WO2014073162A1 - Charging method, feedstock, and single-crystal manufacturing device - Google Patents

Charging method, feedstock, and single-crystal manufacturing device Download PDF

Info

Publication number
WO2014073162A1
WO2014073162A1 PCT/JP2013/006033 JP2013006033W WO2014073162A1 WO 2014073162 A1 WO2014073162 A1 WO 2014073162A1 JP 2013006033 W JP2013006033 W JP 2013006033W WO 2014073162 A1 WO2014073162 A1 WO 2014073162A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
raw material
shaft
charging
single crystal
Prior art date
Application number
PCT/JP2013/006033
Other languages
French (fr)
Japanese (ja)
Inventor
道明 小田
清隆 高野
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2014073162A1 publication Critical patent/WO2014073162A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt

Definitions

  • the present invention relates to a method of charging a crucible with a raw material when manufacturing a sapphire single crystal.
  • Patent Document 3 discloses that when the raw material for crystal growth is powder, the raw material powder is shaped into a rod shape by press working, heated and melted, and filled into a crucible.
  • a press-processed raw material has been proposed as a measure that facilitates thermal decomposition of the powdered raw material at a high temperature.
  • High-purity alumina which is a sapphire single crystal raw material, does not thermally decompose at a high temperature. It expands rapidly and a similar thermal decomposition occurs. Even if a degassing step was performed in advance by vacuum replacement, it was not easy to completely remove moisture and gas.
  • Patent Document 3 when a bar-shaped press material is formed of a high hardness alumina material, a member corresponding to a crystal diameter control frame made of a refractory metal is provided when melted from below. It enters the melt and hinders crystal growth.
  • the present invention has been made in view of the above problems, and in the production of a sapphire single crystal, it is not necessary to turn off the heater power supply when charging the raw material to the crucible, and the raw material is efficiently charged.
  • An object is to provide a method capable of
  • the present invention is a method of charging a raw material in a crucible when producing a sapphire single crystal by the CZ method, and as an apparatus for producing the sapphire single crystal,
  • a single crystal manufacturing apparatus comprising a heater for heating the raw material, a main chamber in which the crucible is disposed, and a pull chamber connected to the main chamber so as to be partitioned by a gate valve
  • a charging method is provided in which a charging tool holding a raw material is suspended from the pull chamber to charge the raw material into the crucible.
  • the charging tool and the raw material are supplied to the in-furnace part without dropping the heater power by hanging the charging tool and charging the raw material.
  • the raw material can be charged efficiently so as not to come into contact with the substrate. That is, if a gate valve is provided, after charging the raw material, the gate valve can be closed without removing the heater power supply, the charging tool can be removed, and then the gate valve can be opened to pull up the single crystal.
  • the heater is preferably a resistance heater
  • the crucible is preferably tungsten or molybdenum, or a metal crucible mainly composed of both tungsten and molybdenum.
  • the charging device is a shaft or wire having a stopper at the lower end, and a pellet material provided with a hole is used as the raw material, and the shaft or wire is passed through the hole and locked by the stopper at the lower end.
  • a pellet material provided with a hole is used as the raw material, and the shaft or wire is passed through the hole and locked by the stopper at the lower end.
  • a pellet material or a sapphire substrate provided with a hole having a diameter smaller than the width of the stopper at the lower end of the shaft or wire is passed through the shaft or wire and locked with the stopper, and the locked pellet material Or it is preferable to laminate
  • the plurality of pellet materials held by the shaft or wire are positioned on the crucible, and the pellet material or sapphire substrate positioned at the lower end locked by the stopper is melted and laminated. It is preferable to charge the pellet material into the crucible. By charging in this way, the pellet material at the lower end and the sapphire substrate can be dissolved immediately above the melt and further immersed in the melt, and the raw material can be charged more safely and efficiently.
  • the stopper of the shaft or the wire has a ridge shape or a tapered shape with a downward opening. With such a stopper, the pellet material at the lower end and the sapphire substrate can be reliably locked, and a plurality of pellet materials can be safely stacked and held.
  • the shaft or the wire is made of tungsten, molybdenum, tantalum, or two or more of these metals. With such a material, the shaft or wire does not melt at a high temperature, and since it can be made of the same material as the crucible, the melt is contaminated even when the shaft or wire contacts the melt. There is no fear.
  • the pull chamber is provided with equipment capable of vacuum replacement and gas replacement.
  • the pull chamber can be set to the same in-furnace condition as the main chamber, and charging can be performed more efficiently without turning off the heater power.
  • the shaft or wire holding the pellet material is suspended by a single crystal pulling shaft of a wire system or a shaft system.
  • the charging tool can be used with almost no modification of the CZ method single crystal manufacturing apparatus, and the cost can be further reduced.
  • the present invention also provides a raw material charged in a crucible when producing a sapphire single crystal, wherein the raw material is a pellet material provided with holes.
  • Such a pellet material has a higher bulk density than a powder or granular raw material, and can increase the amount of raw material that can be charged at one time, so that charging efficiency is good. Furthermore, there is no soaring of the raw material powder at the time of charging, and the amount of the raw material to be charged can be easily adjusted by adjusting the thickness and outer diameter of the pellet material.
  • the present invention is an apparatus for producing a sapphire single crystal from a melt obtained by heating and melting a raw material in a crucible by a CZ method, the heater for heating the raw material in the crucible, and the crucible A main chamber to be disposed; a pull chamber connected to the main chamber so as to be partitioned by a gate valve; and a charging device that holds the raw material and hangs from the pull chamber in charging the raw material into the crucible A single crystal manufacturing apparatus is provided.
  • the charging device is preferably a shaft or a wire having a stopper at the lower end.
  • the raw material can be reliably held in a suspended state, and the device can be safely charged with the raw material.
  • the shaft or the wire stopper has a hook shape or a downwardly opening tapered shape. With such a stopper, the raw material can be reliably locked and the raw material can be safely held.
  • the shaft or the wire is preferably made of tungsten, molybdenum, tantalum, or two or more of these metals. With such a material, the shaft or wire does not melt at a high temperature, and since it can be made of the same material as the crucible, the melt is contaminated even when the shaft or wire contacts the melt. This is a device that can prevent this.
  • the raw material in the production of a sapphire single crystal, the raw material can be charged efficiently without turning off the heater power.
  • FIG. 1 is a schematic view showing a state in which a single crystal is being grown in the single crystal manufacturing apparatus of the present invention.
  • FIG. 2 is a schematic view showing a state when a raw material is charged in the single crystal manufacturing apparatus of the present invention.
  • the single crystal manufacturing apparatus 10 of the present invention shown in FIG. 1 is an apparatus that pulls up and manufactures a sapphire single crystal 17 from a melt 15 obtained by heating and melting a raw material in a crucible 14 by a CZ method.
  • the single crystal manufacturing apparatus 10 of the present invention includes a heater 22 for heating the raw material in the crucible 14, a main chamber 11 in which the crucible 14 is arranged, and a pull chamber connected to the main chamber 11 so as to be partitioned by a gate valve 12. 13.
  • the single crystal manufacturing apparatus 10 of the present invention includes a charging device 23 that holds the raw material 24 and is suspended from the pull chamber 13 when charging the raw material 24 into the crucible 14. It is.
  • the charging tool 23 holding the raw material 24 is suspended from the pull chamber 13 to charge the raw material 24 into the crucible 14. To do.
  • the heater power is turned off, cooling and raw material charging are performed, and reheating is performed for melting.
  • a charging method is time consuming and expensive, and significantly affects the production cost and productivity of the sapphire single crystal. Since the apparatus 10 according to the present invention has the pull chamber 13 connected to the gate valve 12 so as to be partitioned, the charging tool 23 and the charging tool 23 can be removed without suspending the heater power by charging the raw material 24 by suspending the charging tool 23.
  • the raw material 24 can be efficiently charged so that the raw material 24 does not come into contact with the in-furnace parts. That is, if the gate valve 12 is provided, after charging the raw material, the gate valve 12 can be closed without removing the heater power, the charging tool 23 can be removed, and then the gate valve 12 can be opened to pull up the single crystal 17. . Moreover, since the raw material is suspended, the diameter of the opening at the top of the heat insulating material 16 for charging can be minimized, and the heat radiation from the hot zone can be reduced, so that the raw material can be charged efficiently.
  • the apparatus 10 includes a carbon heat insulating material 16 surrounding the crucible 14 and the heater 22, a pulling shaft 20 used for pulling the single crystal 17, a seed holder 21 for holding the seed crystal, and a graphite holding for supporting the crucible 14.
