WO2014072341A2 - Cooling system for electromechanical transducer - Google Patents

Cooling system for electromechanical transducer Download PDF

Info

Publication number
WO2014072341A2
WO2014072341A2 PCT/EP2013/073167 EP2013073167W WO2014072341A2 WO 2014072341 A2 WO2014072341 A2 WO 2014072341A2 EP 2013073167 W EP2013073167 W EP 2013073167W WO 2014072341 A2 WO2014072341 A2 WO 2014072341A2
Authority
WO
WIPO (PCT)
Prior art keywords
electromechanical transducer
cooling fluid
electromechanical
cooling
hollow
Prior art date
Application number
PCT/EP2013/073167
Other languages
German (de)
French (fr)
Other versions
WO2014072341A3 (en
Inventor
Vladimir Danov
Bernd Gromoll
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2014072341A2 publication Critical patent/WO2014072341A2/en
Publication of WO2014072341A3 publication Critical patent/WO2014072341A3/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/20Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil wherein the cooling medium vaporises within the machine casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/10Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • Cooling for electromechanical converters The invention relates to cooling for electromechanical converters.
  • Electromechanical transducers have been known for some time.
  • an electric motor is such an electromechanical converter that converts electrical energy into mechanical energy.
  • a force that is exerted by a magnetic field on current-carrying conductor of a coil put into motion.
  • Such electric motors are used to drive various work machines and vehicles - above all rail vehicles, trolleybuses, electric vehicles, hybrid vehicles.
  • Electromechanical transducers required.
  • previous concepts for cooling electromechanical converters still offer much room for improvement.
  • previous concepts for cooling include example, an indirect cooling, in which the housing of the electromechanical transducer is air-cooled.
  • a disadvantage of this method is that parts of the electromechanical transducer, which are located, for example, in the middle of the electromechanical transducer, are insufficiently cooled.
  • an electromechanical transducer having at least one inlet and one outlet for at least one hollow conduit for receiving a cooling fluid, wherein the hollow conduit in or on a rotor and / or a stator and / or a shaft and / or a Housing of the electromechanical transducer can be arranged, and wherein the hollow conduit is arranged as an evaporator for receiving heat energy from the electromechanical transducer by means of the cooling fluid.
  • electromechanical transducers, which are provided with hollow conductors can be cooled directly with a cooling fluid. This can be implemented particularly effectively and efficiently, for example, in electromechanical converters whose conductors of the winding are designed as small tubes.
  • Such cooling is particularly advantageous for drives or electromechanical converters which are installed in a motor vehicle or an aircraft, since it is there in In most cases, there is already a water cooling system.
  • the invention provides that a hollow conductor or a hollow housing and a hollow shaft of an electromechanical transducer is used as an evaporator of a heat pump. This makes it possible in a simple manner to increase the efficiency of an electric drive or an electromechanical transducer. In addition, such electromechanical transducers can be made more compact.
  • the electromechanical transducer is arranged to direct, via the outlet of the conduit, the cooling fluid for compression to a compressor, which in turn supplies the cooling fluid for heat release to a condenser, from which it is subsequently routable to expand, and from the throttle again via the inlet, which acts as an evaporator hollow line of the electromechanical transducer, for receiving heat energy can be fed.
  • the electromechanical transducer takes advantage of the characteristics of a compression refrigeration machine. In this case, the effect of the heat of evaporation is used in a change of state of aggregation of liquid to gas.
  • the cooling fluid which is moved in a closed circuit, experiences successively different states of aggregate state.
  • the gaseous cooling fluid is first compressed by a compressor in this case. From the compressor, the cooling fluid is supplied to a condenser with heat release. Subsequently, the liquid cooling fluid is forwarded to a throttle for expansion, while reducing its pressure. The now expanded cooling fluid is supplied again via the inlet of the acting as an evaporator hollow line of the electromechanical transducer for receiving heat energy.
  • the cycle described above can now start over. The process must be kept on the outside by supplying mechanical work via the compressor.
  • the cooling fluid takes a heat output - here on acting as an evaporator hollow duct of the electromechanical transducer - at a low temperature level and then outputs the heat output with the input of mechanical work - from the compressor - at a higher temperature level to the environment.
  • the efficiency of acting as a compression refrigeration cooling of the electromechanical transducer increases with decreasing temperatures of the environment. This is particularly true in aircraft coolers, as they are exposed to a very low ambient temperature.
  • the electromechanical converter is set up such that the cooling fluid can be taken out via the outlet of the line by means of a jet pump in which a negative pressure can be generated by means of an accelerated propellant of the jet pump and thereby the expanding cooling fluid is sucked via the outlet, and wherein the sucked cooling fluid can be supplied with the driving medium from the jet pump to a condenser for cooling, from which it is then fed again via the inlet of the hollow line to the evaporator.
  • the propellant of the jet pump is an ionic liquid.
  • ionic liquids have only a very low vapor pressure, it is possible to achieve with a jet pump a strong negative pressure for sucking the cooling fluid from the hollow conduit of the electromechanical transducer. This effect is used to vaporize the cooling fluid. In this case, heat is removed from the environment during the evaporation of the cooling fluid. In this way, the cooling of the electromechanical transducer is achieved.
  • the cooling fluid is a volatile substance. This can be cooled particularly effectively and efficiently.
  • a condenser which is designed as a separate radiator of a vehicle or is already integrated in a radiator of a vehicle, can advantageously be used for cooling the electromechanical converter - electric drive - of the vehicle itself. As a result, space and weight can be saved in the vehicle.
  • the capacitor of the electromechanical transducer - electric drive - is designed as a separate radiator of an aircraft or integrated in an existing radiator of an aircraft. This can be saved in the space of the aircraft and at the same weight can be reduced.
  • FIG. 1 shows an electromechanical transducer with an integrated hollow conduit for cooling, according to an embodiment of the invention
  • 2 shows a schematic diagram of a jet pump for cooling an electromechanical transducer according to an embodiment of the invention and its implementation.
  • the electromechanical transducer 1 is formed in the embodiment shown in FIG 1 as an electric drive. Simplified while the essential components of the electromechanical transducer 1 are shown. It is a located on a shaft 8 rotor 6 which is rotatably mounted within a stator 7, wherein the individual components are accommodated in a housing 9. During operation of the electromechanical transducer 1, power losses occur which lead to heating of the individual components and thereby reduce the efficiency of the electromechanical converter 1. To counteract this, the stator 7 is provided in this embodiment with hollow lines 4, which are suitable for receiving and guiding a cooling fluid 5. In FIG. 1, for the sake of simplification, only a hollow line 4 is shown in order to illustrate the mode of operation of a cooling of the electromechanical converter 1.
  • the electromechanical transducer 1 in order to enable a very high and uniform cooling of the electromechanical transducer 1, the electromechanical transducer 1 according to a further embodiment of the invention in several or all components of the electromechanical transducer 1 hollow lines 4 for receiving the cooling fluid 5 have.
  • the hollow conduit 4 has an inlet 2 and an outlet 3, through which a cooling fluid 5 is supplied to or removed from a hollow conduit 4.
  • the hollow line 4 assumes the function of an evaporator 10 for receiving heat energy from the electromechanical transducer 1 by means of the cooling fluid 5 therein.
  • the hollow line 4 acting as the evaporator 10 is connected to a circuit. whose other components complement each other to form a compression refrigeration machine.
  • the direction of a cycle is illustrated by the arrows in FIG. 1, in which the cooling fluid 5 successively undergoes different changes of state of aggregation.
  • the cooling fluid 5 is expanded via a throttle 13, wherein the cooling fluid 5 is again converted into a gaseous state.
  • the cooled Fluid 5 again supplied via an inlet 2 of the evaporator 10 acting as hollow line 4.
  • the cooling fluid 5 can now absorb heat energy of the electromechanical transducer 1 again. This starts the cycle described above from the beginning.
  • FIG. 2 shows a further embodiment of the invention, wherein in the case illustrated therein, the cooling of the cooling fluid 5 by means of a jet pump 14 takes place.
  • the jet pump 14 is a pump in which the pumping action is generated by a further fluid jet here a propellant, which sucks the coolant fluid 5 by pulse exchange another medium here, accelerated and compressed / promotes.
  • the jet pump 14 is very simple and therefore very robust, low maintenance and versatile.
  • an ionic liquid is used as the driving medium 15. Ionic liquids have an extremely low vapor pressure and thus allow the jet pump 14 to achieve particularly low pressures - suction pressures.
  • the driving medium 15 is driven at very high speed by the jet pump 14, wherein in the jet pump
  • Negative pressure is created, which sucks in the acting as evaporator 10 hollow line 4 heated cooling fluid 5 from the hollow line 4 of the electromechanical transducer 1 and fed together with the driving medium 15 a capacitor 12.
  • the cooling fluid 5 - is a volatile substance - it is sucked from the evaporator 10.
  • the necessary for evaporation heat energy is a cooling fluid in the Evaporator 10, withdrawn with the cooling fluid or the electromechanical transducer 1 cools.
  • the vapor is liquefied and the resulting mixture of cooling fluid 5 and propellant medium 15 is subsequently expanded via a throttle 13. Subsequently, the mixture is supplied to the evaporator 10 again via the inlet 2. The separation of the cooling fluid 5 from the propellant medium 15 then takes place again in the evaporator 10 by evaporation. The cycle then begins again from the beginning.
  • This type of cooling requires no compressor but only a comparatively simple pump or jet pump 14.
  • the embodiment shown in FIG 2 allows higher cost savings during operation.
  • the capacitors 12 shown in FIG. 1 and FIG. 2 are realized as part of a vehicle or aircraft.
  • a capacitor 12 may be attached to the fuselage of an aircraft and thereby cooled by the ambient air - not shown here.
  • the condenser 12 will be a vehicle radiator. In this way it is possible to cool the electromechanical transducer 1 well below an ambient temperature. The energy required for this is less significant than the savings resulting from the increase in efficiency of the electromechanical transducer 1. A possible increase in mass due to the compressor 12 can be compensated by a smaller and more compact design of the electromechanical transducer 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

