WO2014073893A1 - Nanocomposite, and optical member and backlight unit comprising same - Google Patents

Nanocomposite, and optical member and backlight unit comprising same Download PDF

Info

Publication number
WO2014073893A1
WO2014073893A1 PCT/KR2013/010092 KR2013010092W WO2014073893A1 WO 2014073893 A1 WO2014073893 A1 WO 2014073893A1 KR 2013010092 W KR2013010092 W KR 2013010092W WO 2014073893 A1 WO2014073893 A1 WO 2014073893A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
nanocomposite
wax
nano
layer
Prior art date
Application number
PCT/KR2013/010092
Other languages
French (fr)
Korean (ko)
Inventor
최정옥
권오관
김병철
Original Assignee
주식회사 엘엠에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130032896A external-priority patent/KR101426448B1/en
Application filed by 주식회사 엘엠에스 filed Critical 주식회사 엘엠에스
Priority to US14/442,077 priority Critical patent/US20150285444A1/en
Publication of WO2014073893A1 publication Critical patent/WO2014073893A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133609Direct backlight including means for improving the color mixing, e.g. white
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present invention relates to a nanocomposite, an optical member and a backlight unit including the same.
  • Nano light emitters including quantum dots, are materials with crystal structures ranging in size from tens to tens of nanometers and are composed of hundreds to thousands of atoms. Even if the nano light emitting material is formed of the same material as the size is smaller the band gap (band gap) becomes larger, the light emission characteristics vary depending on the size of the nano light emitting material. In addition, even if the nano-luminescent body of the same size, the light emission characteristics vary depending on the material to be formed. The characteristics of the nano light-emitting body are controlled and used in various light emitting devices and electronic devices.
  • the nano light emitter is very vulnerable to ultraviolet rays, heat, moisture, etc., when the nano light emitter is applied to an electronic device, there is a problem that the life of the electronic device is shortened.
  • a method of protecting the nano light emitting material in the thin film from UV, heat, and moisture by forming a protective layer on the upper and lower portions of the thin film including the nano light emitting material, respectively, has been proposed. There is a limit to blocking.
  • the display device generally uses a white light source that emits white light.
  • the white light source includes a blue light emitting diode chip (LED) emitting blue light and a light converting body which finally emits white light by using blue light.
  • YAG Yttrium Aluminum Garnet
  • YAG Yttrium Aluminum Garnet
  • the phosphor has a wide range of emission spectrum over the red light wavelength band and the green light wavelength band, there is a limit in increasing the color purity of the color of the light generated by the white light source using the phosphor passing through the color filter. There is a problem of lowering the color reproducibility of the device.
  • an object of the present invention is to provide a nanocomposite capable of improving the stability of ultraviolet light, heat, moisture, etc. of the nano light-emitting body.
  • Another object of the present invention is to provide an optical member, a diffusion sheet and a light collecting sheet to which the nanocomposite is applied.
  • Still another object of the present invention is to provide a backlight unit to which at least one of the optical member, the diffusion sheet, and the light collecting sheet is applied.
  • Nanocomposite according to an embodiment of the present invention comprises a wax particle, at least one nano light-emitting body and the inner protective film.
  • the nano light emitter is disposed inside the wax particle.
  • the inner protective layer covers the nano light-emitting body and is formed of silicon oxide.
  • the inner passivation layer may cover one nano light-emitting body. In contrast, the inner passivation layer may cover two or more nano light-emitting bodies.
  • the nanocomposite may further include an outer protective film.
  • the outer protective film may cover the surface of the wax particles and be formed of silicon oxide.
  • the nanocomposite may further include a wax layer formed on the surface of the outer protective layer and formed of a wax-based compound.
  • Nanocomposite according to another embodiment of the present invention comprises a wax particle, at least one nano light-emitting body and an outer protective film.
  • the nanocomposite is disposed inside the wax particles.
  • the outer protective film covers the surface of the wax particles and is formed of silicon oxide.
  • the nanocomposite may further include a wax layer formed on a surface of the outer protective layer and including a wax-based compound.
  • An optical member includes a base substrate and a first optical layer disposed on one surface of the base substrate and having at least one nanocomposite dispersed therein.
  • the first nanocomposite includes a first wax particle and at least one first nano light-emitting body disposed inside the first wax particle.
  • the optical member may further include a light diffusion layer formed on the first optical layer.
  • a light diffusion pattern may be formed on the surface of the light diffusion layer.
  • the optical member may further include a second optical layer disposed on the other surface of the base substrate facing the one surface and at least one second nanocomposite is dispersed.
  • the second nanocomposite may include a second wax particle and at least one second nano light-emitting body disposed inside the second wax particle.
  • the optical member may further include a light diffusion layer formed on the second optical layer, and a light diffusion pattern may be formed on a surface of the light diffusion layer.
  • the optical member may further include a third optical layer disposed on the first optical layer and having at least one third nanocomposite dispersed therein.
  • the third nanocomposite may include a third wax particle and at least one third nano light emitter disposed in the third wax particle.
  • At least one of the first to third nanocomposites may further include an inner protective film or an outer protective film formed of silicon oxide.
  • the inner passivation layer may cover the surface of any one of the first to third nano light-emitting bodies, and the outer passivation layer may cover the surface of any one of the first to third wax particles.
  • a wax layer formed of a wax-based compound may cover the surface of the outer protective layer.
  • At least one of the first to third optical layers may include an optical pattern formed on the surface thereof.
  • the diffusion sheet according to another embodiment of the present invention includes a base substrate and a first optical layer disposed on one surface of the base substrate, at least one nanocomposite is dispersed, and a light diffusion pattern formed on a surface thereof.
  • the first nanocomposite includes a first wax particle and at least one first nano light-emitting body disposed inside the first wax particle.
  • the diffusion sheet may further include a second optical layer disposed on the other surface facing the one surface and including at least one second nanocomposite.
  • the second nanocomposite may include a second wax particle and at least one nano light emitter disposed inside the second wax particle.
  • a light diffusion pattern may be formed on the surface of the second optical layer.
  • the diffusion sheet may further include an intermediate layer disposed between the base substrate and the second optical layer or between the base substrate and the first optical layer.
  • the intermediate layer may include at least one third nanocomposite
  • the third nanocomposite may include a third wax particle and at least one nano light emitter disposed inside the third wax particle.
  • the diffusion sheet may further include a second optical layer disposed on the other surface of the base substrate facing the one surface and the light collecting pattern is formed on the surface.
  • a diffusion sheet includes a base substrate, a light diffusion layer formed on one surface of the base substrate, and at least one first nanocomposite formed on the other surface of the base substrate facing the one surface. It includes a first optical layer.
  • the first nanocomposite includes a first wax particle and at least one first nano light-emitting body disposed inside the first wax particle.
  • the diffusion sheet may further include a second optical layer disposed on the first optical layer and including at least one second nanocomposite.
  • the second nanocomposite may include a second wax particle and at least one second nano light-emitting body disposed inside the second wax particle.
  • the diffusion sheet may further include a light diffusion layer formed on the first optical layer.
  • the light collecting sheet according to the embodiment of the present invention includes a light collecting pattern including a base substrate and a nanocomposite including at least one nano light emitter disposed on the base substrate and disposed inside the wax particle.
  • the light collecting sheet according to another embodiment of the present invention is an optical layer including a base substrate, a light collecting pattern disposed on one surface of the base substrate and the other surface of the base substrate facing the one surface, and including a nanocomposite. It includes.
  • the nanocomposite includes wax particles and at least one nano light-emitting body disposed inside the wax particles.
  • a light diffusion pattern may be formed on the surface of the optical layer.
  • the backlight unit includes a light source, a diffusion sheet, and a light collecting sheet, and at least one of the diffusion sheet and the light collecting sheet includes wax particles and at least one nano light emitter disposed inside the wax particles. At least one nanocomposite is included.
  • the light source may include a blue light emitting module.
  • the nano light-emitting body is protected by a wax-based compound or silicon oxide, the light stability and the moisture / thermal stability of the nano light-emitting body can be significantly improved.
  • the optical member and the backlight unit according to the present invention, not only the color reproduction area of the display device can be increased by using the nanocomposite but also the color purity and color reproducibility of the color displayed by the display device can be improved.
  • FIGS. 1A to 1C are diagrams for explaining a nanocomposite according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the nano light-emitting body shown in FIGS. 1A to 1C.
  • 3A to 3C are diagrams for explaining a nanocomposite according to another embodiment of the present invention.
  • 4A and 4B are diagrams for describing an optical member according to an exemplary embodiment of the present invention.
  • 4C to 4G are diagrams for describing various types of optical patterns.
  • 5A to 5I are views for explaining embodiments of the diffusion sheet according to the present invention.
  • 6a to 6d are views for explaining embodiments of the light collecting sheet according to the present invention.
  • FIGS. 7A to 7C are diagrams for describing embodiments of the light guide plate according to the present invention.
  • FIGS. 8 and 9 are diagrams for describing a backlight unit according to an exemplary embodiment of the present invention.
  • FIG. 10 is an image for describing a color reproduction area of a display device including a backlight unit according to Comparative Example 1.
  • FIG. 10 is an image for describing a color reproduction area of a display device including a backlight unit according to Comparative Example 1.
  • 11A to 11F are images for describing a color reproduction area of display devices including the backlight units according to the first to sixth embodiments.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • the wax-based compound refers to an organic compound having a melting point (melting point) higher than room temperature in a solid state at room temperature, and the wax particles are formed by physical recrystallization of the wax-based compound and are physically monolithic. It refers to the particles of the amorphous or amorphous form.
  • room temperature means a temperature within the range of about 15 °C to about 25 °C.
  • luminescence refers to the difference between the ground state and the excited state as the electrons in the material transition from the ground state to the excited state by the external stimulus and fall back to the stable ground state. It means a phenomenon of emitting light corresponding to the difference in energy.
  • the blue nanocomposite means a nanocomposite in which the nano light emitter is composed of only the blue nano light emitter.
  • the green nanocomposite means a nanocomposite in which the nano light emitter is composed of only green nano light emitter
  • the red nanocomposite means a nanocomposite in which the nano light emitter is composed only of red nano light emitter.
  • the multi-color nanocomposite means a nanocomposite in which the nano light emitter is composed of at least two nano light emitters selected from blue, green and red nano light emitters.
  • Blue nano emitters collectively refer to nano emitters having emission peaks in the blue wavelength range of about 430 nm to about 470 nm
  • green nano emitters collectively refer to nano emitters having emission peaks in the green wavelength range of about 520 nm to about 560 nm
  • Red nano light emitter is a generic term for nano light emitters having emission peaks in the red wavelength range of about 600 nm to about 660 nm.
  • FIGS. 1A to 1C are views for explaining a nanocomposite according to one embodiment of the present invention
  • FIG. 2 is a view for explaining the nano light-emitting body shown in FIGS. 1A to 1C.
  • a nanocomposite 100a according to an embodiment of the present invention includes wax particles 110 and at least one nano light emitter 120 disposed inside the wax particles 110. do.
  • the wax particles 110 are made of a wax-based compound.
  • the wax particles 110 may encapsulate the nano light emitter 120 to prevent the nano light emitter 120 from being damaged by moisture, heat, or light caused by an external environment.
  • the wax particles 110 are stable to a resin for forming the nano light emitter 120 as a base substrate or an optical coating layer of an optical member. Can be dispersed.
  • encapsulation means that the nano light emitter 120 is disposed inside the wax particle 110, and the nano light emitter 120 is surrounded by the wax particle 110.
  • a van der Waals force may act between the nano light emitter 120 and the wax particle 110.
  • the wax-based compound constituting the wax particles 110 may be a synthetic wax in the form of a polymer, a copolymer, or an oligomer.
  • the wax-based compound may be polyethylene-based wax, polypropylene-based wax, or amide-based wax.
  • the wax compound when the wax compound is a polyethylene wax or a polypropylene wax, the wax compound may include at least one of units represented by the following Chemical Formulas 1 to 7.
  • R 1 , R 3 , R 5 and R 7 are each independently a single bond or an alkylene group having 1 to 10 carbon atoms (*-(CH 2) x- *, x is an integer of 1 to 10
  • R 2 , R 4 , R 6 and R 8 may be each independently hydrogen or an alkyl group having 1 to 10 carbon atoms
  • R a , R b , R c , R d , R e , R f and R g may be each independently hydrogen or an alkyl group having 1 to 3 carbon atoms.
  • the unit of Formula 1 when R 2 in Formula 1 is hydrogen, the unit of Formula 1 may include a carboxyl group. Alternatively, when R 2 in Formula 1 is an alkyl group having 1 to 10 carbon atoms, Formula 1 The unit of may include an ester group. In addition, when R 4 of Formula 2 is hydrogen, the unit of Formula 2 may include an aldehyde group. Alternatively, when R 4 of Formula 2 is an alkyl group having 1 to 10 carbon atoms, the unit of Formula 2 is It may include a ketone group. In addition, when R 6 of Formula 3 is hydrogen, the monomer of Formula 3 may include a hydroxy group, otherwise, when R 6 of Formula 3 is an alkyl group having 1 to 10 carbon atoms, the unit of Formula 3 May include an ether group.
  • the wax-based compound may be a polyethylene wax.
  • the polyethylene wax may be a polyethylene wax (PE wax) including only a unit in which R g of Formula 7 is hydrogen.
  • the polyethylene wax contains oxygen in which R a , R b , R c , R d , R e and R f in Formulas 1 to 6 are hydrogen as well as units in which R g in Formula 7 is hydrogen. It may be a polyethylene wax further comprising at least one of the units.
  • polyethylene wax including at least one oxygen-containing unit examples include oxidized polyethylene wax (PE wax), an ethylene-acrylic acid copolymer, and ethylene-vinyl, which are oxides of polyethylene.
  • PE wax oxidized polyethylene wax
  • ethylene-acrylic acid copolymer an ethylene-acrylic acid copolymer
  • ethylene-vinyl which are oxides of polyethylene.
  • the wax-based compound may be a polypropylene wax.
  • the polypropylene wax may be a polypropylene wax (PP wax) including only a unit in which R g of Formula 7 is a methyl group.
  • the polypropylene wax contains oxygen in which R a , R b , R c , R d , R e and R f of Formulas 1 to 6 are hydrogen as well as units in which R g of Formula 2 is a methyl group. It may be a polypropylene wax further comprising at least one of the units. Examples of polypropylene waxes containing oxygen-containing units include propylene-maleic anhydride copolymers and the like.
  • the wax-based compound when the wax-based compound is an amide wax, the wax-based compound may be a polymer, copolymer or oligomer whose main chain includes an amide bond (-CONH-).
  • the amide wax may include a unit having 1 to 10 carbon atoms.
  • the amide wax may further include one or more of oxygen-containing units represented by Chemical Formulas 1 to 6.
  • the wax particles 110 may form the nano light emitter 120 as compared with the case of including only the units of Chemical Formula 7. Can be encapsulated more stably. This is because when the wax-based compound includes an oxygen-containing unit, the interaction between the wax particles 110 and the metal constituting the nano light-emitting body 120 by the polarity of oxygen contained in the oxygen-containing unit. This is because the interaction becomes stronger.
  • the wax-based compound includes the unit represented by Chemical Formula 1, particularly a carboxyl group
  • the interaction between the wax particle 110 and the nano light-emitting body 120 may be stronger.
  • 110 is more advantageous for encapsulating the nano light emitter 120. Therefore, in one embodiment of the present invention, the wax particles 110 is preferably made of a wax-based compound containing at least a carboxy group as a substituent.
  • the wax-based compound constituting the wax particles 110 may have an acid value of about 1 mg KOH / g to about 200 mg KOH / g.
  • the acid value of the wax compound refers to the number of mg of potassium hydroxide (KOH) required to neutralize 1 g of the wax compound.
  • KOH potassium hydroxide
  • the greater the acid value of the wax-based compound may be a greater amount of carboxyl groups contained in the wax-based compound.
  • the acid value of the wax-based compound is less than about 1 mg KOH / g, the amount of carboxyl groups interacting with the nano light emitter 120 is very small, which may cause a problem that the nano light emitter 120 cannot be encapsulated stably. have.
  • the acid value of the wax-based compound exceeds about 200 mg KOH / g, there may be a problem that the surface of the nano light emitting body 120 is oxidized by the carboxy group.
  • the wax-based compound constituting the wax particles 110 may have an acid value of about 5 mg KOH / g to about 50 mg KOH / g in order to stably encapsulate the nano light emitter 120.
  • the wax particles 110 may be made of a wax-based compound having a high density of about 0.95 g / cm 3 or more. Since the high density wax compound having a high density of about 0.95 g / cm 3 or more has a higher melting point than the low density wax compound having a low density of less than about 0.95 g / cm 3 , the wax particles composed of the high density wax compound (110) Heat resistance of the nanocomposite 100a including) may be improved. In addition, since the high-density wax-based compound has better crystallinity than the low-density wax-based compound upon recrystallization, the wax particles 110 made of the high-density wax-based compound may more stably encapsulate the nano light-emitting body 120. .
  • polyethylene (PE) wax is from about 0.95 g / cm high-density PE wax having three or more density (high density PE wax, HDPE wax) and low density PE wax having a density of less than about 0.95 g / cm 3 ( low density PE wax, LDPE wax), and the wax particles 110 may be formed of HDPE wax.
  • the density of the HDPE wax may be about 1.20 g / cm 3 or less, in which case the melting point of the HDPE wax may be about 120 ° C. to about 200 ° C.
  • the melting point of LDPE wax may be from about 80 ° C to about 110 ° C. Therefore, the wax particles 110 may further improve the heat resistance of the nanocomposite 100a according to the embodiment of the present invention rather than being formed of HDPE wax.
  • the wax particle 110 may be formed of a wax-based compound having a weight-average molecular weight of about 1,000 to 20,000.
  • a weight average molecular weight means the average molecular weight obtained by averaging the molecular weight of the molecular weight of the component molecular species of a high molecular compound with molecular weight distribution.
  • the weight average molecular weight of the wax-based compound is less than about 1,000, since the wax-based compound is hard to exist in a solid state at room temperature, it may be difficult to encapsulate the nano light-emitting body 120 at room temperature.
  • the weight average molecular weight of the wax compound exceeds about 20,000, since the recrystallization size (average diameter) of the wax compound is several hundred ⁇ m or more, it is difficult to disperse it in a solvent or a resin even when a composite is prepared using the Problems may arise.
  • the wax-based compound exceeds about 20,000, the wax-based compound has a melting point of about 200 °C or more, so that the nano light-emitting body 120 in the process of encapsulating the nano light-emitting body 120 Can be damaged.
  • the nano light emitter 120 a known nano light emitter may be used without limitation.
  • the nano light emitter 120 may include a central particle 121 and a ligand 123 bound to a surface of the central particle 121.
  • the central particle 121 may be formed of a II-VI compound, a II-V compound, a III-V compound, a III-IV compound, a III-VI compound, a IV-VI compound, or a mixture thereof.
  • the mixture includes not only a mixed mixture, but also a ternary compound, a tetracomponent compound, and a case where a dopant is doped into the mixture.
  • group II-VI compounds include magnesium sulfide (MgS), magnesium selenide (MgSe), magnesium telluride (MgTe), calcium sulfide (CaS), calcium selenide (CaSe), calcium telluride (CaTe), and strontium sulfide (SrS), strontium selenide (SrSe), strontium telluride (SrTe), cadmium sulfide (CdS), cadmium selenide (CdSe), tellurium cadmium (CdTe), zinc sulfide (ZnS), zinc selenide (ZnSe), Zinc telluride (ZnTe), mercury sulfide (HgS), mercury selenide (HgSe), mercury telluride (HgTe), and the like.
  • MgS magnesium sulfide
  • MgSe magnesium selenide
  • MgTe magnesium telluride
  • CaS calcium selenide
  • Group II-V compounds include zinc phosphide (Zn 3 P 2 ), zinc arsenide (Zn 3 As 2 ), cadmium phosphide (Cd 3 P 2 ), cadmium arsenide (Cd 3 As 2 ), and cadmium nitride (Cd 3 N 2 ) or zinc nitride (Zn 3 N 2 ).
  • group III-V compounds include boron phosphide (BP), aluminum phosphide (AlP), aluminum arsenide (AlAs), aluminum antimonide (AlSb), gallium nitride (GaN), gallium phosphide (GaP), and gallium arsenide (GaAs), gallium monoxide (GaSb), indium nitride (InN), indium phosphide (InP), indium arsenide (InAs), indium antimony (InSb), aluminum nitride (AlN) or boron nitride (BN) Etc. can be mentioned.
  • BP boron phosphide
  • AlP aluminum phosphide
  • AlAs aluminum arsenide
  • AlSb aluminum antimonide
  • GaN gallium nitride
  • GaP gallium phosphide
  • GaAs gallium monoxide
  • InN indium nitride
  • III-IV compound examples include boron carbide (B 4 C), aluminum carbide (Al 4 C 3 ), gallium carbide (Ga 4 C), and the like.
  • group III-VI compounds include aluminum sulfide (Al 2 S 3 ), aluminum selenide (Al 2 Se 3 ), aluminum telluride (Al 2 Te 3 ), gallium sulfide (Ga 2 S 3 ), gallium selenide ( Ga 2 Se 3 ), indium sulfide (In 2 S 3 ), indium selenide (In 2 Se 3 ), gallium telluride (Ga 2 Te 3 ), indium telluride (In 2 Te 3 ), and the like.
  • Examples of the group IV-VI compounds include lead sulfide (PbS), lead selenide (PbSe), lead telluride (PbTe), tin sulfide (SnS), tin selenide (SnSe), tin telluride (SnTe), and the like. .
  • the center particle 121 may have a core / shell structure.
  • Each of the core and the shell of the central particle 121 may be made of the above-described compounds.
  • the compounds exemplified above may be used alone or in combination of two or more to constitute the core or shell.
  • the band gap of the compound constituting the core may be narrower than the band gap of the compound constituting the shell, but is not limited thereto.
  • the compound constituting the shell is different from the compound constituting the core.
  • the central particle 121 may have a CdSe / ZnS (core / shell) structure having a core including CdSe and a shell including ZnS, or an InP / having a core including InP and a shell including ZnS. It may have a ZnS (core / shell) structure.
  • the center particle 121 may have a core / multishell structure having at least two layers of shells.
  • the central particle 121 has a core including CdSe, a first shell surrounding the surface of the core and including ZnSe, and a CdSe / having a second shell surrounding the surface of the first shell and including ZnS. It may have a ZnSe / ZnS (core / first shell / second shell) structure.
  • the center particle 121 has an InP / ZnSe / ZnS (core / first shell / second shell) structure including a core including InP, ZnSe as a first shell, and ZnS as a second shell. Can have.
  • the central particle 121 may be made of only a II-VI compound or a III-V compound as a single structure instead of a core / shell structure.
  • the central particle 121 may further include a cluster molecule as a seed.
  • the cluster molecule is a compound that functions as a seed during the process of manufacturing the center particle 121, and precursors of the compound constituting the center particle 121 grow on the cluster molecule to form the center particle 121.
  • Examples of the cluster molecule include various compounds disclosed in Korean Laid-Open Publication No. 2007-0064554, and the like, but are not limited thereto.
  • the ligand 123 may prevent the central particles 121 adjacent to each other from aggregation and quenching.
  • the ligand 123 may bind to the central particle 121 and have a hydrophobic property.
  • the amine compound, carboxylic acid compound, etc. which have a C6-C30 alkyl group are mentioned.
  • the amine compound having an alkyl group include hexadecylamine or octylamine.
  • an amine compound, a carboxylic acid compound, etc. which have a C6-30 alkenyl group are mentioned.
  • examples of the ligand 123 may include a phosphine compound including trioctylphosphine, triphenolphosphine, t-butylphosphine, and the like; Phosphine oxides such as trioctylphosphine oxide; Pyridine or thiophene etc. are mentioned.
  • the type of the ligand 123 is not limited to the example exemplified above, and in some cases, the nano light-emitting body 120 may be composed of only the central particle 121 without the ligand 123.
  • the nanocomposite 100a according to the embodiment of the present invention may have various shapes, and one nanocomposite 100a may include at least one nano light emitter 120.
  • one nano light emitter 120 may be disposed in one wax particle 110, whereas two to tens of millions of nano light emitters 120 may be disposed in one wax particle 110. Can be.
  • the plurality of nano light emitters 120 disposed inside one wax particle 110 may have emission peaks in the same wavelength range. That is, the nano light emitters 120 may include a first color nano light emitter having a light emission peak in a first wavelength band, a second color nano light emitter having a light emission peak in a second wavelength band, and a third color nano light emitting peak in a third wavelength band. It may include one selected from the light emitting body.
  • the first color nano light emitter is a blue nano light emitter having an emission peak in a wavelength range of about 430 nm to about 470 nm
  • the second color nano light emitter is a green nano light emitter having an emission peak in a wavelength range of about 520 nm to about 560 nm.
  • the third color nano light emitter may be a red nano light emitter having an emission peak in a wavelength band of about 600 nm to about 660 nm.
  • the nanocomposite 100a may be any one of a blue nanocomposite, a red nanocomposite, and a red nanocomposite.
  • the plurality of nano light emitters 120 disposed inside one wax particle 110 may have emission peaks in different wavelength bands. That is, the plurality of nano light emitters 120 disposed inside one wax particle 110 may include two selected from blue nano light emitters, green nano light emitters, and red nano light emitters. For example, the green nano light emitter and the red nano light emitter may be disposed in the wax particle 110. In this case, the nanocomposite 100a may be a multicolor nanocomposite.
  • the diameter of the nanocomposite 100a may be about 50 nm to about 30 ⁇ m.
  • the diameter may be defined as a hydrodynamic diameter measured by the Dynamic Light Scattering method (DLS method) calculated by the Stokes-Einstein equation for the diffusion coefficient.
  • DLS method Dynamic Light Scattering method
  • the nanocomposite 100b may include wax particles 110, at least one nano light emitter 120, and an outer passivation layer 130. Since the nanocomposite 100b is substantially the same as the nanocomposite 100a illustrated in FIG. 1A except that the nanocomposite 100b further includes the outer protective layer 130, detailed descriptions thereof will be omitted.
  • the nanocomposite 100b may have a diameter of about 50 nm to about 30 ⁇ m.
  • the outer protective layer 130 is formed on the surface of the wax particles 110 to cover the wax particles 110.
  • the outer passivation layer 130 is formed of silicon oxide (SiOx, 1 ⁇ x ⁇ 2).
  • the outer protective layer 130, together with the wax particles 110, may prevent the nano light-emitting body 120 from being damaged by moisture, heat, or light.
  • the outer passivation layer 130 may be formed through hydrolysis and condensation of the silicon oxide precursor material.
  • the outer passivation layer 130 may be a mixture of wax particles 110, a silicon oxide precursor material, a catalyst material, and water having the nano light emitter 120 disposed therein in an organic solvent, on the surface of the wax particles 110. It can be formed by growing silicon oxide.
  • the outer passivation layer 130 may include silica (SiO 2 ).
  • silicon oxide precursor material examples include triethoxysilane (triethoxysilane (HTEOS), tetraethoxysilane (TEOS), methyltriethoxysilane (MTEOS), dimethyldiethoxysilane (dimethyldiethoxysilane), tetramethoxysilane (tetramethoxysilane (TMOS), methyltrimethoxysilane (MTMOS), trimethoxysilane, dimethyldimethoxysilane, phenyltriethoxysilane (PTEOS), phenyltrimethoxysilane ( phenyltrimethoxysilane (PTMOS), diphenyldiethoxysilane, diphenyldimethoxysilane and the like can be used.
  • HTEOS triethoxysilane
  • TEOS tetraethoxysilane
  • MTEOS methyltriethoxysilane
  • TMOS tetrameth
  • the silicon oxide precursor material is halosilane, in particular chlorosilane, for example trichlorosilane, methyltrichlorosilane, ethyltrichlorosilane, phenyltrichloro Phenyltrichlorosilane, tetrachlorosilane, dichlorosilane, methyldichlorosilane, dimethyldichlorosilane, chlorotriethoxysilane, chlorotrimethoxysilane Chloromethyltriethoxysilane, chloroethyltriethoxysilane, chlorophenyltriethoxysilane, chlorophenyltriethoxysilane, chloromethyltrimethoxysilane, chloroethyltrimethoxysilane, Chlorophenyltrimethoxysilane (chlorop It may be synthesized using henyltrimethoxysilane, or the like, or may be synthesized
  • organic solvent examples include methanol, ethanol, propanol, butanol, butanol, pentanol, hexanol, methyl cellosolve, butyl cellosolve ( Alcoholic solvents such as butyl cellosolve, propylene glycol, and diethtylene glycol, or toluene may be used.
  • the organic solvent may be used alone or in combination of two or more thereof.
  • an alkaline material such as ammonia (NH 3 ) may be used.
  • ammonia may be used as a catalyst material in the process of forming the external protective film 130 by mixing ammonia water (NH 4 OH) with the organic solvent.
  • the outer protective layer 130 may cover the plurality of wax particles 110.
  • the outer passivation layer 130 may cover at least two wax particles 110 disposed adjacent to each other, and the space between the wax particles 110 may be filled with silicon oxide to form a nanocomposite. Can be formed.
  • the first nano light emitters disposed inside the first wax particles may be different from the second nano light emitters disposed inside the second wax particles.
  • the nanocomposite 100b may be any one of a blue nanocomposite, a green nanocomposite, and a red nanocomposite.
  • the first nano light emitter disposed inside the first wax particles may be the second nano light disposed inside the second wax particles. It may have a light emission peak in the wavelength band different from the light emitter.
  • the nanocomposite 100b may be a multicolor nanocomposite.
  • the nanocomposite 100b further includes the external protective layer 130 more stably than the nanocomposite 100a described with reference to FIG. 1A. Protect from moisture, heat, light, etc.
  • the nanocomposite 100c includes wax particles 110, at least one nano light emitter 120, an outer protective layer 130, and a wax layer 140. Since the nanocomposite 100c is substantially the same as the nanocomposite 100b described with reference to FIG. 1B except for further including the wax layer 140, detailed descriptions thereof will be omitted.
  • the nanocomposite 100c may have a diameter of about 50 nm to about 30 ⁇ m.
  • the wax layer 140 covers the surface of the outer protective layer 130. That is, the wax layer 140 surrounds the wax particles 110 coated with the outer protective layer 130.
  • the wax layer 140 is formed of a wax-based compound. Since the wax-based compound constituting the wax layer 140 is substantially the same as that described in the wax-based compound constituting the wax particle 110, detailed descriptions thereof will be omitted.
  • the wax layer 140 covers one wax particle 110 whose surface is covered by the outer passivation layer 130, but the wax layer 140 includes two or more wax particles.
  • the field 110 may be covered.
  • the outer protective layer 130 covers both the first wax particles having the first nano light emitter disposed therein and the second wax particles having the second nano light emitter disposed therein.
  • the wax layer 140 may again cover the surface of the outer protective layer 130.
  • the wax layer 140 may cover at least two nanocomposites 100b illustrated in FIG. 1B.
  • the wax-based compound constituting the wax layer 140 fills the space between the nanocomposites 100b disposed adjacent to each other, thereby filling at least two wax particles respectively covered with the outer protective layer 130 by one wax layer. 140 may cover.
  • the nanocomposite 100c may be any one of blue, green, and red nano light emitters according to the type of nano light emitter 120 included therein, and may be a multicolor nano light emitter.
  • the nanocomposite 100c described with reference to FIG. 1c further includes the wax layer 140 in comparison with the nanocomposite 100b described with reference to FIG. It can protect from moisture, heat and the like.
  • 3A to 3C are diagrams for explaining a nanocomposite according to another embodiment of the present invention.
  • the nanocomposite 200a may include a wax particle 210, at least one nano light emitter 220 disposed inside the wax particle 210, and an inner protective film ( 230).
  • the wax particle 210 is substantially the same as the wax particle 110 described with reference to FIG. 1A
  • the nano light emitter 220 is substantially the same as the nano light emitter 120 described with reference to FIG. 2, detailed descriptions thereof will be omitted. .
  • the inner passivation layer 230 covers the nano light emitter 220.
  • the inner passivation layer 230 directly contacts the surface of the nano light emitter 220 to cover the nano light emitter 220.
  • the nano light emitters 220 disposed in the wax particles 210 may be individually covered by the inner passivation layer 230.
  • one nano light-emitting body 220 may be covered by one internal protective film 230. Since the inner passivation layer 230 is formed of silicon oxide, and the silicon oxide constituting the inner passivation layer 230 is substantially the same as the silicon oxide constituting the outer passivation layer 130 described with reference to FIG. 1B, detailed descriptions thereof will be omitted. do.
  • the plurality of nano light emitters 220 disposed inside the wax particle 210 may have emission peaks in the same wavelength band.
  • the nanocomposite 200a may be any one of blue, green, and red nanocomposites.
  • the nano light emitters 220 disposed inside the wax particle 210 may have emission peaks in different wavelength bands. That is, the nano light emitters 220 disposed in the wax particle 210 may include at least two kinds of blue nano light emitters, green nano light emitters, and red nano light emitters.
  • the nanocomposite 200a may be a multicolor nanocomposite.
  • the inner passivation layer 230 may cover two or more nano light emitters 220.
  • a space between the adjacent nano light emitters 220 may be filled by silicon oxide constituting the inner passivation layer 230. have.
  • the nano light-emitting bodies 220 coated with one inner passivation layer 230 may have emission peaks in the same wavelength band.
  • at least two of the nano light emitters 220 coated with one inner passivation layer 230 may have emission peaks in different wavelength bands.
  • each of the light emitting groups may include at least two nano light emitters having light emission peaks in different wavelength bands.
  • the nanocomposite 200a may have a diameter of about 50 nm to about 30 ⁇ m.
  • the nanocomposite 200a has a structure in which at least one nano light emitter 200 is encapsulated by a wax-based compound in a state in which the at least one nano light-emitting body 200 is firstly encapsulated by the inner protective layer 230. Therefore, the nano light emitter 220 may be prevented from being damaged from external heat, light, and moisture.
  • the nanocomposite 200b may include wax particles 210, at least one nano light emitter 220, an inner passivation layer 230, and an outer passivation layer 240. . Since the nanocomposite 200b is substantially the same as the nanocomposite 200a described with reference to FIG. 3A except that the nanocomposite 200b further includes the outer passivation layer 240, detailed descriptions thereof will be omitted.
  • the nanocomposite 200b may have a diameter of about 50 nm to about 30 ⁇ m.
  • the outer passivation layer 240 may cover the wax particles 210 and be formed of silicon oxide. Since the outer passivation layer 240 is substantially the same as the outer passivation layer 130 described with reference to FIG. 1B, detailed descriptions thereof will be omitted. The outer passivation layer 240 may prevent the nano light emitter 220 from being damaged by moisture, heat, light, etc. together with the wax particles 210 and the inner passivation layer 230.
  • the outer passivation layer 240 covers one wax particle 210, but the outer passivation layer 240 may cover the plurality of wax particles 210.
  • the outer protective layer 240 may cover at least two wax particles 210 disposed adjacent to each other, and the silicon oxide is filled in the space between the wax particles 210 to form a nanocomposite. Can be formed.
  • the nanocomposite 200c may include wax particles 210, at least one nano light emitter 220, an inner passivation layer 230, an outer passivation layer 240, and a wax layer 250. It may include. Since the nanocomposite 200c is substantially the same as the nanocomposite 200b described with reference to FIG. 3B except for further including the wax layer 250, detailed descriptions thereof will be omitted.
  • the nanocomposite 200c may have a diameter of about 50 nm to about 30 ⁇ m.
  • the wax layer 250 may cover the outer protective layer 240.
  • the wax layer 250 is formed of a wax-based compound. Since the wax compound constituting the wax layer 250 is substantially the same as the wax compound described with reference to FIG. 1A, detailed descriptions thereof will be omitted.
  • the wax layer 250 covers one wax particle 210 whose surface is covered by the outer protective film 240 as shown in FIG. 3C, or is not shown in the drawing, but the surface is covered by the outer protective film 240.
  • a plurality of the covered wax particles 210 may be coated.
  • the nanocomposite 200c encapsulates the wax particles 210 into the outer protective layer 240 and the wax layer 250 so that the nano light emitter 220 may be exposed to external heat, light, moisture, or the like. Can be prevented from being damaged.
  • the nanocomposite 200c shown in FIG. 3C may be repeatedly laminated to the silicon oxide film and the wax layer to manufacture the nanocomposite encapsulated by the multilayer.
  • the wax-based compound was dissolved by raising the temperature to about 150 ° C. to prepare a wax solution.
  • the wax solution was mixed with a solution containing about 20 mg of CdSe-based red quantum dots (trade name: Nanodot-HE-606, QD solution, Korea) in 1 ml of toluene, and then cooled to room temperature to about 10 mg per 1 ml of toluene.
  • a cooling solution in which particles of were dispersed was prepared.
  • a wax having an acid value of about 50 mg KOH / g (trade name: Licowax PED 136 wax, Clariant, Switzerland) was used as an oxidized high density polyethylene wax (Oxidized HDPE Wax).
  • the particles dispersed in the cooling solution contained wax particles and red quantum dots trapped inside the wax particles.
  • the cooling solution was added to a mixture of 10 ml of ethanol and 1 ml of TEOS (tetraethoxysilane, Sigma Aldrich, USA), and then additionally 2.5 ml of 30% ammonia water to form silicon oxide on the surface of the particles.
  • TEOS tetraethoxysilane
  • the nanocomposite solution containing the complex was prepared.
  • Nanocomposite 1 was prepared.
  • nanocomposite solution prepared by performing the first and second steps described in Preparation of Nanocomposite Solution-1 was added to the wax solution containing the wax-based compound.
  • a nanocomposite 2 in a powder state in which a wax layer was formed on a silicon oxide film surface was prepared.
  • a solution containing about 10 mg of a CdSe-based red quantum dot (trade name: Nanodot-HE-606, QD solution, Korea) was mixed in 0.5 ml of toluene, followed by additional concentration. 2.5 ml of 30% ammonia water was added to prepare a quantum dot having a silicon oxide film formed on its surface.
  • the quantum dots were separated by centrifugation at about 5,000 rpm for about 30 minutes using a high speed centrifuge, and then washed with ethanol and distilled water.
  • the wax solution prepared by dissolving the wax compound by raising the temperature to about 150 ° C. was mixed with the toluene solution in which the quantum dots formed on the surface of the silicon oxide film were dispersed. After cooling to room temperature and toluene was removed using an evaporator to prepare a powder nanocomposite 3.
  • Nanocomposite prepared in 'Preparation of Nanocomposite Solution-3' was mixed with a solution in which 10 ml of ethanol and 1 ml of TEOS were mixed, and 2.5 ml of ammonia water having a concentration of 30% was added.
  • the nanocomposite was separated by centrifugation at about 5,000 rpm for about 30 minutes using a high speed centrifuge, and washed with ethanol and distilled water. Ethanol and distilled water were removed using an evaporator to prepare a nanocomposite 4 in powder form.
  • the UV stability for the nanocomposites 1 to 4 is 6.7% or less, it can be seen that the heat / moisture stability is 7.3% or less.
  • the change in quantum efficiency ( ⁇ QY1) due to ultraviolet irradiation under severe conditions irradiation amount about 2,419.2 J / cm 2
  • the UV light stability of the nanocomposite coated with wax particles only (see FIG. 1A) is about 15% and the heat / moisture stability is about 16%
  • the wax particles and silicon oxide as in Nanocomposites 1 to 4 It can be seen that UV stability and heat / moisture stability of the nanocomposite including all of the films are better.
  • 4A and 4B are diagrams for describing an optical member according to an exemplary embodiment of the present invention.
  • the optical member 501 includes a base substrate 510 and a first optical layer 520 in which at least one first nanocomposite CX1 is dispersed.
  • the base substrate 510 may include a light incident surface on which light is incident and a light exit surface facing the light incident surface and to which incident light is emitted.
  • the base substrate 510 is formed of a transparent material that transmits light.
  • the transparent material include polymethylmethacrylate (PMMA) resin, polycarbonate (PC) resin, polyimide (PI) resin, polyethylene (PE) resin, polypropylene (Polypropylene, PP).
  • Resin methacryl (Methacrylic) resin, polyurethane (Ployurethane) resin, polyethylene terephthalate (polyethylene terephthalate, PET) resin and the like.
  • the first optical layer 520 may be formed on one surface of the base substrate 510, that is, a light incident surface or a light exit surface.
  • the first optical layer 520 is composed of a polymer resin and the first nanocomposite CX1.
  • the polymer resin is a main material of the first optical layer 520, and the first nanocomposite CX1 is dispersed in the polymer resin.
  • the first nanocomposite CX1 includes first wax particles and at least one first nano light-emitting body disposed inside the first wax particles.
  • the first nanocomposite CX1 may have a structure substantially the same as that of the nanocomposite 100a described with reference to FIG. 1A.
  • the first nanocomposite CX1 may include an outer protective film or the first nano light-emitting body covering the surface of the first wax particles, as described with reference to FIGS. 1B, 1C, 3A, 3B, and 3C. It may further include an inner protective film to cover.
  • the first nanocomposite CX1 may further include a wax layer covering the outer protective layer. That is, the first nanocomposite CX1 dispersed in the first optical layer 520 may have any one of the structures of the nanocomposites described with reference to FIGS. 1A to 1C and 3A to 3C. Therefore, detailed overlapping description of the nanocomposite CX1 will be omitted.
  • the first nanocomposites CX1 dispersed in the first optical layer 520 may include only one selected from blue, green, and red nanocomposites.
  • the light passing through the first optical layer 520 may have an emission spectrum only in any one of blue, green, and red wavelength bands.
  • the first nanocomposites CX1 dispersed in the first optical layer 520 may include at least two of blue, green, and red nanocomposites. That is, the first nanocomposites CX1 dispersed in the first optical layer 520 may be composed of a plurality of green nanocomposites and a plurality of red nanocomposites.
  • the first nanocomposites CX1 dispersed in the first optical layer 520 may include multicolor nanocomposites.
  • Each of the multicolor nanocomposites is the first nano light emitter disposed inside the first wax particle, and may include at least two selected from blue, green, and red nano light emitters.
  • the multicolor nanocomposite may include a green nano light emitter and a red nano light emitter.
  • the first optical layer 520 may include an optical pattern formed on the surface.
  • the shape of the optical pattern may be variously adjusted according to the function of the optical member 501.
  • the optical pattern may include a light diffusion pattern, a light collecting pattern, a light exit pattern, and the like. The shape of the optical pattern will be described later with reference to FIGS. 4C to 4G.
  • the first optical layer 520 may further include diffusion beads to diffuse light.
  • the type of the diffusion beads is not particularly limited and may be used without limitation as long as it is commonly used in the art.
  • an optical layer including the diffusion beads may be formed on the base substrate 510 as a layer separate from the first optical layer 520.
  • the optical layer including the diffusion beads may be formed on one surface or the other surface of the base substrate 510 on which the first optical layer 520 is formed.
  • an optical member 502 includes a base substrate 510, a first optical layer 520, and a second optical layer 530.
  • the first optical layer 520 includes first nanocomposites CX1
  • the second optical layer 530 includes second nanocomposites CX2.
  • Each of the first nanocomposites CX1 includes a first wax particle and at least one first nano light emitter
  • each of the second nanocomposites CX2 includes a second wax particle and at least one second nano light emitter. It includes.
  • the optical member 502 described in FIG. 4B is substantially the same as the optical member 501 described in FIG. 4A, except that the optical member 502 further includes the second optical layer 530. do.
  • the second optical layer 530 is formed on the other surface of the base substrate 510 on which the first optical layer 520 is formed.
  • the second optical layer 530 includes a polymer resin and the second nanocomposites CX2 dispersed in the polymer resin.
  • the second wax particles are formed of a wax-based compound. At least one second nano light-emitting body is disposed inside the second wax particle. Since the second nanocomposites CX2 are substantially the same as the first nanocomposite CX1 described with reference to FIG. 4A, detailed descriptions thereof will be omitted.
  • the first nanocomposites CX1 all have emission peaks in the same wavelength band
  • the second nanocomposites CX2 all have emission peaks in the same wavelength band
  • the first nano light emitter and the second The nano light emitter may have an emission peak in different wavelength bands.
  • the wavelength of the light generated in the first nanocomposites CX1 is shorter than the wavelength of the light generated in the second nanocomposites CX2
  • a portion of the light generated in the first nanocomposites CX1 may be partially formed. Since the second nano light emitters included in the 2 nanocomposites CX2 are excited, the second nanocomposites CX2 are generated from the first nanocomposites CX1 as well as light provided by a light source. It can be excited by some of the light being. That is, the second nanocomposites CX2 may be provided with sufficient light to be excited from the first nanocomposites CX1 and the light source.
  • the first nanocomposites CX1 transmit higher energy from the light source than the second optical layer 530.
  • the power density of the light generated in the first nanocomposites CX1 may be maximized.
  • the first nanocomposites CX1 may be formed of green nanocomposites.
  • the second nanocomposites CX2 may be formed of red nanocomposites.
  • the first nanocomposites CX1 may include at least two nanocomposites, and the second nanocomposites CX2 may include one nanocomposite.
  • the first nanocomposites CX1 may be composed of green nanocomposites and red nanocomposites, and the second nanocomposites CX2 may include green nanocomposites.
  • the first nanocomposites CX1 and / or the second nanocomposites CX2 may include multicolor nanocomposites.
  • each of the multicolor nanocomposites may include a green nano light emitter and a red nano light emitter.
  • Each of the first optical layer 520 and the second optical layer 530 is shown as a flat surface in FIGS. 4A and 4B, but at least one of the first and second optical layers 520 and 530 is shown. Either one may include an optical pattern formed on the surface.
  • the optical pattern may be variously formed according to the optical characteristics that the optical members 501 and 502 intend to control. The shape of the said optical pattern is demonstrated below.
  • the optical sheet 502 may further include a third optical layer including a third nanocomposite.
  • the third optical layer may be formed on the first optical layer 520.
  • an optical pattern may be formed on the surface of the third optical layer.
  • the third nanocomposite includes a third wax particle and at least one third nano light emitter disposed inside the third wax particle.
  • the third nanocomposite may have any one of the structures described with reference to FIGS. 1A to 1C and 3A to 3C. That is, the third nanocomposite may further include an inner passivation layer and / or an outer passivation layer. When the third nanocomposite includes an outer passivation layer, the third nanocomposite may further include a wax layer covering the outer passivation layer.
  • the second optical layer 530 may be omitted.
  • 4C to 4G are diagrams for describing various types of optical patterns.
  • the optical pattern formed on the surface of the first optical layer 520 may be a continuous pattern 520a.
  • the continuous pattern 520a may have a shape in which a plurality of convex portions are continuously connected. Each of the convex portions protrudes from the base substrate 510 in a direction toward the outside of the optical member 502.
  • the heights or widths of the convex portions may be different from each other, and may have irregular values.
  • the optical pattern formed on the surface of the first optical layer 520 may have a shape in which a plurality of recesses are continuously connected. Each of the recesses is recessed in a direction from the surface of the optical member 502 toward the interior of the optical member 502.
  • the depth or width of the recesses may be appropriately adjusted as needed and the depth or width of each of the recesses may have an irregular value.
  • the continuous pattern 520a may have a combination of a concave portion and a convex portion, or may be an embossed pattern.
  • the continuous pattern 520a may be used as a light diffusion pattern.
  • the continuous pattern 520a may include a plurality of divided regions as shown in FIG. 4D.
  • 4D is a plan view illustrating a divided region.
  • the continuous pattern 520a may include a convex portion formed to correspond to each of a plurality of divided regions that are irregularly arranged in a planar shape.
  • the height, planar shape and surface area of the convex portion are not particularly limited, and the height or surface area of the convex portion may have an irregular value.
  • the continuous pattern 520a may include a concave portion formed corresponding to each of a plurality of divided regions irregularly arranged in a plane.
  • the optical pattern formed on the surface of the first optical layer 520 may be a discontinuous convex pattern 520b.
  • each convex portion may have a form in which the convex portions are spaced apart from each other.
  • the convex portions constituting the discontinuous convex pattern 520b may have a dot shape when viewed in a plan view.
  • the height or width of each convex portion may be different from each other, and may have an irregular value.
  • the optical pattern formed on the surface of the first optical layer 520 may be a discontinuous concave pattern 520c.
  • the concave portions may be spaced apart from each other.
  • the unit constituting the discontinuous concave pattern 520c may have a dot shape when viewed in a plan view.
  • the depth or width of the recesses may be different from each other and the depth or width of each recess may have an irregular value.
  • the optical pattern formed on the surface of the first optical layer 520 may be a light collecting pattern 520d.
  • the condensing pattern 520d may include a plurality of protrusions, and each of the protrusions may have a triangle.
  • the protrusions may be continuously arranged along the in-plane direction (first direction) of the cut plane defining the cross section of the triangle.
  • first direction the in-plane direction
  • second direction the cross section
  • the height of each of the protrusions may vary along the second direction.
  • the height of the protrusion may vary linearly or nonlinearly along the second direction. Furthermore, the height of the protrusions may be changed to have a predetermined period but may be changed irregularly. The height of each protrusion can be changed independently of each other.
  • the vertex angle of each protrusion constituting the condensing pattern may be about 90 °, but may be appropriately adjusted as necessary. When the height of the protrusion changes along the second direction, the vertex angle may vary depending on the position.
  • FIGS. 4C to 4F various shapes of the optical pattern formed on the first optical layer 520 have been described, but the same may be applied to the optical pattern formed on the second optical layer 530.
  • the optical pattern formed on the first optical layer 520 and the optical pattern formed on the second optical layer 530 are mutually different. It may be the same pattern or different patterns.
  • each of the optical members 501 and 502 described with reference to FIGS. 4A and 4B has a light diffusion layer formed on the surface of the optical pattern described with reference to FIGS. 4C through 4G and formed on the first optical layer 520. It may further include.
  • a light diffusing layer having the optical pattern described with reference to FIGS. 4C through 4G formed on the surface may be formed on the other surface of the base substrate 510.
  • a nanocomposite including nano light-emitting bodies coated with wax particles may be applied to at least one optical layer of the optical members 501 and 502.
  • the color reproduction area of the display device can be widened, and the color purity of the color displayed by the display device can be improved.
  • the wax particles included in the nanocomposite protect the nano light emitter from heat, moisture, or ultraviolet light
  • the optical members 501 and 502 may be heated, without a separate protective layer for protecting the optical layer including the nanocomposite. It may be stable to moisture or ultraviolet light.
  • the optical members 501 and 502 may be used as a light collecting plate such as a light guide plate, a diffusion sheet, or a prism sheet, but may also be used as an optical sheet additionally inserted in addition to the general optical sheets constituting the backlight unit of the display device. .
  • 5A to 5I are views for explaining embodiments of the diffusion sheet according to the present invention.
  • an optical sheet 1001 includes a first optical layer 1200 including a base substrate 1100 and a first nanocomposite CX1.
  • the base substrate 1100 is formed of a transparent material. Since the transparent material is substantially the same as described with reference to FIG. 4A, detailed descriptions thereof will be omitted.
  • the first optical layer 1200 is formed on one surface of the base substrate 1100.
  • the surface on which the first optical layer 1200 is formed may be a light exit surface, or may be a light incident surface.
  • the first nanocomposite CX1 dispersed in the first optical layer 1200 includes first wax particles and at least one first nano light emitter.
  • the first nano light-emitting body is disposed inside the first wax particle, and the surface is covered by the first wax particle.
  • the first nanocomposite CX1 may have any one of the structures of the nanocomposite described in FIGS. 1A to 1C and 3A to 3C.
  • the first nanocomposites CX1 may include at least one of a blue nanocomposite, a green nanocomposite, and a red nanocomposite.
  • the first nanocomposites CX1 may be composed of green nanocomposites or red nanocomposites.
  • the first nanocomposites CX1 may include a plurality of green nanocomposites and a plurality of red nanocomposites.
  • the first nanocomposites CX1 may include multicolor nanocomposites.
  • each of the multicolor nanocomposites may include a red nano emitter and a green nano emitter.
  • the first optical layer 1200 includes a light diffusion pattern 1210 formed on a surface thereof. Since the light diffusion pattern 1210 is substantially the same as the continuous pattern 520a described with reference to FIG. 4C, detailed descriptions thereof will not be repeated. Alternatively, the light diffusion pattern 1210 may be a discontinuous convex pattern 520b described with reference to FIG. 4E or a discontinuous concave pattern 520c described with reference to FIG. 4F.
  • the diffusion sheet 1002 includes a base substrate 1100, a first optical layer 1200, and a second optical layer 1300.
  • the first optical layer 1200 is formed on one surface of the base substrate 1100 and includes first nanocomposites CX1.
  • the first nanocomposites CX1 include a first wax particle and at least one first nano light emitter disposed inside the first wax particle. Since the first optical layer 1200 is substantially the same as described with reference to FIG. 5A, detailed descriptions thereof will be omitted.
  • the second optical layer 1300 is formed on the other surface facing the one surface on which the first optical layer 1200 is formed and includes second nanocomposites CX2.
  • the second nanocomposites CX2 include a second wax particle and at least one second nano light emitter disposed inside the second wax particle.
  • the second nanocomposites CX2 may have any one of the structures of the nanocomposites described with reference to FIGS. 1A to 1C and 3A to 3C.
  • the second nanocomposites CX2 may have the same or different structure as the first nanocomposites CX1.
  • the first nanocomposites CX1 have the structure described with reference to FIG. 1A
  • the second nanocomposites CX2 may have the structure described with reference to FIG. 3A.
  • the first and second nanocomposites CX1 and CX2 may both have the structure described with reference to FIG. 1B.
  • the second nanocomposites CX2 may include at least one of a blue nanocomposite, a green nanocomposite, and a red nanocomposite.
  • the second nanocomposites CX2 may be composed of green nanocomposites or red nanocomposites.
  • the second nanocomposites CX2 may include a plurality of green nanocomposites and a plurality of red nanocomposites.
  • the second nanocomposites CX2 may include multicolor nanocomposites.
  • the second nanocomposites CX2 may have an emission peak in a wavelength band different from a wavelength band in which the emission peaks of the first nanocomposites CX1 belong.
  • the full width at half maximum (FWHM) of the emission peak of each of the first nanocomposites CX1 may be about 70 nm or less.
  • the full width at half maximum may be about 50 nm or less, more preferably about 40 nm or less.
  • the half width may be equally applied to the second nanocomposites CX2.
  • the second nanocomposites CX2 may be composed of red nanocomposites.
  • the second nanocomposites CX2 may further include green nanocomposites.
  • the second nanocomposites CX2 may be composed of multicolor nanocomposites including a green nano emitter and a red nano emitter. have.
  • the second optical layer 1300 includes a light diffusion pattern 1310 formed on a surface thereof. Since the light diffusion pattern 1310 is substantially the same as the continuous pattern 520a described with reference to FIG. 4C, detailed descriptions thereof will be omitted. Alternatively, the light diffusion pattern 1310 may be a discontinuous convex pattern 520b described with reference to FIG. 4E or a discontinuous concave pattern 520c described with reference to FIG. 4F.
  • the light diffusion pattern 1310 of the second optical layer 1300 is a continuous pattern having substantially the same structure as the light diffusion pattern 1210 of the first optical layer 1200. It may be a continuous pattern having a structure.
  • the diffusion sheet 1003 includes a base substrate 1100, a first optical layer 1200, a second optical layer 1302, and an intermediate layer 1400. .
  • the first optical layer 1200 is formed on one surface of the base substrate 1100 and includes first nanocomposites CX1. Since the first optical layer 1200 is substantially the same as described with reference to FIG. 5A, detailed descriptions thereof will be omitted.
  • the second optical layer 1302 is formed on the other surface opposite to one surface of the base substrate 110 on which the first optical layer 1200 is formed, and includes second nanocomposites CX2. Since the second optical layer 1302 is substantially the same as that described in FIG. 5B except that the surface thereof is a flat surface, overlapping detailed descriptions are omitted. Although the surface of the second optical layer 1302 is illustrated as being flat, the second optical layer 1302 may further include a light diffusion pattern 1310 substantially the same as that described with reference to FIG. 5B.
  • the intermediate layer 1400 is disposed between the first and second optical layers 1200 and 1302 and includes third nanocomposites CX3.
  • the intermediate layer 1400 may be disposed between the base substrate 1100 and the second optical layer 1302.
  • the third nanocomposites CX3 include a third wax particle and at least one nano light emitter disposed inside the third wax particle.
  • the third nanocomposites CX3 may have any one of the structures of the nanocomposites described with reference to FIGS. 1A to 1C and 3A to 3C.
  • the third nanocomposites CX3 may include at least one of a blue nanocomposite, a green nanocomposite, and a red nanocomposite.
  • the third nanocomposites CX3 may include multicolor nanocomposites.
  • the third nanocomposites CX3 may have an emission peak at a wavelength different from that of the first and second nanocomposites CX1 and CX2.
  • the first nanocomposites CX1 are composed of blue nanocomposites
  • the second nanocomposites CX2 are composed of red nanocomposites
  • the third nanocomposites CX3 are It can be composed of green nanocomposites.
  • the third nanocomposites CX3 may include green nanocomposites and red nanocomposites.
  • the diffusion sheet 1004 includes a base substrate 1100, a first optical layer 1200, a second optical layer 1302, and an intermediate layer 1402. .
  • the first optical layer 1200 is formed on one surface of the base substrate 1100 and includes first nanocomposites CX1. Since the base substrate 1100 and the first optical layer 1200 are substantially the same as those described with reference to FIG. 5A, detailed descriptions thereof will be omitted.
  • the second optical layer 1302 is formed on the other surface opposite to one surface of the base substrate 1100 and includes second nanocomposites CX2. Since the second optical layer 1302 is substantially the same as that described with reference to FIG. 5C except that the second optical layer 1302 is directly formed on the base substrate 1100, detailed descriptions thereof will be omitted.
  • the intermediate layer 1402 is formed between the base substrate 1100 and the first optical layer 1200.
  • the intermediate layer 1402 includes third nanocomposites CX3. Since the intermediate layer 1402 is substantially the same as the intermediate layer 1400 described with reference to FIG. 5C except for the disposed position, detailed descriptions thereof will be omitted.
  • the first nanocomposites CX1 are composed of blue nanocomposites
  • the second nanocomposites CX2 are composed of red nanocomposites
  • the third nanocomposites CX3 are green. It may be composed of nanocomposites.
  • each of the first to third nanocomposites CX1, CX2, and CX3 may further include any one of blue, red, and green nanocomposites in addition to the main nanocomposites constituting the nanocomposite.
  • FIG. 5D illustrates the case where the surface of the second optical layer 1302 is flat
  • the second optical layer 1302 may further include the light diffusion pattern 1310 described with reference to FIG. 5B.
  • the diffusion sheet 1005 includes a base substrate 1100, a first optical layer 1202, and a light diffusion layer 1500.
  • the first optical layer 1202 is formed on one surface of the base substrate 1100 and includes first nanocomposites CX1. Since the first optical layer 1202 is substantially the same as the first optical layer 1200 described with reference to FIG. 5A except that the surface thereof is a flat surface, detailed descriptions thereof will be omitted.
  • the light diffusion layer 1500 is formed on the other surface of the base substrate 1100 on which the first optical layer 1202 is formed.
  • the light diffusion layer 1500 includes a light diffusion pattern 1510 formed on a surface thereof.
  • the light diffusion pattern 1510 may be substantially the same pattern as the continuous pattern 520a described with reference to FIG. 4C.
  • the light diffusion pattern 1510 may be any one of the discontinuous convex pattern 520b described with reference to FIG. 4E and the discontinuous concave pattern 520c described with reference to FIG. 4F.
  • the light diffusion layer 1500 does not include a nanocomposite and simply serves to diffuse light.
  • the surface of the first optical layer 1202 is illustrated as being flat. However, the optical patterns described with reference to FIGS. 4C and 4E to 4G may be formed on the surface of the first optical layer 1202. have.
  • a diffusion sheet 1006 includes a base substrate 1100, a first optical layer 1204, and a light diffusion layer 1500.
  • the first optical layer 1204 is substantially the same as the first optical layer 1202 described with reference to FIG. 5E except that the first optical layer 1204 is disposed between the base substrate 1100 and the light diffusion layer 1500. Therefore, redundant descriptions are omitted.
  • the light diffusion layer 1500 is formed on the first optical layer 1204.
  • the light diffusion layer 1500 does not include a nanocomposite layer and simply performs a function of diffusing light. Since the light diffusion layer 1500 is substantially the same as that described with reference to FIG. 5E, detailed descriptions thereof will be omitted.
  • the diffusion sheet 1007 includes a base substrate 1100, a first optical layer 1204, a second optical layer 1302, and a light diffusion layer 1500. do.
  • the first optical layer 1204 is disposed on one surface of the base substrate 1100 and includes first nanocomposites CX1.
  • the light diffusion layer 1500 is formed on the first optical layer 1204 and includes a light diffusion pattern 1510.
  • the light diffusion layer 1500 is a layer that performs a function of simply diffusing light without a nanocomposite.
  • the first optical layer 1204 and the light diffusion layer 1500 are substantially the same as described with reference to FIG. 5F. Therefore, redundant descriptions are omitted.
  • the second optical layer 1302 is disposed on the other surface opposite to one surface of the base substrate 1100 on which the first optical layer 1204 is formed, and includes second nanocomposites CX2.
  • the second optical layer 1302 is substantially the same as described with reference to FIG. 5D. Therefore, redundant descriptions are omitted.
  • the diffusion sheet 1008 may include a base substrate 1100, a first optical layer 1204, a second optical layer 1302, and a first light diffusion layer 1500. And a second light diffusing layer 1600.
  • the diffusion sheet 1008 is substantially the same as the diffusion sheet 1007 described with reference to FIG. 5G, and thus detailed descriptions thereof will be omitted.
  • the first light diffusion layer 1500 of FIG. 5H is the same layer as the light diffusion layer of FIG. 5G and performs a light diffusion function.
  • the second light diffusion layer 1600 is formed on the second optical layer 1302 so as to face the first light diffusion layer 1500.
  • the second light diffusion layer 1600 includes a light diffusion pattern 1610 formed on a surface thereof, and is a layer that performs a function of simply diffusing light without a nanocomposite.
  • the light diffusion pattern 1610 may be any one of the optical patterns described with reference to FIGS. 4C and 4E to 4G.
  • a diffusion sheet 1009 according to another embodiment of the present invention includes a base substrate 1100, a first optical layer 1200, and a light collecting layer 1700.
  • the first optical layer 1200 is formed on one surface of the base substrate 1100. Since the first optical layer 1200 includes the light diffusion pattern 1210 formed on the surface thereof and is substantially the same as that described with reference to FIG. 5A, detailed descriptions thereof will be omitted.
  • the light collecting layer 1700 is formed on the other surface facing the one surface facing the first optical layer 1200.
  • the light collecting layer 1700 includes a light collecting pattern 1710 formed on a surface thereof. Since the condensing pattern 1710 is substantially the same as the optical pattern described with reference to FIG. 4G, detailed descriptions thereof will be omitted.
  • the nanocomposite described in FIGS. 1A to 1C and 3A to 3C may be variously applied to the diffusion sheet.
  • the diffusion sheet according to the present invention can convert the light provided by the light source to be provided to the display panel, thereby improving color purity and color reproducibility of the display device.
  • 6a to 6d are views for explaining embodiments of the light collecting sheet according to the present invention.
  • the light collecting sheet 2001 includes a base substrate 2100, a light collecting layer 2200, and a first optical layer 2300.
  • the base substrate 2100 is formed of a transparent material.
  • the transparent material is substantially the same as the transparent material forming the base substrate 1100 of the diffusion sheet 1001 described in FIG. 5A. Therefore, redundant descriptions are omitted.
  • the light collecting layer 2200 is formed on one surface of the base substrate 2100.
  • the light collecting layer 2200 includes a light collecting pattern 2210 formed on a surface thereof.
  • the condensing pattern 2210 may be substantially the same as the optical pattern described with reference to FIG. 4G.
  • the condensing pattern 2210 is formed to have a cross-sectional shape that can refract light incident from the base substrate 2100 in a vertical direction. Since the cross-sectional shape is the same as the shape described in FIG.
  • the first optical layer 2300 is formed on the other surface opposite to the one surface facing the light collecting layer 2200.
  • the first optical layer 2300 includes first nanocomposites CX1.
  • Each of the first nanocomposites CX1 includes a first wax particle and at least one first nano light-emitting body disposed inside the first wax particle.
  • Each of the first nanocomposites CX1 may have any one of the structures of the nanocomposites described with reference to FIGS. 1A to 1C and 3A to 3C.
  • the first nanocomposites CX1 may include at least one selected from blue, green and red nanocomposites.
  • the first nanocomposites CX1 may be composed of multicolor nanocomposites.
  • the first optical layer 2300 may include an optical pattern formed on the surface.
  • the optical pattern may have any one of the structures described with reference to FIGS. 4C to 4F. Therefore, redundant descriptions are omitted.
  • the light collecting sheet 2001 may be disposed between the first optical layer 2300 and the base substrate 2100, or may be disposed between the light collecting layer 2200 and the base substrate 2100. It may further include a second optical layer.
  • the second optical layer may include a second nanocomposite including a second wax particle and at least one second nano light-emitting body disposed inside the second wax particle.
  • the light collecting sheet 2002 includes a base substrate 2100, a first optical layer 2300, and a light collecting layer 2200.
  • the light collecting sheet 2002 is substantially the same as the light collecting sheet 2001 described with reference to FIG. 6A except that the first optical layer 2300 is disposed between the base substrate 2100 and the light collecting layer 2200. Do. Therefore, redundant descriptions are omitted.
  • the light collecting sheet 2002 may further include a second optical layer disposed between the first optical layer 2300 and the base substrate 2100.
  • the second optical layer may include a second nanocomposite.
  • the light collecting sheet 2003 includes a base substrate 2100 and a light collecting layer 2202.
  • the light collecting layer 2202 is formed on one surface of the base substrate 2100 and includes first nanocomposites CX1.
  • the light collecting layer 2202 has a light collecting pattern 2210 formed on a surface thereof. Since the first nanocomposites CX1 are substantially the same as those described with reference to FIG. 6A, detailed descriptions thereof will be omitted.
  • the light collecting sheet 2003 may be formed on the other surface of the light collecting layer 2202 facing one surface of the light collecting layer 2202, or may be formed between the base substrate 2100 and the light collecting layer 2202. It may further include.
  • the optical layer may include a second nanocomposite.
  • the light collecting sheet 2004 may include a base substrate 2100, a light collecting layer 2202 in which the first nanocomposites CX1 are dispersed, and a first optical layer 2400. ).
  • the light collecting sheet 2004 is substantially the same as the light collecting sheet 2003 described with reference to FIG. 6C except that the light collecting sheet 2004 further includes the first optical layer 2400. Therefore, redundant descriptions are omitted.
  • the first optical layer 2400 is formed on the other surface opposite to one surface of the base substrate 2100 on which the light collecting layer 2202 is formed.
  • the first optical layer 2400 includes a light diffusion pattern 2410 formed on a surface thereof. Since the light diffusion pattern 2410 is substantially the same as the continuous pattern 520a described with reference to FIG. 4C, detailed descriptions thereof will be omitted. Alternatively, the light diffusion pattern 2410 may be the same pattern as the optical pattern described with reference to FIGS. 4E and 4F.
  • the light collecting sheet 2004 may further include a second optical layer formed between the base substrate 2100 and the first optical layer 2400.
  • the second optical layer may include a second nanocomposite.
  • the nanocomposites described in FIGS. 1A to 1C and 3A to 3C may be variously applied to the light collecting sheet.
  • the light collecting sheet according to the present invention can improve the color purity and color reproducibility of colors displayed by the display device by converting light provided by the light source to the display panel by using the nanocomposite.
  • FIGS. 7A to 7C are diagrams for describing embodiments of the light guide plate according to the present invention.
  • a light guide plate 3001 includes a base substrate 3100, an output pattern 3200, and a first optical layer 3300.
  • the base substrate 3100 is formed of a transparent material.
  • the transparent material include, but are not limited to, polymethylmethacrylate (PMMA) resin, polycarbonate (PC) resin, and the like.
  • the light exit pattern 3200 is formed on one surface of the base substrate 3100.
  • a surface on which the light exit pattern 3200 is formed becomes a reflecting portion of the light guide plate 3001.
  • the light guide plate 3001 when a side facing the light source is called a light incident part of the light guide plate 3001, the light emitted from the light source and guided to the base substrate 3100 through the light incident part is reflected by the reflector. Afterwards, the light may be emitted to the outside through the light exit unit facing the reflector.
  • the light exit pattern 3200 may have various shapes such as a convex pattern and a concave pattern, and may be a pattern additionally formed on one surface of the base substrate 3100. In contrast, the light exit pattern 3200 may be a pattern formed by partially patterning one surface of the base substrate 3100.
  • the first optical layer 3300 is formed on the other surface facing the one surface. That is, the side where the first optical layer 3300 is formed may be the light exit portion of the light guide plate 3001.
  • the first optical layer 3300 includes first nanocomposites CX1.
  • the first nanocomposites CX1 may have any one of the structures of the nanocomposites described with reference to FIGS. 1A to 1C and 3A to 3C.
  • the first nanocomposites CX1 may include at least one selected from blue, green and red nanocomposites.
  • the first nanocomposites CX1 may include a multi-color nanocomposite.
  • the first optical layer 3300 may include a pattern substantially the same as that of the light exit pattern 3200.
  • the second nanocomposite is formed between the base substrate 3100 and the first optical layer 3300.
  • a second optical layer may be formed.
  • the second optical layer may be formed between the light exit pattern 3200 and the base substrate 3100.
  • a light guide plate 3002 includes a base substrate 3100, an output pattern 3210, and a first optical layer 3300 in which the first nanocomposite CX1 is dispersed. do.
  • the light guide plate 3002 is substantially the same as the light guide plate 3001 described with reference to FIG. 7A except that the light exit pattern 3210 includes the second nanocomposite CX2. Therefore, redundant descriptions are omitted.
  • the first optical layer 3300 may further include a pattern substantially the same as the light emission pattern described with reference to FIG. 7A.
  • the light exit pattern 3210 includes the second nanocomposite CX2.
  • the second nanocomposite CX2 includes a second wax particle and at least one second nano light emitter disposed inside the second wax particle.
  • the second nanocomposite CX2 may have any one of the structures of the nanocomposites described with reference to FIGS. 1A to 1C and 3A to 3C.
  • the second nanocomposite CX2 may include at least one of blue, green, and red nanocomposites, and may be composed of multicolor nanocomposites.
  • the second nanocomposite CX2 may have an emission peak different from that of the first nanocomposite CX1.
  • the second nanocomposite CX2 may be formed of a green nanocomposite
  • the first nanocomposite CX1 may be formed of a red nanocomposite.
  • the light guide plate 3002 may further include a second optical layer disposed between the first optical layer 3300 and the base substrate 3100.
  • the second optical layer may include a third nanocomposite different from the first and second nanocomposites CX1 and CX2.
  • the third nanocomposite includes a third wax particle and at least one third nano light emitter disposed inside the third wax particle.
  • a light guide plate 3003 according to another embodiment of the present invention includes a base substrate 3100 and a light exit pattern 3200.
  • the light exit pattern 3200 is substantially the same as that described with reference to FIG. 7A, and the base substrate 3100 includes a first nanocomposite CX1.
  • the first nanocomposite CX1 is substantially the same as described with reference to FIG. 7A.
  • an optical layer including the second nanocomposite may be formed on the other surface of the base substrate 3100 on which the light emission pattern 3200 is formed.
  • the optical layer may be formed between the base substrate 3100 and the light exit pattern 3200.
  • the nanocomposites described with reference to FIGS. 1A to 1C and 3A to 3C may be variously applied to the light guide plate.
  • the light guide plate according to the present invention can improve the color purity and color reproducibility of the display device by using the nanocomposite, thereby converting the light provided by the light source to the display panel.
  • FIGS. 8 and 9 are diagrams for describing a backlight unit according to an exemplary embodiment of the present invention.
  • the backlight unit 5001 may include a light source 5100, a light guide plate 5200, a reflective plate 5300, a diffusion sheet 5400, a first light collecting sheet 5510, and a first light collecting sheet 5510. 2 light collecting sheet 5520 is included.
  • a white light emitting module or a blue light emitting module may be used as the light source 5100.
  • the white light emitting module may include a blue light emitting chip that generates blue light, and a light conversion layer covering the blue light emitting chip. That is, since the light conversion layer absorbs and / or converts blue light generated by the blue light emitting chip, the white light emitting module may finally display white light.
  • the light conversion layer may include a nano-luminescent material including a phosphor or a quantum dot, including YAG (Yttrium aluminum garnet). As the nano light emitter, green quantum dots may be used. In contrast, the light conversion layer may include the nanocomposite described in FIGS. 1A to 1C and 3A to 3C.
  • the blue light emitting module includes a blue light emitting chip that generates blue light. That is, the observer can visually recognize the blue light emitted from the blue light emitting chip of the blue light emitting module.
  • the light guide plate 5200 is disposed adjacent to the light source 5100, the light generated by the light source 5100 is incident to the light guide plate 5200, and the light emitted from the light guide plate 5200 is diffused to the sheet 5400. May be incident to
  • the light guide plate 5200 may include any one of the light guide plates 3001, 3002, and 3003 according to the present invention described with reference to FIGS. 7A to 7C.
  • the reflective plate 5300 is disposed below the light guide plate 5200, that is, to face the reflective part of the light guide plate 5200, and reflects light leaked through the reflective part of the light guide plate 5200 back to the light guide plate 5200. Improve the efficiency of light utilization
  • the diffusion sheet 5400 may be disposed on the light guide plate 5200 and diffuse light emitted from the light guide plate 5200.
  • the diffusion sheet 5400 may include any one of the diffusion sheets 1001 to 1009 described with reference to FIGS. 5A to 5I.
  • the first light collecting sheet 5510 is disposed on the diffusion sheet 5400, and a light collecting pattern including a plurality of protrusions described with reference to FIG. 4G is formed on an upper surface of the first light collecting sheet 5510.
  • the second light collecting sheet 5520 is disposed on the first light collecting sheet 5510, and has a shape substantially the same as a protrusion formed on the first light collecting sheet 5510 on an upper surface of the second light collecting sheet 5520.
  • a plurality of protrusions is formed.
  • the length direction of the protrusion formed on the first light collecting sheet 5510 and the length direction of the protrusion formed on the second light collecting sheet 5520 may cross at a predetermined angle. In this case, the angle at which the protrusions cross in the longitudinal direction may be about 90 °.
  • At least one of the first and second light collecting sheets 5510 and 5520 may include any one selected from the light collecting sheets 2001 to 2004 described with reference to FIGS. 6A to 6D.
  • the white light emitting module when used as the light source 5100, at least one of the light guide plate 5200, the diffusion sheet 5400, and the first and second light collecting sheets 5510 and 5520 is green. Nanocomposites and / or red nanocomposites. Even if the color purity of the light generated by the white light emitting module is low, the green nanocomposite and / or at least one of the light guide plate 5200, the diffusion sheet 5400, and the first and second light collecting sheets 5510 and 5520. By applying the red nanocomposite, the color purity of the white light provided by the backlight unit 5001 may be improved.
  • the light guide plate 5200, the diffusion sheet 5400, the first and second light collecting sheets 5510 and 5520, in particular, the light guide plate 5200 are used.
  • a color coordinate deviation occurs between the light emitted from the light incident portion on the side where the light source is arranged and the light emitted from the light facing portion opposite to the light incident portion.
  • the color coordinate deviation occurs because light of a specific wavelength is scattered relatively much while the light is guided from the light incident part to the light receiving part, and the observer is responsible for the yellowish problem in the light receiving part. To be recognized.
  • color purity and color coordinate uniformity of the display device may also be deteriorated by characteristics of the material forming the diffusion sheet 5400 and the first and second light collecting sheets 5510 and 5520.
  • the problems described above may be solved by applying a blue nanocomposite to at least one of the light guide plate 5200, the diffusion sheet 5400, and the light collecting sheets 5510 and 5520.
  • the blue light emitting module when used as the light source 5100, at least one of the light guide plate 5200, the diffusion sheet 5400, and the first and second light collecting sheets 5510 and 5520 is green. Nanocomposites and red nanocomposites. That is, even if the light source 5100 generates blue light, the green nanocomposite and the red nanocomposite generate green light and red light, so that the observer may recognize the light passing through the backlight unit 5001 as white light.
  • any one optical sheet may include all of the green, red and blue nanocomposites.
  • the diffusion sheet 5400 may include a blue nanocomposite
  • the first condensing sheet 5510 may include a green nanocomposite
  • the second condensing sheet 5520 may include a red nanocomposite.
  • one of the optical sheets may include two nanocomposites among green, red and blue nanocomposites, and the other optical sheet may include one nanocomposite.
  • the diffusion sheet 5400 may include a blue nanocomposite
  • the first light collecting sheet 5510 may include green and red nanocomposites.
  • the green, red, and blue nanocomposites applied to the light guide plate 5200, the diffusion sheet 5400, and the first and second light collecting sheets 5510 and 5520 absorb green light generated by the ultraviolet light emitting module to emit green light and red light.
  • the backlight unit 5001 may provide white light to the display panel.
  • the backlight unit 5002 may include a light source 5100, a light guide plate 5200, a reflecting plate 5300, an optical sheet 5600, a diffusion sheet 5400, and a first condensing light.
  • the sheet 5510 and the second light collecting sheet 5520 are included. Since the backlight unit 5002 is substantially the same as the backlight unit 5001 described with reference to FIG. 8 except that the backlight unit 5002 further includes an optical sheet 5600, detailed descriptions thereof will be omitted.
  • the optical sheet 5600 is a sheet including a nanocomposite, and is independent of the light guide plate 5200, the diffusion sheet 5400, the first light collecting sheet 5510, and the second light collecting sheet 5520. Included).
  • the light guide plate 5200, the diffusion sheet 5400, the first light collecting sheet 5510, and the second light collecting sheet 5520 may use those conventionally used in the art. That is, by inserting only the optical sheet 5600 including the nanocomposites described with reference to FIGS. 1A through 1C and 3A through 3C into the backlight unit 5002, color reproducibility of the display device may be widened to improve color reproducibility. .
  • the backlight units 5001 and 5002 may provide light having high color purity as color filters of the display panel, and color reproduction of the display device. By widening the area, color reproducibility can be improved.
  • a blue light emitting module having a light emission peak at about 444 nm was used as a light source, and a light guide plate, a diffusion sheet, a first light collecting sheet, and a second light collecting sheet were manufactured and prepared in the following manner.
  • a benzotriazole UV absorber (trade name: Tinuvin-329, BASF, Germany) and a hindered amine light stabilizer (trade name: Tinuvin-770, BASF, Germany) based on 100 parts by weight of the methyl methacrylate polymer.
  • a pellet-type resin was prepared by using an extruder (inner diameter: 27 mm, L / D: 40, Leistritz. Co.), which was extruded using a sheet extruder to produce a light guide plate having a thickness of about 0.4 mm.
  • an extruder inner diameter: 27 mm, L / D: 40, Leistritz. Co.
  • a wax (trade name: Licowax PED 136 wax, Clariant, Switzerland) having an acid value of about 30 mg KOH / g as an oxidized high density polyethylene wax (Oxidized HDPE Wax) as a wax-based compound in 1 ml of toluene
  • Oxidized HDPE Wax oxidized high density polyethylene wax
  • the urethane acrylate purchased from the company (company name, Germany) and the photoinitiator (diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, TPO) purchased from BASF were mixed.
  • the photoinitiator was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate.
  • a first coating composition in which urethane acrylate, a red nanocomposite, and a photoinitiator were mixed.
  • the first coating composition was coated on a transparent base substrate (trade name: XU42, Toray Industries, Japan) of about 38 ⁇ m thickness and cured to form a light diffusion layer having the shape shown in FIG. 4C on its surface. .
  • the average thickness of the light diffusion layer was about 50 ⁇ m.
  • CdSe-based green nano light-emitting body (trade name: Nanodot-HE-530, QD solution, Korea) was dispersed in 1 ml of toluene was added to the wax solution prepared in the process of preparing the red nanocomposite. After mixing, the mixture was cooled to room temperature and mixed with urethane acrylate and a photoinitiator. Then toluene was removed using an evaporator to prepare a second coating composition in which urethane acrylate, photoinitiator and green nanocomposite were mixed. The second coating composition was coated on the opposite side of the base substrate on which the light diffusion layer was formed and cured to form an optical layer. The thickness of the optical layer was about 50 ⁇ m.
  • tetra-n-butylphosphonium bromide purchased from Nippon Kogyo Co., Ltd. (Japan) with respect to 100 weight part of bis (2,3- epithiopropyl) sulfides.
  • the parts were mixed and stirred at room temperature to prepare a homogeneous liquid.
  • a polytetrafluoroethylene membrane (PTFE membrane) having a thickness of about 0.5 ⁇ m was filtered to prepare a base material, which was applied onto a PET film having a thickness of about 75 ⁇ m and then pressurized with a forming roll.
  • a light condensing pattern having a height of about 25 ⁇ m was prepared on the PET film, thereby preparing a first light condensing sheet.
  • the second light collecting sheet was manufactured through a process substantially the same as the method of manufacturing the first light collecting sheet.
  • a light guide plate, a diffusion sheet, a first light collecting sheet, and a second light collecting sheet manufactured by the above method were sequentially stacked, and a blue light emitting module was assembled to prepare a backlight unit according to Example 1 of the present invention.
  • YAG phosphors purchased from Nichia (Japan, Japan) were applied together with OE-6630 silicone resin (trade name, Dow Corning, USA) on a blue light emitting chip having an emission peak at about 444 nm and then cured. A white light emitting module was prepared.
  • a backlight unit substantially the same as Example 1 was prepared as a backlight unit according to Example 2 of the present invention.
  • urethane acrylate purchased from BASF (company name, Germany), mixed with about 0.7 parts by weight of photoinitiator (diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, TPO) purchased from BASF, Coated and cured on a transparent base substrate (trade name: XU42, Toraya, Japan) of about 38 ⁇ m thick to form a light diffusion layer having an average thickness of about 50 ⁇ m and having the shape shown in FIG. 4C on its surface.
  • a transparent base substrate trade name: XU42, Toraya, Japan
  • the second coating composition comprising the green nanocomposite described in Example 1 was coated and cured on the other side of one surface of the PET film having the light collecting pattern, thereby having an average thickness of about 5 ⁇ m. And an optical layer having a shape shown in Fig. 4D on the surface thereof, to prepare a first light collecting sheet according to Example 3.
  • the first coating composition comprising the red nanocomposite described in Example 1 is coated and cured on the other surface of the PET film on which the light collecting pattern is formed to obtain an average thickness.
  • FIG. 4D An optical layer having a shape shown in FIG. 4D and having a shape of about 5 ⁇ m on its surface was formed to prepare a second light collecting sheet according to Example 3.
  • a light guide plate, a diffusion sheet, a first light collecting sheet, and a second light collecting sheet prepared as described above were assembled with a blue light emitting module exhibiting an emission peak at about 444 nm to prepare a backlight unit according to Example 3 of the present invention.
  • a backlight unit substantially the same as Example 3 was prepared as a backlight unit according to Example 4 of the present invention, except that the white light emitting module described in Example 2 was used as the light source.
  • Example 3 the diffusion sheet in Example 3, the first light collecting sheet and the second light collecting sheet in Example 1 were prepared.
  • the second coating composition including the green nanocomposite described in Example 1 was coated and cured to form a first optical layer having a thickness of about 5 ⁇ m.
  • the first coating composition including the red nanocomposite described in Example 1 was coated and cured to form a second optical layer having a thickness of about 5 ⁇ m. Accordingly, a light guide plate according to Example 5 of the present invention including a base substrate, first and second optical layers was manufactured.
  • the light guide plate, the diffusion sheet, and the first and second light collecting sheets prepared above were assembled with a blue light emitting module showing an emission peak at about 444 nm to prepare a backlight unit according to Example 5 of the present invention.
  • Example 5 Except for using the white light emitting module as a light source, the same backlight unit as in Example 5 was prepared as a backlight unit according to Example 6 of the present invention.
  • a backlight unit substantially the same as Example 1 was used as the backlight unit according to Comparative Example 1, except that the light source module described in Example 2 was used as the light source and a diffusion sheet included in the backlight unit according to Example 3 was used. Ready.
  • red nano light-emitting body (trade name: Nanodot-HE-610, QD solution, Korea) was used for the diffusion sheet, and green nano light-emitting body (trade name: Nanodot-HE-530, QD solution, Korea) instead of the green nanocomposite. Except for using, a backlight unit substantially the same as Example 1 was prepared as a backlight unit according to Comparative Example 2.
  • a backlight unit substantially the same as that of Comparative Example 2 was prepared as a backlight unit according to Comparative Example 3, except that a white light emitting module was used as the light source.
  • a green nano light emitting body (trade name: Nanodot-HE-530, QD solution, Korea) is used, and a red nano light emitting body (trade name: Nanodot-HE-610 instead of a red nanocomposite on the second light collecting sheet) , QD solution, Korea), except that the backlight unit substantially the same as Example 3 was prepared as a backlight unit according to Comparative Example 4.
  • a backlight unit substantially the same as that of Comparative Example 2 was prepared as a backlight unit according to Comparative Example 5, except that a white light emitting module was used as the light source.
  • red nanocomposite instead of the red nanocomposite, use a red nano light emitter (trade name: Nanodot-HE-610, QD solution, Korea) on the light guide plate, and use a green nano light emitter (trade name: Nanodot-HE-530, QD solution, Korea) instead of the green nanocomposite. Except for the use, a backlight unit substantially the same as Example 5 was prepared as a backlight unit according to Comparative Example 6.
  • a backlight unit substantially the same as that of Comparative Example 6 was prepared as a backlight unit according to Comparative Example 7, except that a white light emitting module was used as the light source.
  • Each of the backlight units according to Examples 1 to 6 and Comparative Examples 1 to 7 of the present invention was assembled with a display panel of an iPhone 4 (trade name, Apple, USA) to prepare display devices 1 to 6 and comparative devices 1 to 7. .
  • each of the red, green, and blue color coordinates is represented based on the CIE 1931 color coordinate system, and the gamut ratio is shown for each display device and a comparison device for the gamut range (hereinafter, NTSC gamut range) based on the National Television Systems Committee (NTSC).
  • NTSC gamut range a comparison device for the gamut range (hereinafter, NTSC gamut range) based on the National Television Systems Committee (NTSC).
  • NTSC gamut range National Television Systems Committee
  • FIG. 10 is an image illustrating a color reproduction area of a display device including the backlight unit according to Comparative Example 1
  • FIGS. 11A to 11F are color reproduction areas of the display devices including the backlight units according to embodiments 1 to 6.
  • the color reproduction region of the comparison apparatus 1 including the backlight unit according to Comparative Example 1 is about 51.3% of the NTSC color gamut range, but the display apparatuses 1 to 6
  • the color reproduction area is about 73.9% to about 89.2% of the NTSC color gamut range, and it can be seen that the display devices 1 to 6 have a significantly wider color reproduction area than the comparison device 1.
  • the blue color coordinates may be regarded as substantially similar levels, but the red x coordinate of the display devices 1 to 6 is larger than the red x coordinate of the comparison device 1. It can be seen that it has.
  • the green x coordinate of the display devices 1 to 6 has a smaller value than the green x coordinate of the comparison device 1
  • the green y coordinate of the display devices 1 to 6 has a larger value than the green y coordinate of the comparison device 1. Able to know.
  • the color purity of each of the red and green colors of the display devices 1 to 6 is relatively higher than that of the comparison device 1. That is, even when the same display panel is used, the display device may realize red and green colors having higher color purity than the backlight unit according to Comparative Example 1, and the colors that the display device may implement. It can be seen that the area is widened.
  • the display devices 1 to 6 may exhibit substantially the same level as or higher than that of the comparative device 1 even though the nanocomposite having the structure in which the nano light-emitting body is covered with wax particles is dispersed. Able to know.
  • the display devices 1 to 6 include nanocomposites having a structure in which the nano light emitters are encapsulated by wax particles, the red and green color purity is substantially the same as the red and green color purity of the comparative devices 2 to 7. You can see that it is implemented as a level. In other words, even when the nano light-emitting body is coated with wax particles, it can be seen that the wax particles are not a factor for lowering the quantum efficiency of the nano light-emitting body.
  • a wax (trade name: Licowax PED 136 wax, Clariant, Switzerland) having an acid value of about 30 mg KOH / g as an oxidized high density polyethylene wax (Oxidized HDPE Wax) as a wax-based compound was mixed with 1 ml of toluene. After that, the wax-based compound was dissolved by raising the temperature to about 150 ° C. to prepare a wax solution.
  • a solution in which about 20 mg of CdSe-based red nano light-emitting body (trade name: Nanodot-HE-610, QD solution, Korea) was dispersed in 1 ml of toluene was mixed with the wax solution and cooled to room temperature to prepare a cooling solution. .
  • the cooling solution was mixed with a urethane acrylate purchased from BASF (company name, Germany) and a photoinitiator (diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, TPO) purchased from BASF, followed by removal of toluene.
  • a photoinitiator diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, TPO
  • the photoinitiator was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate.
  • the coating composition was coated on a transparent base substrate (trade name: XU42, Toray Industries, Japan) having a thickness of about 38 ⁇ m and cured to prepare a flat sheet 1 including an optical layer having a thickness of about 50 ⁇ m. It was.
  • the wax-based compound was dissolved by raising the temperature to about 150 ° C. to prepare a wax solution.
  • the wax solution was mixed with a solution containing about 20 mg of CdSe-based red quantum dots (trade name: Nanodot-HE-606, QD solution, Korea) in 1 ml of toluene, and then cooled to room temperature to about 10 mg per 1 ml of toluene.
  • a cooling solution in which particles of were dispersed was prepared.
  • a wax having an acid value of about 50 mg KOH / g (trade name: Licowax PED 136 wax, Clariant, Switzerland) was used as an oxidized high density polyethylene wax (Oxidized HDPE Wax).
  • the cooling solution was added to a mixture of 10 ml of ethanol and 1 ml of TEOS (tetraethoxysilane, Sigma Aldrich, USA), and then additionally 2.5 ml of 30% ammonia water to form silicon oxide on the surface of the particles.
  • the nanocomposite solution containing the complex was prepared.
  • the nanocomposite was separated by centrifugation at about 5,000 rpm for about 30 minutes using a high speed centrifuge, washed with ethanol and distilled water, and then ethanol and distilled water were removed using an evaporator. After preparing the nanocomposite, and dispersed in toluene again to prepare a dispersion solution.
  • the dispersion solution was mixed with a urethane acrylate purchased from BASF (company name, Germany) and a photoinitiator (diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, TPO) purchased from BASF, followed by removal of toluene.
  • a photoinitiator diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, TPO
  • the photoinitiator was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate.
  • the coating composition was coated on a transparent base substrate (trade name: XU42, Toray Industries, Japan) having a thickness of about 38 ⁇ m and cured to prepare a flat sheet 2 including an optical layer having a thickness of about 50 ⁇ m. It was.
  • Urethane acrylate and BASF purchased from BASF (company name, Germany) with a solution in which about 20 mg of CdSe-based red nano light-emitting body (trade name: Nanodot-HE-610, QD solution, Korea) was dispersed in 1 ml of toluene.
  • a photoinitiator diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, TPO
  • TPO diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide
  • the coating composition was coated on a transparent base substrate (trade name: XU42, Toray Industries, Japan) having a thickness of about 38 ⁇ m and cured to prepare Comparative Sheet 1 including an optical layer having a thickness of about 50 ⁇ m. .
  • Each of the flat sheet sheets 1, 2 and comparative sheet 1 prepared as described above was measured using an absolute quantum efficiency meter (trade name: C9920-02, HAMAMATSU, Japan). Subsequently, after irradiating ultraviolet light (UV) having a center wavelength of 365 nm for 480 hours at a radiation intensity of about 1.4 mW / cm 2 , that is, under severe conditions of about 2,419.2 J / cm 2 , the second quantum efficiency (QYT2, unit:% ) was measured.
  • UV ultraviolet light
  • QYT2, unit:% the second quantum efficiency
  • the stability was evaluated.
  • the quantum efficiency of each of the red nanocomposite included in the flat sheet 1 and the red nanocomposite included in the flat sheet 2 is superior to the quantum efficiency contained in the comparative sheet 1. That is, despite using the same nano light emitter as the red nano light emitter included in Comparative Sheet 1 to prepare flat sheet 1 and 2 degrees nanocomposites, the quantum efficiency of the nanocomposites included in flat sheet 1 and 2 is about 75% or more. It can be seen that it is maintained.
  • the nanocomposites of the flat sheets 1 and 2 are damaged by light and heat / moisture at a very low level of about 7%, despite being exposed to harsh conditions. It can be seen that heat / moisture stability is good.
  • the red nano light emitter does not emit light after the comparison sheet 1 is exposed to harsh conditions after the manufacture of the comparative sheet 1, so that the second and third quantum efficiency can not be measured, the light stability of the red nano light emitter itself And it can be seen that the heat / moisture stability is very bad.
  • the nanocomposite having a structure in which the nano light-emitting body is coated with wax particles is not only very stable to light, heat or moisture, but also mixed with a sheet-forming composition such as urethane acrylate and cured to prepare a sheet. Even though it can be seen that it is hardly damaged by light, heat or moisture.
  • a back light unit substantially the same as that of Example 1 was prepared as a back light unit according to the seventh embodiment of the present invention, except that a light diffusion pattern having the shape shown in FIG. 4C was further formed on the surface of the optical layer of the diffusion sheet.
  • a backlight unit substantially the same as Comparative Example 2 was prepared as a backlight unit according to Comparative Example 8, except that a light diffusion pattern having a shape shown in FIG. 4C was further formed on the surface of the optical layer of the diffusion sheet.
  • Example 7 In order to independently perform ultraviolet light stability and heat / moisture stability evaluation, two backlight units according to Example 7 and Comparative Example 8 were prepared.
  • SR-3AR product name, TOPCON, Japan
  • one backlight unit according to Example 7 and Comparative Example 8 was selected to separate the diffusion sheet therefrom, and then the ultraviolet radiation (UV) having a central wavelength of 365 nm was radiated to the diffusion sheet at about 1.4 mW / cm 2 . for 480 hours, that was investigated in severe conditions of about 2,419.2 J / cm 2.
  • the diffused sheet irradiated with ultraviolet rays was again assembled with the blue light emitting module, the light guide plate, the first and the second light collecting sheets, and the final luminance and the final color coordinate thereof were measured. The results are shown in Table 4.
  • the diffusion sheet was left in a thermo-hygrostat for 480 hours under severe conditions of 85 ° C and 85% relative humidity. After the diffusion sheet left at high temperature / high humidity was assembled together with the blue light emitting module, the light guide plate, the first and the second light collecting sheet, the final luminance and the final color coordinate thereof were measured. The results are shown in Table 5.
  • the initial / final luminance and the initial / final color coordinates are values measured at nine points of the display area in which the light guide plate, the diffusion sheet, and the first and second light collecting sheets are laminated, except for the portion where the light source is disposed among the backlight units. Mean value of these. The nine points were designated as shown in FIG.
  • the light source is represented by LS
  • the display area in which the light guide plate, the diffusion sheet, and the first and second light collecting sheets are stacked is represented by DS
  • points 1, 2, and adjacent to the light source LS of the display area DS are shown.
  • 3 becomes a light-receiving portion
  • points 7, 8 and 9 opposite to the light-receiving portion become large light portions.
  • the horizontal length of the display area DS is called a and the vertical length is b
  • each of the points 1, 2, and 3 is spaced apart by a / 6 from the first edge of the display area DS adjacent to the light incident portion.
  • Points 7, 8 and 9 are spaced apart a / 6 from the second edge of the display area DS corresponding to the light portion.
  • points 1, 4 and 7 are respectively spaced apart by b / 6 from the third edge connecting the first and second edges, and points 3, 6 and 9 are respectively b from the fourth edge facing the third edge. / 6 apart
  • Points 1, 2 and 3 are each spaced a / 3 with each of points 4, 5 and 6, and points 4, 5 and 6 are each spaced a / 3 with each of points 7, 8 and 9, respectively.
  • points 1, 4 and 7 are each spaced b / 3 with points 2, 5 and 8 respectively and points 2, 5 and 8 are spaced apart by points 3, 6 and 9 and b / 3 respectively.
  • the initial luminance of the backlight unit according to the seventh embodiment of the present invention is about 6,207 cd / m 2
  • the initial luminance of the backlight unit according to Comparative Example 8 is about 3,502 cd / m 2
  • the value is about 1.77 times higher.
  • the final luminance measured after the harsh conditions of ultraviolet rays applied to the backlight unit according to the seventh embodiment of the present invention is reduced by about 150 cd / m 2 compared to the initial luminance, while the final luminance of the backlight unit according to Comparative Example 8 is It can be seen that the decrease of about 1,617 cd / m 2 is reduced to almost half of the initial luminance.
  • the difference (x) of the x coordinate is about 0.001 and the difference (y) of the y coordinate is about 0.002. It can be seen that the difference? X between the initial color coordinate and the final color coordinate of the backlight unit is 0.023 and the difference? Y of the y coordinate is about 0.035.
  • the final luminance measured after the harsh conditions of high temperature and high humidity was applied to the backlight unit according to Example 8 of the present invention decreased by about 182 cd / m 2 compared to the initial luminance, while the backlight according to Comparative Example 8 It can be seen that the final luminance of the unit is reduced by about 1,959 cd / m 2, which is reduced to almost half of the initial luminance.
  • the difference (x) of the x coordinate is about 0.005 and the difference (y) of the y coordinate is about 0.006. It can be seen that the difference? X between the initial color coordinate and the final color coordinate of the backlight unit is 0.035 and the difference? Y of the y coordinate is about 0.044.
  • the nanocomposite is diffused Not only is it hardly damaged in the process of manufacturing the sheet, it can be seen that even in the diffusion sheet, the stability against heat, moisture and light is very good compared to the nano light-emitting body.
  • a benzotriazole UV absorber (trade name: Tinuvin-329, BASF, Germany) and a hindered amine light stabilizer (trade name: Tinuvin-770, BASF, Germany) based on 100 parts by weight of the methyl methacrylate polymer.
  • a resin in pellet form was prepared by using an extruder (inner diameter: 27 mm, L / D: 40, Leistritz. Co.), which was extruded using a sheet extruder, and then optically about 0.4 mm thick. Plates were prepared.
  • a light guide plate was prepared by coating a coating composition including a blue nanocomposite on one surface of the optical plate to form an optical layer having a thickness of about 5 ⁇ m.
  • the coating composition the wax solution was mixed with a solution of about 20 mg of blue nano light emitter (trade name; Nanodot-HE-480, QD solution, Korea) dispersed in 1 ml of toluene and cooled to room temperature, BASF (Company) It was mixed with a urethane acrylate purchased from Myung, Germany) and a photoinitiator (diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, TPO) purchased from BASF. The photoinitiator was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate. It was then prepared by removing toluene using an evaporator.
  • blue nano light emitter trade name; Nanodot-HE-480, QD solution, Korea
  • urethane acrylate purchased from BASF (company name, Germany), mixed with about 0.7 parts by weight of photoinitiator (diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, TPO) purchased from BASF, Coated and cured on a transparent base substrate (trade name: XU42, Toraya, Japan) of about 38 ⁇ m thick to form a light diffusion layer having an average thickness of about 50 ⁇ m and having the shape shown in FIG. 4C on its surface.
  • a transparent base substrate trade name: XU42, Toraya, Japan
  • tetra-n-butylphosphonium bromide purchased from Nippon Kogyo Co., Ltd. (Japan) with respect to 100 weight part of bis (2,3- epithiopropyl) sulfides.
  • the parts were mixed and stirred at room temperature to prepare a homogeneous liquid.
  • a polytetrafluoroethylene membrane (PTFE membrane) having a thickness of about 0.5 ⁇ m was filtered to prepare a base material, which was applied onto a PET film having a thickness of about 75 ⁇ m and then pressurized with a forming roll.
  • a light condensing pattern having a height of about 25 ⁇ m was prepared on the PET film, thereby preparing a first light condensing sheet.
  • the second light collecting sheet was manufactured through a process substantially the same as the method of manufacturing the first light collecting sheet.
  • OE- YAG phosphor purchased from Nichia (Japan, Japan) was prepared on the blue light emitting chip having the light guide plate, the diffusion sheet, and the first and second light collecting sheets prepared as described above, having a light emission peak at about 444 nm.
  • a backlight unit according to Example 8 of the present invention was prepared by assembling with 6630 silicon resin (trade name, Dow Corning, USA) and then assembly with a white light emitting module prepared by curing. In this case, the optical layer of the light guide plate is disposed on the emission surface of the light provided from the light source.
  • a light guide plate As a light guide plate, 0.5 weight part of benzotriazole type ultraviolet absorbers (brand name: Tinuvin-329, BASF Corporation, Germany) and a hindered amine light stabilizer (brand name: Tinuvin-770, BASF company) with respect to 100 weight part of methyl methacrylate polymers , Germany) After mixing 0.5 parts by weight, a resin in pellet form was prepared using an extruder (inner diameter: 27 mm, L / D: 40, Leistritz. Co.), which was extruded using a sheet extruder to about 0.4 mm An optical plate of thickness was prepared.
  • a wax (trade name: Licowax PED 136 wax, Clariant, Switzerland) having an acid value of about 30 mg KOH / g as an oxidized high density polyethylene wax (Oxidized HDPE Wax) as a wax-based compound was mixed with 1 ml of toluene. After that, the wax-based compound was dissolved by raising the temperature to about 150 ° C. to prepare a wax solution. A solution containing about 20 mg of CdSe-based blue nano light-emitting body (trade name: Nanodot-HE-480, QD solution, Korea) in 1 ml of toluene was added to the wax solution, mixed, and cooled to room temperature.
  • CdSe-based blue nano light-emitting body (trade name: Nanodot-HE-480, QD solution, Korea) in 1 ml of toluene was added to the wax solution, mixed, and cooled to room temperature.
  • the urethane acrylate purchased from the company (company name, Germany) and the photoinitiator (diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, TPO) purchased from BASF were mixed.
  • the photoinitiator was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate.
  • toluene was removed using an evaporator to prepare a coating composition in which urethane acrylate, red nanocomposite and photoinitiator were mixed.
  • the coating composition was coated on a transparent base substrate (trade name: XU42, Toray Industries, Japan) of about 38 ⁇ m thickness and cured to form a light diffusion layer having the shape shown in FIG. 4C on its surface.
  • the average thickness of the light diffusion layer was about 50 ⁇ m.
  • First and second light collecting sheets were prepared which are substantially the same as described in Example 8.
  • the light guide plate, the diffusion sheet, and the first and second light collecting sheets prepared as described above were assembled with the white light emitting module described in Example 2 to prepare a backlight unit according to Example 9 of the present invention.
  • a light guide plate substantially the same as that described in Example 9 was prepared, and a diffusion sheet substantially the same as that described in Example 8 was prepared.
  • tetra-n-butylphosphonium bromide purchased from Nippon Kogyo Co., Ltd. (Japan) with respect to 100 weight part of bis (2,3- epithiopropyl) sulfides.
  • the parts were mixed and stirred at room temperature to prepare a homogeneous liquid.
  • a polytetrafluoroethylene membrane (PTFE membrane) having a thickness of about 0.5 ⁇ m was filtered to prepare a base material, which was applied onto a PET film having a thickness of about 75 ⁇ m and then pressurized with a forming roll.
  • a light condensing pattern having a height of about 25 ⁇ m was prepared on the PET film, thereby preparing a first light condensing sheet.
  • the blue nanocomposite, the polyurethane acrylate and the photoinitiator described in Example 9 on the opposite side of the PET film having the light collecting pattern ( coating and curing a coating composition comprising diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) to form an optical layer having the shape shown in FIG. A light collecting sheet was prepared.
  • the light guide plate, the diffusion sheet, and the first and second light collecting sheets prepared as described above were assembled with the white light emitting module to prepare a backlight unit according to the tenth embodiment of the present invention.
  • ⁇ x is the difference between the maximum value and the minimum value of the x coordinate among the points 1 to 9
  • ⁇ y represents the difference between the maximum value and the minimum value of the y coordinate among the points 1 to 9.
  • Example 10 Color coordinates (x, y) One (0.297, 0.283) (0.295, 0.282) (0.295, 0.281) (0.294, 0.281) 2 (0.296, 0.281) (0.297, 0.283) (0.295, 0.281) (0.293, 0.278) 3 (0.298, 0.283) (0.299, 0.286) (0.299, 0.285) (0.296, 0.281) 4 (0.302, 0.290) (0.294, 0.283) (0.292, 0.282) (0.289, 0.278) 5 (0.301, 0.288) (0.296, 0.284) (0.294, 0.282) (0.291, 0.279) 6 (0.303, 0.289) (0.299, 0.287) (0.297, 0.285) (0.293, 0.280) 7 (0.311, 0.303) (0.295, 0.287) (0.293, 0.286) (0.289, 0.281) 8 (0.312,
  • the x- and y-coordinates are closer to the light source, that is, the color coordinates of points 1 to 3 than the color coordinates of points 5 to 9, which are light facing parts facing the light incident part. It can be seen that both have small values.
  • the color coordinates of the points 1 to 3 are substantially the same as the color coordinates of the points 7 to 9. That is, in the backlight units according to the seventh to seventh exemplary embodiments of the present invention, it can be seen that there is almost no difference in color coordinates between the light incident portion and the light facing portion.
  • the values in the backlight units according to Examples 7 to 9 are significantly lower than those in Comparative Example 1. That is, in the backlight unit according to Comparative Example 1, the observer may recognize the light portion as yellow relative to the light incident portion due to the difference in the color coordinates of the light incident portion and the light facing portion. However, it can be seen that the color coordinate difference of the points 1 to 9 is significantly reduced by the optical sheet including the blue nanocomposite as in the backlight units according to Examples 7 to 9. Accordingly, by applying the blue nanocomposite to at least one of the diffusion sheet, the light guide plate, and the light collecting sheet, the color coordinates of the backlight unit may be uniformly adjusted as a whole.

