WO2014071877A1 - Al-Fe-RE铝合金及其制备方法和电力电缆 - Google Patents
Al-Fe-RE铝合金及其制备方法和电力电缆 Download PDFInfo
- Publication number
- WO2014071877A1 WO2014071877A1 PCT/CN2013/086823 CN2013086823W WO2014071877A1 WO 2014071877 A1 WO2014071877 A1 WO 2014071877A1 CN 2013086823 W CN2013086823 W CN 2013086823W WO 2014071877 A1 WO2014071877 A1 WO 2014071877A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum alloy
- aluminum
- alloy
- temperature
- ingot
- Prior art date
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 172
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 230000032683 aging Effects 0.000 claims abstract description 47
- 238000000137 annealing Methods 0.000 claims abstract description 26
- 238000005266 casting Methods 0.000 claims abstract description 20
- 229910052782 aluminium Inorganic materials 0.000 claims description 50
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 49
- 230000005684 electric field Effects 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 22
- 238000000265 homogenisation Methods 0.000 claims description 18
- 229910052742 iron Inorganic materials 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 10
- 239000010410 layer Substances 0.000 claims description 9
- 239000011241 protective layer Substances 0.000 claims description 5
- 229910052772 Samarium Inorganic materials 0.000 claims description 4
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 3
- 229910052693 Europium Inorganic materials 0.000 claims description 3
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 3
- 229910052689 Holmium Inorganic materials 0.000 claims description 3
- 229910052765 Lutetium Inorganic materials 0.000 claims description 3
- 229910052771 Terbium Inorganic materials 0.000 claims description 3
- 229910052775 Thulium Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 21
- 238000005096 rolling process Methods 0.000 abstract description 11
- 239000000956 alloy Substances 0.000 description 76
- 229910045601 alloy Inorganic materials 0.000 description 70
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 61
- 229910052761 rare earth metal Inorganic materials 0.000 description 34
- 238000007670 refining Methods 0.000 description 25
- 150000002910 rare earth metals Chemical class 0.000 description 20
- 239000002893 slag Substances 0.000 description 20
- 238000003756 stirring Methods 0.000 description 18
- 239000007788 liquid Substances 0.000 description 16
- 239000013078 crystal Substances 0.000 description 14
- 239000012071 phase Substances 0.000 description 14
- 238000011056 performance test Methods 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 150000002736 metal compounds Chemical class 0.000 description 10
- 229910018084 Al-Fe Inorganic materials 0.000 description 9
- 229910018192 Al—Fe Inorganic materials 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 238000005452 bending Methods 0.000 description 8
- 239000000155 melt Substances 0.000 description 8
- 238000010309 melting process Methods 0.000 description 8
- -1 rare earth compounds Chemical class 0.000 description 8
- 230000003068 static effect Effects 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 238000005275 alloying Methods 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 229910052684 Cerium Inorganic materials 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 238000007872 degassing Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910017134 AlSm Inorganic materials 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000005864 Sulphur Substances 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 238000005491 wire drawing Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical group [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
- H01B1/023—Alloys based on aluminium
Definitions
- Al-Fe-RE aluminum alloy, preparation method thereof and power cable The present application is filed on November 9, 2012, the Chinese Patent Office, the application number is 201210445323.2, and the invention name is "Al-Fe-RE aluminum alloy and its preparation method and Priority of the Chinese Patent Application for Power Cables, the entire contents of which is incorporated herein by reference.
- the invention relates to the field of alloy technology, in particular to an Al-Fe-RE aluminum alloy, a preparation method thereof and a power cable. Background technique
- Aluminum alloy is one of the most widely used non-ferrous metal structural materials in the industry and is widely used in aviation, aerospace, automotive, machinery manufacturing, marine and chemical industries. With the rapid development of science and technology and the industrial economy, the demand for aluminum alloys is increasing, and the research on aluminum alloys is also deepening. The wide application of aluminum alloys has promoted the development of aluminum alloys in the power industry, while the development of the power industry has expanded the application fields of aluminum alloys.
