WO2014072617A1 - Procédé d'assistance à l'éco-conduite pour véhicule automobile - Google Patents

Procédé d'assistance à l'éco-conduite pour véhicule automobile Download PDF

Info

Publication number
WO2014072617A1
WO2014072617A1 PCT/FR2013/052598 FR2013052598W WO2014072617A1 WO 2014072617 A1 WO2014072617 A1 WO 2014072617A1 FR 2013052598 W FR2013052598 W FR 2013052598W WO 2014072617 A1 WO2014072617 A1 WO 2014072617A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
eco
assistance
angle
slope
Prior art date
Application number
PCT/FR2013/052598
Other languages
English (en)
Inventor
Samuel Chabernaud
Alexis Beauvillain
Original Assignee
Peugeot Citroen Automobiles Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles Sa filed Critical Peugeot Citroen Automobiles Sa
Publication of WO2014072617A1 publication Critical patent/WO2014072617A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/10Input arrangements, i.e. from user to vehicle, associated with vehicle functions or specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/28Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor characterised by the type of the output information, e.g. video entertainment or vehicle dynamics information; characterised by the purpose of the output information, e.g. for attracting the attention of the driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/60Instruments characterised by their location or relative disposition in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/143Touch sensitive instrument input devices
    • B60K2360/1438Touch screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/16Type of output information
    • B60K2360/169Remaining operating distance or charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/16Type of output information
    • B60K2360/172Driving mode indication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/16Type of output information
    • B60K2360/174Economic driving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/77Instrument locations other than the dashboard
    • B60K2360/791Instrument locations other than the dashboard on or in the transmission tunnel or parking brake lever
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/1809Without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/10Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Definitions