The invention relates to an electromechanical transducer (1), in particular for aircraft propulsion systems and vehicle drives, said transducer having at least one inlet (2) and an outlet (3) for at least one hollow conduit (4) for receiving a coolant fluid (5). The hollow conduit (4) can be situated in or on a rotor (6) and/or a stator (7) and/or a shaft (8) and/or a housing (9) of the electromechanical transducer (1) and said hollow conduit (4) is set up as an evaporator (10) for receiving thermal energy from the electromechanical transducer (1) by means of the coolant fluid (5). The cooling process allows the efficiency of the electromechanical transducer (1) to be increased and permits a more compact construction.

Description

Beschreibung description
Kühlung für elektromechanische Wandler Die Erfindung betrifft eine Kühlung für elektromechanische Wandler . Cooling for electromechanical converters The invention relates to cooling for electromechanical converters.
Elektromechanische Wandler sind schon seit längerem bekannt. Beispielsweise ist ein Elektromotor ein solcher elektromecha- nischer Wandler, der elektrische Energie in mechanische Energie umwandelt. Dabei wird eine Kraft, die von einem Magnetfeld auf stromdurchflossene Leiter einer Spule ausgeübt wird, in Bewegung umgesetzt. Solche Elektromotoren werden zum Antrieb verschiedener Arbeitsmaschinen und Fahrzeuge - vor al- lern Schienenfahrzeuge, Oberleitungsbusse, Elektrofahrzeuge , Hybridfahrzeuge - eingesetzt. Electromechanical transducers have been known for some time. For example, an electric motor is such an electromechanical converter that converts electrical energy into mechanical energy. In this case, a force that is exerted by a magnetic field on current-carrying conductor of a coil, put into motion. Such electric motors are used to drive various work machines and vehicles - above all rail vehicles, trolleybuses, electric vehicles, hybrid vehicles.
In einem elektromechanischen Wandler fallen verschiedene Verluste an. Die dabei auftretende Verlustleistung muss abge- führt werden, damit sich der elektromechanische Wandler nicht überhitzt. Nicht zuletzt sind die Verluste sowie die zulässige Erwärmung Randbedingungen für die Bestimmung der Größe eines Motors. Zu den Verlusten tragen Wirbelstromverluste durch geblechte Eisenpakete, Ummagnetisierungsverluste wegen Hysterese, Reibungsverluste durch Lager und Dichtungen usw. bei, die eine Erwärmung des elektromechanischen Wandlers verursachen. Die damit verbundene Temperaturerhöhung hat eine große Auswirkung auf die Effizienz des elektromechanischen Wandlers. Generell bedeutet eine erhöhte Temperatur automa- tisch einen höheren elektrischen Widerstand der Leiter in den Wicklungen, was wiederum zu der Erhöhung Ohmscher Verluste in dem elektromechanischen Wandler führt. Aus den oben genannten Gründen ist eine Kühlung von elektrischen Antrieben bzw. In an electromechanical converter, various losses occur. The resulting power loss must be removed so that the electromechanical converter does not overheat. Last but not least, the losses as well as the permissible heating are boundary conditions for determining the size of an engine. Eddy current losses due to iron ligation iron packets, magnetization losses due to hysteresis, friction losses due to bearings and seals, etc., which cause heating of the electromechanical converter, contribute to the losses. The associated increase in temperature has a major impact on the efficiency of the electromechanical transducer. Generally, an elevated temperature automatically means a higher electrical resistance of the conductors in the windings, which in turn leads to the increase of ohmic losses in the electromechanical transducer. For the reasons mentioned above is a cooling of electric drives or
elektromechanischen Wandlern erforderlich. Electromechanical transducers required.
Allerdings bieten die bisherigen Konzepte zur Kühlung von elektromechanischen Wandlern noch viel Verbesserungspotential. Zu den bisherigen Konzepten zur Kühlung gehört beispiels- weise eine indirekte Kühlung, bei der das Gehäuse des elektromechanisehen Wandlers luftgekühlt wird. Ein Nachteil dieses Verfahrens ist, dass Teile des elektromechanischen Wandlers, die sich beispielsweise in der Mitte des elektromecha- nischen Wandlers befinden, ungenügend gekühlt werden. However, the previous concepts for cooling electromechanical converters still offer much room for improvement. For example, previous concepts for cooling include example, an indirect cooling, in which the housing of the electromechanical transducer is air-cooled. A disadvantage of this method is that parts of the electromechanical transducer, which are located, for example, in the middle of the electromechanical transducer, are insufficiently cooled.
In einem anderen Fall wird mit Hilfe eines geöffneten Gehäuses gekühlt. Allerdings gelangen dadurch Schmutzpartikel in den elektromechanischen Wandler, die zu höheren Reibverlusten führen können. In another case, it is cooled by means of an open housing. However, this results in dirt particles in the electromechanical transducer, which can lead to higher friction losses.
Neuere Entwicklungen bedienen sich einer Direktwasserkühlung der Welle oder einer Thermosiphonkühlung . Allerdings stellt eine Direktwasserkühlung erhöhte Anforderungen an das Design des elektromechanischen Wandlers und ist kostspielig. Recent developments use a direct water cooling of the shaft or a thermosiphon cooling. However, direct water cooling places increased demands on the design of the electromechanical transducer and is costly.
Es ist eine Aufgabe der vorliegenden Erfindung einen elektromechanischen Wandler bereitzustellen, der eine kompakte Bauweise aufweist und gegenüber herkömmlichen elektromechani - sehen Wandlern einen höheren Wirkungsgrad aufweist. It is an object of the present invention to provide an electromechanical transducer having a compact design and having a higher efficiency compared to conventional electromechanical converters.