- a power cable is a resource used to transport and distribute electrical energy. Its basic structure consists of a core, an insulating layer, a shielding layer, and a protective layer.
- the core is a conductive part of the power cable for transmitting electrical energy, which is a main part of the power cable;
- the insulating layer separates the core from the earth and the cores of different phases in electrical terms to ensure electrical energy transmission, which is An indispensable component of the power cable structure;
- the protective layer protects the power cable from external impurities and moisture, and prevents external forces from directly damaging the power cable.
- Copper is widely used in the core of power cables due to its good electrical conductivity. However, with the increasing shortage of copper resources and the high content of aluminum, the replacement of copper with aluminum has attracted the attention of researchers. Therefore, aluminum alloy as a cable conductor has become a research hotspot.
- the replacement of copper cables by aluminum alloy power cables has gradually become a trend and has been widely used.
- the aluminum alloy conductor material in the prior art is excellent in electrical properties, corrosion resistance and mechanical properties, but is still inferior in fatigue resistance, and thus is prone to quality problems, affecting the service life of the aluminum alloy material or As a result of safety hazards, the overall performance of aluminum alloy power cables is still poor. Summary of the invention
- the technical problem solved by the present invention is to provide an aluminum alloy for a power cable and a preparation method thereof which have better comprehensive performance.
- an Al-Fe-RE aluminum alloy comprising:
- it comprises 0.25 to 0.6% by weight of Fe.
- 0.1 to 0.6 wt% of RE is included.
- the RE is one or more of Pm, Sm, Eu, Gd, Tb, Dy, Ho, Tm and Lu.
- the invention provides a preparation method of an Al-Fe-RE aluminum alloy, comprising the following steps: a) casting an aluminum alloy ingot of the following composition: 0.01 ⁇ 1.6wt. / ( ⁇ Fe, 0.01 ⁇ 3.0wt% RE and the balance of aluminum;
- step c) subjecting the aluminum alloy rod obtained in step b) to intermittent annealing treatment
- step c) The aluminum alloy rod obtained in the step c) is subjected to aging treatment to obtain an aluminum alloy.
- the temperature of the homogenization treatment is 450 to 550 ° C
- the time of the homogenization treatment is 6 to 16 h
- the temperature increase rate of the homogenization treatment is 3 to 8 ° C/min.
- the step c) is specifically:
- the aluminum alloy rod obtained in the step b) is heated to 280 ⁇ 350 °C, and after being kept for 2 ⁇ 8h, the temperature is lowered, the temperature is lowered to 150 ⁇ 200 °C, and the temperature is kept for 2 ⁇ 4 hours and then cooled.
- the aging treatment is carried out in a uniform electric field having an electric field intensity of 5 to 15 kV/cm.
- the aging treatment temperature is 250 to 320 ° C, and the aging treatment time is 4 to 20 hours.
- the present invention also provides a power cable comprising a core, an insulating layer, a shielding layer and a protective layer, the core being the aluminum alloy described in the above scheme or the aluminum alloy prepared by the above scheme.
- the present invention provides an Al-Fe-RE aluminum alloy comprising: 0.01 to 1.6% by weight of Fe, 0.01 to 3.0% by weight of RE and the balance of aluminum.
- the invention is based on aluminum, adding iron in quantity, aluminum can form Al 3 Fe with iron, and precipitated Al 3 Fe dispersed particles inhibit creep deformation of the alloy, and part of Fe forms and precipitates AlFeRE compound with RE, and precipitates phase AlFeRE It can enhance the fatigue resistance of the alloy and the heat resistance of high temperature operation, and the precipitation phase of rare earth compounds can also increase the yield strength; the affinity of rare earth elements for oxygen, sulphur, nitrogen and hydrogen is 4, so it deoxidizes and desorbs Shike, the role of removing hydrogen and nitrogen is very strong, rare earth is a surface active element, can be concentrated in the crystal interface, reduce the tension between the phase and phase, so that the grain refinement, through the selection of alloying elements and The control of the content is beneficial to the improvement of the comprehensive performance of the aluminum alloy.