  • a method of assisting eco-driving for a motor vehicle driver is a method of assisting eco-driving for a motor vehicle driver.
  • the present invention relates generally to the field of optimizing the fuel consumption of a vehicle, and in particular of a motor vehicle.
  • Application FR 2904 592 describes such a device comprising a module for calculating the distance to the next intersection by means of a geolocation system, a module for estimating the distance necessary for the vehicle to stop at it. -even the absence of any action of the driver on the pedals and the shifter), a control module and a display means.
  • the device After estimating the distance the vehicle would travel to stop if it were delivered to itself, the device compares it to the distance of the next intersection.
  • the device When the control module estimates that the distance potentially traversable by the vehicle is greater than that of the next intersection, the device activates an eco-driving mode active or passive depending on the operating mode previously chosen by the driver.
  • the device will then prevent the driver from exceeding a certain engine speed and / or gear ratio.
  • the device will then issue an alert via the display of a warning message prompting the driver to lift the foot of the accelerator, this alert possibly being accompanied by an audible signal .
  • this type of device requires the presence of a geo-location GPS or other type of system in the vehicle and therefore can not be generalized to all models marketed.
  • the present invention therefore aims to remedy these drawbacks.
  • an eco-driving assistance method for driver of a motor vehicle comprising the following steps:
  • the method according to the invention allows the driver to choose the gear ratio to be adopted at best. depending on the current driving situation.
  • the driver will opt for the gear ratio allowing the vehicle to reach a given distance of itself (corresponding for example to a traffic light or a toll booth) with the lowest possible residual speed of to optimize both fuel consumption (lack of support on the accelerator pedal) and wear of the brakes (their solicitation being minimal).
  • said method also comprises a step of estimating the distance potentially traversable by said vehicle itself, in the case where said driver would progressively descend the gear ratios when approaching a predefined engine speed, from the current report to the neutral;
  • said predefined engine speed is between 1800 and 2000 rpm
  • said method also comprises a step of estimating the distances that said vehicle could travel by itself, in each of the ratios of the gearbox, until it reaches certain predetermined speed levels and below said instantaneous speed of said vehicle;
  • these predefined speed levels are included in the following list: 110 km / h, 90 km / h, 70 km / h, 50 km / h and 30 km / h;
  • said method comprises, before said step or steps for estimating potentially traversable distances, a step of checking the pressure force exerted on the brake pedal as well as the angle of said slope; the one or more steps for estimating potentially traversable distances being implemented only if said pressure force is zero and if said angle of the slope is greater than or equal to a predetermined minimum value;
  • said predetermined minimum value of said angle of the slope is between -5 ° and 0 °;
  • said visual assistance message is in the form of an abacus diffused on a screen
  • said step of estimating the loaded mass of the vehicle comprises an intermediate step of evaluating the load of said vehicle from the height difference between the rear axle and the body;
  • the estimate of said slope angle is made from the value of the angle of inclination of the vehicle body with respect to the horizontal, and from the height difference between the rear axle and the the box.
  • FIG. 1 shows a block diagram of an assistance device for eco-driving for a motor vehicle capable of implementing the method according to the invention
  • FIG. 2 represents a flowchart of the method according to the invention
  • FIG. 3 represents an example of a visual message diffused on the screen of the display module of the device of FIG. 1.
  • the eco-driving assistance device 1 comprises a plurality of sensors 10, 11, 12, 13 connected to a control unit 20, and a display module 30.
  • the sensor 10 raises the height difference Ah between the rear axle and the vehicle body, this difference varying according to the load of the vehicle.
  • the sensor 11 is an inclinometer mounted on the vehicle body which measures the angle of inclination ⁇ of this box vis-à-vis the horizontal.
  • the sensors 12 which are mounted respectively at the four wheels of the vehicle, can be used to record the speed of rotation V r of each of these wheels.
  • the sensor 13 measures meanwhile the pressure force exerted by the driver on the brake pedal.
  • the data collected by the sensors 10, 11, 12, 13 are conveyed in real time to the control unit 20.
  • the latter comprises a computer 21, and a storage module 22.
  • the latter comprises RAM and memory. the non-volatile memory which stores a multitude of parameters and correspondence tables relating to the vehicle, from which a portion of the input data transmitted by the sensors 10 to 13 is reprocessed.
  • a control eco-driving assistance process is implemented according to a predetermined period preferably between 100 ms and 1000 ms, and preferably equal to 500 ms.
  • the process estimates, according to the driving situation identified by analyzing the data received from the various sensors 10, 11, 12, 13, the potentially traversable distances D R by the vehicle itself. (ie in the absence of driver action on the accelerator pedal or according to the gear ratio R engaged by the driver.
  • the different values obtained are then transmitted to the display module 30 so that the latter integrates them into a visual message broadcast via a screen 31, for example integrated into a console of the dashboard.
  • the control unit 20 will estimate the charged mass M loaded e of the vehicle. To do this, it will first of all evaluate the load C of this vehicle from the difference in height Ah between the rear train and the body whose value is measured in real time by the sensor 10 (intermediate step 150). .
  • this load is determined using a correspondence table stored in the memory module 22. Alternatively, it can be determined using a mathematical law function of this difference Ah.
  • the estimation of the loaded mass M loaded e of the vehicle is then carried out simply by adding its empty mass (data stored in memory in the module 22) to the load C previously calculated.
  • a second step 200 the method will determine the instantaneous speed V, of the vehicle from the rotational speeds V r of the wheels of the vehicle, transmitted by the four sensors 12.
  • the computer 21 averages the rotational speeds of the four wheels, then multiplies the value obtained by the circumference of a wheel.
  • the method will then estimate during step 300, the angle a of the slope that the portion of road on which the vehicle is located with the horizontal, this angle taking a positive value when the slope is upward and a negative value in case of downward slope.
  • the calculation is made from the value of the angle of inclination ⁇ of the vehicle body vis-à-vis the horizontal, measured by the inclinometer 11. To obtain the angle of the slope, this value is then lowered by the computer 21 of the angle of inclination between the body and the road, this angle being determined from the gap Ah representative of the load of the vehicle and whose value is transmitted by the sensor 10.
  • step 400 in the course of which the computer 21 will check whether the situation of the species simultaneously fulfills the two conditions precedent to the diffusion of a visual message of assistance to eco-driving on the road. display screen 31.
  • the first condition to check is the absence of support on the brake pedal by the driver, which means that the value (transmitted by the pressure sensor 13) of the pressure force p exerted on the brake pedal must be nothing.
  • the second condition concerns the estimated value of the angle a of the slope made by the road on which the vehicle is traveling with the horizontal.
  • the angle ⁇ of this slope must be greater than or equal to a predetermined value at 0 , preferably between -5 ° and 0 °. Indeed, beyond a certain downward slope value, the weight of the vehicle tends to take over all the forces opposing the rolling, so that the estimate of the potentially traversable distance D R by the vehicle itself would no longer make sense.
  • step 500 it will estimate the potentially traversable distances D R by the vehicle itself, according to the ratio of gearbox R engaged by the driver.
  • the process uses the kinetic energy theorem which states that the variation of kinetic energy of a translational solid (in this case the rolling vehicle) between two positions (the instantaneous position of the vehicle and that potentially reachable) is equal to the sum of the work of the external forces applied to this solid between these two positions.
  • the speed of the vehicle in the potentially attainable position being zero, its kinetic energy is also zero.
  • V represents the speed of the vehicle
  • a, b and c R are parameters stored in memory in the module 22 (a and b being constant for a given vehicle, while c R depends on the ratio R of gearbox selected by the driver).
  • the process starts from the assumption that the work of the global force Frr of rolling resistance remains constant on all this distance D R.
  • this work is calculated from the instantaneous speed V, determined in step 200, so that the estimated work of this force Frr is increased (since in reality the speed decreases progressively over the distance that can be traversed for become zero).
  • a represents the angle of the slope estimated at step 300.
  • This calculation is performed by the computer 21 for the gear ratio currently selected, but also for all other reports (including the neutral) using each time the corresponding parameter c R.
  • the process will also estimate the potentially traversable distance D Ra-> N by the vehicle itself, in the case where the driver progressively drops the R-ratios as the vehicle approaches.
  • a predefined engine speed ⁇ for example between 1800 and 2000 rpm, from the current ratio R a to neutral.
  • the computer 21 first uses a correspondence table stored in memory in the module 22 and giving an estimated value of the vehicle speed at this particular engine speed ⁇ , for each gearbox R reports. It then determines the distances D R traveled in each of the ratios by a simple application of the kinetic energy theorem, then adds all these distances D R to obtain the total potentially traversable distance D Ra-> N by the vehicle.
  • the total potentially traversable distance D 5-> N will then be equal to the sum of the distances D 5 , D 4 , D 3 , D 2 and D N.
  • step 700 it will estimate the distances D P that the vehicle could travel on its own, in each of the ratios R, until it reaches certain predefined V P speed levels. for example: 110 km / h, 90 km / h, 70 km / h, 50 km / h and 30 km / h.
  • the process will retain only the levels 70 km / h, 50 km / h and 30 km / h for calculating distances D P.
  • the process determines the distance D P that the vehicle could travel by itself until reaching said speed level V P. To do this, he applies again the theorem of kinetic energy which gives the following formula:
  • the calculation of these distances D P is carried out by the computer 21 for the gear ratio currently selected, but also for all the other ratios (including the neutral) using each time the corresponding parameter c r .
  • the last step 800 of the process consists in transmitting all the values of the distances D R , D Ra-> N and D P (estimated by the computer 21 during the steps 500 to 700) to the display module 30 for their integration into a visual message of assistance to eco-driving broadcast on the screen 31.
  • this visual message takes the form of a chart similar to that shown in Figure 3, on which the driver can view in the form of horizontal bars:
  • the driver can also simultaneously visualize the intermediate distances D P that could travel this vehicle to reach the predetermined speed levels V P , the information relating to these intermediate distances D P being superimposed directly on the horizontal bars representing the distances D R.
  • the driver is guided in particular in the choice of the report to adopt allowing it to stop at a given distance (corresponding for example to a traffic light or a toll booth) or to slow down his vehicle to make it reach a particular speed after a certain distance (for example to respect a speed limit located downstream of the vehicle), without consuming fuel and at least applying the brakes.
  • a given distance corresponding for example to a traffic light or a toll booth
  • a certain distance for example to respect a speed limit located downstream of the vehicle
  • the estimation of the work of the rolling resistance forces can be performed differently and take into account the variation of the intensity of these forces over the distance potentially traversable by the vehicle.
  • the step of estimating the angle of the slope may be absent and the work of the weight neglected in the overall calculations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