  • a tool 18 and a crucible support shaft 19 that supports the crucible 14 via a graphite holder 18 are provided.
  • an upper portion of the heat insulating material 16 may have, for example, a removable or movable enlarged diameter portion 28 so as to widen the diameter of the opening portion in order to allow the charging tool 23 to pass during charging.
  • a heater 22 is a resistance heater
  • the crucible 14 is tungsten or molybdenum, or a metal crucible containing both tungsten and molybdenum as main components.
  • a high-frequency heater can be used
  • an iridium crucible can be used as the crucible 14. It is preferable to use a crucible. In this case, since the oxidation resistance is lower than that of iridium, the heat insulating material 16 made of carbon is used. Since carbon is a good conductor, the high-frequency heating method is inefficient in heat and inevitably uses a resistance heater. Will do.
  • the single crystal manufacturing apparatus 10 is equipped with equipment (a gas introduction pipe 31, a gas discharge pipe 32, and a vacuum pump 35) that can perform vacuum substitution and gas substitution.
  • equipment a gas introduction pipe 31, a gas discharge pipe 32, and a vacuum pump 35
  • an inert gas or the like is introduced into the furnace through the gas introduction pipe 31 from above the pull chamber 13, and the introduced gas is introduced into the gas discharge pipe at the bottom of the main chamber 11.
  • 32 can be discharged out of the furnace by a vacuum pump 35 or the like.
  • these operations are performed in the pull chamber 13 by closing the gate valve 12.
  • the inside of the pull chamber 13 is replaced with gas using the gas exhaust pipe 36 and the gas introduction pipe 31 for the pull chamber, and the gate chamber 12 is opened after setting the pull chamber 13 to the same in-furnace condition as the main chamber 11.
  • the single crystal growth step can be performed continuously without turning off the power.
  • FIG. 3A shows a plan view and a side view of the pellet material
  • FIG. 3B shows a plan view and a side view of the pellet material provided with holes.
  • the charge tool 23 is a shaft or wire 25 having a stopper 26 at the lower end
  • a pellet material 24 provided with holes 29 is used as a raw material (FIG. 3B).
  • the plurality of pellet materials 24 be stacked and held by passing the shaft or wire 25 through the hole 29 and locking with the stopper 26 at the lower end.
  • the material of the stopper 26 is the same as that of the shaft or the wire 25 and is made of tungsten, molybdenum, tantalum, or two or more of these metals.
  • holes 29 are provided in a commercially available alumina pellet 24 'as shown in FIG. 3B. Since the pellet material 24 provided with such holes 29 has a high bulk density, if it is laminated, the apparent bulk density is almost the same as the density of the sapphire crystal and can be charged efficiently. In particular, in the recharge, the additional weight changes depending on the crystal weight pulled up, but the pellet material can be easily adjusted to a predetermined weight by adjusting the thickness and the outer diameter. On the other hand, with a rod-shaped raw material prepared in advance as in Patent Document 3, it is difficult to arbitrarily adjust the weight and the like even if the structure allows additional charging.
  • the outer diameter of the pellet material 24 is preferably about 110 to 130 mm and the thickness is 10 mm. About 30 mm is easy to handle. Further, when there is an enlarged diameter portion 28, the outer diameter of the pellet material 24 is set in consideration of the diameter after the enlargement. Further, the diameter of the hole 29 needs to be as small as possible, but a diameter of about 20 mm is optimal for smooth fall.
  • a diameter of 110 mm ⁇ thickness of 10 mm and a bulk density of 3.2 g / cm 3 of alumina pellets 24 ′ in the center is reduced from 303.9 g to 293.9 g.
  • the apparent bulk density is 3.1 g / cm 3 , which is almost the same as the pellet material 24 ′ before the hole is formed, and is sufficient even when compared with 1.2 to 2.3 g / cm 3 of the powder or grain raw material.
  • a large bulk density can be obtained, and an efficient raw material can be input.
  • FIG. 4 shows schematic diagrams of two examples in a state where the pellet material 24 ′ is held.
  • pellet material 24 ′′ (FIG. 4A) or sapphire substrate 30 (FIG. 4B) provided with a hole 29 having a diameter smaller than the width of the stopper 26 at the lower end of the shaft or wire 25 is used.
  • FIG. 5A shows a schematic view of an example of a shaft
  • FIG. 5B shows a plan view and a side view of a pellet material locked to the lower end of the shaft.
  • the shaft or wire 25 preferably has a hook-shaped stopper 26 (FIG. 4) or a downward-opening tapered stopper 26 ′ (FIG. 5A). If it is such a stopper, a raw material can be reliably latched and a raw material can be hold
  • the shaft or wire 25 is preferably made of tungsten, molybdenum, tantalum or two or more of these metals. If such a material is used, the shaft or wire 25 is not melted at a high temperature by heating with the heater, and is similar to the material used for the crucible 14, so that when the shaft or wire 25 comes into contact with the melt 15. Can prevent the melt 15 from being contaminated.
  • the shaft or the wire 25 holding the pellet material 24 by the single crystal pulling shaft 20 (FIG. 1) of the wire type or the shaft type.
  • the shaft or wire 25 holding the pellet material 24 can be stably suspended, for example, by connecting it to the seed holder 21 at the tip of the pulling shaft 20, and changes such as special modifications to the single crystal manufacturing apparatus Since the charge of the present invention can be carried out without adding, it is preferable from the viewpoint of cost.
  • a plurality of pellet materials 24 held by a shaft or wire 25 are positioned on a crucible 14 and are positioned at the lower end locked by a stopper 26.
  • the material 24 ′′ or the sapphire substrate 30 (see FIG. 4) is melted, and the stacked pellet material 24 ′ is preferably charged in the crucible 14. If the pellet material is laminated as described above, and the charged pellet material 24 ′′ or the sapphire substrate 30 is melted and charged, it is a pellet material, so the filling rate is high and the raw material powder rises. There is no fear of blowing up.
  • the pellet material 24 ′′ locked at the lower end and the sapphire substrate 30 can be melted by being lowered to a position where the sapphire substrate 30 is melted, for example, a position below the upper end of the crucible 14 (directly above the melt 15).
  • the lower pellet material 24 ′′ and the sapphire substrate 30 may be immersed in the melt 15 to be melted.
  • the pellet material 24 ′′ at the lower end of the hole 29 and the sapphire substrate 30 are melted, so that the pellet material 24 ′ provided with the hole 29 having a diameter larger than the stopper 26 thereon is successively dropped into the crucible 14, Charging is complete.
  • the raw material after charging the raw material by the flow shown in FIG. 6, the raw material can be heated and melted to form a melt, and the sapphire single crystal can be pulled from the melt.
  • the method of charging in a state where the pellet materials are laminated is described.
  • the apparatus having the gate valve of the present invention for example, as shown in FIG. It is also possible to charge the raw material 27 by filling and hanging the raw material 27 and opening the conical valve member 33. Also in this case, the raw material can be charged without turning off the heater power.
  • charging can be performed efficiently, and further, it is not necessary to turn off the heater power supply for charging, which contributes to improvement in productivity and cost reduction in the production of sapphire single crystals. it can.
  • an alumina raw material powder having an initial charge amount of 15 kg was filled in a molybdenum crucible having an inner diameter of 230 mm and a height of 200 mm so as to be almost the same height as the upper end surface of the crucible, and was heated and melted with a resistance heater.
  • a sapphire single crystal having an outer diameter of 110 mm was pulled up by 250 mm, a crystal of about 9.5 kg was obtained. After this crystal growth, it is pulled up together with the upper part (expanded diameter part) of the heat insulating material, the gate valve is closed and taken out from the pull chamber, and then a molybdenum shaft for additional charge holding an alumina donut-shaped pellet material is pulled up.
  • the gas inside the pull chamber was replaced, the gate valve was opened, the molybdenum shaft for additional charging was lowered from the pull chamber, and the remaining melt was additionally charged.
  • the total stack height of the pellet materials is 323 mm, which is only 73 mm higher than the pulled single crystal. It was possible to charge the same amount of raw material as the crystal at once. This height is a size that does not cause a problem due to the structure of the single crystal manufacturing apparatus.
  • the raw material was additionally charged, and while the raw material was melted, the heater power supply could be turned off. Moreover, since the pellet material having a high bulk density was used as described above, it was possible to charge the raw material corresponding to the decrease in melt by one charge.
  • the upper limit of the initial charge amount is 16 kg, and an additional 3 to 4 kg can be charged without turning off the heater power, and the total charge amount can be increased to about 20 kg.
  • the crucible inner volume could be used effectively.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The present invention provides a method for charging a crucible with a feedstock when using the Czochralski technique to manufacture a single-crystal sapphire. To manufacture said single-crystal sapphire, said method uses a single-crystal manufacturing device provided with the following: a heater that heats a feedstock inside a crucible; a main chamber in which said crucible is placed; and a pull chamber that is connected above the main chamber such that a gate valve can be used for partitioning. In this method, a charging tool holding the aforementioned feedstock is suspended from the pull chamber to charge the crucible with the feedstock. A method is thus provided in which the crucible can be charged with the feedstock efficiently without needing to turn off the power supply to the heater.