- the invention also provides a preparation method of an Al-Fe-RE aluminum alloy, which is firstly homogenized by an ingot, homogenized to make the ingot uniformly heated, and the microstructure of the alloy is optimized;
- the aluminum alloy ingot is rolled into a rod material for intermittent annealing treatment to eliminate internal stress and damage to the structure during machining, optimize the crystal structure, restore the electrical properties of the wire, optimize the mechanical properties, and stretch the material.
- the performance, flexibility and fatigue resistance are well matched; the annealed aluminum alloy rod is aged in the uniform electric field, and the performance of the whole material can be uniformly distributed by aging treatment. Performance comprehensive indicators achieve a good match.
- the invention optimizes the preparation method of the aluminum alloy, maintains a good matching of the tensile properties, flexibility properties, electrical properties, corrosion resistance and fatigue resistance of the material, and achieves uniform distribution of the properties of the whole material, thereby obtaining Aluminium alloy with better comprehensive performance.
- the embodiment of the invention discloses an Al-Fe-RE aluminum alloy, comprising:
- iron is a characteristic microalloying element. Since aluminum can form Al 3 Fe with iron, the precipitated Al 3 Fe dispersed particles suppress creep deformation of the alloy and improve the stability of the joint. Fe can increase the tensile strength, yield limit and heat resistance of the aluminum base, and at the same time improve the plasticity of the alloy.
- part of Fe in the alloy precipitates as Al 3 Fe, part of Fe and RE form AlFeRE compound, and after high temperature annealing, the solid solution of Fe in aluminum is smaller, then Fe to alloy
- the electrical properties have little effect; however, these dispersed precipitates can enhance the fatigue resistance of the alloy and the heat resistance of high temperature operation, and the precipitation phase of the rare earth compound can also increase the yield strength.
- the content of Fe in the alloy is less than 0.01 wt%.
- the aluminum base has little change in properties and cannot be effective. Therefore, the Fe content cannot be less than 0.01 wt%, but the Fe content cannot be too high. If it exceeds 1.6 wt%, the aluminum base electrical properties are weakened more obviously.
- the use of cable conductors, cable accessories and electrical appliances has an impact, so the overall content is controlled below 1.2 wt%, and the effect is good.
- the Fe content is 0.01 to 1.6% by weight, preferably 0.20 to 1.0% by weight, more preferably 0.25 to 0.6% by weight, still more preferably 0.30 to 0.45% by weight.
- the invention adds a rare earth element to the aluminum alloy, and the rare earth element can improve the electrical conductivity of the alloy, because the rare earth element can refine the crystal grains and form a stable compound with Fe in the alloy, precipitate out from the crystal, and lower the electrolyte.
- the primary crystal temperature accelerates the movement of ions under the action of an electric field, reduces the concentration overpotential, and lowers the resistivity of the aluminum alloy.
- rare earth elements have more affinity with elements such as hydrogen, oxygen and nitrogen than aluminum, forming a variety of compounds. Therefore, rare earth is a kind of degassing, denitrification, slagging, neutralization and low-melting impurities in the alloy, and changes.
- the impurity state purifier can perform a better refining action, making the alloy more pure, so that the electrical resistivity is greatly improved, and the electrical conductivity can reach 60% IACS.
- the rare earth element can form a dense oxide film structure, which has an excellent effect on improving the oxidizing property and electrochemical corrosion resistance of the alloy, and improves the service life of the aluminum alloy.
- the rare earth is a surface active element, which can be concentratedly distributed at the crystal interface, and the tensile force between the phase and the phase is lowered, so that the work for forming the critical size crystal nucleus is reduced, and the number of crystal nuclei is increased, thereby refining the crystal grains.