Abstract

Disclosed is a nanocomposite. The nanocomposite comprises a wax particle, at least one nano light-emitting body positioned inside the wax particle, and a silicon oxide protective film for covering the nano light-emitting body. The nanocomposite can improve light stability and heat/moisture stability of the nano light-emitting body.

Description

나노 복합체, 이를 포함하는 광학 부재 및 백라이트 유닛Nanocomposite, Optical member and backlight unit including same
본 발명은 나노 복합체, 이를 포함하는 광학 부재 및 백라이트 유닛에 관한 것이다.The present invention relates to a nanocomposite, an optical member and a backlight unit including the same.
양자점등을 포함하는 나노 발광체는, 수 내지 수십 나노미터 크기의 결정 구조를 가진 물질로, 수백에서 수천 개 정도의 원자로 구성된다. 동일한 재료로 형성된 나노 발광체라도 그 크기가 작아질수록 밴드 갭(band gap)이 커지기 때문에, 나노 발광체의 크기에 따라 발광 특성이 달라진다. 또한, 동일한 크기의 나노 발광체라 하더라도 형성하는 재료에 따라 발광 특성이 달라진다. 이러한 나노 발광체의 특성을 조절하여 각종 발광 소자 및 전자 장치에 다양하게 이용하고 있다.Nano light emitters, including quantum dots, are materials with crystal structures ranging in size from tens to tens of nanometers and are composed of hundreds to thousands of atoms. Even if the nano light emitting material is formed of the same material as the size is smaller the band gap (band gap) becomes larger, the light emission characteristics vary depending on the size of the nano light emitting material. In addition, even if the nano-luminescent body of the same size, the light emission characteristics vary depending on the material to be formed. The characteristics of the nano light-emitting body are controlled and used in various light emitting devices and electronic devices.
하지만 나노 발광체는 자외선, 열, 수분 등에 매우 취약하므로, 나노 발광체를 전자 장치 등에 적용시키면 전자 장치의 수명이 짧아지는 문제점이 있다. 이를 해결하기 위해, 나노 발광체를 포함하는 박막의 상하부에 각각 보호층을 형성하여 자외선, 열, 수분 등으로부터 상기 박막 내의 나노 발광체를 보호하고자 하는 방안들이 제시되고 있으나, 박막 내로 수분이 침투하는 것을 원천적으로 차단하는데 한계가 있다.However, since the nano light emitter is very vulnerable to ultraviolet rays, heat, moisture, etc., when the nano light emitter is applied to an electronic device, there is a problem that the life of the electronic device is shortened. In order to solve this problem, a method of protecting the nano light emitting material in the thin film from UV, heat, and moisture by forming a protective layer on the upper and lower portions of the thin film including the nano light emitting material, respectively, has been proposed. There is a limit to blocking.
한편, 표시 장치는 일반적으로 백색광을 방출하는 백색 광원을 이용한다. 백색광이 컬러필터를 통과함으로써, 상기 표시 장치를 관찰하는 사용자는 컬러 영상을 볼 수 있다. 상기 백색 광원은, 청색광을 방출하는 청색 LED 칩(light-emitting diode chip) 및 청색광을 이용하여 최종적으로 광원이 백색광을 방출하도록 하는 광전환체를 포함한다. 상기 광전환체로서 형광체인 YAG(Yttrium Aluminum Garnet)를 주로 이용하고 있다. 그러나, 상기 형광체는 적색광 파장대역과 녹색광 파장대역에 걸친 넓은 범위의 발광 스펙트럼을 갖기 때문에 상기 형광체를 이용한 백색 광원이 생성하는 광이 컬러필터를 통과하여 나타내는 컬러의 색순도를 높이는데 한계가 있고, 표시 장치의 색재현성을 저하시키는 문제가 있다. On the other hand, the display device generally uses a white light source that emits white light. As the white light passes through the color filter, a user who observes the display device may see a color image. The white light source includes a blue light emitting diode chip (LED) emitting blue light and a light converting body which finally emits white light by using blue light. YAG (Yttrium Aluminum Garnet), which is a phosphor, is mainly used as the light conversion body. However, since the phosphor has a wide range of emission spectrum over the red light wavelength band and the green light wavelength band, there is a limit in increasing the color purity of the color of the light generated by the white light source using the phosphor passing through the color filter. There is a problem of lowering the color reproducibility of the device.
표시 장치의 색재현성을 향상시키기 위해, 최근에 반치폭(full width at half maximum, FWHM)이 좁고 파워 밀도가 높은 발광 스펙트럼을 갖는 나노 발광체를 표시 장치에 적용하기 위한 다양한 연구가 진행되고 있다.In order to improve color reproducibility of a display device, various studies have recently been conducted to apply a nano light-emitting body having a light emission spectrum having a narrow full width at half maximum (FWHM) and a high power density to a display device.
본 발명의 기술적 과제는 이러한 점에서 착안된 것으로서, 본 발명의 일 목적은 나노 발광체의 자외선, 열, 수분 등에 대한 안정성을 향상시킬 수 있는 나노 복합체를 제공하는 것이다.The technical problem of the present invention was conceived in this respect, and an object of the present invention is to provide a nanocomposite capable of improving the stability of ultraviolet light, heat, moisture, etc. of the nano light-emitting body.
본 발명의 다른 목적은 상기 나노 복합체를 적용한 광학 부재, 확산시트 및 집광시트를 제공하는 것이다. Another object of the present invention is to provide an optical member, a diffusion sheet and a light collecting sheet to which the nanocomposite is applied.
본 발명의 또 다른 목적은 상기 광학 부재, 상기 확산시트 및 상기 집광시트 중 하나 이상을 적용한 백라이트 유닛을 제공하는 것이다.Still another object of the present invention is to provide a backlight unit to which at least one of the optical member, the diffusion sheet, and the light collecting sheet is applied.
본 발명의 일 실시예에 따른 나노 복합체는 왁스 입자, 적어도 1개의 나노 발광체 및 내부 보호막을 포함한다. 상기 나노 발광체는 상기 왁스 입자 내부에 배치된다. 상기 내부 보호막은 나노 발광체를 피복하고, 산화 실리콘으로 형성된다.Nanocomposite according to an embodiment of the present invention comprises a wax particle, at least one nano light-emitting body and the inner protective film. The nano light emitter is disposed inside the wax particle. The inner protective layer covers the nano light-emitting body and is formed of silicon oxide.
일 실시예에서, 상기 내부 보호막은 1개의 나노 발광체를 피복할 수 있다. 이와 달리, 상기 내부 보호막은 2개 이상의 나노 발광체를 피복 할 수 있다.In one embodiment, the inner passivation layer may cover one nano light-emitting body. In contrast, the inner passivation layer may cover two or more nano light-emitting bodies.
일 실시예에서, 상기 나노 복합체는 외부 보호막을 더 포함할 수 있다. 상기 외부 보호막은 상기 왁스 입자의 표면을 피복하고, 산화 실리콘으로 형성될 수 있다. 이때, 상기 나노 복합체는 상기 외부 보호막의 표면에 형성되고, 왁스계 화합물로 형성된 왁스층을 더 포함할 수 있다.In one embodiment, the nanocomposite may further include an outer protective film. The outer protective film may cover the surface of the wax particles and be formed of silicon oxide. In this case, the nanocomposite may further include a wax layer formed on the surface of the outer protective layer and formed of a wax-based compound.
본 발명의 다른 실시예에 따른 나노 복합체는 왁스 입자, 적어도 1개의 나노 발광체 및 외부 보호막을 포함한다. 상기 나노 복합체는 상기 왁스 입자 내부에 배치된다. 상기 외부 보호막은 상기 왁스 입자의 표면을 피복하고, 산화 실리콘으로 형성된다.Nanocomposite according to another embodiment of the present invention comprises a wax particle, at least one nano light-emitting body and an outer protective film. The nanocomposite is disposed inside the wax particles. The outer protective film covers the surface of the wax particles and is formed of silicon oxide.
일 실시예에서, 상기 나노 복합체는 상기 외부 보호막의 표면에 형성되고, 왁스계 화합물을 포함하는 왁스층을 더 포함할 수 있다.In one embodiment, the nanocomposite may further include a wax layer formed on a surface of the outer protective layer and including a wax-based compound.
본 발명의 일 실시예에 따른 광학 부재는 베이스 기재 및 상기 베이스 기재의 일 면 상에 배치되고 적어도 1개의 나노 복합체가 분산된 제1 광학층을 포함한다. 상기 제1 나노 복합체는 제1 왁스 입자 및 상기 제1 왁스 입자 내부에 배치된 적어도 1개의 제1 나노 발광체를 포함한다.An optical member according to an embodiment of the present invention includes a base substrate and a first optical layer disposed on one surface of the base substrate and having at least one nanocomposite dispersed therein. The first nanocomposite includes a first wax particle and at least one first nano light-emitting body disposed inside the first wax particle.
일 실시예에서, 상기 광학 부재는 상기 제1 광학층 상에 형성된 광확산층을 더 포함할 수 있다. 이때, 상기 광확산층의 표면에는 광확산 패턴이 형성될 수 있다.In one embodiment, the optical member may further include a light diffusion layer formed on the first optical layer. In this case, a light diffusion pattern may be formed on the surface of the light diffusion layer.
일 실시예에서, 상기 광학 부재는 상기 일 면에 대향하는 상기 베이스 기재의 타면 상에 배치되고 적어도 1개의 제2 나노 복합체가 분산된 제2 광학층을 더 포함할 수 있다. 이때, 상기 제2 나노 복합체는 제2 왁스 입자 및 상기 제2 왁스 입자 내부에 배치된 적어도 1개의 제2 나노 발광체를 포함할 수 있다. 이때, 상기 광학 부재는 상기 제2 광학층 상에 형성된 광확산층을 더 포함할 수 있고, 상기 광확산층의 표면에는 광확산 패턴이 형성될 수 있다.In one embodiment, the optical member may further include a second optical layer disposed on the other surface of the base substrate facing the one surface and at least one second nanocomposite is dispersed. In this case, the second nanocomposite may include a second wax particle and at least one second nano light-emitting body disposed inside the second wax particle. In this case, the optical member may further include a light diffusion layer formed on the second optical layer, and a light diffusion pattern may be formed on a surface of the light diffusion layer.
일 실시예에서, 상기 광학 부재는 상기 제1 광학층 상에 배치되고 적어도 1개의 제3 나노 복합체가 분산된 제3 광학층을 더 포함할 수 있다. 이때, 상기 제3 나노 복합체는 제3 왁스 입자 및 상기 제3 왁스 입자 내부에 배치된 적어도 1개의 제3 나노 발광체를 포함할 수 있다.In an embodiment, the optical member may further include a third optical layer disposed on the first optical layer and having at least one third nanocomposite dispersed therein. In this case, the third nanocomposite may include a third wax particle and at least one third nano light emitter disposed in the third wax particle.
일 실시예에서, 상기 제1 내지 제3 나노 복합체들 중 적어도 하나는, 산화 실리콘으로 형성된 내부 보호막 또는 외부 보호막을 더 포함할 수 있다. 상기 내부 보호막은 상기 제1 내지 제3 나노 발광체들 중 어느 하나의 표면을 피복하고, 상기 외부 보호막은 상기 제1 내지 제3 왁스 입자들 중 어느 하나의 표면을 피복할 수 있다. 상기 제1 내지 제3 나노 복합체들 중 어느 하나가 상기 외부 보호막을 포함하는 경우, 왁스계 화합물로 형성된 왁스층이 상기 외부 보호막의 표면을 피복할 수 있다.In one embodiment, at least one of the first to third nanocomposites may further include an inner protective film or an outer protective film formed of silicon oxide. The inner passivation layer may cover the surface of any one of the first to third nano light-emitting bodies, and the outer passivation layer may cover the surface of any one of the first to third wax particles. When any one of the first to third nanocomposites includes the outer protective layer, a wax layer formed of a wax-based compound may cover the surface of the outer protective layer.
일 실시예에서, 상기 제1 내지 제3 광학층들 중 적어도 하나는 그 표면에 형성된 광학 패턴을 포함할 수 있다.In one embodiment, at least one of the first to third optical layers may include an optical pattern formed on the surface thereof.
본 발명의 다른 실시예에 따른 확산 시트는 베이스 기재 및 상기 베이스 기재의 일 면 상에 배치되고 적어도 1개의 나노 복합체가 분산되며 표면에 광확산 패턴이 형성된 제1 광학층을 포함한다. 상기 제1 나노 복합체는 제1 왁스 입자 및 상기 제1 왁스 입자 내부에 배치된 적어도 1개의 제1 나노 발광체를 포함한다.The diffusion sheet according to another embodiment of the present invention includes a base substrate and a first optical layer disposed on one surface of the base substrate, at least one nanocomposite is dispersed, and a light diffusion pattern formed on a surface thereof. The first nanocomposite includes a first wax particle and at least one first nano light-emitting body disposed inside the first wax particle.
일 실시예에서, 상기 확산 시트는 상기 일 면과 대향하는 타면 상에 배치되고 적어도 1개의 제2 나노 복합체를 포함하는 제2 광학층을 더 포함할 수 있다. 상기 제2 나노 복합체는 제2 왁스 입자 및 상기 제2 왁스 입자 내부에 배치된 적어도 1개의 나노 발광체를 포함할 수 있다. 이때, 상기 제2 광학층의 표면에는 광확산 패턴이 형성될 수 있다.In one embodiment, the diffusion sheet may further include a second optical layer disposed on the other surface facing the one surface and including at least one second nanocomposite. The second nanocomposite may include a second wax particle and at least one nano light emitter disposed inside the second wax particle. In this case, a light diffusion pattern may be formed on the surface of the second optical layer.
일 실시예에서, 상기 확산 시트는 상기 베이스 기재와 상기 제2 광학층 사이 또는 상기 베이스 기재와 상기 제1 광학층 사이에 배치된 중간층을 더 포함할 수 있다. 이때, 상기 중간층은 적어도 1개의 제3 나노 복합체를 포함하고, 상기 제3 나노 복합체는 제3 왁스 입자 및 상기 제3 왁스 입자 내부에 배치된 적어도 1개의 나노 발광체를 포함할 수 있다.In one embodiment, the diffusion sheet may further include an intermediate layer disposed between the base substrate and the second optical layer or between the base substrate and the first optical layer. In this case, the intermediate layer may include at least one third nanocomposite, and the third nanocomposite may include a third wax particle and at least one nano light emitter disposed inside the third wax particle.
일 실시예에서, 상기 확산 시트는 상기 일 면과 대향하는 상기 베이스 기재의 타면 상에 배치되고 집광 패턴이 표면에 형성된 제2 광학층을 더 포함할 수 있다.In one embodiment, the diffusion sheet may further include a second optical layer disposed on the other surface of the base substrate facing the one surface and the light collecting pattern is formed on the surface.
본 발명의 다른 실시예에 따른 확산 시트는 베이스 기재, 상기 베이스 기재의 일 면 상에 형성된 광확산층 및 상기 일 면과 대향하는 상기 베이스 기재의 타면 상에 형성되고 적어도 1개의 제1 나노 복합체를 포함하는 제1 광학층을 포함한다. 상기 제1 나노 복합체는 제1 왁스 입자 및 상기 제1 왁스 입자 내부에 배치된 적어도 1개의 제1 나노 발광체를 포함한다.A diffusion sheet according to another embodiment of the present invention includes a base substrate, a light diffusion layer formed on one surface of the base substrate, and at least one first nanocomposite formed on the other surface of the base substrate facing the one surface. It includes a first optical layer. The first nanocomposite includes a first wax particle and at least one first nano light-emitting body disposed inside the first wax particle.
일 실시예에서, 상기 확산 시트는 상기 제1 광학층 상에 배치되고 적어도 1개의 제2 나노 복합체를 포함하는 제2 광학층을 더 포함할 수 있다. 이때, 상기 제2 나노 복합체는 제2 왁스 입자 및 상기 제2 왁스 입자 내부에 배치된 적어도 1개의 제2 나노 발광체를 포함할 수 있다.In one embodiment, the diffusion sheet may further include a second optical layer disposed on the first optical layer and including at least one second nanocomposite. In this case, the second nanocomposite may include a second wax particle and at least one second nano light-emitting body disposed inside the second wax particle.
일 실시예에서, 상기 확산 시트는 상기 제1 광학층 상에 형성된 광확산층을 더 포함할 수 있다.In one embodiment, the diffusion sheet may further include a light diffusion layer formed on the first optical layer.
본 발명의 일 실시예에 따른 집광 시트는 베이스 기재 및 상기 베이스 기재 상에 배치되고 왁스 입자 내부에 배치된 적어도 1개의 나노 발광체를 포함하는 나노 복합체를 포함하는 집광 패턴을 포함한다.The light collecting sheet according to the embodiment of the present invention includes a light collecting pattern including a base substrate and a nanocomposite including at least one nano light emitter disposed on the base substrate and disposed inside the wax particle.
본 발명의 다른 실시예에 따른 집광 시트는 베이스 기재, 상기 베이스 기재의 일 면 상에 배치된 집광 패턴 및 상기 일 면과 대향하는 상기 베이스 기재의 타면 상에 배치되고, 나노 복합체를 포함하는 광학층을 포함한다. 이때, 상기 나노 복합체는 왁스 입자 및 상기 왁스 입자 내부에 배치된 적어도 1개의 나노 발광체를 포함한다.The light collecting sheet according to another embodiment of the present invention is an optical layer including a base substrate, a light collecting pattern disposed on one surface of the base substrate and the other surface of the base substrate facing the one surface, and including a nanocomposite. It includes. In this case, the nanocomposite includes wax particles and at least one nano light-emitting body disposed inside the wax particles.
일 실시예에서, 상기 광학층 표면에는 광확산 패턴이 형성될 수 있다.In one embodiment, a light diffusion pattern may be formed on the surface of the optical layer.
본 발명의 일 실시예에 따른 백라이트 유닛은 광원, 확산 시트 및 집광 시트를 포함하고, 상기 확산 시트 및 상기 집광 시트 중 적어도 어느 하나는 왁스 입자 및 상기 왁스 입자 내부에 배치된 적어도 1개의 나노 발광체를 포함하는 나노 복합체를 1개 이상 포함한다.The backlight unit according to an embodiment of the present invention includes a light source, a diffusion sheet, and a light collecting sheet, and at least one of the diffusion sheet and the light collecting sheet includes wax particles and at least one nano light emitter disposed inside the wax particles. At least one nanocomposite is included.
일 실시예에서, 상기 광원은 청색광 발광 모듈을 포함할 수 있다.In one embodiment, the light source may include a blue light emitting module.
본 발명에 따른 나노 복합체에서는, 왁스계 화합물 또는 산화 실리콘으로 나노 발광체를 보호하므로, 상기 나노 발광체의 광 안정성 및 수분/열 안정성을 현저하게 향상시킬 수 있다.In the nanocomposite according to the present invention, since the nano light-emitting body is protected by a wax-based compound or silicon oxide, the light stability and the moisture / thermal stability of the nano light-emitting body can be significantly improved.
그리고 본 발명에 따른 광학 부재 및 백라이트 유닛에 따르면, 나노 복합체를 이용함으로써 표시 장치의 색재현 영역을 증가시킬 수 있을 뿐만 아니라 표시 장치가 표시하는 컬러의 색순도 및 색재현성도 향상시킬 수 있다.According to the optical member and the backlight unit according to the present invention, not only the color reproduction area of the display device can be increased by using the nanocomposite but also the color purity and color reproducibility of the color displayed by the display device can be improved.
도 1a 내지 도 1c는 본 발명의 하나의 실시예에 따른 나노 복합체를 설명하기 위한 도면들이다. 1A to 1C are diagrams for explaining a nanocomposite according to an embodiment of the present invention.
도 2는 도 1a 내지 도 1c에 도시된 나노 발광체를 설명하기 위한 도면이다. FIG. 2 is a diagram for explaining the nano light-emitting body shown in FIGS. 1A to 1C.
도 3a 내지 도 3c는 본 발명의 다른 하나의 실시예에 따른 나노 복합체를 설명하기 위한 도면들이다. 3A to 3C are diagrams for explaining a nanocomposite according to another embodiment of the present invention.
도 4a 및 도 4b는 본 발명의 실시예에 따른 광학 부재를 설명하기 위한 도면들이다. 4A and 4B are diagrams for describing an optical member according to an exemplary embodiment of the present invention.
도 4c 내지 도 4g는 광학 패턴의 다양한 형태를 설명하기 위한 도면들이다.4C to 4G are diagrams for describing various types of optical patterns.
도 5a 내지 도 5i는 본 발명에 따른 확산 시트의 실시예들을 설명하기 위한 도면들이다.5A to 5I are views for explaining embodiments of the diffusion sheet according to the present invention.
도 6a 내지 도 6d는 본 발명에 따른 집광 시트의 실시예들을 설명하기 위한 도면들이다. 6a to 6d are views for explaining embodiments of the light collecting sheet according to the present invention.
도 7a 내지 도 7c는 본 발명에 따른 도광판의 실시예들을 설명하기 위한 도면들이다. 7A to 7C are diagrams for describing embodiments of the light guide plate according to the present invention.
도 8 및 도 9는 본 발명의 실시예에 따른 백라이트 유닛을 설명하기 위한 도면들이다. 8 and 9 are diagrams for describing a backlight unit according to an exemplary embodiment of the present invention.
도 10은 비교예 1에 따른 백라이트 유닛을 포함하는 표시 장치의 색재현 영역을 설명하기 위한 이미지이다. 10 is an image for describing a color reproduction area of a display device including a backlight unit according to Comparative Example 1. FIG.
도 11a 내지 도 11f는 실시예 1 내지 6에 따른 백라이트 유닛을 포함하는 표시 장치들의 색재현 영역을 설명하기 위한 이미지들이다.11A to 11F are images for describing a color reproduction area of display devices including the backlight units according to the first to sixth embodiments.
도 12는 색좌표 균일도 평가 실험의 9개의 지점들을 설명하기 위한 도면이다.12 is a diagram for explaining nine points of color coordinate uniformity evaluation experiments.
이하, 첨부한 도면을 참조하여 본 발명의 실시예들에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태로 한정하려는 것은 아니며, 본 발명은 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대 또는 축소하여 도시한 것이다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific form disclosed, it is to be understood that the present invention includes all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In the accompanying drawings, the dimensions of the structures are shown to be enlarged or reduced than actual for clarity of the invention.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로서 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present application, the terms "comprise", "comprise" or "have" are intended to indicate that there is a feature, step, operation, component, part, or combination thereof described on the specification, and one or the same. It is to be understood that the present invention does not exclude in advance the possibility of the presence or the addition of other features, steps, operations, components, parts or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
본 발명에 있어서, 왁스계 화합물이라 함은 상온에서 고체 상태이고 상온보다 높은 녹는점(Melting point)을 가지는 유기 화합물을 의미하고, 왁스 입자라 함은 왁스계 화합물의 재결정화로 인하여 형성되고 물리적으로 단일체를 구성하는 정형 또는 부정형의 입자를 의미한다. 여기서 상온은 약 15℃ 내지 약 25℃ 범위 내의 온도를 의미한다. 또한, 본 발명에 있어서, 발광(luminescence)이라 함은 물질 중의 전자가 외부 자극에 의해 바닥상태에서 들뜬 상태로 천이된 후 들뜬 상태의 전자가 다시 안정한 바닥 상태로 떨어지면서 바닥 상태와 들뜬 상태 사이의 에너지 차이에 해당하는 광을 방출하는 현상을 의미한다.In the present invention, the wax-based compound refers to an organic compound having a melting point (melting point) higher than room temperature in a solid state at room temperature, and the wax particles are formed by physical recrystallization of the wax-based compound and are physically monolithic. It refers to the particles of the amorphous or amorphous form. Here, room temperature means a temperature within the range of about 15 ℃ to about 25 ℃. In addition, in the present invention, luminescence refers to the difference between the ground state and the excited state as the electrons in the material transition from the ground state to the excited state by the external stimulus and fall back to the stable ground state. It means a phenomenon of emitting light corresponding to the difference in energy.
또한, 본 발명에서, 청색 나노 복합체는 나노 발광체가 청색 나노 발광체로만 이루어진 나노 복합체를 의미하는 것이다. 또한, 녹색 나노 복합체는 나노 발광체가 녹색 나노 발광체로만 이루어진 나노 복합체를 의미하는 것이고, 적색 나노 복합체는 나노 발광체가 적색 나노 발광체로만 이루어진 나노 복합체를 의미하는 것이다.In addition, in the present invention, the blue nanocomposite means a nanocomposite in which the nano light emitter is composed of only the blue nano light emitter. In addition, the green nanocomposite means a nanocomposite in which the nano light emitter is composed of only green nano light emitter, and the red nanocomposite means a nanocomposite in which the nano light emitter is composed only of red nano light emitter.
또한, 본 발명에서, 다색 나노 복합체는 나노 발광체가 청색, 녹색 및 적색 나노 발광체들 중에서 선택된 적어도 2종의 나노 발광체로 이루어진 나노 복합체를 의미하는 것이다.In addition, in the present invention, the multi-color nanocomposite means a nanocomposite in which the nano light emitter is composed of at least two nano light emitters selected from blue, green and red nano light emitters.
청색 나노 발광체는 약 430 nm 내지 약 470 nm의 청색 파장대에서 발광 피크를 갖는 나노 발광체를 총칭하는 것이고, 녹색 나노 발광체는 약 520 nm 내지 약 560 nm의 녹색 파장대에서 발광 피크를 갖는 나노 발광체를 총칭하는 것이며, 적색 나노 발광체는 약 600nm 내지 약 660 nm의 적색 파장대에서 발광 피크를 갖는 나노 발광체를 총칭하는 것이다.Blue nano emitters collectively refer to nano emitters having emission peaks in the blue wavelength range of about 430 nm to about 470 nm, and green nano emitters collectively refer to nano emitters having emission peaks in the green wavelength range of about 520 nm to about 560 nm. Red nano light emitter is a generic term for nano light emitters having emission peaks in the red wavelength range of about 600 nm to about 660 nm.
나노 복합체Nanocomposite
도 1a 내지 도 1c는 본 발명의 하나의 실시예에 따른 나노 복합체를 설명하기 위한 도면들이고, 도 2는 도 1a 내지 도 1c에 도시된 나노 발광체를 설명하기 위한 도면이다. 1A to 1C are views for explaining a nanocomposite according to one embodiment of the present invention, and FIG. 2 is a view for explaining the nano light-emitting body shown in FIGS. 1A to 1C.
도 1a 및 도 2를 참조하면, 본 발명의 하나의 실시예에 따른 나노 복합체(100a)는 왁스 입자(110) 및 상기 왁스 입자(110) 내부에 배치된 적어도 1개의 나노 발광체(120)를 포함한다.1A and 2, a nanocomposite 100a according to an embodiment of the present invention includes wax particles 110 and at least one nano light emitter 120 disposed inside the wax particles 110. do.
상기 왁스 입자(110)는 왁스계 화합물로 이루어진다. 상기 왁스 입자(110)는 상기 나노 발광체(120)를 캡슐화(encapsulation)하여, 상기 나노 발광체(120)가 외부 환경에 의한 수분, 열, 광 등에 의하여 손상되는 것을 방지할 수 있다. 또한, 상기 나노 발광체(120)가 상기 왁스 입자(110)의 내부에 위치됨에 따라 상기 왁스 입자(110)는 상기 나노 발광체(120)를 광학 부재의 베이스 기재 또는 광학 코팅층을 형성하기 위한 수지에 안정적으로 분산시킬 수 있다. The wax particles 110 are made of a wax-based compound. The wax particles 110 may encapsulate the nano light emitter 120 to prevent the nano light emitter 120 from being damaged by moisture, heat, or light caused by an external environment. In addition, as the nano light emitter 120 is positioned inside the wax particle 110, the wax particles 110 are stable to a resin for forming the nano light emitter 120 as a base substrate or an optical coating layer of an optical member. Can be dispersed.
본 발명에 있어서, 캡슐화라 함은 상기 나노 발광체(120)가 상기 왁스 입자(110)의 내부에 배치되고, 상기 왁스 입자(110)에 의해서 상기 나노 발광체(120)가 감싸지는 것을 의미한다. 이때, 상기 나노 발광체(120)와 상기 왁스 입자(110) 사이에는 반데르발스 힘(Van der Waals force)이 작용할 수 있다. In the present invention, encapsulation means that the nano light emitter 120 is disposed inside the wax particle 110, and the nano light emitter 120 is surrounded by the wax particle 110. In this case, a van der Waals force may act between the nano light emitter 120 and the wax particle 110.
상기 왁스 입자(110)를 구성하는 상기 왁스계 화합물로는 폴리머, 코폴리머 또는 올리고머 형태의 합성 왁스(synthetic wax)가 사용될 수 있다. 예를 들면, 상기 왁스계 화합물로는 폴리에틸렌계 왁스(Polyethylene-based wax), 폴리프로필렌계 왁스(Polypropylene-based wax) 또는 아마이드계 왁스(Amide-based wax)가 사용될 수 있다. The wax-based compound constituting the wax particles 110 may be a synthetic wax in the form of a polymer, a copolymer, or an oligomer. For example, the wax-based compound may be polyethylene-based wax, polypropylene-based wax, or amide-based wax.
하나의 실시예로서, 상기 왁스계 화합물이 폴리에틸렌계 왁스 또는 폴리프로필렌계 왁스인 경우, 상기 왁스계 화합물은 하기 화학식 1 내지 화학식 7로 나타내는 단위체 중 적어도 1종을 포함할 수 있다. As one embodiment, when the wax compound is a polyethylene wax or a polypropylene wax, the wax compound may include at least one of units represented by the following Chemical Formulas 1 to 7.
[화학식 1] [Formula 1]
Figure PCTKR2013010092-appb-I000001
Figure PCTKR2013010092-appb-I000001
[화학식 2][Formula 2]
Figure PCTKR2013010092-appb-I000002
Figure PCTKR2013010092-appb-I000002
[화학식 3][Formula 3]
Figure PCTKR2013010092-appb-I000003
Figure PCTKR2013010092-appb-I000003
[화학식 4][Formula 4]
Figure PCTKR2013010092-appb-I000004
Figure PCTKR2013010092-appb-I000004
[화학식 5][Formula 5]
Figure PCTKR2013010092-appb-I000005
Figure PCTKR2013010092-appb-I000005
[화학식 6][Formula 6]
Figure PCTKR2013010092-appb-I000006
Figure PCTKR2013010092-appb-I000006
[화학식 7][Formula 7]
Figure PCTKR2013010092-appb-I000007
Figure PCTKR2013010092-appb-I000007
상기 화학식 1 내지 7에 있어서, R1, R3, R5 및 R7은 각각 독립적으로 단일 결합 또는 탄소수 1 내지 10의 알킬렌기(*-(CH2)x-*, x는 1 내지 10의 정수)일 수 있고, R2, R4, R6 및 R8은 각각 독립적으로 수소 또는 탄소수 1 내지 10의 알킬기일 수 있으며, Ra, Rb, Rc, Rd, Re, Rf 및 Rg는 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기일 수 있다. In Formulas 1 to 7, R 1 , R 3 , R 5 and R 7 are each independently a single bond or an alkylene group having 1 to 10 carbon atoms (*-(CH 2) x- *, x is an integer of 1 to 10 R 2 , R 4 , R 6 and R 8 may be each independently hydrogen or an alkyl group having 1 to 10 carbon atoms, and R a , R b , R c , R d , R e , R f and R g may be each independently hydrogen or an alkyl group having 1 to 3 carbon atoms.
구체예로서, 상기 화학식 1의 R2가 수소인 경우, 상기 화학식 1의 단위체는 카르복시기를 포함할 수 있고, 이와 달리, 상기 화학식 1의 R2가 탄소수 1 내지 10의 알킬기인 경우, 상기 화학식 1의 단위체는 에스테르기를 포함할 수 있다. 그리고 상기 화학식 2의 R4가 수소인 경우, 상기 화학식 2의 단위체는 알데히드기를 포함할 수 있고, 이와 달리, 상기 화학식 2의 R4가 탄소수 1 내지 10의 알킬기인 경우, 상기 화학식 2의 단위체는 케톤기를 포함할 수 있다. 또한, 상기 화학식 3의 R6이 수소인 경우, 상기 화학식 3의 단위체는 히드록시기를 포함할 수 있고, 이와 달리, 상기 화학식 3의 R6이 탄소수 1 내지 10의 알킬기인 경우, 상기 화학식 3의 단위체는 에테르기를 포함할 수 있다.In an embodiment, when R 2 in Formula 1 is hydrogen, the unit of Formula 1 may include a carboxyl group. Alternatively, when R 2 in Formula 1 is an alkyl group having 1 to 10 carbon atoms, Formula 1 The unit of may include an ester group. In addition, when R 4 of Formula 2 is hydrogen, the unit of Formula 2 may include an aldehyde group. Alternatively, when R 4 of Formula 2 is an alkyl group having 1 to 10 carbon atoms, the unit of Formula 2 is It may include a ketone group. In addition, when R 6 of Formula 3 is hydrogen, the monomer of Formula 3 may include a hydroxy group, otherwise, when R 6 of Formula 3 is an alkyl group having 1 to 10 carbon atoms, the unit of Formula 3 May include an ether group.
상기 화학식 1 내지 7의 Ra, Rb, Rc, Rd, Re, Rf 및 Rg가 모두 수소인 경우, 상기 왁스계 화합물은 폴리에틸렌계 왁스일 수 있다. 일례로, 상기 폴리에틸렌계 왁스는 상기 화학식 7의 Rg가 수소인 단위체만을 포함하는 폴리에틸렌 왁스(polyethylene wax, PE 왁스)일 수 있다. 이와 달리, 상기 폴리에틸렌계 왁스는, 상기 화학식 7의 Rg가 수소인 단위체뿐만 아니라, 상기 화학식 1 내지 6의 Ra, Rb, Rc, Rd, Re 및 Rf가 수소인 산소 함유 단위체들 중에서 적어도 1종을 더 포함하는 폴리에틸렌 왁스일 수 있다. 적어도 1종의 산소 함유 단위체를 포함하는 폴리에틸렌계 왁스의 예로는, 폴리에틸렌의 산화물인 산화 폴리에틸렌 왁스(oxidized polyethylene wax, 산화 PE 왁스), 에틸렌-아크릴산 코폴리머(ethylene-acrylic acid copolymer), 에틸렌-비닐 아세테이트 코폴리머(ethylene-vinyl acetate copolymer), 에틸렌-무수말레산 코폴리머(ethylene-maleic anhydride copolymer) 등이 있다.When R a , R b , R c , R d , R e , R f and R g of Formulas 1 to 7 are all hydrogen, the wax-based compound may be a polyethylene wax. For example, the polyethylene wax may be a polyethylene wax (PE wax) including only a unit in which R g of Formula 7 is hydrogen. On the contrary, the polyethylene wax contains oxygen in which R a , R b , R c , R d , R e and R f in Formulas 1 to 6 are hydrogen as well as units in which R g in Formula 7 is hydrogen. It may be a polyethylene wax further comprising at least one of the units. Examples of the polyethylene wax including at least one oxygen-containing unit include oxidized polyethylene wax (PE wax), an ethylene-acrylic acid copolymer, and ethylene-vinyl, which are oxides of polyethylene. Ethylene-vinyl acetate copolymer, ethylene-maleic anhydride copolymer, and the like.
또한, 상기 화학식 1 내지 7의 Ra, Rb, Rc, Rd, Re, Rf 및 Rg가 각각 독립적으로 탄소수 1을 갖는 메틸기인 경우, 상기 왁스계 화합물은 폴리프로필렌계 왁스일 수 있다. 일례로, 폴리프로필렌계 왁스는 상기 화학식 7의 Rg가 메틸기인 단위체만을 포함하는 폴리프로필렌 왁스(polypropylene wax, PP 왁스)일 수 있다. 이와 달리, 상기 폴리프로필렌계 왁스는 상기 화학식 2의 Rg가 메틸기인 단위체뿐만 아니라, 상기 화학식 1 내지 6의 Ra, Rb, Rc, Rd, Re 및 Rf가 수소인 산소 함유 단위체들 중 적어도 1종을 더 포함하는 폴리프로필렌 왁스일 수 있다. 산소 함유 단위체를 포함하는 폴리프로필렌계 왁스의 예로서는, 프로필렌-무수말레산 코폴리머 등이 있다.In addition, when R a , R b , R c , R d , R e , R f and R g of Formulas 1 to 7 are each independently a methyl group having 1 carbon atom, the wax-based compound may be a polypropylene wax. Can be. For example, the polypropylene wax may be a polypropylene wax (PP wax) including only a unit in which R g of Formula 7 is a methyl group. On the contrary, the polypropylene wax contains oxygen in which R a , R b , R c , R d , R e and R f of Formulas 1 to 6 are hydrogen as well as units in which R g of Formula 2 is a methyl group. It may be a polypropylene wax further comprising at least one of the units. Examples of polypropylene waxes containing oxygen-containing units include propylene-maleic anhydride copolymers and the like.
다른 하나의 실시예로서, 상기 왁스계 화합물이 아마이드계 왁스인 경우, 상기 왁스계 화합물은 주쇄가 아미드 결합(amide bond, -CONH-)을 포함하는 폴리머, 코폴리머 또는 올리고머일 수 있다. 상기 아마이드계 왁스는 탄소수 1 내지 10의 단위체를 포함할 수 있다. 상기 아마이드계 왁스는 상기 화학식 1 내지 6으로 나타내는 산소 함유 단위체 중 1종 이상을 더 포함할 수 있다.In another embodiment, when the wax-based compound is an amide wax, the wax-based compound may be a polymer, copolymer or oligomer whose main chain includes an amide bond (-CONH-). The amide wax may include a unit having 1 to 10 carbon atoms. The amide wax may further include one or more of oxygen-containing units represented by Chemical Formulas 1 to 6.
상기 왁스계 화합물이 상기 화학식 1 내지 6의 단위체들 중 적어도 1종의 산소 함유 단위체를 포함하는 경우, 상기 화학식 7의 단위체만을 포함하는 경우에 비해서 상기 왁스 입자(110)는 상기 나노 발광체(120)를 더욱 안정적으로 캡슐화 할 수 있다. 이는 상기 왁스계 화합물이 산소 함유 단위체를 포함하는 경우, 상기 산소 함유 단위체에 포함된 산소의 극성(polarity)에 의해 상기 왁스 입자(110)와 상기 나노 발광체(120)를 구성하는 금속 사이의 상호 작용(interaction)이 강해지기 때문이다. When the wax-based compound includes at least one oxygen-containing unit of the units of Chemical Formulas 1 to 6, the wax particles 110 may form the nano light emitter 120 as compared with the case of including only the units of Chemical Formula 7. Can be encapsulated more stably. This is because when the wax-based compound includes an oxygen-containing unit, the interaction between the wax particles 110 and the metal constituting the nano light-emitting body 120 by the polarity of oxygen contained in the oxygen-containing unit. This is because the interaction becomes stronger.
상기 왁스계 화합물이 상기 산소 함유 단위체 중에서도, 상기 화학식 1로 나타내는 단위체, 특히 카르복시기를 포함하는 경우, 상기 왁스 입자(110)와 상기 나노 발광체(120) 사이의 상호 작용이 더욱 강해지므로 상기 왁스 입자(110)가 상기 나노 발광체(120)를 캡슐화 하는데 더욱 유리하다. 따라서 본 발명의 하나의 실시예에 있어서, 상기 왁스 입자(110)는 치환기로서 적어도 카르복시기를 포함하는 왁스계 화합물로 이루어지는 것이 바람직하다.In the case where the wax-based compound includes the unit represented by Chemical Formula 1, particularly a carboxyl group, the interaction between the wax particle 110 and the nano light-emitting body 120 may be stronger. 110 is more advantageous for encapsulating the nano light emitter 120. Therefore, in one embodiment of the present invention, the wax particles 110 is preferably made of a wax-based compound containing at least a carboxy group as a substituent.
상기 왁스 입자(110)를 구성하는 왁스계 화합물은 약 1 mg KOH/g 내지 약 200 mg KOH/g의 산가(acid value)를 가질 수 있다. 본 발명에 있어서, 상기 왁스계 화합물의 산가(acid value)는 상기 왁스계 화합물 1g을 중화하는데 필요한 수산화칼륨(KOH)의 mg 수를 말한다. 상기 왁스계 화합물의 산가가 클수록 상기 왁스계 화합물에 포함된 카르복시기의 양이 많을 수 있다. 상기 왁스계 화합물의 산가가 약 1 mg KOH/g 미만인 경우에는 상기 나노 발광체(120)와 상호 작용을 하는 카르복시기의 양이 매우 미미하여 상기 나노 발광체(120)를 안정적으로 캡슐화 할 수 없는 문제점이 발생할 수 있다. 또한, 상기 왁스계 화합물의 산가가 약 200 mg KOH/g을 초과하는 경우, 카르복시기에 의해서 오히려 상기 나노 발광체(120)의 표면이 산화되는 문제점이 발생할 수 있다. 구체예로서, 상기 나노 발광체(120)를 안정적으로 캡슐화하기 위하여, 상기 왁스 입자(110)를 구성하는 왁스계 화합물은 약 5 mg KOH/g 내지 약 50 mg KOH/g의 산가를 가질 수 있다.The wax-based compound constituting the wax particles 110 may have an acid value of about 1 mg KOH / g to about 200 mg KOH / g. In the present invention, the acid value of the wax compound refers to the number of mg of potassium hydroxide (KOH) required to neutralize 1 g of the wax compound. The greater the acid value of the wax-based compound may be a greater amount of carboxyl groups contained in the wax-based compound. When the acid value of the wax-based compound is less than about 1 mg KOH / g, the amount of carboxyl groups interacting with the nano light emitter 120 is very small, which may cause a problem that the nano light emitter 120 cannot be encapsulated stably. have. In addition, when the acid value of the wax-based compound exceeds about 200 mg KOH / g, there may be a problem that the surface of the nano light emitting body 120 is oxidized by the carboxy group. In an embodiment, the wax-based compound constituting the wax particles 110 may have an acid value of about 5 mg KOH / g to about 50 mg KOH / g in order to stably encapsulate the nano light emitter 120.
상기 왁스 입자(110)는 약 0.95 g/cm3 이상의 고밀도를 가진 왁스계 화합물로 이루어질 수 있다. 약 0.95 g/cm3 이상의 고밀도를 갖는 고밀도 왁스계 화합물은 약 0.95 g/cm3 미만의 저밀도를 갖는 저밀도 왁스계 화합물에 비해서 녹는점이 상대적으로 높기 때문에, 상기 고밀도 왁스계 화합물로 이루어진 왁스 입자(110)를 포함하는 나노 복합체(100a)의 내열성이 향상될 수 있다. 또한, 상기 고밀도 왁스계 화합물은 재결정시 결정성이 상기 저밀도 왁스계 화합물에 비해 우수하기 때문에, 고밀도 왁스계 화합물로 이루어진 왁스 입자(110)는 상기 나노 발광체(120)를 보다 안정적으로 캡슐화할 수 있다.The wax particles 110 may be made of a wax-based compound having a high density of about 0.95 g / cm 3 or more. Since the high density wax compound having a high density of about 0.95 g / cm 3 or more has a higher melting point than the low density wax compound having a low density of less than about 0.95 g / cm 3 , the wax particles composed of the high density wax compound (110) Heat resistance of the nanocomposite 100a including) may be improved. In addition, since the high-density wax-based compound has better crystallinity than the low-density wax-based compound upon recrystallization, the wax particles 110 made of the high-density wax-based compound may more stably encapsulate the nano light-emitting body 120. .
하나의 구체예로서, 폴리에틸렌(PE) 왁스는 약 0.95 g/cm3 이상의 밀도를 가지는 고밀도 PE 왁스(high density PE wax, HDPE 왁스)와 약 0.95 g/cm3 미만의 밀도를 가지는 저밀도 PE 왁스(low density PE wax, LDPE 왁스)로 구분될 수 있고, 상기 왁스 입자(110)는 HDPE 왁스로 형성될 수 있다. HDPE 왁스의 밀도는 약 1.20 g/cm3 이하일 수 있고, 이 경우, HDPE 왁스의 녹는점은 약 120℃ 내지 약 200℃일 수 있다. 이에 반해, LDPE 왁스의 녹는점은 약 80℃ 내지 약 110℃일 수 있다. 따라서 상기 왁스 입자(110)는 HDPE 왁스로 형성되는 것이 LDPE 왁스로 형성되는 것보다 본 발명의 실시예에 따른 나노 복합체(100a)의 내열성을 더욱 향상시킬 수 있다. One as a specific example, polyethylene (PE) wax is from about 0.95 g / cm high-density PE wax having three or more density (high density PE wax, HDPE wax) and low density PE wax having a density of less than about 0.95 g / cm 3 ( low density PE wax, LDPE wax), and the wax particles 110 may be formed of HDPE wax. The density of the HDPE wax may be about 1.20 g / cm 3 or less, in which case the melting point of the HDPE wax may be about 120 ° C. to about 200 ° C. In contrast, the melting point of LDPE wax may be from about 80 ° C to about 110 ° C. Therefore, the wax particles 110 may further improve the heat resistance of the nanocomposite 100a according to the embodiment of the present invention rather than being formed of HDPE wax.
상기 왁스 입자(110)는 중량 평균 분자량(Weight-average Molecular Weight)이 약 1,000 내지 20,000인 왁스계 화합물로 형성될 수 있다. 본 발명에 있어서, 중량 평균 분자량은 분자량 분포가 있는 고분자 화합물의 성분 분자종의 분자량을 중량 분율로 평균하여 얻어지는 평균 분자량을 의미한다. 상기 왁스계 화합물의 중량 평균 분자량이 약 1,000 미만인 경우, 상기 왁스계 화합물은 상온에서 고체인 상태로 존재하기 어려우므로, 상온에서 상기 나노 발광체(120)를 캡슐화하기 어려운 문제가 발생할 수 있다. 또한, 상기 왁스계 화합물의 중량 평균 분자량이 약 20,000을 초과하는 경우, 상기 왁스계 화합물의 재결정 크기(평균 지름)가 수백 μm 이상이 되므로, 이를 이용하여 복합체를 제조하더라도 용매나 수지에 분산시키기 어려운 문제가 발생할 수 있다. 뿐만 아니라, 상기 왁스계 화합물의 분자량이 약 20,000을 초과하는 경우, 상기 왁스계 화합물은 약 200℃ 이상의 녹는점을 가지므로, 상기 나노 발광체(120)를 캡슐화하는 공정에서 상기 나노 발광체(120)가 손상될 수 있다.The wax particle 110 may be formed of a wax-based compound having a weight-average molecular weight of about 1,000 to 20,000. In this invention, a weight average molecular weight means the average molecular weight obtained by averaging the molecular weight of the molecular weight of the component molecular species of a high molecular compound with molecular weight distribution. When the weight average molecular weight of the wax-based compound is less than about 1,000, since the wax-based compound is hard to exist in a solid state at room temperature, it may be difficult to encapsulate the nano light-emitting body 120 at room temperature. In addition, when the weight average molecular weight of the wax compound exceeds about 20,000, since the recrystallization size (average diameter) of the wax compound is several hundred μm or more, it is difficult to disperse it in a solvent or a resin even when a composite is prepared using the Problems may arise. In addition, when the molecular weight of the wax-based compound exceeds about 20,000, the wax-based compound has a melting point of about 200 ℃ or more, so that the nano light-emitting body 120 in the process of encapsulating the nano light-emitting body 120 Can be damaged.
상기 나노 발광체(120)로는 공지의 나노 발광체가 제한 없이 사용될 수 있다. 예를 들면, 도 2에 도시된 바와 같이, 상기 나노 발광체(120)는 중심 입자(121) 및 상기 중심 입자(121)의 표면에 결합된 리간드(123)를 포함할 수 있다. As the nano light emitter 120, a known nano light emitter may be used without limitation. For example, as shown in FIG. 2, the nano light emitter 120 may include a central particle 121 and a ligand 123 bound to a surface of the central particle 121.
상기 중심 입자(121)는 II-VI족 화합물, II-V족 화합물, III-V족 화합물, III-IV족 화합물, III-VI족 화합물, IV-VI족 화합물 또는 이들의 혼합물로 이루어질 수 있다. 상기 혼합물은 단순히 혼합된 혼합물(mixture)뿐만 아니라, 삼성분계 화합물, 사성분계 화합물, 이들 혼합물에 도펀트가 도핑된 경우도 모두 포함한다.The central particle 121 may be formed of a II-VI compound, a II-V compound, a III-V compound, a III-IV compound, a III-VI compound, a IV-VI compound, or a mixture thereof. . The mixture includes not only a mixed mixture, but also a ternary compound, a tetracomponent compound, and a case where a dopant is doped into the mixture.
II-VI족 화합물의 예로서는, 황화마그네슘(MgS), 셀렌화마그네슘(MgSe), 텔루르화마그네슘(MgTe), 황화칼슘(CaS), 셀렌화칼슘(CaSe), 텔루르화칼슘(CaTe), 황화스트론튬(SrS), 셀렌화스트론튬(SrSe), 텔루르화스트론튬(SrTe), 황화카드뮴(CdS), 셀렌화카드뮴(CdSe), 텔루르카드뮴(CdTe), 황화아연(ZnS), 셀렌화아연(ZnSe), 텔루르화아연(ZnTe), 황화수은(HgS), 셀렌화수은(HgSe) 또는 텔루르화수은(HgTe) 등을 들 수 있다.Examples of group II-VI compounds include magnesium sulfide (MgS), magnesium selenide (MgSe), magnesium telluride (MgTe), calcium sulfide (CaS), calcium selenide (CaSe), calcium telluride (CaTe), and strontium sulfide (SrS), strontium selenide (SrSe), strontium telluride (SrTe), cadmium sulfide (CdS), cadmium selenide (CdSe), tellurium cadmium (CdTe), zinc sulfide (ZnS), zinc selenide (ZnSe), Zinc telluride (ZnTe), mercury sulfide (HgS), mercury selenide (HgSe), mercury telluride (HgTe), and the like.
II-V족 화합물의 예로서는, 인화아연(Zn3P2), 비소화아연(Zn3As2), 인화카드뮴(Cd3P2), 비소화카드뮴(Cd3As2), 질화카드뮴(Cd3N2) 또는 질화아연(Zn3N2) 등을 들 수 있다.Examples of Group II-V compounds include zinc phosphide (Zn 3 P 2 ), zinc arsenide (Zn 3 As 2 ), cadmium phosphide (Cd 3 P 2 ), cadmium arsenide (Cd 3 As 2 ), and cadmium nitride (Cd 3 N 2 ) or zinc nitride (Zn 3 N 2 ).
III-V족 화합물의 예로서는, 인화붕소(BP), 인화알루미늄(AlP), 비소화알루미늄(AlAs), 안티모니화알루미늄(AlSb), 질화갈륨(GaN), 인화갈륨(GaP), 비소화갈륨(GaAs), 안티모니화갈륨(GaSb), 질화인듐(InN), 인화인듐(InP), 비소화인듐(InAs), 안티모니화인듐(InSb), 질화알루미늄(AlN) 또는 질화붕소(BN) 등을 들 수 있다.Examples of group III-V compounds include boron phosphide (BP), aluminum phosphide (AlP), aluminum arsenide (AlAs), aluminum antimonide (AlSb), gallium nitride (GaN), gallium phosphide (GaP), and gallium arsenide (GaAs), gallium monoxide (GaSb), indium nitride (InN), indium phosphide (InP), indium arsenide (InAs), indium antimony (InSb), aluminum nitride (AlN) or boron nitride (BN) Etc. can be mentioned.
III-IV족 화합물의 예로서는, 탄화붕소(B4C), 탄화알루미늄(Al4C3), 탄화갈륨(Ga4C) 등을 들 수 있다. Examples of the III-IV compound include boron carbide (B 4 C), aluminum carbide (Al 4 C 3 ), gallium carbide (Ga 4 C), and the like.
III-VI족 화합물의 예로서는, 황화알루미늄(Al2S3), 셀렌화알루미늄(Al2Se3), 텔루르화알루미늄(Al2Te3), 황화갈륨(Ga2S3), 셀렌화갈륨(Ga2Se3), 황화인듐(In2S3), 셀렌화인듐(In2Se3), 텔루르화갈륨(Ga2Te3) 또는 텔루르화인듐(In2Te3) 등을 들 수 있다.Examples of group III-VI compounds include aluminum sulfide (Al 2 S 3 ), aluminum selenide (Al 2 Se 3 ), aluminum telluride (Al 2 Te 3 ), gallium sulfide (Ga 2 S 3 ), gallium selenide ( Ga 2 Se 3 ), indium sulfide (In 2 S 3 ), indium selenide (In 2 Se 3 ), gallium telluride (Ga 2 Te 3 ), indium telluride (In 2 Te 3 ), and the like.
IV-VI족 화합물의 예로서는, 황화납(PbS), 셀렌화납(PbSe), 텔루르화납(PbTe), 황화주석(SnS), 셀렌화주석(SnSe) 또는 텔루르화주석(SnTe) 등을 들 수 있다.Examples of the group IV-VI compounds include lead sulfide (PbS), lead selenide (PbSe), lead telluride (PbTe), tin sulfide (SnS), tin selenide (SnSe), tin telluride (SnTe), and the like. .
일례로, 상기 중심 입자(121)는 코어/쉘(core/shell) 구조를 가질 수 있다. 상기 중심 입자(121)의 코어 및 쉘 각각은 상기 예시한 화합물들로 이루어질 수 있다. 상기 예시한 화합물들은 각각 단독으로 또는 2 이상이 조합되어 상기 코어나 쉘을 구성할 수 있다. 상기 코어를 구성하는 화합물의 밴드 갭이 상기 쉘을 구성하는 화합물의 밴드 갭보다 좁을 수 있으나, 이에 제한되지 않는다. 다만, 상기 중심 입자(121)가 코어/쉘 구조를 갖는 경우, 상기 쉘을 구성하는 화합물은 상기 코어를 구성하는 화합물과 다르다. 예를 들어, 상기 중심 입자(121)는 CdSe를 포함하는 코어 및 ZnS를 포함하는 쉘을 갖는 CdSe/ZnS(코어/쉘) 구조나, InP를 포함하는 코어 및 ZnS를 포함하는 쉘을 갖는 InP/ZnS(코어/쉘) 구조를 가질 수 있다. For example, the center particle 121 may have a core / shell structure. Each of the core and the shell of the central particle 121 may be made of the above-described compounds. The compounds exemplified above may be used alone or in combination of two or more to constitute the core or shell. The band gap of the compound constituting the core may be narrower than the band gap of the compound constituting the shell, but is not limited thereto. However, when the center particle 121 has a core / shell structure, the compound constituting the shell is different from the compound constituting the core. For example, the central particle 121 may have a CdSe / ZnS (core / shell) structure having a core including CdSe and a shell including ZnS, or an InP / having a core including InP and a shell including ZnS. It may have a ZnS (core / shell) structure.
다른 예로서, 상기 중심 입자(121)는 적어도 2층 이상의 쉘을 갖는 코어/다중쉘 구조를 가질 수 있다. 예를 들어, 상기 중심 입자(121)는 CdSe를 포함하는 코어, 상기 코어의 표면을 감싸고 ZnSe를 포함하는 제1 쉘 및 상기 제1 쉘의 표면을 감싸며 ZnS를 포함하는 제2 쉘을 갖는 CdSe/ZnSe/ZnS(코어/제1 쉘/제2 쉘) 구조를 가질 수 있다. 또한, 상기 중심 입자(121)는 InP를 포함하는 코어, 제1 쉘로서 ZnSe을 포함하고, 제2 쉘로서 ZnS를 포함하는 InP/ZnSe/ZnS(코어/제1 쉘/제2 쉘) 구조를 가질 수 있다.As another example, the center particle 121 may have a core / multishell structure having at least two layers of shells. For example, the central particle 121 has a core including CdSe, a first shell surrounding the surface of the core and including ZnSe, and a CdSe / having a second shell surrounding the surface of the first shell and including ZnS. It may have a ZnSe / ZnS (core / first shell / second shell) structure. In addition, the center particle 121 has an InP / ZnSe / ZnS (core / first shell / second shell) structure including a core including InP, ZnSe as a first shell, and ZnS as a second shell. Can have.
또 다른 예로서, 상기 중심 입자(121)는 코어/쉘 구조가 아닌 단일 구조로서, II-VI족 화합물로만 이루어지거나, III-V족 화합물로만 이루어질 수 있다.As another example, the central particle 121 may be made of only a II-VI compound or a III-V compound as a single structure instead of a core / shell structure.
도면으로 도시하지 않았으나, 상기 중심 입자(121)는 시드(seed)로서 클러스터 분자(cluster molecule)을 더 포함할 수 있다. 상기 클러스터 분자는 상기 중심 입자(121)를 제조하는 공정 중에서 시드 역할을 하는 화합물로서, 상기 중심 입자(121)를 구성하는 화합물의 전구체들이 상기 클러스터 분자 상에서 성장함으로써 상기 중심 입자(121)가 형성될 수 있다. 이때, 상기 클러스터 분자의 예로서는, 한국 공개 공보 2007-0064554에서 개시하고 있는 다양한 화합물 등을 들 수 있고, 이들에 제한되지 않는다.Although not shown in the drawings, the central particle 121 may further include a cluster molecule as a seed. The cluster molecule is a compound that functions as a seed during the process of manufacturing the center particle 121, and precursors of the compound constituting the center particle 121 grow on the cluster molecule to form the center particle 121. Can be. In this case, examples of the cluster molecule include various compounds disclosed in Korean Laid-Open Publication No. 2007-0064554, and the like, but are not limited thereto.