Diese Aufgabe wird mittels eines elektromechanischen Wandlers gelöst, welcher zumindest einen Einlass und einen Auslass für zumindest eine hohle Leitung zur Aufnahme eines Kühlfluids aufweist, wobei die hohle Leitung in oder an einem Rotor und/oder einem Stator und/oder einer Welle und/oder einem Gehäuse des elektromechanischen Wandlers anordenbar ist, und wobei die hohle Leitung als Verdampfer zur Aufnahme von Wärmeenergie aus dem elektromechanischen Wandler mittels des Kühlfluids eingerichtet ist. Ein wesentlicher Vorteil dabei ist, dass elektromechanische Wandler, die mit hohlen Leitern versehen sind direkt mit einem Kühlfluid gekühlt werden können. Dieses kann beispielsweise bei elektromechanischen Wandlern, deren Leiter der Wicklung als kleine Röhrchen ausge- führt sind, besonders effektiv und effizient umgesetzt werden. Besonders vorteilhaft ist eine solche Kühlung für Antriebe bzw. elektromechanische Wandler, die in einem Kraftfahrzeug oder einem Flugzeug eingebaut werden, da es dort in den meisten Fällen schon eine Wasserkühlung gibt. In anderen Worten sieht die Erfindung vor, dass ein hohler Leiter oder ein hohles Gehäuse sowie eine hohle Welle eines elektromecha- nischen Wandlers als Verdampfer einer Wärmepumpe genutzt wird. Dadurch ist es auf einfache Art und Weise möglich, die Effizienz eines elektrischen Antriebes bzw. eines elektrome- chanischen Wandlers zu erhöhen. Darüber hinaus können solche elektromechanische Wandler kompakter hergestellt werden. Bei einer bevorzugten Ausführungsform der Erfindung ist der elektromechanische Wandler eingerichtet, über den Auslass der Leitung das Kühlfluid zum Komprimieren an einen Kompressor zu leiten, der wiederum das Kühlfluid zur Wärmeabgabe einem Kondensator zuführt, von dem es anschließend an eine Drossel zum expandieren weiterleitbar ist, und von der Drossel erneut über den Einlass, der als Verdampfer wirkenden hohlen Leitung des elektromechanischen Wandlers, zur Aufnahme von Wärmeenergie zuführbar ist. In anderen Worten macht sich der elektromechanische Wandler die Eigenschaften einer Kompressionskältemaschine zunutze. Dabei wird der Effekt der Verdampfungswärme bei einem Wechsel des Aggregatszustandes von flüssig zu gasförmig genutzt. Das Kühlfluid, das in einem geschlossenen Kreislauf bewegt wird, erfährt dabei nacheinander verschiedene Aggregatszustandsän- derungen. Dabei wird in diesem Fall das gasförmige Kühlfluid zunächst durch einen Kompressor komprimiert. Vom Kompressor aus, wird das Kühlfluid unter Wärmeabgabe einem Kondensator zugeführt. Anschließend wird das flüssige Kühlfluid an eine Drossel zum Expandieren weitergeleitet, wobei sich gleichzeitig dessen Druck verringert. Das nun entspannte Kühlfluid wird erneut über den Einlass der als Verdampfer wirkenden hohlen Leitung des elektromechanischen Wandlers zur Aufnahme von Wärmeenergie zugeführt. Der oben beschriebene Kreislauf kann nun von vorne beginnen. Der Prozess muss von außen durch Zufuhr von mechanischer Arbeit über den Kompressor in Gang gehalten werden. Auf diese Art und Weise nimmt das Kühlfluid eine Wärmeleistung - hier über die als Verdampfer wirkende hohle Leitung des elektromechanisehen Wandlers - auf einem niedrigen Temperaturniveau auf und gibt anschließend die Wärmeleistung unter Zufuhr von mechanischer Arbeit - von dem Kompressor - auf einem höheren Temperaturniveau an die Umge- bung ab. Dabei erhöht sich die Effizienz der als Kompressionskältemaschine wirkenden Kühlung des elektromechanischen Wandlers mit sinkenden Temperaturen der Umgebung. Dieses trifft insbesondere bei Kühlern von Flugzeugen zu, da diese einer sehr niedrigen Umgebungstemperatur ausgesetzt sind. This object is achieved by means of an electromechanical transducer having at least one inlet and one outlet for at least one hollow conduit for receiving a cooling fluid, wherein the hollow conduit in or on a rotor and / or a stator and / or a shaft and / or a Housing of the electromechanical transducer can be arranged, and wherein the hollow conduit is arranged as an evaporator for receiving heat energy from the electromechanical transducer by means of the cooling fluid. A significant advantage is that electromechanical transducers, which are provided with hollow conductors can be cooled directly with a cooling fluid. This can be implemented particularly effectively and efficiently, for example, in electromechanical converters whose conductors of the winding are designed as small tubes. Such cooling is particularly advantageous for drives or electromechanical converters which are installed in a motor vehicle or an aircraft, since it is there in In most cases, there is already a water cooling system. In other words, the invention provides that a hollow conductor or a hollow housing and a hollow shaft of an electromechanical transducer is used as an evaporator of a heat pump. This makes it possible in a simple manner to increase the efficiency of an electric drive or an electromechanical transducer. In addition, such electromechanical transducers can be made more compact. In a preferred embodiment of the invention, the electromechanical transducer is arranged to direct, via the outlet of the conduit, the cooling fluid for compression to a compressor, which in turn supplies the cooling fluid for heat release to a condenser, from which it is subsequently routable to expand, and from the throttle again via the inlet, which acts as an evaporator hollow line of the electromechanical transducer, for receiving heat energy can be fed. In other words, the electromechanical transducer takes advantage of the characteristics of a compression refrigeration machine. In this case, the effect of the heat of evaporation is used in a change of state of aggregation of liquid to gas. The cooling fluid, which