- Fe forms complex aluminum-iron rare earth metal with RE in A1, which improves the fatigue limit and yield limit of the alloy, and increases the use effect of the alloy in practical applications. Service life.
- the rare earth element RE is lanthanum (La), cerium (Ce), praseodymium (Pr), cerium (Nd), cerium (Pm), strontium (Sm), cerium (Eu), 1 (Gd), strontium (Tb) , ⁇ ( Dy ), ⁇ ( Ho ), One or more of ⁇ (E), ⁇ (Tm), ⁇ (Yb), ⁇ (Lu), ⁇ (S), and ⁇ (Y), preferably Pm, Sm, Eu, Gd, Tb, Dy One or more of Ho, Tm, and Lu.
- the rare earth Pm forms six active metal compounds such as Al u Pm 3 to AlPm 2 in the alloy; and the rare earth Sm forms active metal compounds such as Al u Sm 4 , Al 3 Sm, Al 2 Sm, AlSm, AlSm 3 in the alloy; formation of Eu EuAl 4, EuAl 2, EuAl other active metal compound in the alloy; of Gd formed Al 4 Gd ⁇ Al 17 Gd 2 7 kinds of refractory metal compound in the alloy; Al is formed on the rare earth alloy Tb Tb.
- refractory active metal compound such as Al 2 Tb, AlTb, AlTb 2 , AlTb 3 ; rare earth Dy forms 8 kinds of refractory active metal compounds such as Al 5 Dy ⁇ Al 17 Dy 2 in the alloy; rare earth Ho forms ⁇ 1 5 in the alloy ⁇ 3 , ⁇ 1 3 ⁇ , ⁇ 1 ⁇ 2 , ⁇ 1 ⁇ 3 and other refractory active metal compounds; rare earth Tm forms refractory active metal compounds such as Al 3 Tm 2 , Al 3 Tm, AlTm, AlTm 3 in the alloy; A refractory active metal compound such as Al 7 Lu 3 , Al 5 Lu 3 , Al 2 Lu 3 , AlLu 2 or AlLu 3 is formed.
- the above-mentioned high melting point active metal compound is dispersed in the intergranular and dendritic crystals which are in the form of a network or a skeleton, and is firmly bonded to the matrix, thereby reinforcing and stabilizing the grain boundary.
- the element Fe in the molten metal can be neutralized to form a high melting point compound or uniformly distributed from the entire crystal structure between the dendrites, thereby eliminating the dendrite structure and improving the overall performance of the alloy material.
- the rare earth element is contained in an amount of from 0.01 to 3.0% by weight, preferably from 0.03 to 2.5% by weight, more preferably from 0.05 to 1.5% by weight, most preferably from 0.1 to 0.6% by weight.
- the pure aluminum of the industrial A199.70 can be used, so that the aluminum alloy prepared by the invention has the advantages of sufficient raw material supply, low cost, convenient procurement, and the like;
- the aluminum alloy prepared by the invention has the advantages of sufficient raw material supply, low cost, convenient procurement, and the like;
- refined aluminum or high-purity aluminum has higher quality than ordinary aluminum-based materials, and the processed products have advantages in electrical properties and mechanical properties.
- the present invention also provides a method for preparing an Al-Fe-RE aluminum alloy, comprising the steps of: a) casting a raw material of the following composition to obtain an aluminum alloy ingot: 0.01 to 1.6 wt% of Fe, 0.01 to 3.0 wt% RE and balance of aluminum;
- step c) subjecting the aluminum alloy rod obtained in step b) to intermittent annealing treatment
- the step a) is a casting process, and an aluminum alloy ingot is obtained. In order to fully melt the various elements, the hooking is carried out.
- the casting process specifically includes: placing the aluminum ingot into the furnace in a closed environment.
- the furnace is refined and kept for 20 to 40 minutes to obtain an alloy liquid; the alloy liquid is degassed and slag removed, and is cast into a casting machine for casting to obtain an aluminum alloy ingot. Since aluminum is not easily burned and added in a large amount, aluminum is first added to the melting furnace, and then iron and rare earth are added.
