7, urethane acrylate, and the like prepared on the second barrier layer by preparing a second transparent film and a second barrier layer substantially the same as the first transparent film and the first barrier layer. A second coating composition comprising TPO was coated and cured to form a second light conversion layer having a thickness of about 50 μm.
상기 제1 광변환층과 상기 제2 광변환층이 서로 마주하도록 배치한 후, 상기 제1 및 제2 광변환층들 사이에 접착제로서 우레탄아크릴레이트 및 TPO가 약 100:0.8 중량비로 혼합된 조성물이 개재되도록 어셈블리하고 광을 조사하여 상기 제1 및 제2 광변환층들 사이에 접착층을 형성하였다. 상기 접착층의 두께는 약 3 ㎛이었다.After the first photoconversion layer and the second photoconversion layer are disposed to face each other, a composition in which a urethane acrylate and TPO as an adhesive is mixed in a weight ratio of about 100: 0.8 between the first and second photoconversion layers. The assembly was interposed and irradiated with light to form an adhesive layer between the first and second light conversion layers. The thickness of the adhesive layer was about 3 μm.
이어서, 상기 제1 투명 필름 및 상기 제2 투명 필름 각각의 외측면에 우레탄아크릴레이트 100 중량부에 대해서 약 0.8 중량부로 혼합된 TPO를 갖는 조성물을 이용하여 전체의 평균 두께가 약 7 ㎛인 광확산 패턴을 갖는 제1 광학층 및 제2 광학층을 형성하여, 확산 시트를 준비하였다.Subsequently, using a composition having a TPO mixed at about 0.8 parts by weight with respect to 100 parts by weight of urethane acrylate on the outer surfaces of each of the first transparent film and the second transparent film, the total thickness is about 7 μm. The 1st optical layer and the 2nd optical layer which have a pattern were formed, and the diffusion sheet was prepared.
이에 따라, 제1 광학층, 제1 투명 필름, 제1 배리어층, 상기 제1 광변환층, 상기 접착층, 상기 제2 광변환층, 제2 배리어층, 제2 투명 필름 및 제2 광학층이 순차적으로 적층된 확산 시트를 제조하였다.Accordingly, the first optical layer, the first transparent film, the first barrier layer, the first light conversion layer, the adhesive layer, the second light conversion layer, the second barrier layer, the second transparent film and the second optical layer Diffusion sheets stacked sequentially were prepared.
(3) 백라이트 유닛의 준비(3) Preparation of the backlight unit
상기와 같이 준비된 발광 소자와, 순차적으로 적층된 도광판, 확산 시트, 제1 및 제2 집광 시트를 어셈블리하여 본 발명의 실시예 8에 따른 백라이트 유닛을 준비하였다. 이때, 제1 광학층이 상기 도광판과 마주하고, 상기 제2 광학층이 상기 제1 집광 시트와 마주하도록 상기 확산 시트를 상기 도광판 상에 배치하였다.The backlight unit according to the eighth embodiment of the present invention was prepared by assembling the light emitting device prepared as described above, the light guide plate, the diffusion sheet, and the first and second light collecting sheets sequentially stacked. In this case, the diffusion sheet was disposed on the light guide plate such that a first optical layer faced the light guide plate and the second optical layer faced the first light collecting sheet.
[실시예 9]Example 9
(1) 발광 소자, 도광판, 제1 및 제2 집광 시트들의 준비(1) Preparation of light emitting element, light guide plate, first and second light collecting sheets
발광 소자, 도광판, 제1 및 제2 집광 시트들은 실시예 1에 따른 백라이트 유닛에서와 실질적으로 동일하게 준비하였다.The light emitting device, the light guide plate, the first and the second light collecting sheets were prepared substantially the same as in the backlight unit according to the first embodiment.
(2) 확산 시트의 준비(2) Preparation of Diffusion Sheet
BASF사(회사명, 독일)에서 구입한 우레탄아크릴레이트 및 TPO를 혼합하여 코팅용 조성물을 제조하였다. TPO는 우레탄아크릴레이트 100 중량부에 대해 약 0.8 중량부 혼합하였다. 상기 코팅 조성물을 약 38 ㎛ 두께의 PET 필름 상에 코팅하고 경화시켜 그 표면에 광확산층을 형성하여, 베이스 기재 및 광확산층을 포함하는 확산 시트를 제조하였고, 상기 광확산층의 평균 두께는 약 50 ㎛이었다.The coating composition was prepared by mixing urethane acrylate and TPO purchased from BASF (company name, Germany). TPO was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate. The coating composition was coated on a PET film having a thickness of about 38 μm and cured to form a light diffusion layer on the surface thereof, thereby preparing a diffusion sheet including a base substrate and the light diffusion layer, wherein the average thickness of the light diffusion layer was about 50 μm. It was.
(3) 광변환 필름의 준비(3) Preparation of the light conversion film
실시예 7의 확산 시트의 제조 공정에서 준비한 녹색 발광 복합체를 포함하는 제1 코팅 조성물을 준비하였다. 제1 투명 필름 상에 형성된 제1 배리어층을 실시예 1의 확산 시트의 제조에서와 실질적으로 동일하게 준비하고, 상기 제1 배리어층 상에 상기 제1 코팅 조성물을 코팅하고 이를 경화시켜 두께가 약 50 ㎛인 제1 광변환층을 형성하였다.A first coating composition including a green light emitting composite prepared in a manufacturing process of the diffusion sheet of Example 7 was prepared. A first barrier layer formed on the first transparent film was prepared in substantially the same manner as in the preparation of the diffusion sheet of Example 1, and the first coating composition was coated on the first barrier layer and cured so that the thickness was about the same. A first light conversion layer having a thickness of 50 μm was formed.
이어서, 실시예 7의 확산 시트의 제조 공정에서 준비한 적색 발광 복합체를 포함하는 제2 코팅 조성물을 준비하였다. 상기 제1 투명 필름 및 상기 제1 배리어층과 실질적으로 동일한 제2 투명 필름 및 제2 배리어층을 준비하여 상기 제2 배리어층 상에 상기 제2 코팅 조성물을 코팅하고 이를 경화시켜 두께가 약 50 ㎛인 제2 광변환층을 형성하였다.Subsequently, a second coating composition including the red light-emitting composite prepared in the manufacturing process of the diffusion sheet of Example 7 was prepared. Prepare a second transparent film and a second barrier layer substantially the same as the first transparent film and the first barrier layer to coat and cure the second coating composition on the second barrier layer to a thickness of about 50 ㎛ A second light conversion layer was formed.
상기 제1 광변환층과 상기 제2 광변환층이 서로 마주하도록 배치한 후, 상기 제1 및 제2 광변환층들 사이에 접착제로서 우레탄아크릴레이트 및 TPO가 약 100:0.8 중량비로 혼합된 조성물이 개재되도록 어셈블리하고 광을 조사하여 상기 제1 및 제2 광변환층들 사이에 접착층을 형성하였다. 상기 접착층의 두께는 약 3 ㎛이었다.After the first photoconversion layer and the second photoconversion layer are disposed to face each other, a composition in which a urethane acrylate and TPO as an adhesive is mixed in a weight ratio of about 100: 0.8 between the first and second photoconversion layers. The assembly was interposed and irradiated with light to form an adhesive layer between the first and second light conversion layers. The thickness of the adhesive layer was about 3 μm.
(4) 백라이트 유닛의 준비(4) Preparation of the backlight unit
상기와 같이 준비된 발광 소자와, 도광판, 상기 광변환 필름, 확산 시트, 제1 및 제2 집광 시트들을 순차적으로 어셈블리하여 본 발명의 실시예 9에 따른 백라이트 유닛을 준비하였다. 이때, 제1 투명 필름이 상기 도광판과 마주하고, 제2 투명 필름이 상기 확산 시트와 마주하도록 상기 광변환 필름을 상기 도광판 상에 배치하였다.The light emitting device prepared as described above, the light guide plate, the light conversion film, the diffusion sheet, the first and the second light collecting sheets were sequentially assembled to prepare a backlight unit according to the ninth embodiment of the present invention. In this case, the light conversion film was disposed on the light guide plate such that a first transparent film faces the light guide plate and a second transparent film faces the diffusion sheet.
[실시예 10]Example 10
(1) 도광판, 제1 및 제2 집광 시트들의 준비(1) Preparation of Light Guide Plate, First and Second Condensing Sheets
도광판, 제1 및 제2 집광 시트들은 실시예 1에 따른 백라이트 유닛에서와 실질적으로 동일하게 준비하였다.The light guide plate, the first and the second light collecting sheets were prepared substantially the same as in the backlight unit according to the first embodiment.
(2) 발광 소자의 준비(2) Preparation of Light-Emitting Element
실시예 6에서 준비한 발광 소자와 실질적으로 동일한 발광 소자를 준비하였다.A light emitting device substantially the same as the light emitting device prepared in Example 6 was prepared.
(3) 확산 시트의 준비(3) Preparation of Diffusion Sheet
실시예 9에서 준비한 확산 시트와 실질적으로 동일한 확산 시트를 준비하였다.A diffusion sheet substantially the same as the diffusion sheet prepared in Example 9 was prepared.
(4) 광변환 필름의 준비(4) Preparation of the light conversion film
실시예 7의 확산 시트의 제조 공정에서 준비한 적색 발광 복합체를 포함하는 제2 코팅 조성물을 준비하였다.A second coating composition including a red light emitting composite prepared in a manufacturing process of the diffusion sheet of Example 7 was prepared.
실시예 1에서 설명한 제1 투명 필름 및 제1 배리어층을 준비하고, 상기 제1 배리어층 상에 상기 제2 코팅 조성물을 코팅하고, 상기 제1 투명 필름 및 상기 제1 배리어층과 실질적으로 동일한 제2 투명 필름 및 제2 배리어층을 준비하여 코팅층이 상기 제2 배리어층과 접촉하도록 덮은 후 이를 경화시켜 두께가 약 100 ㎛인 광변환층을 형성하였다.Preparing a first transparent film and a first barrier layer described in Example 1, coating the second coating composition on the first barrier layer, and substantially the same agent as the first transparent film and the first barrier layer A second transparent film and a second barrier layer were prepared, the coating layer was covered in contact with the second barrier layer, and then cured to form a light conversion layer having a thickness of about 100 μm.
(5) 백라이트 유닛의 준비(5) Preparation of the backlight unit
상기와 같이 준비된 발광 소자와, 도광판, 상기 광변환 필름, 확산 시트, 제1 및 제2 집광 시트를 순차적으로 어셈블리하여 본 발명의 실시예 10에 따른 백라이트 유닛을 준비하였다. 이때, 제1 투명 필름이 상기 도광판과 마주하고, 제2 투명 필름이 상기 확산 시트와 마주하도록 상기 광변환 필름을 상기 도광판 상에 배치하였다.A light emitting device prepared as described above, a light guide plate, the light conversion film, a diffusion sheet, a first and a second light collecting sheet were sequentially assembled to prepare a backlight unit according to Example 10 of the present invention. In this case, the light conversion film was disposed on the light guide plate such that a first transparent film faces the light guide plate and a second transparent film faces the diffusion sheet.
[실시예 11]Example 11
(1) 발광 소자의 준비(1) Preparation of Light-Emitting Element
발광 소자는 실시예 1에 따른 백라이트 유닛에서와 실질적으로 동일하게 준비하였다.The light emitting device was prepared in substantially the same manner as in the backlight unit according to the first embodiment.
(2) 역프리즘 보호 시트의 준비(2) Preparation of the anti-prism protection sheet
먼저 약 125 ㎛ 두께의 PET 필름의 일면 상에, BASF사(회사명, 독일)에서 구입한 에폭시아크릴레이트와 TPO가 약 100:0.8 중량비로 혼합된 조성물을 코팅한 후 경화시켜 약 3 ㎛의 높이를 갖는 버퍼 패턴을 형성하였다.First, on the surface of a PET film having a thickness of about 125 μm, a composition in which an epoxy acrylate and TPO obtained from BASF Co., Ltd. (Germany) and TPO are mixed at a weight ratio of about 100: 0.8 is coated and cured to have a height of about 3 μm. A buffer pattern having was formed.
상기 버퍼 패턴이 형성된 상기 PET 필름의 반대면에, BASF사(회사명, 독일)에서 구입한 우레탄아크릴레이트와 TPO가 약 100:0.8 중량비로 혼합된 조성물을 코팅한 후 경화시켜 표면에 광확산 패턴이 형성된 광학층을 형성하였다.On the opposite side of the PET film on which the buffer pattern is formed, a coating composition of urethane acrylate and TPO purchased from BASF Co. This formed optical layer was formed.
(3) 역프리즘 시트의 준비(3) Preparation of inverse prism sheet
제1 투명 필름 상에 형성된 제1 배리어층을 실시예 1의 확산 시트의 제조에서와 실질적으로 동일하게 준비하고, 상기 제1 배리어층 상에 실시예 7에서 제조한 제1 코팅 조성물을 코팅하고 이를 경화시켜 두께가 약 50 ㎛인 제1 광변환층을 형성하였다.Preparing a first barrier layer formed on the first transparent film substantially the same as in the preparation of the diffusion sheet of Example 1, coating the first coating composition prepared in Example 7 on the first barrier layer and Curing to form a first light conversion layer having a thickness of about 50 μm.
이어서, 상기 제1 투명 필름 및 상기 제1 배리어층과 실질적으로 동일한 제2 투명 필름 및 제2 배리어층을 준비하고, 상기 제2 배리어층 상에 실시예 7에서 제조한 제2 코팅 조성물을 코팅하고 이를 경화시켜 두께가 약 50 ㎛인 제2 광변환층을 형성하였다.Subsequently, a second transparent film and a second barrier layer substantially the same as the first transparent film and the first barrier layer were prepared, and the second coating composition prepared in Example 7 was coated on the second barrier layer. This was cured to form a second light conversion layer having a thickness of about 50 μm.
상기 제1 광변환층과 상기 제2 광변환층이 서로 마주하도록 배치한 후, 상기 제1 및 제2 광변환층들 사이에 접착제로서 우레탄아크릴레이트 및 TPO가 약 100:0.8 중량비로 혼합된 조성물이 개재되도록 어셈블리하고 광을 조사하여 상기 제1 및 제2 광변환층들 사이에 접착층을 형성하였다. 상기 접착층의 두께는 약 3 ㎛이었다.After the first photoconversion layer and the second photoconversion layer are disposed to face each other, a composition in which a urethane acrylate and TPO as an adhesive is mixed in a weight ratio of about 100: 0.8 between the first and second photoconversion layers. The assembly was interposed and irradiated with light to form an adhesive layer between the first and second light conversion layers. The thickness of the adhesive layer was about 3 μm.
이어서, 상기 제1 투명 필름의 외측에 에폭시아크릴레이트 및 TPO가 약 100:0.8 중량비로 혼합된 조성물을 코팅하고 경화시켜 표면에 약 25 ㎛의 높이를 갖는 집광 패턴이 형성된 제1 광학층을 형성하였다. 상기 제2 투명 필름의 외측에, 우레탄아크릴레이트 및 TPO가 약 100:0.8 중량비로 혼합된 조성물을 코팅하고 경화시켜 표면에 광확산 패턴이 형성된 제2 광학층을 형성하였다.Subsequently, the first optical layer having a light collecting pattern having a height of about 25 μm was formed on the surface of the first transparent film by coating and curing a composition in which epoxy acrylate and TPO were mixed at a weight ratio of about 100: 0.8. . On the outside of the second transparent film, a composition in which urethane acrylate and TPO were mixed at a weight ratio of about 100: 0.8 was coated and cured to form a second optical layer having a light diffusion pattern formed on a surface thereof.
(4) 도광판의 준비(4) Preparation of the light guide plate
메틸메타크릴레이트 중합체 100 중량부에 대해서, 벤조트리아졸계 자외선 흡수제(상품명: Tinuvin-329, BASF사, 독일) 0.5 중량부 및 힌더드 아민계 광안정제(상품명: Tinuvin-770, BASF사, 독일) 0.5 중량부를 혼합하여 도광판 제조용 조성물을 준비하였다. 상기 도광판 제조용 조성물을 금형에 주입하여 두께 약 200 ㎛의 도광판을 제조하였다.0.5 parts by weight of a benzotriazole UV absorber (trade name: Tinuvin-329, BASF, Germany) and a hindered amine light stabilizer (trade name: Tinuvin-770, BASF, Germany) based on 100 parts by weight of the methyl methacrylate polymer. 0.5 parts by weight was mixed to prepare a composition for manufacturing a light guide plate. The light guide plate manufacturing composition was injected into a mold to prepare a light guide plate having a thickness of about 200 μm.
상기 금형은 상기 역프리즘 시트의 집광 패턴과 실질적으로 동일한 형상의 프리즘 패턴을 형성하는 양각 패턴을 포함하고, 상기 금형을 이용함으로써 도광판의 일면에는 상기 역프리즘 시트의 집광 패턴과 실질적으로 동일한 형상의 프리즘 패턴이 형성되었다.The mold includes an embossed pattern forming a prism pattern having a shape substantially the same as the condensing pattern of the inverted prism sheet, and by using the mold, one surface of the light guide plate has a prism having a shape substantially the same as the condensing pattern of the inverse prism sheet. A pattern was formed.
(5) 백라이트 유닛의 준비(5) Preparation of the backlight unit
상기와 같이 준비된 발광 소자와, 순차적으로 적층된 도광판, 역프리즘 보호 시트 및 역프리즘 시트를 어셈블리하여 본 발명의 실시예 11에 따른 백라이트 유닛을 준비하였다. 상기 역프리즘 보호 시트의 광학층은 상기 역프리즘 시트와 마주하고 상기 역프리즘 보호 시트의 버퍼 패턴은 도광판과 마주하며 상기 제1 광학층이 상기 역프리즘 보호 시트의 광학층과 마주하도록 상기 역프리즘 시트 및 상기 역프리즘 보호 시트가 상기 도광판 상에 배치되었다. 상기 도광판의 프리즘 패턴은 상기 역프리즘 보호 시트와 마주하도록 배치되되, 상기 발광 소자의 배열 방향과 상기 역프리즘 시트의 집광 패턴의 연장 방향이 일치하도록 배치되고, 상기 도광판의 프리즘 패턴은 상기 역프리즘 시트의 집광 패턴과 교차하도록 배치되었다.The backlight unit according to the eleventh embodiment of the present invention was prepared by assembling the light emitting device prepared as above, the light guide plate, the reverse prism protective sheet, and the reverse prism sheet sequentially stacked. The reverse prism sheet such that the optical layer of the anti-prism protective sheet faces the reverse prism sheet, the buffer pattern of the reverse prism protective sheet faces the light guide plate, and the first optical layer faces the optical layer of the reverse prism protective sheet. And the anti-prism protective sheet was disposed on the light guide plate. The prism pattern of the light guide plate is disposed to face the anti-prism protection sheet, and the arrangement direction of the light emitting element and the extension direction of the condensing pattern of the reverse prism sheet correspond to each other, and the prism pattern of the light guide plate is the inverse prism sheet. It was arranged to intersect with the condensing pattern of.