Description

チャージ方法、原料、及び単結晶製造装置Charging method, raw material, and single crystal manufacturing apparatus
 本発明は、サファイア単結晶を製造する際にルツボに原料をチャージする方法に関する。 The present invention relates to a method of charging a crucible with a raw material when manufacturing a sapphire single crystal.
 サファイア(酸化物)単結晶の製造には、主流のKyropoulos法、ブリッジマン法、EFG法の他、CZ法など様々な方法が用いられている(特許文献1,2参照)。これらの方法では、ルツボが再利用可能でありながら、2本目の単結晶の製造には一旦ヒータ電源を落とし、冷却し、ルツボに原料を再チャージして、再加熱する工程が取られている。 In order to produce a sapphire (oxide) single crystal, various methods such as the CZ method are used in addition to the mainstream Kyropoulos method, Bridgman method, and EFG method (see Patent Documents 1 and 2). In these methods, while the crucible can be reused, the production of the second single crystal has a step of temporarily turning off the heater power, cooling, recharging the raw material in the crucible, and reheating. .
 しかし、このような方法で原料をチャージすると、ヒータ電源を落とすことにより、冷却や再加熱等のための時間がかかってサファイア単結晶の生産性が落ち、また、コストも増大するという問題がある。 However, when the raw material is charged by such a method, there is a problem that the productivity of the sapphire single crystal is lowered and the cost is increased due to the time required for cooling, reheating, etc. by turning off the heater power supply. .
特開2009-242150号公報JP 2009-242150 A 特開2011-195423号公報JP 2011-195423 A 特開平9-25192号公報Japanese Patent Laid-Open No. 9-25192
 特許文献3の請求項8,9では、結晶育成用原料が粉末の場合に、該原料粉末をプレス加工により棒状整形し、加熱、溶融してルツボに充填することが開示されている。
 これは、発明の実施の形態に記載されているように、粉末原料が高温で熱分解し易い対策としてプレス加工原料が提案されている。サファイア単結晶原料の高純度アルミナは、高温で熱分解しないが、粉または粒原料を直接融液面または融液表層の固化面に投入すると、原料粉粒に吸着された微量の水分やガスが急激に膨張し、同様の熱分解が生じる。事前に真空置換で脱気工程を経ても、完全に水分やガスを除去することは容易でなかった。
Claims 8 and 9 of Patent Document 3 disclose that when the raw material for crystal growth is powder, the raw material powder is shaped into a rod shape by press working, heated and melted, and filled into a crucible.
As described in the embodiment of the present invention, a press-processed raw material has been proposed as a measure that facilitates thermal decomposition of the powdered raw material at a high temperature. High-purity alumina, which is a sapphire single crystal raw material, does not thermally decompose at a high temperature. It expands rapidly and a similar thermal decomposition occurs. Even if a degassing step was performed in advance by vacuum replacement, it was not easy to completely remove moisture and gas.
 更に、特許文献3において、棒状プレス材を高硬度アルミナ材で形成すると、下から溶ける際、高融点金属製の結晶径制御枠に相当する部材が具備されているため、擦れて金属やセラミックスが融液に入り、結晶成長の妨げになる。 Furthermore, in Patent Document 3, when a bar-shaped press material is formed of a high hardness alumina material, a member corresponding to a crystal diameter control frame made of a refractory metal is provided when melted from below. It enters the melt and hinders crystal growth.
 また、特許文献3の図3のように、結晶径制御枠の先端を融液に浸漬させるためには、融液より嵩密度の小さい紛体は、メルトレベルより高くチャージしなければならず、制御枠の外径の閉塞部分に溜まったガスが抜けなくなる可能性がある。
 このように、従来、サファイア単結晶の製造において、ルツボへの原料のチャージを効率的に実施できる方法はなかった。
Further, as shown in FIG. 3 of Patent Document 3, in order to immerse the tip of the crystal diameter control frame in the melt, the powder having a bulk density lower than that of the melt must be charged higher than the melt level. There is a possibility that the gas accumulated in the closed portion of the outer diameter of the frame cannot be released.
Thus, conventionally, in the production of sapphire single crystals, there has been no method capable of efficiently charging the raw material to the crucible.
 本発明は、上記問題点に鑑みてなされたものであって、サファイア単結晶の製造において、ルツボへの原料のチャージの際に、ヒータ電源を落とす必要が無く、効率的に原料をチャージすることができる方法を提供することを目的とする。 The present invention has been made in view of the above problems, and in the production of a sapphire single crystal, it is not necessary to turn off the heater power supply when charging the raw material to the crucible, and the raw material is efficiently charged. An object is to provide a method capable of
 上記目的を達成するために、本発明は、CZ法によりサファイア単結晶を製造する際に、ルツボ内に原料をチャージする方法であって、前記サファイヤ単結晶を製造する装置として、前記ルツボ内の原料を加熱するヒータと、前記ルツボを配置するメインチャンバーと、該メインチャンバー上にゲートバルブで仕切り可能に接続されたプルチャンバーとを備えた単結晶製造装置を用い、前記原料のチャージにおいて、前記原料を保持したチャージ具を前記プルチャンバーから吊り下げて、前記原料を前記ルツボ内にチャージすることを特徴とするチャージ方法を提供する。 In order to achieve the above object, the present invention is a method of charging a raw material in a crucible when producing a sapphire single crystal by the CZ method, and as an apparatus for producing the sapphire single crystal, In the charging of the raw material, using a single crystal manufacturing apparatus comprising a heater for heating the raw material, a main chamber in which the crucible is disposed, and a pull chamber connected to the main chamber so as to be partitioned by a gate valve, A charging method is provided in which a charging tool holding a raw material is suspended from the pull chamber to charge the raw material into the crucible.
 このように、ゲートバルブで仕切り可能に接続されたプルチャンバーを有する装置を用いて、チャージ具を吊り下げて原料をチャージすることにより、ヒータ電源を落とすことなく、チャージ具や原料が炉内部品と接触しないように、効率的に原料をチャージすることができる。すなわち、ゲートバルブを有すれば、原料チャージ後、ヒータ電源を落とすことなくゲートバルブを閉じて、チャージ具を取り外し、続いてゲートバルブを開けて単結晶を引上げることができる。 In this way, by using a device having a pull chamber connected so as to be separable by a gate valve, the charging tool and the raw material are supplied to the in-furnace part without dropping the heater power by hanging the charging tool and charging the raw material. The raw material can be charged efficiently so as not to come into contact with the substrate. That is, if a gate valve is provided, after charging the raw material, the gate valve can be closed without removing the heater power supply, the charging tool can be removed, and then the gate valve can be opened to pull up the single crystal.
 このとき、前記ヒータを抵抗加熱ヒータとし、前記ルツボを、タングステン又はモリブデン、あるいはタングステンとモリブデンの両方を主成分とする金属ルツボとすることが好ましい。
 このようなヒータとルツボを有する装置を用いることで、ルツボのコストを低減できる。
At this time, the heater is preferably a resistance heater, and the crucible is preferably tungsten or molybdenum, or a metal crucible mainly composed of both tungsten and molybdenum.
By using an apparatus having such a heater and a crucible, the cost of the crucible can be reduced.
 このとき、前記チャージ具を、下端に止め具を有するシャフト又はワイヤーとし、前記原料として、穴を設けたペレット材を用い、前記シャフト又はワイヤーを前記穴に通して前記下端の止め具で係止することで複数の前記ペレット材を積層させて保持することが好ましい。
 このように、嵩密度が大きいペレット材を用い、さらに、穴を設けて積層させて保持してチャージすることで、より効率的に原料のチャージが可能となる。また、ペレット材であれば、チャージする重量の調整が容易である。
At this time, the charging device is a shaft or wire having a stopper at the lower end, and a pellet material provided with a hole is used as the raw material, and the shaft or wire is passed through the hole and locked by the stopper at the lower end. By doing so, it is preferable to stack and hold a plurality of the pellet materials.
In this way, by using a pellet material having a high bulk density, further providing a hole, laminating, holding, and charging, the raw material can be charged more efficiently. Moreover, if it is a pellet material, the adjustment of the weight to charge is easy.
 このとき、前記シャフト又はワイヤーの下端の止め具の幅よりも径が小さい穴を設けたペレット材又はサファイア基板を前記シャフト又はワイヤーに通して前記止め具で係止し、該係止したペレット材又はサファイア基板上に、前記止め具の幅よりも径が大きい穴を設けたペレット材を複数積層させて保持することが好ましい。
 このように保持することで、多数のペレット材を簡易な構造で保持することができ、さらに効率的な原料チャージが可能となる。
At this time, a pellet material or a sapphire substrate provided with a hole having a diameter smaller than the width of the stopper at the lower end of the shaft or wire is passed through the shaft or wire and locked with the stopper, and the locked pellet material Or it is preferable to laminate | stack and hold | maintain the pellet material provided with the hole whose diameter is larger than the width | variety of the said stopper on a sapphire board | substrate.
By holding in this way, a large number of pellet materials can be held with a simple structure, and more efficient raw material charging becomes possible.
 このとき、前記シャフト又はワイヤーに保持された前記複数のペレット材を、前記ルツボ上に位置させ、前記止め具で係止した下端に位置する前記ペレット材又はサファイア基板を溶かして、前記積層させたペレット材を前記ルツボ内にチャージすることが好ましい。
 このようにチャージすることで、融液直上で、さらには、融液に浸漬させて、下端のペレット材、サファイア基板を溶かすことができ、より安全かつ効率的に原料をチャージすることができる。
At this time, the plurality of pellet materials held by the shaft or wire are positioned on the crucible, and the pellet material or sapphire substrate positioned at the lower end locked by the stopper is melted and laminated. It is preferable to charge the pellet material into the crucible.
By charging in this way, the pellet material at the lower end and the sapphire substrate can be dissolved immediately above the melt and further immersed in the melt, and the raw material can be charged more safely and efficiently.
 このとき、前記シャフト又はワイヤーの止め具を、鍔の形状又は下開きのテーパー形状とすることが好ましい。
 このような止め具であれば、下端のペレット材、サファイア基板を確実に係止でき、安全に複数のペレット材を積層、保持することができる。
At this time, it is preferable that the stopper of the shaft or the wire has a ridge shape or a tapered shape with a downward opening.
With such a stopper, the pellet material at the lower end and the sapphire substrate can be reliably locked, and a plurality of pellet materials can be safely stacked and held.
 このとき、前記シャフト又はワイヤーを、タングステン、モリブデン、タンタル又はこれらの内の2以上の金属からなるものとすることが好ましい。
 このような材質であれば、シャフト又はワイヤーが高温で溶けることがなく、さらに、ルツボと同じ材質とすることができるため、シャフト又はワイヤーが融液に接触した場合にも融液が汚染される恐れがない。
At this time, it is preferable that the shaft or the wire is made of tungsten, molybdenum, tantalum, or two or more of these metals.