- the alloying elements of the present invention are preferably added in the above-described order so that various elements are not smelted after loss, and various elements can be sufficiently melted and uniformly distributed.
- Step b) is a homogenization treatment stage, and the temperature of the homogenization treatment is preferably 450 ⁇ 550
- the time of the homogenization treatment is preferably 2 to 8 h, more preferably 3 to 6 h.
- the homogenization treatment of the aluminum alloy ingot can ensure that the strength and ductility of the ingot in the process of rolling the rod are well matched, thereby avoiding the destruction of the microstructure of the material by the conventional method and further affecting the processing. performance.
- the temperature increase rate of the homogenization treatment is preferably 3 to 8 ° C / min, more preferably 5 ° C / min.
- the aluminum alloy rod is then heat treated, and the aluminum alloy rod is first subjected to an annealing treatment in an annealing furnace.
- the batch annealing treatment is specifically: heating the aluminum alloy rod to 280 to 350 ° C, and after cooling for 2 to 8 hours, the temperature is lowered to 150 to 200 ° C, and the temperature is kept for 2 to 4 hours, and then cooled.
- the annealing treatment is preferably carried out under an inert atmosphere.
- the invention adopts intermittent step annealing treatment and gradually cools and cools, and the treatment method can eliminate internal stress and damage to the structure during machining, optimize crystal structure, restore electrical properties of the wire, and optimize mechanical properties. Maintain a good match between the tensile properties, flexibility and fatigue resistance of the material.
- the annealed aluminum alloy rod is subjected to aging treatment.
- the aging treatment is preferably carried out in a uniform electric field having an electric field intensity of 5 to 15 kV/cm.
- the aging treatment temperature is preferably 250 to 320 ° C, more preferably 280 to 300 ° C, and the aging treatment time is preferably 4 to 20 h, more preferably 8 to 15 h, and most preferably 10 to 13 h.
- the aging treatment on the basis of the annealing treatment technology can further compensate for the uneven heat conduction during the annealing process, resulting in uneven distribution of internal and external properties or local defects.
- the invention preferably performs aging treatment in a high-intensity uniform electric field, the first aspect changes the arrangement, matching and migration of atoms, and the second aspect improves the solid solution degree of the alloy elements, and induces uniform nucleation of the T1 phase.
- the yield strength of the alloy after the aging treatment of the homogenized sample, the precipitation phase is evenly distributed, and the mechanical properties of the alloy are greatly improved; in the third aspect, the precipitation morphology and quantity of the fine crystal structure are changed, and the solid phase transformation of the material is made.
- the orientation, size, distribution, and the like are controlled to control the organization of the material, and finally obtain excellent mechanical and electrical properties.
- the present invention provides an Al-Fe-RE aluminum alloy comprising: 0.01 to 1.6% by weight of Fe, 0.01 to 3.0% by weight of RE and the balance of aluminum.
- the invention is based on aluminum, adding iron in quantity, aluminum can form Al 3 Fe with iron, and precipitated Al 3 Fe dispersed particles inhibit creep deformation of the alloy, and part of Fe forms and precipitates AlFeRE compound with RE, and precipitates phase AlFeRE It can enhance the fatigue resistance of the alloy and the heat resistance of high temperature operation, and the precipitation phase of rare earth compounds can also increase the yield strength; the affinity of rare earth elements for oxygen, sulphur, nitrogen and hydrogen is 4, so it deoxidizes and desorbs Shike, the role of removing hydrogen and nitrogen is very strong, rare earth is a surface active element, can be concentrated in the crystal interface, reducing the tension between the phase and the phase, so that the grain refinement.
- the invention also provides a preparation method of the aluminum alloy, which firstly performs homogenization treatment by the ingot, and then the homogenized aluminum alloy ingot is rolled into a rod and then placed in an annealing furnace, and annealed, and then The aging treatment in the uniform electric field maintains a good match between the tensile properties, flexibility properties, electrical properties, corrosion resistance and fatigue resistance of the material, and the properties of the entire material are uniformly distributed, thereby obtaining a comprehensive performance. Good aluminum alloy.