is moved in a closed circuit, experiences successively different states of aggregate state. In this case, the gaseous cooling fluid is first compressed by a compressor in this case. From the compressor, the cooling fluid is supplied to a condenser with heat release. Subsequently, the liquid cooling fluid is forwarded to a throttle for expansion, while reducing its pressure. The now expanded cooling fluid is supplied again via the inlet of the acting as an evaporator hollow line of the electromechanical transducer for receiving heat energy. The cycle described above can now start over. The process must be kept on the outside by supplying mechanical work via the compressor. In this way, the cooling fluid takes a heat output - here on acting as an evaporator hollow duct of the electromechanical transducer - at a low temperature level and then outputs the heat output with the input of mechanical work - from the compressor - at a higher temperature level to the environment. In this case, the efficiency of acting as a compression refrigeration cooling of the electromechanical transducer increases with decreasing temperatures of the environment. This is particularly true in aircraft coolers, as they are exposed to a very low ambient temperature.
Bei einer besonders bevorzugten Ausführungsform der Erfindung, ist der elektromechanische Wandler derart eingerichtet, dass über den Auslass der Leitung das Kühlfluid mittels einer Strahlpumpe zu entnehmen ist, in dem mittels eines beschleu- nigten Treibmediums der Strahlpumpe ein Unterdruck erzeugbar ist und dadurch das sich expandierende Kühlfluid über den Auslass ansaugbar ist, und wobei das angesaugte Kühlfluid mit dem Treibmedium von der Strahlpumpe einem Kondensator zum Abkühlen zuführbar ist, von dem es anschließend erneut über den Einlass der hohlen Leitung zum Verdampfer zuführbar ist. Ein besonderer Vorteil dieser Ausführungsform liegt darin, dass kein Kompressor, sondern nur eine vergleichsmäßig einfach gebaute Pumpe benötigt wird. In einer besonders bevorzugten Ausführungsform ist das Treibmedium der Strahlpumpe eine ionische Flüssigkeit. Da ionische Flüssigkeiten nur einen äußerst geringen Dampfdruck aufweisen, ist es möglich, mit einer Strahlpumpe einen starken Unterdruck zum Ansaugen des Kühlfluids aus der hohlen Leitung des elektromechanischen Wandlers zu erreichen. Dieser Effekt wird dazu genutzt, das Kühlfluid zu verdampfen. Dabei wird beim Verdampfen des Kühlfluids der Umgebung Wärme entzogen. Auf diese Weise wird die Kühlung des elektromechanischen Wandlers erreicht . In a particularly preferred embodiment of the invention, the electromechanical converter is set up such that the cooling fluid can be taken out via the outlet of the line by means of a jet pump in which a negative pressure can be generated by means of an accelerated propellant of the jet pump and thereby the expanding cooling fluid is sucked via the outlet, and wherein the sucked cooling fluid can be supplied with the driving medium from the jet pump to a condenser for cooling, from which it is then fed again via the inlet of the hollow line to the evaporator. A particular advantage of this embodiment is that no compressor, but only a comparatively simple pump is needed. In a particularly preferred embodiment, the propellant of the jet pump is an ionic liquid. Since ionic liquids have only a very low vapor pressure, it is possible to achieve with a jet pump a strong negative pressure for sucking the cooling fluid from the hollow conduit of the electromechanical transducer. This effect is used to vaporize the cooling fluid. In this case, heat is removed from the environment during the evaporation of the cooling fluid. In this way, the cooling of the electromechanical transducer is achieved.
Um die Wirksamkeit der Kühlung zu erhöhen, ist das Kühlfluid eine leicht flüchtige Substanz . Dadurch kann besonders effektiv und effizient gekühlt werden. Ein Kondensator, der als separater Kühler eines Fahrzeugs ausgebildet ist oder bereits in einem Kühler eines Fahrzeugs integriert ist, kann vorteilhaft zur Kühlung des elektrome- chanischen Wandlers - elektrischen Antriebs - des Fahrzeugs selbst verwendet werden. Dadurch kann Bauraum und Gewicht beim Fahrzeug eingespart werden. To increase the effectiveness of the cooling, the cooling fluid is a volatile substance. This can be cooled particularly effectively and efficiently. A condenser, which is designed as a separate radiator of a vehicle or is already integrated in a radiator of a vehicle, can advantageously be used for cooling the electromechanical converter - electric drive - of the vehicle itself. As a result, space and weight can be saved in the vehicle.
In einer weiteren bevorzugten Ausführungsform ist der Kondensator des elektromechanischen Wandlers - elektrischen Antriebs - als separater Kühler eines Flugzeugs ausgebildet oder in einem bereits vorhandenen Kühler eines Flugzeugs integriert . Hierbei kann beim Bauraum des Flugzeugs eingespart werden und gleichzeitig Gewicht reduziert werden. In a further preferred embodiment, the capacitor of the electromechanical transducer - electric drive - is designed as a separate radiator of an aircraft or integrated in an existing radiator of an aircraft. This can be saved in the space of the aircraft and at the same weight can be reduced.
Im Folgenden werden die Erfindung und beispielhafte Ausführungsformen anhand einer Zeichnung näher erläutert. In the following the invention and exemplary embodiments will be explained in more detail with reference to a drawing.
Es zeigen: Show it:
FIG 1 einen elektromechanischen Wandler mit einer integrierten hohlen Leitung zum Kühlen, gemäß einer Ausführungsform der Erfindung; FIG 2 eine Prinzipskizze einer Strahlpumpe zum Kühlen eines elektromechanischen Wandlers gemäß einer Ausführungsform der Erfindung und deren Implementation . In FIG 1 wird ein elektromechanischer Wandler 1 gemäß einer1 shows an electromechanical transducer with an integrated hollow conduit for cooling, according to an embodiment of the invention; 2 shows a schematic diagram of a jet pump for cooling an electromechanical transducer according to an embodiment of the invention and its implementation. In Figure 1, an electromechanical transducer 1 according to a
Ausführungsform der Erfindung gezeigt. Der elektromechanische Wandler 1 ist in der in FIG 1 dargestellten Ausführungsform als elektrischer Antrieb ausgebildet. Vereinfacht werden dabei die wesentlichen Komponenten des elektromechanischen Wandlers 1 gezeigt. Dabei handelt es sich um einen auf einer Welle 8 befindlichen Rotor 6 der innerhalb eines Stators 7 drehbar gelagert ist, wobei die einzelnen Komponenten in einem Gehäuse 9 aufgenommen sind. Beim Betrieb des elektromechanisehen Wandlers 1 treten Verlustleistungen auf, die zu einer Erwärmung der einzelnen Komponenten führen und dadurch den Wirkungsgrad des elektrome- chanischen Wandlers 1 vermindern. Um dem entgegenzuwirken ist bei dieser Ausführungsform der Stator 7 mit hohlen Leitungen 4 versehen, die zur Aufnahme und Leitung eines Kühlfluids 5 geeignet sind. In der FIG 1 wird vereinfachend nur eine hohle Leitung 4 dargestellt, um die Funktionsweise einer Kühlung des elektromechanischen Wandlers 1 zu veranschaulichen. Embodiment of the invention shown. The electromechanical transducer 1 is formed in the embodiment shown in FIG 1 as an electric drive. Simplified while the essential components of the electromechanical transducer 1 are shown. It is a located on a shaft 8 rotor 6 which is rotatably mounted within a stator 7, wherein the individual components are accommodated in a housing 9. During operation of the electromechanical transducer 1, power losses occur which lead to heating of the individual components and thereby reduce the efficiency of the electromechanical converter 1. To counteract this, the stator 7 is provided in this embodiment with hollow lines 4, which are suitable for receiving and guiding a cooling fluid 5. In FIG. 1, for the sake of simplification, only a hollow line 4 is shown in order to illustrate the mode of operation of a cooling of the electromechanical converter 1.
Um eine möglichst hohe und gleichmäßige Kühlung des elektromechanischen Wandlers 1 zu ermöglichen, kann der elektrome- chanische Wandler 1 gemäß einer weiteren Ausführungsform der Erfindung bei mehreren oder allen Komponenten des elektromechanischen Wandlers 1 hohle Leitungen 4 zur Aufnahme des Kühlfluids 5 aufweisen. Die hohle Leitung 4 verfügt über einen Einlass 2 und einen Auslass 3, durch welche ein Kühl- fluid 5 einer hohlen Leitung 4 zu- bzw. abgeführt wird. Dabei übernimmt die hohle Leitung 4 die Funktion eines Verdampfers 10 zur Aufnahme von Wärmeenergie aus dem elektromechanischen Wandler 1 mittels des darin befindlichen Kühlfluids 5. Über den Einlass 2 bzw. den Auslass 3 ist die als Verdampfer 10 wirkende hohle Leitung 4 an einen Kreislauf angeschlossen, dessen weitere Komponenten sich zu einer Kompressionskältemaschine ergänzen. In order to enable a very high and uniform cooling of the electromechanical transducer 1, the electromechanical transducer 1 according to a further embodiment of the invention in several or all components of the electromechanical transducer 1 hollow lines 4 for receiving the cooling fluid 5 have. The hollow conduit 4 has an inlet 2 and an outlet 3, through which a cooling fluid 5 is supplied to or removed from a hollow conduit 4. The hollow line 4 assumes the function of an evaporator 10 for receiving heat energy from the electromechanical transducer 1 by means of the cooling fluid 5 therein. Via the inlet 2 and the outlet 3, the hollow line 4 acting as the evaporator 10 is connected to a circuit. whose other components complement each other to form a compression refrigeration machine.
Anhand der Pfeile in FIG 1 wird die Richtung eines Kreislaufs veranschaulicht, bei dem das Kühlfluid 5 nacheinander ver- schiedene Aggregatszustandänderungen durchläuft. Dabei wird das von dem elektromechanischen Wandler 1 in seiner hohlen Leitung 4 erhitze Kühlfluid 5 über den Auslass 3 einem Kompressor 11 zugeführt, der das Kühlfluid 5 komprimiert - verflüssigt - und an einen Kondensator 12 weiterleitet, bei dem das Kühlfluid 5 unter Wärmeabgabe abgekühlt wird. Anschließend wird das Kühlfluid 5 über eine Drossel 13 expandiert, wobei das Kühlfluid 5 wieder in einen gasförmigen Zustand übergeführt wird. In einem weiteren Schritt wird das gekühlte Fluid 5 über einen Einlass 2 erneut der als Verdampfer 10 wirkenden hohlen Leitung 4 zugeführt. Das Kühlfluid 5 kann nun erneut Wärmeenergie des elektromechanischen Wandlers 1 aufnehmen. Damit beginnt der oben beschriebene Kreislauf von vorn . The direction of a cycle is illustrated by the arrows in FIG. 1, in which the cooling fluid 5 successively undergoes different changes of state of aggregation. The heated from the electromechanical transducer 1 in its hollow line 4 cooling fluid 5 via the outlet 3 to a compressor 11 which compresses the cooling fluid 5 - liquefied - and passes on to a condenser 12, in which the cooling fluid 5 is cooled with heat release. Subsequently, the cooling fluid 5 is expanded via a throttle 13, wherein the cooling fluid 5 is again converted into a gaseous state. In a further step, the cooled Fluid 5 again supplied via an inlet 2 of the evaporator 10 acting as hollow line 4. The cooling fluid 5 can now absorb heat energy of the electromechanical transducer 1 again. This starts the cycle described above from the beginning.
Um den Kreislauf am Laufen zu halten, ist die Zufuhr von mechanischer Arbeit über den Kompressor 11 notwendig. Dabei ist die zur mechanischen Arbeit notwendige Energie geringer als die durch die Kühlung des elektromechanischen Wandlers 1 gewonnene Energie. To keep the circuit running, the supply of mechanical work via the compressor 11 is necessary. The energy required for mechanical work is less than the energy obtained by the cooling of the electromechanical transducer 1.