[실시예 12]Example 12
(1) 발광 소자 및 도광판의 준비(1) Preparation of light emitting element and light guide plate
발광 소자 및 도광판은 실시예 11에 따른 백라이트 유닛에서와 실질적으로 동일하게 준비하였다.The light emitting element and the light guide plate were prepared substantially the same as in the backlight unit according to the eleventh embodiment.
(2) 역프리즘 보호 시트의 준비(2) Preparation of the anti-prism protection sheet
제1 투명 필름 상에 형성된 제1 배리어층을 실시예 1의 확산 시트의 제조에서와 실질적으로 동일하게 준비하고, 상기 제1 배리어층 상에 실시예 7에서 제조한 제1 코팅 조성물을 코팅하고 이를 경화시켜 두께가 약 50 ㎛인 제1 광변환층을 형성하였다.Preparing a first barrier layer formed on the first transparent film substantially the same as in the preparation of the diffusion sheet of Example 1, coating the first coating composition prepared in Example 7 on the first barrier layer and Curing to form a first light conversion layer having a thickness of about 50 μm.
이어서, 상기 제1 투명 필름 및 상기 제1 배리어층과 실질적으로 동일한 제2 투명 필름 및 제2 배리어층을 준비하고, 상기 제2 배리어층 상에 실시예 7에서 제조한 제2 코팅 조성물을 코팅하고 이를 경화시켜 두께가 약 50 ㎛인 제2 광변환층을 형성하였다.Subsequently, a second transparent film and a second barrier layer substantially the same as the first transparent film and the first barrier layer were prepared, and the second coating composition prepared in Example 7 was coated on the second barrier layer. This was cured to form a second light conversion layer having a thickness of about 50 μm.
상기 제1 광변환층과 상기 제2 광변환층이 서로 마주하도록 배치한 후, 상기 제1 및 제2 층들 사이에 접착제로서 우레탄아크릴레이트 및 TPO가 약 100:0.8 중량비로 혼합된 조성물이 개재되도록 어셈블리하고 광을 조사하여 상기 제1 및 제2 광변환층들 사이에 접착층을 형성하였다. 상기 접착층의 두께는 약 3 ㎛이었다.After the first photoconversion layer and the second photoconversion layer are disposed to face each other, a composition in which a urethane acrylate and TPO are mixed in an adhesive ratio of about 100: 0.8 by weight is interposed between the first and second layers. Assembly and irradiation with light to form an adhesive layer between the first and second light conversion layer. The thickness of the adhesive layer was about 3 μm.
이어서, 상기 제1 투명 필름의 외측에 에폭시아크릴레이트 및 TPO가 약 100:0.8 중량비로 혼합된 조성물을 코팅하고 경화시켜 표면에 약 3 ㎛의 높이를 갖는 버퍼 패턴이 형성된 제1 광학층을 형성하였다. 상기 제2 투명 필름의 외측에, 우레탄아크릴레이트 및 TPO가 약 100:0.8 중량비로 혼합된 조성물을 코팅하고 경화시켜 표면에 광확산 패턴이 형성된 제2 광학층을 형성하였다.Subsequently, the first optical layer having a buffer pattern having a height of about 3 μm was formed on the surface of the first transparent film by coating and curing a composition in which epoxy acrylate and TPO were mixed at a weight ratio of about 100: 0.8. . On the outside of the second transparent film, a composition in which urethane acrylate and TPO were mixed at a weight ratio of about 100: 0.8 was coated and cured to form a second optical layer having a light diffusion pattern formed on a surface thereof.
(3) 역프리즘 시트의 준비(3) Preparation of inverse prism sheet
먼저 약 125 ㎛ 두께의 PET 필름의 일면 상에, BASF사(회사명, 독일)에서 구입한 에폭시아크릴레이트와 TPO가 약 100:0.8 중량비로 혼합된 조성물을 코팅한 후 경화시켜 약 25 ㎛의 높이를 갖는 집광 패턴을 형성하였다.First, on a surface of a PET film having a thickness of about 125 μm, a composition in which an epoxy acrylate and TPO obtained from BASF Co., Ltd. (Germany) and TPO are mixed at a weight ratio of about 100: 0.8 is coated and then cured to have a height of about 25 μm. A condensing pattern having was formed.
상기 집광 패턴이 형성된 상기 PET 필름의 반대면에, BASF사(회사명, 독일)에서 구입한 우레탄아크릴레이트와 TPO가 약 100:0.8 중량비로 혼합된 조성물을 코팅한 후 경화시켜 표면에 광확산 패턴이 형성된 광학층을 형성하였다.On the opposite side of the PET film on which the condensing pattern is formed, a coating composition of urethane acrylate and TPO purchased from BASF Co. This formed optical layer was formed.
(4) 백라이트 유닛의 준비(4) Preparation of the backlight unit
상기와 같이 준비된 발광 소자와, 순차적으로 적층된 도광판, 역프리즘 보호 시트 및 역프리즘 시트를 어셈블리하여 본 발명의 실시예 12에 따른 백라이트 유닛을 준비하였다. 상기 역프리즘 보호 시트의 제1 광학층은 상기 도광판과 마주하고, 상기 역프리즘 보호 시트의 제2 광학층은 상기 역프리즘 시트와 마주하며, 상기 역프리즘 시트의 광학층은 상기 역프리즘 보호 시트의 제2 광학층과 마주하도록 상기 역프리즘 시트 및 상기 역프리즘 보호 시트가 상기 도광판 상에 배치되었다.A light emitting device prepared as described above, a light guide plate, a reverse prism protective sheet, and a reverse prism sheet sequentially stacked were assembled to prepare a backlight unit according to a twelfth embodiment of the present invention. A first optical layer of the anti-prism protective sheet faces the light guide plate, a second optical layer of the anti-prism protective sheet faces the anti-prism sheet, and an optical layer of the anti-prism sheet The reverse prism sheet and the reverse prism protective sheet were disposed on the light guide plate so as to face the second optical layer.
[비교예 1]Comparative Example 1
확산 시트로서 실시예 9에서 설명한 확산 시트를 이용하고 발광 소자를 하기와 같이 준비한 것을 이용하는 것을 제외하고는 실시예 1에 따른 백라이트 유닛과 실질적으로 동일한 백라이트 유닛을, 비교예 1에 따른 백라이트 유닛으로 준비하였다.A backlight unit substantially the same as the backlight unit according to Example 1 was prepared as a backlight unit according to Comparative Example 1, except that the diffusion sheet described in Example 9 was used as the diffusion sheet and a light emitting device was prepared as follows. It was.
발광 소자는, 니치아사(회사명, 일본)에서 구입한 약 444nm에서 발광 피크를 갖는 청색 발광칩 상에 니치아사(회사명, 일본)에서 구입한 YAG 형광체(YAG Phosphor)와 다우코닝사(회사명, 미국)에서 구입한 OE-6630(상품명)의 A kit 및 B kit가 1:4 비율로 혼합된 열경화성 실리콘 수지의 혼합물을 몰딩한 후 150℃에서 2시간 동안 경화시켜 제조하였다.The light emitting device is a YAG phosphor (YAG Phosphor) purchased from Nichia (Japan) and Dow Corning (company name) on a blue light emitting chip having an emission peak at about 444 nm purchased from Nichia (Japan). , A) and B kit of OE-6630 (trade name) purchased from the United States) was prepared by molding a mixture of a thermosetting silicone resin mixed in a 1: 4 ratio and then cured at 150 ℃ for 2 hours.
[비교예 2]Comparative Example 2
광변환 필름으로서 하기와 같이 준비한 광학 시트를 이용한 것을 제외하고는 실시예 9에 따른 백라이트 유닛과 실질적으로 동일한 백라이트 유닛을, 비교예 2에 따른 백라이트 유닛으로 준비하였다.A back light unit substantially the same as the back light unit according to Example 9 was prepared as a back light unit according to Comparative Example 2, except that an optical sheet prepared as described below was used as the light conversion film.
먼저, 적색 나노발광체(상품명: Nanodot-HE-610, QD solution사, 한국) 및 녹색 나노발광체(상품명: Nanodot-HE-530, QD solution사, 한국)를, 우레탄아크릴레이트 100 중량부에 대해서 약 0.8 중량부로 혼합된 TPO를 갖는 조성물과 혼합하여 코팅 조성물을 제조하였다. First, red nano light-emitting body (trade name: Nanodot-HE-610, QD solution, Korea) and green nano light-emitting body (trade name: Nanodot-HE-530, QD solution, Korea) about 100 parts by weight of urethane acrylate A coating composition was prepared by mixing with 0.8 parts by weight of a composition having a mixed TPO.
제1 베이스 기재로서 약 38 ㎛ 두께를 갖는 PET 필름 상에 상기 코팅 조성물을 코팅한 후, 상기 제1 베이스 기재와 실질적으로 동일한 제2 베이스 기재를 코팅층 상에 배치하고 상기 코팅층을 경화시켜 상기 광변환 필름을 제조하였다.After coating the coating composition on a PET film having a thickness of about 38 μm as a first base substrate, a second base substrate substantially identical to the first base substrate is disposed on the coating layer, and the coating layer is cured to thereby convert the light. A film was prepared.
[비교예 3]Comparative Example 3
확산 시트로서 하기와 같이 준비한 확산 시트를 이용한 것을 이용하는 것을 제외하고는 실시예 1에 따른 백라이트 유닛과 실질적으로 동일한 백라이트 유닛을, 비교예 3에 따른 백라이트 유닛으로 준비하였다.A backlight unit substantially the same as the backlight unit according to Example 1 was prepared as a backlight unit according to Comparative Example 3, except that a diffusion sheet prepared as described below was used as the diffusion sheet.
먼저, 약 38 ㎛ 두께의 PET 필름 상에 비교예 2에서 준비한 코팅 조성물을 코팅한 후 배리어층 및 투명 필름을 순차적으로 적층한 후 상기 코팅층을 경화시켜 광변환층을 형성하였다. 이때, 상기 배리어층 및 상기 투명 필름은 실시예 1에서 준비한 제1 투명 필름 및 제1 배리어층과 실질적으로 동일한 것으로 준비하였다.First, the coating composition prepared in Comparative Example 2 was coated on a PET film having a thickness of about 38 μm, and then a barrier layer and a transparent film were sequentially stacked, and then the coating layer was cured to form a light conversion layer. In this case, the barrier layer and the transparent film were prepared to be substantially the same as the first transparent film and the first barrier layer prepared in Example 1.
이어서, 상기 광변환층이 형성된 상기 베이스 기재의 타면에, BASF사(회사명, 독일)에서 구입한 우레탄아크릴레이트와 TPO가 약 100:0.8 중량비로 혼합된 조성물을 코팅한 후 경화시켜 표면에 광확산 패턴이 형성된 광학층을 형성하였다.Subsequently, on the other side of the base substrate on which the light conversion layer is formed, a coating of a urethane acrylate and TPO obtained from BASF Co., Ltd. (Germany) and TPO in a weight ratio of about 100: 0.8 is coated, followed by curing. The optical layer in which the diffusion pattern was formed was formed.
[실험 1]- 표시 장치의 색좌표 및 색재현 영역 평가[Experiment 1]-Evaluation of color coordinate and color reproduction area of display device
본 발명의 실시예 1 내지 12 및 비교예 1 내지 3에 따른 백라이트 유닛 각각을 아이폰 4(상품명, 애플사, 미국)의 표시 패널과 어셈블리하여, 표시 장치 1 내지 12 및 비교 장치 1 내지 3을 준비하였다.Each of the backlight units according to Examples 1 to 12 and Comparative Examples 1 to 3 of the present invention was assembled with a display panel of an iPhone 4 (trade name, Apple, USA) to prepare display devices 1 to 12 and comparison devices 1 to 3. .
상기 표시 장치 1 내지 12 및 비교 장치 1 내지 3 각각에 대해서 분광복사기(spectroradiometer)로서 SR-3AR (제품명, TOPCON사, 일본)를 이용하여 색재현 영역(Color Gamut), 휘도 및 색좌표(적색, 녹색, 청색)를 측정하였다. 상기 적색, 녹색 및 청색 색좌표는 각각 아이폰 4의 표시 패널이 적색, 녹색 및 청색을 표시하도록 한 후, 상기 분광복사기가 나타내는 색좌표를 기록함으로써 얻었다. 휘도 및 색좌표 각각은, 백라이트 유닛 중에서, 발광 소자가 배치된 부분을 제외한, 도광판, 확산 시트, 제1 및 제2 집광 시트들이 적층된 표시 영역 중 9개의 지점들에서 각각 측정된 값들의 평균값을 의미한다. 측정된 휘도 및 색좌표 결과를 하기 표 1에 나타낸다.Color gamut, luminance and color coordinates (red, green) using SR-3AR (product name, TOPCON, Japan) as a spectroradiometer for each of the display devices 1 to 12 and the comparison devices 1 to 3. , Blue) was measured. The red, green, and blue color coordinates were obtained by recording the color coordinates indicated by the spectrophotometer after allowing the display panel of the iPhone 4 to display red, green, and blue, respectively. Each of the luminance and the color coordinates means an average value of values measured at nine points in the display area in which the light guide plate, the diffusion sheet, and the first and second light collecting sheets are laminated, except for the portion where the light emitting element is disposed in the backlight unit. do. The measured luminance and color coordinate results are shown in Table 1 below.
표 1에서, 적색, 녹색 및 청색 색좌표 각각은 CIE 1931 색좌표계를 기준으로 나타내고, 색역 비율은 NTSC(National Television Systems Committee) 기준의 색역 범위(이하, NTSC 색역 범위)에 대한 각 표시 장치 및 비교 장치에서의 RGB 색좌표를 이은 삼각형의 면적의 백분율이다.In Table 1, each of the red, green, and blue color coordinates is represented based on the CIE 1931 color coordinate system, and the gamut ratio is shown for each display device and the comparison device for the gamut range (hereinafter referred to as NTSC gamut range) based on the National Television Systems Committee (NTSC). The percentage of the area of the triangle followed by the RGB color coordinates in.
표 1
구분 색역 비율 (%) 휘도(cd/m2) 색좌표-적색(CIE 1931) 색좌표-녹색(CIE 1931) 색좌표-청색(CIE 1931)
표시 장치 1 86 351 0.635, 0.314 0.242, 0.675 0.165, 0.053
표시 장치 2 87.8 348 0.638, 0.316 0.233, 0.678 0.165, 0.053
표시 장치 3 76.6 347 0.633, 0.316 0.239, 0.611 0.163, 0.053
표시 장치 4 75.9 349 0.631, 0.315 0.240, 0.610 0.164, 0.053
표시 장치 5 86.3 349 0.635, 0.315 0.241, 0.677 0.167, 0.052
표시 장치 6 74 347 0.623, 0.311 0.237, 0.605 0.164, 0.054
표시 장치 7 87.4 348 0.636, 0.313 0.231, 0.677 0.166, 0.053
표시 장치 8 75.7 345 0.631, 0.314 0.241, 0.609 0.164, 0.053
표시 장치 9 84.2 356 0.634, 0.311 0.229, 0.657 0.164, 0.055
표시 장치 10 73.6 341 0.624, 0.310 0.235, 0.601 0.165, 0.055
표시 장치 11 82.5 343 0.632, 0.313 0.253, 0.663 0.164, 0.053
표시 장치 12 81.4 348 0.633, 0.311 0.257, 0.655 0.165, 0.054
비교 장치 1 51.3 314 0.611, 0.354 0.318, 0.564 0.160, 0.123
비교 장치 2 61 176 0.605, 0.362 0.305, 0.582 0.157, 0.047
비교 장치 3 62.2 179 0.606, 0.361 0.302, 0.584 0.157, 0.043
Table 1
division Color Gamut Ratio (%) Luminance (cd / m 2 ) Color coordinates-red (CIE 1931) Color coordinates-green (CIE 1931) Color coordinates-blue (CIE 1931)
Display device 1 86 351 0.635, 0.314 0.242, 0.675 0.165, 0.053
Indicator 2 87.8 348 0.638, 0.316 0.233, 0.678 0.165, 0.053
Indicator 3 76.6 347 0.633, 0.316 0.239, 0.611 0.163, 0.053
Indicator 4 75.9 349 0.631, 0.315 0.240, 0.610 0.164, 0.053
Indicator 5 86.3 349 0.635, 0.315 0.241, 0.677 0.167, 0.052
Indicator 6 74 347 0.623, 0.311 0.237, 0.605 0.164, 0.054
Indicator 7 87.4 348 0.636, 0.313 0.231, 0.677 0.166, 0.053
Indicator 8 75.7 345 0.631, 0.314 0.241, 0.609 0.164, 0.053
Indicator 9 84.2 356 0.634, 0.311 0.229, 0.657 0.164, 0.055
Indicator 10 73.6 341 0.624, 0.310 0.235, 0.601 0.165, 0.055
Indicator 11 82.5 343 0.632, 0.313 0.253, 0.663 0.164, 0.053
Indicator 12 81.4 348 0.633, 0.311 0.257, 0.655 0.165, 0.054
Comparison device 1 51.3 314 0.611, 0.354 0.318, 0.564 0.160, 0.123
Comparator 2 61 176 0.605, 0.362 0.305, 0.582 0.157, 0.047
Comparator 3 62.2 179 0.606, 0.361 0.302, 0.584 0.157, 0.043
표 1을 참조하면, 비교예 1에 따른 백라이트 유닛을 포함하는 비교 장치 1의 색역 비율은 NTSC 색역 범위 대비 약 51.3%임에 반하여, 표시 장치 1 내지 12의 색역 비율은 NTSC 색역 범위 대비 약 73.6% 내지 약 87.8%로서, 표시 장치 1 내지 12는 비교 장치 1에 비해서 현저하게 넓은 색재현 영역을 갖는 것을 알 수 있다. 뿐만 아니라, 비교예 2 및 3에 따른 백라이트 유닛을 포함하는 비교 장치 2 및 3의 색역 비율은 각각 약 61% 및 62.2%로서, 표시 장치 1 내지 12는 비교 장치 2 및 3에 비해서 현저하게 넓은 색재현 영역을 갖는 것을 알 수 있다. 비교 장치 1의 경우, 나노발광체가 적용되지 않은 백라이트 유닛을 이용하기 때문에 표시 장치 1 내지 12 및 비교 장치 1 내지 3 중에서 가장 좁은 색재현 영역을 갖는다.Referring to Table 1, the gamut ratio of the comparison apparatus 1 including the backlight unit according to Comparative Example 1 is about 51.3% of the NTSC gamut range, whereas the gamut ratio of the display devices 1 to 12 is about 73.6% of the NTSC gamut range. From about 87.8%, it can be seen that the display devices 1 to 12 have a significantly wider color reproduction area than the comparison device 1. In addition, the gamut ratios of the comparison devices 2 and 3 including the backlight units according to Comparative Examples 2 and 3 are about 61% and 62.2%, respectively, and the display devices 1 to 12 have a significantly wider color than the comparison devices 2 and 3. It can be seen that it has a reproduction area. Since the comparison device 1 uses the backlight unit to which the nano light-emitting body is not applied, the comparison device 1 has the narrowest color reproduction region among the display devices 1 to 12 and the comparison devices 1 to 3.