La présente invention concerne un procédé d'assistance à l'éco- conduite pour conducteur d'un véhicule automobile, ledit procédé comportant les étapes suivantes : - estimation de la masse chargée (Mc h a r g é e ) dudit véhicule (100); - détermination de la vitesse instantanée (Vi ) dudit véhicule (200); - estimation de l'angle (α) de la pente que fait la portion de route sur laquelle se trouve ledit véhicule avec l'horizontale (300); - estimation des distances potentiellement parcourables (DR) par ledit véhicule de lui-même selon le rapport de boîte de vitesse (R) engagé par ledit conducteur (500), ladite estimation étant réalisée à partir de ladite masse chargée (Mc h a r g é e ), de ladite vitesse instantanée (Vi) et dudit angle (α) de la pente; et - transmission de l'ensemble des valeurs des dites distances estimées (DR) à un module d'affichage (30) (800) pour leur intégration dans un message visuel d'assistance à l'éco-conduite.

Description

Titre de l'invention
Procédé d'assistance à l'éco-conduite pour conducteur de véhicule automobile.
Domaine de l'invention
La présente invention concerne d'une manière générale le domaine de l'optimisation de la consommation en carburant d'un véhicule, et en particulier d'un véhicule automobile.
Arrière-plan de l'invention
Ces dernières années, de nombreux progrès ont été réalisés par les constructeurs automobiles pour faire diminuer la consommation moyenne des véhicules automobiles. Ainsi, l'aérodynamisme a été retravaillé afin d'améliorer le coefficient de pénétration dans l'air, le poids des véhicules a été diminué grâce à l'utilisation de matériaux plus légers tels que l'aluminium et les matériaux composites, et le rendement des moteurs a été amélioré (diminution de la taille des pistons, meilleure lubrification, etc.).
Cependant, pour aller encore plus loin dans la réduction de la consommation du carburant, il est également indispensable d'agir sur le comportement de conduite. En effet, le plus souvent, les conducteurs ont tendance à maintenir enfoncé trop longtemps la pédale d'accélérateur par rapport à ce qu'exige la situation de conduite, ce qui les obligent, quelques mètres plus loin, à freiner d'autant plus fort.
L'impact du comportement de conduite sur la consommation est loin d'être négligeable puisque des études ont démontré que l'écart de consommation pouvait atteindre plus de 25%.
Depuis quelques années, des dispositifs ont été développé par les constructeurs de véhicules automobiles afin d'aider les conducteurs à adopter un style de conduite plus économique.
La demande FR 2904 592 décrit un tel dispositif comportant un module de calcul de la distance jusqu'à la prochaine intersection grâce à un système de géo-localisation, un module d'estimation de la distance nécessaire pour que le véhicule s'arrête de lui-même (c'est-à-dire en l'absence de toute action du conducteur sur les pédales et le levier de vitesses), un module de contrôle et un moyen d'affichage.
Après avoir estimé la distance que mettrait le véhicule pour s'arrêter s'il était livré à lui-même, le dispositif la compare à la distance de la prochaine intersection.
Lorsque le module de contrôle estime que la distance potentiellement parcourable par le véhicule est supérieure à celle de la prochaine intersection, le dispositif active un mode d'éco-conduite actif ou passif en fonction du mode de fonctionnement choix préalablement par le conducteur.
Si le conducteur a choisi le mode actif, le dispositif va alors empêcher le conducteur de dépasser un certain régime moteur et/ou un certain rapport de boîte de vitesse.
Si le conducteur a choisi le mode passif, le dispositif va alors émettre une alerte via l'affichage d'un message d'avertissement incitant le conducteur à lever le pied de l'accélérateur, cette alerte pouvant être éventuellement doublée d'un signal sonore.
Cependant, ce type de dispositif nécessite la présence d'un système de géo-localisation de type GPS ou autre dans le véhicule et ne peut donc pas être généralisé à l'ensemble des modèles commercialisés.
Par ailleurs, il a pour autre inconvénient de se déclencher uniquement lorsqu'une intersection est détectée par ce système de géolocalisation. Il n'est donc d'aucune aide pour le conducteur dans de nombreux cas de figures (présence d'un feu tricolore temporaire ou d'un panneau de signalisation de danger ou de limitation de vitesse, véhicule arrêté sur la chaussée, etc.).
Objet et résumé de l'invention
La présente invention vise donc à remédier à ces inconvénients.
Elle propose à cet effet, un procédé d'assistance à l'éco-conduite pour conducteur d'un véhicule automobile, ledit procédé comportant les étapes suivantes :
- estimation de la masse chargée dudit véhicule ;
- détermination de la vitesse instantanée dudit véhicule ; - estimation de l'angle de la pente que fait la portion de route sur laquelle se trouve ledit véhicule avec l'horizontale ;
- estimation des distances potentiellement parcourables par ledit véhicule de lui-même selon le rapport de boîte de vitesse engagé par ledit conducteur, ladite estimation étant réalisée à partir de ladite masse chargée, de ladite vitesse instantanée et dudit angle de la pente ; et
- transmission de l'ensemble des valeurs des dites distances estimées à un module d'affichage pour leur intégration dans un message visuel d'assistance à l'éco-conduite.