FIG 2 zeigt eine weitere Ausführungsform der Erfindung, wobei im darin dargestellten Fall die Kühlung des Kühlfluids 5 mit- tels einer Strahlpumpe 14 erfolgt. Vereinfachend wird in FIG 2 lediglich die als Verdampfer 10 wirkende hohle Leitung 4 zur Aufnahme von Wärmeenergie aus dem elektromechanischen Wandler 1 mittels eines Kühlfluids 5 gezeigt. Dabei ist die Strahlpumpe 14 eine Pumpe, in der die Pumpwirkung durch einen weiteren Fluidstrahl hier einem Treibmedium erzeugt wird, der durch Impulsaustausch ein anderes Medium hier das Kühlfluid 5 ansaugt, beschleunigt und verdichtet/fördert. Die Strahlpumpe 14 ist sehr einfach aufgebaut und deswegen besonders robust, wartungsarm und vielseitig einsetzbar. In der vorliegenden Ausführungsform wird als Treibmedium 15 eine ionische Flüssigkeit verwendet. Ionische Flüssigkeiten weisen einen äußert geringen Dampfdruck auf und ermöglichen dadurch der Strahlpumpe 14 besonders tiefe Drücke - Saugdrücke - zu erreichen. Das Treibmedium 15 wird mit sehr hoher Geschwindigkeit durch die Strahlpumpe 14 getrieben, wobei in der Strahlpumpe ein2 shows a further embodiment of the invention, wherein in the case illustrated therein, the cooling of the cooling fluid 5 by means of a jet pump 14 takes place. 2, only the hollow line 4 acting as evaporator 10 for receiving heat energy from the electromechanical converter 1 by means of a cooling fluid 5 is shown in FIG. In this case, the jet pump 14 is a pump in which the pumping action is generated by a further fluid jet here a propellant, which sucks the coolant fluid 5 by pulse exchange another medium here, accelerated and compressed / promotes. The jet pump 14 is very simple and therefore very robust, low maintenance and versatile. In the present embodiment, an ionic liquid is used as the driving medium 15. Ionic liquids have an extremely low vapor pressure and thus allow the jet pump 14 to achieve particularly low pressures - suction pressures. The driving medium 15 is driven at very high speed by the jet pump 14, wherein in the jet pump
Unterdruck entsteht, der das in der als Verdampfer 10 wirkenden hohlen Leitung 4 erhitze Kühlfluid 5 aus der hohlen Leitung 4 des elektromechanischen Wandlers 1 heraussaugt und zusammen mit dem Treibmedium 15 einem Kondensator 12 zuführt. Dadurch, dass das Kühlfluid 5 - eine leicht flüchtige Substanz ist - wird diese aus dem Verdampfer 10 angesaugt. Die zum Verdampfen nötige Wärmeenergie wird einem Kühlfluid im Verdampfer 10, entzogen wobei sich das Kühlfluid bzw. der elektromechanischen Wandler 1 abkühlt. Negative pressure is created, which sucks in the acting as evaporator 10 hollow line 4 heated cooling fluid 5 from the hollow line 4 of the electromechanical transducer 1 and fed together with the driving medium 15 a capacitor 12. Characterized in that the cooling fluid 5 - is a volatile substance - it is sucked from the evaporator 10. The necessary for evaporation heat energy is a cooling fluid in the Evaporator 10, withdrawn with the cooling fluid or the electromechanical transducer 1 cools.
In dem Kondensator 12 wird der Dampf verflüssigt und das ent- standene Gemisch aus Kühlfluid 5 und Treibmedium 15 anschließend über eine Drossel 13 entspannt. Anschließend wird das Gemisch dem Verdampfer 10 erneut über den Einlass 2 zugeführt. Im Verdampfer 10 erfolgt dann durch Verdampfen wieder die Trennung des Kühlfluids 5 von dem Treibmedium 15. An- schließend beginnt der Kreislauf von vorn. Diese Art der Kühlung benötigt keinen Kompressor sondern nur eine Vergleichs- mäßig einfache Pumpe bzw. Strahlpumpe 14. Dadurch erlaubt die in FIG 2 dargestellte Ausführungsform höhere Kostenersparnisse beim Betrieb. In the condenser 12, the vapor is liquefied and the resulting mixture of cooling fluid 5 and propellant medium 15 is subsequently expanded via a throttle 13. Subsequently, the mixture is supplied to the evaporator 10 again via the inlet 2. The separation of the cooling fluid 5 from the propellant medium 15 then takes place again in the evaporator 10 by evaporation. The cycle then begins again from the beginning. This type of cooling requires no compressor but only a comparatively simple pump or jet pump 14. Thus, the embodiment shown in FIG 2 allows higher cost savings during operation.
Vorzugsweise werden die in FIG 1 und FIG 2 dargestellten Kondensatoren 12 als Teil eines Fahrzeugs oder Flugzeugs realisiert. Beispielsweise kann ein Kondensator 12 am Rumpf eines Flugzeugs befestigt werden und dabei von der Umgebungsluft gekühlt werden - hier nicht gezeigt. Preferably, the capacitors 12 shown in FIG. 1 and FIG. 2 are realized as part of a vehicle or aircraft. For example, a capacitor 12 may be attached to the fuselage of an aircraft and thereby cooled by the ambient air - not shown here.
Im Falle eines Fahrzeugs wird der Kondensator 12 ein Fahrzeugkühler sein. Auf diese Weise ist es möglich, den elektromechanischen Wandler 1 weit unterhalb einer Umgebungstempera- tur abzukühlen. Die dazu benötigte Energie fällt weniger ins Gewicht als die Ersparnis, die sich aus der Effizienzerhöhung des elektromechanischen Wandlers 1 ergibt. Eine eventuelle Massenzunahme aufgrund des Kompressors 12 kann durch eine kleinere und kompaktere Bauweise des elektromechanischen Wandlers 1 kompensiert werden. In the case of a vehicle, the condenser 12 will be a vehicle radiator. In this way it is possible to cool the electromechanical transducer 1 well below an ambient temperature. The energy required for this is less significant than the savings resulting from the increase in efficiency of the electromechanical transducer 1. A possible increase in mass due to the compressor 12 can be compensated by a smaller and more compact design of the electromechanical transducer 1.