이와 비교하여, 비교 장치 2 및 3 각각은, 비록 백라이트 유닛에 나노발광체가 적용되어 있기는 하지만 확산 시트를 제조하는 공정에서 나노발광체를 포함하는 코팅층을 형성하는 단계에서 나노발광체들끼리의 응집(aggregation)이 발생하여 나노발광체들이 발광하는 광의 파장 시프트(shift)가 발생하여 표시 장치 1 내지 12보다 좁은 색재현 영역을 갖는다. 특히, 비교 장치 2 및 3의 녹색 색좌표는 비교 장치 1의 녹색 x 좌표보다는 작은 값을 갖고 비교 장치 1의 녹색 y 좌표보다는 큰 값을 갖지만, 표시 장치 1 내지 12의 녹색 x 좌표에 비해서는 현저히 큰 값을 갖고 표시 장치 1 내지 12의 녹색 y 좌표보다는 현저히 작은 값을 갖기 때문에 나노발광체를 이용한 녹색의 색순도는 낮은 수준임을 알 수 있다. 뿐만 아니라, 비교 장치 2 및 3의 적색 색좌표를 통해서, 비교 장치 2 및 3은 표시 장치 1 내지 12와 비교하여 색순도가 낮은 적색을 구현함을 알 수 있다.In comparison, each of the comparative apparatuses 2 and 3, although nanolumines are applied to the backlight unit, agglomeration between the nanolumines in the step of forming a coating layer including the nanolumines in the process of manufacturing the diffusion sheet. ) To generate a wavelength shift of light emitted by the nano light-emitting bodies to have a color reproduction area that is narrower than that of the display devices 1 to 12. In particular, the green color coordinates of the comparison devices 2 and 3 have a value smaller than the green x coordinate of the comparison device 1 and a value larger than the green y coordinate of the comparison device 1, but are significantly larger than the green x coordinates of the display devices 1 to 12. It has a value and is significantly smaller than the green y coordinate of the display devices 1 to 12, it can be seen that the color purity of the green using the nano light-emitting body is a low level. In addition, it can be seen from the red color coordinates of the comparison devices 2 and 3 that the comparison devices 2 and 3 realize a red color having a lower color purity than the display devices 1 to 12.
반면, 본 발명에 따른 표시 장치 1 내지 12는 나노발광체를 포함하는 발광 복합체나 형광 입자를 이용하기 때문에 응집 현상이 거의 발생하지 않아 상기와 같은 파장 시프트 문제가 없음을 알 수 있다.On the other hand, since the display devices 1 to 12 according to the present invention use a light-emitting composite or fluorescent particles containing a nano light-emitting body, the aggregation phenomenon hardly occurs and thus there is no problem of the wavelength shift.
한편, 표시 장치 1 내지 12가 비교 장치 1 내지 3에 비해서 색재현 영역이 더 넓고 휘도도 높기는 하지만, 표시 장치 1 내지 12 중에서도 표시 장치 3, 4, 6, 8 및 10의 녹색 y 좌표는 표시 장치 1, 2, 5, 7, 9, 11 및 12의 녹색 y 좌표에 비해서 작은 값을 가짐을 알 수 있다. 또한, 표시 장치 3, 4, 6, 8 및 10의 녹색 x 좌표는 표시 장치 1, 2, 5, 7, 9, 11 및 12의 녹색 x 좌표에 비해서 큰 값을 가짐을 알 수 있다. 즉, 녹색 형광 입자보다 좁은 반치폭을 갖는 녹색 나노발광체가 적용된 표시 장치 1, 2, 5, 7, 9, 11 및 12가 나타내는 녹색의 색순도가, 녹색 형광 입자가 적용된 표시 장치 3, 4, 6, 8 및 10이 나타내는 녹색의 색순도에 비해서 좋은 것을 알 수 있다.On the other hand, although the display devices 1 to 12 have a wider color reproduction area and higher luminance than the comparison devices 1 to 3, among the display devices 1 to 12, the green y coordinates of the display devices 3, 4, 6, 8, and 10 are displayed. It can be seen that the device 1, 2, 5, 7, 9, 11 and 12 has a small value compared to the green y coordinate. In addition, it can be seen that the green x coordinate of the display devices 3, 4, 6, 8, and 10 has a larger value than the green x coordinate of the display devices 1, 2, 5, 7, 9, 11, and 12. That is, the color purity of green represented by the display devices 1, 2, 5, 7, 9, 11, and 12 to which the green nano light-emitting body having a half width smaller than that of the green fluorescent particles is applied is displayed to the display devices 3, 4, 6, It turns out that it is good compared with the green color purity which 8 and 10 show.
평판 시트 1, 2, 3 및 비교 시트 1, 2의 제조Preparation of Flat Sheets 1, 2, 3 and Comparative Sheets 1, 2
[평판 시트 1의 제조][Production of Flat Sheet 1]
제1 투명 필름 상에 형성된 제1 배리어층을 실시예 2의 확산 시트의 제조에서와 실질적으로 동일하게 준비하고, 상기 제1 배리어층 상에 우레탄아크릴레이트, 상기 적색 발광 복합체, 상기 녹색 발광 복합체 및 광개시제가 혼합된 실시예 1의 확산 시트의 제조 공정에서 준비한 코팅 조성물과 실질적으로 동일한 코팅 조성물을 약 100 ㎛의 두께로 코팅하여 코팅층을 형성하였다.A first barrier layer formed on the first transparent film was prepared in substantially the same manner as in the preparation of the diffusion sheet of Example 2, and the urethane acrylate, the red light emitting composite, the green light emitting composite and A coating layer was formed by coating a coating composition substantially the same as the coating composition prepared in the manufacturing process of the diffusion sheet of Example 1, in which the photoinitiator was mixed, to a thickness of about 100 μm.
상기 제1 투명 필름 및 상기 제1 배리어층과 실질적으로 동일한 제2 투명 필름 및 제2 배리어층을 준비하여 상기 코팅층 상에 상기 코팅층이 상기 제2 배리어층과 접촉하도록 덮고, 광을 조사하여 상기 코팅층을 경화시킴으로써 광변환층을 형성하였다.Preparing a first transparent film and a second transparent film and a second barrier layer substantially the same as the first barrier layer to cover the coating layer on the coating layer in contact with the second barrier layer, by irradiating light to the coating layer The photoconversion layer was formed by hardening.
이에 따라, 제1 투명 필름, 제1 배리어층, 상기 코팅층의 경화로 형성된 광변환층, 제2 배리어층 및 제2 투명 필름이 순차적으로 적층된 평판 시트 1을 제조하였다.Accordingly, a flat sheet sheet 1 in which a first transparent film, a first barrier layer, a light conversion layer formed by curing the coating layer, a second barrier layer, and a second transparent film were sequentially stacked was manufactured.
[평판 시트 2의 제조][Production of Flat Sheet 2]
실시예 4의 확산 시트를 제조하는 공정에서 이용한 우레탄아크릴레이트, 적색 발광 복합체, 형광 복합체 및 광개시제가 혼합된 코팅 조성물을, 실시예 1에서 설명한 제1 투명 필름 및 제1 배리어층의 상기 제1 배리어층 상에 약 100 ㎛의 두께로 코팅하여 코팅층을 형성하였다. 상기 제1 투명 필름 및 상기 제1 배리어층과 실질적으로 동일한 제2 투명 필름 및 제2 배리어층을 준비하여 상기 코팅층 상에 상기 코팅층이 상기 제2 배리어층과 접촉하도록 덮고, 광을 조사하여 상기 코팅층을 경화시킴으로써 광변환층을 형성하였다.The coating composition in which the urethane acrylate, the red light-emitting composite, the fluorescent composite, and the photoinitiator were mixed in the process for producing the diffusion sheet of Example 4 was mixed with the first barrier of the first transparent film and the first barrier layer described in Example 1. Coating on the layer to a thickness of about 100 ㎛ to form a coating layer. Preparing a first transparent film and a second transparent film and a second barrier layer substantially the same as the first barrier layer to cover the coating layer on the coating layer in contact with the second barrier layer, by irradiating light to the coating layer The photoconversion layer was formed by hardening.
이에 따라, 제1 투명 필름, 제1 배리어층, 상기 코팅층의 경화로 형성된 광변환층, 제2 배리어층 및 제2 투명 필름이 순차적으로 적층된 평판 시트 2를 제조하였다.Accordingly, a flat sheet sheet 2 in which a first transparent film, a first barrier layer, a light conversion layer formed by curing the coating layer, a second barrier layer, and a second transparent film were sequentially stacked was manufactured.
[비교 시트 1의 제조][Production of Comparative Sheet 1]
적색 나노발광체(상품명: Nanodot-HE-610, QD solution사, 한국) 및 녹색 나노발광체(상품명: Nanodot-HE-530, QD solution사, 한국)를, 우레탄아크릴레이트 100 중량부에 대해서 약 0.8 중량부로 혼합된 TPO를 갖는 조성물과 혼합하여 코팅 조성물을 제조하였다. 상기 코팅 조성물을 두께가 약 38㎛인 제1 PET 필름 상에 코팅하고 두께가 약 38㎛인 제2 PET 필름으로 덮은 후, 경화시켜 두께가 약 100 ㎛인 광변환층을 포함하는 비교 시트 1을 제조하였다.About 0.8 weight of red nano light-emitting body (brand name: Nanodot-HE-610, QD solution, Korea) and green nano light-emitting body (brand name: Nanodot-HE-530, QD solution, Korea) with respect to 100 parts by weight of urethane acrylate The coating composition was prepared by mixing with a composition having a negatively mixed TPO. The coating composition was coated on a first PET film having a thickness of about 38 μm, covered with a second PET film having a thickness of about 38 μm, and then cured to prepare Comparative Sheet 1 including a light conversion layer having a thickness of about 100 μm. Prepared.
[실험 2]- 광 안정성 및 열/수분 안정성 평가[Experiment 2]-Evaluation of light stability and heat / moisture stability
상기와 같이 제조된 평판 시트 1, 2 및 비교 시트 1 각각에 대해서, 중심 파장이 365 nm인 자외선(UV)을 약 1.4 mW/cm2의 복사 강도로 1일(24시간) 동안 조사한 후, 절대양자효율측정기(상품명: C9920-02, HAMAMATSU사, 일본)를 이용하여 1일차 양자 효율(단위: %)을 측정하였다. 이어서, 상기 가혹 조건과 실질적으로 동일한 조건 하에서 24시간이 경과한 후, 2일차 양자 효율(단위: %)을 측정하였고, 이와 같은 방법으로 30일 동안의 양자 효율을 측정하였다. 30일 동안 측정된 양자 효율 값 중에서 최대값과 최소값의 차이를 산출하여 평판 시트 1, 2 및 비교 시트 1에 대한 자외선 안정성을 평가하였다. 그 결과를 표 2에 나타낸다.For each of the flat sheets 1, 2 and comparative sheet 1 prepared as described above, after irradiating ultraviolet (UV) light having a central wavelength of 365 nm for 1 day (24 hours) at a radiation intensity of about 1.4 mW / cm 2 , The day 1 quantum efficiency (unit:%) was measured using the quantum efficiency meter (brand name: C9920-02, HAMAMATSU, Japan). Subsequently, after 24 hours under substantially the same conditions as the harsh conditions, day 2 quantum efficiency (unit:%) was measured, and in this manner, quantum efficiency for 30 days was measured. The difference between the maximum value and the minimum value among the quantum efficiency values measured for 30 days was calculated to evaluate ultraviolet stability for Flat Sheets 1, 2 and Comparative Sheet 1. The results are shown in Table 2.
또한, 상기와 같이 제조된 평판 시트 1, 2 및 비교 시트 1에 대해서, 항온항습기에서 온도 85 ℃ 및 상대습도 85 %의 가혹 조건에 1일(24시간) 동안 노출한 후 1일차 양자 효율(단위: %)을 측정하였고, 상기 가혹 조건과 실질적으로 동일한 조건 하에서 24시간이 경과한 후, 2일차 양자 효율(단위: %)을 측정하였다. 30일 동안 측정된 양자 효율 값 중에서 최대값과 최소값의 차이를 산출하여 평판 시트 1, 2 및 비교 시트 1에 대한 열/수분 안정성을 평가하였다. 그 결과를 표 3에 나타낸다.In addition, with respect to the flat sheet 1, 2 and Comparative Sheet 1 prepared as described above, the first day quantum efficiency (unit) after exposure to harsh conditions of temperature 85 ℃ and relative humidity 85% in a constant temperature and humidity chamber for 1 day (24 hours) :%), And after 24 hours under substantially the same conditions as the harsh conditions, day 2 quantum efficiency (unit:%) was measured. The difference between the maximum value and the minimum value among the quantum efficiency values measured for 30 days was calculated to evaluate the heat / moisture stability for the flat sheets 1, 2 and the comparative sheet 1. The results are shown in Table 3.
표 2 및 표 3에서, 가혹 조건에 노출된 후 발광하지 않아 양자 효율을 측정할 수 없었던 경우는 "-"로 표시한다. 표 2 및 표 3의 각 수치의 단위는 "%"를 나타낸다.In Tables 2 and 3, when the quantum efficiency could not be measured because it did not emit light after being exposed to harsh conditions, it is indicated by "-". The unit of each numerical value of Table 2 and Table 3 represents "%".
표 2
자외선안정성 평판시트 1 평판시트 2 비교시트 1
최초 양자효율 90.1 75.7 60.8
1일차 89.9 75.3 60.7
2일차 89.7 75.4 51.2
3일차 89.7 75.3 48.3
4일차 89.6 75.6 37.8
5일차 89.8 75.2 29.7
6일차 89.7 75.5 18.8
7일차 89.6 75.2 9.7
8일차 89.5 75.2 2.3
9일차 89.3 75.1 -
10일차 89.4 74.8 -
11일차 88.3 75.2 -
12일차 89.2 74.7 -
13일차 88.0 74.8 -
14일차 88.1 75.1 -
15일차 87.9 74.5 -
16일차 87.6 74.1 -
17일차 87.3 74.6 -
18일차 87.4 74.3 -
19일차 86.9 74.3 -
20일차 87.1 74.4 -
21일차 86.7 74.1 -
22일차 86.8 73.9 -
23일차 86.5 73.7 -
24일차 86.6 73.5 -
25일차 86.3 73.7 -
26일차 86.2 73.4 -
27일차 86.4 72.9 -
28일차 86.1 72.5 -
29일차 86.3 72.1 -
30일차 86.2 71.8 -
TABLE 2
UV stability Flatbed Sheet 1 Flat Sheet 2 Comparison Sheet 1
First quantum efficiency 90.1 75.7 60.8
Day 1 89.9 75.3 60.7
Day 2 89.7 75.4 51.2
Day 3 89.7 75.3 48.3
Day 4 89.6 75.6 37.8
Day 5 89.8 75.2 29.7
Day 6 89.7 75.5 18.8
Day 7 89.6 75.2 9.7
Day 8 89.5 75.2 2.3
Day 9 89.3 75.1 -
Day 10 89.4 74.8 -
Day 11 88.3 75.2 -
Day 12 89.2 74.7 -
Day 13 88.0 74.8 -
Day 14 88.1 75.1 -
Day 15 87.9 74.5 -
Day 16 87.6 74.1 -
Day 17 87.3 74.6 -
Day 18 87.4 74.3 -
Day 19 86.9 74.3 -
Day 20 87.1 74.4 -
Day 21 86.7 74.1 -
Day 22 86.8 73.9 -
Day 23 86.5 73.7 -
Day 24 86.6 73.5 -
Day 25 86.3 73.7 -
Day 26 86.2 73.4 -
Day 27 86.4 72.9 -
Day 28 86.1 72.5 -
Day 29 86.3 72.1 -
Day 30 86.2 71.8 -
표 2를 참조하면, 평판 시트 1을 제조한 직후의 양자 효율은 약 90.1%이고, 평판 시트의 2의 제조 직후의 양자 효율은 약 75.7%인 반면, 비교 시트 1의 제조 직후의 양자 효율은 약 60.8%인 것을 알 수 있다.Referring to Table 2, the quantum efficiency immediately after the production of the flat sheet 1 is about 90.1%, and the quantum efficiency immediately after the production of the flat sheet 2 is about 75.7%, while the quantum efficiency immediately after the production of the comparative sheet 1 is about It can be seen that it is 60.8%.