En informant le conducteur via un message visuel, des différentes distances que le véhicule peut parcourir de lui-même selon le rapport de boîte engagé, le procédé selon l'invention permet à ce conducteur de choisir au mieux le rapport de boîte de vitesse à adopter en fonction de la situation de conduite actuelle.
Ainsi, en pratique le conducteur optera pour le rapport de boîte de vitesse permettant au véhicule d'atteindre de lui-même une distance donnée (correspondant par exemple à un feu tricolore ou une cabine de péage) avec la vitesse résiduelle la plus faible possible de sorte à optimiser tout à la fois la consommation de carburant (absence d'appui sur la pédale d'accélération) et l'usure des freins (leur sollicitation étant minimale).
Selon des caractéristiques préférées du procédé, prises seules ou en combinaison :
- ledit procédé comporte également une étape d'estimation de la distance potentiellement parcourable par ledit véhicule de lui-même, dans le cas de figure où ledit conducteur descendrait progressivement les rapports de boîte de vitesse à l'approche d'un régime moteur prédéfini, depuis le rapport actuel jusqu'au neutre ;
- ledit régime moteur prédéfini est compris entre 1800 et 2000 tr/min ;
- ledit procédé comporte également une étape d'estimation des distances que pourrait parcourir ledit véhicule de lui-même, dans chacun des rapports de la boîte de vitesse, jusqu'à ce qu'il atteigne certains paliers de vitesse prédéfinis et inférieurs à ladite vitesse instantanée dudit véhicule ;
- lesdits paliers de vitesse prédéfinis sont compris dans la liste suivante : 110 km/h, 90 km/h, 70 km/h, 50 km/h et 30 km/h ;
- ledit procédé comporte avant le ou lesdites étapes d'estimation de distances potentiellement parcourables, une étape de vérification de la force de pression exercée sur la pédale de frein ainsi que de l'angle de ladite pente ; le ou lesdites étapes d'estimation de distances potentiellement parcourables n'étant mises en œuvre que si ladite force de pression est nulle et si ledit angle de la pente est supérieur ou égal à une valeur minimale prédéterminée ;
- ladite valeur minimale prédéterminée dudit angle de la pente est comprise entre -5° et 0° ;
- ledit message visuel d'assistance se présente sous la forme d'un abaque diffusé sur un écran ;
ladite étape d'estimation de la masse chargée du véhicule comporte une étape intermédiaire d'évaluation de la charge dudit véhicule à partir de l'écart de hauteur entre le train arrière et la caisse ; et/ou
- l'estimation dudit angle de la pente est faite à partir de la valeur de l'angle d'inclinaison de la caisse du véhicule vis-à-vis de l'horizontale, et de l'écart de hauteur entre le train arrière et la caisse.
Brève description des dessins
L'exposé de l'invention sera maintenant poursuivi par la description détaillée d'un exemple de réalisation, donnée ci-après à titre illustratif mais non limitatif, en référence aux dessins annexés, sur lesquels :
- la figure 1 représente un schéma fonctionnel d'un dispositif d'assistance à l'éco-conduite pour véhicule automobile apte à mettre en œuvre le procédé selon l'invention ;
- la figure 2 représente un organigramme du procédé selon l'invention ; et - la figure 3 représente un exemple de message visuel diffusé sur l'écran du module d'affichage du dispositif de la figure 1.
Description détaillée d'un mode de réalisation
En référence à la figure 1, le dispositif d'assistance à l'éco- conduite 1 comporte une pluralité de capteurs 10, 11, 12, 13 reliés à une unité de commande 20, et un module d'affichage 30.
Le capteur 10 relève l'écart Ah de hauteur entre le train arrière et la caisse du véhicule, cet écart variant en fonction de la charge du véhicule.
Le capteur 11 est un inclinomètre monté sur la caisse du véhicule qui mesure l'angle d'inclinaison Θ de cette caisse vis-à-vis de l'horizontale.
Les capteurs 12 qui sont montés respectivement au niveau des quatre roues du véhicule, permettent de relever la vitesse de rotation Vr de chacune de ces roues.
Le capteur 13 mesure quant à lui la force de pression p exercée par le conducteur sur la pédale de frein.
Les données recueillies par les capteurs 10, 11, 12, 13 sont acheminés en temps réel vers l'unité de commande 20. Celle-ci comporte un calculateur 21, et un module de stockage 22. Ce dernier comprend de la mémoire vive et de la mémoire non volatile qui stocke une multitude de paramètres et de tableaux de correspondance relatifs au véhicule, à partir desquels une partie des données d'entrée transmises par les capteurs 10 à 13 est retraitée.
Dans l'unité de commande 20, un processus d'assistance à l'éco- conduite commande est mis en œuvre selon une période prédéterminée comprise de préférence entre 100 ms et 1000 ms, et de préférence égale à 500 ms.
A chaque itération, le processus estime, en fonction de la situation de conduite identifiée grâce à l'analyse des données reçus en provenance des différents capteurs 10, 11, 12, 13, les distances potentiellement parcourables DR par le véhicule de lui-même (c'est-à- dire en l'absence d'action du conducteur sur la pédale d'accélération ou de freinage) en fonction du rapport de boîte de vitesse R engagé par le conducteur.
Les différentes valeurs obtenues sont alors transmises au module d'affichage 30 afin que ce dernier les intègre dans un message visuel diffusé via un écran 31, par exemple intégré à une console de la planche de bord.
On va maintenant décrire en détails et à l'appui de l'organigramme de la figure 2, les différentes étapes de ce processus.