- the aluminum alloy material of the invention greatly improves the heat resistance of pure aluminum by adding various alloying elements and adopting heat treatment technology, so that the long-term operating temperature of the aluminum alloy material is 200 ° C, the creep phenomenon is small, and the tensile resistance is small.
- the strength maintains a residual rate of 90%, which guarantees the mechanical operation at high temperatures.
- the performance change is small, and the fatigue resistance is also improved, the repeated bending loss of the aluminum alloy; and the flexibility of the alloy is quite good by the heat treatment technology, the bending radius of the cable installation is above the outer diameter of the cable of 4 times, The ductility of the aluminum alloy is improved, the elongation is more than 30%, the damage phenomenon is not easily caused by the tensile force, and the processing property is very good, and it is suitable for drawing monofilaments having a monofilament diameter of 0.1 mm or more.
- the present invention also provides a power cable, the power cable comprising a core, an insulating layer, a shielding layer and a protective layer, the core is an aluminum alloy, and the aluminum alloy contains 0.01 to 1.6 wt% of Fe; 3.0 wt% of RE; balance of aluminum; the preparation method of the aluminum alloy is prepared by the method according to the above scheme.
- the method for producing the power cable is not particularly limited in the present invention, and may be a method well known to those skilled in the art.
- the aluminum alloy in the above solution of the present invention can be used as the core of the power cable, and the power cable can have better comprehensive performance.
- the experimental results show that the aluminum alloy prepared by the invention has a conductivity greater than 60%, a tensile strength greater than 90 MPa, and a fracture.
- the elongation is more than 30%
- the long-term heat resistance temperature can reach 200 °C
- the residual rate of strength after heat-resistant operation test can reach 90%
- the number of repeated bending of 90 degrees reaches 34 times
- the quality loss of 400h corrosion resistance is less than 1.0.
- g/m 2 - hr the minimum bending radius is greater than
- the minimum diameter of the monofilament is greater than 0.1m.
- the alloy liquid is poured out of the furnace, and then degassed by the line, slag removal treatment, and then cast into the casting machine to obtain aluminum alloy ingots, the ingot composition is listed in the table 1 ;
- the aluminum alloy ingot obtained in the step (1) is heated at a rate of 5 ° C / min, the temperature is up to 450 ° C, and the steel rod is rolled to a rod after being kept for 6 hours;
- the rod obtained in the step (2) is annealed in an inert atmosphere, heated to 280 ° C for 2 h, and then the annealing temperature is lowered to 150 ° C for 3 h, cooled to room temperature;
- the rod obtained in the step (3) is subjected to aging treatment in a uniform electric field with an electric field intensity of 5 kV/cm, the aging temperature is 250 ° C, and the aging time is 4 h, and an aluminum alloy is obtained.
- the aluminum alloy prepared according to the above method was subjected to performance test, and the results are shown in Table 2.
- the alloy liquid After refining, slag, static, and temperature adjustment to 720 ° C, the alloy liquid is poured out of the furnace, and then degassed by the line, slag removal treatment, and then cast into a casting machine to obtain an aluminum alloy ingot, the ingot composition is listed in Table 1. ;
- the rod obtained in the step (2) is annealed in an inert atmosphere, heated to 360 ° C for 8 h, and then the annealing temperature is lowered to 200 ° C for 2 h, cooled to room temperature;
- the rod obtained in the step (3) is subjected to aging treatment in a uniform electric field having an electric field intensity of 15 kV/cm, and the aging temperature is 320 ° C and the aging time is 20 h to obtain an aluminum alloy.
- the aluminum alloy prepared according to the above method was subjected to performance test, and the results are shown in Table 2.