Claims

Patentansprüche claims
1. Elektromechanischer Wandler (1), insbesondere für Flug- und Fahrzeugantriebe, welcher zumindest einen Einlass (2) und einen Auslass (3) für zumindest eine hohle Leitung (4) zur Aufnahme eines Kühlfluids (5) aufweist, 1. Electromechanical converter (1), in particular for aircraft and vehicle drives, which has at least one inlet (2) and an outlet (3) for at least one hollow conduit (4) for receiving a cooling fluid (5),
wobei die hohle Leitung (4) in oder an einem Rotor (6) und/oder einem Stator (7) und/oder einer Welle (8) und/oder einem Gehäuse (9) des elektromechanischen Wandlers (1) anordenbar ist, und wherein the hollow duct (4) can be arranged in or on a rotor (6) and / or a stator (7) and / or a shaft (8) and / or a housing (9) of the electromechanical transducer (1), and
wobei die hohle Leitung (4) als Verdampfer (10) zur Aufnahme von Wärmeenergie aus dem elektromechanischen Wandler (1) mittels des Kühlfluids (5) eingerichtet ist. wherein the hollow conduit (4) is arranged as an evaporator (10) for receiving heat energy from the electromechanical transducer (1) by means of the cooling fluid (5).
2. Elektromechanischer Wandler (1) nach Anspruch 1, 2. Electromechanical transducer (1) according to claim 1,
dadurch gekennzeichnet, dass der elektromechanische Wandler (1) eingerichtet ist, über den Auslass (3) der Leitung (4) das Kühlfluid zum Komprimieren an einen Kompressor (11) zu leiten, der das Kühlfluid (5) zur Wärmeabgabe einem Kondensa- tor (12) zuführt, von dem es anschließend an eine Drosselcharacterized in that the electromechanical transducer (1) is arranged to lead, via the outlet (3) of the conduit (4), the cooling fluid for compression to a compressor (11) which supplies the cooling fluid (5) for heat release to a capacitor (5). 12), from which it is then connected to a throttle
(13) zum Expandieren weiter leitbar ist, und von der Drossel (13) erneut über den Einlass der als Verdampfer (10) wirkenden hohlen Leitung (4) des elektromechanischen Wandlers (1) zur Aufnahme von Wärmeenergie zuführbar ist. (13) is further conductive for expanding, and from the throttle (13) via the inlet of the evaporator (10) acting as hollow line (4) of the electromechanical transducer (1) for receiving heat energy can be supplied.
3. Elektromechanischer Wandler (1) nach Anspruch 1, 3. Electromechanical transducer (1) according to claim 1,
dadurch gekennzeichnet, dass characterized in that
der elektromechanische Wandler (1) eingerichtet ist, über den Auslass (3) der Leitung (4) das Kühlfluid (5) mittels einer Strahlpumpe (14) zu entnehmen, the electromechanical converter (1) is arranged to remove the cooling fluid (5) via the outlet (3) of the conduit (4) by means of a jet pump (14),
indem mittels eines beschleunigten Treibmediums (15) der Strahlpumpe (14) ein Unterdruck erzeugbar ist und dadurch das sich expandierende Kühlfluid (5) über den Auslass (3) in that an underpressure can be generated by means of an accelerated propellant medium (15) of the jet pump (14) and thereby the expanding cooling fluid (5) via the outlet (3)
ansaugbar ist, is sucked,
und wobei das angesaugte Kühlfluid (5) mit dem Treibmediumand wherein the sucked cooling fluid (5) with the driving medium
(15) von der Strahlpumpe (14) einem Kondensator (12) zum Abkühlen zuführbar ist, von dem es anschließend erneut über den Einlass (2) der hohlen Leitung (4) zum Verdampfer/n (10) zuführbar ist. (15) from the jet pump (14) can be supplied to a condenser (12) for cooling, from which it then again over the Inlet (2) of the hollow conduit (4) to the evaporator / n (10) can be fed.
4. Elektromechanischer Wandler (1) nach Anspruch 3, 4. Electromechanical transducer (1) according to claim 3,
dadurch gekennzeichnet, dass das Treibmedium (15) der Strahlpumpe (14) eine ionische Flüssigkeit ist. characterized in that the driving medium (15) of the jet pump (14) is an ionic liquid.
5. Elektromechanischer Wandler nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Kühlfluid (5) eine leicht flüchtige Substanz ist. 5. Electromechanical transducer according to one of claims 1 to 4, characterized in that the cooling fluid (5) is a volatile substance.
6. Elektromechanischer Wandler (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Kondensator (12) als separater Kühler eines Fahrzeugs ausgebildet ist oder in einem Kühler eines Fahrzeugs integriert ist. 6. Electromechanical converter (1) according to one of claims 1 to 5, characterized in that the capacitor (12) is designed as a separate radiator of a vehicle or is integrated in a radiator of a vehicle.
7. Elektromechanischer Wandler (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Kondensator (12) als separater Kühler eines Flugzeugs ausgebildet ist oder in einem Kühler eines Flugzeugs integriert ist. 7. Electromechanical converter (1) according to one of claims 1 to 5, characterized in that the capacitor (12) is designed as a separate cooler of an aircraft or is integrated in a radiator of an aircraft.
PCT/EP2013/073167 2012-11-12 2013-11-06 Cooling system for electromechanical transducer WO2014072341A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012220557.8A DE102012220557A1 (en) 2012-11-12 2012-11-12 Cooling for electromechanical transducers
DE102012220557.8 2012-11-12