상기 리간드(123)는 서로 인접한 중심 입자(121)이 서로 응집되어 소광(quenching)되는 것을 방지할 수 있다. 상기 리간드(123)는 상기 중심 입자(121)와 결합하며 소수성(hydrophobic) 성질을 가질 수 있다. The ligand 123 may prevent the central particles 121 adjacent to each other from aggregation and quenching. The ligand 123 may bind to the central particle 121 and have a hydrophobic property.
상기 리간드(123)의 예로는, 탄소수 6 내지 30의 알킬기를 갖는 아민계 화합물이나 카르복시산 화합물 등을 들 수 있다. 알킬기를 갖는 아민계 화합물의 예로서, 헥사데실아민(hexadecylamine) 또는 옥틸아민(octylamine) 등을 들 수 있다. 상기 리간드(123)의 다른 하나의 예로는, 탄소수 6 내지 30의 알케닐기를 갖는 아민계 화합물이나 카르복시산 화합물 등을 들 수 있다. 이와 달리, 상기 리간드(123)의 예로서는, 트리옥틸포스핀(trioctylphosphine), 트리페놀포스핀(triphenolphosphine), t-부틸포스핀(t-butylphosphine) 등을 포함하는 포스핀 화합물(phosphine compound); 트라이옥틸포스핀 산화물(trioctylphosphine oxide) 등의 포스핀 산화물(phosphine oxide); 피리딘(pyridine) 또는 싸이오펜 (thiophene) 등을 들 수 있다. 상기 리간드(123)의 종류는 상기에서 예시한 것에 한정되지 않고, 경우에 따라서 상기 나노 발광체(120)는 상기 리간드(123) 없이 상기 중심 입자(121)만으로 구성될 수도 있다. 본 발명의 실시예에 따른 나노 복합체(100a)는 다양한 형상을 가질 수 있고, 하나의 나노 복합체(100a)는 적어도 1개의 나노 발광체(120)를 포함할 수 있다. 예를 들면, 하나의 왁스 입자(110) 내에는 1개의 나노 발광체(120)가 배치될 수 있고, 이와 달리 하나의 왁스 입자(110) 내에는 2개 내지 수천만 개의 나노 발광체들(120)이 배치될 수 있다.As an example of the said ligand 123, the amine compound, carboxylic acid compound, etc. which have a C6-C30 alkyl group are mentioned. Examples of the amine compound having an alkyl group include hexadecylamine or octylamine. As another example of the said ligand 123, an amine compound, a carboxylic acid compound, etc. which have a C6-30 alkenyl group are mentioned. Alternatively, examples of the ligand 123 may include a phosphine compound including trioctylphosphine, triphenolphosphine, t-butylphosphine, and the like; Phosphine oxides such as trioctylphosphine oxide; Pyridine or thiophene etc. are mentioned. The type of the ligand 123 is not limited to the example exemplified above, and in some cases, the nano light-emitting body 120 may be composed of only the central particle 121 without the ligand 123. The nanocomposite 100a according to the embodiment of the present invention may have various shapes, and one nanocomposite 100a may include at least one nano light emitter 120. For example, one nano light emitter 120 may be disposed in one wax particle 110, whereas two to tens of millions of nano light emitters 120 may be disposed in one wax particle 110. Can be.
일례로, 하나의 왁스 입자(110)의 내부에 배치된 복수의 나노 발광체들(120)은 서로 동일한 파장대(wavelength range)에서 발광 피크를 가질 수 있다. 즉, 상기 나노 발광체들(120)은 제1 파장대에서 발광 피크를 갖는 제1 컬러 나노 발광체, 제2 파장대에서 발광 피크를 갖는 제2 컬러 나노 발광체 및 제3 파장대에서 발광 피크를 갖는 제3 컬러 나노 발광체 중 선택된 1종을 포함할 수 있다. 상기 제1 컬러 나노 발광체는 약 430 nm 내지 약 470 nm의 파장대에서 발광 피크를 갖는 청색 나노 발광체이고, 상기 제2 컬러 나노 발광체는 약 520 nm 내지 약 560 nm의 파장대에서 발광 피크를 갖는 녹색 나노 발광체이며, 상기 제3 컬러 나노 발광체는 약 600nm 내지 약 660 nm의 파장대에서 발광 피크를 갖는 적색 나노 발광체일 수 있다. 이 경우, 상기 나노 복합체(100a)는 청색 나노 복합체, 적색 나노 복합체 및 적색 나노 복합체 중 어느 하나가 될 수 있다.For example, the plurality of nano light emitters 120 disposed inside one wax particle 110 may have emission peaks in the same wavelength range. That is, the nano light emitters 120 may include a first color nano light emitter having a light emission peak in a first wavelength band, a second color nano light emitter having a light emission peak in a second wavelength band, and a third color nano light emitting peak in a third wavelength band. It may include one selected from the light emitting body. The first color nano light emitter is a blue nano light emitter having an emission peak in a wavelength range of about 430 nm to about 470 nm, and the second color nano light emitter is a green nano light emitter having an emission peak in a wavelength range of about 520 nm to about 560 nm. The third color nano light emitter may be a red nano light emitter having an emission peak in a wavelength band of about 600 nm to about 660 nm. In this case, the nanocomposite 100a may be any one of a blue nanocomposite, a red nanocomposite, and a red nanocomposite.
다른 하나의 구체예로서, 하나의 왁스 입자(110) 내부에 배치된 복수의 나노 발광체들(120) 중 적어도 2개는 서로 다른 파장대에서 발광 피크를 가질 수 있다. 즉, 하나의 왁스 입자(110) 내부에 배치된 복수의 나노 발광체들(120)은 청색 나노 발광체, 녹색 나노 발광체 및 적색 나노 발광체 중에서 선택된 2종을 포함할 수 있다. 예를 들어, 상기 왁스 입자(110) 내에 녹색 나노 발광체 및 적색 나노 발광체가 배치될 수 있다. 이 경우, 상기 나노 복합체(100a)는 다색 나노 복합체가 될 수 있다.As another embodiment, at least two of the plurality of nano light emitters 120 disposed inside one wax particle 110 may have emission peaks in different wavelength bands. That is, the plurality of nano light emitters 120 disposed inside one wax particle 110 may include two selected from blue nano light emitters, green nano light emitters, and red nano light emitters. For example, the green nano light emitter and the red nano light emitter may be disposed in the wax particle 110. In this case, the nanocomposite 100a may be a multicolor nanocomposite.
한편, 상기 나노 복합체(100a)의 직경은 약 50nm 내지 약 30 ㎛일 수 있다. 상기 직경은, 확산 계수에 관한 스토크스-아인슈타인 방정식(Stokes-Einstein equation)으로 산출하는 동적 광산란법(Dynamic Light Scattering method, DLS법)에 의해 측정된 값(hydrodynamic diameter)으로 정의될 수 있다.Meanwhile, the diameter of the nanocomposite 100a may be about 50 nm to about 30 μm. The diameter may be defined as a hydrodynamic diameter measured by the Dynamic Light Scattering method (DLS method) calculated by the Stokes-Einstein equation for the diffusion coefficient.
도 1b를 참조하면, 본 발명의 하나의 실시예에 따른 나노 복합체(100b)는 왁스 입자(110), 적어도 1개의 나노 발광체(120) 및 외부 보호막(130)을 포함할 수 있다. 상기 나노 복합체(100b)는 상기 외부 보호막(130)을 더 포함하는 것을 제외하고는 도 1a에 도시된 나노 복합체(100a)와 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다. 상기 나노 복합체(100b)의 직경은 약 50nm 내지 약 30 ㎛일 수 있다.Referring to FIG. 1B, the nanocomposite 100b according to an embodiment of the present invention may include wax particles 110, at least one nano light emitter 120, and an outer passivation layer 130. Since the nanocomposite 100b is substantially the same as the nanocomposite 100a illustrated in FIG. 1A except that the nanocomposite 100b further includes the outer protective layer 130, detailed descriptions thereof will be omitted. The nanocomposite 100b may have a diameter of about 50 nm to about 30 μm.
상기 외부 보호막(130)은 상기 왁스 입자(110)의 표면에 형성되어 상기 왁스 입자(110)를 피복한다. 상기 외부 보호막(130)은 산화 실리콘(SiOx, 1≤x≤2)으로 형성된다. 상기 외부 보호막(130)은, 상기 왁스 입자(110)와 함께, 수분, 열, 광 등에 의해 상기 나노 발광체(120)가 손상되는 것을 방지할 수 있다.The outer protective layer 130 is formed on the surface of the wax particles 110 to cover the wax particles 110. The outer passivation layer 130 is formed of silicon oxide (SiOx, 1 ≦ x ≦ 2). The outer protective layer 130, together with the wax particles 110, may prevent the nano light-emitting body 120 from being damaged by moisture, heat, or light.
상기 외부 보호막(130)은 실리콘 산화물 전구체 물질의 가수분해와 축합 반응을 통하여 형성될 수 있다. 예를 들어, 상기 외부 보호막(130)은 유기용매에 나노 발광체(120)가 내부에 배치된 왁스 입자(110), 실리콘 산화물 전구체 물질, 촉매 물질 및 물을 혼합하여 상기 왁스 입자(110) 표면에 산화 실리콘을 성장시킴으로써 형성될 수 있다. 이 경우, 상기 외부 보호막(130)은 실리카(SiO2)를 포함할 수 있다.The outer passivation layer 130 may be formed through hydrolysis and condensation of the silicon oxide precursor material. For example, the outer passivation layer 130 may be a mixture of wax particles 110, a silicon oxide precursor material, a catalyst material, and water having the nano light emitter 120 disposed therein in an organic solvent, on the surface of the wax particles 110. It can be formed by growing silicon oxide. In this case, the outer passivation layer 130 may include silica (SiO 2 ).
상기 실리콘 산화물 전구체 물질의 예로서는 트리에톡시실란(triethoxysilane, HTEOS), 테트라에톡시실란(tetraethoxysilane, TEOS), 메틸트리에톡시실란(methyltriethoxysilane, MTEOS), 디메틸디에톡시실란(dimethyldiethoxysilane), 테트라메톡시실란(tetramethoxysilane, TMOS), 메틸트리메톡시실란(methyltrimethoxysilane, MTMOS), 트리메톡시실란(trimethoxysilane), 디메틸디메톡시실란(dimethyldimethoxysilane), 페닐트리에톡시실란 (phenyltriethoxysilane, PTEOS), 페닐트리메톡시실란(phenyltrimethoxysilane, PTMOS), 디페닐디에톡시실란(diphenyldiethoxysilane), 디페닐디메톡시실란(diphenyldimethoxysilane) 등이 사용될 수 있다. 또한, 상기 실리콘 산화물 전구체 물질은 할로실란(halosilane), 특히 클로로실란(chlorosilane), 예를 들어, 트리클로로실란(trichlorosilane), 메틸트리클로로실란(methyltrichlorosilane), 에틸트리클로로실란(ethyltrichlorosilane), 페닐트리클로로실란(phenyltrichlorosilane), 테트라클로로실란(tetrachlorosilane), 디클로로실란(dichlorosilane), 메틸디클로로실란(methyldichlorosilane), 디메틸디클로로실란(dimethyldichlorosilane), 클로로트리에톡시실란(chlorotriethoxysilane), 클로로트리메톡시실란(chlorotrimethoxysilane), 클로로메틸트리에톡시실란(chloromethyltriethoxysilane), 클로로에틸트리에톡시실란(chloroethyltriethoxysilane), 클로로페닐트리에톡시실란(chlorophenyltriethoxysilane, 클로로메틸트리메톡시실란(chloromethyltrimethoxysilane), 클로로에틸트리메톡시실란(chloroethyltrimethoxysilane), 클로로페닐트리메톡시실란(chlorophenyltrimethoxysilane) 등을 이용하여 합성할 수도 있고, 폴리실록산(polysiloxane), 폴리실라잔(polysilazane) 등을 이용하여 합성할 수도 있다. Examples of the silicon oxide precursor material are triethoxysilane (triethoxysilane (HTEOS), tetraethoxysilane (TEOS), methyltriethoxysilane (MTEOS), dimethyldiethoxysilane (dimethyldiethoxysilane), tetramethoxysilane (tetramethoxysilane (TMOS), methyltrimethoxysilane (MTMOS), trimethoxysilane, dimethyldimethoxysilane, phenyltriethoxysilane (PTEOS), phenyltrimethoxysilane ( phenyltrimethoxysilane (PTMOS), diphenyldiethoxysilane, diphenyldimethoxysilane and the like can be used. In addition, the silicon oxide precursor material is halosilane, in particular chlorosilane, for example trichlorosilane, methyltrichlorosilane, ethyltrichlorosilane, phenyltrichloro Phenyltrichlorosilane, tetrachlorosilane, dichlorosilane, methyldichlorosilane, dimethyldichlorosilane, chlorotriethoxysilane, chlorotrimethoxysilane Chloromethyltriethoxysilane, chloroethyltriethoxysilane, chlorophenyltriethoxysilane, chlorophenyltriethoxysilane, chloromethyltrimethoxysilane, chloroethyltrimethoxysilane, Chlorophenyltrimethoxysilane (chlorop It may be synthesized using henyltrimethoxysilane, or the like, or may be synthesized using polysiloxane, polysilazane, or the like.
상기 유기 용매의 예로서는, 메탄올(methanol), 에탄올(ethanol), 프로판올(propanol), 부탄올(butanol), 펜타놀(pentanol), 헥사놀(hexanol), 메틸 셀로솔브(methyl cellosolve), 부틸 셀로솔브(butyl cellosolve), 프로필렌 글리콜(propylene glycol), 디에틸렌 글리콜(diethtylene glycol) 등의 알콜성 용매 또는 톨루엔(toluene)이 사용될 수 있다. 상기 유기 용매는 단독으로 또는 2 이상이 혼합되어 사용될 수 있다. Examples of the organic solvent include methanol, ethanol, propanol, butanol, butanol, pentanol, hexanol, methyl cellosolve, butyl cellosolve ( Alcoholic solvents such as butyl cellosolve, propylene glycol, and diethtylene glycol, or toluene may be used. The organic solvent may be used alone or in combination of two or more thereof.
상기 촉매 물질로는, 알칼리성 물질, 예를 들면, 암모니아(NH3)가 사용될 수 있다. 이 경우, 암모니아수(NH4OH)를 상기 유기 용매에 혼합함으로써 상기 외부 보호막(130)을 형성하는 공정에서 암모니아를 촉매 물질로서 이용할 수 있다. As the catalyst material, an alkaline material such as ammonia (NH 3 ) may be used. In this case, ammonia may be used as a catalyst material in the process of forming the external protective film 130 by mixing ammonia water (NH 4 OH) with the organic solvent.
한편, 도면으로 도시하지 않았으나, 상기 외부 보호막(130)은 복수의 왁스 입자들(110)을 피복할 수 있다. 예를 들어, 상기 외부 보호막(130)은 서로 인접하게 배치된 적어도 2개의 왁스 입자들(110)을 피복할 수 있고, 상기 왁스 입자들(110) 사이의 이격 공간에는 산화 실리콘이 채워짐으로써 나노 복합체를 형성할 수 있다. 상기 외부 보호막(130)이 제1 왁스 입자 및 제2 왁스 입자를 피복하는 경우, 상기 제1 왁스 입자 내부에 배치된 제1 나노 발광체는 상기 제2 왁스 입자 내부에 배치된 제2 나노 발광체와 서로 동일한 파장대에서 발광 피크를 가짐으로써, 상기 나노 복합체(100b)는 청색 나노 복합체, 녹색 나노 복합체 및 적색 나노 복합체 중 어느 하나가 될 수 있다.Although not illustrated in the drawings, the outer protective layer 130 may cover the plurality of wax particles 110. For example, the outer passivation layer 130 may cover at least two wax particles 110 disposed adjacent to each other, and the space between the wax particles 110 may be filled with silicon oxide to form a nanocomposite. Can be formed. When the outer protective layer 130 covers the first wax particles and the second wax particles, the first nano light emitters disposed inside the first wax particles may be different from the second nano light emitters disposed inside the second wax particles. By having an emission peak in the same wavelength band, the nanocomposite 100b may be any one of a blue nanocomposite, a green nanocomposite, and a red nanocomposite.
이와 달리, 상기 외부 보호막(130)이 제1 왁스 입자 및 제2 왁스 입자를 피복하는 경우, 상기 제1 왁스 입자 내부에 배치된 제1 나노 발광체는 상기 제2 왁스 입자 내부에 배치된 제2 나노 발광체와 서로 다른 파장대에서 발광 피크를 가질 수 있다. 이때, 상기 나노 복합체(100b)는 다색 나노 복합체가 될 수 있다.On the contrary, when the outer protective layer 130 covers the first wax particles and the second wax particles, the first nano light emitter disposed inside the first wax particles may be the second nano light disposed inside the second wax particles. It may have a light emission peak in the wavelength band different from the light emitter. In this case, the nanocomposite 100b may be a multicolor nanocomposite.
상기에서 설명한 바에 따르면, 상기 나노 복합체(100b)는, 도 1a을 참조하여 설명한 나노 복합체(100a)에 비해, 상기 외부 보호막(130)을 더 포함함으로써 상기 나노 발광체(120)를 보다 안정적으로 외부의 수분, 열, 광 등으로부터 보호할 수 있다.As described above, the nanocomposite 100b further includes the external protective layer 130 more stably than the nanocomposite 100a described with reference to FIG. 1A. Protect from moisture, heat, light, etc.
도 1c를 참조하면, 본 발명의 실시예에 따른 나노 복합체(100c)는 왁스 입자(110), 적어도 1개의 나노 발광체(120), 외부 보호막(130) 및 왁스층(140)을 포함한다. 상기 나노 복합체(100c)는 상기 왁스층(140)을 더 포함하는 것을 제외하고는 도 1b에서 설명한 나노 복합체(100b)와 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다. 상기 나노 복합체(100c)의 직경은 약 50nm 내지 약 30 ㎛일 수 있다.Referring to FIG. 1C, the nanocomposite 100c according to an exemplary embodiment of the present invention includes wax particles 110, at least one nano light emitter 120, an outer protective layer 130, and a wax layer 140. Since the nanocomposite 100c is substantially the same as the nanocomposite 100b described with reference to FIG. 1B except for further including the wax layer 140, detailed descriptions thereof will be omitted. The nanocomposite 100c may have a diameter of about 50 nm to about 30 μm.
상기 왁스층(140)은 상기 외부 보호막(130)의 표면을 피복한다. 즉, 상기 왁스층(140)은 상기 외부 보호막(130)으로 피복된 상기 왁스 입자(110)를 감싼다. 상기 왁스층(140)은 왁스계 화합물로 형성된다. 상기 왁스층(140)을 구성하는 왁스계 화합물은 상기 왁스 입자(110)를 구성하는 왁스계 화합물에서 설명한 것과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다. The wax layer 140 covers the surface of the outer protective layer 130. That is, the wax layer 140 surrounds the wax particles 110 coated with the outer protective layer 130. The wax layer 140 is formed of a wax-based compound. Since the wax-based compound constituting the wax layer 140 is substantially the same as that described in the wax-based compound constituting the wax particle 110, detailed descriptions thereof will be omitted.
도 1c에서는 상기 왁스층(140)이 상기 외부 보호막(130)에 의해 표면이 커버된 하나의 상기 왁스 입자(110)를 피복하는 것을 도시하여 설명하였으나, 상기 왁스층(140)은 2개 이상의 상기 왁스 입자들(110)를 피복할 수 있다. 예를 들어, 도 1b와 관련하여 외부 보호막(130)이 제1 나노 발광체가 내부에 배치된 제1 왁스 입자 및 제2 나노 발광체가 내부에 배치된 제2 왁스 입자를 모두 피복하는 하는 경우를 설명하였는데, 그 외부 보호막(130)의 표면을 상기 왁스층(140)이 다시 피복할 수 있다.In FIG. 1C, the wax layer 140 covers one wax particle 110 whose surface is covered by the outer passivation layer 130, but the wax layer 140 includes two or more wax particles. The field 110 may be covered. For example, referring to FIG. 1B, the outer protective layer 130 covers both the first wax particles having the first nano light emitter disposed therein and the second wax particles having the second nano light emitter disposed therein. The wax layer 140 may again cover the surface of the outer protective layer 130.
또한, 상기 왁스층(140)은 도 1b에 도시된 나노 복합체(100b)를 적어도 2개 피복할 수 있다. 상기 왁스층(140)을 구성하는 상기 왁스계 화합물이 서로 인접하게 배치된 나노 복합체들(100b) 사이의 이격 공간을 채움으로써 외부 보호막(130)으로 각각 피복되어 있는 적어도 2개의 왁스 입자들을 하나의 왁스층(140)이 피복할 수 있다.In addition, the wax layer 140 may cover at least two nanocomposites 100b illustrated in FIG. 1B. The wax-based compound constituting the wax layer 140 fills the space between the nanocomposites 100b disposed adjacent to each other, thereby filling at least two wax particles respectively covered with the outer protective layer 130 by one wax layer. 140 may cover.
상기 나노 복합체(100c)는 내부에 포함된 나노 발광체(120)의 종류에 따라서 청색, 녹색 및 적색 나노 발광체 중 어느 하나가 될 수 있고, 다색 나노 발광체가 될 수 있다.The nanocomposite 100c may be any one of blue, green, and red nano light emitters according to the type of nano light emitter 120 included therein, and may be a multicolor nano light emitter.
상기에서 설명한 바에 따르면, 도 1c에서 설명한 나노 복합체(100c)가, 도 1b에서 설명한 나노 복합체(100b)에 비해, 상기 왁스층(140)을 더 포함함으로써 상기 나노 발광체(120)를 보다 안정적으로 외부의 수분, 열 광 등으로부터 보호할 수 있다.As described above, the nanocomposite 100c described with reference to FIG. 1c further includes the wax layer 140 in comparison with the nanocomposite 100b described with reference to FIG. It can protect from moisture, heat and the like.
도 3a 내지 도 3c는 본 발명의 다른 하나의 실시예에 따른 나노 복합체를 설명하기 위한 도면들이다. 3A to 3C are diagrams for explaining a nanocomposite according to another embodiment of the present invention.
도 3a를 참조하면, 본 발명의 하나의 실시예에 따른 나노 복합체(200a)는 왁스 입자(210), 상기 왁스 입자(210)의 내부에 배치된 적어도 1개의 나노 발광체(220) 및 내부 보호막(230)을 포함한다.Referring to FIG. 3A, the nanocomposite 200a according to an embodiment of the present invention may include a wax particle 210, at least one nano light emitter 220 disposed inside the wax particle 210, and an inner protective film ( 230).
상기 왁스 입자(210)는 도 1a에서 설명한 왁스 입자(110)와 실질적으로 동일하고, 상기 나노 발광체(220)는 도 2에서 설명한 나노 발광체(120)와 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다. Since the wax particle 210 is substantially the same as the wax particle 110 described with reference to FIG. 1A, and the nano light emitter 220 is substantially the same as the nano light emitter 120 described with reference to FIG. 2, detailed descriptions thereof will be omitted. .
상기 내부 보호막(230)은 상기 나노 발광체(220)를 피복한다. 상기 내부 보호막(230)은 상기 나노 발광체(220)의 표면과 직접적으로 접촉하여 상기 나노 발광체(220)을 피복한다. 이때, 상기 왁스 입자(210)의 내부에 배치된 상기 나노 발광체들(220)은 개별적으로 상기 내부 보호막(230)에 의해 피복될 수 있다.The inner passivation layer 230 covers the nano light emitter 220. The inner passivation layer 230 directly contacts the surface of the nano light emitter 220 to cover the nano light emitter 220. In this case, the nano light emitters 220 disposed in the wax particles 210 may be individually covered by the inner passivation layer 230.
즉, 1개의 나노 발광체(220)는 1개의 내부 보호막(230)에 의해 피복될 수 있다. 상기 내부 보호막(230)은 산화 실리콘으로 형성되고, 상기 내부 보호막(230)을 구성하는 산화 실리콘은 도 1b에서 설명한 외부 보호막(130)을 구성하는 산화 실리콘과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.That is, one nano light-emitting body 220 may be covered by one internal protective film 230. Since the inner passivation layer 230 is formed of silicon oxide, and the silicon oxide constituting the inner passivation layer 230 is substantially the same as the silicon oxide constituting the outer passivation layer 130 described with reference to FIG. 1B, detailed descriptions thereof will be omitted. do.
상기 왁스 입자(210)의 내부에 배치된 복수의 나노 발광체들(220)은, 서로 동일한 파장대에서 발광 피크를 가질 수 있다. 예를 들어, 상기 나노 복합체(200a)는 청색, 녹색 및 적색 나노 복합체 중 어느 하나일 수 있다.The plurality of nano light emitters 220 disposed inside the wax particle 210 may have emission peaks in the same wavelength band. For example, the nanocomposite 200a may be any one of blue, green, and red nanocomposites.
이와 달리, 상기 왁스 입자(210)의 내부에 배치된 복수의 나노 발광체들(220) 중 적어도 2개는 서로 다른 파장대에서 발광 피크를 가질 수 있다. 즉, 상기 왁스 입자(210)의 내부에 배치된 나노 발광체들(220)은 청색 나노 발광체, 녹색 나노 발광체 및 적색 나노 발광체 중의 적어도 2종을 포함할 수 있다. 예를 들어, 상기 나노 복합체(200a)는 다색 나노 복합체일 수 있다.Alternatively, at least two of the plurality of nano light emitters 220 disposed inside the wax particle 210 may have emission peaks in different wavelength bands. That is, the nano light emitters 220 disposed in the wax particle 210 may include at least two kinds of blue nano light emitters, green nano light emitters, and red nano light emitters. For example, the nanocomposite 200a may be a multicolor nanocomposite.
도면으로 도시하지 않았으나, 상기 내부 보호막(230)은 2개 이상의 나노 발광체들(220)을 피복할 수도 있다. 2개 이상의 나노 발광체들(220)이 상기 내부 보호막(230)에 의해 피복되는 경우, 서로 인접한 나노 발광체들(220) 사이의 이격 공간은 상기 내부 보호막(230)을 구성하는 산화 실리콘에 의해 채워질 수 있다. 이때, 하나의 내부 보호막(230)으로 피복된 나노 발광체들(220)은 서로 동일한 파장대에서 발광 피크를 가질 수 있다. 이와 달리, 하나의 내부 보호막(230)으로 피복된 나노 발광체들(220) 중 적어도 2개는 서로 다른 파장대에서 발광 피크를 가질 수 있다.Although not illustrated, the inner passivation layer 230 may cover two or more nano light emitters 220. When two or more nano light emitters 220 are covered by the inner passivation layer 230, a space between the adjacent nano light emitters 220 may be filled by silicon oxide constituting the inner passivation layer 230. have. In this case, the nano light-emitting bodies 220 coated with one inner passivation layer 230 may have emission peaks in the same wavelength band. In contrast, at least two of the nano light emitters 220 coated with one inner passivation layer 230 may have emission peaks in different wavelength bands.
한편, 하나의 내부 보호막(230)에 의해 피복된 2개 이상의 나노 발광체들(220)을 발광 그룹으로 지칭할 때, 하나의 왁스 입자(210) 내부에는 적어도 2종의 발광 그룹들이 배치될 수 있고 이때 하나의 발광 그룹은 제1 나노 발광체들에 의해 구성되고 다른 하나의 발광 그룹은 상기 제1 나노 발광체와 다른 파장대에서 발광 피크를 갖는 제2 나노 발광체들에 의해 구성될 수 있다. 이와 달리, 발광 그룹들 각각이 서로 다른 파장대에서 발광 피크를 갖는 적어도 2종의 나노 발광체를 포함할 수 있다.Meanwhile, when two or more nano light emitters 220 covered by one inner passivation layer 230 are referred to as light emitting groups, at least two light emitting groups may be disposed in one wax particle 210. In this case, one light emitting group may be configured by the first nano light emitters, and the other light emitting group may be configured by second nano light emitters having emission peaks at wavelengths different from those of the first nano light emitter. Alternatively, each of the light emitting groups may include at least two nano light emitters having light emission peaks in different wavelength bands.
상기 나노 복합체(200a)의 직경은 약 50nm 내지 약 30 ㎛일 수 있다.The nanocomposite 200a may have a diameter of about 50 nm to about 30 μm.
상기에서 설명한 바에 따르면, 상기 나노 복합체(200a)는 적어도 1개의 나노 발광체(200)가 이미 1차적으로 상기 내부 보호막(230)에 의해 캡슐화된 상태에서 2차적으로 왁스계 화합물로 캡슐화되는 구조를 가지므로, 상기 나노 발광체(220)가 외부의 열, 광, 수분 등으로부터 손상되는 것을 방지할 수 있다.As described above, the nanocomposite 200a has a structure in which at least one nano light emitter 200 is encapsulated by a wax-based compound in a state in which the at least one nano light-emitting body 200 is firstly encapsulated by the inner protective layer 230. Therefore, the nano light emitter 220 may be prevented from being damaged from external heat, light, and moisture.
도 3b를 참조하면, 본 발명의 실시예에 따른 나노 복합체(200b)는 왁스 입자(210), 적어도 1개의 나노 발광체(220), 내부 보호막(230) 및 외부 보호막(240)을 포함할 수 있다. 상기 나노 복합체(200b)는 상기 외부 보호막(240)을 더 포함하는 것을 제외하고는 도 3a에서 설명한 나노 복합체(200a)와 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다. 상기 나노 복합체(200b)의 직경은 약 50nm 내지 약 30 ㎛일 수 있다.Referring to FIG. 3B, the nanocomposite 200b according to the embodiment of the present invention may include wax particles 210, at least one nano light emitter 220, an inner passivation layer 230, and an outer passivation layer 240. . Since the nanocomposite 200b is substantially the same as the nanocomposite 200a described with reference to FIG. 3A except that the nanocomposite 200b further includes the outer passivation layer 240, detailed descriptions thereof will be omitted. The nanocomposite 200b may have a diameter of about 50 nm to about 30 μm.
상기 외부 보호막(240)은 상기 왁스 입자(210)를 피복하고 산화 실리콘으로 형성될 수 있다. 상기 외부 보호막(240)은 도 1b에서 설명한 외부 보호막(130)과 실질적으로 동일하므로 중복되는 구체적인 설명은 생략한다. 상기 외부 보호막(240)은 상기 왁스 입자(210) 및 상기 내부 보호막(230)과 함께 수분, 열, 광 등에 의해 상기 나노 발광체(220)가 손상되는 것을 방지할 수 있다. The outer passivation layer 240 may cover the wax particles 210 and be formed of silicon oxide. Since the outer passivation layer 240 is substantially the same as the outer passivation layer 130 described with reference to FIG. 1B, detailed descriptions thereof will be omitted. The outer passivation layer 240 may prevent the nano light emitter 220 from being damaged by moisture, heat, light, etc. together with the wax particles 210 and the inner passivation layer 230.
도 3b에서는 상기 외부 보호막(240)이 하나의 왁스 입자(210)를 피복한 것을 도시하였으나, 상기 외부 보호막(240)은 복수의 왁스 입자들(210)를 피복할 수 있다. 예를 들어, 상기 외부 보호막(240)은 서로 인접하게 배치된 적어도 2개의 왁스 입자들(210)을 피복할 수 있고, 상기 왁스 입자들(210) 사이의 이격 공간에는 산화 실리콘이 채워짐으로써 나노 복합체를 형성할 수 있다.In FIG. 3B, the outer passivation layer 240 covers one wax particle 210, but the outer passivation layer 240 may cover the plurality of wax particles 210. For example, the outer protective layer 240 may cover at least two wax particles 210 disposed adjacent to each other, and the silicon oxide is filled in the space between the wax particles 210 to form a nanocomposite. Can be formed.
도 3c를 참조하면, 본 발명의 실시예에 따른 나노 복합체(200c)는 왁스 입자(210), 적어도 하나의 나노 발광체(220), 내부 보호막(230), 외부 보호막(240) 및 왁스층(250)을 포함할 수 있다. 상기 나노 복합체(200c)는 상기 왁스층(250)을 더 포함하는 것을 제외하고는 도 3b에서 설명한 나노 복합체(200b)와 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다. 상기 나노 복합체(200c)의 직경은 약 50nm 내지 약 30 ㎛일 수 있다.Referring to FIG. 3C, the nanocomposite 200c according to an embodiment of the present invention may include wax particles 210, at least one nano light emitter 220, an inner passivation layer 230, an outer passivation layer 240, and a wax layer 250. It may include. Since the nanocomposite 200c is substantially the same as the nanocomposite 200b described with reference to FIG. 3B except for further including the wax layer 250, detailed descriptions thereof will be omitted. The nanocomposite 200c may have a diameter of about 50 nm to about 30 μm.
상기 왁스층(250)은 상기 외부 보호막(240)을 피복할 수 있다. 상기 왁스층(250)은 왁스계 화합물로 형성된다. 상기 왁스층(250)을 구성하는 상기 왁스계 화합물은 도 1a에서 설명한 왁스계 화합물과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다. The wax layer 250 may cover the outer protective layer 240. The wax layer 250 is formed of a wax-based compound. Since the wax compound constituting the wax layer 250 is substantially the same as the wax compound described with reference to FIG. 1A, detailed descriptions thereof will be omitted.
상기 왁스층(250)은 도 3c에 도시된 것과 같이 상기 외부 보호막(240)에 의해 표면이 커버된 1개의 왁스 입자(210)를 피복하거나, 도면으로 도시하지 않았으나 상기 외부 보호막(240)에 의해 표면이 커버된 왁스 입자(210) 복수개를 피복할 수 있다.The wax layer 250 covers one wax particle 210 whose surface is covered by the outer protective film 240 as shown in FIG. 3C, or is not shown in the drawing, but the surface is covered by the outer protective film 240. A plurality of the covered wax particles 210 may be coated.
상기에서 설명한 바에 따르면, 상기 나노 복합체(200c)는 상기 왁스 입자(210)를 상기 외부 보호막(240) 및 상기 왁스층(250)으로 캡슐화함으로써 상기 나노 발광체(220)가 외부의 열, 광, 수분 등으로부터 손상되는 것을 방지할 수 있다. 경우에 따라서, 도 3c에 도시된 나노 복합체(200c)에 추가적으로 산화 실리콘막 및 왁스층을 반복하여 적층하여 다중층에 의해 캡슐화된 나노 복합체를 제조할 수 있다.As described above, the nanocomposite 200c encapsulates the wax particles 210 into the outer protective layer 240 and the wax layer 250 so that the nano light emitter 220 may be exposed to external heat, light, moisture, or the like. Can be prevented from being damaged. In some cases, the nanocomposite 200c shown in FIG. 3C may be repeatedly laminated to the silicon oxide film and the wax layer to manufacture the nanocomposite encapsulated by the multilayer.
이하에서는, 상기에서 설명한 본 발명에 따른 나노 복합체들의 제조방법 및 이들의 안정성 평가에 대해서 구체적으로 설명한다.Hereinafter, the manufacturing method of the nanocomposites according to the present invention described above and their stability evaluation will be described in detail.
나노 복합체의 제조 -1Preparation of Nanocomposites -1
[제1 단계][Step 1]
톨루엔 1 ml에 왁스계 화합물 20 mg을 혼합한 후, 약 150℃로 온도를 상승시킴으로써 왁스계 화합물을 용해시켜 왁스 용액을 제조하였다. 상기 왁스 용액에, 톨루엔 1ml에 약 20 mg의 CdSe계의 적색 양자점(상품명: Nanodot-HE-606, QD solution사, 한국)이 분산된 용액을 혼합한 후, 상온으로 냉각시켜 톨루엔 1ml 당 약 10mg의 입자가 분산된 냉각 용액을 제조하였다. 이때, 상기 왁스계 화합물은, 산화 고밀도 폴리에틸렌 왁스(Oxidized HDPE Wax)로서 산가(Acid value)가 약 50 mg KOH/g인 왁스(상품명: Licowax PED 136 왁스, Clariant사, 스위스)를 사용하였고, 상기 냉각 용액에 분산된 입자는 왁스 입자 및 상기 왁스 입자 내부에 갇힌 적색 양자점들을 포함하였다.After mixing 20 mg of the wax-based compound in 1 ml of toluene, the wax-based compound was dissolved by raising the temperature to about 150 ° C. to prepare a wax solution. The wax solution was mixed with a solution containing about 20 mg of CdSe-based red quantum dots (trade name: Nanodot-HE-606, QD solution, Korea) in 1 ml of toluene, and then cooled to room temperature to about 10 mg per 1 ml of toluene. A cooling solution in which particles of were dispersed was prepared. In this case, as the wax-based compound, a wax having an acid value of about 50 mg KOH / g (trade name: Licowax PED 136 wax, Clariant, Switzerland) was used as an oxidized high density polyethylene wax (Oxidized HDPE Wax). The particles dispersed in the cooling solution contained wax particles and red quantum dots trapped inside the wax particles.
[제2 단계][Step 2]
상기 냉각 용액을 에탄올 10ml와 TEOS(tetraethoxysilane, Sigma Aldrich사, 미국) 1ml이 혼합된 용액에 첨가한 후, 추가적으로 농도가 30%인 암모니아수를 2.5 ml 첨가하여 상기 입자들의 표면에 산화 실리콘을 형성함으로써 나노 복합체를 포함하는 나노 복합체 용액을 제조하였다.The cooling solution was added to a mixture of 10 ml of ethanol and 1 ml of TEOS (tetraethoxysilane, Sigma Aldrich, USA), and then additionally 2.5 ml of 30% ammonia water to form silicon oxide on the surface of the particles. The nanocomposite solution containing the complex was prepared.
[제3 단계][Step 3]
상기 나노 복합체 용액에서 고속 원심 분리기를 이용하여 약 5,000 rpm에서 약 30분 동안 원심분리하여 상기 나노 복합체를 분리하였고, 에탄올과 증류수를 이용하여 세척한 후 증발기를 이용하여 에탄올과 증류수를 제거함으로써 파우더 상태의 나노 복합체 1을 제조하였다.In the nanocomposite solution, the nanocomposite was separated by centrifugation at about 5,000 rpm for about 30 minutes using a high speed centrifuge, washed with ethanol and distilled water, and then ethanol and distilled water were removed using an evaporator. Nanocomposite 1 was prepared.
나노 복합체의 제조 -2Preparation of Nanocomposites -2
나노 복합체 용액의 제조-1에서 설명한 제1 단계 및 제2 단계를 수행하여 제조된 나노 복합체 용액을, 상기 왁스계 화합물을 포함하는 왁스 용액에 첨가하였다. 상온으로 냉각하고 증발기로 톨루엔을 제거함으로써 산화 실리콘막 표면에 왁스층이 형성된 파우더 상태의 나노 복합체 2를 제조하였다.The nanocomposite solution prepared by performing the first and second steps described in Preparation of Nanocomposite Solution-1 was added to the wax solution containing the wax-based compound. By cooling to room temperature and removing toluene by an evaporator, a nanocomposite 2 in a powder state in which a wax layer was formed on a silicon oxide film surface was prepared.
나노 복합체의 제조 -3Preparation of Nanocomposites -3
에탄올 10ml과 TEOS 1ml가 혼합된 용액에, 톨루엔 0.5ml에 약 10 mg의 CdSe계의 적색 양자점(상품명:Nanodot-HE-606, QD solution사, 한국)이 분산된 용액을 혼합한 후, 추가적으로 농도가 30%인 암모니아수를 2.5 ml 첨가하여 표면에 산화 실리콘막이 형성된 양자점을 제조하였다. 상기 양자점을 고속 원심 분리기를 이용하여 약 5,000 rpm에서 약 30분 동안 원심분리하여 분리한 후, 에탄올과 증류수로 세척하였다.After mixing 10 ml of ethanol and 1 ml of TEOS, a solution containing about 10 mg of a CdSe-based red quantum dot (trade name: Nanodot-HE-606, QD solution, Korea) was mixed in 0.5 ml of toluene, followed by additional concentration. 2.5 ml of 30% ammonia water was added to prepare a quantum dot having a silicon oxide film formed on its surface. The quantum dots were separated by centrifugation at about 5,000 rpm for about 30 minutes using a high speed centrifuge, and then washed with ethanol and distilled water.
이어서, 톨루엔 1 ml에 왁스계 화합물 20 mg을 혼합한 후, 약 150℃ 로 온도를 상승시킴으로써 왁스계 화합물을 용해시켜 제조된 왁스 용액에, 산화 실리콘막이 표면에 형성된 양자점이 분산된 톨루엔 용액을 혼합한 후 상온으로 냉각시키고 증발기를 이용하여 톨루엔을 제거함으로써 파우더 상태의 나노 복합체 3을 제조하였다.Subsequently, after mixing 20 mg of the wax compound with 1 ml of toluene, the wax solution prepared by dissolving the wax compound by raising the temperature to about 150 ° C. was mixed with the toluene solution in which the quantum dots formed on the surface of the silicon oxide film were dispersed. After cooling to room temperature and toluene was removed using an evaporator to prepare a powder nanocomposite 3.
나노 복합체 용액의 제조 -4 Preparation of Nanocomposite Solutions -4
'나노 복합체 용액의 제조-3'에서 제조된 나노 복합체를, 에탄올 10ml과 TEOS 1ml이 혼합된 용액과 혼합하고 농도가 30%인 암모니아수를 2.5 ml 첨가하였다.The nanocomposite prepared in 'Preparation of Nanocomposite Solution-3' was mixed with a solution in which 10 ml of ethanol and 1 ml of TEOS were mixed, and 2.5 ml of ammonia water having a concentration of 30% was added.
이어서, 고속 원심 분리기를 이용하여 약 5,000 rpm에서 약 30분 동안 원심분리하여 나노 복합체를 분리하였고, 에탄올과 증류수를 이용하여 세척하였다. 증발기를 이용하여 에탄올과 증류수를 제거하여 파우더 상태의 나노 복합체 4를 제조하였다.Subsequently, the nanocomposite was separated by centrifugation at about 5,000 rpm for about 30 minutes using a high speed centrifuge, and washed with ethanol and distilled water. Ethanol and distilled water were removed using an evaporator to prepare a nanocomposite 4 in powder form.
[실험 1]-자외선 안정성 및 열/수분 안정성 평가[Experiment 1]-Evaluation of UV stability and heat / moisture stability
상기와 같은 방법으로 파우더 상태의 나노 복합체 1 내지 4를 준비하고 이에 대한 제1 양자효율(QYT1, 단위:%)을 절대양자효율측정기(상품명: C9920-02, HAMAMATSU사, 일본)를 이용하여 측정하였다. 이어서, 중심 파장이 365nm인 자외선(UV)을 약 1.4 mW/cm2의 복사 강도로 480시간 동안, 즉 약 2,419.2 J/cm2의 가혹 조건으로 조사한 후, 제2 양자효율(QYT2, 단위:%)을 측정하였다. 상기 제1 양자효율 및 상기 제2 양자효율의 차이(△QY1=QYT1-QYT2, 단위:%)를 산출하여 나노 복합체 1 내지 4 각각에 대한 자외선 안정성을 평가하였다. 그 결과를 표 1에 나타낸다.Prepare the nanocomposites 1 to 4 in the powder state in the same manner as described above and measure the first quantum efficiency (QYT1, unit:%) using an absolute quantum efficiency meter (trade name: C9920-02, HAMAMATSU, Japan). It was. Subsequently, after irradiating ultraviolet light (UV) having a center wavelength of 365 nm for 480 hours at a radiation intensity of about 1.4 mW / cm 2 , that is, under severe conditions of about 2,419.2 J / cm 2 , the second quantum efficiency (QYT2, unit:% ) Was measured. The difference between the first quantum efficiency and the second quantum efficiency (ΔQY1 = QYT1-QYT2, unit:%) was calculated to evaluate ultraviolet stability for each of the nanocomposites 1 to 4. The results are shown in Table 1.
또한, 파우더 상태의 나노 복합체 1 내지 4를 준비하고 제1 양자효율(QYT1, 단위:%)을 측정한 후 항온항습기에서 온도 85℃ 및 상대습도 85%의 가혹조건 하에 480시간 동안 방치하였다. 이어서, 가혹조건에 방치된 후의 나노 복합체 1 내지 4 각각의 제3 양자효율(QYT3, 단위:%)을 측정하였다. 상기 제1 양자효율 및 상기 제3 양자효율의 차이(△QY2=QYT1-QYT3, 단위:%)를 산출하여 나노 복합체 1 내지 4에 대한 열/수분 안정성을 평가하였다. 그 결과를 표 1에 나타낸다.In addition, the nanocomposites 1 to 4 of the powder state were prepared and the first quantum efficiency (QYT1, unit:%) was measured, and then left in a constant temperature and humidity chamber under severe conditions of 85 ° C. and 85% relative humidity for 480 hours. Subsequently, the third quantum efficiency (QYT3, unit:%) of each of the nanocomposites 1 to 4 after being left under severe conditions was measured. The difference between the first quantum efficiency and the third quantum efficiency (ΔQY2 = QYT1-QYT3, unit:%) was calculated to evaluate thermal / moisture stability for the nanocomposites 1 to 4. The results are shown in Table 1.
표 1
구분 자외선 안정성(△QY1, %) 열/수분 안정성(△QY2, %)
나노 복합체 1 5.5 7.3
나노 복합체 2 6.7 5.8
나노 복합체 3 2.8 5.9
나노 복합체 4 3.3 4.2
Table 1
division UV stability (△ QY1,%) Heat / moisture stability (△ QY2,%)
Nanocomposites 1 5.5 7.3
Nanocomposite 2 6.7 5.8
Nanocomposite 3 2.8 5.9
Nanocomposite 4 3.3 4.2
표 1을 참조하면, 나노 복합체 1 내지 4에 대한 자외선 안정성은 6.7% 이하이고, 열/수분 안정성은 7.3%이하임을 알 수 있다. 자외선에 대한 안정성이 좋을수록 가혹 조건(조사량 약 2,419.2 J/cm2)의 자외선 조사로 인한 양자효율의 변화(△QY1)는 작은 값을 갖는다. 열 및 수분에 대한 안정성이 클수록 고온고습(온도 85ㅀC 및 상대습도 85%)의 가혹 조건으로 인한 양자효율의 변화(△QY2)는 작은 값을 갖는다.Referring to Table 1, the UV stability for the nanocomposites 1 to 4 is 6.7% or less, it can be seen that the heat / moisture stability is 7.3% or less. As the stability to ultraviolet rays is better, the change in quantum efficiency (ΔQY1) due to ultraviolet irradiation under severe conditions (irradiation amount about 2,419.2 J / cm 2 ) has a smaller value. The greater the stability to heat and moisture, the smaller the change in quantum efficiency (ΔQY2) due to the harsh conditions of high temperature and high humidity (temperature 85 ° C and relative humidity 85%).
나노 발광체가 왁스 입자로만 피복된 나노 복합체(도 1a 참조)에 대한 자외선 안정성이 약 15%이고 열/수분 안정성이 약 16%인 점을 고려하면, 나노 복합체 1 내지 4와 같이 왁스 입자와 산화 실리콘막을 모두 포함하는 나노 복합체의 자외선 안정성과 열/수분 안정성이 더 좋은 것을 알 수 있다.Considering that the UV light stability of the nanocomposite coated with wax particles only (see FIG. 1A) is about 15% and the heat / moisture stability is about 16%, the wax particles and silicon oxide as in Nanocomposites 1 to 4 It can be seen that UV stability and heat / moisture stability of the nanocomposite including all of the films are better.
광학 부재Optical member
도 4a 및 도 4b는 본 발명의 실시예에 따른 광학 부재를 설명하기 위한 도면들이다.4A and 4B are diagrams for describing an optical member according to an exemplary embodiment of the present invention.
도 4a를 참조하면, 본 발명의 일 실시예에 따른 광학 부재(501)는 베이스 기재(510) 및 적어도 1개의 제1 나노 복합체(CX1)가 분산된 제1 광학층(520)을 포함한다.Referring to FIG. 4A, the optical member 501 according to the exemplary embodiment includes a base substrate 510 and a first optical layer 520 in which at least one first nanocomposite CX1 is dispersed.
상기 베이스 기재(510)는 광이 입사되는 광입사면 및 상기 광입사면에 대향하고 입사된 광이 출사되는 광출사면을 포함할 수 있다. 상기 베이스 기재(510)는 광을 투과시키는 투명한 재료로 형성된다. 상기 투명한 재료의 예로서는, 폴리메틸메타크릴레이트(Polymethylmethacrylate, PMMA) 수지, 폴리카보네이트(Polycarbonate, PC) 수지, 폴리이미드(Polyimide, PI) 수지, 폴리에틸렌(Polyethylene, PE) 수지, 폴리프로필렌(Polypropylene, PP) 수지, 메타크릴(Methacrylic) 수지, 폴리우레탄(Ployurethane) 수지, 폴리에틸렌 테레프탈레이트(polyethylene terephthalate, PET) 수지 등을 들 수 있다.The base substrate 510 may include a light incident surface on which light is incident and a light exit surface facing the light incident surface and to which incident light is emitted. The base substrate 510 is formed of a transparent material that transmits light. Examples of the transparent material include polymethylmethacrylate (PMMA) resin, polycarbonate (PC) resin, polyimide (PI) resin, polyethylene (PE) resin, polypropylene (Polypropylene, PP). ) Resin, methacryl (Methacrylic) resin, polyurethane (Ployurethane) resin, polyethylene terephthalate (polyethylene terephthalate, PET) resin and the like.
상기 제1 광학층(520)은 상기 베이스 기재(510)의 일 면, 즉, 광입사면 또는 광출사면 상에 형성될 수 있다. 상기 제1 광학층(520)은 고분자 수지 및 상기 제1 나노 복합체(CX1)로 구성된다. 상기 고분자 수지가 상기 제1 광학층(520)의 주재료로서, 상기 고분자 수지의 내부에 상기 제1 나노 복합체(CX1)가 분산된다.The first optical layer 520 may be formed on one surface of the base substrate 510, that is, a light incident surface or a light exit surface. The first optical layer 520 is composed of a polymer resin and the first nanocomposite CX1. The polymer resin is a main material of the first optical layer 520, and the first nanocomposite CX1 is dispersed in the polymer resin.
상기 제1 나노 복합체(CX1)는 제1 왁스 입자 및 상기 제1 왁스 입자 내부에 배치된 적어도 1개의 제1 나노 발광체를 포함한다. 예를 들어, 상기 제1 나노 복합체(CX1)는 도 1a에서 설명한 나노 복합체(100a)와 실질적으로 동일한 구조를 가질 수 있다.The first nanocomposite CX1 includes first wax particles and at least one first nano light-emitting body disposed inside the first wax particles. For example, the first nanocomposite CX1 may have a structure substantially the same as that of the nanocomposite 100a described with reference to FIG. 1A.
또한, 상기 제1 나노 복합체(CX1)는, 도 1b, 도 1c, 도 3a, 도 3b 및 도 3c에서 설명한 바와 같이, 상기 제1 왁스 입자의 표면을 피복하는 외부 보호막이나 상기 제1 나노 발광체를 피복하는 내부 보호막을 더 포함할 수 있다. 상기 제1 나노 복합체(CX1)가 상기 외부 보호막을 더 포함하는 경우, 상기 외부 보호막을 피복하는 왁스층을 더 포함할 수 있다. 즉, 상기 제1 광학층(520)에 분산된 상기 제1 나노 복합체(CX1)는 도 1a 내지 도 1c 및 도 3a 내지 도 3c에서 설명한 나노 복합체의 구조들 중 어느 하나의 구조를 가질 수 있다. 따라서, 상기 나노 복합체(CX1)에 대한 중복되는 구체적인 설명은 생략한다.In addition, the first nanocomposite CX1 may include an outer protective film or the first nano light-emitting body covering the surface of the first wax particles, as described with reference to FIGS. 1B, 1C, 3A, 3B, and 3C. It may further include an inner protective film to cover. When the first nanocomposite CX1 further includes the outer protective layer, the first nanocomposite CX1 may further include a wax layer covering the outer protective layer. That is, the first nanocomposite CX1 dispersed in the first optical layer 520 may have any one of the structures of the nanocomposites described with reference to FIGS. 1A to 1C and 3A to 3C. Therefore, detailed overlapping description of the nanocomposite CX1 will be omitted.
일례로, 상기 제1 광학층(520)에 분산된 상기 제1 나노 복합체들(CX1)은 청색, 녹색 및 적색 나노 복합체들 중에서 선택된 1종만을 포함할 수 있다. 이때에는 상기 제1 광학층(520)을 통과하는 광은, 청색, 녹색 및 적색 파장대 중 어느 하나의 파장대에서만 발광 스펙트럼을 가질 수 있다.For example, the first nanocomposites CX1 dispersed in the first optical layer 520 may include only one selected from blue, green, and red nanocomposites. In this case, the light passing through the first optical layer 520 may have an emission spectrum only in any one of blue, green, and red wavelength bands.
다른 예로서, 상기 제1 광학층(520)에 분산된 상기 제1 나노 복합체들(CX1)은 청색, 녹색 및 적색 나노 복합체들 중 적어도 2종을 포함할 수 있다. 즉, 상기 제1 광학층(520)에 분산된 상기 제1 나노 복합체들(CX1)은 복수의 녹색 나노 복합체들과 복수의 적색 나노 복합체들로 구성될 수 있다.As another example, the first nanocomposites CX1 dispersed in the first optical layer 520 may include at least two of blue, green, and red nanocomposites. That is, the first nanocomposites CX1 dispersed in the first optical layer 520 may be composed of a plurality of green nanocomposites and a plurality of red nanocomposites.
또 다른 예로서, 상기 제1 광학층(520)에 분산된 상기 제1 나노 복합체들(CX1)은 다색 나노 복합체들을 포함할 수 있다. 상기 다색 나노 복합체들 각각은 상기 제1 왁스 입자 내부에 배치된 상기 제1 나노 발광체로서, 청색, 녹색 및 적색 나노 발광체들 중에서 선택된 적어도 2종을 포함할 수 있다. 예를 들어, 상기 다색 나노 복합체는 녹색 나노 발광체와 적색 나노 발광체를 포함할 수 있다.As another example, the first nanocomposites CX1 dispersed in the first optical layer 520 may include multicolor nanocomposites. Each of the multicolor nanocomposites is the first nano light emitter disposed inside the first wax particle, and may include at least two selected from blue, green, and red nano light emitters. For example, the multicolor nanocomposite may include a green nano light emitter and a red nano light emitter.
상기 제1 광학층(520)은 표면에 형성된 광학 패턴을 포함할 수 있다. 상기 광학 패턴의 형상은 상기 광학 부재(501)의 기능에 따라서 다양하게 조절될 수 있다. 상기 광학 패턴은 광확산 패턴, 집광 패턴, 출광 패턴 등을 포함할 수 있다. 상기 광학 패턴의 형상에 대해서는 도 4c 내지 도 4g를 참조하여 후술하기로 한다.The first optical layer 520 may include an optical pattern formed on the surface. The shape of the optical pattern may be variously adjusted according to the function of the optical member 501. The optical pattern may include a light diffusion pattern, a light collecting pattern, a light exit pattern, and the like. The shape of the optical pattern will be described later with reference to FIGS. 4C to 4G.
도면으로 도시하지 않았으나, 상기 제1 광학층(520)은 광을 확산시키는 확산 비드들을 더 포함할 수 있다. 상기 확산 비드들의 종류로서는, 특별히 제한되지 않고 기술분야에서 통상적으로 이용되는 것이면 제한 없이 사용될 수 있다. Although not shown in the drawings, the first optical layer 520 may further include diffusion beads to diffuse light. The type of the diffusion beads is not particularly limited and may be used without limitation as long as it is commonly used in the art.
이와 달리, 상기 제1 광학층(520)과 별도의 층으로 상기 확산 비드들을 포함하는 광학층을 상기 베이스 기재(510)에 형성할 수 있다. 상기 확산 비드들을 포함하는 광학층은 상기 제1 광학층(520)이 형성된 상기 베이스 기재(510)의 일 면 또는 상기 일 면과 대향하는 타면 상에 형성될 수 있다.Alternatively, an optical layer including the diffusion beads may be formed on the base substrate 510 as a layer separate from the first optical layer 520. The optical layer including the diffusion beads may be formed on one surface or the other surface of the base substrate 510 on which the first optical layer 520 is formed.
도 4b를 참조하면, 본 발명의 다른 실시예에 따른 광학 부재(502)는 베이스 기재(510), 제1 광학층(520) 및 제2 광학층(530)을 포함한다. 상기 제1 광학층(520)은 제1 나노 복합체들(CX1)을 포함하고, 상기 제2 광학층(530)은 제2 나노 복합체들(CX2)을 포함한다. 상기 제1 나노 복합체들(CX1)각각은 제1 왁스 입자 및 적어도 1개의 제1 나노 발광체를 포함하고, 상기 제2 나노 복합체들 각각(CX2)은 제2 왁스 입자 및 적어도 1개의 제2 나노 발광체를 포함한다.Referring to FIG. 4B, an optical member 502 according to another embodiment of the present invention includes a base substrate 510, a first optical layer 520, and a second optical layer 530. The first optical layer 520 includes first nanocomposites CX1, and the second optical layer 530 includes second nanocomposites CX2. Each of the first nanocomposites CX1 includes a first wax particle and at least one first nano light emitter, and each of the second nanocomposites CX2 includes a second wax particle and at least one second nano light emitter. It includes.
도 4b에서 설명하는 상기 광학 부재(502)는, 상기 제2 광학층(530)을 더 포함하는 것을 제외하고는, 도 4a에서 설명한 광학 부재(501)와 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.The optical member 502 described in FIG. 4B is substantially the same as the optical member 501 described in FIG. 4A, except that the optical member 502 further includes the second optical layer 530. do.
상기 제2 광학층(530)은 상기 제1 광학층(520)이 형성된 상기 베이스 기재(510)의 일 면과 대향하는 타면 상에 형성된다. 상기 제2 광학층(530)은 고분자 수지 및 상기 고분자 수지 내부에 분산된 상기 제2 나노 복합체들(CX2)을 포함한다.The second optical layer 530 is formed on the other surface of the base substrate 510 on which the first optical layer 520 is formed. The second optical layer 530 includes a polymer resin and the second nanocomposites CX2 dispersed in the polymer resin.