With such a material, the shaft or wire does not melt at a high temperature, and since it can be made of the same material as the crucible, the melt is contaminated even when the shaft or wire contacts the melt. There is no fear.
 このとき、前記プルチャンバーを、真空置換とガス置換することができる設備を備えたものとすることが好ましい。
 このようなプルチャンバーであれば、チャージ具に原料セット後、プルチャンバーをメインチャンバーと同じ炉内条件にすることができ、ヒータ電源を落とすことなく、より効率的にチャージできる。
At this time, it is preferable that the pull chamber is provided with equipment capable of vacuum replacement and gas replacement.
With such a pull chamber, after the raw material is set in the charging tool, the pull chamber can be set to the same in-furnace condition as the main chamber, and charging can be performed more efficiently without turning off the heater power.
 このとき、前記ペレット材を保持したシャフト又はワイヤーを、ワイヤー方式又はシャフト方式の単結晶引上げ軸で吊り下げることが好ましい。
 これにより、チャージ具を、CZ法の単結晶製造装置をほとんど改造することなく用いることができ、コストをより低減できる。
At this time, it is preferable that the shaft or wire holding the pellet material is suspended by a single crystal pulling shaft of a wire system or a shaft system.
As a result, the charging tool can be used with almost no modification of the CZ method single crystal manufacturing apparatus, and the cost can be further reduced.
 また、本発明は、サファイア単結晶を製造する際に、ルツボ内にチャージされる原料であって、該原料は、穴が設けられたペレット材であることを特徴とする原料を提供する。 The present invention also provides a raw material charged in a crucible when producing a sapphire single crystal, wherein the raw material is a pellet material provided with holes.
 このようなペレット材であれば、粉や粒状の原料に比べ、嵩密度が高く、1回あたりでチャージできる原料の量を多くすることができるためチャージの効率が良い。さらに、チャージの際の原料粉の舞い上がり等もなく、また、ペレット材の厚さ、外径を調節することで容易にチャージする原料の量を調節することができる。 Such a pellet material has a higher bulk density than a powder or granular raw material, and can increase the amount of raw material that can be charged at one time, so that charging efficiency is good. Furthermore, there is no soaring of the raw material powder at the time of charging, and the amount of the raw material to be charged can be easily adjusted by adjusting the thickness and outer diameter of the pellet material.
 また、本発明は、CZ法により、ルツボ内で原料を加熱溶融して得られた融液からサファイア単結晶を製造する装置であって、前記ルツボ内の原料を加熱するヒータと、前記ルツボを配置するメインチャンバーと、該メインチャンバー上にゲートバルブで仕切り可能に接続されたプルチャンバーと、前記原料の前記ルツボ内へのチャージにおいて、前記原料を保持し、前記プルチャンバーから吊り下げられるチャージ具とを備えたものであることを特徴とする単結晶製造装置を提供する。 Further, the present invention is an apparatus for producing a sapphire single crystal from a melt obtained by heating and melting a raw material in a crucible by a CZ method, the heater for heating the raw material in the crucible, and the crucible A main chamber to be disposed; a pull chamber connected to the main chamber so as to be partitioned by a gate valve; and a charging device that holds the raw material and hangs from the pull chamber in charging the raw material into the crucible A single crystal manufacturing apparatus is provided.
 このような単結晶製造装置であれば、チャージ具を吊り下げて原料をチャージすることにより、ヒータ電源を落とすことなく、チャージ具や原料が炉内部品と接触しないように、効率的に原料をチャージすることができる。 In such a single crystal manufacturing apparatus, by charging the raw material by suspending the charging tool, the raw material is efficiently fed so that the charging tool and the raw material do not come into contact with the in-furnace parts without turning off the heater power. Can be charged.
 このとき、前記チャージ具は、下端に止め具を有するシャフト又はワイヤーであることが好ましい。
 このようなチャージ具であれば、吊り下げた状態で確実に原料を保持することができ、安全に原料のチャージが実施可能な装置となる。
At this time, the charging device is preferably a shaft or a wire having a stopper at the lower end.
With such a charging device, the raw material can be reliably held in a suspended state, and the device can be safely charged with the raw material.
 このとき、前記シャフト又はワイヤーの止め具は、鍔の形状又は下開きのテーパー形状であることが好ましい。
 このような止め具であれば、原料を確実に係止でき、安全に原料を保持することができる装置となる。
At this time, it is preferable that the shaft or the wire stopper has a hook shape or a downwardly opening tapered shape.
With such a stopper, the raw material can be reliably locked and the raw material can be safely held.
 このとき、前記シャフト又はワイヤーは、タングステン、モリブデン、タンタル又はこれらの内の2以上の金属からなるものであることが好ましい。
 このような材質であれば、シャフト又はワイヤーが高温で溶けることがなく、さらに、ルツボと同じ材質とすることができるため、シャフト又はワイヤーが融液に接触した場合にも融液が汚染されることを防止できる装置となる。
At this time, the shaft or the wire is preferably made of tungsten, molybdenum, tantalum, or two or more of these metals.
With such a material, the shaft or wire does not melt at a high temperature, and since it can be made of the same material as the crucible, the melt is contaminated even when the shaft or wire contacts the melt. This is a device that can prevent this.
 以上のように、本発明によれば、サファイア単結晶の製造において、ヒータ電源を落とすことなく、効率的に原料をチャージすることができる。 As described above, according to the present invention, in the production of a sapphire single crystal, the raw material can be charged efficiently without turning off the heater power.
本発明の単結晶製造装置の一例を示す概略図である。It is the schematic which shows an example of the single crystal manufacturing apparatus of this invention. 本発明の単結晶製造装置において、原料をチャージする際の状態の一例を示す概略図である。It is the schematic which shows an example in the state at the time of charging a raw material in the single crystal manufacturing apparatus of this invention. (a)本発明において使用できるペレット材の一例と、(b)穴を設けたペレット材の一例の概略図である。(A) It is the schematic of an example of the pellet material which can be used in this invention, and (b) an example of the pellet material which provided the hole. 本発明において、ペレット材を保持した状態を示す概略図である。In this invention, it is the schematic which shows the state holding the pellet material. (a)本発明におけるシャフトの他の一例と、(b)穴を設けたペレット材の他の一例の概略図である。(A) It is the schematic of other examples of the shaft in this invention, and (b) other examples of the pellet material which provided the hole. 本発明によって原料をチャージする際のフローである。It is a flow at the time of charging a raw material by this invention. 本発明の単結晶製造装置において、原料をチャージする際の状態の他の一例を示す概略図である。It is the schematic which shows another example of the state at the time of charging a raw material in the single crystal manufacturing apparatus of this invention.
 以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
 図1は、本発明の単結晶製造装置において、単結晶を育成中の状態を示す概略図である。図2は、本発明の単結晶製造装置において、原料をチャージする際の状態を示す概略図である。
Hereinafter, the present invention will be described in detail as an example of an embodiment with reference to the drawings, but the present invention is not limited thereto.
FIG. 1 is a schematic view showing a state in which a single crystal is being grown in the single crystal manufacturing apparatus of the present invention. FIG. 2 is a schematic view showing a state when a raw material is charged in the single crystal manufacturing apparatus of the present invention.
 図1の本発明の単結晶製造装置10は、CZ法により、ルツボ14内で原料を加熱溶融して得られた融液15からサファイア単結晶17を引上げて製造する装置である。
 本発明の単結晶製造装置10は、ルツボ14内の原料を加熱するヒータ22と、ルツボ14を配置するメインチャンバー11と、該メインチャンバー11上にゲートバルブ12で仕切り可能に接続されたプルチャンバー13とを備えたものである。
The single crystal manufacturing apparatus 10 of the present invention shown in FIG. 1 is an apparatus that pulls up and manufactures a sapphire single crystal 17 from a melt 15 obtained by heating and melting a raw material in a crucible 14 by a CZ method.
The single crystal manufacturing apparatus 10 of the present invention includes a heater 22 for heating the raw material in the crucible 14, a main chamber 11 in which the crucible 14 is arranged, and a pull chamber connected to the main chamber 11 so as to be partitioned by a gate valve 12. 13.
 そして、図2に示すように、本発明の単結晶製造装置10は、原料24のルツボ14内へのチャージにおいて、原料24を保持し、プルチャンバー13から吊り下げられるチャージ具23を備えたものである。
 このような装置10を用い、本発明では、図2に示すように、原料24のチャージにおいて、原料24を保持したチャージ具23をプルチャンバー13から吊り下げて、原料24をルツボ14内にチャージする。
As shown in FIG. 2, the single crystal manufacturing apparatus 10 of the present invention includes a charging device 23 that holds the raw material 24 and is suspended from the pull chamber 13 when charging the raw material 24 into the crucible 14. It is.
In the present invention using such an apparatus 10, as shown in FIG. 2, in charging the raw material 24, the charging tool 23 holding the raw material 24 is suspended from the pull chamber 13 to charge the raw material 24 into the crucible 14. To do.
 初期にルツボに充填した原料を溶かした後に、融液を所定量とするために追加で原料をチャージする追いチャージや、単結晶を引上げた後に減った分の融液を補充するためにルツボに原料をチャージするリチャージの際には、従来は、ヒータ電源を落として、冷却、原料チャージを行い、再加熱して溶融を行っていた。しかし、このようなチャージ方法では、時間もコストもかかり、サファイア単結晶の製造コスト、生産性に著しく影響していた。
 本発明における装置10は、ゲートバルブ12で仕切り可能に接続されたプルチャンバー13を有するため、チャージ具23を吊り下げて原料24をチャージすることにより、ヒータ電源を落とすことなく、チャージ具23や原料24が炉内部品と接触しないように、効率的に原料24をチャージすることができる。すなわち、ゲートバルブ12を有すれば、原料チャージ後、ヒータ電源を落とすことなくゲートバルブ12を閉じて、チャージ具23を取り外し、続いてゲートバルブ12を開けて単結晶17を引上げることができる。また、原料を吊り下げるため、チャージのための断熱材16上部の開口部の径を最小限にすることができ、ホットゾーンからの放熱を小さくできるため、効率的に原料チャージを実施できる。
After melting the raw material filled in the crucible in the initial stage, additional charge to charge the raw material in order to make the melt a predetermined amount, or to the crucible to replenish the melt that was reduced after pulling up the single crystal In the recharging for charging the raw material, conventionally, the heater power is turned off, cooling and raw material charging are performed, and reheating is performed for melting. However, such a charging method is time consuming and expensive, and significantly affects the production cost and productivity of the sapphire single crystal.