- the ingot composition is listed in the table. 1 ;
- the aluminum alloy ingot obtained in the step (1) is heated at a rate of 8 ° C / min, and the temperature is raised. After rolling to lOh at 500 °C, it is rolled into a rod;
- the rod obtained in the step (2) is annealed in an inert atmosphere, heated to 300 ° C for 4 h, and then the annealing temperature is lowered to 160 ° C for 3 h, cooled to room temperature;
- the rod obtained in the step (3) was subjected to aging treatment in a uniform electric field having an electric field intensity of 10 kV/cm, and the aging temperature was 260 ° C, and the aging time was 10 h to obtain an aluminum alloy.
- the aluminum alloy prepared according to the above method was subjected to performance test, and the results are shown in Table 2.
- the rod obtained in the step (2) is annealed in an inert atmosphere, heated to 350 ° C for 4 h, and then the annealing temperature is lowered to 170 ° C for 3 h, cooled to room temperature;
- the rod obtained in the step (3) was subjected to aging treatment in a uniform electric field having an electric field intensity of 12 kV/cm, and the aging temperature was 260 ° C, and the aging time was 14 h to obtain an aluminum alloy.
- the aluminum alloy prepared according to the above method was subjected to performance test, and the results are shown in Table 2.
- the alloy liquid is poured out of the furnace, and then degassed by the line, slag removal treatment, and then cast into a casting machine to obtain an aluminum alloy ingot, the ingot composition is listed in the table 1;
- the aluminum alloy ingot obtained in the step (1) is heated at a rate of 6 ° C / min, the temperature is up to 490 ° C, and the steel rod is rolled to a rod after being kept for 18 hours;
- the rod obtained in the step (2) is annealed in an inert atmosphere, heated to 320 ° C for 6 h, and then the annealing temperature is lowered to 190 ° C for 3 h, cooled to room temperature;
- the rod obtained in the step (3) is subjected to aging treatment in a uniform electric field having an electric field intensity of 12 kV/cm, and the aging temperature is 310 ° C and the aging time is 16 h to obtain an aluminum alloy.
- the aluminum alloy prepared according to the above method was subjected to performance test, and the results are shown in Table 2.
- the alloy liquid is poured out of the furnace, and then degassed by the line, slag removal treatment, and then cast into a casting machine to obtain an aluminum alloy ingot, the ingot composition is listed in the table 1 ;
- the rod obtained in the step (2) is annealed in an inert atmosphere, heated to 350 ° C for 7 h, and then the annealing temperature is lowered to 190 ° C for 4 h, cooled to room temperature;
- the rod obtained in the step (3) is subjected to aging treatment in a uniform electric field with an electric field strength of llkV/cm, the aging temperature is 305 ° C, and the aging time is 18 h, and an aluminum alloy is obtained.
- the aluminum alloy prepared according to the above method was subjected to performance test, and the results are shown in Table 2.
- the rod obtained in the step (2) is annealed in an inert atmosphere, heated to 340 ° C for 5 h, and then the annealing temperature is lowered to 170 ° C for 4 h, cooled to room temperature;
- the rod obtained in the step (3) is subjected to aging treatment in a uniform electric field with an electric field intensity of 12.5 kV/cm, the aging temperature is 315 ° C, and the aging time is 17 h, and an aluminum alloy is obtained.
- the aluminum alloy prepared according to the above method was subjected to performance test, and the results are shown in Table 2.
- the aluminum ingot is put into the furnace, heated to melt and kept at 790 °C, and the melting process is completed in a sealed environment; firstly add Fe pure metal or Al-Fe intermediate alloy, stir evenly and then add rare earth RE stirring. 20min until fully stirred, and then kept warm for 30min; then the above alloy melt is refined in the furnace; the refining agent is added into the alloy melt, and the mixture is stirred and then kept for 30 minutes, and the melt is refined in a sealed environment. Operation; After refining, slag, static, and temperature adjustment to 750 ° C, the alloy liquid is poured out of the furnace, and then degassed and slag-treated by the line, and then cast into a casting machine to obtain an aluminum alloy ingot.