자외선에 의한 가혹 조건에서 30일이 경과한 후의 양자 효율은, 평판 시트 1이 약 86.2%이고 평판 시트 2가 약 71.8% 이며 비교 시트 1의 경우에는 측정할 수 없음을 알 수 있다. 즉, 평판 시트 1은 자외선에 의한 가혹 조건 하에서도 양자 효율은 최초 양자효율을 100%로 할 때 최초 양자효율 대비 약 4.3% 정도 감소할 뿐이고 평판 시트 2는 최초 양자효율 대비 약 5.2% 정도 감소할 뿐이나, 비교 시트 1에 적용된 나노발광체는 자외선에 의해 손상되어 발광하지 않는 것을 알 수 있다. 특히, 비교 시트 1은 약 9일이 경과한 시점에서 이미 양자 효율을 측정할 수 없는 상태, 즉, 나노발광체가 손상되는 반면, 본 발명에 따른 평판 시트 1이나 2는 자외선에 의한 가혹 조건 하에서도 손상되는 정도가 미미한 것을 알 수 있다.It can be seen that the quantum efficiency after 30 days has elapsed under severe conditions of ultraviolet rays is about 86.2% for flat sheet 1, about 71.8% for flat sheet 2, and cannot be measured in the case of comparative sheet 1. That is, even under the harsh conditions of UV light, the quantum efficiency is only about 4.3% lower than the initial quantum efficiency when the initial quantum efficiency is 100%, and the flat sheet 2 is about 5.2% lower than the initial quantum efficiency. In addition, it can be seen that the nano light-emitting body applied to Comparative Sheet 1 is damaged by ultraviolet rays and does not emit light. In particular, Comparative Sheet 1 is not ready to measure the quantum efficiency at about 9 days, that is, the nano light-emitting body is damaged, whereas the flat sheet 1 or 2 according to the present invention even under severe conditions of ultraviolet light It can be seen that the degree of damage is minimal.
따라서, 비교 시트 1과 비교할 때, 본 발명에 따른 평판 시트 1이나 2의 자외선 안정성은 매우 높다고 할 수 있다.Therefore, compared with the comparative sheet 1, it can be said that the ultraviolet stability of the flat sheet 1 or 2 which concerns on this invention is very high.
표 3
열/수분안정성 평판시트 1 평판시트 2 비교시트 1
최초 양자효율 90.1 75.7 60.8
1일차 89.8 75.5 60.6
2일차 89.7 75.3 20.3
3일차 89.9 75.6 2.5
4일차 89.6 75.2 -
5일차 89.3 75.3 -
6일차 89.5 75.4 -
7일차 89.2 74.9 -
8일차 89.1 75.1 -
9일차 89.3 74.8 -
10일차 89.0 75.0 -
11일차 88.7 74.9 -
12일차 89.1 74.8 -
13일차 88.5 74.7 -
14일차 87.8 74.9 -
15일차 86.9 74.5 -
16일차 86.7 74.1 -
17일차 86.2 73.9 -
18일차 85.7 74.2 -
19일차 85.8 73.8 -
20일차 85.6 73.4 -
21일차 85.0 73.1 -
22일차 85.3 72.8 -
23일차 84.9 72.7 -
24일차 84.6 72.5 -
25일차 84.5 71.6 -
26일차 84.3 70.2 -
27일차 84.5 68.8 -
28일차 84.2 67.9 -
29일차 84.1 65.4 -
30일차 84.3 64.9 -
TABLE 3
Heat / moisture stability Flatbed Sheet 1 Flat Sheet 2 Comparison Sheet 1
First quantum efficiency 90.1 75.7 60.8
Day 1 89.8 75.5 60.6
Day 2 89.7 75.3 20.3
Day 3 89.9 75.6 2.5
Day 4 89.6 75.2 -
Day 5 89.3 75.3 -
Day 6 89.5 75.4 -
Day 7 89.2 74.9 -
Day 8 89.1 75.1 -
Day 9 89.3 74.8 -
Day 10 89.0 75.0 -
Day 11 88.7 74.9 -
Day 12 89.1 74.8 -
Day 13 88.5 74.7 -
Day 14 87.8 74.9 -
Day 15 86.9 74.5 -
Day 16 86.7 74.1 -
Day 17 86.2 73.9 -
Day 18 85.7 74.2 -
Day 19 85.8 73.8 -
Day 20 85.6 73.4 -
Day 21 85.0 73.1 -
Day 22 85.3 72.8 -
Day 23 84.9 72.7 -
Day 24 84.6 72.5 -
Day 25 84.5 71.6 -
Day 26 84.3 70.2 -
Day 27 84.5 68.8 -
Day 28 84.2 67.9 -
Day 29 84.1 65.4 -
Day 30 84.3 64.9 -
표 3을 참조하면, 온도 85 ℃ 및 상대습도 85 %의 가혹 조건에서 30일이 경과한 후의 양자 효율은 평판 시트 1이 약 84.3%이고, 평판 시트 2가 약 64.9%이며, 비교 시트 1의 경우에는 측정할 수 없음을 알 수 있다. 즉, 평판 시트 1은 온도 85 ℃ 및 상대습도 85 %의 가혹 조건 하에서도 양자 효율은 약 90.1%에서 약 84.3%로, 약 5.8%만큼 차이가 있고, 이는 최초 양자효율을 100%로 할 때 최초 양자효율 대비 약 6.4% 정도 감소할 뿐이다. 또한, 평판 시트 2는 온도 85 ℃ 및 상대습도 85 %의 가혹 조건 하에서 최초 양자 효율을 100%로 할 때 최초 양자효율 대비 약 14.2% 정도 감소함을 알 수 있다. 반면, 비교 시트 1의 경우에는 고온/고습의 영향을 받아 비교 시트 1에 적용된 나노발광체가 발광하지 않는 것을 알 수 있다. 특히, 비교 시트 1은 약 4일이 경과한 시점에서 이미 양자 효율을 측정할 수 없는 상태, 즉, 나노발광체가 손상된 반면, 본 발명에 따른 평판 시트 1 이나 2는 고온/고습에 의한 가혹 조건 하에서도 손상되는 정도가 미미한 것을 알 수 있다.Referring to Table 3, the quantum efficiency after 30 days under severe conditions with a temperature of 85 ° C. and a relative humidity of 85% is about 84.3% for flat sheet 1, about 64.9% for flat sheet 2, and for comparative sheet 1 It can be seen that it cannot be measured. In other words, the flat sheet 1 has a quantum efficiency of about 90.1% to about 84.3% and a difference of about 5.8% even under the harsh conditions of 85 ° C. and 85% relative humidity. It is only about 6.4% lower than quantum efficiency. In addition, it can be seen that the flat sheet 2 is reduced by about 14.2% compared to the initial quantum efficiency when the initial quantum efficiency is 100% under severe conditions of 85 ° C. and 85% relative humidity. On the other hand, in the case of Comparative Sheet 1, it can be seen that the nano light-emitting body applied to Comparative Sheet 1 does not emit light under the influence of high temperature / high humidity. In particular, Comparative sheet 1 is not already able to measure the quantum efficiency at the time of about 4 days, that is, the nano light-emitting body is damaged, whereas the flat sheet 1 or 2 according to the present invention under the harsh conditions of high temperature / high humidity It can also be seen that the degree of damage is minimal.
따라서, 비교 시트 1과 비교할 때, 본 발명에 따른 평판 시트 1이나 2의 열/수분 안정성은 매우 높다고 할 수 있다.Therefore, compared with the comparative sheet 1, the heat / moisture stability of the flat sheet 1 or 2 which concerns on this invention can be said to be very high.
표 2 및 표 3을 참조하여 설명한 바에 따르면, 본 발명에 따른 광학시트에 적용된 발광 복합체는 왁스 입자를 포함함으로써 그 자체로서도 광, 열 또는 수분에 대해서 매우 안정할 뿐만 아니라 광학 시트는 배리어층을 포함함으로써 광, 열/수분에 대한 안정성이 향상될 수 있다. 또한, 본 발명에 따른 광학 시트에 적용된 발광 복합체는 우레탄아크릴레이트와 같은 시트 제조용 조성물에 혼합되고 이를 경화하여 시트를 제조하더라도 거의 손상 받지 않는 것을 알 수 있다.As described with reference to Tables 2 and 3, the luminescent composite applied to the optical sheet according to the present invention is not only very stable to light, heat or moisture by itself by including wax particles, but also the optical sheet includes a barrier layer. As a result, stability to light and heat / moisture can be improved. In addition, it can be seen that the light-emitting composite applied to the optical sheet according to the present invention is hardly damaged even when the sheet is manufactured by mixing and curing the composition for manufacturing a sheet such as urethane acrylate.
[실험 3]- 색좌표 균일도 평가[Experiment 3]-Evaluation of Color Coordinate Uniformity
초기 색좌표 균일도 평가Initial color coordinate uniformity evaluation
본 발명의 실시예 1 내지 12에 따른 백라이트 유닛과 비교예 1 내지 3에 따른 백라이트 유닛 각각에 대하여 도 19에 도시된 바와 같이 백라이트 유닛의 24개의 지점들 각각에서의 초기 색좌표를 분광복사기(spectroradiometer)로서 SR-3AR (제품명, TOPCON사, 일본)를 이용하여 측정하였다. 그 결과를 표 4, 표 5, 표 6 및 표 7에 나타낸다.For each of the backlight units according to Examples 1 to 12 and the backlight units according to Comparative Examples 1 to 3 of the present invention, an initial color coordinate at each of 24 points of the backlight unit is shown in a spectroradiometer as shown in FIG. 19. Measurement was carried out using SR-3AR (product name, TOPCON, Japan). The results are shown in Tables 4, 5, 6 and 7.
도 19에서 광원은 "LS"로 나타내고, 도광판, 확산 시트, 제1 및 제2 집광 시트들이 적층된 표시 영역을 "DS"로 나타내며, 상기 표시 영역(DS) 중 상기 광원(LS)과 인접한 지점 1, 2, 3 및 4가 입광부가 되고, 상기 입광부의 반대편인 지점 21, 22, 23 및 24가 대광부가 된다. 표시 영역(DS)의 가로방향 길이를 "a"라고 하고 세로 방향 길이를 "b"라고 할 때, 지점 1, 2, 3 및 4 각각은 입광부와 인접한 표시 영역(DS)의 제1 에지로부터 "a/12"만큼 이격되고, 지점 21, 22, 23 및 24 각각은 대광부에 해당하는 표시 영역(DS)의 제2 에지로부터 "a/12"만큼 이격된다. 또한, 상기 제1 및 제2 에지들을 연결하는 제3 에지로부터 지점 1, 5, 9, 13, 17 및 21 각각은 "b/8"만큼 이격되고, 상기 제3 에지와 마주하는 제4 에지로부터 지점 4, 8, 12, 16, 20 및 24 각각은 "b/8"만큼 이격된다. 지점 1, 2, 3 및 4 각각은 지점 5, 6, 7 및 8 각각과 "a/6"만큼 이격되고, 지점 5, 6, 7 및 8 각각은 지점 9, 10, 11 및 12 각각과 "a/6"만큼 이격되고, 지점 9, 10, 11 및 12 각각은 지점 13, 14, 15 및 16 각각과 "a/6"만큼 이격되고, 지점 13, 14, 15 및 16 각각은 지점 17, 18, 19 및 20 각각과 "a/6"만큼 이격되며, 지점 17, 18, 19 및 20 각각은 지점 21, 22, 23 및 24 각각과 "a/6"만큼 이격된다. 동시에, 지점 1, 5, 9, 13, 17 및 21 각각은 지점 2, 6, 10, 14, 18 및 22 각각과 "b/4"만큼 이격되고, 지점 2, 6, 10, 14, 18 및 22 각각은 지점 3, 7, 11, 15, 19 및 23 각각과 "b/4"만큼 이격되며, 지점 3, 7, 11, 15, 19 및 23 각각은 지점 4, 8, 12, 16, 20 및 24 각각과 "b/4"만큼 이격된다.In FIG. 19, the light source is represented by "LS", and the display area in which the light guide plate, the diffusion sheet, and the first and second light collecting sheets are stacked is represented by "DS", and is a point adjacent to the light source LS in the display area DS. 1, 2, 3 and 4 are light incidence parts, and points 21, 22, 23 and 24 opposite to the light incidence part are light incidence parts. When the horizontal length of the display area DS is referred to as "a" and the longitudinal length is referred to as "b", each of the points 1, 2, 3, and 4 is located from the first edge of the display area DS adjacent to the light incident part. spaced "a / 12" and each of the points 21, 22, 23, and 24 is spaced "a / 12" from the second edge of the display area DS corresponding to the light portion. Also, points 1, 5, 9, 13, 17 and 21 each from the third edge connecting the first and second edges are spaced apart by “b / 8” and from the fourth edge facing the third edge. Points 4, 8, 12, 16, 20 and 24 are each spaced apart by "b / 8". Points 1, 2, 3, and 4 are each “a / 6” apart from points 5, 6, 7, and 8, and points 5, 6, 7, and 8 are each of points 9, 10, 11, and 12, and “ a / 6 "apart, points 9, 10, 11, and 12 are each spaced 13, 14, 15, and 16" a / 6 "apart, and points 13, 14, 15, and 16 are each spaced 17, Spaces "a / 6" with 18, 19 and 20 respectively, and points 17, 18, 19 and 20 are spaced "a / 6" with each of points 21, 22, 23 and 24 respectively. At the same time, points 1, 5, 9, 13, 17, and 21 are each spaced apart by "b / 4" from points 2, 6, 10, 14, 18, and 22, respectively, and points 2, 6, 10, 14, 18, and 22 are each “b / 4” apart from points 3, 7, 11, 15, 19, and 23, and each of points 3, 7, 11, 15, 19, and 23 is 4, 8, 12, 16, 20, respectively. And 24 by " b / 4 "
표 4, 표 5, 표 6 및 표 7에서, 초기 색좌표는 CIE 1931 색좌표계를 기준으로 나타낸다. 표 4, 표 5, 표 6 및 표 7 각각에서, "△x"는 지점 1 내지 24 중에서의 x좌표의 최대값과 최소값의 차이이고, "△y"는 지점 1 내지 24 중에서의 y좌표의 최대값과 최소값의 차이를 나타낸다.In Tables 4, 5, 6 and 7, initial color coordinates are shown based on the CIE 1931 color coordinate system. In each of Tables 4, 5, 6 and 7, "Δx" is the difference between the maximum value and the minimum value of the x-coordinate in the points 1 to 24, and "Δy" is the y-coordinate in the points 1 to 24. The difference between the maximum and minimum values.