Au cours de la première étape 100, l'unité de commande 20 va estimer la masse chargée Mchargée du véhicule. Pour ce faire, il va tout d'abord évaluer la charge C de ce véhicule à partir de l'écart de hauteur Ah entre le train arrière et la caisse dont la valeur est mesurée en temps réel par le capteur 10 (étape intermédiaire 150). De préférence, cette charge est déterminée à l'aide d'un tableau de correspondance stocké en mémoire dans le module 22. En variante, celle-ci peut être déterminée à l'aide d'une loi mathématique fonction de cet écart Ah.
L'estimation de la masse chargée Mchargée du véhicule est alors effectuée simplement en additionnant sa masse à vide (donnée stockée en mémoire dans le module 22) à la charge C précédemment calculée.
Dans une deuxième étape 200, le procédé va déterminer la vitesse instantanée V, du véhicule à partir des vitesses de rotation Vr des roues du véhicule, transmises par les quatre capteurs 12. En pratique, le calculateur 21 fait une moyenne des vitesses de rotation des quatre roues, puis multiplie la valeur obtenue par la circonférence d'une roue.
Le procédé va ensuite estimer au cours de l'étape 300, l'angle a de la pente que fait la portion de route sur laquelle se trouve le véhicule avec l'horizontale, cet angle prenant une valeur positive lorsque la pente est ascendante et une valeur négative en cas de pente descendante.
Le calcul est réalisé en partant de la valeur de l'angle d'inclinaison Θ de la caisse du véhicule vis-à-vis de l'horizontale, mesurée par l'inclinomètre 11. Pour obtenir l'angle a de la pente, cette valeur est ensuite minorée par le calculateur 21 de l'angle d'inclinaison entre la caisse et la route, cet angle étant déterminé à partir de l'écart Ah représentatif de la charge du véhicule et dont la valeur est transmise par le capteur 10.
Le processus se poursuit ensuite par l'étape 400 au cours de laquelle le calculateur 21 va vérifier si la situation d'espèce remplit simultanément les deux conditions préalables à la diffusion d'un message visuel d'assistance à l'éco-conduite sur l'écran d'affichage 31.
La première condition à vérifier est l'absence d'appui sur la pédale de frein par le conducteur, ce qui signifie que la valeur (transmise par le capteur de pression 13) de la force de pression p exercée sur la pédale de frein doit être nulle.
La seconde condition porte sur la valeur estimée de l'angle a de la pente que fait la route sur laquelle circule le véhicule avec l'horizontale.
Pour que cette seconde condition soit remplie, l'angle a de cette pente doit être supérieur ou égal à une valeur prédéterminée a0, comprise de préférence entre -5° et 0°. En effet, au-delà d'une certaine valeur de pente descendante, le poids du véhicule a tendance à prendre le dessus sur l'ensemble des forces s'opposant au roulement, de sorte que l'estimation de la distance potentiellement parcourable DR par le véhicule de lui-même n'aurait plus de sens.
Si au moins l'une des deux conditions exposées précédemment n'est pas remplie, le processus s'arrête.
Dans le cas contraire, le processus passe à l'étape 500 dans laquelle il va estimer les distances potentiellement parcourables DR par le véhicule de lui-même, selon le rapport de boîte de vitesse R engagé par le conducteur.
Pour ce faire, le processus utilise le théorème de l'énergie cinétique qui stipule que la variation d'énergie cinétique d'un solide en translation (en l'espèce le véhicule roulant) entre deux positions (la position instantanée du véhicule et celle potentiellement atteignable) est égale à la somme des travaux des forces extérieures appliquées à ce solide entre ces deux positions.
Par définition, la vitesse du véhicule dans la position potentiellement atteignable étant nulle, son énergie cinétique l'est également. D'autre part, les forces extérieures appliquées au véhicule à considérer sont le poids P= Mchargée g (où g représente l'accélération de la pesanteur) ainsi que les forces de résistance au roulement dues principalement aux frottements de l'air sur la caisse, des pneus sur la route et au frein moteur.
L'ensemble de ces forces de résistance au roulement peut être approximé par une force unique Frr s'exprimant sous la forme suivante :
Frr = a V2 + b V + cR
- V représente la vitesse du véhicule ; et
- a, b et cR sont des paramètres stockées en mémoire dans le module 22 (a et b étant constants pour un véhicule donné, tandis que cR dépend du rapport R de boîte de vitesse sélectionné par le conducteur).
Par ailleurs, l'objectif étant d'estimer la distance potentiellement parcourable DR (et non d'effectuer un calcul exact), le processus part de l'hypothèse que le travail de la force globale Frr de résistance au roulement reste constant sur toute cette distance DR. En l'espèce, ce travail est calculé à partir de la vitesse instantanée V, déterminée à l'étape 200 de sorte que le travail estimé de cette force Frr est majoré (puisqu'en réalité, la vitesse diminue progressivement sur la distance parcourable pour devenir nulle).
En tenant compte de ces considérations, l'application du théorème de l'énergie cinétique donne l'équation suivante :
ECi = (a Vi2 + b Vi + cR) Dr + Mchargée g sin(a) DR où :
- Ee, est l'énergie cinétique instantanée égale à Vi Mchargée Vi2 ; et
- a représente l'angle de la pente estimé à l'étape 300.
Soit :
Figure imgf000010_0001
Ce calcul est effectué par le calculateur 21 pour le rapport de de vitesse actuellement sélectionné, mais également pour l'ensemble des autres rapports (y compris le neutre) en utilisant à chaque fois le paramètre cR correspondant.