Since the apparatus 10 according to the present invention has the pull chamber 13 connected to the gate valve 12 so as to be partitioned, the charging tool 23 and the charging tool 23 can be removed without suspending the heater power by charging the raw material 24 by suspending the charging tool 23. The raw material 24 can be efficiently charged so that the raw material 24 does not come into contact with the in-furnace parts. That is, if the gate valve 12 is provided, after charging the raw material, the gate valve 12 can be closed without removing the heater power, the charging tool 23 can be removed, and then the gate valve 12 can be opened to pull up the single crystal 17. . Moreover, since the raw material is suspended, the diameter of the opening at the top of the heat insulating material 16 for charging can be minimized, and the heat radiation from the hot zone can be reduced, so that the raw material can be charged efficiently.
 また、装置10は、ルツボ14やヒータ22を囲むカーボン製の断熱材16と、単結晶17の引上げに用いる引上げ軸20と、種結晶を保持する種ホルダー21と、ルツボ14を支える黒鉛製保持具18と、ルツボ14を黒鉛製保持具18を介して支持するルツボ支持軸19とを備える。また、断熱材16の上部には、チャージの際に、チャージ具23が通るために開口部の径を広げるように例えば取り外し可能な又は可動の拡径部28を有することもできる。 In addition, the apparatus 10 includes a carbon heat insulating material 16 surrounding the crucible 14 and the heater 22, a pulling shaft 20 used for pulling the single crystal 17, a seed holder 21 for holding the seed crystal, and a graphite holding for supporting the crucible 14. A tool 18 and a crucible support shaft 19 that supports the crucible 14 via a graphite holder 18 are provided. In addition, an upper portion of the heat insulating material 16 may have, for example, a removable or movable enlarged diameter portion 28 so as to widen the diameter of the opening portion in order to allow the charging tool 23 to pass during charging.
 また、このようなヒータ22を抵抗加熱ヒータとし、ルツボ14を、タングステン又はモリブデン、あるいはタングステンとモリブデンの両方を主成分とする金属ルツボとすることが好ましい。
 本発明の装置10のヒータ22としては、高周波加熱ヒータを用い、ルツボ14として、イリジウムルツボを用いることもできるが、本発明では、上記のように、安価なタングステンやモリブデンを主成分とする金属ルツボを用いることが好ましい。この場合、イリジウムに比べて耐酸化性が低いため、カーボン製の断熱材16を使用することになり、カーボンは良導体であるため、高周波加熱方式では熱効率が悪く、必然的に抵抗加熱ヒーターを使用することになる。
Further, it is preferable that such a heater 22 is a resistance heater, and the crucible 14 is tungsten or molybdenum, or a metal crucible containing both tungsten and molybdenum as main components.
As the heater 22 of the apparatus 10 of the present invention, a high-frequency heater can be used, and an iridium crucible can be used as the crucible 14. It is preferable to use a crucible. In this case, since the oxidation resistance is lower than that of iridium, the heat insulating material 16 made of carbon is used. Since carbon is a good conductor, the high-frequency heating method is inefficient in heat and inevitably uses a resistance heater. Will do.
 また、図1に示すように、単結晶製造装置10は、真空置換とガス置換することができる設備(ガス導入管31、ガス排出管32、真空ポンプ35)を備えたものであることが好ましい。例えば、単結晶成長時等の通常時はプルチャンバー13の上方から不活性ガス等を炉内にガス導入管31を介して導入し、この導入したガスを、メインチャンバー11の底部のガス排出管32から真空ポンプ35等により炉外へ排出することができる。一方、チャージ具23に原料24を保持させる時や、ルツボ14に原料24をチャージした後、チャージ具23を取り出す必要があるときは、ゲートバルブ12を閉めてプルチャンバー13内でこれらの作業を行い、その後、プルチャンバー13内をプルチャンバー用のガス排出管36とガス導入管31を用いてガス置換し、プルチャンバー13をメインチャンバー11と同じ炉内条件にしてからゲートバルブ12を開くことで、電源を落とすことなく、引き続いて単結晶育成工程を行うことができる。 Moreover, as shown in FIG. 1, it is preferable that the single crystal manufacturing apparatus 10 is equipped with equipment (a gas introduction pipe 31, a gas discharge pipe 32, and a vacuum pump 35) that can perform vacuum substitution and gas substitution. . For example, during normal times such as during single crystal growth, an inert gas or the like is introduced into the furnace through the gas introduction pipe 31 from above the pull chamber 13, and the introduced gas is introduced into the gas discharge pipe at the bottom of the main chamber 11. 32 can be discharged out of the furnace by a vacuum pump 35 or the like. On the other hand, when holding the raw material 24 in the charging tool 23 or when it is necessary to take out the charging tool 23 after charging the raw material 24 in the crucible 14, these operations are performed in the pull chamber 13 by closing the gate valve 12. After that, the inside of the pull chamber 13 is replaced with gas using the gas exhaust pipe 36 and the gas introduction pipe 31 for the pull chamber, and the gate chamber 12 is opened after setting the pull chamber 13 to the same in-furnace condition as the main chamber 11. Thus, the single crystal growth step can be performed continuously without turning off the power.
 図3(a)にペレット材の平面図と側面図を、図3(b)に穴を設けたペレット材の平面図と側面図を示す。
 本発明では、図2に示すように、チャージ具23を、下端に止め具26を有するシャフト又はワイヤー25とし、原料として、穴29を設けたペレット材24を用い(図3(b))、シャフト又はワイヤー25を穴29に通して下端の止め具26で係止することで複数のペレット材24を積層させて保持することが好ましい。このとき、止め具26の材質をシャフト又はワイヤー25の材質と同様とし、タングステン、モリブデン、タンタル又はこれらの内の2以上の金属からなるものとすることが好ましい。
FIG. 3A shows a plan view and a side view of the pellet material, and FIG. 3B shows a plan view and a side view of the pellet material provided with holes.
In the present invention, as shown in FIG. 2, the charge tool 23 is a shaft or wire 25 having a stopper 26 at the lower end, and a pellet material 24 provided with holes 29 is used as a raw material (FIG. 3B). It is preferable that the plurality of pellet materials 24 be stacked and held by passing the shaft or wire 25 through the hole 29 and locking with the stopper 26 at the lower end. At this time, it is preferable that the material of the stopper 26 is the same as that of the shaft or the wire 25 and is made of tungsten, molybdenum, tantalum, or two or more of these metals.
 従って、本発明では、図3(a)に示すように、市販のアルミナのペレット材24’に、図3(b)のように穴29を設ける。
 このような穴29を設けたペレット材24であれば、嵩密度が高いため、積層させれば見かけ上の嵩密度はサファイア結晶の密度とほとんど変わらず、効率的にチャージすることができる。特に、リチャージでは引上げた結晶重量により追加重量は変化するが、ペレット材は厚さ、外径を調節することで、容易に所定重量に調節することが可能である。一方、特許文献3のような予め用意された棒状原料では追加チャージが可能な構造としても、重量等を任意に調整することは難しい。
Therefore, in the present invention, as shown in FIG. 3A, holes 29 are provided in a commercially available alumina pellet 24 'as shown in FIG. 3B.
Since the pellet material 24 provided with such holes 29 has a high bulk density, if it is laminated, the apparent bulk density is almost the same as the density of the sapphire crystal and can be charged efficiently. In particular, in the recharge, the additional weight changes depending on the crystal weight pulled up, but the pellet material can be easily adjusted to a predetermined weight by adjusting the thickness and the outer diameter. On the other hand, with a rod-shaped raw material prepared in advance as in Patent Document 3, it is difficult to arbitrarily adjust the weight and the like even if the structure allows additional charging.
 ここで、単結晶製造装置10において、チャージの際、ペレット材24が通る断熱材16の上方の開口部の外径を大きくすると熱ロスが大きくなるため、ペレット材24の外径は、引上げる単結晶17の結晶径よりあまり大きくならない方が良い。そこで直径110mmの単結晶引上げを行う場合、上記断熱材16の開口部の外径が直径130~140mmは必要なため、ペレット材24の外径は110~130mm程度が良く、また厚さは10~30mm程度が取扱いが容易である。また、拡径部28がある場合には拡径後の径も考慮してペレット材24の外径を設定する。
 また、穴29の径は、なるべく小さくする必要があるが、落下をスムーズにするため、直径20mm程度が最適である。
Here, in the single crystal manufacturing apparatus 10, when charging, if the outer diameter of the opening above the heat insulating material 16 through which the pellet material 24 passes is increased, the heat loss increases, so the outer diameter of the pellet material 24 is increased. It is better not to be much larger than the crystal diameter of the single crystal 17. Therefore, when pulling up a single crystal having a diameter of 110 mm, the outer diameter of the opening of the heat insulating material 16 needs to be 130 to 140 mm. Therefore, the outer diameter of the pellet material 24 is preferably about 110 to 130 mm and the thickness is 10 mm. About 30 mm is easy to handle. Further, when there is an enlarged diameter portion 28, the outer diameter of the pellet material 24 is set in consideration of the diameter after the enlargement.
Further, the diameter of the hole 29 needs to be as small as possible, but a diameter of about 20 mm is optimal for smooth fall.
 なお、例えば、図3(a)のような、直径110mm×厚さ10mmで、嵩密度3.2g/cmのアルミナのペレット材24’の中央に、図3(b)のように直径20mmの穴29を開けると、重さは303.9gから293.9gに減少する。この場合、見かけの嵩密度は3.1g/cmとなり、穴を開ける前のペレット材24’とほとんど変わらず、粉や粒原料の1.2~2.3g/cmと比べても十分大きな嵩密度を得て、効率的な原料投入が可能となる。 For example, as shown in FIG. 3 (a), a diameter of 110 mm × thickness of 10 mm and a bulk density of 3.2 g / cm 3 of alumina pellets 24 ′ in the center, as shown in FIG. The weight is reduced from 303.9 g to 293.9 g. In this case, the apparent bulk density is 3.1 g / cm 3 , which is almost the same as the pellet material 24 ′ before the hole is formed, and is sufficient even when compared with 1.2 to 2.3 g / cm 3 of the powder or grain raw material. A large bulk density can be obtained, and an efficient raw material can be input.
 図4にペレット材24’を保持した状態の2つの例の概略図を示す。
 本発明において、シャフト又はワイヤー25の下端の止め具26の幅よりも径が小さい穴29を設けたペレット材24’’(図4(a))又はサファイア基板30(図4(b))をシャフト又はワイヤー25に通して止め具26で係止し、該係止したペレット材24’’又はサファイア基板30上に、止め具26の幅よりも径が大きい穴29を設けたペレット材24’を複数積層させて保持することが好ましい。
 これにより、簡易な構造で、確実にペレット材を保持することができる。
FIG. 4 shows schematic diagrams of two examples in a state where the pellet material 24 ′ is held.
In the present invention, pellet material 24 ″ (FIG. 4A) or sapphire substrate 30 (FIG. 4B) provided with a hole 29 having a diameter smaller than the width of the stopper 26 at the lower end of the shaft or wire 25 is used. Pellet material 24 ′ in which a hole 29 having a diameter larger than the width of the stopper 26 is provided on the locked pellet material 24 ″ or the sapphire substrate 30 through the shaft or wire 25 and locked with the stopper 26. It is preferable to hold a plurality of layers.