표 4
지점 실시예 1 실시예 2 실시예 3 실시예 4
1 0.274,0.280 0.272,0.274 0.279,0.283 0.277,0.285
2 0.276,0.281 0.274,0.271 0.279,0.282 0.279,0.283
3 0.279,0.283 0.272,0.273 0.281,0.284 0.282,0.285
4 0.276,0.285 0.274,0.275 0.286,0.287 0.285,0.283
5 0.275,0.284 0.272,0.274 0.295,0.288 0.290,0.289
6 0.276,0.282 0.276,0.275 0.294,0.289 0.286,0.286
7 0.276,0.283 0.275,0.276 0.296,0.290 0.287,0.287
8 0.277,0.284 0.276,0.274 0.301,0.291 0.288,0.288
9 0.279,0.282 0.274,0.272 0.302,0.292 0.284,0.291
10 0.278,0.285 0.275,0.275 0.297,0.289 0.285,0.282
11 0.276,0.284 0.276,0.274 0.294,0.287 0.286,0.285
12 0.279,0.288 0.275,0.273 0.295,0.288 0.285,0.273
13 0.276,0.287 0.276,0.277 0.296,0.291 0.286,0.277
14 0.277,0.283 0.274,0.273 0.301,0.291 0.288,0.273
15 0.276,0.282 0.276,0.274 0.302,0.292 0.287,0.274
16 0.276,0.284 0.275,0.274 0.299,0.289 0.285,0.274
17 0.279,0.285 0.276,0.275 0.298,0.289 0.284,0.275
18 0.276,0.283 0.276,0.276 0.293,0.292 0.286,0.276
19 0.277,0.284 0.276,0.274 0.301,0.294 0.287,0.274
20 0.276,0.283 0.275,0.275 0.303,0.293 0.283,0.275
21 0.276,0.285 0.276,0.274 0.292,0.290 0.282,0.274
22 0.277,0.284 0.275,0.276 0.301,0.290 0.287,0.276
23 0.274,0.281 0.275,0.277 0.301,0.291 0.284,0.277
24 0.275,0.281 0.274,0.276 0.302,0.292 0.283,0.276
△x 0.005 0.004 0.024 0.011
△y 0.008 0.006 0.012 0.012
Table 4
Point Example 1 Example 2 Example 3 Example 4
One 0.274,0.280 0.272,0.274 0.279,0.283 0.277,0.285
2 0.276,0.281 0.274,0.271 0.279,0.282 0.279,0.283
3 0.279,0.283 0.272,0.273 0.281,0.284 0.282,0.285
4 0.276,0.285 0.274,0.275 0.286,0.287 0.285,0.283
5 0.275,0.284 0.272,0.274 0.295,0.288 0.290,0.289
6 0.276,0.282 0.276,0.275 0.294,0.289 0.286,0.286
7 0.276,0.283 0.275,0.276 0.296,0.290 0.287,0.287
8 0.277,0.284 0.276,0.274 0.301,0.291 0.288,0.288
9 0.279,0.282 0.274,0.272 0.302,0.292 0.284,0.291
10 0.278,0.285 0.275,0.275 0.297,0.289 0.285,0.282
11 0.276,0.284 0.276,0.274 0.294,0.287 0.286,0.285
12 0.279,0.288 0.275,0.273 0.295,0.288 0.285,0.273
13 0.276,0.287 0.276,0.277 0.296,0.291 0.286,0.277
14 0.277,0.283 0.274,0.273 0.301,0.291 0.288,0.273
15 0.276,0.282 0.276,0.274 0.302,0.292 0.287,0.274
16 0.276,0.284 0.275,0.274 0.299,0.289 0.285,0.274
17 0.279,0.285 0.276,0.275 0.298,0.289 0.284,0.275
18 0.276,0.283 0.276,0.276 0.293,0.292 0.286,0.276
19 0.277,0.284 0.276,0.274 0.301,0.294 0.287,0.274
20 0.276,0.283 0.275,0.275 0.303,0.293 0.283,0.275
21 0.276,0.285 0.276,0.274 0.292,0.290 0.282,0.274
22 0.277,0.284 0.275,0.276 0.301,0.290 0.287,0.276
23 0.274,0.281 0.275,0.277 0.301,0.291 0.284,0.277
24 0.275,0.281 0.274,0.276 0.302,0.292 0.283,0.276
Δx 0.005 0.004 0.024 0.011
△ y 0.008 0.006 0.012 0.012
표 5
지점 실시예 5 실시예 6 실시예 7 실시예 8
1 0.275,0.273 0.274,0.282 0.273,0.277 0.275,0.283
2 0.275,0.272 0.278,0.281 0.275,0.280 0.277,0.284
3 0.273,0.272 0.283,0.284 0.278,0.282 0.279,0.286
4 0.273,0.274 0.284,0.285 0.277,0.283 0.282,0.283
5 0.273,0.273 0.291,0.290 0.276,0.284 0.285,0.285
6 0.275,0.275 0.287,0.288 0.275,0.283 0.286,0.287
7 0.274,0.275 0.287,0.287 0.277,0.283 0.285,0.286
8 0.277,0.275 0.287,0.288 0.277,0.285 0.288,0.287
9 0.276,0.273 0.285,0.292 0.279,0.284 0.285,0.290
10 0.275,0.275 0.284,0.283 0.277,0.285 0.286,0.284
11 0.275,0.274 0.285,0.285 0.275,0.283 0.287,0.287
12 0.274,0.274 0.284,0.274 0.278,0.285 0.286,0.275
13 0.277,0.276 0.286,0.276 0.277,0.286 0.285,0.277
14 0.275,0.273 0.288,0.273 0.278,0.284 0.286,0.275
15 0.277,0.275 0.286,0.274 0.277,0.281 0.286,0.274
16 0.274,0.274 0.286,0.274 0.276,0.282 0.285,0.275
17 0.275,0.275 0.285,0.275 0.278,0.283 0.286,0.275
18 0.275,0.277 0.285,0.278 0.277,0.285 0.285,0.277
19 0.277,0.275 0.286,0.276 0.276,0.284 0.286,0.274
20 0.276,0.275 0.284,0.277 0.275,0.283 0.286,0.276
21 0.275,0.274 0.283,0.274 0.276,0.284 0.283,0.274
22 0.274,0.277 0.286,0.277 0.277,0.284 0.285,0.276
23 0.274,0.276 0.283,0.277 0.275,0.282 0.283,0.276
24 0.275,0.276 0.284,0.276 0.274,0.281 0.283,0.277
△x 0.004 0.017 0.006 0.012
△y 0.005 0.019 0.009 0.016
Table 5
Point Example 5 Example 6 Example 7 Example 8
One 0.275,0.273 0.274,0.282 0.273,0.277 0.275,0.283
2 0.275,0.272 0.278,0.281 0.275,0.280 0.277,0.284
3 0.273,0.272 0.283,0.284 0.278,0.282 0.279,0.286
4 0.273,0.274 0.284,0.285 0.277,0.283 0.282,0.283
5 0.273,0.273 0.291,0.290 0.276,0.284 0.285,0.285
6 0.275,0.275 0.287,0.288 0.275,0.283 0.286,0.287
7 0.274,0.275 0.287,0.287 0.277,0.283 0.285,0.286
8 0.277,0.275 0.287,0.288 0.277,0.285 0.288,0.287
9 0.276,0.273 0.285,0.292 0.279,0.284 0.285,0.290
10 0.275,0.275 0.284,0.283 0.277,0.285 0.286,0.284
11 0.275,0.274 0.285,0.285 0.275,0.283 0.287,0.287
12 0.274,0.274 0.284,0.274 0.278,0.285 0.286,0.275
13 0.277,0.276 0.286,0.276 0.277,0.286 0.285,0.277
14 0.275,0.273 0.288,0.273 0.278,0.284 0.286,0.275
15 0.277,0.275 0.286,0.274 0.277,0.281 0.286,0.274
16 0.274,0.274 0.286,0.274 0.276,0.282 0.285,0.275
17 0.275,0.275 0.285,0.275 0.278,0.283 0.286,0.275
18 0.275,0.277 0.285,0.278 0.277,0.285 0.285,0.277
19 0.277,0.275 0.286,0.276 0.276,0.284 0.286,0.274
20 0.276,0.275 0.284,0.277 0.275,0.283 0.286,0.276
21 0.275,0.274 0.283,0.274 0.276,0.284 0.283,0.274
22 0.274,0.277 0.286,0.277 0.277,0.284 0.285,0.276
23 0.274,0.276 0.283,0.277 0.275,0.282 0.283,0.276
24 0.275,0.276 0.284,0.276 0.274,0.281 0.283,0.277
Δx 0.004 0.017 0.006 0.012
△ y 0.005 0.019 0.009 0.016
표 6
지점 실시예 9 실시예 10 실시예 11 실시예 12
1 0.275,0.269 0.287,0.277 0.274,0.269 0.273,0.273
2 0.276,0.273 0.284,0.280 0.274,0.268 0.275,0.271
3 0.273,0.273 0.285,0.282 0.275,0.268 0.272,0.272
4 0.275,0.275 0.287,0.285 0.277,0.269 0.273,0.275
5 0.274,0.275 0.291,0.287 0.276,0.271 0.275,0.275
6 0.276,0.275 0.293,0.288 0.277,0.273 0.274,0.275
7 0.277,0.273 0.296,0.291 0.276,0.275 0.276,0.275
8 0.276,0.274 0.301,0.292 0.277,0.276 0.277,0.276
9 0.275,0.273 0.300,0.291 0.279,0.274 0.276,0.273
10 0.274,0.275 0.298,0.288 0.276,0.275 0.274,0.275
11 0.275,0.273 0.296,0.286 0.275,0.273 0.275,0.273
12 0.273,0.275 0.295,0.287 0.277,0.275 0.274,0.274
13 0.276,0.275 0.294,0.290 0.276,0.276 0.275,0.276
14 0.274,0.276 0.301,0.293 0.275,0.274 0.275,0.275
15 0.276,0.274 0.302,0.291 0.277,0.275 0.276,0.276
16 0.274,0.275 0.298,0.291 0.275,0.276 0.276,0.274
17 0.276,0.275 0.297,0.288 0.278,0.278 0.276,0.276
18 0.277,0.276 0.296,0.291 0.277,0.275 0.275,0.276
19 0.276,0.275 0.298,0.292 0.275,0.274 0.276,0.275
20 0.275,0.275 0.301,0.292 0.276,0.273 0.276,0.275
21 0.275,0.276 0.297,0.290 0.276,0.275 0.275,0.273
22 0.275,0.275 0.301,0.289 0.278,0.275 0.274,0.275
23 0.276,0.277 0.299,0.290 0.275,0.272 0.276,0.275
24 0.276,0.275 0.301,0.291 0.273,0.274 0.275,0.276
△x 0.004 0.018 0.005 0.008
△y 0.008 0.016 0.008 0.006
Table 6
Point Example 9 Example 10 Example 11 Example 12
One 0.275,0.269 0.287,0.277 0.274,0.269 0.273,0.273
2 0.276,0.273 0.284,0.280 0.274,0.268 0.275,0.271
3 0.273,0.273 0.285,0.282 0.275,0.268 0.272,0.272
4 0.275,0.275 0.287,0.285 0.277,0.269 0.273,0.275
5 0.274,0.275 0.291,0.287 0.276,0.271 0.275,0.275
6 0.276,0.275 0.293,0.288 0.277,0.273 0.274,0.275
7 0.277,0.273 0.296,0.291 0.276,0.275 0.276,0.275
8 0.276,0.274 0.301,0.292 0.277,0.276 0.277,0.276
9 0.275,0.273 0.300,0.291 0.279,0.274 0.276,0.273
10 0.274,0.275 0.298,0.288 0.276,0.275 0.274,0.275
11 0.275,0.273 0.296,0.286 0.275,0.273 0.275,0.273
12 0.273,0.275 0.295,0.287 0.277,0.275 0.274,0.274
13 0.276,0.275 0.294,0.290 0.276,0.276 0.275,0.276
14 0.274,0.276 0.301,0.293 0.275,0.274 0.275,0.275
15 0.276,0.274 0.302,0.291 0.277,0.275 0.276,0.276
16 0.274,0.275 0.298,0.291 0.275,0.276 0.276,0.274
17 0.276,0.275 0.297,0.288 0.278,0.278 0.276,0.276
18 0.277,0.276 0.296,0.291 0.277,0.275 0.275,0.276
19 0.276,0.275 0.298,0.292 0.275,0.274 0.276,0.275
20 0.275,0.275 0.301,0.292 0.276,0.273 0.276,0.275
21 0.275,0.276 0.297,0.290 0.276,0.275 0.275,0.273
22 0.275,0.275 0.301,0.289 0.278,0.275 0.274,0.275
23 0.276,0.277 0.299,0.290 0.275,0.272 0.276,0.275
24 0.276,0.275 0.301,0.291 0.273,0.274 0.275,0.276
Δx 0.004 0.018 0.005 0.008
△ y 0.008 0.016 0.008 0.006
표 7
지점 비교예 1 비교예 2 비교예 3
1 0.289,0.282 0.245,0.233 0.240,0.231
2 0.291,0.281 0.251,0.241 0.243,0.235
3 0.292,0.283 0.252,0.243 0.245,0.238
4 0.293,0.284 0.253,0.244 0.243,0.241
5 0.294,0.285 0.254,0.245 0.244,0.242
6 0.296,0.284 0.256,0.244 0.246,0.244
7 0.297,0.285 0.257,0.245 0.248,0.245
8 0.298,0.286 0.258,0.246 0.247,0.246
9 0.297,0.284 0.257,0.244 0.246,0.244
10 0.295,0.285 0.255,0.245 0.245,0.245
11 0.298,0.286 0.258,0.246 0.246,0.244
12 0.295,0.283 0.255,0.243 0.247,0.245
13 0.293,0.284 0.253,0.244 0.244,0.244
14 0.296,0.285 0.256,0.245 0.246,0.246
15 0.298,0.285 0.258,0.245 0.244,0.247
16 0.299,0.286 0.259,0.246 0.249,0.245
17 0.301,0.289 0.256,0.247 0.246,0.247
18 0.302,0.291 0.255,0.245 0.245,0.244
19 0.304,0.293 0.254,0.248 0.244,0.243
20 0.302,0.297 0.256,0.247 0.246,0.246
21 0.301,0.301 0.257,0.248 0.248,0.248
22 0.303,0.304 0.257,0.249 0.249,0.249
23 0.304,0.303 0.258,0.245 0.252,0.251
24 0.307,0.302 0.255,0.246 0.251,0.252
△x 0.018 0.013 0.012
△y 0.023 0.016 0.021
TABLE 7
Point Comparative Example 1 Comparative Example 2 Comparative Example 3
One 0.289,0.282 0.245,0.233 0.240,0.231
2 0.291,0.281 0.251,0.241 0.243,0.235
3 0.292,0.283 0.252,0.243 0.245,0.238
4 0.293,0.284 0.253,0.244 0.243,0.241
5 0.294,0.285 0.254,0.245 0.244,0.242
6 0.296,0.284 0.256,0.244 0.246,0.244
7 0.297,0.285 0.257,0.245 0.248,0.245
8 0.298,0.286 0.258,0.246 0.247,0.246
9 0.297,0.284 0.257,0.244 0.246,0.244
10 0.295,0.285 0.255,0.245 0.245,0.245
11 0.298,0.286 0.258,0.246 0.246,0.244
12 0.295,0.283 0.255,0.243 0.247,0.245
13 0.293,0.284 0.253,0.244 0.244,0.244
14 0.296,0.285 0.256,0.245 0.246,0.246
15 0.298,0.285 0.258,0.245 0.244,0.247
16 0.299,0.286 0.259,0.246 0.249,0.245
17 0.301,0.289 0.256,0.247 0.246,0.247
18 0.302,0.291 0.255,0.245 0.245,0.244
19 0.304,0.293 0.254,0.248 0.244,0.243
20 0.302,0.297 0.256,0.247 0.246,0.246
21 0.301,0.301 0.257,0.248 0.248,0.248
22 0.303,0.304 0.257,0.249 0.249,0.249
23 0.304,0.303 0.258,0.245 0.252,0.251
24 0.307,0.302 0.255,0.246 0.251,0.252
Δx 0.018 0.013 0.012
△ y 0.023 0.016 0.021
표 4 내지 표 7을 참조하면, 비교예 1에 따른 백라이트 유닛에서는 광원과 가까운 입광부, 즉 지점 1 내지 4의 색좌표들이, 상기 입광부와 마주하는 대광부인 지점 21 내지 24의 색좌표들보다 x좌표 및 y좌표가 모두 작은 값을 가지면서, △x가 0.018이고 △y가 0.023인 것을 알 수 있다. 반면, 실시예 1, 2, 4 내지 9, 11 및 12에 따른 백라이트 유닛에서는 △x는 0.017 이하이고, △y는 0.019 이하임을 알 수 있다. 즉, 실시예 1, 2, 4 내지 9, 11 및 12에 따른 백라이트 유닛의 색좌표 균일도가, 비교예 1에 따른 백라이트 유닛의 색좌표 균일도에 비해서 좋은 것을 알 수 있다. △x 및 △y가 클수록 입광부에서 나타내는 색좌표와 대광부에서 나타내는 색좌표의 차이가 크다는 것을 의미하므로 사용자는 입광부에서 상대적으로 청색이 강하게 나타나는 것으로 인식하고, 대광부에서는 상대적으로 황색이 강하게 나타나는 것으로 시인하는 문제가 있다. 그러나, 본 발명의 실시예 1, 2, 4 내지 9, 11 및 12에 따른 백라이트 유닛은 비교예 1에 비해서 △x 및 △y를 감소시켜 색좌표 균일도가 향상된다.Referring to Tables 4 to 7, in the backlight unit according to Comparative Example 1, the light units closer to the light source, that is, the color coordinates of points 1 to 4 are x-coordinates than the color coordinates of points 21 to 24, which are light units facing the light receiver. It can be seen that Δx is 0.018 and Δy is 0.023 while both y coordinates have small values. On the other hand, in the backlight units according to Embodiments 1, 2, 4 to 9, 11, and 12, Δx may be 0.017 or less, and Δy may be 0.019 or less. That is, it can be seen that the color coordinate uniformity of the backlight unit according to Examples 1, 2, 4 to 9, 11, and 12 is better than that of the backlight unit according to Comparative Example 1. As Δx and Δy are larger, the difference between the color coordinates of the light incident part and the color coordinates of the light exiting part is larger, so the user perceives that blue color is relatively strong at the light exiting part, and yellow is relatively strong at the light exiting part. There is a problem to admit. However, the backlight unit according to Examples 1, 2, 4 to 9, 11, and 12 of the present invention reduces Δx and Δy as compared with Comparative Example 1, thereby improving color coordinate uniformity.
특히, 실시예 1, 2, 5, 7, 9, 11 및 12에 따른 백라이트 유닛에서는 △x가 0.008이하이고, △y가 0.009 이하임을 알 수 있다. 형광 입자가 발광 소자나 확산 시트에 적용된 실시예 4, 6 및 8에 따른 백라이트 유닛보다는, 발광 복합체가 적용된 실시예 1, 2, 5, 7, 9, 11 및 12에 따른 백라이트 유닛의 △x 및 △y가 상대적으로 작은 값을 가진다. 실시예 1 내지 12에 따른 백라이트 유닛 중에서도 실시예 1, 2, 5, 7, 9, 11 및 12에 따른 백라이트 유닛의 색좌표 균일도가 좋은 것을 알 수 있다.In particular, it can be seen that Δx is 0.008 or less and Δy is 0.009 or less in the backlight unit according to Embodiments 1, 2, 5, 7, 9, 11, and 12. ? X of the backlight unit according to Examples 1, 2, 5, 7, 9, 11 and 12 to which the light emitting composite was applied, rather than the backlight unit according to Embodiments 4, 6 and 8, wherein the fluorescent particles were applied to the light emitting element or the diffusion sheet. Δy has a relatively small value. Among the backlight units according to Embodiments 1 to 12, it can be seen that the color coordinate uniformity of the backlight units according to Embodiments 1, 2, 5, 7, 9, 11, and 12 is good.
또한, 비교예 2 및 3에 따른 백라이트 유닛은 비교예 1에 따른 백라이트 유닛에 비해서 △x 및 △y이 작지만, 실시예 1, 2, 4, 5, 7, 9, 11 및 12에 비해서는 △x 및 △y이 큰 값을 가지므로 비교예 2 및 3에 따른 백라이트 유닛에 비해 실시예 1, 2, 4, 5, 7, 9, 11 및 12에 따른 백라이트 유닛의 색좌표 균일도가 좋은 것을 알 수 있다. 즉, 나노발광체가 적용된 비교예 2 및 3에 따른 백라이트 유닛은 통상적으로 이용되는 비교예 1에 따른 백라이트 유닛보다는 색좌표 균일도가 좋기는 하지만 실시예 1, 2, 4, 5, 7, 9, 11 및 12에 따른 백라이트 유닛의 색좌표 균일도보다는 좋지 않은 것을 알 수 있다.In addition, the backlight units according to Comparative Examples 2 and 3 have smaller Δx and Δy than the backlight units according to Comparative Example 1, but compared to Examples 1, 2, 4, 5, 7, 9, 11 and 12, respectively. Since x and Δy have large values, it can be seen that the color coordinate uniformity of the backlight unit according to Examples 1, 2, 4, 5, 7, 9, 11 and 12 is better than that of the backlight units according to Comparative Examples 2 and 3. have. That is, the backlight unit according to Comparative Examples 2 and 3 to which the nano light-emitting body is applied has better color coordinate uniformity than the backlight unit according to Comparative Example 1, which is commonly used, but the examples 1, 2, 4, 5, 7, 9, 11 and It can be seen that it is worse than the color coordinate uniformity of the backlight unit according to 12.
한편, 본 발명의 실시예 3에 따른 백라이트 유닛은 표 1에서 설명한 바와 같이 색역 비율이나 휘도는 비교예 1 내지 3에 따른 백라이트 유닛에 비해 좋은 반면, 색좌표 균일도는 상대적으로 낮은 것을 알 수 있다. 실시예 3 및 4에 따른 백라이트 유닛을 비교할 때, 형광 입자는 녹색 형광체 그대로를 이용하는 것보다는 녹색 형광체가 왁스 입자에 의해 피복된 형광 복합체로 이용하는 경우에 광변환층에 더욱 균일하게 분산될 수 있으므로 색좌표 균일도가 더 좋은 것으로 유추할 수 있다.On the other hand, the backlight unit according to the third embodiment of the present invention, as described in Table 1, the color gamut ratio or brightness is better than the backlight units according to Comparative Examples 1 to 3, it can be seen that the color coordinate uniformity is relatively low. When comparing the backlight units according to Examples 3 and 4, the fluorescent particles can be more uniformly dispersed in the light conversion layer when the green phosphor is used as a fluorescent composite coated with wax particles, rather than using the green phosphor as it is. It can be inferred that the uniformity is better.