Au cours de l'étape suivante 600, le processus va estimer également la distance potentiellement parcourable DRa->N par le véhicule de lui-même, dans le cas de figure où le conducteur descendrait progressivement les rapports R à l'approche d'un régime moteur prédéfini ω (par exemple compris entre 1800 et 2000 tr/min), depuis le rapport actuel Ra jusqu'au neutre.
Pour ce faire, le calculateur 21 utilise en premier lieu un tableau de correspondance stocké en mémoire dans le module 22 et donnant une valeur estimée de la vitesse du véhicule à ce régime moteur particulier ω, pour chacun des rapports R de boîte de vitesse. Il détermine ensuite les distances DR parcourues dans chacun des rapports par une simple application du théorème de l'énergie cinétique, puis additionne l'ensemble de ces distances DR pour obtenir la distance totale potentiellement parcourable DRa->N par le véhicule.
Par exemple, en supposant que le véhicule soit en 5eme (soit Ra = 5), le tableau de correspondance permet d'estimer la vitesse V5->4 qu'aura le véhicule au moment où le conducteur rétrogradera en 4eme à l'approche du régime moteur ω. La distance D5 parcourue dans le 5eme rapport sera alors facilement déterminable en appliquant le théorème de l'énergie cinétique qui donne la formule suivante :
1/ M (v 2 - V 2 )
/ 2 ¾ars ée '\ ' 5_>4 '
5 a V,2 +b Vl +c5 + Mchscgée g sin (a)
De la même manière, la distance D4 parcourue dans le 4eme rapport sera obtenue à l'aide de la formule suivante : j / 1/ 2 M (v
chargée 'V 52->4 - V V 42->3 ) /
4 a V5 2_>4 + b V5→4 +c4 + Mchscgée g sin (a)
Des calculs similaires permettent au calculateur 21 de déterminer les distances D3 et D2 respectivement parcourues dans les 3eme et 2eme rapports. La distance DN parcourue dans le rapport neutre est calculée de la même manière en intégrant une vitesse finale nulle, ce qui donne :
Figure imgf000012_0001
a V2 2 →N + b V2→rl + c„ + ΜΛηΛ g sin («)
La distance potentiellement parcourable totale D5->N sera alors égale à la somme des distances D5, D4, D3, D2 et DN.
Le processus se poursuit par une étape 700 au cours de laquelle il va estimer les distances DP que pourrait parcourir le véhicule de lui- même, dans chacun des rapports R, jusqu'à ce qu'il atteigne certains paliers de vitesse VP prédéfinis, par exemple : 110 km/h, 90 km/h, 70 km/h, 50 km/h et 30 km/h.
Pour ce faire, il va tout d'abord comparer la vitesse instantanée V, du véhicule déterminée à l'étape 200, avec chacun de ces paliers VP et ne sélectionner, pour le calcul des distances DP correspondantes, que ceux qui sont inférieurs à cette vitesse instantanée V,.
Ainsi, par exemple, si le véhicule a une vitesse instantanée V, égale à 80 km/h, le processus retiendra uniquement les paliers 70 km/h, 50 km/h et 30 km/h pour le calcul des distances DP.
Pour chacun des paliers sélectionnés, le processus détermine ensuite la distance DP que pourrait parcourir le véhicule de lui-même jusqu'à atteindre ledit palier de vitesse VP. Pour ce faire, il applique à nouveau le théorème de l'énergie cinétique qui donne la formule suivante :
M (v 2 - V 2 )
P a V2 +bVl +cr + Mchscgée g sin(tf)
Le calcul de ces distances DP est effectué par le calculateur 21 pour le rapport de boîte de vitesse actuellement sélectionné, mais également pour l'ensemble des autres rapports (y compris le neutre) en utilisant à chaque fois le paramètre cr correspondant. La dernière étape 800 du processus consiste à transmettre l'ensemble des valeurs des distances DR, DRa->N et DP (estimées par le calculateur 21 lors des étapes 500 à 700) au module d'affichage 30 pour leur intégration dans un message visuel d'assistance à l'éco-conduite diffusé sur l'écran 31.
De préférence, ce message visuel prend la forme d'un abaque similaire à celui représenté sur la figure 3, sur lequel le conducteur peut visualiser sous la forme de barres horizontales :
- les distances potentiellement parcourables DR par le véhicule de lui-même selon le rapport de boîte de vitesse R qu'il sélectionne ; et
- la distance potentiellement parcourable DRa->N par le véhicule de lui-même s'il rétrograde les rapports de boîte de vitesse R progressivement (c'est-à-dire, à l'approche d'un même régime moteur prédéfini ω) jusqu'au neutre.
Sur un tel abaque, le conducteur peut également visualiser simultanément les distances intermédiaires DP que pourrait parcourir ce véhicule pour atteindre les paliers de vitesse VP prédéfinis, l'information relative à ces distances intermédiaires DP étant superposée directement sur les barres horizontales représentant les distances DR.
Grâce à l'affichage d'un tel message, le conducteur est notamment guidé dans le choix du rapport à adopter lui permettant de s'arrêter à une distance donnée (correspondant par exemple à un feu tricolore ou une cabine de péage) ou de ralentir son véhicule pour lui faire atteindre une vitesse particulière au bout d'une certaine distance (par exemple pour respecter une limitation de vitesse située en aval du véhicule), sans consommer de carburant et en sollicitant au minimum les freins.
Bien entendu, la présente invention ne se limite pas aux formes de réalisation décrites et représentées, mais elle englobe toute variante d'exécution.
En particulier, l'estimation du travail des forces de résistance au roulement peut être réalisée différemment et tenir compte de la variation de l'intensité de ces forces sur la distance potentiellement parcourable par le véhicule. D'autre part, l'étape d'estimation de l'angle de la pente peut être absente et le travail du poids négligé dans l'ensemble des calculs.