상기 제2 나노 복합체들(CX2) 각각에 있어서, 상기 제2 왁스 입자는 왁스계 화합물로 형성된다. 적어도 1개의 제2 나노 발광체는 상기 제2 왁스 입자의 내부에 배치된다. 상기 제2 나노 복합체들(CX2)은 도 4a에서 설명한 제1 나노 복합체(CX1)와 실질적으로 동일하므로 중복되는 구체적인 설명은 생략한다.In each of the second nanocomposites CX2, the second wax particles are formed of a wax-based compound. At least one second nano light-emitting body is disposed inside the second wax particle. Since the second nanocomposites CX2 are substantially the same as the first nanocomposite CX1 described with reference to FIG. 4A, detailed descriptions thereof will be omitted.
일례로, 상기 제1 나노 복합체들(CX1)이 모두 동일한 파장대에서 발광 피크를 갖고 상기 제2 나노 복합체들(CX2)이 모두 동일한 파장대에서 발광 피크를 갖는 경우, 상기 제1 나노 발광체와 상기 제2 나노 발광체는 서로 다른 파장대에서 발광 피크를 가질 수 있다. For example, when the first nanocomposites CX1 all have emission peaks in the same wavelength band, and the second nanocomposites CX2 all have emission peaks in the same wavelength band, the first nano light emitter and the second The nano light emitter may have an emission peak in different wavelength bands.
상기 제1 나노 복합체들(CX1)에서 생성되는 광의 파장이 상기 제2 나노 복합체들(CX2)에서 생성되는 광의 파장보다 짧은 경우, 상기 제1 나노 복합체들(CX1)에서 생성되는 광의 일부가 상기 제2 나노 복합체들(CX2)에 포함된 상기 제2 나노 발광체들을 여기(excitation)시키게 되므로 상기 제2 나노 복합체들(CX2)은 광원이 제공하는 광 뿐만 아니라 상기 제1 나노 복합체들(CX1)에서 생성되는 광의 일부에 의해서 여기될 수 있다. 즉, 상기 제2 나노 복합체들(CX2)은, 상기 제1 나노 복합체들(CX1) 및 광원으로부터, 여기 되기에 충분한 광을 제공받을 수 있다. 뿐만 아니라, 광원에서 생성된 광이 1차적으로 상기 제1 광학층(520)에 도달함에 따라 상기 제1 나노 복합체들(CX1)은 광원으로부터 상기 제2 광학층(530)에 비해 높은 에너지를 전달받을 수 있어 상기 제1 나노 복합체들(CX1)에서 생성된 광의 파워 밀도(power density)를 극대화할 수 있다.When the wavelength of the light generated in the first nanocomposites CX1 is shorter than the wavelength of the light generated in the second nanocomposites CX2, a portion of the light generated in the first nanocomposites CX1 may be partially formed. Since the second nano light emitters included in the 2 nanocomposites CX2 are excited, the second nanocomposites CX2 are generated from the first nanocomposites CX1 as well as light provided by a light source. It can be excited by some of the light being. That is, the second nanocomposites CX2 may be provided with sufficient light to be excited from the first nanocomposites CX1 and the light source. In addition, as the light generated by the light source first reaches the first optical layer 520, the first nanocomposites CX1 transmit higher energy from the light source than the second optical layer 530. The power density of the light generated in the first nanocomposites CX1 may be maximized.
예를 들어, 광의 경로가 상기 제1 광학층(520)에서 상기 제2 광학층(530)을 향하는 방향인 경우, 상기 제1 나노 복합체들(CX1)은 녹색 나노 복합체들로 이루어질 수 있고, 상기 제2 나노 복합체들(CX2)은 적색 나노 복합체들로 이루어질 수 있다.For example, when the path of the light is in a direction from the first optical layer 520 toward the second optical layer 530, the first nanocomposites CX1 may be formed of green nanocomposites. The second nanocomposites CX2 may be formed of red nanocomposites.
다른 예로서, 상기 제1 나노 복합체들(CX1)은 적어도 2종의 나노 복합체로 이루어지고, 상기 제2 나노 복합체들(CX2)은 1종의 나노 복합체들로 이루어질 수 있다. 예를 들어, 상기 제1 나노 복합체들(CX1)은 녹색 나노 복합체들 및 적색 나노 복합체들로 이루어지고, 상기 제2 나노 복합체들(CX2)은 녹색 나노 복합체들을 포함할 수 있다.As another example, the first nanocomposites CX1 may include at least two nanocomposites, and the second nanocomposites CX2 may include one nanocomposite. For example, the first nanocomposites CX1 may be composed of green nanocomposites and red nanocomposites, and the second nanocomposites CX2 may include green nanocomposites.
또 다른 예로서, 상기 제1 나노 복합체들(CX1) 및/또는 상기 제2 나노 복합체들(CX2)은 다색 나노 복합체들을 포함할 수 있다. 예를 들어, 상기 다색 나노 복합체들 각각은 녹색 나노 발광체 및 적색 나노 발광체를 포함할 수 있다.As another example, the first nanocomposites CX1 and / or the second nanocomposites CX2 may include multicolor nanocomposites. For example, each of the multicolor nanocomposites may include a green nano light emitter and a red nano light emitter.
상기 제1 광학층(520) 및 상기 제2 광학층(530) 각각은 도 4a 및 도 4b에서 그 표면이 평평한 면인 것으로 도시하였으나, 상기 제1 및 제2 광학층들(520, 530) 중 적어도 어느 하나는 표면에 형성된 광학 패턴을 포함할 수 있다. 상기 광학 패턴은 상기 광학 부재들(501, 502)이 제어하고자 하는 광학 특성에 따라서 다양하게 형성될 수 있다. 상기 광학 패턴의 형상에 대해서 이하에서 설명한다.Each of the first optical layer 520 and the second optical layer 530 is shown as a flat surface in FIGS. 4A and 4B, but at least one of the first and second optical layers 520 and 530 is shown. Either one may include an optical pattern formed on the surface. The optical pattern may be variously formed according to the optical characteristics that the optical members 501 and 502 intend to control. The shape of the said optical pattern is demonstrated below.
도면으로 도시하지 않았으나, 상기 광학 시트(502)는 제3 나노 복합체를 포함하는 제3 광학층을 더 포함할 수 있다.Although not shown in the drawings, the optical sheet 502 may further include a third optical layer including a third nanocomposite.
상기 제3 광학층은 상기 제1 광학층(520) 상에 형성될 수 있다. 상기 제3 광학층이 상기 제1 광학층(520) 상에 형성된 경우, 상기 제3 광학층의 표면에 광학 패턴이 형성될 수 있다.The third optical layer may be formed on the first optical layer 520. When the third optical layer is formed on the first optical layer 520, an optical pattern may be formed on the surface of the third optical layer.
상기 제3 나노 복합체는 제3 왁스 입자 및 상기 제3 왁스 입자 내부에 배치된 적어도 1개의 제3 나노 발광체를 포함한다. 상기 제3 나노 복합체는 도 1a 내지 도 1c 및 도 3a 내지 도 3c에서 설명한 구조 중 어느 하나의 구조를 가질 수 있다. 즉, 상기 제3 나노 복합체는 내부 보호막 및/또는 외부 보호막을 더 포함할 수 있다. 상기 제3 나노 복합체가 외부 보호막을 포함하는 경우, 상기 제3 나노 복합체는 상기 외부 보호막을 피복하는 왁스층을 더 포함할 수 있다.The third nanocomposite includes a third wax particle and at least one third nano light emitter disposed inside the third wax particle. The third nanocomposite may have any one of the structures described with reference to FIGS. 1A to 1C and 3A to 3C. That is, the third nanocomposite may further include an inner passivation layer and / or an outer passivation layer. When the third nanocomposite includes an outer passivation layer, the third nanocomposite may further include a wax layer covering the outer passivation layer.
한편, 상기 광학 시트(502)가 상기 제3 광학층을 더 포함하는 경우, 상기 제2 광학층(530)은 생략될 수 있다.Meanwhile, when the optical sheet 502 further includes the third optical layer, the second optical layer 530 may be omitted.
도 4c 내지 도 4g는 광학 패턴의 다양한 형태를 설명하기 위한 도면들이다.4C to 4G are diagrams for describing various types of optical patterns.
도 4c를 도 4b와 함께 참조하면, 상기 제1 광학층(520)의 표면에 형성된 광학 패턴은 연속 패턴(520a)일 수 있다. 상기 연속 패턴(520a)은 복수의 볼록부들이 연속으로 이어진 형태를 가질 수 있다. 상기 볼록부들 각각은 상기 베이스 기재(510)로부터 상기 광학 부재(502)의 외부를 향하는 방향으로 돌출된다. 상기 볼록부들의 높이 또는 폭은 서로 상이할 수 있으며, 불규칙한 값을 가질 수 있다. 도면에 도시하지는 않았으나, 상기 제1 광학층(520)의 표면에 형성된 광학 패턴은 복수의 오목부들이 연속으로 이어진 형태를 가질 수 있다. 상기 오목부들 각각은 상기 광학 부재(502)의 표면으로부터 상기 광학 부재(502)의 내부를 향하는 방향으로 함입된다. 상기 오목부들의 깊이 또는 폭은 필요에 따라 적절히 조절될 수 있고 오목부들 각각의 깊이 또는 폭은 불규칙한 값을 가질 수 있다. 상기 연속 패턴(520a)는 오목부와 볼록부가 조합된 형태를 가질 수도 있고, 엠보싱 패턴일 수도 있다. 상기 연속 패턴(520a)은 광확산 패턴으로 이용될 수 있다.Referring to FIG. 4C together with FIG. 4B, the optical pattern formed on the surface of the first optical layer 520 may be a continuous pattern 520a. The continuous pattern 520a may have a shape in which a plurality of convex portions are continuously connected. Each of the convex portions protrudes from the base substrate 510 in a direction toward the outside of the optical member 502. The heights or widths of the convex portions may be different from each other, and may have irregular values. Although not shown in the drawings, the optical pattern formed on the surface of the first optical layer 520 may have a shape in which a plurality of recesses are continuously connected. Each of the recesses is recessed in a direction from the surface of the optical member 502 toward the interior of the optical member 502. The depth or width of the recesses may be appropriately adjusted as needed and the depth or width of each of the recesses may have an irregular value. The continuous pattern 520a may have a combination of a concave portion and a convex portion, or may be an embossed pattern. The continuous pattern 520a may be used as a light diffusion pattern.
이와 달리, 상기 연속 패턴(520a)은 도 4d에 도시된 바와 같이 복수의 분할 영역들을 포함할 수 있다. 도 4d는 분할 영역을 설명하기 위한 평면도로서, 이를 참조하면 상기 연속 패턴(520a)은 평면적으로 부정형을 가지면서 불규칙하게 배열된 복수의 분할 영역들 각각에 대응하여 형성된 볼록부를 포함할 수 있다. 상기 볼록부의 높이, 평면 형상 및 표면적은 특별히 제한되지 않으며, 상기 볼록부의 높이 또는 표면적은 불규칙한 값을 가질 수 있다. 도면에 도시하지는 않았으나, 상기 연속 패턴(520a)은 평면적으로 부정형을 가지면서 불규칙하게 배열된 복수의 분할 영역들 각각에 대응하여 형성된 오목부를 포함할 수 있다.Alternatively, the continuous pattern 520a may include a plurality of divided regions as shown in FIG. 4D. 4D is a plan view illustrating a divided region. Referring to this, the continuous pattern 520a may include a convex portion formed to correspond to each of a plurality of divided regions that are irregularly arranged in a planar shape. The height, planar shape and surface area of the convex portion are not particularly limited, and the height or surface area of the convex portion may have an irregular value. Although not illustrated in the drawing, the continuous pattern 520a may include a concave portion formed corresponding to each of a plurality of divided regions irregularly arranged in a plane.
도 4e를 참조하면, 상기 제1 광학층(520)의 표면에 형성된 광학 패턴은 불연속 볼록 패턴(520b)일 수 있다. 상기 불연속 볼록 패턴(520b)에서는 각각의 볼록부가 서로 이격되어 배치된 형태를 가질 수 있다. 상기 불연속 볼록 패턴(520b)을 구성하는 볼록부는, 평면에서 볼 때, 도트 형상을 가질 수 있다. 상기 각각의 볼록부의 높이 또는 폭은 서로 상이할 수 있으며, 불규칙한 값을 가질 수 있다.Referring to FIG. 4E, the optical pattern formed on the surface of the first optical layer 520 may be a discontinuous convex pattern 520b. In the discontinuous convex pattern 520b, each convex portion may have a form in which the convex portions are spaced apart from each other. The convex portions constituting the discontinuous convex pattern 520b may have a dot shape when viewed in a plan view. The height or width of each convex portion may be different from each other, and may have an irregular value.
도 4f를 참조하면, 상기 제1 광학층(520)의 표면에 형성된 광학 패턴은 불연속 오목 패턴(520c)일 수 있다. 상기 불연속 오목 패턴(520c)에서는 각각의 오목부가 서로 이격되어 배치된 형태를 가질 수 있다. 이때, 상기 불연속 오목 패턴(520c)을 구성하는 단위체는, 평면에서 볼 때, 도트 형상을 가질 수 있다. 상기 오목부의 깊이 또는 폭은 서로 상이할 수 있고 각 오목부의 깊이 또는 폭은 불규칙한 값을 가질 수 있다.Referring to FIG. 4F, the optical pattern formed on the surface of the first optical layer 520 may be a discontinuous concave pattern 520c. In the discontinuous concave pattern 520c, the concave portions may be spaced apart from each other. In this case, the unit constituting the discontinuous concave pattern 520c may have a dot shape when viewed in a plan view. The depth or width of the recesses may be different from each other and the depth or width of each recess may have an irregular value.
도 4g를 참조하면, 상기 제1 광학층(520)의 표면에 형성된 광학 패턴은 집광 패턴(520d)일 수 있다. 상기 집광 패턴(520d)은 복수의 돌출부들을 포함하고, 상기 돌출부들 각각의 단면은 삼각형을 가질 수 있다. 상기 돌출부들은 상기 삼각형의 단면을 정의하는 절단면의 면내 방향(제1 방향)을 따라 연속적으로 배열될 수 있다. 일례로, 상기 돌출부들 각각은 상기 단면에 수직인 방향(제2 방향)으로 일정한 높이를 갖도록 연장될 수 있다. 즉, 상기 돌출부들 각각은 삼각기둥 형상을 가질 수 있다. 이와 달리, 상기 돌출부들 각각의 높이는 상기 제2 방향을 따라 변화될 수 있다. 이 경우, 돌출부의 높이는 상기 제2 방향을 따라 선형적으로 변화될 수도 있고 비선형적으로 변화될 수도 있다. 나아가, 돌출부의 높이는 소정의 주기를 갖도록 변화될 수 있으나 불규칙적으로 변화될 수도 있다. 각각의 돌출부의 높이는 서로 독립적으로 변화될 수 있다. 상기 집광 패턴을 구성하는 각 돌출부의 꼭지각은 약 90ㅀ일 수 있으나, 필요에 따라 적절히 조절될 수 있다. 상기 제2 방향을 따라서 돌출부의 높이가 변화되는 경우에는 위치에 따라 꼭지각이 달라질 수 있다.Referring to FIG. 4G, the optical pattern formed on the surface of the first optical layer 520 may be a light collecting pattern 520d. The condensing pattern 520d may include a plurality of protrusions, and each of the protrusions may have a triangle. The protrusions may be continuously arranged along the in-plane direction (first direction) of the cut plane defining the cross section of the triangle. For example, each of the protrusions may extend to have a constant height in a direction perpendicular to the cross section (second direction). That is, each of the protrusions may have a triangular prism shape. In contrast, the height of each of the protrusions may vary along the second direction. In this case, the height of the protrusion may vary linearly or nonlinearly along the second direction. Furthermore, the height of the protrusions may be changed to have a predetermined period but may be changed irregularly. The height of each protrusion can be changed independently of each other. The vertex angle of each protrusion constituting the condensing pattern may be about 90 °, but may be appropriately adjusted as necessary. When the height of the protrusion changes along the second direction, the vertex angle may vary depending on the position.
도 4c 내지 도 4f에서는 상기 제1 광학층(520)에 형성된 광학 패턴의 다양한 형상에 대해서 설명하였으나, 상기 제2 광학층(530)에 형성된 광학 패턴에도 동일하게 적용될 수 있다. 상기 제1 및 제2 광학층들(520, 530) 각각에 광학 패턴이 형성되는 경우, 상기 제1 광학층(520)에 형성된 광학 패턴과 상기 제2 광학층(530)에 형성된 광학 패턴은 서로 동일한 패턴일 수 있고, 서로 다른 패턴일 수도 있다. In FIGS. 4C to 4F, various shapes of the optical pattern formed on the first optical layer 520 have been described, but the same may be applied to the optical pattern formed on the second optical layer 530. When an optical pattern is formed on each of the first and second optical layers 520 and 530, the optical pattern formed on the first optical layer 520 and the optical pattern formed on the second optical layer 530 are mutually different. It may be the same pattern or different patterns.
도면으로 도시하지 않았으나, 도 4a 및 도 4b에서 설명한 광학 부재들(501, 502) 각각은 도 4c 내지 도 4g에서 설명한 광학 패턴이 표면에 형성되고 상기 제1 광학층(520) 상에 형성된 광확산층을 더 포함할 수 있다.Although not shown in the drawings, each of the optical members 501 and 502 described with reference to FIGS. 4A and 4B has a light diffusion layer formed on the surface of the optical pattern described with reference to FIGS. 4C through 4G and formed on the first optical layer 520. It may further include.
이와 달리, 도 4a에서 설명한 광학 부재(501)에서는, 도 4c 내지 도 4g에서 설명한 광학 패턴이 표면에 형성된 광확산층이 상기 베이스 기재(510)의 타면 상에 형성될 수 있다.In contrast, in the optical member 501 described with reference to FIG. 4A, a light diffusing layer having the optical pattern described with reference to FIGS. 4C through 4G formed on the surface may be formed on the other surface of the base substrate 510.
상기에서 설명한 바와 같이, 상기 광학 부재(501, 502)의 적어도 1개의 광학층에 왁스 입자로 피복된 나노 발광체를 포함하는 나노 복합체를 적용할 수 있다. 상기 광학 부재(501, 502)를 표시 장치에 포함시킴으로써 표시장치의 색재현 영역을 넓히고, 표시장치가 표시하는 컬러의 색순도를 향상시킬 수 있다. 특히, 나노 복합체에 포함된 왁스 입자가 나노 발광체를 열, 수분 또는 자외선으로부터 보호하기 때문에, 나노 복합체를 포함하는 광학층의 보호를 위한 별도의 보호층 없이도 상기 광학 부재(501, 502)는 열, 수분 또는 자외선에 안정적일 수 있다.As described above, a nanocomposite including nano light-emitting bodies coated with wax particles may be applied to at least one optical layer of the optical members 501 and 502. By including the optical members 501 and 502 in the display device, the color reproduction area of the display device can be widened, and the color purity of the color displayed by the display device can be improved. In particular, since the wax particles included in the nanocomposite protect the nano light emitter from heat, moisture, or ultraviolet light, the optical members 501 and 502 may be heated, without a separate protective layer for protecting the optical layer including the nanocomposite. It may be stable to moisture or ultraviolet light.
상기 광학 부재(501, 502)는 도광판, 확산 시트, 프리즘 시트와 같은 집광 시트 등으로 이용될 수 있으나, 표시 장치의 백라이트 유닛을 구성하는 일반적인 광학 시트들 외에 추가적으로 삽입되는 광학 시트로서 이용될 수도 있다.The optical members 501 and 502 may be used as a light collecting plate such as a light guide plate, a diffusion sheet, or a prism sheet, but may also be used as an optical sheet additionally inserted in addition to the general optical sheets constituting the backlight unit of the display device. .
이하에서는, 나노 복합체가 적용된 확산 시트, 집광 시트 및 도광판 각각에 대해서 도면을 참조하여 구체적으로 설명한다. Hereinafter, each of the diffusion sheet, the light collecting sheet, and the light guide plate to which the nanocomposite is applied will be described in detail with reference to the drawings.
도 5a 내지 도 5i는 본 발명에 따른 확산 시트의 실시예들을 설명하기 위한 도면들이다. 5A to 5I are views for explaining embodiments of the diffusion sheet according to the present invention.
도 5a를 참조하면, 본 발명의 일 실시예에 따른 광학 시트(1001)는 베이스 기재(1100) 및 제1 나노 복합체(CX1)를 포함하는 제1 광학층(1200)을 포함한다.Referring to FIG. 5A, an optical sheet 1001 according to an embodiment of the present invention includes a first optical layer 1200 including a base substrate 1100 and a first nanocomposite CX1.
상기 베이스 기재(1100)는 투명 재료로 형성된다. 상기 투명 재료는 도 4a에서 설명한 것과 실질적으로 동일하므로 중복되는 구체적인 설명은 생략한다.The base substrate 1100 is formed of a transparent material. Since the transparent material is substantially the same as described with reference to FIG. 4A, detailed descriptions thereof will be omitted.
상기 제1 광학층(1200)은 상기 베이스 기재(1100)의 일 면 상에 형성된다. 상기 제1 광학층(1200)이 형성된 면은 광출사면일도 수 있고, 이와 달리 광입사면일 수 있다.The first optical layer 1200 is formed on one surface of the base substrate 1100. The surface on which the first optical layer 1200 is formed may be a light exit surface, or may be a light incident surface.
상기 제1 광학층(1200) 내부에 분산된 상기 제1 나노 복합체(CX1)는 제1 왁스 입자 및 적어도 1개의 제1 나노 발광체를 포함한다. 상기 제1 나노 발광체는 상기 제1 왁스 입자 내부에 배치되어, 상기 제1 왁스 입자에 의해 표면이 피복된다. 상기 제1 나노 복합체(CX1)는 도 1a 내지 도 1c 및 도 3a 내지 도 3c에서 설명한 나노 복합체의 구조들 중 어느 하나를 가질 수 있다.The first nanocomposite CX1 dispersed in the first optical layer 1200 includes first wax particles and at least one first nano light emitter. The first nano light-emitting body is disposed inside the first wax particle, and the surface is covered by the first wax particle. The first nanocomposite CX1 may have any one of the structures of the nanocomposite described in FIGS. 1A to 1C and 3A to 3C.
동시에, 상기 제1 나노 복합체들(CX1)은 청색 나노 복합체, 녹색 나노 복합체 및 적색 나노 복합체 중 적어도 1종을 포함할 수 있다. 예를 들어, 상기 제1 나노 복합체들(CX1)은 녹색 나노 복합체들로 구성되거나, 적색 나노 복합체들로 구성될 수 있다. 또는, 상기 제1 나노 복합체들(CX1)은 복수의 녹색 나노 복합체들과 복수의 적색 나노 복합체들을 포함할 수 있다. 이와 달리, 상기 제1 나노 복합체들(CX1)은 다색 나노 복합체들을 포함할 수 있다. 예를 들어, 상기 다색 나노 복합체들 각각은 적색 나노 발광체 및 녹색 나노 발광체를 포함할 수 있다.At the same time, the first nanocomposites CX1 may include at least one of a blue nanocomposite, a green nanocomposite, and a red nanocomposite. For example, the first nanocomposites CX1 may be composed of green nanocomposites or red nanocomposites. Alternatively, the first nanocomposites CX1 may include a plurality of green nanocomposites and a plurality of red nanocomposites. In contrast, the first nanocomposites CX1 may include multicolor nanocomposites. For example, each of the multicolor nanocomposites may include a red nano emitter and a green nano emitter.
상기 제1 광학층(1200)은 그 표면에 형성된 광확산 패턴(1210)을 포함한다. 상기 광확산 패턴(1210)은 도 4c에서 설명한 연속 패턴(520a)과 실질적으로 동일하므로 중복되는 구체적인 설명은 생략한다. 이와 달리, 상기 광확산 패턴(1210)은 도 4e에서 설명한 불연속 볼록 패턴(520b) 또는 도 4f에서 설명한 불연속 오목 패턴(520c)일 수 있다.The first optical layer 1200 includes a light diffusion pattern 1210 formed on a surface thereof. Since the light diffusion pattern 1210 is substantially the same as the continuous pattern 520a described with reference to FIG. 4C, detailed descriptions thereof will not be repeated. Alternatively, the light diffusion pattern 1210 may be a discontinuous convex pattern 520b described with reference to FIG. 4E or a discontinuous concave pattern 520c described with reference to FIG. 4F.
도 5b를 참조하면, 본 발명의 다른 실시예에 따른 확산 시트(1002)는 베이스 기재(1100), 제1 광학층(1200) 및 제2 광학층(1300)을 포함한다.Referring to FIG. 5B, the diffusion sheet 1002 according to another embodiment of the present invention includes a base substrate 1100, a first optical layer 1200, and a second optical layer 1300.
상기 제1 광학층(1200)은 상기 베이스 기재(1100)의 일 면 상에 형성되고, 제1 나노 복합체들(CX1)을 포함한다. 상기 제1 나노 복합체들(CX1)은 제1 왁스 입자 및 상기 제1 왁스 입자 내부에 배치된 적어도 1개의 제1 나노 발광체를 포함한다. 상기 제1 광학층(1200)은 도 5a에서 설명한 것과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.The first optical layer 1200 is formed on one surface of the base substrate 1100 and includes first nanocomposites CX1. The first nanocomposites CX1 include a first wax particle and at least one first nano light emitter disposed inside the first wax particle. Since the first optical layer 1200 is substantially the same as described with reference to FIG. 5A, detailed descriptions thereof will be omitted.
상기 제2 광학층(1300)은 상기 제1 광학층(1200)이 형성된 상기 일 면과 대향하는 타면 상에 형성되고, 제2 나노 복합체들(CX2)을 포함한다. 상기 제2 나노 복합체들(CX2)은 제2 왁스 입자 및 상기 제2 왁스 입자 내부에 배치된 적어도 1개의 제2 나노 발광체를 포함한다. 상기 제2 나노 복합체들(CX2)은 도 1a 내지 도 1c 및 도 3a 내지 도 3c에서 설명한 나노 복합체의 구조들 중 어느 하나를 가질 수 있다.The second optical layer 1300 is formed on the other surface facing the one surface on which the first optical layer 1200 is formed and includes second nanocomposites CX2. The second nanocomposites CX2 include a second wax particle and at least one second nano light emitter disposed inside the second wax particle. The second nanocomposites CX2 may have any one of the structures of the nanocomposites described with reference to FIGS. 1A to 1C and 3A to 3C.
상기 제2 나노 복합체들(CX2)은 상기 제1 나노 복합체들(CX1)과 동일하거나 서로 다른 구조를 가질 수 있다. 예를 들어, 상기 제1 나노 복합체들(CX1)이 도 1a에서 설명한 구조를 가지는 경우, 상기 제2 나노 복합체들(CX2)은 도 3a에서 설명한 구조를 가질 수 있다. 또는, 상기 제1 및 제2 나노 복합체들(CX1, CX2)이 모두 도 1b에서 설명한 구조를 가질 수도 있다.The second nanocomposites CX2 may have the same or different structure as the first nanocomposites CX1. For example, when the first nanocomposites CX1 have the structure described with reference to FIG. 1A, the second nanocomposites CX2 may have the structure described with reference to FIG. 3A. Alternatively, the first and second nanocomposites CX1 and CX2 may both have the structure described with reference to FIG. 1B.
동시에, 상기 제2 나노 복합체들(CX2)은 청색 나노 복합체, 녹색 나노 복합체 및 적색 나노 복합체 중 적어도 1종을 포함할 수 있다. 예를 들어, 상기 제2 나노 복합체들(CX2)은 녹색 나노 복합체들로 구성되거나, 적색 나노 복합체들로 구성될 수 있다. 또는, 상기 제2 나노 복합체들(CX2)은 복수의 녹색 나노 복합체들과 복수의 적색 나노 복합체들을 포함할 수 있다. 이와 달리, 상기 제2 나노 복합체들(CX2)은 다색 나노 복합체들을 포함할 수 있다.At the same time, the second nanocomposites CX2 may include at least one of a blue nanocomposite, a green nanocomposite, and a red nanocomposite. For example, the second nanocomposites CX2 may be composed of green nanocomposites or red nanocomposites. Alternatively, the second nanocomposites CX2 may include a plurality of green nanocomposites and a plurality of red nanocomposites. In contrast, the second nanocomposites CX2 may include multicolor nanocomposites.
한편, 상기 제2 나노 복합체들(CX2)은 상기 제1 나노 복합체들(CX1)이 갖는 발광 피크가 속하는 파장대와 다른 파장대에서 발광 피크를 가질 수 있다. 이때, 상기 제1 나노 복합체들(CX1) 각각이 갖는 발광 피크에서의 반치폭(FWHM)은 약 70 nm 이하일 수 있다. 바람직하게는, 상기 반치폭이 약 50 nm 이하, 보다 바람직하게는 약 40 nm 이하일 수 있다. 상기 제2 나노 복합체들(CX2)에도 상기 반치폭은 동일하게 적용될 수 있다.Meanwhile, the second nanocomposites CX2 may have an emission peak in a wavelength band different from a wavelength band in which the emission peaks of the first nanocomposites CX1 belong. In this case, the full width at half maximum (FWHM) of the emission peak of each of the first nanocomposites CX1 may be about 70 nm or less. Preferably, the full width at half maximum may be about 50 nm or less, more preferably about 40 nm or less. The half width may be equally applied to the second nanocomposites CX2.
일례로, 상기 제1 나노 복합체들(CX1)이 녹색 나노 복합체들로 구성된 경우, 상기 제2 나노 복합체들(CX2)은 적색 나노 복합체들로 구성될 수 있다. 이때, 상기 제2 나노 복합체들(CX2)은 녹색 나노 복합체들을 더 포함할 수 있다.For example, when the first nanocomposites CX1 are composed of green nanocomposites, the second nanocomposites CX2 may be composed of red nanocomposites. In this case, the second nanocomposites CX2 may further include green nanocomposites.
다른 예로서, 상기 제1 나노 복합체들(CX1)이 녹색 나노 복합체들로 구성된 경우, 상기 제2 나노 복합체들(CX2)은 녹색 나노 발광체와 적색 나노 발광체를 포함하는 다색 나노 복합체들로 구성될 수 있다.As another example, when the first nanocomposites CX1 are composed of green nanocomposites, the second nanocomposites CX2 may be composed of multicolor nanocomposites including a green nano emitter and a red nano emitter. have.
상기 제2 광학층(1300)은 그 표면에 형성된 광확산 패턴(1310)을 포함한다. 상기 광확산 패턴(1310)은 도 4c에서 설명한 연속 패턴(520a)과 실질적으로 동일하므로 중복되는 구체적인 설명은 생략한다. 이와 달리, 상기 광확산 패턴(1310)은 도 4e에서 설명한 불연속 볼록 패턴(520b) 또는 도 4f에서 설명한 불연속 오목 패턴(520c) 일 수 있다.The second optical layer 1300 includes a light diffusion pattern 1310 formed on a surface thereof. Since the light diffusion pattern 1310 is substantially the same as the continuous pattern 520a described with reference to FIG. 4C, detailed descriptions thereof will be omitted. Alternatively, the light diffusion pattern 1310 may be a discontinuous convex pattern 520b described with reference to FIG. 4E or a discontinuous concave pattern 520c described with reference to FIG. 4F.
도 5b에서는 상기 제2 광학층(1300)의 광확산 패턴(1310)이 상기 제1 광학층(1200)의 광확산 패턴(1210)과 실질적으로 동일한 구조의 연속 패턴인 경우를 도시하였으나, 서로 다른 구조를 갖는 연속 패턴일 수 있다.In FIG. 5B, the light diffusion pattern 1310 of the second optical layer 1300 is a continuous pattern having substantially the same structure as the light diffusion pattern 1210 of the first optical layer 1200. It may be a continuous pattern having a structure.
도 5c를 참조하면, 본 발명의 또 다른 실시예에 따른 확산 시트(1003)는 베이스 기재(1100), 제1 광학층(1200), 제2 광학층(1302) 및 중간층(1400)을 포함한다.Referring to FIG. 5C, the diffusion sheet 1003 according to another embodiment of the present invention includes a base substrate 1100, a first optical layer 1200, a second optical layer 1302, and an intermediate layer 1400. .
상기 제1 광학층(1200)은 상기 베이스 기재(1100)의 일 면 상에 형성되고, 제1 나노 복합체들(CX1)을 포함한다. 상기 제1 광학층(1200)은 도 5a에서 설명한 것과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.The first optical layer 1200 is formed on one surface of the base substrate 1100 and includes first nanocomposites CX1. Since the first optical layer 1200 is substantially the same as described with reference to FIG. 5A, detailed descriptions thereof will be omitted.
상기 제2 광학층(1302)은 상기 제1 광학층(1200)이 형성된 상기 베이스 기재(110)의 일 면과 대향하는 타면 상에 형성되고, 제2 나노 복합체들(CX2)을 포함한다. 상기 제2 광학층(1302)은 그 표면이 평면(flat surface)인 것을 제외하고는 도 5b에서 설명한 것과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다. 다만, 상기 제2 광학층(1302)은 표면이 평면인 것으로 도시되어 있으나, 도 5b에서 설명한 것과 실질적으로 동일하게 광확산 패턴(1310)을 더 포함할 수 있다.The second optical layer 1302 is formed on the other surface opposite to one surface of the base substrate 110 on which the first optical layer 1200 is formed, and includes second nanocomposites CX2. Since the second optical layer 1302 is substantially the same as that described in FIG. 5B except that the surface thereof is a flat surface, overlapping detailed descriptions are omitted. Although the surface of the second optical layer 1302 is illustrated as being flat, the second optical layer 1302 may further include a light diffusion pattern 1310 substantially the same as that described with reference to FIG. 5B.
상기 중간층(1400)은 상기 제1 및 제2 광학층들(1200, 1302) 사이에 배치되고, 제3 나노 복합체들(CX3)을 포함한다. 상기 중간층(1400)은 상기 베이스 기재(1100)와 상기 제2 광학층(1302) 사이에 배치될 수 있다.The intermediate layer 1400 is disposed between the first and second optical layers 1200 and 1302 and includes third nanocomposites CX3. The intermediate layer 1400 may be disposed between the base substrate 1100 and the second optical layer 1302.
상기 제3 나노 복합체들(CX3)은 제3 왁스 입자 및 상기 제3 왁스 입자 내부에 배치된 적어도 1개의 나노 발광체를 포함한다. 상기 제3 나노 복합체들(CX3)은 도 1a 내지 도 1c 및 도 3a 내지 도 3c에서 설명한 나노 복합체의 구조들 중 어느 하나를 가질 수 있다. 동시에, 상기 제3 나노 복합체들(CX3)은 청색 나노 복합체, 녹색 나노 복합체 및 적색 나노 복합체 중 적어도 1종을 포함할 수 있다. 이와 달리, 상기 제3 나노 복합체들(CX3)은 다색 나노 복합체들을 포함할 수 있다.The third nanocomposites CX3 include a third wax particle and at least one nano light emitter disposed inside the third wax particle. The third nanocomposites CX3 may have any one of the structures of the nanocomposites described with reference to FIGS. 1A to 1C and 3A to 3C. At the same time, the third nanocomposites CX3 may include at least one of a blue nanocomposite, a green nanocomposite, and a red nanocomposite. In contrast, the third nanocomposites CX3 may include multicolor nanocomposites.
한편, 상기 제3 나노 복합체들(CX3)은 상기 제1 및 제2 나노 복합체들(CX1, CX2)이 갖는 발광 피크와 다른 파장대에서 발광 피크를 가질 수 있다. 예를 들어, 상기 제1 나노 복합체들(CX1)은 청색 나노 복합체들로 구성되고, 상기 제2 나노 복합체들(CX2)은 적색 나노 복합체들로 구성되며, 상기 제3 나노 복합체들(CX3)은 녹색 나노 복합체들로 구성될 수 있다. 이때, 상기 제3 나노 복합체들(CX3)은 녹색 나노 복합체들 및 적색 나노 복합체들을 포함할 수 있다.The third nanocomposites CX3 may have an emission peak at a wavelength different from that of the first and second nanocomposites CX1 and CX2. For example, the first nanocomposites CX1 are composed of blue nanocomposites, the second nanocomposites CX2 are composed of red nanocomposites, and the third nanocomposites CX3 are It can be composed of green nanocomposites. In this case, the third nanocomposites CX3 may include green nanocomposites and red nanocomposites.
도 5d를 참조하면, 본 발명의 또 다른 실시예에 따른 확산 시트(1004)는 베이스 기재(1100), 제1 광학층(1200), 제2 광학층(1302) 및 중간층(1402)을 포함한다.Referring to FIG. 5D, the diffusion sheet 1004 according to another embodiment of the present invention includes a base substrate 1100, a first optical layer 1200, a second optical layer 1302, and an intermediate layer 1402. .
상기 제1 광학층(1200)은 상기 베이스 기재(1100)의 일 면 상에 형성되고, 제1 나노 복합체들(CX1)을 포함한다. 상기 베이스 기재(1100) 및 상기 제1 광학층(1200)은 도 5a에서 설명한 것과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.The first optical layer 1200 is formed on one surface of the base substrate 1100 and includes first nanocomposites CX1. Since the base substrate 1100 and the first optical layer 1200 are substantially the same as those described with reference to FIG. 5A, detailed descriptions thereof will be omitted.
상기 제2 광학층(1302)은 상기 베이스 기재(1100)의 일 면과 대향하는 타면 상에 형성되고, 제2 나노 복합체들(CX2)을 포함한다. 상기 제2 광학층(1302)은 상기 베이스 기재(1100) 상에 직접 형성되는 것을 제외하고는 도 5c에서 설명한 것과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.The second optical layer 1302 is formed on the other surface opposite to one surface of the base substrate 1100 and includes second nanocomposites CX2. Since the second optical layer 1302 is substantially the same as that described with reference to FIG. 5C except that the second optical layer 1302 is directly formed on the base substrate 1100, detailed descriptions thereof will be omitted.
상기 중간층(1402)은 상기 베이스 기재(1100)와 상기 제1 광학층(1200) 사이에 형성된다. 상기 중간층(1402)은 제3 나노 복합체들(CX3)을 포함한다. 상기 중간층(1402)은 배치된 위치를 제외하고는 도 5c에서 설명한 중간층(1400)과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.The intermediate layer 1402 is formed between the base substrate 1100 and the first optical layer 1200. The intermediate layer 1402 includes third nanocomposites CX3. Since the intermediate layer 1402 is substantially the same as the intermediate layer 1400 described with reference to FIG. 5C except for the disposed position, detailed descriptions thereof will be omitted.
일례로, 상기 제1 나노 복합체들(CX1)은 청색 나노 복합체들로 구성되고, 상기 제2 나노 복합체들(CX2)은 적색 나노 복합체들로 구성되고, 상기 제3 나노 복합체들(CX3)은 녹색 나노 복합체들로 구성될 수 있다. 이때, 상기 제1 내지 제3 나노 복합체들(CX1, CX2, CX3) 각각은, 나노 복합체를 구성하는 주요 나노 복합체들 외에, 청색, 적색 및 녹색 나노 복합체들 중 어느 하나를 더 포함할 수 있다.For example, the first nanocomposites CX1 are composed of blue nanocomposites, the second nanocomposites CX2 are composed of red nanocomposites, and the third nanocomposites CX3 are green. It may be composed of nanocomposites. In this case, each of the first to third nanocomposites CX1, CX2, and CX3 may further include any one of blue, red, and green nanocomposites in addition to the main nanocomposites constituting the nanocomposite.
도 5d에서는 상기 제2 광학층(1302)의 표면이 평면인 경우를 도시하여 설명하였으나, 상기 제2 광학층(1302)은 도 5b에서 설명한 광확산 패턴(1310)을 더 포함할 수 있다.Although FIG. 5D illustrates the case where the surface of the second optical layer 1302 is flat, the second optical layer 1302 may further include the light diffusion pattern 1310 described with reference to FIG. 5B.
도 5e를 참조하면, 본 발명의 또 다른 실시예에 따른 확산 시트(1005)는 베이스 기재(1100), 제1 광학층(1202) 및 광확산층(1500)을 포함한다.Referring to FIG. 5E, the diffusion sheet 1005 according to another embodiment of the present invention includes a base substrate 1100, a first optical layer 1202, and a light diffusion layer 1500.
상기 제1 광학층(1202)은 상기 베이스 기재(1100)의 일 면 상에 형성되고, 제1 나노 복합체들(CX1)을 포함한다. 상기 제1 광학층(1202)은 표면이 평면(flat surface)인 것을 제외하고는 도 5a에서 설명한 제1 광학층(1200)과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.The first optical layer 1202 is formed on one surface of the base substrate 1100 and includes first nanocomposites CX1. Since the first optical layer 1202 is substantially the same as the first optical layer 1200 described with reference to FIG. 5A except that the surface thereof is a flat surface, detailed descriptions thereof will be omitted.
상기 광확산층(1500)은 상기 제1 광학층(1202)이 형성된 상기 베이스 기재(1100)의 일 면과 대향하는 타면 상에 형성된다. 상기 광확산층(1500)은 그 표면에 형성된 광확산 패턴(1510)을 포함한다. 상기 광확산 패턴(1510)은 도 4c에서 설명한 연속 패턴(520a)과 실질적으로 동일한 패턴일 수 있다. 이와 달리, 상기 광확산 패턴(1510)은 도 4e에서 설명한 불연속 볼록 패턴(520b) 및 도 4f에서 설명한 불연속 오목 패턴(520c) 중 어느 하나일 수 있다. 상기 광확산층(1500)은 나노 복합체를 포함하지 않고 단순히 광을 확산시키는 기능을 수행한다.The light diffusion layer 1500 is formed on the other surface of the base substrate 1100 on which the first optical layer 1202 is formed. The light diffusion layer 1500 includes a light diffusion pattern 1510 formed on a surface thereof. The light diffusion pattern 1510 may be substantially the same pattern as the continuous pattern 520a described with reference to FIG. 4C. Alternatively, the light diffusion pattern 1510 may be any one of the discontinuous convex pattern 520b described with reference to FIG. 4E and the discontinuous concave pattern 520c described with reference to FIG. 4F. The light diffusion layer 1500 does not include a nanocomposite and simply serves to diffuse light.
도 5e에서는, 상기 제1 광학층(1202)의 표면이 평면인 것을 도시하여 설명하였으나, 상기 제1 광학층(1202)의 표면에도 도 4c, 도 4e 내지 도 4g에서 설명한 광학 패턴이 형성될 수 있다.In FIG. 5E, the surface of the first optical layer 1202 is illustrated as being flat. However, the optical patterns described with reference to FIGS. 4C and 4E to 4G may be formed on the surface of the first optical layer 1202. have.
도 5f를 참조하면, 본 발명의 또 다른 실시예에 따른 확산 시트(1006)는 베이스 기재(1100), 제1 광학층(1204) 및 광확산층(1500)을 포함한다.Referring to FIG. 5F, a diffusion sheet 1006 according to another embodiment of the present invention includes a base substrate 1100, a first optical layer 1204, and a light diffusion layer 1500.
상기 제1 광학층(1204)은 상기 베이스 기재(1100) 및 상기 광확산층(1500) 사이에 배치된 것을 제외하고는 도 5e에서 설명한 제1 광학층(1202)과 실질적으로 동일하다. 따라서, 중복되는 상세한 설명은 생략한다.The first optical layer 1204 is substantially the same as the first optical layer 1202 described with reference to FIG. 5E except that the first optical layer 1204 is disposed between the base substrate 1100 and the light diffusion layer 1500. Therefore, redundant descriptions are omitted.
상기 광확산층(1500)은 상기 제1 광학층(1204) 상에 형성된다. 상기 광확산층(1500)은 나노 복합체를 포함하지 않고 단순히 광을 확산시키는 기능을 수행하는 층으로서, 도 5e에서 설명한 것과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.The light diffusion layer 1500 is formed on the first optical layer 1204. The light diffusion layer 1500 does not include a nanocomposite layer and simply performs a function of diffusing light. Since the light diffusion layer 1500 is substantially the same as that described with reference to FIG. 5E, detailed descriptions thereof will be omitted.
도 5g를 참조하면, 본 발명의 또 다른 실시예에 따른 확산 시트(1007)는 베이스 기재(1100), 제1 광학층(1204), 제2 광학층(1302) 및 광확산층(1500)을 포함한다.Referring to FIG. 5G, the diffusion sheet 1007 according to another embodiment of the present invention includes a base substrate 1100, a first optical layer 1204, a second optical layer 1302, and a light diffusion layer 1500. do.
상기 제1 광학층(1204)은 상기 베이스 기재(1100)의 일 면 상에 배치되고, 제1 나노 복합체들(CX1)을 포함한다. 상기 광확산층(1500)은 상기 제1 광학층(1204) 상에 형성되고, 광확산 패턴(1510)을 포함한다. 상기 광확산층(1500)은 나노 복합체 없이 단순히 광을 확산시키는 기능을 수행하는 층이다. 상기 제1 광학층(1204) 및 상기 광확산층(1500)은 도 5f에서 설명한 것과 실질적으로 동일하다. 따라서, 중복되는 상세한 설명은 생략한다.The first optical layer 1204 is disposed on one surface of the base substrate 1100 and includes first nanocomposites CX1. The light diffusion layer 1500 is formed on the first optical layer 1204 and includes a light diffusion pattern 1510. The light diffusion layer 1500 is a layer that performs a function of simply diffusing light without a nanocomposite. The first optical layer 1204 and the light diffusion layer 1500 are substantially the same as described with reference to FIG. 5F. Therefore, redundant descriptions are omitted.
상기 제2 광학층(1302)은 상기 제1 광학층(1204)이 형성된 상기 베이스 기재(1100)의 일 면과 대향하는 타면 상에 배치되고, 제2 나노 복합체들(CX2)을 포함한다. 상기 제2 광학층(1302)은 도 5d에서 설명한 것과 실질적으로 동일하다. 따라서, 중복되는 상세한 설명은 생략한다.The second optical layer 1302 is disposed on the other surface opposite to one surface of the base substrate 1100 on which the first optical layer 1204 is formed, and includes second nanocomposites CX2. The second optical layer 1302 is substantially the same as described with reference to FIG. 5D. Therefore, redundant descriptions are omitted.
도 5h를 참조하면, 본 발명의 또 다른 실시예에 따른 확산 시트(1008)는 베이스 기재(1100), 제1 광학층(1204), 제2 광학층(1302), 제1 광확산층(1500) 및 제2 광확산층(1600)을 포함한다.Referring to FIG. 5H, the diffusion sheet 1008 according to another embodiment of the present invention may include a base substrate 1100, a first optical layer 1204, a second optical layer 1302, and a first light diffusion layer 1500. And a second light diffusing layer 1600.
상기 제2 광확산층(1600)을 더 포함하는 것을 제외하고는, 상기 확산 시트(1008)는 도 5g에서 설명한 확산 시트(1007)와 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다. 도 5h의 상기 제1 광확산층(1500)은 도 5g의 광확산층과 동일한 층으로서, 광의 확산 기능을 수행하는 층이다.Except for further including the second light diffusion layer 1600, the diffusion sheet 1008 is substantially the same as the diffusion sheet 1007 described with reference to FIG. 5G, and thus detailed descriptions thereof will be omitted. The first light diffusion layer 1500 of FIG. 5H is the same layer as the light diffusion layer of FIG. 5G and performs a light diffusion function.
상기 제2 광확산층(1600)은 상기 제1 광확산층(1500)과 대향하도록 상기 제2 광학층(1302) 상에 형성된다. 상기 제2 광확산층(1600)은 그 표면에 형성된 광확산 패턴(1610)을 포함하고, 나노 복합체 없이 단순히 광을 확산시키는 기능을 수행하는 층이다. 상기 광확산 패턴(1610)은 도 4c, 도 4e 내지 도 4g에서 설명한 광학 패턴 중 어느 하나일 수 있다.The second light diffusion layer 1600 is formed on the second optical layer 1302 so as to face the first light diffusion layer 1500. The second light diffusion layer 1600 includes a light diffusion pattern 1610 formed on a surface thereof, and is a layer that performs a function of simply diffusing light without a nanocomposite. The light diffusion pattern 1610 may be any one of the optical patterns described with reference to FIGS. 4C and 4E to 4G.
도 5i를 참조하면, 본 발명의 또 다른 실시예에 따른 확산 시트(1009)는 베이스 기재(1100), 제1 광학층(1200) 및 집광층(1700)을 포함한다.Referring to FIG. 5I, a diffusion sheet 1009 according to another embodiment of the present invention includes a base substrate 1100, a first optical layer 1200, and a light collecting layer 1700.
상기 제1 광학층(1200)은 상기 베이스 기재(1100)의 일 면 상에 형성된다. 상기 제1 광학층(1200)은 그 표면에 형성된 광확산 패턴(1210)을 포함하고 도 5a에서 설명한 것과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.The first optical layer 1200 is formed on one surface of the base substrate 1100. Since the first optical layer 1200 includes the light diffusion pattern 1210 formed on the surface thereof and is substantially the same as that described with reference to FIG. 5A, detailed descriptions thereof will be omitted.
상기 집광층(1700)은 상기 제1 광학층(1200)과 대향하여 상기 일 면과 대향하는 타면 상에 형성된다. 상기 집광층(1700)은 그 표면에 형성된 집광 패턴(1710)을 포함한다. 상기 집광 패턴(1710)은 도 4g에서 설명한 광학 패턴과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.The light collecting layer 1700 is formed on the other surface facing the one surface facing the first optical layer 1200. The light collecting layer 1700 includes a light collecting pattern 1710 formed on a surface thereof. Since the condensing pattern 1710 is substantially the same as the optical pattern described with reference to FIG. 4G, detailed descriptions thereof will be omitted.
도 5a 내지 도 5i를 참조하여 설명한 바와 같이, 도 1a 내지 도 1c 및 도 3a 내지 도 3c에서 설명한 나노 복합체를 확산 시트에 다양하게 적용할 수 있다. 본 발명에 따른 확산 시트는 상기 나노 복합체를 이용함으로써, 광원이 제공하는 광을 변환하여 표시 패널로 제공할 수 있으므로 표시 장치의 색순도 및 색재현성을 향상시킬 수 있다.As described with reference to FIGS. 5A to 5I, the nanocomposite described in FIGS. 1A to 1C and 3A to 3C may be variously applied to the diffusion sheet. By using the nanocomposite, the diffusion sheet according to the present invention can convert the light provided by the light source to be provided to the display panel, thereby improving color purity and color reproducibility of the display device.
도 6a 내지 도 6d는 본 발명에 따른 집광 시트의 실시예들을 설명하기 위한 도면들이다.6a to 6d are views for explaining embodiments of the light collecting sheet according to the present invention.
도 6a를 참조하면, 본 발명의 일 실시예에 따른 집광 시트(2001)는 베이스 기재(2100), 집광층(2200) 및 제1 광학층(2300)을 포함한다.Referring to FIG. 6A, the light collecting sheet 2001 according to the exemplary embodiment of the present invention includes a base substrate 2100, a light collecting layer 2200, and a first optical layer 2300.
상기 베이스 기재(2100)는 투명 재료로 형성된다. 상기 투명 재료는 도 5a에서 설명한 확산 시트(1001)의 베이스 기재(1100)를 형성하는 투명 재료와 실질적으로 동일하다. 따라서, 중복되는 상세한 설명은 생략한다.The base substrate 2100 is formed of a transparent material. The transparent material is substantially the same as the transparent material forming the base substrate 1100 of the diffusion sheet 1001 described in FIG. 5A. Therefore, redundant descriptions are omitted.
상기 집광층(2200)은 상기 베이스 기재(2100)의 일 면 상에 형성된다. 상기 집광층(2200)은 그 표면에 형성된 집광 패턴(2210)을 포함한다. 상기 집광 패턴(2210)은 도 4g에서 설명한 광학 패턴과 실질적으로 동일할 수 있다. 상기 집광 패턴(2210)은 상기 베이스 기재(2100)로부터 입사되는 광을 수직 방향으로 굴절시킬 수 있는 단면 형상을 갖도록 형성된다. 상기 단면 형상은 도 4g에서 설명한 형상과 동일하므로 중복되는 상세한 설명은 생략한다.The light collecting layer 2200 is formed on one surface of the base substrate 2100. The light collecting layer 2200 includes a light collecting pattern 2210 formed on a surface thereof. The condensing pattern 2210 may be substantially the same as the optical pattern described with reference to FIG. 4G. The condensing pattern 2210 is formed to have a cross-sectional shape that can refract light incident from the base substrate 2100 in a vertical direction. Since the cross-sectional shape is the same as the shape described in FIG.
상기 제1 광학층(2300)은 상기 집광층(2200)과 마주하여 상기 일 면과 대향하는 타면 상에 형성된다. 상기 제1 광학층(2300)은 제1 나노 복합체들(CX1)을 포함한다. 상기 제1 나노 복합체들(CX1) 각각은 제1 왁스 입자 및 상기 제1 왁스 입자 내부에 배치된 적어도 1개의 제1 나노 발광체를 포함한다. 상기 제1 나노 복합체들(CX1) 각각은 도 1a 내지 도 1c 및 도 3a 내지 도 3c에서 설명한 나노 복합체의 구조 중 어느 하나의 구조를 가질 수 있다. 동시에, 상기 제1 나노 복합체들(CX1)은 청색, 녹색 및 적색 나노 복합체들 중에서 선택된 적어도 1종을 포함할 수 있다. 이와 달리, 상기 제1 나노 복합체들(CX1)은 다색 나노 복합체들로 구성될 수 있다.The first optical layer 2300 is formed on the other surface opposite to the one surface facing the light collecting layer 2200. The first optical layer 2300 includes first nanocomposites CX1. Each of the first nanocomposites CX1 includes a first wax particle and at least one first nano light-emitting body disposed inside the first wax particle. Each of the first nanocomposites CX1 may have any one of the structures of the nanocomposites described with reference to FIGS. 1A to 1C and 3A to 3C. At the same time, the first nanocomposites CX1 may include at least one selected from blue, green and red nanocomposites. Alternatively, the first nanocomposites CX1 may be composed of multicolor nanocomposites.
상기 제1 광학층(2300)은 표면에 형성된 광학 패턴을 포함할 수 있다. 상기 광학 패턴은 도 4c 내지 도 4f에서 설명한 구조 중 어느 하나일 수 있다. 따라서 중복되는 상세한 설명은 생략한다.The first optical layer 2300 may include an optical pattern formed on the surface. The optical pattern may have any one of the structures described with reference to FIGS. 4C to 4F. Therefore, redundant descriptions are omitted.
도면으로 도시하지 않았으나, 상기 집광 시트(2001)는 상기 제1 광학층(2300)과 상기 베이스 기재(2100) 사이에 배치되거나, 상기 집광층(2200)과 상기 베이스 기재(2100) 사이에 배치된 제2 광학층을 더 포함할 수 있다. 이때, 상기 제2 광학층은 제2 왁스 입자 및 상기 제2 왁스 입자 내부에 배치된 적어도 1개의 제2 나노 발광체를 포함하는 제2 나노 복합체를 포함할 수 있다.Although not illustrated, the light collecting sheet 2001 may be disposed between the first optical layer 2300 and the base substrate 2100, or may be disposed between the light collecting layer 2200 and the base substrate 2100. It may further include a second optical layer. In this case, the second optical layer may include a second nanocomposite including a second wax particle and at least one second nano light-emitting body disposed inside the second wax particle.
도 6b를 참조하면, 본 발명의 다른 실시예에 따른 집광 시트(2002)는 베이스 기재(2100), 제1 광학층(2300) 및 집광층(2200)을 포함한다.Referring to FIG. 6B, the light collecting sheet 2002 according to another embodiment of the present invention includes a base substrate 2100, a first optical layer 2300, and a light collecting layer 2200.
상기 집광 시트(2002)는 상기 제1 광학층(2300)이 상기 베이스 기재(2100)와 상기 집광층(2200) 사이에 배치된 것을 제외하고는 도 6a에서 설명한 집광 시트(2001)와 실질적으로 동일하다. 따라서, 중복되는 상세한 설명은 생략한다.The light collecting sheet 2002 is substantially the same as the light collecting sheet 2001 described with reference to FIG. 6A except that the first optical layer 2300 is disposed between the base substrate 2100 and the light collecting layer 2200. Do. Therefore, redundant descriptions are omitted.