최종 색좌표 균일도 평가Final color coordinate uniformity evaluation
초기 색좌표 균일도 평가 후에, 실시예 1 내지 8에 따른 백라이트 유닛 각각에서 확산 시트를 분리하고, 실시예 9 및 10 각각에서 광변환 필름을 분리하며, 실시예 11에 따른 백라이트 유닛에서 역프리즘 시트를 분리하고, 실시예 12에 따른 백라이트 유닛에서 보호 시트를 분리한 후, 분리된 확산 시트, 광변환 필름, 역프리즘 시트 및 보호 시트 각각을 항온항습기에서 온도 85 ℃ 및 상대습도 85 %의 가혹조건 하에 480 시간 동안 방치하였다. 고온/고습에 방치된 확산 시트, 광변환 필름, 역프리즘 시트 및 보호 시트를 다시 각각의 백라이트 유닛을 구성했던 발광 소자, 도광판, 제1 및 제2 집광 시트들과 함께 어셈블리시킨 후, 이에 대한 최종 색좌표를 측정하였다. 그 결과를 표 8, 표 9, 표 10 및 표 11에 나타낸다.After the initial color coordinate uniformity evaluation, the diffusion sheet was separated from each of the backlight units according to Examples 1 to 8, the light conversion film was separated from each of Examples 9 and 10, and the anti-prism sheet was separated from the backlight unit according to Example 11. After separating the protective sheet from the backlight unit according to Example 12, each of the separated diffusion sheet, the light conversion film, the inverted prism sheet and the protective sheet was 480 under severe conditions of a temperature of 85 ° C. and a relative humidity of 85%. It was left for hours. The diffusion sheet, the light conversion film, the inverted prism sheet, and the protective sheet, which were left at high temperature / high humidity, were assembled together with the light emitting element, the light guide plate, the first and the second light collecting sheets which constituted the respective backlight units, and then Color coordinates were measured. The results are shown in Tables 8, 9, 10, and 11.
표 8, 표 9, 표 10 및 표 11에서, 최종 색좌표는 CIE 1931 색좌표계를 기준으로 나타낸다. 표 8, 표 9, 표 10 및 표 11 각각에서, "△x"는 지점 1 내지 24 중에서의 x좌표의 최대값과 최소값의 차이이고, "△y"는 지점 1 내지 24 중에서의 y좌표의 최대값과 최소값의 차이를 나타낸다.In Tables 8, 9, 10 and 11, the final color coordinates are shown based on the CIE 1931 color coordinate system. In each of Tables 8, 9, 10 and 11, "Δx" is the difference between the maximum value and the minimum value of the x coordinate in points 1 to 24, and "Δy" is the value of the y coordinate in points 1 to 24. The difference between the maximum and minimum values.
표 8
지점 실시예 1 실시예 2 실시예 3 실시예 4
1 0.213,0.212 0.263,0.263 0.246,0.241 0.201,0.242
2 0.212,0.213 0.262,0.262 0.248,0.243 0.207,0.246
3 0.214,0.211 0.265,0.265 0.249,0.245 0.209,0.245
4 0.212,0.214 0.262,0.264 0.245,0.242 0.205,0.243
5 0.216,0.215 0.263,0.263 0.245,0.248 0.206,0.243
6 0.258,0.260 0.271,0.271 0.261,0.255 0.249,0.245
7 0.257,0.259 0.273,0.273 0.263,0.258 0.251,0.247
8 0.214,0.216 0.266,0.264 0.247,0.247 0.205,0.244
9 0.215,0.217 0.265,0.263 0.246,0.246 0.202,0.241
10 0.267,0.270 0.272,0.272 0.272,0.269 0.265,0.262
11 0.266,0.269 0.273,0.271 0.273,0.270 0.268,0.260
12 0.214,0.216 0.264,0.264 0.246,0.245 0.203,0.243
13 0.217,0.216 0.263,0.266 0.245,0.247 0.204,0.242
14 0.268,0.272 0.274,0.272 0.275,0.272 0.267,0.262
15 0.271,0.273 0.273,0.273 0.276,0.271 0.266,0.261
16 0.214,0.215 0.263,0.265 0.248,0.247 0.204,0.245
17 0.216,0.216 0.263,0.264 0.244,0.246 0.201,0.240
18 0.259,0.262 0.275,0.274 0.265,0.259 0.253,0.249
19 0.255,0.261 0.274,0.272 0.269,0.261 0.256,0.252
20 0.213,0.215 0.266,0.265 0.247,0.245 0.203,0.242
21 0.214,0.212 0.265,0.262 0.244,0.242 0.202,0.243
22 0.215,0.215 0.263,0.265 0.247,0.244 0.206,0.247
23 0.213,0.217 0.264,0.264 0.248,0.246 0.207,0.246
24 0.214,0.213 0.263,0.261 0.243,0.241 0.203,0.242
△x 0.059 0.013 0.033 0.067
△y 0.062 0.013 0.031 0.021
Table 8
Point Example 1 Example 2 Example 3 Example 4
One 0.213,0.212 0.263,0.263 0.246,0.241 0.201,0.242
2 0.212,0.213 0.262,0.262 0.248,0.243 0.207,0.246
3 0.214,0.211 0.265,0.265 0.249,0.245 0.209,0.245
4 0.212,0.214 0.262,0.264 0.245,0.242 0.205,0.243
5 0.216,0.215 0.263,0.263 0.245,0.248 0.206,0.243
6 0.258,0.260 0.271,0.271 0.261,0.255 0.249,0.245
7 0.257,0.259 0.273,0.273 0.263,0.258 0.251,0.247
8 0.214,0.216 0.266,0.264 0.247,0.247 0.205,0.244
9 0.215,0.217 0.265,0.263 0.246,0.246 0.202,0.241
10 0.267,0.270 0.272,0.272 0.272,0.269 0.265,0.262
11 0.266,0.269 0.273,0.271 0.273,0.270 0.268,0.260
12 0.214,0.216 0.264,0.264 0.246,0.245 0.203,0.243
13 0.217,0.216 0.263,0.266 0.245,0.247 0.204,0.242
14 0.268,0.272 0.274,0.272 0.275,0.272 0.267,0.262
15 0.271,0.273 0.273,0.273 0.276,0.271 0.266,0.261
16 0.214,0.215 0.263,0.265 0.248,0.247 0.204,0.245
17 0.216,0.216 0.263,0.264 0.244,0.246 0.201,0.240
18 0.259,0.262 0.275,0.274 0.265,0.259 0.253,0.249
19 0.255,0.261 0.274,0.272 0.269,0.261 0.256,0.252
20 0.213,0.215 0.266,0.265 0.247,0.245 0.203,0.242
21 0.214,0.212 0.265,0.262 0.244,0.242 0.202,0.243
22 0.215,0.215 0.263,0.265 0.247,0.244 0.206,0.247
23 0.213,0.217 0.264,0.264 0.248,0.246 0.207,0.246
24 0.214,0.213 0.263,0.261 0.243,0.241 0.203,0.242
Δx 0.059 0.013 0.033 0.067
△ y 0.062 0.013 0.031 0.021
표 9
지점 실시예 5 실시예 6 실시예 7 실시예 8
1 0.262,0.261 0.282,0.260 0.260,0.258 0.245,0.258
2 0.265,0.267 0.290,0.263 0.263,0.263 0.247,0.260
3 0.264,0.262 0.291,0.262 0.264,0.262 0.249,0.261
4 0.263,0.264 0.293,0.261 0.261,0.260 0.243,0.260
5 0.263,0.264 0.291,0.260 0.263,0.261 0.245,0.263
6 0.269,0.265 0.287,0.277 0.270,0.273 0.249,0.277
7 0.268,0.267 0.286,0.273 0.271,0.275 0.248,0.276
8 0.267,0.265 0.293,0.265 0.262,0.262 0.248,0.247
9 0.264,0.264 0.288,0.269 0.262,0.259 0.246,0.262
10 0.271,0.271 0.293,0.279 0.274,0.279 0.256,0.281
11 0.272,0.270 0.295,0.280 0.275,0.281 0.257,0.283
12 0.266,0.265 0.291,0.266 0.261,0.262 0.245,0.246
13 0.265,0.263 0.290,0.271 0.262,0.261 0.247,0.263
14 0.274,0.272 0.294,0.278 0.275,0.280 0.260,0.283
15 0.276,0.274 0.296,0.281 0.276,0.283 0.259,0.284
16 0.267,0.266 0.293,0.264 0.262,0.263 0.247,0.246
17 0.262,0.264 0.292,0.268 0.263,0.262 0.244,0.261
18 0.270,0.268 0.296,0.278 0.272,0.276 0.250,0.287
19 0.271,0.267 0.294,0.279 0.273,0.277 0.251,0.284
20 0.264,0.265 0.294,0.263 0.261,0.260 0.246,0.247
21 0.263,0.262 0.289,0.261 0.261,0.256 0.243,0.259
22 0.264,0.268 0.287,0.264 0.262,0.261 0.246,0.262
23 0.265,0.264 0.288,0.265 0.264,0.260 0.248,0.260
24 0.262,0.262 0.285,0.262 0.262,0.258 0.241,0.257
△x 0.014 0.014 0.016 0.019
△y 0.013 0.021 0.025 0.038
Table 9
Point Example 5 Example 6 Example 7 Example 8
One 0.262,0.261 0.282,0.260 0.260,0.258 0.245,0.258
2 0.265,0.267 0.290,0.263 0.263,0.263 0.247,0.260
3 0.264,0.262 0.291,0.262 0.264,0.262 0.249,0.261
4 0.263,0.264 0.293,0.261 0.261,0.260 0.243,0.260
5 0.263,0.264 0.291,0.260 0.263,0.261 0.245,0.263
6 0.269,0.265 0.287,0.277 0.270,0.273 0.249,0.277
7 0.268,0.267 0.286,0.273 0.271,0.275 0.248,0.276
8 0.267,0.265 0.293,0.265 0.262,0.262 0.248,0.247
9 0.264,0.264 0.288,0.269 0.262,0.259 0.246,0.262
10 0.271,0.271 0.293,0.279 0.274,0.279 0.256,0.281
11 0.272,0.270 0.295,0.280 0.275,0.281 0.257,0.283
12 0.266,0.265 0.291,0.266 0.261,0.262 0.245,0.246
13 0.265,0.263 0.290,0.271 0.262,0.261 0.247,0.263
14 0.274,0.272 0.294,0.278 0.275,0.280 0.260,0.283
15 0.276,0.274 0.296,0.281 0.276,0.283 0.259,0.284
16 0.267,0.266 0.293,0.264 0.262,0.263 0.247,0.246
17 0.262,0.264 0.292,0.268 0.263,0.262 0.244,0.261
18 0.270,0.268 0.296,0.278 0.272,0.276 0.250,0.287
19 0.271,0.267 0.294,0.279 0.273,0.277 0.251,0.284
20 0.264,0.265 0.294,0.263 0.261,0.260 0.246,0.247
21 0.263,0.262 0.289,0.261 0.261,0.256 0.243,0.259
22 0.264,0.268 0.287,0.264 0.262,0.261 0.246,0.262
23 0.265,0.264 0.288,0.265 0.264,0.260 0.248,0.260
24 0.262,0.262 0.285,0.262 0.262,0.258 0.241,0.257
Δx 0.014 0.014 0.016 0.019
△ y 0.013 0.021 0.025 0.038
표 10
지점 실시예 9 실시예 10 실시예 11 실시예 12
1 0.258,0.253 0.287,0.263 0.252,0.251 0.255,0.252
2 0.261,0.260 0.285,0.265 0.256,0.254 0.259,0.255
3 0.262,0.261 0.289,0.263 0.255,0.256 0.257,0.253
4 0.256,0.254 0.288,0.261 0.253,0.250 0.256,0.249
5 0.254,0.255 0.288,0.264 0.256,0.253 0.255,0.256
6 0.264,0.269 0.292,0.279 0.262,0.262 0.260,0.260
7 0.263,0.268 0.295,0.278 0.261,0.261 0.261,0.261
8 0.256,0.255 0.295,0.262 0.257,0.255 0.256,0.254
9 0.255,0.256 0.299,0.265 0.254,0.255 0.252,0.253
10 0.264,0.271 0.297,0.281 0.268,0.265 0.264,0.268
11 0.265,0.272 0.295,0.280 0.269,0.266 0.266,0.266
12 0.254,0.256 0.294,0.263 0.255,0.254 0.255,0.253
13 0.253,0.255 0.289,0.262 0.255,0.253 0.253,0.255
14 0.266,0.272 0.302,0.283 0.270,0.267 0.265,0.267
15 0.265,0.273 0.303,0.282 0.269,0.265 0.267,0.269
16 0.255,0.255 0.296,0.264 0.256,0.255 0.256,0.256
17 0.255,0.256 0.299,0.263 0.254,0.254 0.253,0.256
18 0.266,0.270 0.296,0.277 0.263,0.260 0.261,0.259
19 0.265,0.269 0.297,0.276 0.262,0.261 0.263,0.260
20 0.257,0.255 0.295,0.263 0.254,0.253 0.265,0.254
21 0.256,0.251 0.298,0.262 0.250,0.249 0.249,0.254
22 0.259,0.258 0.297,0.266 0.255,0.255 0.250,0.256
23 0.258,0.257 0.289,0.267 0.253,0.254 0.251,0.252
24 0.253,0.250 0.297,0.263 0.249,0.248 0.248,0.247
△x 0.013 0.018 0.021 0.017
△y 0.023 0.022 0.019 0.022
Table 10
Point Example 9 Example 10 Example 11 Example 12
One 0.258,0.253 0.287,0.263 0.252,0.251 0.255,0.252
2 0.261,0.260 0.285,0.265 0.256,0.254 0.259,0.255
3 0.262,0.261 0.289,0.263 0.255,0.256 0.257,0.253
4 0.256,0.254 0.288,0.261 0.253,0.250 0.256,0.249
5 0.254,0.255 0.288,0.264 0.256,0.253 0.255,0.256
6 0.264,0.269 0.292,0.279 0.262,0.262 0.260,0.260
7 0.263,0.268 0.295,0.278 0.261,0.261 0.261,0.261
8 0.256,0.255 0.295,0.262 0.257,0.255 0.256,0.254
9 0.255,0.256 0.299,0.265 0.254,0.255 0.252,0.253
10 0.264,0.271 0.297,0.281 0.268,0.265 0.264,0.268
11 0.265,0.272 0.295,0.280 0.269,0.266 0.266,0.266
12 0.254,0.256 0.294,0.263 0.255,0.254 0.255,0.253
13 0.253,0.255 0.289,0.262 0.255,0.253 0.253,0.255
14 0.266,0.272 0.302,0.283 0.270,0.267 0.265,0.267
15 0.265,0.273 0.303,0.282 0.269,0.265 0.267,0.269
16 0.255,0.255 0.296,0.264 0.256,0.255 0.256,0.256
17 0.255,0.256 0.299,0.263 0.254,0.254 0.253,0.256
18 0.266,0.270 0.296,0.277 0.263,0.260 0.261,0.259
19 0.265,0.269 0.297,0.276 0.262,0.261 0.263,0.260
20 0.257,0.255 0.295,0.263 0.254,0.253 0.265,0.254
21 0.256,0.251 0.298,0.262 0.250,0.249 0.249,0.254
22 0.259,0.258 0.297,0.266 0.255,0.255 0.250,0.256
23 0.258,0.257 0.289,0.267 0.253,0.254 0.251,0.252
24 0.253,0.250 0.297,0.263 0.249,0.248 0.248,0.247
Δx 0.013 0.018 0.021 0.017
△ y 0.023 0.022 0.019 0.022
표 11
지점 비교예 1 비교예 2 비교예 3
1 0.291,0.282 0.138,0.121 0.153,0.142
2 0.293,0.281 0.141,0.123 0.159,0.144
3 0.294,0.283 0.140,0.125 0.156,0.145
4 0.292,0.284 0.135,0.122 0.154,0.140
5 0.293,0.285 0.145,0.121 0.153,0.144
6 0.301,0.298 0.176,0.165 0.196,0.187
7 0.303,0.297 0.167,0.158 0.204,0.185
8 0.301,0.296 0.143,0.123 0.155,0.146
9 0.302,0.297 0.147,0.124 0.154,0.143
10 0.304,0.299 0.183,0.179 0.215,0.195
11 0.305,0.301 0.179,0.180 0.213,0.194
12 0.303,0.298 0.145,0.123 0.156,0.145
13 0.305,0.297 0.142,0.122 0.155,0.143
14 0.305,0.302 0.182,0.182 0.212,0.197
15 0.306,0.301 0.184,0.181 0.215,0.196
16 0.308,0.303 0.149,0.126 0.157,0.146
17 0.310,0.302 0.146,0.124 0.156,0.145
18 0.311,0.307 0.165,0.161 0.201,0.183
19 0.312,0.309 0.167,0.157 0.203,0.181
20 0.310,0.307 0.145,0.124 0.156,0.144
21 0.311,0.308 0.140,0.124 0.157,0.145
22 0.313,0.306 0.143,0.125 0.159,0.146
23 0.312,0.308 0.142,0.123 0.155,0.143
24 0.314,0.309 0.138,0.122 0.153,0.141
△x 0.023 0.049 0.062
△y 0.028 0.061 0.057
Table 11
Point Comparative Example 1 Comparative Example 2 Comparative Example 3
One 0.291,0.282 0.138,0.121 0.153,0.142
2 0.293,0.281 0.141,0.123 0.159,0.144
3 0.294,0.283 0.140,0.125 0.156,0.145
4 0.292,0.284 0.135,0.122 0.154,0.140
5 0.293,0.285 0.145,0.121 0.153,0.144
6 0.301,0.298 0.176,0.165 0.196,0.187
7 0.303,0.297 0.167,0.158 0.204,0.185
8 0.301,0.296 0.143,0.123 0.155,0.146
9 0.302,0.297 0.147,0.124 0.154,0.143
10 0.304,0.299 0.183,0.179 0.215,0.195
11 0.305,0.301 0.179,0.180 0.213,0.194
12 0.303,0.298 0.145,0.123 0.156,0.145
13 0.305,0.297 0.142,0.122 0.155,0.143
14 0.305,0.302 0.182,0.182 0.212,0.197
15 0.306,0.301 0.184,0.181 0.215,0.196
16 0.308,0.303 0.149,0.126 0.157,0.146
17 0.310,0.302 0.146,0.124 0.156,0.145
18 0.311,0.307 0.165,0.161 0.201,0.183
19 0.312,0.309 0.167,0.157 0.203,0.181
20 0.310,0.307 0.145,0.124 0.156,0.144
21 0.311,0.308 0.140,0.124 0.157,0.145
22 0.313,0.306 0.143,0.125 0.159,0.146
23 0.312,0.308 0.142,0.123 0.155,0.143
24 0.314,0.309 0.138,0.122 0.153,0.141
Δx 0.023 0.049 0.062
△ y 0.028 0.061 0.057
표 8 내지 표 11을 표 4 내지 표 7과 비교하면, 확산 시트, 광변환 필름, 역프리즘 시트 및 보호 시트는 고온/고습 조건 하에 방치된 후에 실시예 1 내지 12에 따른 백라이트 유닛 및 비교예 1 내지 3에 따른 백라이트 유닛 각각에서 동일 지점의 색좌표가 변화된 것을 알 수 있다. 특히, 실시예 1 내지 12에 따른 백라이트 유닛 및 비교예 1 내지 3에 따른 백라이트 유닛 각각에서, 표시 영역(DS)의 가장자리인 지점 1 내지 4, 5, 8, 9, 12, 13, 16, 17, 20 및 21 내지 24에서의 색좌표 변화가 큰 것을 알 수 있다. 즉, 표시 영역(DS)의 가장자리가 먼저 고온/고습의 영향을 받아서 손상되고 상기 표시 영역(DS)의 내부 영역은 약 480시간이 경과한 시점에서는 가장자리만큼 크게 영향을 받지 않음을 알 수 있다.Comparing Tables 8 to 11 with Tables 4 to 7, the diffusion sheet, the light conversion film, the inverse prism sheet, and the protective sheet were left under high temperature / high humidity conditions, and then the backlight unit according to Examples 1 to 12 and Comparative Example 1 It can be seen that the color coordinates of the same point are changed in each of the backlight units according to FIGS. In particular, in each of the backlight units according to Examples 1 to 12 and the backlight units according to Comparative Examples 1 to 3, points 1 to 4, 5, 8, 9, 12, 13, 16, and 17 which are edges of the display area DS are shown. It can be seen that the change in color coordinates at, 20 and 21 to 24 is large. That is, it can be seen that the edge of the display area DS is damaged by the high temperature / high humidity first, and the inner area of the display area DS is not affected as much as the edge when about 480 hours have elapsed.