Thereby, a pellet material can be reliably held with a simple structure.
 図5(a)にシャフトの一例の概略図を、図5(b)に当該シャフトの下端に係止されるペレット材の平面図と側面図を示す。
 シャフト又はワイヤー25は、鍔の形状の止め具26(図4)又は下開きのテーパー形状の止め具26’(図5(a))を有するものであることが好ましい。
 このような止め具であれば、原料を確実に係止でき、安全に原料を保持することができる。
FIG. 5A shows a schematic view of an example of a shaft, and FIG. 5B shows a plan view and a side view of a pellet material locked to the lower end of the shaft.
The shaft or wire 25 preferably has a hook-shaped stopper 26 (FIG. 4) or a downward-opening tapered stopper 26 ′ (FIG. 5A).
If it is such a stopper, a raw material can be reliably latched and a raw material can be hold | maintained safely.
 図5(a)のような下開きのテーパー形状の止め具26’を有する場合には、例えば図5(b)に示すような、下開きのテーパー形状の穴29’を設けたペレット材24’’’をシャフト又はワイヤー25の下端で係止することが好ましい。
 これにより、より安定した保持が可能である。
In the case of having a downwardly opening tapered stopper 26 'as shown in FIG. 5A, for example, a pellet material 24 provided with a downwardly opening tapered hole 29' as shown in FIG. 5B. It is preferable to lock '''at the lower end of the shaft or wire 25.
Thereby, more stable holding is possible.
 シャフト又はワイヤー25は、タングステン、モリブデン、タンタル又はこれらの内の2以上の金属からなるものが好ましい。
 このような材質であれば、シャフト又はワイヤー25がヒータ加熱により高温で溶けることがなく、さらに、ルツボ14に用いられる材質と同様であるため、シャフト又はワイヤー25が融液15に接触した場合にも融液15が汚染されることを防止できる。
The shaft or wire 25 is preferably made of tungsten, molybdenum, tantalum or two or more of these metals.
If such a material is used, the shaft or wire 25 is not melted at a high temperature by heating with the heater, and is similar to the material used for the crucible 14, so that when the shaft or wire 25 comes into contact with the melt 15. Can prevent the melt 15 from being contaminated.
 また、ペレット材24を保持したシャフト又はワイヤー25を、ワイヤー方式又はシャフト方式の単結晶引上げ軸20(図1)で吊り下げることが好ましい。
 ペレット材24を保持したシャフト又はワイヤー25を、例えば引上げ軸20の先端の種ホルダー21に接続することで、安定して吊り下げることができ、また、単結晶製造装置に特別な改造等の変更を加えることなく本発明のチャージを実施できるため、コストの観点でも好ましい。
Moreover, it is preferable to suspend the shaft or the wire 25 holding the pellet material 24 by the single crystal pulling shaft 20 (FIG. 1) of the wire type or the shaft type.
The shaft or wire 25 holding the pellet material 24 can be stably suspended, for example, by connecting it to the seed holder 21 at the tip of the pulling shaft 20, and changes such as special modifications to the single crystal manufacturing apparatus Since the charge of the present invention can be carried out without adding, it is preferable from the viewpoint of cost.
 図2に示すように、このような装置10を用いて、シャフト又はワイヤー25に保持された複数のペレット材24を、ルツボ14上に位置させ、止め具26で係止した下端に位置するペレット材24’’又はサファイア基板30(図4参照)を溶かして、積層させたペレット材24’をルツボ14内にチャージすることが好ましい。
 上記のようにペレット材を積層させ、さらに、係止したペレット材24’’又はサファイア基板30を溶かしてチャージする方法であれば、ペレット材であるため充填率が高く、また、原料粉の舞い上がりや吹き上がりの恐れがない。このとき、下端で係止されたペレット材24’’、サファイア基板30が溶ける程度の位置、例えば、ルツボ14の上端より下の位置(融液15の直上)まで下げて溶かすことができる。または、さらに下げて、下端のペレット材24’’、サファイア基板30を融液15に浸漬させて溶かすこともできる。穴29の小さな下端のペレット材24’’、サファイア基板30が溶けることで、その上の止め具26より径の大きい穴29を設けたペレット材24’がルツボ14中に順次落下していき、チャージが完了する。
As shown in FIG. 2, using such an apparatus 10, a plurality of pellet materials 24 held by a shaft or wire 25 are positioned on a crucible 14 and are positioned at the lower end locked by a stopper 26. The material 24 ″ or the sapphire substrate 30 (see FIG. 4) is melted, and the stacked pellet material 24 ′ is preferably charged in the crucible 14.
If the pellet material is laminated as described above, and the charged pellet material 24 ″ or the sapphire substrate 30 is melted and charged, it is a pellet material, so the filling rate is high and the raw material powder rises. There is no fear of blowing up. At this time, the pellet material 24 ″ locked at the lower end and the sapphire substrate 30 can be melted by being lowered to a position where the sapphire substrate 30 is melted, for example, a position below the upper end of the crucible 14 (directly above the melt 15). Alternatively, the lower pellet material 24 ″ and the sapphire substrate 30 may be immersed in the melt 15 to be melted. The pellet material 24 ″ at the lower end of the hole 29 and the sapphire substrate 30 are melted, so that the pellet material 24 ′ provided with the hole 29 having a diameter larger than the stopper 26 thereon is successively dropped into the crucible 14, Charging is complete.
 以上のように、例えば図6に示すフローで原料をチャージした後、原料を加熱、溶融して融液とし、当該融液からサファイア単結晶を引上げることができる。 As described above, for example, after charging the raw material by the flow shown in FIG. 6, the raw material can be heated and melted to form a melt, and the sapphire single crystal can be pulled from the melt.
 なお、上記ではペレット材を積層させた状態でチャージする方法を説明したが、本発明のゲートバルブを有する装置においては、例えば、図7に示すように、リチャージ管34内に粒状又は粉状の原料27を充填して吊り下げ、円錐形状のバルブ部材33を開けることで原料27をチャージすることも可能である。
 この場合も、ヒータ電源を落とさずに原料をチャージすることができる。
In the above description, the method of charging in a state where the pellet materials are laminated is described. However, in the apparatus having the gate valve of the present invention, for example, as shown in FIG. It is also possible to charge the raw material 27 by filling and hanging the raw material 27 and opening the conical valve member 33.
Also in this case, the raw material can be charged without turning off the heater power.
 以上のような本発明であれば、効率的にチャージすることができ、さらに、チャージのためにヒータ電源を落とす必要が無いため、サファイア単結晶の製造の生産性向上やコスト低減に資することができる。 According to the present invention as described above, charging can be performed efficiently, and further, it is not necessary to turn off the heater power supply for charging, which contributes to improvement in productivity and cost reduction in the production of sapphire single crystals. it can.
 以下、実施例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
 図1に示すような単結晶製造装置を用いてサファイア単結晶を育成した後、図2に示すような方法で原料の追加チャージを行った。
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated more concretely, this invention is not limited to these.
(Example)
After growing the sapphire single crystal using the single crystal manufacturing apparatus as shown in FIG. 1, the material was additionally charged by the method as shown in FIG.
 まず、内径230mm、高さ200mmのモリブデンルツボに初期チャージ量15kgのアルミナ原料粉をルツボ上端面とほぼ同じ高さになるよう充填し、抵抗加熱ヒータで加熱溶融した。そして、外径110mmのサファイア単結晶を250mm引上げると、約9.5kgの結晶が得られた。
 この結晶育成後、断熱材の上部(拡径部)と一緒に引上げ、ゲートバルブを閉めてプルチャンバーから取り出し、その後に、アルミナのドーナツ状ペレット材を保持した追加チャージ用のモリブデンシャフトを引上げ軸にセットし、プルチャンバー内をガス置換し、ゲートバルブを開けて追加チャージ用のモリブデンシャフトをプルチャンバーから降下させ、残った融液に追加チャージした。この場合、内径20mmの穴を開けた外径110mmのペレット材をシャフトに複数通して保持させると、ペレット材の合計の積層高さは323mmとなり、引上げた単結晶より73mm高くなるだけで、引上げ結晶と同等量の原料を一度で追加チャージ可能であった。この高さは、単結晶製造装置の構造から問題とならないサイズである。
First, an alumina raw material powder having an initial charge amount of 15 kg was filled in a molybdenum crucible having an inner diameter of 230 mm and a height of 200 mm so as to be almost the same height as the upper end surface of the crucible, and was heated and melted with a resistance heater. When a sapphire single crystal having an outer diameter of 110 mm was pulled up by 250 mm, a crystal of about 9.5 kg was obtained.
After this crystal growth, it is pulled up together with the upper part (expanded diameter part) of the heat insulating material, the gate valve is closed and taken out from the pull chamber, and then a molybdenum shaft for additional charge holding an alumina donut-shaped pellet material is pulled up. The gas inside the pull chamber was replaced, the gate valve was opened, the molybdenum shaft for additional charging was lowered from the pull chamber, and the remaining melt was additionally charged. In this case, if a plurality of pellet materials with an outer diameter of 110 mm with an inner diameter of 20 mm are held through the shaft, the total stack height of the pellet materials is 323 mm, which is only 73 mm higher than the pulled single crystal. It was possible to charge the same amount of raw material as the crystal at once. This height is a size that does not cause a problem due to the structure of the single crystal manufacturing apparatus.
 上記実施例では、単結晶引上げ後、原料の追加チャージを行い、原料を溶融する間、ヒータ電源を落とすことなく実施できた。また、上記したように嵩密度の高いペレット材を用いたため、1回のチャージで融液減少分の原料を投入することができた。 In the above example, after the single crystal was pulled, the raw material was additionally charged, and while the raw material was melted, the heater power supply could be turned off. Moreover, since the pellet material having a high bulk density was used as described above, it was possible to charge the raw material corresponding to the decrease in melt by one charge.
 また、効率的に結晶を成長させるためには、チャージされた原料融液量を多くし、育成する1本当たりの結晶育成重量を多くする必要があるが、例えば原料粉の場合は嵩密度が小さいため、チャージした全量が溶けるとメルト高さが30~40%低下し、ルツボ容積を十分効率的に利用することができない。しかし、本発明であれば、初期のチャージ量の上限が16kgで、ヒータ電源を落とすことなく、更に3~4kg追加チャージすることができ、合計のチャージ量を約20kgまで増加させることができるため、ルツボ内容積を有効に活用することができた。 Moreover, in order to grow crystals efficiently, it is necessary to increase the amount of charged raw material melt and increase the crystal growth weight per one to be grown. Due to the small size, if the entire charged amount melts, the melt height decreases by 30 to 40%, and the crucible volume cannot be used sufficiently efficiently. However, according to the present invention, the upper limit of the initial charge amount is 16 kg, and an additional 3 to 4 kg can be charged without turning off the heater power, and the total charge amount can be increased to about 20 kg. The crucible inner volume could be used effectively.
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Claims (14)