도면으로 도시하지 않았으나, 상기 집광 시트(2002)는 상기 제1 광학층(2300)과 상기 베이스 기재(2100) 사이에 배치된 제2 광학층을 더 포함할 수 있다. 이때, 상기 제2 광학층은 제2 나노 복합체를 포함할 수 있다.Although not illustrated, the light collecting sheet 2002 may further include a second optical layer disposed between the first optical layer 2300 and the base substrate 2100. In this case, the second optical layer may include a second nanocomposite.
도 6c를 참조하면, 본 발명의 또 다른 실시예에 따른 집광 시트(2003)는 베이스 기재(2100) 및 집광층(2202)을 포함한다.Referring to FIG. 6C, the light collecting sheet 2003 according to another embodiment of the present invention includes a base substrate 2100 and a light collecting layer 2202.
상기 집광층(2202)은 상기 베이스 기재(2100)의 일 면 상에 형성되고, 제1 나노 복합체들(CX1)을 포함한다. 상기 집광층(2202)은 그 표면에 집광 패턴(2210)이 형성된다. 상기 제1 나노 복합체들(CX1)은 도 6a에서 설명한 것과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.The light collecting layer 2202 is formed on one surface of the base substrate 2100 and includes first nanocomposites CX1. The light collecting layer 2202 has a light collecting pattern 2210 formed on a surface thereof. Since the first nanocomposites CX1 are substantially the same as those described with reference to FIG. 6A, detailed descriptions thereof will be omitted.
도면으로 도시하지 않았으나, 상기 집광 시트(2003)는 상기 집광층(2202)이 형성된 일 면과 대향하는 타면 상에 형성되거나, 상기 베이스 기재(2100)와 상기 집광층(2202) 사이에 형성된 광학층을 더 포함할 수 있다. 이때, 상기 광학층은 제2 나노 복합체를 포함할 수 있다.Although not illustrated, the light collecting sheet 2003 may be formed on the other surface of the light collecting layer 2202 facing one surface of the light collecting layer 2202, or may be formed between the base substrate 2100 and the light collecting layer 2202. It may further include. In this case, the optical layer may include a second nanocomposite.
도 6d를 참조하면, 본 발명의 또 다른 실시예에 따른 집광 시트(2004)는 베이스 기재(2100), 제1 나노 복합체들(CX1)이 분산된 집광층(2202) 및 제1 광학층(2400)을 포함한다.Referring to FIG. 6D, the light collecting sheet 2004 according to another embodiment of the present invention may include a base substrate 2100, a light collecting layer 2202 in which the first nanocomposites CX1 are dispersed, and a first optical layer 2400. ).
상기 집광 시트(2004)는 상기 제1 광학층(2400)을 더 포함하는 것을 제외하고는 도 6c에서 설명한 집광 시트(2003)와 실질적으로 동일하다. 따라서, 중복되는 상세한 설명은 생략한다.The light collecting sheet 2004 is substantially the same as the light collecting sheet 2003 described with reference to FIG. 6C except that the light collecting sheet 2004 further includes the first optical layer 2400. Therefore, redundant descriptions are omitted.
상기 제1 광학층(2400)은 상기 집광층(2202)이 형성된 상기 베이스 기재(2100)의 일 면과 대향하는 타면 상에 형성된다. 상기 제1 광학층(2400)은 그 표면에 형성된 광확산 패턴(2410)을 포함한다. 상기 광확산 패턴(2410)은 도 4c에서 설명한 연속 패턴(520a)과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다. 이와 달리, 상기 광확산 패턴(2410)은 도 4e 및 도 4f에서 설명한 광학 패턴과 동일한 패턴일 수 있다.The first optical layer 2400 is formed on the other surface opposite to one surface of the base substrate 2100 on which the light collecting layer 2202 is formed. The first optical layer 2400 includes a light diffusion pattern 2410 formed on a surface thereof. Since the light diffusion pattern 2410 is substantially the same as the continuous pattern 520a described with reference to FIG. 4C, detailed descriptions thereof will be omitted. Alternatively, the light diffusion pattern 2410 may be the same pattern as the optical pattern described with reference to FIGS. 4E and 4F.
도면으로 도시하지 않았으나, 상기 집광 시트(2004)는 상기 베이스 기재(2100)와 상기 제1 광학층(2400) 사이에 형성된 제2 광학층을 더 포함할 수 있다. 상기 제2 광학층은 제2 나노 복합체를 포함할 수 있다.Although not shown in the drawings, the light collecting sheet 2004 may further include a second optical layer formed between the base substrate 2100 and the first optical layer 2400. The second optical layer may include a second nanocomposite.
도 6a 내지 도 6d를 참조하여 설명한 바와 같이, 도 1a 내지 도 1c 및 도 3a 내지 도 3c에서 설명한 나노 복합체를 집광 시트에 다양하게 적용할 수 있다. 본 발명에 따른 집광 시트는 상기 나노 복합체를 이용함으로써, 광원이 제공하는 광을 변환하여 표시 패널로 제공할 수 있으므로 표시 장치가 표시하는 컬러의 색순도 및 색재현성을 향상시킬 수 있다.As described with reference to FIGS. 6A to 6D, the nanocomposites described in FIGS. 1A to 1C and 3A to 3C may be variously applied to the light collecting sheet. The light collecting sheet according to the present invention can improve the color purity and color reproducibility of colors displayed by the display device by converting light provided by the light source to the display panel by using the nanocomposite.
도 7a 내지 도 7c는 본 발명에 따른 도광판의 실시예들을 설명하기 위한 도면들이다.7A to 7C are diagrams for describing embodiments of the light guide plate according to the present invention.
도 7a를 참조하면, 본 발명의 일 실시예에 따른 도광판(3001)은 베이스 기재(3100), 출광 패턴(3200) 및 제1 광학층(3300)을 포함한다.Referring to FIG. 7A, a light guide plate 3001 according to an embodiment of the present invention includes a base substrate 3100, an output pattern 3200, and a first optical layer 3300.
상기 베이스 기재(3100)는 투명 재료로 형성된다. 상기 투명 재료의 예로서는, 폴리메틸메타크릴레이트(Polymethylmethacrylate, PMMA) 수지, 폴리카보네이트(Polycarbonate, PC) 수지 등을 들 수 있으나, 이에 제한되지 않는다.The base substrate 3100 is formed of a transparent material. Examples of the transparent material include, but are not limited to, polymethylmethacrylate (PMMA) resin, polycarbonate (PC) resin, and the like.
상기 출광 패턴(3200)은 상기 베이스 기재(3100)의 일 면에 형성된다. 상기 베이스 기재(3100)에서, 상기 출광 패턴(3200)이 형성된 면이 상기 도광판(3001)의 반사부가 된다. 상기 도광판(3001)에서, 광원과 마주하는 측을 상기 도광판(3001)의 입광부라고 할 때, 광원에서 출사되어 상기 입광부를 통해 상기 베이스 기재(3100)로 가이드된 광은 상기 반사부에서 반사된 후 상기 반사부와 대향하는 출광부를 통해 외부로 출사될 수 있다. 상기 출광 패턴(3200)은 볼록 패턴, 오목 패턴 등 다양한 형상을 가질 수 있고, 상기 베이스 기재(3100)의 일 면에 추가적으로 형성되는 패턴일 수 있다. 이와 달리, 상기 출광 패턴(3200)은 상기 베이스 기재(3100)의 일 면이 부분적으로 패터닝되어 형성되는 패턴일 수 있다.The light exit pattern 3200 is formed on one surface of the base substrate 3100. In the base substrate 3100, a surface on which the light exit pattern 3200 is formed becomes a reflecting portion of the light guide plate 3001. In the light guide plate 3001, when a side facing the light source is called a light incident part of the light guide plate 3001, the light emitted from the light source and guided to the base substrate 3100 through the light incident part is reflected by the reflector. Afterwards, the light may be emitted to the outside through the light exit unit facing the reflector. The light exit pattern 3200 may have various shapes such as a convex pattern and a concave pattern, and may be a pattern additionally formed on one surface of the base substrate 3100. In contrast, the light exit pattern 3200 may be a pattern formed by partially patterning one surface of the base substrate 3100.
상기 제1 광학층(3300)은 상기 일 면과 대향하는 타면 상에 형성된다. 즉, 상기 제1 광학층(3300)이 형성된 측이 상기 도광판(3001)의 출광부가 될 수 있다. 상기 제1 광학층(3300)은 제1 나노 복합체들(CX1)을 포함한다. 상기 제1 나노 복합체들(CX1)은 도 1a 내지 도 1c 및 도 3a 내지 도 3c에서 설명한 나노 복합체의 구조들 중 어느 하나의 구조를 가질 수 있다. 동시에, 상기 제1 나노 복합체들(CX1)은 청색, 녹색 및 적색 나노 복합체들 중에서 선택된 적어도 어느 하나를 포함할 수 있다. 이와 달리, 상기 제1 나노 복합체들(CX1)은 다색 나노 복합체를 포함할 수 있다. 도면으로 도시하지 않았으나, 상기 제1 광학층(3300)은 상기 출광 패턴(3200)과 실질적으로 동일한 패턴을 포함할 수 있다.The first optical layer 3300 is formed on the other surface facing the one surface. That is, the side where the first optical layer 3300 is formed may be the light exit portion of the light guide plate 3001. The first optical layer 3300 includes first nanocomposites CX1. The first nanocomposites CX1 may have any one of the structures of the nanocomposites described with reference to FIGS. 1A to 1C and 3A to 3C. At the same time, the first nanocomposites CX1 may include at least one selected from blue, green and red nanocomposites. In contrast, the first nanocomposites CX1 may include a multi-color nanocomposite. Although not illustrated, the first optical layer 3300 may include a pattern substantially the same as that of the light exit pattern 3200.
도 7a에서는 상기 베이스 기재(3100)의 일 면에 상기 제1 광학층(3300)만이 형성된 것을 도시하고 설명하였으나, 상기 베이스 기재(3100)와 상기 제1 광학층(3300) 사이에는 제2 나노 복합체를 포함하는 제2 광학층이 형성될 수 있다. 이와 달리, 상기 제2 광학층은 상기 출광 패턴(3200)과 상기 베이스 기재(3100) 사이에 형성될 수도 있다.In FIG. 7A, only the first optical layer 3300 is formed on one surface of the base substrate 3100, but the second nanocomposite is formed between the base substrate 3100 and the first optical layer 3300. A second optical layer may be formed. Alternatively, the second optical layer may be formed between the light exit pattern 3200 and the base substrate 3100.
도 7b를 참조하면, 본 발명의 다른 실시예에 따른 도광판(3002)은 베이스 기재(3100), 출광 패턴(3210) 및 제1 나노 복합체(CX1)가 분산된 제1 광학층(3300)을 포함한다.Referring to FIG. 7B, a light guide plate 3002 according to another embodiment of the present invention includes a base substrate 3100, an output pattern 3210, and a first optical layer 3300 in which the first nanocomposite CX1 is dispersed. do.
상기 도광판(3002)은 상기 출광 패턴(3210)이 제2 나노 복합체(CX2)를 포함하는 것을 제외하고는 도 7a에서 설명한 도광판(3001)과 실질적으로 동일하다. 따라서, 중복되는 상세한 설명은 생략한다. 도면으로 도시하지 않았으나, 상기 제1 광학층(3300)은 도 7a에서 설명한 출광 패턴과 실질적으로 동일한 패턴을 더 포함할 수 있다.The light guide plate 3002 is substantially the same as the light guide plate 3001 described with reference to FIG. 7A except that the light exit pattern 3210 includes the second nanocomposite CX2. Therefore, redundant descriptions are omitted. Although not illustrated in the drawing, the first optical layer 3300 may further include a pattern substantially the same as the light emission pattern described with reference to FIG. 7A.
상기 출광 패턴(3210)은 상기 제2 나노 복합체(CX2)를 포함한다. 상기 제2 나노 복합체(CX2)는 제2 왁스 입자 및 상기 제2 왁스 입자 내부에 배치된 적어도 1개의 제2 나노 발광체를 포함한다.The light exit pattern 3210 includes the second nanocomposite CX2. The second nanocomposite CX2 includes a second wax particle and at least one second nano light emitter disposed inside the second wax particle.
상기 제2 나노 복합체(CX2)는 도 1a 내지 도 1c 및 도 3a 내지 도 3c에서 설명한 나노 복합체의 구조들 중 어느 하나의 구조를 가질 수 있다. 동시에, 상기 제2 나노 복합체(CX2)는 청색, 녹색 및 적색 나노 복합체들 중 적어도 1종을 포함할 수 있고, 다색 나노 복합체들로 이루어질 수 있다. 상기 제2 나노 복합체(CX2)는 상기 제1 나노 복합체(CX1)가 갖는 발광 피크와 다른 발광 피크를 가질 수 있다. 일례로, 상기 제2 나노 복합체(CX2)는 녹색 나노 복합체로 이루어지고, 상기 제1 나노 복합체(CX1)는 적색 나노 복합체로 이루어질 수 있다.The second nanocomposite CX2 may have any one of the structures of the nanocomposites described with reference to FIGS. 1A to 1C and 3A to 3C. At the same time, the second nanocomposite CX2 may include at least one of blue, green, and red nanocomposites, and may be composed of multicolor nanocomposites. The second nanocomposite CX2 may have an emission peak different from that of the first nanocomposite CX1. For example, the second nanocomposite CX2 may be formed of a green nanocomposite, and the first nanocomposite CX1 may be formed of a red nanocomposite.
도면으로 도시하지 않았으나, 상기 도광판(3002)은 상기 제1 광학층(3300)과 상기 베이스 기재(3100) 사이에 배치된 제2 광학층을 더 포함할 수 있다. 이때, 상기 제2 광학층은 상기 제1 및 제2 나노 복합체들(CX1, CX2)과 다른 제3 나노 복합체를 포함할 수 있다. 상기 제3 나노 복합체는 제3 왁스 입자 및 상기 제3 왁스 입자 내부에 배치된 적어도 1개의 제3 나노 발광체를 포함한다.Although not shown in the drawings, the light guide plate 3002 may further include a second optical layer disposed between the first optical layer 3300 and the base substrate 3100. In this case, the second optical layer may include a third nanocomposite different from the first and second nanocomposites CX1 and CX2. The third nanocomposite includes a third wax particle and at least one third nano light emitter disposed inside the third wax particle.
도 7c를 참조하면, 본 발명의 또 다른 실시예에 따른 도광판(3003)은 베이스 기재(3100) 및 출광 패턴(3200)을 포함한다.Referring to FIG. 7C, a light guide plate 3003 according to another embodiment of the present invention includes a base substrate 3100 and a light exit pattern 3200.
상기 출광 패턴(3200)은 도 7a에서 설명한 것과 실질적으로 동일하고, 상기 베이스 기재(3100)는 제1 나노 복합체(CX1)를 포함한다. 상기 제1 나노 복합체(CX1)는 도 7a에서 설명한 것과 실질적으로 동일하다.The light exit pattern 3200 is substantially the same as that described with reference to FIG. 7A, and the base substrate 3100 includes a first nanocomposite CX1. The first nanocomposite CX1 is substantially the same as described with reference to FIG. 7A.
도면으로 도시하지 않았으나, 상기 출광 패턴(3200)이 형성된 상기 베이스 기재(3100)의 일 면과 대향하는 타면 상에 제2 나노 복합체를 포함하는 광학층이 형성될 수 있다. 이와 달리, 상기 광학층은 상기 베이스 기재(3100)와 상기 출광 패턴(3200) 사이에 형성될 수 있다.Although not illustrated, an optical layer including the second nanocomposite may be formed on the other surface of the base substrate 3100 on which the light emission pattern 3200 is formed. Alternatively, the optical layer may be formed between the base substrate 3100 and the light exit pattern 3200.
도 7a 내지 도 7c를 참조하여 설명한 바와 같이, 도 1a 내지 도 1c 및 도 3a 내지 도 3c에서 설명한 나노 복합체를 도광판에 다양하게 적용할 수 있다. 본 발명에 따른 도광판은 상기 나노 복합체를 이용함으로써, 광원이 제공하는 광을 변환하여 표시 패널로 제공할 수 있으므로 표시 장치의 색순도 및 색재현성을 향상시킬 수 있다.As described with reference to FIGS. 7A to 7C, the nanocomposites described with reference to FIGS. 1A to 1C and 3A to 3C may be variously applied to the light guide plate. The light guide plate according to the present invention can improve the color purity and color reproducibility of the display device by using the nanocomposite, thereby converting the light provided by the light source to the display panel.
백라이트 유닛Backlight unit
도 8 및 도 9는 본 발명의 실시예에 따른 백라이트 유닛을 설명하기 위한 도면들이다.8 and 9 are diagrams for describing a backlight unit according to an exemplary embodiment of the present invention.
도 8을 참조하면, 본 발명의 일 실시예에 따른 백라이트 유닛(5001)은 광원(5100), 도광판(5200), 반사판(5300), 확산시트(5400), 제1 집광시트(5510) 및 제2 집광시트(5520)를 포함한다.Referring to FIG. 8, the backlight unit 5001 according to an embodiment of the present invention may include a light source 5100, a light guide plate 5200, a reflective plate 5300, a diffusion sheet 5400, a first light collecting sheet 5510, and a first light collecting sheet 5510. 2 light collecting sheet 5520 is included.
상기 광원(5100)으로는 백색광 발광 모듈 또는 청색광 발광 모듈이 사용될 수 있다. As the light source 5100, a white light emitting module or a blue light emitting module may be used.
상기 백색광 발광 모듈은 청색광을 생성하는 청색 발광칩과, 상기 청색 발광칩을 커버하는 광전환층을 포함할 수 있다. 즉, 상기 광전환층이 상기 청색 발광칩이 생성하는 청색광을 흡수 및/또는 변환시키게 되므로 상기 백색광 발광 모듈은 최종적으로는 백색광을 나타낼 수 있게 된다. 상기 광전환층은 YAG(Yttrium aluminum garnet) 등을 포함하는 형광체 또는 양자점 등을 포함하는 나노 발광체를 포함할 수 있다. 상기 나노 발광체는 녹색 양자점이 이용될 수 있다. 이와 달리, 상기 광전환층은 도 1a 내지 도 1c 및 도 3a 내지 도 3c에서 설명한 나노 복합체를 포함할 수 있다.The white light emitting module may include a blue light emitting chip that generates blue light, and a light conversion layer covering the blue light emitting chip. That is, since the light conversion layer absorbs and / or converts blue light generated by the blue light emitting chip, the white light emitting module may finally display white light. The light conversion layer may include a nano-luminescent material including a phosphor or a quantum dot, including YAG (Yttrium aluminum garnet). As the nano light emitter, green quantum dots may be used. In contrast, the light conversion layer may include the nanocomposite described in FIGS. 1A to 1C and 3A to 3C.
상기 청색광 발광 모듈은 청색광을 생성하는 청색 발광칩을 포함한다. 즉, 관찰자는 상기 청색광 발광 모듈의 상기 청색 발광칩에서 발광된 청색광을 그대로 시인할 수 있다.The blue light emitting module includes a blue light emitting chip that generates blue light. That is, the observer can visually recognize the blue light emitted from the blue light emitting chip of the blue light emitting module.
상기 도광판(5200)은 상기 광원(5100)에 인접하게 배치되고, 상기 광원(5100)에서 생성된 광은 상기 도광판(5200)으로 입사되며, 상기 도광판(5200)에서 출사된 광은 확산 시트(5400)로 입사될 수 있다. 상기 도광판(5200)은 도 7a 내지 도 7c에서 설명한 본 발명에 따른 도광판(3001, 3002, 3003) 중 어느 하나를 포함할 수 있다.The light guide plate 5200 is disposed adjacent to the light source 5100, the light generated by the light source 5100 is incident to the light guide plate 5200, and the light emitted from the light guide plate 5200 is diffused to the sheet 5400. May be incident to The light guide plate 5200 may include any one of the light guide plates 3001, 3002, and 3003 according to the present invention described with reference to FIGS. 7A to 7C.
상기 반사판(5300)은 상기 도광판(5200) 하부, 즉 상기 도광판(5200)의 반사부와 마주하도록 배치되고, 상기 도광판(5200)의 반사부를 통해 누설되는 광을 상기 도광판(5200) 측으로 다시 반사시킴으로써 광의 이용 효율을 높여준다.The reflective plate 5300 is disposed below the light guide plate 5200, that is, to face the reflective part of the light guide plate 5200, and reflects light leaked through the reflective part of the light guide plate 5200 back to the light guide plate 5200. Improve the efficiency of light utilization
상기 확산 시트(5400)는 상기 도광판(5200) 상에 배치되고, 상기 도광판(5200)에서 출사된 광을 확산시킬 수 있다. 상기 확산시트(5400)는 도 5a 내지 도 5i에서 설명한 확산 시트들(1001~1009) 중 어느 하나를 포함할 수 있다.The diffusion sheet 5400 may be disposed on the light guide plate 5200 and diffuse light emitted from the light guide plate 5200. The diffusion sheet 5400 may include any one of the diffusion sheets 1001 to 1009 described with reference to FIGS. 5A to 5I.
상기 제1 집광시트(5510)는 상기 확산시트(5400) 상부에 배치되고, 상기 제1 집광시트(5510)의 상면에는 도 4g에서 설명한 복수의 돌출부를 포함하는 집광 패턴이 형성된다. 상기 제2 집광시트(5520)는 상기 제1 집광시트(5510) 상부에 배치되며, 상기 제2 집광시트(5520)의 상면에는 상기 제1 집광시트(5510)에 형성된 돌출부와 실질적으로 동일한 형상을 갖는 복수의 돌출부가 형성된다. 상기 제1 집광시트(5510)에 형성된 돌출부의 길이 방향과 상기 제2 집광시트(5520)에 형성된 돌출부의 길이 방향은 소정의 각도로 교차될 수 있다. 이 경우 상기 돌출부들의 길이방향이 교차되는 각도는 약 90ㅀ일 수 있다. 상기 제1 및 제2 집광 시트들(5510, 5520)중 적어도 하나는, 도 6a 내지 도 6d에서 설명한 집광 시트들(2001~2004) 중에서 선택된 어느 하나를 포함할 수 있다.The first light collecting sheet 5510 is disposed on the diffusion sheet 5400, and a light collecting pattern including a plurality of protrusions described with reference to FIG. 4G is formed on an upper surface of the first light collecting sheet 5510. The second light collecting sheet 5520 is disposed on the first light collecting sheet 5510, and has a shape substantially the same as a protrusion formed on the first light collecting sheet 5510 on an upper surface of the second light collecting sheet 5520. A plurality of protrusions is formed. The length direction of the protrusion formed on the first light collecting sheet 5510 and the length direction of the protrusion formed on the second light collecting sheet 5520 may cross at a predetermined angle. In this case, the angle at which the protrusions cross in the longitudinal direction may be about 90 °. At least one of the first and second light collecting sheets 5510 and 5520 may include any one selected from the light collecting sheets 2001 to 2004 described with reference to FIGS. 6A to 6D.
일례로, 상기 광원(5100)으로 상기 백색광 발광 모듈을 사용하는 경우, 상기 도광판(5200), 상기 확산시트(5400), 상기 제1 및 제2 집광 시트들(5510, 5520) 중 적어도 하나는 녹색 나노 복합체 및/또는 적색 나노 복합체를 포함할 수 있다. 상기 백색광 발광 모듈에서 생성되는 광의 색순도가 낮더라도, 상기 도광판(5200), 상기 확산시트(5400), 상기 제1 및 제2 집광시트들(5510, 5520) 중 적어도 하나에 녹색 나노 복합체 및/또는 적색 나노 복합체를 적용하여 상기 백라이트 유닛(5001)이 제공하는 백색광의 색순도를 향상시킬 수 있다.For example, when the white light emitting module is used as the light source 5100, at least one of the light guide plate 5200, the diffusion sheet 5400, and the first and second light collecting sheets 5510 and 5520 is green. Nanocomposites and / or red nanocomposites. Even if the color purity of the light generated by the white light emitting module is low, the green nanocomposite and / or at least one of the light guide plate 5200, the diffusion sheet 5400, and the first and second light collecting sheets 5510 and 5520. By applying the red nanocomposite, the color purity of the white light provided by the backlight unit 5001 may be improved.
한편, 색순도가 높은 백색광을 제공하는 백색광 발광 모듈을 이용하더라도 상기 도광판(5200), 상기 확산시트(5400), 상기 제1 및 제2 집광시트들(5510, 5520), 특히 도광판(5200)을 경유하면서 광원이 배치된 측인 입광부에서 출사되는 광과 상기 입광부와 마주하는 반대측인 대광부에서 출사되는 광 사이에는 색좌표 편차가 생긴다. 상기 색좌표 편차는 광이 입광부에서 대광부로 가이드되는 동안 특정 파장의 광이 상대적으로 많이 산란이 되기 때문에 생기는 것으로서, 관찰자는 상기와 같은 색좌표의 편차를 상기 대광부에서의 옐로위쉬(yellowish) 문제로 인식하게 된다. 뿐만 아니라, 상기 확산시트(5400), 상기 제1 및 제2 집광시트들(5510, 5520)을 형성하는 재료의 특성에 의해서도 상기 표시 장치의 색순도 및 색좌표 균일도가 저하되는 문제점이 발생할 수 있다. 상기에서 설명한 문제점들은, 상기 도광판(5200), 상기 확산시트(5400) 및 상기 집광시트들(5510, 5520) 중 적어도 하나에 청색 나노 복합체를 적용함으로써 해결할 수 있다.Meanwhile, even when a white light emitting module providing white light having high color purity is used, the light guide plate 5200, the diffusion sheet 5400, the first and second light collecting sheets 5510 and 5520, in particular, the light guide plate 5200 are used. In the meantime, a color coordinate deviation occurs between the light emitted from the light incident portion on the side where the light source is arranged and the light emitted from the light facing portion opposite to the light incident portion. The color coordinate deviation occurs because light of a specific wavelength is scattered relatively much while the light is guided from the light incident part to the light receiving part, and the observer is responsible for the yellowish problem in the light receiving part. To be recognized. In addition, color purity and color coordinate uniformity of the display device may also be deteriorated by characteristics of the material forming the diffusion sheet 5400 and the first and second light collecting sheets 5510 and 5520. The problems described above may be solved by applying a blue nanocomposite to at least one of the light guide plate 5200, the diffusion sheet 5400, and the light collecting sheets 5510 and 5520.
다른 예로서, 상기 광원(5100)으로 상기 청색광 발광 모듈을 이용하는 경우, 상기 도광판(5200), 상기 확산시트(5400), 상기 제1 및 제2 집광시트들(5510, 5520) 중 하나 이상은 녹색 나노 복합체 및 적색 나노 복합체를 포함할 수 있다. 즉, 상기 광원(5100)이 청색광을 생성하더라도, 녹색 나노 복합체 및 적색 나노 복합체가 녹색광 및 적색광을 생성하므로 관찰자는 상기 백라이트 유닛(5001)을 통과한 광을 백색광으로 인식할 수 있다.As another example, when the blue light emitting module is used as the light source 5100, at least one of the light guide plate 5200, the diffusion sheet 5400, and the first and second light collecting sheets 5510 and 5520 is green. Nanocomposites and red nanocomposites. That is, even if the light source 5100 generates blue light, the green nanocomposite and the red nanocomposite generate green light and red light, so that the observer may recognize the light passing through the backlight unit 5001 as white light.
또 다른 예로서, 상기 광원(5100)으로 자외선 발광 모듈을 이용하는 경우, 상기 도광판(5200), 상기 확산시트(5400), 제1 및 제2 집광시트들(5510, 5520) 중 적어도 어느 하나는, 녹색 나노 복합체, 적색 나노 복합체 및 청색 나노 복합체를 포함한다. 이때, 어느 하나의 광학 시트가 녹색, 적색 및 청색 나노 복합체들을 모두 포함할 수도 있다. 이와 달리, 상기 확산 시트(5400)가 청색 나노 복합체를 포함하고, 상기 제1 집광 시트(5510)는 녹색 나노 복합체를 포함하며, 제2 집광 시트(5520)는 적색 나노 복합체를 포함할 수 있다. 또는, 상기 광학 시트들 중 어느 하나가 녹색, 적색 및 청색 나노 복합체들 중에서 2종의 나노 복합체를 포함하고, 다른 하나의 광학 시트가 1종의 나노 복합체를 포함할 수 있다. 일례로, 상기 확산 시트(5400)가 청색 나노 복합체를 포함하고, 상기 제1 집광 시트(5510)가 녹색 및 적색 나노 복합체를 포함할 수 있다. 상기 도광판(5200), 상기 확산시트(5400), 제1 및 제2 집광시트들(5510, 5520)에 적용된 녹색, 적색 및 청색 나노 복합체들이 상기 자외선 발광 모듈이 생성하는 광을 흡수하여 녹색광, 적색광 및 청색광을 생성함으로써 상기 백라이트 유닛(5001)은 백색광을 표시 패널로 제공할 수 있다.As another example, when using the ultraviolet light emitting module as the light source 5100, at least one of the light guide plate 5200, the diffusion sheet 5400, the first and second light collecting sheets (5510, 5520), Green nanocomposites, red nanocomposites and blue nanocomposites. At this time, any one optical sheet may include all of the green, red and blue nanocomposites. Alternatively, the diffusion sheet 5400 may include a blue nanocomposite, the first condensing sheet 5510 may include a green nanocomposite, and the second condensing sheet 5520 may include a red nanocomposite. Alternatively, one of the optical sheets may include two nanocomposites among green, red and blue nanocomposites, and the other optical sheet may include one nanocomposite. For example, the diffusion sheet 5400 may include a blue nanocomposite, and the first light collecting sheet 5510 may include green and red nanocomposites. The green, red, and blue nanocomposites applied to the light guide plate 5200, the diffusion sheet 5400, and the first and second light collecting sheets 5510 and 5520 absorb green light generated by the ultraviolet light emitting module to emit green light and red light. And by generating blue light, the backlight unit 5001 may provide white light to the display panel.
도 9를 참조하면, 본 발명의 다른 실시예에 따른 백라이트 유닛(5002)은 광원(5100), 도광판(5200), 반사판(5300), 광학 시트(5600), 확산시트(5400), 제1 집광시트(5510) 및 제2 집광시트(5520)를 포함한다. 상기 백라이트 유닛(5002)은 광학 시트(5600)를 더 포함하는 것을 제외하고는 도 8에서 설명한 백라이트 유닛(5001)과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.Referring to FIG. 9, the backlight unit 5002 according to another embodiment of the present invention may include a light source 5100, a light guide plate 5200, a reflecting plate 5300, an optical sheet 5600, a diffusion sheet 5400, and a first condensing light. The sheet 5510 and the second light collecting sheet 5520 are included. Since the backlight unit 5002 is substantially the same as the backlight unit 5001 described with reference to FIG. 8 except that the backlight unit 5002 further includes an optical sheet 5600, detailed descriptions thereof will be omitted.
상기 광학 시트(5600)는 나노 복합체를 포함하는 시트로서, 상기 도광판(5200), 확산시트(5400), 제1 집광시트(5510) 및 제2 집광시트(5520)와 독립하게 상기 백라이트 유닛(5002)에 포함된다. 이때, 도광판(5200), 확산시트(5400), 제1 집광시트(5510) 및 제2 집광시트(5520)는 해당 기술분야에서 통상적으로 이용되는 것들을 이용할 수 있다. 즉, 도 1a 내지 도 1c 및 도 3a 내지 도 3c에서 설명한 나노 복합체를 포함하는 광학 시트(5600)만을 상기 백라이트 유닛(5002)에 삽입함으로써 표시 장치의 색재현 영역을 넓혀 색재현성을 향상시킬 수 있다.The optical sheet 5600 is a sheet including a nanocomposite, and is independent of the light guide plate 5200, the diffusion sheet 5400, the first light collecting sheet 5510, and the second light collecting sheet 5520. Included). In this case, the light guide plate 5200, the diffusion sheet 5400, the first light collecting sheet 5510, and the second light collecting sheet 5520 may use those conventionally used in the art. That is, by inserting only the optical sheet 5600 including the nanocomposites described with reference to FIGS. 1A through 1C and 3A through 3C into the backlight unit 5002, color reproducibility of the display device may be widened to improve color reproducibility. .
상기에서 설명한 바에 따르면, 상기 도광판(5200), 확산시트(5400), 제1 집광시트(5510) 및 제2 집광시트(5520) 중 적어도 어느 하나의 광학 시트나, 이들과 독립적인 별개의 광학 시트에 도 1a 내지 도 1c 및 도 3a 내지 도 3c에서 설명한 나노 복합체를 적용함으로써 상기 백라이트 유닛(5001, 5002)은 표시 패널의 컬러 필터로 높은 색순도를 갖는 광을 제공할 수 있고, 표시 장치의 색재현 영역을 넓혀 색재현성을 향상시킬 수 있다.As described above, at least one optical sheet of the light guide plate 5200, the diffusion sheet 5400, the first condensing sheet 5510, and the second condensing sheet 5520, or a separate optical sheet independent of these, is provided. By applying the nanocomposites described with reference to FIGS. 1A to 1C and 3A to 3C, the backlight units 5001 and 5002 may provide light having high color purity as color filters of the display panel, and color reproduction of the display device. By widening the area, color reproducibility can be improved.
이하에서는, 실시예들 및 비교예들에 따른 광학 시트들 및 이를 포함하는 백라이트 유닛 및 표시 장치의 색좌표 및 색재현 영역 평가를 통해서 본 발명의 효과를 설명하기로 한다.Hereinafter, the effects of the present invention will be described through evaluation of color coordinates and color reproduction regions of the optical sheets and the backlight unit and the display device including the optical sheets according to the embodiments and the comparative examples.
백라이트 유닛의 제조 (실시예 1 내지 6 및 비교예 1 내지 7)Manufacture of backlight unit (Examples 1 to 6 and Comparative Examples 1 to 7)
[실시예 1]Example 1
약 444nm에서 발광 피크를 나타내는 청색광 발광 모듈을 광원으로 사용하고, 도광판, 확산시트, 제1 집광 시트 및 제2 집광시트를 하기와 같은 방법으로 제조하여 준비하였다.A blue light emitting module having a light emission peak at about 444 nm was used as a light source, and a light guide plate, a diffusion sheet, a first light collecting sheet, and a second light collecting sheet were manufactured and prepared in the following manner.
(1) 도광판의 제조(1) Manufacture of light guide plate
메틸메타크릴레이트 중합체 100 중량부에 대해서, 벤조트리아졸계 자외선 흡수제(상품명: Tinuvin-329, BASF사, 독일) 0.5 중량부 및 힌더드 아민계 광안정제(상품명: Tinuvin-770, BASF사, 독일) 0.5 중량부를 혼합한 후, 압출기(내경: 27 mm, L/D: 40, Leistritz. Co.)를 이용하여 펠렛 형태의 수지를 제조하였고, 이를 시트 압출기를 이용하여 압출하여 약 0.4 mm 두께의 도광판을 제조하였다.0.5 parts by weight of a benzotriazole UV absorber (trade name: Tinuvin-329, BASF, Germany) and a hindered amine light stabilizer (trade name: Tinuvin-770, BASF, Germany) based on 100 parts by weight of the methyl methacrylate polymer. After mixing 0.5 parts by weight, a pellet-type resin was prepared by using an extruder (inner diameter: 27 mm, L / D: 40, Leistritz. Co.), which was extruded using a sheet extruder to produce a light guide plate having a thickness of about 0.4 mm. Was prepared.
(2) 확산 시트의 제조(2) Preparation of Diffusion Sheet
먼저, 톨루엔 1 ml에 왁스계 화합물로서 산화 고밀도 폴리에틸렌 왁스(Oxidized HDPE Wax)로서 산가(Acid value)가 약 30 mg KOH/g인 왁스(상품명: Licowax PED 136 왁스, Clariant사, 스위스)를 20 mg을 혼합한 후, 약 150℃로 온도를 상승시킴으로써 상기 왁스계 화합물을 용해시켜 왁스 용액을 제조하였다. 톨루엔 1ml에 약 20 mg의 CdSe계의 적색 나노 발광체(상품명: Nanodot-HE-610, QD solution사, 한국)가 분산된 용액을, 상기 왁스 용액에 첨가하여 혼합한 후, 상온으로 냉각시키고, BASF사(회사명, 독일)에서 구입한 우레탄아크릴레이트 및 BASF사에서 구입한 광개시제(diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, TPO)와 혼합하였다. 상기 광개시제는 우레탄아크릴레이트 100 중량부에 대해 약 0.8 중량부 혼합하였다. 이후 증발기(Evaporator)를 이용하여 톨루엔을 제거하여 우레탄아크릴레이트, 적색 나노 복합체 및 광개시제가 혼합된 제1 코팅 조성물을 제조하였다. 상기 제1 코팅 조성물을 약 38 ㎛ 두께의 폴리에스테르 재질의 투명한 베이스 기재(상품명: XU42, 도레이사, 일본) 상에 코팅하고 경화시켜 그 표면에 도 4c에 도시된 형상을 갖는 광확산층을 형성하였다. 상기 광확산층의 평균 두께가 약 50 ㎛이었다.First, 20 mg of a wax (trade name: Licowax PED 136 wax, Clariant, Switzerland) having an acid value of about 30 mg KOH / g as an oxidized high density polyethylene wax (Oxidized HDPE Wax) as a wax-based compound in 1 ml of toluene After mixing, the wax-based compound was dissolved by raising the temperature to about 150 ℃ to prepare a wax solution. A solution in which about 20 mg of CdSe-based red nano light-emitting body (trade name: Nanodot-HE-610, QD solution, Korea) was dispersed in 1 ml of toluene was added to the wax solution, mixed, and cooled to room temperature, followed by BASF The urethane acrylate purchased from the company (company name, Germany) and the photoinitiator (diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, TPO) purchased from BASF were mixed. The photoinitiator was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate. Then, toluene was removed using an evaporator to prepare a first coating composition in which urethane acrylate, a red nanocomposite, and a photoinitiator were mixed. The first coating composition was coated on a transparent base substrate (trade name: XU42, Toray Industries, Japan) of about 38 μm thickness and cured to form a light diffusion layer having the shape shown in FIG. 4C on its surface. . The average thickness of the light diffusion layer was about 50 μm.
이어서, 톨루엔 1ml에 약 20 mg의 CdSe계의 녹색 나노 발광체(상품명: Nanodot-HE-530, QD solution사, 한국)가 분산된 용액을 상기 적색 나노 복합체를 제조하는 공정에서 준비한 상기 왁스 용액에 첨가하여 혼합한 후, 상온으로 냉각시키고 우레탄아크릴레이트 및 광개시제와 혼합하였다. 이후 증발기를 이용하여 톨루엔을 제거하여 우레탄아크릴레이트, 광개시제 및 녹색 나노 복합체가 혼합된 제2 코팅 조성물을 제조하였다. 상기 제2 코팅 조성물을, 상기 광확산층이 형성된 베이스 기재의 반대면에 코팅하고 경화시켜 광학층을 형성하였다. 상기 광학층의 두께는 약 50 ㎛이었다.Subsequently, a solution in which about 20 mg of CdSe-based green nano light-emitting body (trade name: Nanodot-HE-530, QD solution, Korea) was dispersed in 1 ml of toluene was added to the wax solution prepared in the process of preparing the red nanocomposite. After mixing, the mixture was cooled to room temperature and mixed with urethane acrylate and a photoinitiator. Then toluene was removed using an evaporator to prepare a second coating composition in which urethane acrylate, photoinitiator and green nanocomposite were mixed. The second coating composition was coated on the opposite side of the base substrate on which the light diffusion layer was formed and cured to form an optical layer. The thickness of the optical layer was about 50 μm.
이에 따라, 상기 베이스 기재, 상기 광확산층 및 상기 광학층을 포함하는 확산 시트를 제조하였다.As a result, a diffusion sheet including the base substrate, the light diffusion layer, and the optical layer was manufactured.
(3) 제1 및 제2 집광 시트들의 제조(3) Preparation of the first and second light collecting sheets
비스(2,3-에피티오프로필)술파이드(bis(2,3-epithiopropyl)sulfide) 100 중량부에 대해서, 닛폰 공업사(회사명, 일본)에서 구입한 촉매(tetra-n-butylphosphoniumbromide) 0.07 중량부를 혼합하고 실온에서 교반하여 균일액을 제조하였다. 상기 균일액을 교반 및 탈포시킨 후 약 0.5 ㎛ 두께의 폴리테트라플루오로에틸렌 멤브레인(PTFE membrane)으로 여과시켜 베이스 재료를 제조하였으며, 이를 약 75 ㎛ 두께의 PET 필름 상에 도포한 후 성형롤로 가압하여 PET 필름 상에 높이가 약 25 ㎛인 집광 패턴을 제조하여, 제1 집광 시트를 제조하였다.0.07 weight of catalyst (tetra-n-butylphosphonium bromide) purchased from Nippon Kogyo Co., Ltd. (Japan) with respect to 100 weight part of bis (2,3- epithiopropyl) sulfides. The parts were mixed and stirred at room temperature to prepare a homogeneous liquid. After stirring and defoaming the homogeneous solution, a polytetrafluoroethylene membrane (PTFE membrane) having a thickness of about 0.5 μm was filtered to prepare a base material, which was applied onto a PET film having a thickness of about 75 μm and then pressurized with a forming roll. A light condensing pattern having a height of about 25 μm was prepared on the PET film, thereby preparing a first light condensing sheet.
상기 제1 집광 시트를 제조하는 방법과 실질적으로 동일한 공정을 통해 제2 집광 시트를 제조하였다.The second light collecting sheet was manufactured through a process substantially the same as the method of manufacturing the first light collecting sheet.
(4) 백라이트 유닛의 제조(4) manufacture of backlight unit
상기와 같은 방법으로 제조된 도광판, 확산시트, 제1 집광 시트 및 제2 집광시트를 순차적으로 적층하고, 청색광 발광 모듈을 어셈블리하여 본 발명의 실시예 1에 따른 백라이트 유닛을 준비하였다.A light guide plate, a diffusion sheet, a first light collecting sheet, and a second light collecting sheet manufactured by the above method were sequentially stacked, and a blue light emitting module was assembled to prepare a backlight unit according to Example 1 of the present invention.
[실시예 2]Example 2
약 444nm에서 발광 피크를 나타내는 청색광 발광칩 상에 니치아사(회사명, 일본)에서 구입한 YAG 형광체(YAG Phosphor)를 OE-6630 실리콘 레진(상품명, 다우코닝사, 미국)과 함께 도포한 후 경화하여 백색광 발광 모듈을 제조하였다.YAG phosphors (YAG Phosphor) purchased from Nichia (Japan, Japan) were applied together with OE-6630 silicone resin (trade name, Dow Corning, USA) on a blue light emitting chip having an emission peak at about 444 nm and then cured. A white light emitting module was prepared.
광원으로서 상기 백색광 발광 모듈을 이용한 것을 제외하고는, 실시예 1과 실질적으로 동일한 백라이트 유닛을 본 발명의 실시예 2에 따른 백라이트 유닛으로 준비하였다.Except for using the white light emitting module as a light source, a backlight unit substantially the same as Example 1 was prepared as a backlight unit according to Example 2 of the present invention.
[실시예 3]Example 3
먼저, 실시예 1에서와 실질적으로 동일한 도광판을 준비하였다.First, a light guide plate substantially the same as in Example 1 was prepared.
BASF사(회사명, 독일)에서 구입한 우레탄아크릴레이트 100 중량부에 대해, BASF사에서 구입한 광개시제(diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, TPO) 약 0.7 중량부와 혼합하여, 약 38 ㎛ 두께의 폴리에스테르 재질의 투명한 베이스 기재(상품명: XU42, 도레이사, 일본) 상에 코팅하고 경화시켜 평균 두께가 약 50 ㎛이고 그 표면에 도 4c에 도시된 형상을 갖는 광확산층을 형성하여 확산 시트를 준비하였다.With respect to 100 parts by weight of urethane acrylate purchased from BASF (company name, Germany), mixed with about 0.7 parts by weight of photoinitiator (diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, TPO) purchased from BASF, Coated and cured on a transparent base substrate (trade name: XU42, Toraya, Japan) of about 38 μm thick to form a light diffusion layer having an average thickness of about 50 μm and having the shape shown in FIG. 4C on its surface. To prepare a diffusion sheet.
실시예 1의 제1 집광 시트에서, 집광 패턴이 형성된 PET 필름의 일 면의 타면 상에, 실시예 1에서 설명한 녹색 나노 복합체를 포함하는 제2 코팅 조성물을 코팅하고 경화시켜 평균 두께가 약 5 ㎛이고 그 표면에 도 4d에 도시된 형상을 갖는 광학층을 형성하여, 실시예 3에 따른 제1 집광 시트를 준비하였다.In the first light collecting sheet of Example 1, the second coating composition comprising the green nanocomposite described in Example 1 was coated and cured on the other side of one surface of the PET film having the light collecting pattern, thereby having an average thickness of about 5 μm. And an optical layer having a shape shown in Fig. 4D on the surface thereof, to prepare a first light collecting sheet according to Example 3.
또한, 실시예 1의 제2 집광 시트에서, 집광 패턴이 형성된 PET 필름의 일 면과 대향하는 타면 상에 실시예 1에서 설명한 적색 나노 복합체를 포함하는 제1 코팅 조성물을 코팅하고 경화시켜 평균 두께가 약 5 ㎛이고 그 표면에 도 4d에 도시된 형상을 갖는 광학층을 형성하여, 실시예 3에 따른 제2 집광 시트를 준비하였다.In addition, in the second light collecting sheet of Example 1, the first coating composition comprising the red nanocomposite described in Example 1 is coated and cured on the other surface of the PET film on which the light collecting pattern is formed to obtain an average thickness. An optical layer having a shape shown in FIG. 4D and having a shape of about 5 μm on its surface was formed to prepare a second light collecting sheet according to Example 3. FIG.
상기와 같이 준비된 도광판, 확산 시트, 제1 집광 시트 및 제2 집광 시트를, 약 444nm에서 발광 피크를 나타내는 청색광 발광 모듈과 어셈블리하여 본 발명의 실시예 3에 따른 백라이트 유닛을 준비하였다.A light guide plate, a diffusion sheet, a first light collecting sheet, and a second light collecting sheet prepared as described above were assembled with a blue light emitting module exhibiting an emission peak at about 444 nm to prepare a backlight unit according to Example 3 of the present invention.
[실시예 4]Example 4
광원으로 실시예 2에서 설명한 백색광 발광 모듈을 사용한 것을 제외하고는, 실시예 3과 실질적으로 동일한 백라이트 유닛을 본 발명의 실시예 4에 따른 백라이트 유닛으로 준비하였다.A backlight unit substantially the same as Example 3 was prepared as a backlight unit according to Example 4 of the present invention, except that the white light emitting module described in Example 2 was used as the light source.
[실시예 5]Example 5
먼저, 실시예 3에서의 확산 시트, 실시예 1에서의 제1 집광 시트 및 제2 집광 시트를 준비하였다.First, the diffusion sheet in Example 3, the first light collecting sheet and the second light collecting sheet in Example 1 were prepared.
또한, 실시예 1에서의 도광판의 일 면에, 실시예 1에서 설명한 녹색 나노 복합체를 포함하는 제2 코팅 조성물을 코팅하고 경화시켜 두께가 약 5 ㎛인 제1 광학층을 형성하였다. 이어서, 상기 제1 광학층 상에, 실시예 1에서 설명한 적색 나노 복합체를 포함하는 제1 코팅 조성물을 코팅하고 경화시켜 두께가 약 5 ㎛인 제2 광학층을 형성하였다. 이에 따라, 베이스 기재, 제1 및 제2 광학층들을 포함하는 본 발명의 실시예 5에 따른 도광판을 제조하였다.In addition, on one surface of the light guide plate of Example 1, the second coating composition including the green nanocomposite described in Example 1 was coated and cured to form a first optical layer having a thickness of about 5 μm. Subsequently, on the first optical layer, the first coating composition including the red nanocomposite described in Example 1 was coated and cured to form a second optical layer having a thickness of about 5 μm. Accordingly, a light guide plate according to Example 5 of the present invention including a base substrate, first and second optical layers was manufactured.
상기에서 준비한 도광판, 확산 시트, 제1 및 제2 집광 시트들을, 약 444nm에서 발광 피크를 나타내는 청색광 발광 모듈과 어셈블리하여 본 발명의 실시예 5에 따른 백라이트 유닛을 준비하였다.The light guide plate, the diffusion sheet, and the first and second light collecting sheets prepared above were assembled with a blue light emitting module showing an emission peak at about 444 nm to prepare a backlight unit according to Example 5 of the present invention.
[실시예 6]Example 6
광원으로 백색광 발광 모듈을 사용한 것을 제외하고는, 실시예 5와 동일한 백라이트 유닛을 본 발명의 실시예 6에 따른 백라이트 유닛으로 준비하였다.Except for using the white light emitting module as a light source, the same backlight unit as in Example 5 was prepared as a backlight unit according to Example 6 of the present invention.
[비교예 1]Comparative Example 1
광원으로 실시예 2에서 설명한 백색광 발광 모듈을 사용하고 실시예 3에 따른 백라이트 유닛에 포함된 확산 시트를 이용한 것을 제외하고는, 실시예 1과 실질적으로 동일한 백라이트 유닛을 비교예 1에 따른 백라이트 유닛으로 준비하였다. A backlight unit substantially the same as Example 1 was used as the backlight unit according to Comparative Example 1, except that the light source module described in Example 2 was used as the light source and a diffusion sheet included in the backlight unit according to Example 3 was used. Ready.
[비교예 2]Comparative Example 2
확산 시트에 적색 나노 복합체 대신 적색 나노 발광체(상품명: Nanodot-HE-610, QD solution사, 한국)를 이용하고 녹색 나노 복합체 대신 녹색 나노 발광체(상품명: Nanodot-HE-530, QD solution사, 한국)를 이용한 것을 제외하고는, 실시예 1과 실질적으로 동일한 백라이트 유닛을 비교예 2에 따른 백라이트 유닛으로 준비하였다. Instead of the red nanocomposite, red nano light-emitting body (trade name: Nanodot-HE-610, QD solution, Korea) was used for the diffusion sheet, and green nano light-emitting body (trade name: Nanodot-HE-530, QD solution, Korea) instead of the green nanocomposite. Except for using, a backlight unit substantially the same as Example 1 was prepared as a backlight unit according to Comparative Example 2.
[비교예 3]Comparative Example 3
광원으로 백색광 발광 모듈을 사용한 것을 제외하고는, 비교예 2와 실질적으로 동일한 백라이트 유닛을 비교예 3에 따른 백라이트 유닛으로 준비하였다.A backlight unit substantially the same as that of Comparative Example 2 was prepared as a backlight unit according to Comparative Example 3, except that a white light emitting module was used as the light source.
[비교예 4][Comparative Example 4]
제1 집광 시트에 녹색 나노 복합체 대신 녹색 나노 발광체(상품명: Nanodot-HE-530, QD solution사, 한국)를 이용하고 제2 집광 시트에 적색 나노 복합체 대신 적색 나노 발광체(상품명: Nanodot-HE-610, QD solution사, 한국)를 이용한 것을 제외하고는, 실시예 3와 실질적을 동일한 백라이트 유닛을 비교예 4에 따른 백라이트 유닛으로 준비하였다. Instead of the green nanocomposite on the first light collecting sheet, a green nano light emitting body (trade name: Nanodot-HE-530, QD solution, Korea) is used, and a red nano light emitting body (trade name: Nanodot-HE-610 instead of a red nanocomposite on the second light collecting sheet) , QD solution, Korea), except that the backlight unit substantially the same as Example 3 was prepared as a backlight unit according to Comparative Example 4.
[비교예 5][Comparative Example 5]
광원으로 백색광 발광 모듈을 사용한 것을 제외하고는, 비교예 2와 실질적으로 동일한 백라이트 유닛을 비교예 5에 따른 백라이트 유닛으로 준비하였다.A backlight unit substantially the same as that of Comparative Example 2 was prepared as a backlight unit according to Comparative Example 5, except that a white light emitting module was used as the light source.
[비교예 6]Comparative Example 6
도광판에 적색 나노 복합체 대신 적색 나노 발광체(상품명: Nanodot-HE-610, QD solution사, 한국)를 이용하고 녹색 나노 복합체 대신 녹색 나노 발광체(상품명: Nanodot-HE-530, QD solution사, 한국)를 이용한 것을 제외하고는, 실시예 5와 실질적으로 동일한 백라이트 유닛을 비교예 6에 따른 백라이트 유닛으로 준비하였다.Instead of the red nanocomposite, use a red nano light emitter (trade name: Nanodot-HE-610, QD solution, Korea) on the light guide plate, and use a green nano light emitter (trade name: Nanodot-HE-530, QD solution, Korea) instead of the green nanocomposite. Except for the use, a backlight unit substantially the same as Example 5 was prepared as a backlight unit according to Comparative Example 6.
[비교예 7]Comparative Example 7
광원으로 백색광 발광 모듈을 사용한 것을 제외하고는, 비교예 6과 실질적으로 동일한 백라이트 유닛을 비교예 7에 따른 백라이트 유닛으로 준비하였다.A backlight unit substantially the same as that of Comparative Example 6 was prepared as a backlight unit according to Comparative Example 7, except that a white light emitting module was used as the light source.
[실험 2]- 표시 장치의 색좌표 및 색재현 영역 평가[Experiment 2]-Evaluation of color coordinate and color reproduction area of display device
본 발명의 실시예 1 내지 6 및 비교예 1 내지 7에 따른 백라이트 유닛 각각을 아이폰 4(상품명, 애플사, 미국)의 표시 패널과 어셈블리하여, 표시 장치 1 내지 6 및 비교 장치 1 내지 7을 준비하였다.Each of the backlight units according to Examples 1 to 6 and Comparative Examples 1 to 7 of the present invention was assembled with a display panel of an iPhone 4 (trade name, Apple, USA) to prepare display devices 1 to 6 and comparative devices 1 to 7. .
상기 표시 장치 1 내지 6 및 비교 장치 1 내지 7 각각에 대해서 분광복사기(spectroradiometer)로서 SR-3AR (제품명, TOPCON사, 일본)를 이용하여 색재현 영역(Color Gamut), 휘도 및 색좌표(적색, 녹색, 청색)를 측정하였다. 상기 적색, 녹색 및 청색 색좌표는 각각 아이폰 4의 표시 패널이 적색, 녹색 및 청색을 표시하도록 한 후, 상기 분광복사기가 나타내는 색좌표를 기록함으로써 얻었다. 그 결과를 하기 표 2에 나타낸다.Color gamut, luminance and color coordinates (red, green) using SR-3AR (product name, TOPCON, Japan) as a spectroradiometer for each of the display devices 1 to 6 and the comparison devices 1 to 7 , Blue) was measured. The red, green, and blue color coordinates were obtained by recording the color coordinates indicated by the spectrophotometer after allowing the display panel of the iPhone 4 to display red, green, and blue, respectively. The results are shown in Table 2 below.
표 2에서, 적색, 녹색 및 청색 색좌표 각각은 CIE 1931 색좌표계를 기준으로 나타내고, 색역 비율은 NTSC(National Television Systems Committee) 기준의 색역 범위(이하, NTSC 색역 범위)에 대한 각 표시 장치 및 비교 장치에서의 RGB 색좌표를 이은 삼각형의 면적의 백분율이다.In Table 2, each of the red, green, and blue color coordinates is represented based on the CIE 1931 color coordinate system, and the gamut ratio is shown for each display device and a comparison device for the gamut range (hereinafter, NTSC gamut range) based on the National Television Systems Committee (NTSC). The percentage of the area of the triangle followed by the RGB color coordinates in.
표 2
구분 색역 비율 (%) 휘도(cd/m2) 색좌표-적색(CIE 1931) 색좌표-녹색(CIE 1931) 색좌표-청색(CIE 1931)
표시 장치 1 89.2 350 (0.660, 0.319) (0.205, 0.705) (0.160, 0.123)
표시 장치 2 78.7 313 (0.652, 0.330) (0.210, 0.650) (0.160, 0.123)
표시 장치 3 80.4 340 (0.648, 0.325) (0.215, 0.667) (0.160, 0.123)
표시 장치 4 73.9 310 (0.630, 0.340) (0.220, 0.648) (0.160, 0.123)
표시 장치 5 84.5 330 (0.648, 0.319) (0.205, 0.689) (0.160, 0.123)
표시 장치 6 74.7 290 (0.633, 0.342) (0.224, 0.652) (0.160, 0.123)
비교 장치 1 51.3 314 (0.611, 0.354) (0.318, 0.564) (0.160, 0.123)
비교 장치 2 89.2 340 (0.665, 0.323) (0.230, 0.687) (0.160, 0.123)