그럼에도 불구하고, 실시예 1 내지 12에 따른 백라이트 유닛의 최초/최종 색좌표의 차이와 비교하여 비교예 2 및 3에 따른 백라이트 유닛의 지점 1 내지 4 및 지점 21 내지 24의 최초/최종 색좌표의 차이는 매우 큰 것을 알 수 있고, 이는 확산 시트에 적용된 나노발광체가 고온/고습에 의해서 손상된 것으로 유추할 수 있다. 비교예 1에 따른 백라이트 유닛은 나노발광체가 적용되지 않은 통상의 백라이트 유닛이므로 고온/고습에 의해서 확산 시트가 부분적으로 손상되기는 하지만 최초/최종 색좌표 차이는 실시예 1 내지 12에 따른 백라이트 유닛과 실질적으로 유사한 수준임을 알 수 있다.Nevertheless, the difference in the initial / final color coordinates of the points 1 to 4 and the points 21 to 24 of the backlight units according to Comparative Examples 2 and 3 compared to the difference of the initial / final color coordinates of the backlight units according to Examples 1 to 12 It can be seen that very large, which can be inferred that the nano light-emitting body applied to the diffusion sheet is damaged by high temperature / high humidity. Since the backlight unit according to Comparative Example 1 is a conventional backlight unit to which no nano light emitter is applied, the diffusion sheet may be partially damaged by high temperature / high humidity, but the difference between the initial and final color coordinates is substantially the same as that of the backlight units according to Examples 1 to 12. It can be seen that the level is similar.
한편, 확산 시트, 광변환 필름, 역프리즘 시트 및 보호 시트는 고온/고습 조건 하에 방치된 후에 실시예 1 내지 12에 따른 백라이트 유닛 및 비교예 1 내지 3에 따른 백라이트 유닛 각각의 △x 및 △y도 변화하는 것을 알 수 있다. 특히, 비교예 2 및 3에 따른 백라이트 유닛의 △x 및 △y는 실시예 2 내지 12에 따른 백라이트 유닛의 △x 및 △y와 크게 차이가 있는 것을 알 수 있다. 즉, 실시예 2 내지 12에 따른 백라이트 유닛은 고온/고습 조건에 놓여져서 최종 색좌표가 변화하기는 하지만, 색좌표 균일도는 비교예 2 및 3에 따른 백라이트 유닛에 비해 좋은 것을 알 수 있다.On the other hand, the diffusion sheet, the light conversion film, the inverted prism sheet and the protective sheet were left under high temperature / high humidity conditions, and then Δx and Δy of the backlight units according to Examples 1 to 12 and the backlight units according to Comparative Examples 1 to 3, respectively. It can be seen that also changes. In particular, it can be seen that Δx and Δy of the backlight units according to Comparative Examples 2 and 3 are significantly different from Δx and Δy of the backlight units according to Examples 2 to 12. That is, although the final color coordinates change because the backlight units according to Examples 2 to 12 are placed under high temperature / high humidity conditions, the uniformity of color coordinates is better than that of the backlight units according to Comparative Examples 2 and 3.
실시예 1에 따른 백라이트 유닛은 고온/고습 조건에 놓여진 후에 △x 및 △y가 비교예 2 및 3과 유사한 수준으로 나타나지만, 지점 10, 11, 14 및 15의 최초/최종 색좌표 차이는 비교예 2 및 3에 따른 백라이트 유닛에 비해 현저하게 낮은 것을 알 수 있다. 즉, 실시예 1에 따른 백라이트 유닛에 적용된 확산 시트가 제2 투명 필름 없이 제2 배리어층만으로 광변환층을 커버하고 있으므로 광변환층 내의 발광 복합체가, 실시예 2 내지 12에 따른 백라이트 유닛에 비해서는 상대적으로 더 많이 손상되기는 하지만 표시 영역(DS)의 내부 영역은 크게 손상되지 않음을 알 수 있다.The backlight unit according to Example 1 exhibits Δx and Δy at levels similar to those of Comparative Examples 2 and 3 after being subjected to high temperature / humidity conditions, but the difference of the initial / final color coordinates at points 10, 11, 14 and 15 is shown in Comparative Example 2 And it can be seen that significantly lower than the backlight unit according to 3. That is, since the diffusion sheet applied to the backlight unit according to Example 1 covers the light conversion layer only with the second barrier layer without the second transparent film, the light emitting composite in the light conversion layer is compared with the backlight units according to Examples 2 to 12. Although relatively more damaged, it can be seen that the internal area of the display area DS is not significantly damaged.
표 4 내지 표 11에서 설명한 것과 같이, 형광체 또는 형광 복합체를 포함하는 형광 입자 및/또는 발광 복합체를 포함하는 광변환층을 이용함으로써 광변환층이 자외선, 열, 수분 등에 의해서 손상되는 것을 1차적으로 방지하고, 제1 및 제2 배리어층들을 이용하여 상기 광변환층을 보호함으로써 상기 형광 입자 및/또는 발광 복합체가 자외선, 열, 수분 등에 의해서 손상되는 것을 2차적으로 방지할 수 있다.As described in Tables 4 to 11, the photoconversion layer is primarily damaged by ultraviolet rays, heat, moisture, etc. by using the photoconversion layer including the fluorescent particles and / or the light emitting complex including the phosphor or the fluorescent complex. By protecting the light conversion layer using the first and second barrier layers, the fluorescent particles and / or the light emitting composite may be secondarily prevented from being damaged by ultraviolet rays, heat, moisture, or the like.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.While the foregoing has been described with reference to preferred embodiments of the present invention, those skilled in the art will be able to variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. It will be appreciated.

Claims (49)

  1. 제1 투명 필름;A first transparent film;
    상기 제1 투명 필름의 일 면에 형성된 제1 배리어층; 및A first barrier layer formed on one surface of the first transparent film; And
    상기 제1 배리어층 상에 형성되고, 왁스 입자 및 상기 왁스 입자 내부에 배치된 나노발광체를 포함하는 발광 복합체 및 형광 입자 중 선택된 적어도 하나가 분산된 광변환층을 포함하는 광학 시트.An optical sheet comprising a light conversion layer formed on the first barrier layer, at least one selected from among a light emitting composite and fluorescent particles comprising a wax particle and a nano light emitting body disposed inside the wax particle.
  2. 제1항에 있어서, 상기 광변환층 상에 배치된 제2 배리어층을 더 포함하는 것을 특징으로 하는 광학 시트.The optical sheet of claim 1, further comprising a second barrier layer disposed on the light conversion layer.
  3. 제2항에 있어서, 상기 제2 배리어층은The method of claim 2, wherein the second barrier layer is
    상기 광변환층 상에 배치된 제1 무기막을 포함하는 것을 특징으로 하는 광학 시트.An optical sheet comprising a first inorganic film disposed on the light conversion layer.
  4. 제3항에 있어서, 상기 제2 배리어층은The method of claim 3, wherein the second barrier layer is
    상기 제1 무기막 상에 배치된 제2 무기막 및 상기 제1 무기막 상에 배치된 유기막 중 어느 하나를 더 포함하는 것을 특징으로 하는 광학 시트.The optical sheet further comprises any one of a second inorganic film disposed on the first inorganic film and an organic film disposed on the first inorganic film.
  5. 제3항에 있어서, 상기 제2 배리어층은The method of claim 3, wherein the second barrier layer is
    상기 제1 무기막 상에 배치된 제2 무기막; 및A second inorganic film disposed on the first inorganic film; And
    상기 무기막과 상기 제2 무기막 사이에 배치된 유기막을 더 포함하는 것을 특징으로 하는 광학 시트.And an organic film disposed between the inorganic film and the second inorganic film.
  6. 제3항에 있어서, 상기 제2 배리어층은The method of claim 3, wherein the second barrier layer is
    상기 제1 무기막과 상기 광변환층 사이에 배치된 유기막을 더 포함하는 것을 특징으로 하는 광학 시트.The optical sheet further comprises an organic film disposed between the first inorganic film and the light conversion layer.
  7. 제2항에 있어서, 상기 제2 배리어층 상에 배치된 제2 투명 필름을 더 포함하는 것을 특징으로 하는 광학 시트.The optical sheet according to claim 2, further comprising a second transparent film disposed on the second barrier layer.
  8. 제1항에 있어서, 상기 제1 투명 필름의 일면 상에 형성되고 표면에 광확산 패턴이 형성된 제1 광학층을 더 포함하는 것을 특징으로 하는 광학 시트.The optical sheet of claim 1, further comprising a first optical layer formed on one surface of the first transparent film and having a light diffusion pattern formed on the surface thereof.
  9. 제8항에 있어서, The method of claim 8,
    상기 광변환층 상에 배치된 제2 배리어층;A second barrier layer disposed on the light conversion layer;
    상기 제2 배리어층 상에 배치된 제2 투명 필름; 및A second transparent film disposed on the second barrier layer; And
    상기 제2 투명 필름의 일면 상에 형성되고 표면에 광확산 패턴 또는 집광 패턴이 형성된 제2 광학층을 더 포함하는 것을 특징으로 하는 광학 시트.And a second optical layer formed on one surface of the second transparent film and having a light diffusion pattern or a light collecting pattern formed on a surface thereof.
  10. 제1항에 있어서, 상기 제1 투명 필름의 일면 상에 형성되고 표면에 집광 패턴 또는 제1 버퍼 패턴이 형성된 제1 광학층을 더 포함하는 것을 특징으로 하는 광학 시트.The optical sheet of claim 1, further comprising a first optical layer formed on one surface of the first transparent film and having a light collecting pattern or a first buffer pattern formed on a surface thereof.
  11. 제10항에 있어서, The method of claim 10,
    상기 광변환층 상에 배치된 제2 배리어층;A second barrier layer disposed on the light conversion layer;
    상기 제2 배리어층 상에 배치된 제2 투명 필름; 및A second transparent film disposed on the second barrier layer; And
    상기 제2 투명 필름의 일면 상에 형성되고 표면에 광확산 패턴 또는 상기 제1 버퍼 패턴과 다른 형상을 갖는 제2 버퍼 패턴이 형성된 제2 광학층을 더 포함하는 것을 특징으로 하는 광학 시트.And a second optical layer formed on one surface of the second transparent film and having a light diffusion pattern or a second buffer pattern having a shape different from that of the first buffer pattern.
  12. 제1항에 있어서, 상기 발광 복합체는The method of claim 1, wherein the light emitting composite
    상기 나노발광체가 적색 나노발광체인 적색 발광 복합체인 것을 특징으로 하는 광학 시트.The nanosheet is an optical sheet, characterized in that the red light emitting composite which is a red nanoluminescent body.
  13. 제1항에 있어서, 상기 나노발광체는The method of claim 1, wherein the nano light-emitting body
    적색 나노발광체 및 녹색 나노발광체를 포함하고, 상기 발광 복합체는 상기 왁스 입자가 상기 적색 및 녹색 나노발광체들을 피복하는 다색 발광 복합체인 것을 특징으로 하는 광학 시트.And a red nano light emitting body and a green nano light emitting body, wherein the light emitting composite is a multicolor light emitting composite wherein the wax particles cover the red and green nano light emitting bodies.
  14. 제1항에 있어서, 상기 왁스 입자는 제1 왁스 입자 및 제2 왁스 입자를 포함하고, The method of claim 1, wherein the wax particles include first wax particles and second wax particles,
    상기 나노발광체는 적어도 1개의 적색 나노발광체 및 적어도 1개의 녹색 나노발광체를 포함하며,The nanolight emitter comprises at least one red nanolight emitter and at least one green nanolight emitter,
    상기 발광 복합체는,The light emitting composite,
    상기 제1 왁스 입자와 상기 제1 왁스 입자의 내부에 배치된 적어도 1개의 적색 나노발광체를 포함하는 적색 발광 복합체; 및A red light emitting composite including the first wax particles and at least one red nano light emitting body disposed inside the first wax particles; And
    상기 제2 왁스 입자 및 상기 제2 왁스 입자의 내부에 배치된 적어도 1개의 녹색 나노발광체를 포함하는 녹색 발광 복합체를 포함하는 것을 특징으로 하는 광학 시트.An optical sheet comprising a green light emitting composite comprising the second wax particles and at least one green nano light-emitting body disposed inside the second wax particles.
  15. 제1항에 있어서, 상기 형광 입자는 녹색 형광체를 포함하는 것을 특징으로 하는 광학 시트.The optical sheet of claim 1, wherein the fluorescent particles comprise green phosphor.
  16. 제1항에 있어서, 상기 형광 입자는The method of claim 1, wherein the fluorescent particles
    제3 왁스 입자; 및Third wax particles; And
    상기 제3 왁스 입자 내부에 배치된 적어도 1개의 녹색 형광체를 포함하는 녹색 형광 복합체를 포함하는 것을 특징으로 하는 광학 시트.An optical sheet comprising a green fluorescent composite comprising at least one green phosphor disposed inside the third wax particles.
  17. 제1항에 있어서, 상기 발광 복합체는The method of claim 1, wherein the light emitting composite
    상기 왁스 입자의 표면을 피복하고 실리콘 산화물로 형성된 외부 보호막을 더 포함하는 것을 특징으로 하는 광학 시트.And an outer protective film covering the surface of the wax particles and formed of silicon oxide.
  18. 제17항에 있어서, 상기 발광 복합체는The method of claim 17, wherein the light emitting composite
    상기 외부 보호막을 피복하고 왁스계 화합물로 형성된 왁스층을 더 포함하는 것을 특징으로 하는 광학 시트.The optical sheet further comprises a wax layer covering the outer protective layer and formed of a wax-based compound.
  19. 제1항에 있어서, 상기 발광 복합체는The method of claim 1, wherein the light emitting composite
    상기 왁스 입자 내부에서 상기 나노발광체를 피복하고 실리콘 산화물로 형성된 내부 보호막을 더 포함하는 것을 특징으로 하는 광학 시트.And an inner protective film covering the nano light-emitting body inside the wax particles and formed of silicon oxide.
  20. 제1항에 있어서, 상기 광변환층 상에 배치된 제2 배리어층을 더 포함하고, The method of claim 1, further comprising a second barrier layer disposed on the light conversion layer,
    상기 광변환층은,The light conversion layer,
    상기 제1 배리어층 상에 형성된 제1 광변환층; 및A first light conversion layer formed on the first barrier layer; And
    상기 제2 배리어층과 상기 제1 광변환층 사이에 배치된 제2 광변환층을 포함하는 것을 특징으로 하는 광학 시트.And a second light conversion layer disposed between the second barrier layer and the first light conversion layer.
  21. 제20항에 있어서, 상기 제1 광변환층에 상기 형광 입자가 분산되고,The method of claim 20, wherein the fluorescent particles are dispersed in the first light conversion layer,
    상기 제2 광변환층에 상기 발광 복합체가 분산된 것을 특징으로 하는 광학 시트.The optical sheet, characterized in that the light emitting composite is dispersed in the second light conversion layer.
  22. 제21항에 있어서, 상기 형광 입자는 녹색 형광체 또는 녹색 형광 복합체를 포함하고,The method of claim 21, wherein the fluorescent particles comprise a green phosphor or a green fluorescent complex,
    상기 발광 복합체는 상기 나노발광체가 적색 나노발광체인 적색 발광 복합체를 포함하는 것을 특징으로 하는 광학 시트.The light emitting composite is an optical sheet, characterized in that the nano light emitting body comprises a red light emitting composite, which is a red nano light emitting body.
  23. 제20항에 있어서, 상기 왁스 입자는 제1 왁스 입자 및 제2 왁스 입자를 포함하고, The method of claim 20, wherein the wax particles comprise first wax particles and second wax particles,
    상기 나노발광체는 적어도 1개의 적색 나노발광체 및 적어도 1개의 녹색 나노발광체를 포함하고,The nanolight emitter comprises at least one red nanolight emitter and at least one green nanolight emitter,
    상기 발광 복합체는,The light emitting composite,
    상기 제1 광변환층에 분산되고, 상기 제1 왁스 입자와 상기 제1 왁스 입자의 내부에 배치된 상기 적어도 1개의 적색 나노발광체를 포함하는 적색 발광 복합체; 및A red light-emitting composite dispersed in the first light conversion layer and including the first wax particles and the at least one red nano light-emitting body disposed inside the first wax particles; And
    상기 제2 광변환층에 분산되고, 상기 제2 왁스 입자 및 상기 제2 왁스 입자의 내부에 배치된 상기 적어도 1개의 녹색 나노발광체를 포함하는 녹색 발광 복합체를 포함하는 것을 특징으로 하는 광학 시트.And a green light emitting composite dispersed in the second light conversion layer, the green light emitting composite including the second wax particles and the at least one green nano light-emitting body disposed inside the second wax particles.