Claims

REVENDICATIONS
1. Procédé d'assistance à l'éco-conduite pour conducteur d'un véhicule automobile, ledit procédé comportant les étapes suivantes :
- estimation de la masse chargée (MChargée) dudit véhicule (100) ;
- détermination de la vitesse instantanée (V,) dudit véhicule (200) ;
- estimation de l'angle (a) de la pente que fait la portion de route sur laquelle se trouve ledit véhicule avec l'horizontale (300) ;
- estimation des distances potentiellement parcourables (DR) par ledit véhicule de lui-même selon le rapport de boîte de vitesse (R) engagé par ledit conducteur (500), ladite estimation étant réalisée à partir de ladite masse chargée (MChargée), de ladite vitesse instantanée (V|) et dudit angle (a) de la pente ; et
- transmission de l'ensemble des valeurs des dites distances estimées (DR) à un module d'affichage (30) (800) pour leur intégration dans un message visuel d'assistance à l'éco-conduite.
2. Procédé d'assistance à l'éco-conduite selon la revendication
1, caractérisé en ce qu'il comporte également une étape d'estimation de la distance potentiellement parcourable (DRa->N) par ledit véhicule de lui-même, dans le cas de figure où ledit conducteur descendrait progressivement les rapports de boîte de vitesse (R) à l'approche d'un régime moteur prédéfini (ω), depuis le rapport actuel (Ra) jusqu'au neutre (600).
3. Procédé d'assistance à l'éco-conduite selon la revendication
2, caractérisé en ce que ledit régime moteur prédéfini (ω) est compris entre 1800 et 2000 tr/min.
4. Procédé d'assistance à l'éco-conduite selon l'une des revendications 1 à 3, caractérisé en ce qu'il comporte également une étape d'estimation des distances (D ) que pourrait parcourir ledit véhicule de lui-même, dans chacun des rapports de la boîte de vitesse (R), jusqu'à ce qu'il atteigne certains paliers de vitesse prédéfinis (V ) et inférieurs à ladite vitesse instantanée (V,) dudit véhicule.
5. Procédé d'assistance à l'éco-conduite selon la revendication 4, caractérisé en ce que lesdits paliers de vitesse prédéfinis (V ) sont compris dans la liste suivante : 110 km/h, 90 km/h, 70 km/h, 50 km/h et 30 km/h.
6. Procédé d'assistance à l'éco-conduite selon l'une des revendications 1 à 5, caractérisé en ce qu'il comporte avant le ou lesdites étapes d'estimation de distances potentiellement parcourables (DR, DRa->N, Dp) (500, 600, 700), une étape de vérification de la force de pression (p) exercée sur la pédale de frein ainsi que de l'angle (a) de ladite pente (400); le ou lesdites étapes d'estimation de distances potentiellement parcourables (DR, DRa->N, D ) (500, 600, 700) n'étant mises en œuvre que si ladite force de pression (p) est nulle et si ledit angle (a) de la pente est supérieur ou égal à une valeur minimale prédéterminée (a0)
7. Procédé d'assistance à l'éco-conduite selon la revendication 6, caractérisé en ce que ladite valeur minimale prédéterminée (a0) dudit l'angle (a) de la pente est comprise entre -5° et 0°.
8. Procédé d'assistance à l'éco-conduite selon l'une des revendications 1 à 7, caractérisé en ce que ledit message visuel d'assistance se présente sous la forme d'un abaque diffusé sur un écran (31).
9. Procédé d'assistance à l'éco-conduite selon l'une des revendications 1 à 8, caractérisé en ce que ladite étape d'estimation de la masse chargée (MChargée) dudit véhicule (100) comporte une étape intermédiaire d'évaluation de la charge (C) dudit véhicule à partir de l'écart de hauteur (Ah) entre le train arrière et la caisse (150).
10. Procédé d'assistance à l'éco-conduite selon l'une des revendications 1 à 9, caractérisé en ce que l'estimation dudit angle (a) de la pente est faite à partir de la valeur de l'angle d'inclinaison (Θ) de la caisse du véhicule vis-à-vis de l'horizontale, et de l'écart de hauteur (Ah) entre le train arrière et la caisse.
PCT/FR2013/052598 2012-11-08 2013-10-30 Procédé d'assistance à l'éco-conduite pour véhicule automobile WO2014072617A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1260578 2012-11-08
FR1260578A FR2997671B1 (fr) 2012-11-08 2012-11-08 Procede d'assistance a l'eco-conduite pour vehicule automobile