비교 장치 3 76.9 305 (0.657, 0.336) (0.228, 0.642) (0.160, 0.123)
비교 장치 4 80.2 330 (0.650, 0.334) (0.219, 0.666) (0.160, 0.123)
비교 장치 5 74.0 300 (0.635, 0.355) (0.230, 0.650) (0.160, 0.123)
비교 장치 6 83.9 330 (0.655, 0.319) (0.230, 0.687) (0.160, 0.123)
비교 장치 7 75.5 285 (0.648, 0.336) (0.228, 0.642) (0.160, 0.123)
TABLE 2
division Color Gamut Ratio (%) Luminance (cd / m 2 ) Color coordinates-red (CIE 1931) Color coordinates-green (CIE 1931) Color coordinates-blue (CIE 1931)
Display device 1 89.2 350 (0.660, 0.319) (0.205, 0.705) (0.160, 0.123)
Indicator 2 78.7 313 (0.652, 0.330) (0.210, 0.650) (0.160, 0.123)
Indicator 3 80.4 340 (0.648, 0.325) (0.215, 0.667) (0.160, 0.123)
Indicator 4 73.9 310 (0.630, 0.340) (0.220, 0.648) (0.160, 0.123)
Indicator 5 84.5 330 (0.648, 0.319) (0.205, 0.689) (0.160, 0.123)
Indicator 6 74.7 290 (0.633, 0.342) (0.224, 0.652) (0.160, 0.123)
Comparison device 1 51.3 314 (0.611, 0.354) (0.318, 0.564) (0.160, 0.123)
Comparator 2 89.2 340 (0.665, 0.323) (0.230, 0.687) (0.160, 0.123)
Comparator 3 76.9 305 (0.657, 0.336) (0.228, 0.642) (0.160, 0.123)
Comparator 4 80.2 330 (0.650, 0.334) (0.219, 0.666) (0.160, 0.123)
Comparator 5 74.0 300 (0.635, 0.355) (0.230, 0.650) (0.160, 0.123)
Comparing Device 6 83.9 330 (0.655, 0.319) (0.230, 0.687) (0.160, 0.123)
Comparator 7 75.5 285 (0.648, 0.336) (0.228, 0.642) (0.160, 0.123)
도 10은 비교예 1에 따른 백라이트 유닛을 포함하는 표시 장치의 색재현 영역을 설명하기 위한 이미지이고, 도 11a 내지 도 11f는 실시예 1 내지 6에 따른 백라이트 유닛을 포함하는 표시 장치들의 색재현 영역을 설명하기 위한 이미지들이다.FIG. 10 is an image illustrating a color reproduction area of a display device including the backlight unit according to Comparative Example 1, and FIGS. 11A to 11F are color reproduction areas of the display devices including the backlight units according to embodiments 1 to 6. FIG. Images to illustrate this.
표 2, 도 10, 도 11a 내지 도 11f를 참조하면, 비교예 1에 따른 백라이트 유닛을 포함하는 비교 장치 1의 색재현 영역은 NTSC 색역 범위 대비 약 51.3%임에 반하여, 표시 장치 1 내지 6의 색재현 영역은 NTSC 색역 범위 대비 약 73.9% 내지 약 89.2%로서, 표시 장치 1 내지 6은 비교 장치 1에 비해 현저하게 넓은 색재현 영역을 갖는 것을 알 수 있다.Referring to Tables 2, 10, and 11A to 11F, the color reproduction region of the comparison apparatus 1 including the backlight unit according to Comparative Example 1 is about 51.3% of the NTSC color gamut range, but the display apparatuses 1 to 6 The color reproduction area is about 73.9% to about 89.2% of the NTSC color gamut range, and it can be seen that the display devices 1 to 6 have a significantly wider color reproduction area than the comparison device 1.
구체적으로, 비교 장치 1과, 표시 장치 1 내지 6을 비교하면, 청색 색좌표들은 실질적으로 유사한 수준이라고 볼 수 있으나, 표시 장치 1 내지 6의 적색 x 좌표가 비교 장치 1의 적색 x 좌표에 비해 큰 값을 가짐을 알 수 있다. 또한, 표시 장치 1 내지 6의 녹색 x 좌표는 비교 장치 1의 녹색 x 좌표에 비해 작은 값을 가지며, 표시 장치 1 내지 6의 녹색 y 좌표는 비교 장치 1의 녹색 y 좌표에 비해 큰 값을 가지는 것을 알 수 있다.Specifically, when the comparison device 1 and the display devices 1 to 6 are compared, the blue color coordinates may be regarded as substantially similar levels, but the red x coordinate of the display devices 1 to 6 is larger than the red x coordinate of the comparison device 1. It can be seen that it has. In addition, the green x coordinate of the display devices 1 to 6 has a smaller value than the green x coordinate of the comparison device 1, and the green y coordinate of the display devices 1 to 6 has a larger value than the green y coordinate of the comparison device 1. Able to know.
상기와 같은 결과를 참조하면, 표시 장치 1 내지 6의 적색 및 녹색 각각의 색순도가, 비교 장치 1에 비해서 상대적을 높은 것을 알 수 있다. 즉, 동일한 표시 패널을 이용하더라도 비교예 1에 따른 백라이트 유닛에 비해 실시예 1 내지 6에 따른 백라이트 유닛에 의해 표시 장치는 더욱 색순도가 높은 적색 및 녹색을 구현할 수 있고, 표시 장치가 구현할 수 있는 색영역이 넓어지는 것으로 볼 수 있다.Referring to the above results, it can be seen that the color purity of each of the red and green colors of the display devices 1 to 6 is relatively higher than that of the comparison device 1. That is, even when the same display panel is used, the display device may realize red and green colors having higher color purity than the backlight unit according to Comparative Example 1, and the colors that the display device may implement. It can be seen that the area is widened.
뿐만 아니라, 표시 장치 1 내지 6은 나노 발광체가 왁스 입자에 의해 피복된 구조를 갖는 나노 복합체가 분산되어 있음에도 불구하고, 비교 장치 1의 휘도와 실질적으로 동일한 수준이거나, 그보다 높은 휘도를 나타낼 수 있음을 알 수 있다.In addition, the display devices 1 to 6 may exhibit substantially the same level as or higher than that of the comparative device 1 even though the nanocomposite having the structure in which the nano light-emitting body is covered with wax particles is dispersed. Able to know.
한편, 표시 장치 1 내지 6은 나노 발광체들이 왁스 입자에 의해서 캡슐화된 구조를 갖는 나노 복합체를 포함하고 있음에도 불구하고, 적색 및 녹색의 색순도가 비교 장치 2 내지 7의 적색 및 녹색의 색순도와 실질적으로 동일한 수준으로 구현됨을 알 수 있다. 즉, 나노 발광체를 왁스 입자로 피복한다하더라도 왁스 입자가 나노 발광체의 양자 효율을 저하시키는 인자가 아님을 알 수 있다.Meanwhile, although the display devices 1 to 6 include nanocomposites having a structure in which the nano light emitters are encapsulated by wax particles, the red and green color purity is substantially the same as the red and green color purity of the comparative devices 2 to 7. You can see that it is implemented as a level. In other words, even when the nano light-emitting body is coated with wax particles, it can be seen that the wax particles are not a factor for lowering the quantum efficiency of the nano light-emitting body.
평판 시트 1, 2 및 비교 시트 1의 제조Preparation of Flat Sheets 1, 2 and Comparative Sheet 1
[평판 시트 1의 제조][Production of Flat Sheet 1]
톨루엔 1 ml에 왁스계 화합물로서 산화 고밀도 폴리에틸렌 왁스(Oxidized HDPE Wax)로서 산가(Acid value)가 약 30 mg KOH/g인 왁스(상품명: Licowax PED 136 왁스, Clariant사, 스위스)를 20 mg을 혼합한 후, 약 150℃로 온도를 상승시킴으로써 상기 왁스계 화합물을 용해시켜 왁스 용액을 제조하였다. 톨루엔 1ml에 약 20 mg의 CdSe계의 적색 나노 발광체(상품명: Nanodot-HE-610, QD solution사, 한국)가 분산된 용액을, 상기 왁스 용액과 혼합한 후 상온으로 냉각시켜 냉각 용액을 제조하였다.20 mg of a wax (trade name: Licowax PED 136 wax, Clariant, Switzerland) having an acid value of about 30 mg KOH / g as an oxidized high density polyethylene wax (Oxidized HDPE Wax) as a wax-based compound was mixed with 1 ml of toluene. After that, the wax-based compound was dissolved by raising the temperature to about 150 ° C. to prepare a wax solution. A solution in which about 20 mg of CdSe-based red nano light-emitting body (trade name: Nanodot-HE-610, QD solution, Korea) was dispersed in 1 ml of toluene was mixed with the wax solution and cooled to room temperature to prepare a cooling solution. .
상기 냉각 용액을, BASF사(회사명, 독일)에서 구입한 우레탄아크릴레이트 및 BASF사에서 구입한 광개시제(diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, TPO)와 혼합한 후, 톨루엔을 제거하여 코팅 조성물을 제조하였다. 상기 광개시제는 우레탄아크릴레이트 100 중량부에 대해 약 0.8 중량부 혼합하였다.The cooling solution was mixed with a urethane acrylate purchased from BASF (company name, Germany) and a photoinitiator (diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, TPO) purchased from BASF, followed by removal of toluene. To prepare a coating composition. The photoinitiator was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate.
상기 코팅 조성물을 두께가 약 38㎛인 폴리에스테르 재질의 투명한 베이스 기재(상품명: XU42, 도레이사, 일본) 상에 코팅하고 경화시켜, 두께가 약 50 ㎛인 광학층을 포함하는 평판 시트 1을 제조하였다.The coating composition was coated on a transparent base substrate (trade name: XU42, Toray Industries, Japan) having a thickness of about 38 μm and cured to prepare a flat sheet 1 including an optical layer having a thickness of about 50 μm. It was.
[평판 시트 2의 제조][Production of Flat Sheet 2]
톨루엔 1 ml에 왁스계 화합물 20 mg을 혼합한 후, 약 150℃로 온도를 상승시킴으로써 왁스계 화합물을 용해시켜 왁스 용액을 제조하였다. 상기 왁스 용액에, 톨루엔 1ml에 약 20 mg의 CdSe계의 적색 양자점(상품명: Nanodot-HE-606, QD solution사, 한국)이 분산된 용액을 혼합한 후, 상온으로 냉각시켜 톨루엔 1ml 당 약 10mg의 입자가 분산된 냉각 용액을 제조하였다. 이때, 상기 왁스계 화합물은, 산화 고밀도 폴리에틸렌 왁스(Oxidized HDPE Wax)로서 산가(Acid value)가 약 50 mg KOH/g인 왁스(상품명: Licowax PED 136 왁스, Clariant사, 스위스)를 사용하였다. 상기 냉각 용액을 에탄올 10ml와 TEOS(tetraethoxysilane, Sigma Aldrich사, 미국) 1ml이 혼합된 용액에 첨가한 후, 추가적으로 농도가 30%인 암모니아수를 2.5 ml 첨가하여 상기 입자들의 표면에 산화 실리콘을 형성함으로써 나노 복합체를 포함하는 나노 복합체 용액을 제조하였다.After mixing 20 mg of the wax-based compound in 1 ml of toluene, the wax-based compound was dissolved by raising the temperature to about 150 ° C. to prepare a wax solution. The wax solution was mixed with a solution containing about 20 mg of CdSe-based red quantum dots (trade name: Nanodot-HE-606, QD solution, Korea) in 1 ml of toluene, and then cooled to room temperature to about 10 mg per 1 ml of toluene. A cooling solution in which particles of were dispersed was prepared. In this case, as the wax-based compound, a wax having an acid value of about 50 mg KOH / g (trade name: Licowax PED 136 wax, Clariant, Switzerland) was used as an oxidized high density polyethylene wax (Oxidized HDPE Wax). The cooling solution was added to a mixture of 10 ml of ethanol and 1 ml of TEOS (tetraethoxysilane, Sigma Aldrich, USA), and then additionally 2.5 ml of 30% ammonia water to form silicon oxide on the surface of the particles. The nanocomposite solution containing the complex was prepared.
상기 나노 복합체 용액에서 고속 원심 분리기를 이용하여 약 5,000 rpm에서 약 30분 동안 원심분리하여 상기 나노 복합체를 분리하였고, 에탄올과 증류수를 이용하여 세척한 후 증발기를 이용하여 에탄올과 증류수를 제거함으로써 파우더 상태의 나노 복합체를 제조한 후, 다시 톨루엔에 분산시켜 분산 용액을 제조하였다.In the nanocomposite solution, the nanocomposite was separated by centrifugation at about 5,000 rpm for about 30 minutes using a high speed centrifuge, washed with ethanol and distilled water, and then ethanol and distilled water were removed using an evaporator. After preparing the nanocomposite, and dispersed in toluene again to prepare a dispersion solution.
상기 분산 용액을, BASF사(회사명, 독일)에서 구입한 우레탄아크릴레이트 및 BASF사에서 구입한 광개시제(diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, TPO)와 혼합한 후, 톨루엔을 제거하여 코팅 조성물을 제조하였다. 상기 광개시제는 우레탄아크릴레이트 100 중량부에 대해 약 0.8 중량부 혼합하였다.The dispersion solution was mixed with a urethane acrylate purchased from BASF (company name, Germany) and a photoinitiator (diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, TPO) purchased from BASF, followed by removal of toluene. To prepare a coating composition. The photoinitiator was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate.
상기 코팅 조성물을 두께가 약 38㎛인 폴리에스테르 재질의 투명한 베이스 기재(상품명: XU42, 도레이사, 일본) 상에 코팅하고 경화시켜, 두께가 약 50 ㎛인 광학층을 포함하는 평판 시트 2를 제조하였다.The coating composition was coated on a transparent base substrate (trade name: XU42, Toray Industries, Japan) having a thickness of about 38 μm and cured to prepare a flat sheet 2 including an optical layer having a thickness of about 50 μm. It was.
[비교 시트 1의 제조][Production of Comparative Sheet 1]
톨루엔 1ml에 약 20 mg의 CdSe계의 적색 나노 발광체(상품명: Nanodot-HE-610, QD solution사, 한국)가 분산된 용액을 BASF사(회사명, 독일)에서 구입한 우레탄아크릴레이트 및 BASF사에서 구입한 광개시제(diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, TPO)와 혼합한 후, 톨루엔을 제거하여 코팅 조성물을 제조하였다. 상기 광개시제는 우레탄아크릴레이트 100 중량부에 대해 약 0.8 중량부 혼합하였다.Urethane acrylate and BASF purchased from BASF (company name, Germany) with a solution in which about 20 mg of CdSe-based red nano light-emitting body (trade name: Nanodot-HE-610, QD solution, Korea) was dispersed in 1 ml of toluene. After mixing with a photoinitiator (diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, TPO) purchased from toluene was removed to prepare a coating composition. The photoinitiator was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate.
상기 코팅 조성물을 두께가 약 38㎛인 폴리에스테르 재질의 투명한 베이스 기재(상품명: XU42, 도레이사, 일본) 상에 코팅하고 경화시켜 두께가 약 50 ㎛인 광학층을 포함하는 비교 시트 1을 제조하였다.The coating composition was coated on a transparent base substrate (trade name: XU42, Toray Industries, Japan) having a thickness of about 38 μm and cured to prepare Comparative Sheet 1 including an optical layer having a thickness of about 50 μm. .
[실험 3]- 광 안정성 및 열/수분 안정성 평가[Experiment 3]-Evaluation of light stability and heat / moisture stability
상기와 같이 제조된 평판 시트 1, 2 및 비교 시트 1 각각을, 절대양자효율측정기(상품명: C9920-02, HAMAMATSU사, 일본)를 이용하여 측정하였다. 이어서, 중심 파장이 365nm인 자외선(UV)을 약 1.4 mW/cm2의 복사 강도로 480시간 동안, 즉 약 2,419.2 J/cm2의 가혹 조건으로 조사한 후, 제2 양자효율(QYT2, 단위:%)을 측정하였다. 상기 제1 양자효율 및 상기 제2 양자효율의 차이(△QY1=QYT1-QYT2, 단위:%)를 산출하여 평판 시트 1 및 2의 적색 나노 복합체와, 비교 시트 1의 적색 나노 발광체 각각에 대한 자외선 안정성을 평가하였다.Each of the flat sheet sheets 1, 2 and comparative sheet 1 prepared as described above was measured using an absolute quantum efficiency meter (trade name: C9920-02, HAMAMATSU, Japan). Subsequently, after irradiating ultraviolet light (UV) having a center wavelength of 365 nm for 480 hours at a radiation intensity of about 1.4 mW / cm 2 , that is, under severe conditions of about 2,419.2 J / cm 2 , the second quantum efficiency (QYT2, unit:% ) Was measured. The difference between the first quantum efficiency and the second quantum efficiency (ΔQY1 = QYT1-QYT2, unit:%) is calculated to be ultraviolet light for the red nanocomposites of the flat sheets 1 and 2 and the red nano light-emitting bodies of the comparative sheet 1, respectively. The stability was evaluated.
또한, 평판 시트 1, 2 및 비교 시트 1에 대하여, 상기 제1 양자효율(QYT1, 단위:%)을 측정한 후 항온항습기에서 온도 85℃ 및 상대습도 85%의 가혹조건에 480시간 동안 노출한 후 제3 양자효율(QYT3, 단위:%)을 측정하였다. 상기 제1 양자효율 및 상기 제3 양자효율의 차이(△QY2=QYT1-QYT3, 단위:%)를 산출하여 평판 시트 1 및 2의 적색 나노 복합체와, 비교 시트 1의 적색 나노 발광체 각각에 대한 열/수분 안정성을 평가하였다. In addition, the first quantum efficiency (QYT1, unit:%) was measured for the flat sheets 1, 2 and the comparative sheet 1, and then exposed to harsh conditions of a temperature of 85 ° C. and a relative humidity of 85% in a constant temperature and humidity chamber for 480 hours. Then, the third quantum efficiency (QYT3, unit:%) was measured. The difference between the first quantum efficiency and the third quantum efficiency (ΔQY2 = QYT1-QYT3, unit:%) was calculated to determine the red nanocomposites of the flat sheets 1 and 2 and the red nano light-emitting bodies of the comparative sheet 1, respectively. Moisture stability was evaluated.
상기 광 안정성 평가 결과 및 열/수분 안정성 평가 결과를 하기 표 3에 나타낸다.The optical stability evaluation results and heat / moisture stability evaluation results are shown in Table 3 below.
표 3에서, 비교 시트 1의 광 안정성 및 열/수분 안정성은, 가혹 조건에 노출된 후 발광하지 않아 제2 양자 효율 및 제3 양자 효율을 측정할 수 없었다. 따라서, 표 3에서는 -로 표시한다.In Table 3, the light stability and heat / moisture stability of Comparative Sheet 1 did not emit light after being exposed to harsh conditions, so that the second quantum efficiency and the third quantum efficiency could not be measured. Therefore, in Table 3,-is represented.
표 3
양자효율(QY, %) 광 안정성(△QY1, %) 열/수분 안정성(△QY2, %)
평판 시트 1 78.1 6 7
평판 시트 2 75.5 4 5
비교 시트 1 32.5 - -
TABLE 3
Quantum Efficiency (QY,%) Optical stability (△ QY1,%) Heat / moisture stability (△ QY2,%)
Flatbed Sheet 1 78.1 6 7
Flatbed sheet 2 75.5 4 5
Comparison sheet 1 32.5 - -
표 3을 참조하면, 평판 시트 1에 포함된 적색 나노 복합체와 평판 시트 2에 포함된 적색 나노 복합체 각각의 양자 효율이, 비교 시트 1에 포함된 양자 효율에 비해 우수한 것을 알 수 있다. 즉, 평판 시트 1 및 2도 나노 복합체를 제조하기 위해서 비교 시트 1에 포함된 적색 나노 발광체와 동일한 나노 발광체를 이용함에도 불구하고 평판 시트 1 및 2에 포함된 나노 복합체들의 양자 효율은 약 75% 이상을 유지하는 것을 알 수 있다.Referring to Table 3, it can be seen that the quantum efficiency of each of the red nanocomposite included in the flat sheet 1 and the red nanocomposite included in the flat sheet 2 is superior to the quantum efficiency contained in the comparative sheet 1. That is, despite using the same nano light emitter as the red nano light emitter included in Comparative Sheet 1 to prepare flat sheet 1 and 2 degrees nanocomposites, the quantum efficiency of the nanocomposites included in flat sheet 1 and 2 is about 75% or more. It can be seen that it is maintained.
반면, 비교 시트 1의 제조 공정, 예를 들어, 적색 나노 발광체를 우레탄아크릴레이트와 혼합하는 단계나 우레탄아크릴레이트를 경화시키는 단계에서 적색 나노 발광체의 적어도 일부가 손상되는 것으로 유추할 수 있다.On the other hand, it can be inferred that at least a part of the red nano light-emitting body is damaged in the manufacturing process of Comparative Sheet 1, for example, mixing the red nano light-emitting body with urethane acrylate or curing the urethane acrylate.
특히, 광 안정성이나 열/수분 안정성 측면에 있어서, 가혹 조건에 노출되었음에도 불구하고 평판 시트 1 및 2의 나노 복합체들이 광, 열/수분에 의해서 손상된 정도가 약 7%의 매우 낮은 수준으로서, 광, 열/수분 안정성이 좋은 것을 알 수 있다. 반면, 적색 나노 발광체는 비교 시트 1을 제조한 후에 비교 시트 1이 가혹 조건에 노출된 후 발광하지 않아 제2 및 제3 양자 효율이 측정할 수 없음을 볼 때, 적색 나노 발광체 그 자체의 광 안정성 및 열/수분 안정성이 매우 나쁜 것을 알 수 있다.In particular, in terms of light stability or heat / moisture stability, the nanocomposites of the flat sheets 1 and 2 are damaged by light and heat / moisture at a very low level of about 7%, despite being exposed to harsh conditions. It can be seen that heat / moisture stability is good. On the other hand, the red nano light emitter does not emit light after the comparison sheet 1 is exposed to harsh conditions after the manufacture of the comparative sheet 1, so that the second and third quantum efficiency can not be measured, the light stability of the red nano light emitter itself And it can be seen that the heat / moisture stability is very bad.
상기에서 설명한 바에 따르면, 나노 발광체가 왁스 입자로 피복된 구조의 나노 복합체는 그 자체로서도 광, 열 또는 수분에 매우 안정할 뿐만 아니라 우레탄아크릴레이트와 같은 시트 제조용 조성물에 혼합되고 이를 경화하여 시트를 제조하더라도 광, 열 또는 수분에 거의 손상 받지 않는 것을 알 수 있다.As described above, the nanocomposite having a structure in which the nano light-emitting body is coated with wax particles is not only very stable to light, heat or moisture, but also mixed with a sheet-forming composition such as urethane acrylate and cured to prepare a sheet. Even though it can be seen that it is hardly damaged by light, heat or moisture.
백라이트 유닛의 제조(실시예 7 및 비교예 8)Manufacture of backlight unit (Example 7 and Comparative Example 8)
[실시예 7]Example 7
확산 시트의 광학층 표면에 도 4c에 도시된 형상을 갖는 광확산 패턴이 더 형성된 것을 제외하고는 실시예 1과 실질적으로 동일한 백라이트 유닛을 본 발명의 실시예 7에 따른 백라이트 유닛으로 준비하였다.A back light unit substantially the same as that of Example 1 was prepared as a back light unit according to the seventh embodiment of the present invention, except that a light diffusion pattern having the shape shown in FIG. 4C was further formed on the surface of the optical layer of the diffusion sheet.
[비교예 8]Comparative Example 8
확산 시트의 광학층 표면에 도 4c에 도시된 형상을 갖는 광확산 패턴이 더 형성된 것을 제외하고는 비교예 2와 실질적으로 동일한 백라이트 유닛을 비교예 8에 따른 백라이트 유닛으로 준비하였다.A backlight unit substantially the same as Comparative Example 2 was prepared as a backlight unit according to Comparative Example 8, except that a light diffusion pattern having a shape shown in FIG. 4C was further formed on the surface of the optical layer of the diffusion sheet.
[실험 4]- 휘도 및 색좌표 안정성 평가[Experiment 4]-Evaluation of stability of luminance and color coordinate
자외선 안정성 및 열/수분 안정성 평가를 독립적으로 수행하기 위해, 상기에서 설명한 실시예 7에 따른 백라이트 유닛과 비교예 8에 따른 백라이트 유닛을 2개씩 준비하였다. In order to independently perform ultraviolet light stability and heat / moisture stability evaluation, two backlight units according to Example 7 and Comparative Example 8 were prepared.
먼저, 실시예 7 및 비교예 8에 따른 백라이트 유닛들 각각에 대해서, 분광복사기(spectroradiometer)로서 SR-3AR (제품명, TOPCON사, 일본)를 초기 휘도 및 초기 색좌표를 측정하였다.First, for each of the backlight units according to Example 7 and Comparative Example 8, SR-3AR (product name, TOPCON, Japan) was measured as initial spectrophotometer and initial color coordinate as a spectroradiometer.
이어서, 실시예 7 및 비교예 8에 따른 백라이트 유닛들 1개씩을 선택하여 이들로부터 확산 시트를 분리한 후, 확산 시트에 중심 파장이 365nm인 자외선(UV)을 약 1.4 mW/cm2의 복사 강도로 480시간 동안, 즉 약 2,419.2 J/cm2의 가혹 조건으로 조사하였다. 자외선이 조사된 확산 시트를 다시 청색광 발광 모듈, 도광판, 제1 및 제2 집광 시트와 함께 어셈블리시킨 후, 이에 대한 최종 휘도 및 최종 색좌표를 측정하였다. 그 결과를 표 4에 나타낸다.Subsequently, one backlight unit according to Example 7 and Comparative Example 8 was selected to separate the diffusion sheet therefrom, and then the ultraviolet radiation (UV) having a central wavelength of 365 nm was radiated to the diffusion sheet at about 1.4 mW / cm 2 . for 480 hours, that was investigated in severe conditions of about 2,419.2 J / cm 2. The diffused sheet irradiated with ultraviolet rays was again assembled with the blue light emitting module, the light guide plate, the first and the second light collecting sheets, and the final luminance and the final color coordinate thereof were measured. The results are shown in Table 4.
또한, 나머지 1개씩의 실시예 7 및 비교예 8에 따른 백라이트 유닛들 부터 확산 시트를 분리한 후, 확산 시트를 항온항습기에서 온도 85℃ 및 상대습도 85%의 가혹조건 하에 480시간 동안 방치하였다. 고온/고습에 방치된 확산 시트를 다시 청색광 발광 모듈, 도광판, 제1 및 제2 집광 시트와 함께 어셈블리시킨 후, 이에 대한 최종 휘도 및 최종 색좌표를 측정하였다. 그 결과를 표 5에 나타낸다.In addition, after separating the diffusion sheet from the remaining backlight unit according to Example 7 and Comparative Example 8, the diffusion sheet was left in a thermo-hygrostat for 480 hours under severe conditions of 85 ° C and 85% relative humidity. After the diffusion sheet left at high temperature / high humidity was assembled together with the blue light emitting module, the light guide plate, the first and the second light collecting sheet, the final luminance and the final color coordinate thereof were measured. The results are shown in Table 5.
초기/최종 휘도 및 초기/최종 색좌표는, 백라이트 유닛 중에서, 광원이 배치된 부분을 제외한, 도광판, 확산 시트, 제1 및 제2 집광 시트들이 적층된 표시 영역 중 9개의 지점들에서 각각 측정된 값들의 평균값을 의미한다. 상기 9개의 지점들은 도 12에 도시된 바와 같이 지정되었다.The initial / final luminance and the initial / final color coordinates are values measured at nine points of the display area in which the light guide plate, the diffusion sheet, and the first and second light collecting sheets are laminated, except for the portion where the light source is disposed among the backlight units. Mean value of these. The nine points were designated as shown in FIG.
도 12에서 광원은 LS로 나타내고, 도광판, 확산 시트, 제1 및 제2 집광 시트들이 적층된 표시 영역을 DS로 나타내며, 상기 표시 영역(DS) 중 상기 광원(LS)과 인접한 지점 1, 2 및 3이 입광부가 되고, 상기 입광부의 반대편인 지점 7, 8 및 9가 대광부가 된다. 표시 영역(DS)의 가로방향 길이를 a라고 하고 세로 방향 길이를 b라고 할 때, 지점 1, 2 및 3 각각은 입광부와 인접한 표시 영역(DS)의 제1 에지로부터 a/6만큼 이격되고, 지점 7, 8 및 9 각각은 대광부에 해당하는 표시 영역(DS)의 제2 에지로부터 a/6만큼 이격된다. 또한, 제1 및 제2 에지들을 연결하는 제3 에지로부터 지점 1, 4 및 7 각각은 b/6만큼 이격되고, 상기 제3 에지와 마주하는 제4 에지로부터 지점 3, 6 및 9 각각은 b/6만큼 이격된다. 지점 1, 2 및 3 각각은 지점 4, 5 및 6 각각과 a/3만큼 이격되고, 지점 4, 5 및 6 각각은 지점 7, 8 및 9 각각과 a/3만큼 이격된다. 동시에, 지점 1, 4 및 7 각각은 지점 2, 5 및 8 각각과 b/3만큼 이격되고, 지점 2, 5 및 8 각각은 지점 3, 6 및 9와 b/3만큼 이격된다.In FIG. 12, the light source is represented by LS, and the display area in which the light guide plate, the diffusion sheet, and the first and second light collecting sheets are stacked is represented by DS, and points 1, 2, and adjacent to the light source LS of the display area DS are shown. 3 becomes a light-receiving portion, and points 7, 8 and 9 opposite to the light-receiving portion become large light portions. When the horizontal length of the display area DS is called a and the vertical length is b, each of the points 1, 2, and 3 is spaced apart by a / 6 from the first edge of the display area DS adjacent to the light incident portion. , Points 7, 8 and 9 are spaced apart a / 6 from the second edge of the display area DS corresponding to the light portion. Also, points 1, 4 and 7 are respectively spaced apart by b / 6 from the third edge connecting the first and second edges, and points 3, 6 and 9 are respectively b from the fourth edge facing the third edge. / 6 apart Points 1, 2 and 3 are each spaced a / 3 with each of points 4, 5 and 6, and points 4, 5 and 6 are each spaced a / 3 with each of points 7, 8 and 9, respectively. At the same time, points 1, 4 and 7 are each spaced b / 3 with points 2, 5 and 8 respectively and points 2, 5 and 8 are spaced apart by points 3, 6 and 9 and b / 3 respectively.
표 4 및 표 5에서, 초기/최종 색좌표는 CIE 1931 색좌표계를 기준으로 나타낸다.In Tables 4 and 5, the initial / final color coordinates are shown based on the CIE 1931 color coordinate system.
자외선 안정성 테스트 결과UV stability test results
표 4
백라이트 구분 초기 휘도(cd/m2) 초기 색좌표(CIE 1931) 최종 휘도(cd/m2) 최종 색좌표(CIE 1931)
실시예 7 6,207 (0.268, 0.273) 6,052 (0.267, 0.271)
비교예 8 3,502 (0.248, 0.199) 1,885 (0.225, 0.164)
Table 4
Backlight classification Initial luminance (cd / m 2 ) Initial color coordinates (CIE 1931) Final brightness (cd / m 2 ) Final color coordinates (CIE 1931)
Example 7 6,207 (0.268, 0.273) 6,052 (0.267, 0.271)
Comparative Example 8 3,502 (0.248, 0.199) 1,885 (0.225, 0.164)
표 4를 참조하면, 본 발명의 실시예 7에 따른 백라이트 유닛의 초기 휘도는 약 6,207 cd/m2으로, 비교예 8에 따른 백라이트 유닛의 초기 휘도가 약 3,502 cd/m2인 것과 비교할 때, 약 1.77배 정도 높은 값을 나타내는 것을 알 수 있다. 특히, 본 발명의 실시예 7에 따른 백라이트 유닛에 자외선의 가혹 조건이 가해진 후 측정된 최종 휘도는 초기 휘도에 비해 약 150 cd/m2정도 감소한 반면, 비교예 8에 따른 백라이트 유닛의 최종 휘도는 약 1,617 cd/m2 정도 감소하여 초기 휘도의 거의 절반 수준으로 저하된 것을 알 수 있다.Referring to Table 4, the initial luminance of the backlight unit according to the seventh embodiment of the present invention is about 6,207 cd / m 2 , compared with the initial luminance of the backlight unit according to Comparative Example 8 is about 3,502 cd / m 2 , It can be seen that the value is about 1.77 times higher. In particular, the final luminance measured after the harsh conditions of ultraviolet rays applied to the backlight unit according to the seventh embodiment of the present invention is reduced by about 150 cd / m 2 compared to the initial luminance, while the final luminance of the backlight unit according to Comparative Example 8 is It can be seen that the decrease of about 1,617 cd / m 2 is reduced to almost half of the initial luminance.
또한, 본 발명의 실시예 7에 따른 백라이트 유닛의 초기 색좌표와 최종 색좌표에서, x좌표의 차이(△x)가 약 0.001이고 y좌표의 차이(△y)가 약 0.002인데 반해, 비교예 8에 따른 백라이트 유닛의 초기 색좌표와 최종 색좌표의 차이(△x)가 0.023이고 y좌표의 차이(△y)가 약 0.035인 것을 알 수 있다.In addition, in the initial color coordinates and the final color coordinates of the backlight unit according to the seventh embodiment of the present invention, the difference (x) of the x coordinate is about 0.001 and the difference (y) of the y coordinate is about 0.002. It can be seen that the difference? X between the initial color coordinate and the final color coordinate of the backlight unit is 0.023 and the difference? Y of the y coordinate is about 0.035.
열/수분 안정성 테스트 결과Thermal / moisture stability test results
표 5
백라이트 구분 초기 휘도(cd/m2) 초기 색좌표(CIE 1931) 최종 휘도(cd/m2) 최종 색좌표(CIE 1931)
실시예 7 6,207 (0.268, 0.273) 6,025 (0.263, 0.267)
비교예 8 3,502 (0.248, 0.199) 1,543 (0.213, 0.155)
Table 5
Backlight classification Initial luminance (cd / m 2 ) Initial color coordinates (CIE 1931) Final brightness (cd / m 2 ) Final color coordinates (CIE 1931)
Example 7 6,207 (0.268, 0.273) 6,025 (0.263, 0.267)
Comparative Example 8 3,502 (0.248, 0.199) 1,543 (0.213, 0.155)
표 5를 참조하면, 본 발명의 실시예 8에 따른 백라이트 유닛에 고온고습의 가혹 조건이 가해진 후 측정된 최종 휘도는 초기 휘도에 비해 약 182 cd/m2정도 감소한 반면, 비교예 8에 따른 백라이트 유닛의 최종 휘도는 약 1,959 cd/m2 정도 감소하여 초기 휘도의 거의 절반 수준으로 저하된 것을 알 수 있다.Referring to Table 5, the final luminance measured after the harsh conditions of high temperature and high humidity was applied to the backlight unit according to Example 8 of the present invention decreased by about 182 cd / m 2 compared to the initial luminance, while the backlight according to Comparative Example 8 It can be seen that the final luminance of the unit is reduced by about 1,959 cd / m 2, which is reduced to almost half of the initial luminance.
또한, 본 발명의 실시예 8에 따른 백라이트 유닛의 초기 색좌표와 최종 색좌표에서, x좌표의 차이(△x)가 약 0.005이고 y좌표의 차이(△y)가 약 0.006인데 반해, 비교예 8에 따른 백라이트 유닛의 초기 색좌표와 최종 색좌표의 차이(△x)가 0.035이고 y좌표의 차이(△y)가 약 0.044인 것을 알 수 있다.Further, in the initial color coordinates and the final color coordinates of the backlight unit according to the eighth embodiment of the present invention, the difference (x) of the x coordinate is about 0.005 and the difference (y) of the y coordinate is about 0.006. It can be seen that the difference? X between the initial color coordinate and the final color coordinate of the backlight unit is 0.035 and the difference? Y of the y coordinate is about 0.044.
상기에서 살펴본 바에 따르면, 비교예 8에 따른 백라이트 유닛의 확산 시트에는 나노 발광체가 적용되고, 본 발명의 실시예 7에 따른 백라이트 유닛의 확산 시트에는 나노 복합체가 적용된 점을 고려할 때, 나노 복합체는 확산 시트를 제조하는 공정에서 거의 손상되지 않을 뿐만 아니라, 확산 시트 내에서도 나노 발광체에 비해 열, 수분 및 광에 대한 안정성이 매우 좋은 것을 알 수 있다.As described above, in consideration of the fact that the nano light emitter is applied to the diffusion sheet of the backlight unit according to Comparative Example 8 and the nanocomposite is applied to the diffusion sheet of the backlight unit according to Example 7 of the present invention, the nanocomposite is diffused Not only is it hardly damaged in the process of manufacturing the sheet, it can be seen that even in the diffusion sheet, the stability against heat, moisture and light is very good compared to the nano light-emitting body.
백라이트 유닛의 제조 (실시예 8 내지 10)Fabrication of Backlight Units (Examples 8 to 10)
[실시예 8]Example 8
(1) 도광판의 제조(1) Manufacture of light guide plate
메틸메타크릴레이트 중합체 100 중량부에 대해서, 벤조트리아졸계 자외선 흡수제(상품명: Tinuvin-329, BASF사, 독일) 0.5 중량부 및 힌더드 아민계 광안정제(상품명: Tinuvin-770, BASF사, 독일) 0.5 중량부를 혼합한 후, 압출기(내경: 27 mm, L/D: 40, Leistritz. Co.)를 이용하여 펠렛 형태의 수지를 제조하였고, 이를 시트 압출기를 이용하여 압출하여 약 0.4 mm 두께의 광학판을 제조하였다. 상기 광학판의 일 면에 청색 나노 복합체를 포함하는 코팅 조성물을 코팅하여 두께가 약 5 ㎛인 광학층을 형성하여 도광판을 제조하였다.0.5 parts by weight of a benzotriazole UV absorber (trade name: Tinuvin-329, BASF, Germany) and a hindered amine light stabilizer (trade name: Tinuvin-770, BASF, Germany) based on 100 parts by weight of the methyl methacrylate polymer. After mixing 0.5 parts by weight, a resin in pellet form was prepared by using an extruder (inner diameter: 27 mm, L / D: 40, Leistritz. Co.), which was extruded using a sheet extruder, and then optically about 0.4 mm thick. Plates were prepared. A light guide plate was prepared by coating a coating composition including a blue nanocomposite on one surface of the optical plate to form an optical layer having a thickness of about 5 μm.
상기 코팅 조성물은, 왁스 용액을 톨루엔 1ml에 약 20 mg의 청색 나노 발광체(상품명; Nanodot-HE-480, QD solution사, 한국)가 분산된 용액과 혼합한 후 상온으로 냉각시키고, BASF사(회사명, 독일)에서 구입한 우레탄아크릴레이트 및 BASF사에서 구입한 광개시제(diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, TPO)와 혼합하였다. 상기 광개시제는 우레탄아크릴레이트 100 중량부에 대해 약 0.8 중량부 혼합하였다. 이후 증발기(Evaporator)를 이용하여 톨루엔을 제거함으로써 제조하였다.The coating composition, the wax solution was mixed with a solution of about 20 mg of blue nano light emitter (trade name; Nanodot-HE-480, QD solution, Korea) dispersed in 1 ml of toluene and cooled to room temperature, BASF (Company) It was mixed with a urethane acrylate purchased from Myung, Germany) and a photoinitiator (diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, TPO) purchased from BASF. The photoinitiator was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate. It was then prepared by removing toluene using an evaporator.
(2) 확산 시트의 제조(2) Preparation of Diffusion Sheet
BASF사(회사명, 독일)에서 구입한 우레탄아크릴레이트 100 중량부에 대해, BASF사에서 구입한 광개시제(diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, TPO) 약 0.7 중량부와 혼합하여, 약 38㎛ 두께의 폴리에스테르 재질의 투명한 베이스 기재(상품명: XU42, 도레이사, 일본) 상에 코팅하고 경화시켜 평균 두께가 약 50 ㎛이고 그 표면에 도 4c에 도시된 형상을 갖는 광확산층을 형성하여 확산 시트를 준비하였다.With respect to 100 parts by weight of urethane acrylate purchased from BASF (company name, Germany), mixed with about 0.7 parts by weight of photoinitiator (diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, TPO) purchased from BASF, Coated and cured on a transparent base substrate (trade name: XU42, Toraya, Japan) of about 38 μm thick to form a light diffusion layer having an average thickness of about 50 μm and having the shape shown in FIG. 4C on its surface. To prepare a diffusion sheet.
(3) 제1 및 제2 집광 시트들의 제조(3) Preparation of the first and second light collecting sheets
비스(2,3-에피티오프로필)술파이드(bis(2,3-epithiopropyl)sulfide) 100 중량부에 대해서, 닛폰 공업사(회사명, 일본)에서 구입한 촉매(tetra-n-butylphosphoniumbromide) 0.07 중량부를 혼합하고 실온에서 교반하여 균일액을 제조하였다. 상기 균일액을 교반 및 탈포시킨 후 약 0.5 ㎛ 두께의 폴리테트라플루오로에틸렌 멤브레인(PTFE membrane)으로 여과시켜 베이스 재료를 제조하였으며, 이를 약 75 ㎛ 두께의 PET 필름 상에 도포한 후 성형롤로 가압하여 PET 필름 상에 높이가 약 25 ㎛인 집광 패턴을 제조하여, 제1 집광 시트를 제조하였다.0.07 weight of catalyst (tetra-n-butylphosphonium bromide) purchased from Nippon Kogyo Co., Ltd. (Japan) with respect to 100 weight part of bis (2,3- epithiopropyl) sulfides. The parts were mixed and stirred at room temperature to prepare a homogeneous liquid. After stirring and defoaming the homogeneous solution, a polytetrafluoroethylene membrane (PTFE membrane) having a thickness of about 0.5 μm was filtered to prepare a base material, which was applied onto a PET film having a thickness of about 75 μm and then pressurized with a forming roll. A light condensing pattern having a height of about 25 μm was prepared on the PET film, thereby preparing a first light condensing sheet.
상기 제1 집광 시트를 제조하는 방법과 실질적으로 동일한 공정을 통해 제2 집광 시트를 제조하였다.The second light collecting sheet was manufactured through a process substantially the same as the method of manufacturing the first light collecting sheet.
(4) 백라이트 유닛의 제조(4) manufacture of backlight unit
상기와 같이 준비된 도광판, 확산 시트, 제1 및 제2 집광 시트를, 약 444nm에서 발광 피크를 나타내는 청색광 발광칩 상에 니치아사(회사명, 일본)에서 구입한 YAG 형광체(YAG Phosphor)를 OE-6630 실리콘 레진(상품명, 다우코닝사, 미국)과 함께 도포한 후 경화하여 제조한 백색광 발광 모듈과 어셈블리하여 본 발명의 실시예 8에 따른 백라이트 유닛을 준비하였다. 이때, 상기 도광판의 광학층은 상기 광원에서 제공된 광의 출사면에 배치되었다.OE- YAG phosphor (YAG Phosphor) purchased from Nichia (Japan, Japan) was prepared on the blue light emitting chip having the light guide plate, the diffusion sheet, and the first and second light collecting sheets prepared as described above, having a light emission peak at about 444 nm. A backlight unit according to Example 8 of the present invention was prepared by assembling with 6630 silicon resin (trade name, Dow Corning, USA) and then assembly with a white light emitting module prepared by curing. In this case, the optical layer of the light guide plate is disposed on the emission surface of the light provided from the light source.
[실시예 9]Example 9
(1) 도광판의 제조(1) Manufacture of light guide plate
도광판으로서, 메틸메타크릴레이트 중합체 100 중량부에 대해서, 벤조트리아졸계 자외선 흡수제(상품명: Tinuvin-329, BASF사, 독일) 0.5 중량부 및 힌더드 아민계 광안정제(상품명: Tinuvin-770, BASF사, 독일) 0.5 중량부를 혼합한 후, 압출기(내경: 27 mm, L/D: 40, Leistritz. Co.)를 이용하여 펠렛 형태의 수지를 제조하였고, 이를 시트 압출기를 이용하여 압출하여 약 0.4 mm 두께의 광학판을 제조하였다.As a light guide plate, 0.5 weight part of benzotriazole type ultraviolet absorbers (brand name: Tinuvin-329, BASF Corporation, Germany) and a hindered amine light stabilizer (brand name: Tinuvin-770, BASF company) with respect to 100 weight part of methyl methacrylate polymers , Germany) After mixing 0.5 parts by weight, a resin in pellet form was prepared using an extruder (inner diameter: 27 mm, L / D: 40, Leistritz. Co.), which was extruded using a sheet extruder to about 0.4 mm An optical plate of thickness was prepared.
(2) 확산 시트의 제조(2) Preparation of Diffusion Sheet
톨루엔 1 ml에 왁스계 화합물로서 산화 고밀도 폴리에틸렌 왁스(Oxidized HDPE Wax)로서 산가(Acid value)가 약 30 mg KOH/g인 왁스(상품명: Licowax PED 136 왁스, Clariant사, 스위스)를 20 mg을 혼합한 후, 약 150℃로 온도를 상승시킴으로써 상기 왁스계 화합물을 용해시켜 왁스 용액을 제조하였다. 톨루엔 1ml에 약 20 mg의 CdSe계의 청색 나노 발광체(상품명: Nanodot-HE-480, QD solution사, 한국)가 분산된 용액을, 상기 왁스 용액에 첨가하여 혼합한 후, 상온으로 냉각시키고, BASF사(회사명, 독일)에서 구입한 우레탄아크릴레이트 및 BASF사에서 구입한 광개시제(diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, TPO)와 혼합하였다. 상기 광개시제는 우레탄아크릴레이트 100 중량부에 대해 약 0.8 중량부 혼합하였다. 이후 증발기(Evaporator)를 이용하여 톨루엔을 제거하여 우레탄아크릴레이트, 적색 나노 복합체 및 광개시제가 혼합된 코팅 조성물을 제조하였다. 상기 코팅 조성물을 약 38 ㎛ 두께의 폴리에스테르 재질의 투명한 베이스 기재(상품명: XU42, 도레이사, 일본) 상에 코팅하고 경화시켜 그 표면에 도 4c에 도시된 형상을 갖는 광확산층을 형성하였다. 상기 광확산층의 평균 두께가 약 50 ㎛이었다.20 mg of a wax (trade name: Licowax PED 136 wax, Clariant, Switzerland) having an acid value of about 30 mg KOH / g as an oxidized high density polyethylene wax (Oxidized HDPE Wax) as a wax-based compound was mixed with 1 ml of toluene. After that, the wax-based compound was dissolved by raising the temperature to about 150 ° C. to prepare a wax solution. A solution containing about 20 mg of CdSe-based blue nano light-emitting body (trade name: Nanodot-HE-480, QD solution, Korea) in 1 ml of toluene was added to the wax solution, mixed, and cooled to room temperature. The urethane acrylate purchased from the company (company name, Germany) and the photoinitiator (diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, TPO) purchased from BASF were mixed. The photoinitiator was mixed at about 0.8 parts by weight based on 100 parts by weight of urethane acrylate. Then toluene was removed using an evaporator to prepare a coating composition in which urethane acrylate, red nanocomposite and photoinitiator were mixed. The coating composition was coated on a transparent base substrate (trade name: XU42, Toray Industries, Japan) of about 38 μm thickness and cured to form a light diffusion layer having the shape shown in FIG. 4C on its surface. The average thickness of the light diffusion layer was about 50 μm.
(3) 제1 및 제2 집광 시트들의 제조(3) Preparation of the first and second light collecting sheets
실시예 8에서의 설명한 것과 실질적으로 동일한 제1 및 제2 집광 시트들을 준비하였다.First and second light collecting sheets were prepared which are substantially the same as described in Example 8.
(4) 백라이트 유닛의 제조(4) manufacture of backlight unit
상기와 같이 준비된 도광판, 확산 시트, 제1 및 제2 집광 시트를, 실시예 2에서 설명한 백색광 발광 모듈과 어셈블리하여 본 발명의 실시예 9에 따른 백라이트 유닛을 준비하였다.The light guide plate, the diffusion sheet, and the first and second light collecting sheets prepared as described above were assembled with the white light emitting module described in Example 2 to prepare a backlight unit according to Example 9 of the present invention.
[실시예 10]Example 10
(1) 도광판 및 확산 시트의 제조(1) Manufacture of light guide plate and diffusion sheet
실시예 9에서 설명한 것과 실질적으로 동일한 도광판을 준비하고, 실시예 8에서 설명한 것과 실질적으로 동일한 확산 시트를 준비하였다.A light guide plate substantially the same as that described in Example 9 was prepared, and a diffusion sheet substantially the same as that described in Example 8 was prepared.
(2) 제1 집광 시트의 제조(2) Production of First Condensing Sheet
비스(2,3-에피티오프로필)술파이드(bis(2,3-epithiopropyl)sulfide) 100 중량부에 대해서, 닛폰 공업사(회사명, 일본)에서 구입한 촉매(tetra-n-butylphosphoniumbromide) 0.07 중량부를 혼합하고 실온에서 교반하여 균일액을 제조하였다. 상기 균일액을 교반 및 탈포시킨 후 약 0.5 ㎛ 두께의 폴리테트라플루오로에틸렌 멤브레인(PTFE membrane)으로 여과시켜 베이스 재료를 제조하였으며, 이를 약 75 ㎛ 두께의 PET 필름 상에 도포한 후 성형롤로 가압하여 PET 필름 상에 높이가 약 25 ㎛인 집광 패턴을 제조하여, 제1 집광 시트를 제조하였다.0.07 weight of catalyst (tetra-n-butylphosphonium bromide) purchased from Nippon Kogyo Co., Ltd. (Japan) with respect to 100 weight part of bis (2,3- epithiopropyl) sulfides. The parts were mixed and stirred at room temperature to prepare a homogeneous liquid. After stirring and defoaming the homogeneous solution, a polytetrafluoroethylene membrane (PTFE membrane) having a thickness of about 0.5 μm was filtered to prepare a base material, which was applied onto a PET film having a thickness of about 75 μm and then pressurized with a forming roll. A light condensing pattern having a height of about 25 μm was prepared on the PET film, thereby preparing a first light condensing sheet.
(2) 제2 집광 시트의 제조(2) Production of Second Condensing Sheet
상기 제1 집광 시트를 제조하는 방법과 실질적으로 동일한 공정을 통해 집광 패턴을 형성한 후, 상기 집광 패턴이 형성된 PET 필름의 반대면에 실시예 9에서 설명한 청색 나노 복합체, 폴리우레탄아크릴레이트 및 광개시제(diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, TPO)를 포함하는 코팅 조성물을 코팅하고 경화시켜 그 표면에 도 4d에 도시된 형상을 갖고 평균 두께가 약 5㎛인 광학층을 형성하여 제2 집광 시트를 제조하였다.After forming the light collecting pattern through a process substantially the same as the method of manufacturing the first light collecting sheet, the blue nanocomposite, the polyurethane acrylate and the photoinitiator described in Example 9 on the opposite side of the PET film having the light collecting pattern ( coating and curing a coating composition comprising diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) to form an optical layer having the shape shown in FIG. A light collecting sheet was prepared.
(3) 백라이트 유닛의 제조(3) Manufacture of backlight unit
상기와 같이 준비된 도광판, 확산 시트, 제1 및 제2 집광 시트를, 백색광 발광 모듈과 어셈블리하여 본 발명의 실시예 10에 따른 백라이트 유닛을 준비하였다.The light guide plate, the diffusion sheet, and the first and second light collecting sheets prepared as described above were assembled with the white light emitting module to prepare a backlight unit according to the tenth embodiment of the present invention.
[실험 5]- 색좌표 균일도 평가[Experiment 5]-Evaluation of color coordinate uniformity
이상의 비교예 1에 따른 백라이트 유닛과 본 발명의 실시예 8 내지 10에 따른 백라이트 유닛 각각에 대해서, 도 12에 도시된 바와 같이 백라이트 유닛의 9개의 지점들 각각에서의 색좌표를 측정하였다. 그 결과를 표 6에 나타낸다.For each of the backlight unit according to Comparative Example 1 and the backlight unit according to Examples 8 to 10 of the present invention, color coordinates at each of nine points of the backlight unit were measured as shown in FIG. 12. The results are shown in Table 6.
표 6에서, △x는 지점 1 내지 9 중에서의 x좌표의 최대값과 최소값의 차이이고, △y는 지점 1 내지 9 중에서의 y좌표의 최대값과 최소값의 차이를 나타낸다.In Table 6, Δx is the difference between the maximum value and the minimum value of the x coordinate among the points 1 to 9, and Δy represents the difference between the maximum value and the minimum value of the y coordinate among the points 1 to 9.
표 6
지점 비교예 1 실시예 8 실시예 9 실시예 10
색좌표 (x, y)
1 (0.297, 0.283) (0.295, 0.282) (0.295, 0.281) (0.294, 0.281)
2 (0.296, 0.281) (0.297, 0.283) (0.295, 0.281) (0.293, 0.278)
3 (0.298, 0.283) (0.299, 0.286) (0.299, 0.285) (0.296, 0.281)
4 (0.302, 0.290) (0.294, 0.283) (0.292, 0.282) (0.289, 0.278)
5 (0.301, 0.288) (0.296, 0.284) (0.294, 0.282) (0.291, 0.279)
6 (0.303, 0.289) (0.299, 0.287) (0.297, 0.285) (0.293, 0.280)
7 (0.311, 0.303) (0.295, 0.287) (0.293, 0.286) (0.289, 0.281)
8 (0.312, 0.303) (0.296, 0.287) (0.293, 0.284) (0.291, 0.281)
9 (0.314, 0.304) (0.298, 0.288) (0.295, 0.285) (0.292, 0.283)
△x 0.018 0.004 0.007 0.007
△y 0.023 0.006 0.004 0.005
Table 6
Point Comparative Example 1 Example 8 Example 9 Example 10
Color coordinates (x, y)
One (0.297, 0.283) (0.295, 0.282) (0.295, 0.281) (0.294, 0.281)
2 (0.296, 0.281) (0.297, 0.283) (0.295, 0.281) (0.293, 0.278)
3 (0.298, 0.283) (0.299, 0.286) (0.299, 0.285) (0.296, 0.281)
4 (0.302, 0.290) (0.294, 0.283) (0.292, 0.282) (0.289, 0.278)
5 (0.301, 0.288) (0.296, 0.284) (0.294, 0.282) (0.291, 0.279)
6 (0.303, 0.289) (0.299, 0.287) (0.297, 0.285) (0.293, 0.280)
7 (0.311, 0.303) (0.295, 0.287) (0.293, 0.286) (0.289, 0.281)
8 (0.312, 0.303) (0.296, 0.287) (0.293, 0.284) (0.291, 0.281)
9 (0.314, 0.304) (0.298, 0.288) (0.295, 0.285) (0.292, 0.283)
Δx 0.018 0.004 0.007 0.007
△ y 0.023 0.006 0.004 0.005
표 6을 참조하면, 비교예 1에 따른 백라이트 유닛에서는 광원과 가까운 입광부, 즉 지점 1 내지 3의 색좌표들이, 상기 입광부와 마주하는 대광부인 지점 5 내지 9의 색좌표들보다 x좌표 및 y좌표가 모두 작은 값을 갖는 것을 알 수 있다. 반면, 본 발명의 실시예 7 내지 9에 따른 백라이트 유닛에서는, 지점 1 내지 3의 색좌표들이 지점 7 내지 9의 색좌표들과 실질적으로 동일한 수치인 것을 알 수 있다. 즉, 본 발명의 실시예 7 내지 9에 따른 백라이트 유닛에서는, 입광부와 대광부에서의 색좌표 차이가 거의 없음을 알 수 있다.Referring to Table 6, in the backlight unit according to Comparative Example 1, the x- and y-coordinates are closer to the light source, that is, the color coordinates of points 1 to 3 than the color coordinates of points 5 to 9, which are light facing parts facing the light incident part. It can be seen that both have small values. On the other hand, in the backlight units according to embodiments 7 to 9 of the present invention, it can be seen that the color coordinates of the points 1 to 3 are substantially the same as the color coordinates of the points 7 to 9. That is, in the backlight units according to the seventh to seventh exemplary embodiments of the present invention, it can be seen that there is almost no difference in color coordinates between the light incident portion and the light facing portion.
△x와 △y를 참조하면, 실시예 7 내지 9에 따른 백라이트 유닛에서의 값이 비교예 1에서의 값보다 현저히 낮은 수치임을 알 수 있다. 즉, 비교예 1에 따른 백라이트 유닛에서는 입광부와 대광부의 색좌표의 차이로 인해 관찰자는 대광부를 입광부에 비해 상대적으로 황색으로 시인할 수 있다. 그러나, 실시예 7 내지 9에 따른 백라이트 유닛에서와 같이 청색 나노 복합체를 포함하는 광학 시트에 의해서 지점 1 내지 9의 색좌표 차이가 현저히 감소하는 것을 알 수 있다. 따라서, 확산 시트, 도광판 및 집광 시트 중 적어도 어느 하나에 청색 나노 복합체를 적용함으로써 백라이트 유닛의 색좌표를 전체적으로 균일하게 조절할 수 있다.Referring to Δx and Δy, it can be seen that the values in the backlight units according to Examples 7 to 9 are significantly lower than those in Comparative Example 1. That is, in the backlight unit according to Comparative Example 1, the observer may recognize the light portion as yellow relative to the light incident portion due to the difference in the color coordinates of the light incident portion and the light facing portion. However, it can be seen that the color coordinate difference of the points 1 to 9 is significantly reduced by the optical sheet including the blue nanocomposite as in the backlight units according to Examples 7 to 9. Accordingly, by applying the blue nanocomposite to at least one of the diffusion sheet, the light guide plate, and the light collecting sheet, the color coordinates of the backlight unit may be uniformly adjusted as a whole.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.While the foregoing has been described with reference to preferred embodiments of the present invention, those skilled in the art will be able to variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. It will be appreciated.