  1.  CZ法によりサファイア単結晶を製造する際に、ルツボ内に原料をチャージする方法であって、
     前記サファイヤ単結晶を製造する装置として、前記ルツボ内の原料を加熱するヒータと、前記ルツボを配置するメインチャンバーと、該メインチャンバー上にゲートバルブで仕切り可能に接続されたプルチャンバーとを備えた単結晶製造装置を用い、
     前記原料のチャージにおいて、前記原料を保持したチャージ具を前記プルチャンバーから吊り下げて、前記原料を前記ルツボ内にチャージすることを特徴とするチャージ方法。
    When manufacturing a sapphire single crystal by the CZ method, the raw material is charged in the crucible,
    As an apparatus for producing the sapphire single crystal, a heater for heating the raw material in the crucible, a main chamber in which the crucible is arranged, and a pull chamber connected to the main chamber so as to be partitioned by a gate valve are provided. Using single crystal manufacturing equipment,
    In the charging of the raw material, a charging device holding the raw material is suspended from the pull chamber to charge the raw material into the crucible.
  2.  前記ヒータを抵抗加熱ヒータとし、前記ルツボを、タングステン又はモリブデン、あるいはタングステンとモリブデンの両方を主成分とする金属ルツボとすることを特徴とする請求項1に記載のチャージ方法。 2. The charging method according to claim 1, wherein the heater is a resistance heater, and the crucible is a metal crucible mainly composed of tungsten or molybdenum or both tungsten and molybdenum.
  3.  前記チャージ具を、下端に止め具を有するシャフト又はワイヤーとし、前記原料として、穴を設けたペレット材を用い、前記シャフト又はワイヤーを前記穴に通して前記下端の止め具で係止することで複数の前記ペレット材を積層させて保持することを特徴とする請求項1又は請求項2に記載のチャージ方法。 The charging device is a shaft or wire having a stopper at the lower end, and as the raw material, a pellet material provided with a hole is used, and the shaft or wire is passed through the hole and locked with the stopper at the lower end. The charging method according to claim 1, wherein a plurality of the pellet materials are stacked and held.
  4.  前記シャフト又はワイヤーの下端の止め具の幅よりも径が小さい穴を設けたペレット材又はサファイア基板を前記シャフト又はワイヤーに通して前記止め具で係止し、該係止したペレット材又はサファイア基板上に、前記止め具の幅よりも径が大きい穴を設けたペレット材を複数積層させて保持することを特徴とする請求項3に記載のチャージ方法。 Pellet material or sapphire substrate provided with a hole whose diameter is smaller than the width of the stopper at the lower end of the shaft or wire is passed through the shaft or wire and locked with the stopper, and the locked pellet material or sapphire substrate 4. The charging method according to claim 3, wherein a plurality of pellet materials each having a hole having a diameter larger than the width of the stopper are stacked and held.
  5.  前記シャフト又はワイヤーに保持された前記複数のペレット材を、前記ルツボ上に位置させ、前記止め具で係止した下端に位置する前記ペレット材又はサファイア基板を溶かして、前記積層させたペレット材を前記ルツボ内にチャージすることを特徴とする請求項3又は請求項4に記載のチャージ方法。 The plurality of pellet materials held by the shaft or wire are positioned on the crucible, the pellet material or sapphire substrate positioned at the lower end locked by the stopper is melted, and the stacked pellet materials are The charging method according to claim 3, wherein charging is performed in the crucible.
  6.  前記シャフト又はワイヤーの止め具を、鍔の形状又は下開きのテーパー形状とすることを特徴とする請求項3乃至請求項5のいずれか一項に記載のチャージ方法。 The charging method according to any one of claims 3 to 5, wherein the shaft or the wire stopper is formed in a hook shape or a downwardly tapered shape.
  7.  前記シャフト又はワイヤーを、タングステン、モリブデン、タンタル又はこれらの内の2以上の金属からなるものとすることを特徴とする請求項3乃至請求項6のいずれか一項に記載のチャージ方法。 The charging method according to any one of claims 3 to 6, wherein the shaft or wire is made of tungsten, molybdenum, tantalum, or two or more of these metals.
  8.  前記プルチャンバーを、真空置換とガス置換することができる設備を備えたものとすることを特徴とする請求項1乃至請求項7のいずれか一項に記載のチャージ方法。 The charging method according to any one of claims 1 to 7, wherein the pull chamber is provided with equipment capable of vacuum replacement and gas replacement.
  9.  前記ペレット材を保持したシャフト又はワイヤーを、ワイヤー方式又はシャフト方式の単結晶引上げ軸で吊り下げることを特徴とする請求項3乃至請求項8のいずれか一項に記載のチャージ方法。 The charging method according to any one of claims 3 to 8, wherein the shaft or the wire holding the pellet material is suspended by a single crystal pulling shaft of a wire system or a shaft system.
  10.  サファイア単結晶を製造する際に、ルツボ内にチャージされる原料であって、該原料は、穴が設けられたペレット材であることを特徴とする原料。 A raw material charged in a crucible when producing a sapphire single crystal, wherein the raw material is a pellet material provided with holes.
  11.  CZ法により、ルツボ内で原料を加熱溶融して得られた融液からサファイア単結晶を製造する装置であって、
     前記ルツボ内の原料を加熱するヒータと、前記ルツボを配置するメインチャンバーと、該メインチャンバー上にゲートバルブで仕切り可能に接続されたプルチャンバーと、前記原料の前記ルツボ内へのチャージにおいて、前記原料を保持し、前記プルチャンバーから吊り下げられるチャージ具とを備えたものであることを特徴とする単結晶製造装置。
    An apparatus for producing a sapphire single crystal from a melt obtained by heating and melting a raw material in a crucible by the CZ method,
    In heating the raw material in the crucible, a main chamber in which the crucible is disposed, a pull chamber connected to the main chamber so as to be partitioned by a gate valve, and charging the raw material into the crucible, An apparatus for producing a single crystal, comprising: a charge tool that holds a raw material and is suspended from the pull chamber.
  12.  前記チャージ具は、下端に止め具を有するシャフト又はワイヤーであることを特徴とする請求項11に記載の単結晶製造装置。 12. The single crystal manufacturing apparatus according to claim 11, wherein the charging tool is a shaft or a wire having a stopper at a lower end.
  13.  前記シャフト又はワイヤーの止め具は、鍔の形状又は下開きのテーパー形状であることを特徴とする請求項12に記載の単結晶製造装置。 13. The single crystal manufacturing apparatus according to claim 12, wherein the shaft or wire stopper has a hook shape or a downwardly tapered shape.
  14.  前記シャフト又はワイヤーは、タングステン、モリブデン、タンタル又はこれらの内の2以上の金属からなるものであることを特徴とする請求項12又は請求項13に記載の単結晶製造装置。 The single crystal manufacturing apparatus according to claim 12 or 13, wherein the shaft or wire is made of tungsten, molybdenum, tantalum, or two or more of these metals.
PCT/JP2013/006033 2012-11-06 2013-10-10 Charging method, feedstock, and single-crystal manufacturing device WO2014073162A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012244545A JP5849932B2 (en) 2012-11-06 2012-11-06 How to charge
JP2012-244545 2012-11-06