Publications (2)

Publication Number Publication Date
WO2014072341A2 true WO2014072341A2 (en) 2014-05-15
WO2014072341A3 WO2014072341A3 (en) 2015-01-22

Family

ID=49622786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/073167 WO2014072341A2 (en) 2012-11-12 2013-11-06 Cooling system for electromechanical transducer

Country Status (2)

Country Link
DE (1) DE102012220557A1 (en)
WO (1) WO2014072341A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117895703A (en) * 2024-03-15 2024-04-16 常州天安尼康达电器有限公司 Alternating current motor with intelligent adjustable heat dissipation function

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016222850B4 (en) * 2016-11-21 2023-01-19 AUDI HUNGARIA Zrt. Electric machine and motor vehicle
DE102017006402A1 (en) 2017-07-06 2018-02-15 Daimler Ag Electrical machine, in particular for a motor vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB724456A (en) * 1952-04-18 1955-02-23 Westinghouse Electric Int Co Improvements in or relating to dynamo-electric machines
US3422635A (en) * 1967-03-21 1969-01-21 Bbc Brown Boveri & Cie Lubricating and cooling system for electric motors
US3866438A (en) * 1973-10-29 1975-02-18 Carrier Corp Motor cooling apparatus utilizing a refrigerant flow circuit
DE3031421A1 (en) * 1980-08-18 1982-02-25 Siemens AG, 1000 Berlin und 8000 München Electrical machine cooling circuit with heat recovery - using closed heat pump circuit with cooling channels acting as evaporator
DE8110016U1 (en) * 1981-04-03 1981-09-17 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt "SPRAY-COOLED GENERATOR"
US5240069A (en) * 1992-07-06 1993-08-31 The United States Of America As Represented By The Secretary Of The Air Force Integral cooling system for a jet engine integral starter/generator and the like
DE10244428A1 (en) * 2002-09-24 2004-06-17 Siemens Ag Electrical machine with a cooling device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117895703A (en) * 2024-03-15 2024-04-16 常州天安尼康达电器有限公司 Alternating current motor with intelligent adjustable heat dissipation function
CN117895703B (en) * 2024-03-15 2024-05-14 常州天安尼康达电器有限公司 Alternating current motor with intelligent adjustable heat dissipation function

Also Published As

Publication number Publication date
WO2014072341A3 (en) 2015-01-22
DE102012220557A1 (en) 2014-05-15

Similar Documents

Publication Publication Date Title
EP2025906B1 (en) Power transmission, in particular vehicle power transmission
DE102011012584B4 (en) Vehicle exhaust heat recovery system
DE102010061004A1 (en) Integrated cooling system for a vehicle
DE102016006682B4 (en) Method for operating an air conditioning system of an electric or hybrid vehicle and air conditioning system for carrying out the method
DE102011000796A1 (en) Air conditioning system for internal combustion engine of hybrid vehicle, has compressors arranged parallel to each other, where compressor of engine and compressor of electromotor are driven, and common capacitor attached to compressors
EP3390127A1 (en) Drive train for a vehicle
DE102016109274A1 (en) Cooling system for cooling an electrical machine
WO2012150070A1 (en) Method for conditioning a heat/refrigeration accumulator, and vehicle having a heat/refrigeration accumulator
DE102012220559A1 (en) Cooling for electric generators
EP2430730A2 (en) Electric drive system
DE102013012938A1 (en) Heat exchanger-type cooling device for a transformer
DE102009012324A1 (en) Electrical machine e.g. motor, has rotatable shaft with cavity for receiving refrigerant, vaporizer unit arranged within rotor, and condenser unit arranged outside of rotor for condensation of refrigerant
DE102019131731A1 (en) Generator arrangement for hybrid vehicle
DE102013003015B4 (en) Heat pump and air conditioning system for vehicles with such a heat pump and method for operating the same
WO2014072341A2 (en) Cooling system for electromechanical transducer
DE102011108020A1 (en) Device for thermal coupling of e.g. motor cooling circuits of internal combustion engine in vehicle, has heat exchangers for thermally coupling cooling circuits with beam refrigerant circuit
EP2884060B1 (en) Device and method for operating volumetric expansion machines
DE102018003353A1 (en) Electric machine for a motor vehicle, in particular for a passenger car
WO2018104002A1 (en) System and method for energy recovery in industrial facilities
DE102019132816A1 (en) Thermal management system for a motor vehicle and motor vehicle with one
DE843269C (en) Cooling device for generators driven by steam turbines
DE102007056201A1 (en) Hybrid vehicle, has cooling and/or heating device for cooling and/or heating interior space of vehicle and including hybrid drive train with internal combustion engine and electric machine, where device is operated by electric machine
DE102020202447A1 (en) Fuel cell system
DE102019001161A1 (en) Refrigerant compressor and method for operating a refrigerant compressor
DE102019119311A1 (en) Propulsion system for an electric vehicle and electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13792863

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 13792863

Country of ref document: EP

Kind code of ref document: A2