Claims (48)

  1. 왁스 입자;Wax particles;
    상기 왁스 입자 내부에 배치된 적어도 1개의 나노 발광체; 및At least one nano light-emitting body disposed inside the wax particle; And
    나노 발광체를 피복하고, 산화 실리콘으로 형성된 내부 보호막을 포함하는 나노 복합체.A nanocomposite covering the nano light-emitting body and including an inner protective film formed of silicon oxide.
  2. 제1항에 있어서, 상기 내부 보호막은 1개의 나노 발광체를 피복하는 것을 특징으로 하는 나노 복합체.The nanocomposite of claim 1, wherein the inner protective layer covers one nano light-emitting body.
  3. 제2항에 있어서, 상기 왁스 입자 내에 배치된 나노 발광체들은 서로 동일한 파장대에서 발광피크를 갖는 것을 특징으로 하는 나노 복합체.The nanocomposite of claim 2, wherein the nano light emitters disposed in the wax particles have light emission peaks in the same wavelength band.
  4. 제2항에 있어서, 상기 왁스 입자 내에 배치된 나노 발광체들 중 적어도 2개는, 서로 다른 파장대에서 발광피크를 갖는 것을 특징으로 하는 나노 복합체.The nanocomposite of claim 2, wherein at least two of the nano light emitters disposed in the wax particles have light emission peaks in different wavelength bands.
  5. 제1항에 있어서, 상기 내부 보호막은 2개 이상의 나노 발광체를 피복하는 것을 특징으로 하는 나노 복합체.The nanocomposite of claim 1, wherein the inner protective layer covers at least two nano light emitters.
  6. 제5항에 있어서, 상기 나노 발광체들 각각은,The method of claim 5, wherein each of the nano light emitters,
    서로 동일한 파장대에서 발광피크를 갖는 것을 특징으로 하는 나노 복합체.Nanocomposites having light emission peaks in the same wavelength band.
  7. 제5항에 있어서, 상기 나노 발광체들 중 적어도 2개는The method of claim 5, wherein at least two of the nano light emitters are
    서로 다른 파장대에서 발광피크를 갖는 것을 특징으로 하는 나노 복합체.Nanocomposite having a light emission peak in different wavelength bands.
  8. 제1항에 있어서, 상기 왁스 입자의 표면을 피복하고, 산화 실리콘으로 형성된 외부 보호막을 더 포함하는 것을 특징으로 하는 나노 복합체.The nanocomposite of claim 1, further comprising an outer protective film covering the surface of the wax particles and formed of silicon oxide.
  9. 제8항에 있어서, 상기 외부 보호막의 표면에 형성되고, 왁스계 화합물을 포함하는 왁스층을 더 포함하는 것을 특징으로 하는 나노 복합체.The nanocomposite of claim 8, further comprising a wax layer formed on a surface of the outer protective film and including a wax compound.
  10. 왁스 입자;Wax particles;
    상기 왁스 입자 내부에 배치된 적어도 1개의 나노 발광체; 및At least one nano light-emitting body disposed inside the wax particle; And
    상기 왁스 입자의 표면을 피복하고, 산화 실리콘으로 형성된 외부 보호막을 포함하는 나노 복합체.A nanocomposite covering the surface of the wax particles and including an outer protective film formed of silicon oxide.
  11. 제10항에 있어서, 상기 왁스 입자 내부에 배치된 나노 발광체들 중 적어도 2개는 서로 다른 파장대에서 발광피크를 갖는 것을 특징으로 하는 나노 복합체.The nanocomposite of claim 10, wherein at least two of the nano light emitters disposed in the wax particle have light emission peaks in different wavelength bands.
  12. 제10항에 있어서, 상기 외부 보호막의 표면에 형성되고, 왁스계 화합물을 포함하는 왁스층을 더 포함하는 것을 특징으로 하는 나노 복합체.The nanocomposite of claim 10, further comprising a wax layer formed on a surface of the outer protective film and including a wax compound.
  13. 베이스 기재; 및Base substrate; And
    상기 베이스 기재의 일 면 상에 배치되고, 적어도 1개의 제1 나노 복합체가 분산된 제1 광학층을 포함하며,A first optical layer disposed on one surface of the base substrate and having at least one first nanocomposite dispersed therein;
    상기 제1 나노 복합체는,The first nanocomposite,
    제1 왁스 입자; 및First wax particles; And
    상기 제1 왁스 입자 내부에 배치된 적어도 1개의 제1 나노 발광체를 포함하는 광학 부재.An optical member comprising at least one first nano light-emitting body disposed inside the first wax particles.
  14. 제13항에 있어서, 상기 일 면에 대향하는 상기 베이스 기재의 타면 상에 배치되고, 적어도 1개의 제2 나노 복합체가 분산된 제2 광학층을 더 포함하며,The method of claim 13, further comprising: a second optical layer disposed on the other surface of the base substrate opposite to the one surface, wherein at least one second nanocomposite is dispersed;
    상기 제2 나노 복합체는,The second nanocomposite,
    제2 왁스 입자; 및Second wax particles; And
    상기 제2 왁스 입자 내부에 배치된 적어도 1개의 제2 나노 발광체를 포함하는 것을 특징으로 하는 광학 부재.And at least one second nano light-emitting body disposed inside the second wax particle.
  15. 제13항 또는 제14항에 있어서, 상기 제1 광학층 상에 배치되고, 적어도 1개의 제3 나노 복합체가 분산된 제3 광학층을 더 포함하고,15. The method of claim 13 or 14, further comprising a third optical layer disposed on the first optical layer, at least one third nanocomposite is dispersed,
    상기 제3 나노 복합체는,The third nanocomposite,
    제3 왁스 입자; 및Third wax particles; And
    상기 제3 왁스 입자 내부에 배치된 적어도 1개의 제3 나노 발광체를 포함하는 것을 특징으로 하는 광학 부재.And at least one third nano light-emitting body disposed within the third wax particles.
  16. 제13항 또는 제14항에 있어서, 상기 제1 및 제2 나노 발광체들 중 적어도 하나는 산화 실리콘으로 형성된 내부 보호막으로 피복된 것을 특징으로 하는 광학 부재.15. The optical member according to claim 13 or 14, wherein at least one of the first and second nano light emitters is coated with an inner protective film formed of silicon oxide.
  17. 제13항 또는 제14항에 있어서, 상기 제1 및 제2 왁스 입자들 중 적어도 하나는 산화 실리콘으로 형성된 외부 보호막으로 그 표면이 피복된 것을 특징으로 하는 광학 부재.The optical member according to claim 13 or 14, wherein at least one of the first and second wax particles is coated with an outer protective film formed of silicon oxide.
  18. 제15항에 있어서, 상기 제1 내지 제3 왁스 입자들 중 적어도 하나는 산화 실리콘으로 형성된 외부 보호막으로 그 표면이 피복된 것을 특징으로 하는 광학 부재.The optical member according to claim 15, wherein at least one of the first to third wax particles is coated with an outer protective film formed of silicon oxide.
  19. 제17항에 있어서, 상기 제1 및 제2 나노 복합체들 중 적어도 하나는,The method of claim 17, wherein at least one of the first and second nanocomposites is
    상기 외부 보호막을 피복하고 왁스계 화합물로 형성된 왁스층을 더 포함하는 것을 특징으로 하는 광학 부재.And an wax layer covering the outer protective layer and formed of a wax-based compound.
  20. 제18항에 있어서, 상기 제1 내지 제3 나노 복합체들 중 적어도 하나는,The method of claim 18, wherein at least one of the first to third nanocomposites,
    상기 외부 보호막을 피복하고 왁스계 화합물로 형성된 왁스층을 더 포함하는 것을 특징으로 하는 광학 부재.And an wax layer covering the outer protective layer and formed of a wax-based compound.
  21. 제13항 또는 제14항에 있어서, 상기 제1 및 제 2 광학층들 중 적어도 하나는 광학 패턴을 포함하는 것을 특징으로 하는 광학 부재.The optical member of claim 13 or 14, wherein at least one of the first and second optical layers comprises an optical pattern.
  22. 제15항에 있어서, 상기 제1 내지 제3 광학층들 중 적어도 하나는 광학 패턴을 포함하는 것을 특징으로 하는 광학 부재.The optical member of claim 15, wherein at least one of the first to third optical layers comprises an optical pattern.
  23. 제13항에 있어서, 상기 제1 광학층이 복수개의 제1 나노 복합체들을 포함하고, 상기 제1 나노 복합체들 각각에 포함된 제1 왁스 입자 내부에는The method of claim 13, wherein the first optical layer comprises a plurality of first nanocomposites, each of the first wax particles included in each of the first nanocomposites.
    적색 나노 발광체;Red nano light emitter;
    녹색 나노 발광체; 및Green nano light emitters; And
    청색 나노 발광체 중 선택된 적어도 1종이 배치된 것을 특징으로 하는 광학 부재.At least one selected from among blue nano light-emitting bodies is disposed.
  24. 제13항에 있어서, 상기 제1 광학층 상에 형성된 광확산층을 더 포함하는 것을 특징으로 하는 광학부재.The optical member according to claim 13, further comprising a light diffusion layer formed on the first optical layer.
  25. 제14항에 있어서, 상기 제2 광학층 상에 형성된 광확산층을 더 포함하는 것을 특징으로 하는 광학부재.The optical member according to claim 14, further comprising a light diffusion layer formed on the second optical layer.
  26. 베이스 기재; 및Base substrate; And
    상기 베이스 기재의 일 면상에 형성되고, 적어도 1개의 제1 나노 복합체를 포함하며, 표면에 광확산 패턴이 형성된 제1 광학층을 포함하고,A first optical layer formed on one surface of the base substrate, including at least one first nanocomposite, and having a light diffusion pattern formed on a surface thereof;
    상기 제1 나노 복합체는,The first nanocomposite,
    제1 왁스 입자; 및First wax particles; And
    상기 제1 왁스 입자 내부에 배치된 적어도 1개의 제1 나노 발광체를 포함하는 확산 시트.A diffusion sheet comprising at least one first nano light-emitting body disposed inside the first wax particles.
  27. 제26항에 있어서, 상기 제1 왁스 입자에 포함된 복수의 제1 나노 발광체들은, 서로 동일한 파장대에서 발광 피크를 갖는 것을 특징으로 하는 확산 시트.27. The diffusion sheet of claim 26, wherein the plurality of first nano light-emitting bodies included in the first wax particles have emission peaks in the same wavelength band.
  28. 제26항에 있어서, 상기 제1 왁스 입자에 포함된 적어도 2개의 제1 나노 발광체는, 서로 다른 파장대에서 발광 피크를 갖는 것을 특징으로 하는 확산 시트.27. The diffusion sheet of claim 26, wherein at least two first nano light-emitting bodies included in the first wax particles have emission peaks in different wavelength bands.
  29. 제26항에 있어서, 상기 일 면과 대향하는 타면 상에 배치되고 적어도 1개의 제2 나노 복합체를 포함하는 제2 광학층을 더 포함하고,27. The method of claim 26, further comprising a second optical layer disposed on the other surface opposite the one surface and including at least one second nanocomposite,
    상기 제2 나노 복합체는,The second nanocomposite,
    제2 왁스 입자; 및Second wax particles; And
    상기 제2 왁스 입자 내부에 배치된 적어도 1개의 제2 나노 발광체를 포함하는 것을 특징으로 하는 확산 시트.And at least one second nano light-emitting body disposed inside the second wax particle.
  30. 제29항에 있어서, 상기 제2 왁스 입자에 포함된 복수의 제2 나노 발광체들은, 서로 동일한 파장대에서 발광 피크를 갖는 것을 특징으로 하는 확산 시트.30. The diffusion sheet of claim 29, wherein the plurality of second nano light emitters included in the second wax particles have emission peaks in the same wavelength band.
  31. 제29항에 있어서, 상기 제2 왁스 입자에 포함된 적어도 2개의 제2 나노 발광체들은 서로 다른 파장대에서 발광 피크를 갖는 것을 특징으로 하는 확산 시트.30. The diffusion sheet of claim 29, wherein at least two second nano light emitters included in the second wax particles have emission peaks in different wavelength bands.
  32. 제29항에 있어서, 상기 제2 광학층의 표면에는 광확산 패턴이 형성된 것을 특징으로 하는 확산 시트.30. The diffusion sheet of claim 29, wherein a light diffusion pattern is formed on a surface of the second optical layer.
  33. 제29항에 있어서, 상기 제1 나노 발광체에서 생성된 광의 피크 파장은 상기 제2 나노 발광체에서 생성된 광의 피크 파장보다 긴 것을 특징으로 하는 확산 시트.30. The diffusion sheet of claim 29, wherein the peak wavelength of light generated by the first nano light emitter is longer than the peak wavelength of light generated by the second nano light emitter.
  34. 제33항에 있어서, 상기 제1 나노 발광체는 600 nm 내지 660 nm에서 발광 피크를 갖고, 상기 제2 나노 발광체는 520 nm 내지 560 nm에서 발광 피크를 갖는 것을 특징으로 하는 확산 시트.The diffusion sheet of claim 33, wherein the first nano light emitter has an emission peak at 600 nm to 660 nm, and the second nano light emitter has an emission peak at 520 nm to 560 nm.
  35. 제29항에 있어서, 상기 베이스 기재와 상기 제2 광학층 사이에 배치되고 적어도 1개의 제3 나노 복합체를 포함하는 중간층을 더 포함하며,30. The method of claim 29, further comprising an intermediate layer disposed between the base substrate and the second optical layer and comprising at least one third nanocomposite,
    상기 제3 나노 복합체는The third nanocomposite is
    제3 왁스 입자; 및Third wax particles; And
    상기 제3 왁스 입자 내부에 배치된 적어도 1개의 제3 나노 발광체를 포함하는 것을 특징으로 하는 확산 시트.And at least one third nano light-emitting body disposed inside the third wax particle.
  36. 제26항에 있어서, 상기 베이스 기재와 상기 제1 광학층 사이에 배치되고 적어도 1개의 제3 나노 복합체를 포함하는 중간층을 더 포함하며,27. The method of claim 26, further comprising an intermediate layer disposed between the base substrate and the first optical layer and comprising at least one third nanocomposite,
    상기 제3 나노 복합체는,The third nanocomposite,
    제3 왁스 입자; 및Third wax particles; And
    상기 제3 왁스 입자 내부에 배치된 적어도 1개의 제3 나노 발광체를 포함하는 것을 특징으로 하는 확산 시트.And at least one third nano light-emitting body disposed inside the third wax particle.
  37. 제26항에 있어서, 상기 일 면과 대향하는 상기 베이스 기재의 타면 상에 배치되고 집광 패턴이 표면에 형성된 제2 광학층을 더 포함하는 것을 특징으로 하는 확산 시트.27. The diffusion sheet of claim 26, further comprising a second optical layer disposed on the other surface of the base substrate opposite the one surface and having a light collecting pattern formed on a surface thereof.
  38. 베이스 기재;Base substrate;
    상기 베이스 기재의 일 면 상에 형성된 광확산층; 및A light diffusion layer formed on one surface of the base substrate; And
    상기 일 면과 대향하는 상기 베이스 기재의 타면 상에 형성되고 적어도 1개의 제1 나노 복합체를 포함하는 제1 광학층을 포함하며,A first optical layer formed on the other surface of the base substrate facing the one surface and including at least one first nanocomposite,
    상기 제1 나노 복합체는,The first nanocomposite,
    제1 왁스 입자; 및First wax particles; And
    상기 제1 왁스 입자 내부에 배치된 적어도 1개의 제1 나노 발광체를 포함하는 확산 시트.A diffusion sheet comprising at least one first nano light-emitting body disposed inside the first wax particles.
  39. 제38항에 있어서, 상기 제1 왁스 입자에 포함된 복수의 제1 나노 발광체들은, 서로 동일한 파장대에서 발광 피크를 갖는 것을 특징으로 하는 확산 시트.The diffusion sheet of claim 38, wherein the plurality of first nano light-emitting bodies included in the first wax particles have emission peaks in the same wavelength band.
  40. 제38항 또는 제39항에 있어서, 상기 제1 광학층 상에 배치되고 적어도 1개의 제2 나노 복합체를 포함하는 제2 광학층을 더 포함하며,40. The method of claim 38 or 39, further comprising a second optical layer disposed on the first optical layer and comprising at least one second nanocomposite,
    상기 제2 나노 복합체는,The second nanocomposite,
    제2 왁스 입자; 및Second wax particles; And
    상기 제2 왁스 입자 내부에 배치된 적어도 1개의 제2 나노 발광체를 포함하는 확산 시트.A diffusion sheet comprising at least one second nano light-emitting body disposed inside the second wax particles.
  41. 제40항에 있어서, 상기 제1 나노 발광체와 상기 제2 나노 발광체는 서로 다른 파장대에서 발광 피크를 갖는 것을 특징으로 하는 확산 시트.41. The diffusion sheet of claim 40, wherein the first nano light emitter and the second nano light emitter have emission peaks in different wavelength bands.
  42. 제38항에 있어서, 상기 제1 광학층 상에 형성된 광확산층을 더 포함하는 것을 특징으로 하는 확산 시트.39. The diffusion sheet of claim 38, further comprising a light diffusion layer formed on the first optical layer.
  43. 베이스 기재; 및Base substrate; And
    상기 베이스 기재 상에 배치되고, 왁스 입자 내부에 배치된 적어도 1개의 나노 발광체를 포함하는 나노 복합체를 포함하는 집광 패턴을 포함하는 집광 시트.Condensing sheet including a light collecting pattern disposed on the base substrate, including a nanocomposite including at least one nano light emitter disposed inside the wax particles.
  44. 베이스 기재;Base substrate;
    상기 베이스 기재의 일 면 상에 배치된 집광 패턴; 및A light collecting pattern disposed on one surface of the base substrate; And
    상기 일 면과 대향하는 상기 베이스 기재의 타면 상에 배치되고, 나노 복합체를 포함하는 광학층을 포함하고,An optical layer including a nanocomposite disposed on the other surface of the base substrate facing the one surface;
    상기 나노 복합체는 왁스 입자; 및The nanocomposite is a wax particle; And
    상기 왁스 입자 내부에 배치된 적어도 1개의 나노 발광체를 포함하는 집광 시트.Condensing sheet including at least one nano light-emitting body disposed inside the wax particles.
  45. 제44항에 있어서, 상기 광학층 표면에는 광확산 패턴이 형성된 것을 특징으로 하는 집광 시트.The light collecting sheet according to claim 44, wherein a light diffusion pattern is formed on the surface of the optical layer.
  46. 광원;Light source;
    상기 광원으로부터 광을 제공받는 확산 시트; 및A diffusion sheet to receive light from the light source; And
    상기 확산 시트 상에 배치된 집광 시트를 포함하고,A light collecting sheet disposed on the diffusion sheet,
    상기 확산 시트 및 상기 집광 시트 중 적어도 어느 하나는,At least one of the diffusion sheet and the light collecting sheet,
    왁스 입자; 및Wax particles; And
    상기 왁스 입자 내부에 배치된 적어도 1개의 나노 발광체를 포함하는 나노 복합체를 1개 이상 포함하는 것을 특징으로 하는 백라이트 유닛.And at least one nanocomposite including at least one nano light emitter disposed inside the wax particle.
  47. 제46항에 있어서, 상기 광원은 청색광 발광 모듈을 포함하는 것을 특징으로 하는 백라이트 유닛.47. The backlight unit of claim 46, wherein the light source comprises a blue light emitting module.
  48. 제46항에 있어서, 복수의 나노 복합체들 각각의 왁스 입자는47. The method of claim 46, wherein the wax particles of each of the plurality of nanocomposites are
    적색 나노 발광체; 및Red nano light emitter; And
    녹색 나노 발광체 중 선택된 적어도 1 종을 포함하는 것을 특징으로 하는 백라이트 유닛.A backlight unit comprising at least one selected from the green nano light emitting body.
PCT/KR2013/010092 2012-11-09 2013-11-07 Nanocomposite, and optical member and backlight unit comprising same WO2014073893A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/442,077 US20150285444A1 (en) 2012-11-09 2013-11-07 Nanocomposite, and optical member and backlight unit having the optical member