Publications (1)

Publication Number Publication Date
WO2014072617A1 true WO2014072617A1 (fr) 2014-05-15

Family

ID=47714258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/052598 WO2014072617A1 (fr) 2012-11-08 2013-10-30 Procédé d'assistance à l'éco-conduite pour véhicule automobile

Country Status (2)

Country Link
FR (1) FR2997671B1 (fr)
WO (1) WO2014072617A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113173175A (zh) * 2021-06-09 2021-07-27 一汽解放汽车有限公司 一种车辆重量确定方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3024857A1 (fr) * 2014-08-14 2016-02-19 Peugeot Citroen Automobiles Sa Optimisation de la consommation d'un vehicule automobile roulant en descente
CN112594079B (zh) * 2020-12-07 2022-09-06 一汽解放汽车有限公司 发动机的转速经济区确定方法、装置、车辆及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009006524A1 (de) * 2009-01-28 2010-07-29 Matthias Schneider Verfahren zur Information von Fahrern von straßenbasierten Fahrzeugen sowie Informationssystem
WO2011111489A1 (fr) * 2010-03-09 2011-09-15 本田技研工業株式会社 Dispositif de pédale d'accélérateur
EP2441634A2 (fr) * 2010-10-13 2012-04-18 MAN Truck & Bus AG Système d'assistance du conducteur et procédé de fonctionnement correspondant pour l'affichage ou la signalisation d'une situation d'économie de carburant destiné à réduire la consommation en carburant d'un véhicule automobile
EP2476597A1 (fr) * 2011-01-12 2012-07-18 Harman Becker Automotive Systems GmbH Commande éco-énergétique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009006524A1 (de) * 2009-01-28 2010-07-29 Matthias Schneider Verfahren zur Information von Fahrern von straßenbasierten Fahrzeugen sowie Informationssystem
WO2011111489A1 (fr) * 2010-03-09 2011-09-15 本田技研工業株式会社 Dispositif de pédale d'accélérateur
EP2546496A1 (fr) * 2010-03-09 2013-01-16 Honda Motor Co., Ltd. Dispositif de pédale d'accélérateur
EP2441634A2 (fr) * 2010-10-13 2012-04-18 MAN Truck & Bus AG Système d'assistance du conducteur et procédé de fonctionnement correspondant pour l'affichage ou la signalisation d'une situation d'économie de carburant destiné à réduire la consommation en carburant d'un véhicule automobile
EP2476597A1 (fr) * 2011-01-12 2012-07-18 Harman Becker Automotive Systems GmbH Commande éco-énergétique

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113173175A (zh) * 2021-06-09 2021-07-27 一汽解放汽车有限公司 一种车辆重量确定方法及装置

Also Published As

Publication number Publication date
FR2997671B1 (fr) 2014-11-28
FR2997671A1 (fr) 2014-05-09

Similar Documents

Publication Publication Date Title
EP3077780B1 (fr) Procédé d'estimation de la masse d'un véhicule
EP2880409B1 (fr) Procede d'estimation de la masse d'un vehicule
EP2895826B1 (fr) Dispositif et procede d'estimation de la charge d'un vehicule automobile
EP2189348A1 (fr) Procédé d'assistance à la conduite pour véhicule automobile
EP2758257B1 (fr) Procede d'estimation de la resistance au roulement d'une roue de vehicule
FR3017739A1 (fr) Procede de determination d'une limitation de vitesse en vigueur sur une route empruntee par un vehicule automobile
EP3386822A1 (fr) Procede de suivi d'une cible
WO2014072617A1 (fr) Procédé d'assistance à l'éco-conduite pour véhicule automobile
EP2497672B1 (fr) Procédé d'aide à une conduite économique en énergie d'un véhicule automobile
EP3875906A1 (fr) Procédé de détermination du type de voie empruntée par un véhicule automobile
EP2870038B1 (fr) Systeme et procede de suivi de la trajectoire d'un vehicule
WO2017097786A2 (fr) Dispositif et Procédé d'assistance à la conduite
FR3055996A1 (fr) Procede de determination d'un profil de vitesse d'un vehicule automobile
WO2017006015A1 (fr) Procede d'assistance a un conducteur proposant une position de conduite en fonction d'un contexte de conduite
EP2082939B1 (fr) Procédé et système d'estimation d'adhérence dans un véhicule automobile
EP2033867A3 (fr) Système automatique de maintien en pente pour véhicule
WO2016206913A1 (fr) Procede de determination d' un indicateur de dangerosite de la conduite d'un vehicule
EP2157002B1 (fr) Procédé de détermination de la dérive d'un véhicule automobile
WO2020094860A1 (fr) Procédé de contrôle de la chaîne de traction d'un véhicule automobile
FR3050707A1 (fr) Procedes et dispositifs d'automatisation d'une automobile electrique remorquee
EP2830895B1 (fr) Procede d'estimation de la resistance au roulement de roues equipant un train d'un vehicule
EP2109546B1 (fr) Systeme et procede de commande d'un dispositif anti-roulis pour vehicule automobile
WO2015086949A1 (fr) Dispositif et procédé d'estimation de la masse totale d'un véhicule automobile a étalonnage embarque de capteurs de débattement des suspensions
FR2834338A1 (fr) Procede et dispositif de diagnostic d'amortisseurs de vehicule
EP1996437B1 (fr) Procede pour estimer la derivee du glissement des roues d'un vehicule automobile et unite de calcul pour effectuer cette estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13801631

Country of ref document: EP

Kind code of ref document: A1