  24. 제20항에 있어서, 상기 광변환층은The method of claim 20, wherein the light conversion layer is
    상기 제1 광변환층과 상기 제2 광변환층 사이에 개재되고, 상기 제1 광변환층 및 상기 제2 광변환층과 접착하는 접착층을 더 포함하는 것을 특징으로 하는 광학 시트.And an adhesive layer interposed between the first light conversion layer and the second light conversion layer and adhering to the first light conversion layer and the second light conversion layer.
  25. 제24항에 있어서, 상기 접착층은 흡습제를 포함하는 것을 특징으로 하는 광학 시트.The optical sheet according to claim 24, wherein the adhesive layer contains a moisture absorbent.
  26. 제1항에 있어서, 상기 제1 배리어층은The method of claim 1, wherein the first barrier layer is
    상기 제1 투명 필름 상에 형성된 제1 무기막을 포함하는 것을 특징으로 하는 광학 시트.And a first inorganic film formed on the first transparent film.
  27. 제26항에 있어서, 상기 제1 배리어층은27. The method of claim 26, wherein the first barrier layer is
    상기 제1 무기막과 상기 광변환층 사이에 배치된 제2 무기막 및 상기 제1 무기막과 상기 광변환층 사이에 배치된 유기막 중 어느 하나를 더 포함하는 것을 특징으로 하는 광학 시트.The optical sheet further comprises any one of a second inorganic film disposed between the first inorganic film and the light conversion layer, and an organic film disposed between the first inorganic film and the light conversion layer.
  28. 제26항에 있어서, 상기 제1 배리어층은27. The method of claim 26, wherein the first barrier layer is
    상기 제1 무기막과 상기 광변환층 사이에 배치된 제2 무기막; 및A second inorganic film disposed between the first inorganic film and the light conversion layer; And
    상기 제1 무기막과 상기 제2 무기막 사이에 배치된 유기막을 더 포함하는 것을 특징으로 하는 광학 시트.And an organic film disposed between the first inorganic film and the second inorganic film.
  29. 제26항에 있어서, 상기 제1 배리어층은27. The method of claim 26, wherein the first barrier layer is
    상기 제1 투명 필름과 상기 제1 무기막 사이에 개재된 유기막을 더 포함하는 것을 특징으로 하는 광학 시트.And an organic film interposed between the first transparent film and the first inorganic film.
  30. 발광 소자;Light emitting element;
    상기 발광 소자가 생성하는 광을 제공받는 도광판; 및A light guide plate receiving light generated by the light emitting device; And
    상기 도광판 상에 배치된 광학 시트를 포함하고,An optical sheet disposed on the light guide plate;
    상기 광학 시트는,The optical sheet,
    제1 투명 필름;A first transparent film;
    상기 제1 투명 필름의 일 면에 형성된 제1 배리어층; 및A first barrier layer formed on one surface of the first transparent film; And
    상기 제1 배리어층 상에 형성되고, 왁스 입자 및 상기 왁스 입자 내부에 배치된 나노발광체를 포함하는 발광 복합체 및 형광 입자 중 선택된 적어도 하나가 분산된 광변환층을 포함하는 것을 특징으로 하는 백라이트 유닛.And a light conversion layer formed on the first barrier layer and having at least one selected from a light emitting composite including a wax particle and a nano light emitting body disposed inside the wax particle and fluorescent particles.
  31. 제30항에 있어서, 상기 광학 시트는The optical sheet of claim 30, wherein the optical sheet is
    상기 광변환층 상에 배치된 제2 배리어층을 더 포함하는 것을 특징으로 하는 백라이트 유닛.The backlight unit further comprises a second barrier layer disposed on the light conversion layer.
  32. 제31항에 있어서, 상기 광학 시트는32. The optical sheet of claim 31, wherein the optical sheet is
    상기 제2 배리어층 상에 배치된 제2 투명 필름을 더 포함하는 것을 특징으로 하는 백라이트 유닛.And a second transparent film disposed on the second barrier layer.
  33. 제30항에 있어서, 상기 왁스 입자는 제1 왁스 입자 및 제2 왁스 입자를 포함하고,31. The method of claim 30, wherein the wax particles comprise first wax particles and second wax particles,
    상기 나노발광체는 상기 제1 왁스 입자 내에 배치된 적색 나노발광체 및 상기 제2 왁스 입자 내에 배치된 녹색 나노발광체를 포함하며,The nano light emitting body includes a red nano light emitting body disposed in the first wax particle and a green nano light emitting body disposed in the second wax particle,
    상기 광변환층은The light conversion layer is
    상기 제1 왁스 입자 및 상기 적색 나노발광체를 포함하는 적색 발광 복합체; 및A red light emitting composite including the first wax particles and the red nano light emitting body; And
    상기 제2 왁스 입자 및 상기 녹색 나노발광체를 포함하는 녹색 발광 복합체가 분산된 것을 특징으로 하는 백라이트 유닛.And a green light emitting composite including the second wax particles and the green nano light-emitting body is dispersed.
  34. 제33항에 있어서, 상기 발광 소자는 청색광 발광 소자인 것을 특징으로 하는 백라이트 유닛.34. The backlight unit of claim 33, wherein the light emitting element is a blue light emitting element.
  35. 제30항에 있어서, 상기 발광복합체는 상기 나노발광체가 적색 나노발광체인 적색 발광 복합체를 포함하고,The method of claim 30, wherein the light emitting complex comprises a red light emitting complex wherein the nano light emitting body is a red nano light emitting body,
    상기 발광 소자는 청색 발광칩 및 상기 청색 발광칩을 커버하는 광전환층을 포함하며,The light emitting device includes a blue light emitting chip and a light conversion layer covering the blue light emitting chip,
    상기 광전환층은 녹색 형광체 또는 녹색 형광 복합체를 포함하는 것을 특징으로 하는 백라이트 유닛.The light conversion layer is a backlight unit, characterized in that it comprises a green phosphor or a green fluorescent complex.
  36. 제30항에 있어서, 상기 광변환층은 상기 발광 복합체 및 상기 형광 입자를 모두 포함하고,The method of claim 30, wherein the light conversion layer comprises both the light emitting composite and the fluorescent particles,
    상기 발광 소자는 청색광을 방출하는 청색광 발광 소자인 것을 특징으로 하는 백라이트 유닛.The light emitting device is a backlight unit, characterized in that the blue light emitting device for emitting blue light.
  37. 제36항에 있어서, 상기 발광 복합체는 적색 나노발광체 또는 녹색 나노발광체를 포함하고,37. The method of claim 36, wherein the light emitting complex comprises a red nano light emitting material or a green nano light emitting material,
    상기 형광 입자는 녹색 형광체 또는 녹색 형광 복합체를 포함하는 것을 특징으로 하는 백라이트 유닛.The fluorescent particle is a backlight unit, characterized in that it comprises a green phosphor or a green fluorescent complex.
  38. 제37항에 있어서, 상기 광변환층은,The method of claim 37, wherein the light conversion layer,
    상기 형광 입자 또는 상기 녹색 나노발광체를 포함하는 녹색 발광 복합체가 분산된 제1 광변환층; 및A first light conversion layer in which a green light emitting composite including the fluorescent particles or the green nano light emitting body is dispersed; And
    상기 제1 광변환층 상에 형성되고 상기 적색 나노발광체를 포함하는 적색 발광 복합체가 분산된 제2 광변환층을 포함하는 것을 특징으로 하는 백라이트 유닛.And a second photoconversion layer formed on the first photoconversion layer and having a red light emitting composite including the red nanoluminescent body dispersed therein.
  39. 제38항에 있어서, 상기 제1 광변환층이 상기 도광판과 마주하도록 상기 광학 시트가 상기 도광판 상에 배치된 것을 특징으로 하는 백라이트 유닛.The backlight unit of claim 38, wherein the optical sheet is disposed on the light guide plate such that the first light conversion layer faces the light guide plate.
  40. 제30항에 있어서, 상기 광변환층은 상기 발광 복합체 및 상기 형광 입자를 모두 포함하고,The method of claim 30, wherein the light conversion layer comprises both the light emitting composite and the fluorescent particles,
    상기 발광 소자는 청색 발광칩 및 상기 청색 발광칩을 커버하는 광전환층을 포함하는 백색광 발광 소자인 것을 특징으로 하는 백라이트 유닛.And the light emitting device is a white light emitting device including a blue light emitting chip and a light conversion layer covering the blue light emitting chip.
  41. 제40항에 있어서, 상기 발광 복합체는 적색 나노발광체 또는 녹색 나노발광체를 포함하고,41. The method of claim 40, wherein the light emitting complex comprises a red nano light emitting material or a green nano light emitting material,
    상기 형광 입자는 녹색 형광체 또는 녹색 형광 복합체를 포함하는 것을 특징으로 하는 백라이트 유닛.The fluorescent particle is a backlight unit, characterized in that it comprises a green phosphor or a green fluorescent complex.
  42. 제41항에 있어서, 상기 광변환층은,The method of claim 41, wherein the light conversion layer,
    상기 형광 입자 또는 상기 녹색 나노발광체를 포함하는 발광 복합체가 분산된 제1 광변환층; 및A first light conversion layer in which a light emitting composite including the fluorescent particles or the green nano light emitting body is dispersed; And
    상기 제1 광변환층 상에 형성되고 상기 적색 나노발광체를 포함하는 발광 복합체가 분산된 제2 광변환층을 포함하고,A second photoconversion layer formed on the first photoconversion layer and having a light emitting composite including the red nanoluminescent body dispersed therein;
    상기 제1 광변환층이 상기 도광판과 마주하도록 상기 광학 시트가 상기 도광판 상에 배치된 것을 특징으로 하는 백라이트 유닛.And the optical sheet is disposed on the light guide plate such that the first light conversion layer faces the light guide plate.
  43. 제30항에 있어서, 상기 광학 시트 상에 순차적으로 배치된 제1 집광 시트 및 제2 집광 시트를 더 포함하고,The method of claim 30, further comprising a first light collecting sheet and a second light collecting sheet sequentially disposed on the optical sheet,
    상기 광학 시트는 확산 시트인 것을 특징으로 하는 백라이트 유닛.And the optical sheet is a diffusion sheet.
  44. 제30항에 있어서, 상기 광학 시트 상에 배치된 확산 시트;31. The device of claim 30, further comprising: a diffusion sheet disposed on the optical sheet;
    상기 확산 시트 상에 배치된 제1 집광 시트; 및A first light collecting sheet disposed on the diffusion sheet; And
    상기 제1 집광 시트 상에 배치된 제2 집광 시트를 더 포함하는 것을 특징으로 하는 백라이트 유닛.The backlight unit further comprises a second light collecting sheet disposed on the first light collecting sheet.
  45. 제30항에 있어서, 상기 광학 시트는The optical sheet of claim 30, wherein the optical sheet is
    상기 도광판과 마주하는 상기 제1 투명 필름의 일면 상에 배치된 제1 광학층;A first optical layer disposed on one surface of the first transparent film facing the light guide plate;
    상기 광변환층 상에 배치된 제2 배리어층;A second barrier layer disposed on the light conversion layer;
    상기 제2 배리어층 상에 형성된 제2 투명 필름; 및A second transparent film formed on the second barrier layer; And
    상기 제2 투명 필름 상에 배치된 제2 광학층을 더 포함하는 것을 특징으로 하는 백라이트 유닛.And a second optical layer disposed on the second transparent film.
  46. 제45항에 있어서, 상기 제1 광학층 및 상기 제2 광학층 각각의 표면에는, 집광 패턴, 광확산 패턴 및 버퍼 패턴 중 어느 하나가 형성된 것을 특징으로 하는 백라이트 유닛.46. The backlight unit of claim 45, wherein any one of a light collecting pattern, a light diffusion pattern, and a buffer pattern is formed on each of the first optical layer and the second optical layer.
  47. 제45항에 있어서, 상기 제1 광학층의 표면에는 집광 패턴이 형성되고, 상기 제2 광학층의 표면에는 광확산 패턴이 형성된 것을 특징으로 하는 백라이트 유닛.46. The backlight unit of claim 45, wherein a light collecting pattern is formed on a surface of the first optical layer, and a light diffusion pattern is formed on a surface of the second optical layer.
  48. 제45항에 있어서, 상기 제1 광학층 및 상기 제2 광학층 각각의 표면에는 서로 다른 형상을 갖는 버퍼 패턴이 형성되고,The method of claim 45, wherein the buffer pattern having a different shape is formed on the surface of each of the first optical layer and the second optical layer,
    상기 광학 시트 상에 배치되고 상기 광학 시트와 마주하는 표면에 집광 패턴이 형성된 광학층을 포함하는 역프리즘 시트를 더 포함하는 것을 특징으로 하는 백라이트 유닛.And a reverse prism sheet including an optical layer disposed on the optical sheet and having a light collecting pattern formed on a surface facing the optical sheet.
  49. 제45항에 있어서, 상기 제1 광학층 및 상기 제2 광학층 각각의 표면에 광확산 패턴이 형성된 것을 특징으로 하는 백라이트 유닛.46. The backlight unit of claim 45, wherein a light diffusion pattern is formed on surfaces of each of the first optical layer and the second optical layer.
PCT/KR2013/010093 2012-11-09 2013-11-07 Optical sheet and backlight unit comprising same WO2014073894A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/442,079 US9884992B2 (en) 2012-11-09 2013-11-07 Optical sheet and backlight unit having the optical sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0126925 2012-11-09
KR20120126925 2012-11-09
KR1020130076314A KR101503290B1 (en) 2012-11-09 2013-07-01 Optical sheet and backlight unit having the optical sheet
KR10-2013-0076314 2013-07-01

Publications (1)

Publication Number Publication Date
WO2014073894A1 true WO2014073894A1 (en) 2014-05-15

Family

ID=50684920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010093 WO2014073894A1 (en) 2012-11-09 2013-11-07 Optical sheet and backlight unit comprising same

Country Status (1)

Country Link
WO (1) WO2014073894A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017080064A1 (en) * 2015-11-13 2017-05-18 深圳市华星光电技术有限公司 Method for preparing quantum dot colour film substrate, and quantum dot colour film substrate
US10267488B2 (en) * 2014-12-08 2019-04-23 Lg Electronics Inc. Method for preparing quantum dot-polymer complex, quantum dot-polymer complex, light conversion film, backlight unit and display device having the same
US10698267B2 (en) 2017-05-04 2020-06-30 Microsoft Technology Licensing, Llc Protective layers in display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507844B1 (en) * 2005-01-19 2005-08-17 주식회사 맥스필 Light diffusion and wavelength conversion film
JP2010170961A (en) * 2009-01-26 2010-08-05 Sony Corp Optical member and display
JP2011013567A (en) * 2009-07-03 2011-01-20 Sony Corp Color conversion member and display device
KR101114412B1 (en) * 2011-02-10 2012-02-22 주식회사 엘엠에스 Optical sheet including nano quantum dot and backlight unit using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507844B1 (en) * 2005-01-19 2005-08-17 주식회사 맥스필 Light diffusion and wavelength conversion film
JP2010170961A (en) * 2009-01-26 2010-08-05 Sony Corp Optical member and display
JP2011013567A (en) * 2009-07-03 2011-01-20 Sony Corp Color conversion member and display device
KR101114412B1 (en) * 2011-02-10 2012-02-22 주식회사 엘엠에스 Optical sheet including nano quantum dot and backlight unit using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10267488B2 (en) * 2014-12-08 2019-04-23 Lg Electronics Inc. Method for preparing quantum dot-polymer complex, quantum dot-polymer complex, light conversion film, backlight unit and display device having the same
WO2017080064A1 (en) * 2015-11-13 2017-05-18 深圳市华星光电技术有限公司 Method for preparing quantum dot colour film substrate, and quantum dot colour film substrate
US10698267B2 (en) 2017-05-04 2020-06-30 Microsoft Technology Licensing, Llc Protective layers in display device

Similar Documents

Publication Publication Date Title
WO2015060615A1 (en) Light-emitting complex, hardened material comprising same, optical sheet, backlight unit, and display device
WO2019098601A1 (en) Method for manufacturing quantum dot film, quantum dot film manufactured thereby and wavelength conversion sheet and display comprising same
WO2020004927A1 (en) Method for preparing quantum dot film, quantum dot film prepared thereby, and wavelength conversion sheet and display comprising same
WO2020013460A1 (en) Light emitting device, light emitting diode package, backlight unit, and liquid crystal display
WO2010047553A2 (en) Semiconductor light emitting device
WO2010002226A2 (en) An led package and a backlight unit comprising said led package
WO2013069924A1 (en) Light emitting device
WO2012144720A1 (en) Optical member, display device including the same and manufacturing method thereof
WO2011099800A2 (en) Fluorescent substance, light emitting device, surface light source device, display device and illuminating device
WO2018080008A1 (en) Spontaneous-emission type photosensitive resin composition, color filter manufactured using same, and image display apparatus
WO2021034104A1 (en) Quantum dot film comprising quantum dot composite, and wavelength conversion sheet for display
WO2016129873A2 (en) Light-emitting element and light-emitting diode
WO2015064864A1 (en) Compensation film and organic dot for compensation film
WO2013183950A1 (en) Light emitting diode package
WO2020159068A1 (en) Light-emitting diode
WO2014073894A1 (en) Optical sheet and backlight unit comprising same
WO2018151457A1 (en) Color filter and image display device
WO2014073893A1 (en) Nanocomposite, and optical member and backlight unit comprising same
WO2021221304A1 (en) Compound, anti-reflective film including same, and display device
WO2022108351A1 (en) Semiconductor nanoparticle-ligand composite, photosensitive resin composition, optical film, electrical light-emitting diode, and electronic device
WO2019190026A1 (en) Quantum dot plate assembly, light-emitting device package comprising same, and led module
WO2019059690A2 (en) Light-emitting device package
WO2018110808A1 (en) Yellow curable resin composition, color filter manufactured using same and image display device
WO2022124768A1 (en) Optical sheet having wavelength selectivity and reliability and display device comprising same
WO2024035042A1 (en) Ink composition, and electronic device comprising film formed using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14442079

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13853771

Country of ref document: EP

Kind code of ref document: A1