Publications (1)

Publication Number Publication Date
WO2014073162A1 true WO2014073162A1 (en) 2014-05-15

Family

ID=50684288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006033 WO2014073162A1 (en) 2012-11-06 2013-10-10 Charging method, feedstock, and single-crystal manufacturing device

Country Status (3)

Country Link
JP (1) JP5849932B2 (en)
TW (1) TW201435157A (en)
WO (1) WO2014073162A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11278978A (en) * 1998-03-26 1999-10-12 Toshiba Corp Production of single crystal and production unit therefor
JP2001163694A (en) * 1999-12-09 2001-06-19 Sumitomo Electric Ind Ltd Vertical vessel for growing crystal and method for growing crystal
JP2009263178A (en) * 2008-04-25 2009-11-12 Sumco Corp Single-crystal growth apparatus and raw-material supply method
JP2012101995A (en) * 2010-11-15 2012-05-31 Sumitomo Metal Fine Technology Co Ltd Apparatus for producing sapphire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11278978A (en) * 1998-03-26 1999-10-12 Toshiba Corp Production of single crystal and production unit therefor
JP2001163694A (en) * 1999-12-09 2001-06-19 Sumitomo Electric Ind Ltd Vertical vessel for growing crystal and method for growing crystal
JP2009263178A (en) * 2008-04-25 2009-11-12 Sumco Corp Single-crystal growth apparatus and raw-material supply method
JP2012101995A (en) * 2010-11-15 2012-05-31 Sumitomo Metal Fine Technology Co Ltd Apparatus for producing sapphire

Also Published As

Publication number Publication date
TW201435157A (en) 2014-09-16
JP2014091663A (en) 2014-05-19
JP5849932B2 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
JP2009263178A (en) Single-crystal growth apparatus and raw-material supply method
TWI609104B (en) Continuous czochralski method and apparatus
EP2471978B1 (en) Method for recharging silicon feedstock
CN107429421B (en) Apparatus and method for introducing volatile dopants into a melt
KR101997600B1 (en) Raw material filling method, method for manufacturing single crystal, and device for manufacturing single crystal
WO2014085388A1 (en) Heat shield for improved continuous czochralski process
US20120210931A1 (en) Methods for controlling melt temperature in a czochralski grower
JP2014214078A (en) Crystal growth method
JP5163386B2 (en) Silicon melt forming equipment
JP5213356B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JP6562525B2 (en) Single crystal manufacturing equipment
JP2019163187A (en) Single crystal growth method of iron gallium alloy
JP5849932B2 (en) How to charge
JP2012041200A (en) Crystal growth method
JP2007204306A (en) Single crystal pulling apparatus and raw material silicon filling method
JP6039513B2 (en) Crystal growth apparatus and crystal growth method
JP5577726B2 (en) Method and apparatus for melting silicon raw material
JP7318884B2 (en) Single crystal growth method for iron-gallium alloy
WO2014073165A1 (en) Single crystal producing apparatus
JP2019043788A (en) Method and apparatus for growing single crystal
JP7457321B2 (en) FeGa alloy single crystal manufacturing method and lid
JP4141467B2 (en) Method and apparatus for producing spherical silicon single crystal
JP2022146327A (en) MANUFACTURING METHOD OF FeGa ALLOY SINGLE CRYSTAL
JP2009023867A (en) Manufacturing method of semiconductor crystal and its manufacturing apparatus
JP2018177552A (en) Single crystal growth crucible

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13853489

Country of ref document: EP

Kind code of ref document: A1