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0126925 2012-11-09
KR20120126925 2012-11-09
KR10-2013-0032896 2013-03-27
KR1020130032896A KR101426448B1 (en) 2012-11-09 2013-03-27 Nano composite, optical member having the nano composite and backlight unit having the optical member

Publications (1)

Publication Number Publication Date
WO2014073893A1 true WO2014073893A1 (en) 2014-05-15

Family

ID=50684919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010092 WO2014073893A1 (en) 2012-11-09 2013-11-07 Nanocomposite, and optical member and backlight unit comprising same

Country Status (1)

Country Link
WO (1) WO2014073893A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10409111B2 (en) * 2016-05-04 2019-09-10 Shenzhen China Star Optoelectronics Technology Co., Ltd Liquid crystal display device, liquid crystal display module and liquid crystal cell thereof
CN115382396A (en) * 2022-08-15 2022-11-25 无锡零界净化设备股份有限公司 Preparation method of casting solution of hydrophilic PVDF (polyvinylidene fluoride) microporous filter membrane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090021912A (en) * 2007-08-29 2009-03-04 엘지디스플레이 주식회사 Backlight unit and liquid crystal display device having the same
KR100982992B1 (en) * 2008-09-08 2010-09-17 삼성엘이디 주식회사 Light emitting device comprising quantum dot wavelength conversion sheet, and quantum dot wavelength conversion sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090021912A (en) * 2007-08-29 2009-03-04 엘지디스플레이 주식회사 Backlight unit and liquid crystal display device having the same
KR100982992B1 (en) * 2008-09-08 2010-09-17 삼성엘이디 주식회사 Light emitting device comprising quantum dot wavelength conversion sheet, and quantum dot wavelength conversion sheet

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JANG, J. ET AL., CHEMICAL COMMUNICATIONS, 2007, pages 2689 - 2691 *
ZHU, L. ET AL., SMALL, vol. 8, no. 12, 2012, pages 1857 - 1862 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10409111B2 (en) * 2016-05-04 2019-09-10 Shenzhen China Star Optoelectronics Technology Co., Ltd Liquid crystal display device, liquid crystal display module and liquid crystal cell thereof
CN115382396A (en) * 2022-08-15 2022-11-25 无锡零界净化设备股份有限公司 Preparation method of casting solution of hydrophilic PVDF (polyvinylidene fluoride) microporous filter membrane
CN115382396B (en) * 2022-08-15 2024-02-23 无锡零界净化设备股份有限公司 Preparation method of membrane casting solution of hydrophilic PVDF microporous filter membrane

Similar Documents

Publication Publication Date Title
WO2015060615A1 (en) Light-emitting complex, hardened material comprising same, optical sheet, backlight unit, and display device
WO2019098601A1 (en) Method for manufacturing quantum dot film, quantum dot film manufactured thereby and wavelength conversion sheet and display comprising same
WO2010047553A2 (en) Semiconductor light emitting device
WO2017160119A1 (en) Semiconductor device and display device including same
WO2020004927A1 (en) Method for preparing quantum dot film, quantum dot film prepared thereby, and wavelength conversion sheet and display comprising same
WO2013069924A1 (en) Light emitting device
WO2019054547A1 (en) Light emitting device package and lighting apparatus comprising same
WO2018080008A1 (en) Spontaneous-emission type photosensitive resin composition, color filter manufactured using same, and image display apparatus
WO2015064864A1 (en) Compensation film and organic dot for compensation film
WO2016129873A2 (en) Light-emitting element and light-emitting diode
WO2020159068A1 (en) Light-emitting diode
WO2021034104A1 (en) Quantum dot film comprising quantum dot composite, and wavelength conversion sheet for display
WO2013077706A1 (en) Curable composition
WO2017073923A1 (en) Compound and color conversion film comprising same
WO2014073894A1 (en) Optical sheet and backlight unit comprising same
WO2013077708A1 (en) Curable composition
WO2014073893A1 (en) Nanocomposite, and optical member and backlight unit comprising same
WO2021085895A1 (en) Radiant cooling element and method for manufacturing same
WO2019190026A1 (en) Quantum dot plate assembly, light-emitting device package comprising same, and led module
WO2019059690A2 (en) Light-emitting device package
WO2022108351A1 (en) Semiconductor nanoparticle-ligand composite, photosensitive resin composition, optical film, electrical light-emitting diode, and electronic device
WO2018151553A1 (en) Semiconductor device
WO2018110808A1 (en) Yellow curable resin composition, color filter manufactured using same and image display device
WO2019054802A1 (en) Light emitting device package
WO2022124768A1 (en) Optical sheet having wavelength selectivity and reliability and display device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14442077

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13853393

Country of ref document: EP

Kind code of ref document: A1