- the ingot composition is listed in the table. 1;
- the rod obtained in the step (2) is annealed in an inert atmosphere, heated to 310 ° C for 5 h, and then the annealing temperature is lowered to 170 ° C for 4 h, cooled to room temperature;
- the rod obtained in the step (3) is subjected to aging treatment in a uniform electric field with an electric field intensity of 8 kV/cm, the aging temperature is 285 ° C, and the aging time is 14 h, and an aluminum alloy is obtained.
- the aluminum alloy prepared according to the above method was subjected to performance test, and the results are shown in Table 2.
- a standard aluminum ingot of 99.7% purity is selected, and the impurities are not more than silicon, iron and copper.
- the aluminum ingot is melted in an aluminum melting furnace, adding 0.15wt% zirconium, 0.25wt% copper, 0.70wt% iron and 0.25wt% niobium, alloying temperature is 750 ° C; After homogenization, refining, degassing, slagging and slag removal, the aluminum alloy liquid refining temperature is 725 °C. The surface of the aluminum alloy liquid is covered with a solid covering agent, and allowed to stand for 60 minutes. The chemical composition analysis before the furnace is monitored and adjusted.
- the aluminum liquid is continuously cast to obtain an aluminum alloy cast strip; the aluminum alloy cast strip is rolled into an aluminum alloy rod, the aluminum alloy cast strip is rolled at a temperature of 500 ° C, and the final rolling temperature of the aluminum alloy rod is 250 °C;
- the aluminum alloy rod is subjected to wire drawing treatment, the pulling speed is 20 m/s, and after multiple times of pulling, the required high-strength heat-resistant aluminum alloy round wire is drawn; the aluminum alloy round wire is subjected to quenching and tempering heat treatment The temperature is 200 ° C, the time is 120 min, and the heat-treated aluminum alloy round wire is cooled to obtain a heat-resistant aluminum alloy round wire.
- the prepared aluminum alloy round wire was subjected to performance test, and the results are shown in Table 2.
- Iron, 0.20wt% silicon and 0.35wt% rare earth, alloying temperature is 730 °C; homogenized stirring, refining degassing, slagging, slag removal, aluminum alloy liquid refining temperature is 725 °C, with solid
- the covering agent covers the surface of the aluminum alloy liquid, and is allowed to stand for 40 minutes, and the chemical composition analysis of the furnace is performed, monitoring and adjusting to control the element content; the aluminum liquid is continuously cast to obtain the aluminum alloy cast strip; and the aluminum alloy cast strip is rolled into the aluminum alloy rod The aluminum alloy cast strip is rolled at a temperature of 500 °C, and the final rolling temperature of the aluminum alloy rod is 250 °C.
- the aluminum alloy rod is subjected to wire drawing, the pulling speed is 10 m/s, and after several times of pulling, the drawing is made.
- the high-strength heat-resistant aluminum alloy round wire is required; the aluminum alloy round wire is subjected to quenching and tempering heat treatment at a temperature of 200 ° C for 200 min, and the heat-treated aluminum alloy round wire is cooled to obtain a heat-resistant aluminum alloy round wire. .
- the prepared aluminum alloy round wire was subjected to performance test, and the results are shown in Table 2.
- the aluminum alloy rod is cold drawn into a 3.0 mm aluminum alloy wire, and 7 pieces are drawn into an aluminum alloy wire for stranding.
- the prepared aluminum alloy wire was subjected to performance test, and the results are shown in Table 2.
- Table 1 Composition table of aluminum alloy prepared in the examples (wt%)
- Example 1 0.01 0.01 Ref.
- Example 2 0.25 0.05 Residual Example 3 1.0 0.6 Residual f Example 4 0.5 0.3 Residual Example 5 1.6 1.0 Residual f Example 6 0.6 2.0 Residual f Example 7 0.35 1.5 remainder f Example 8 0.45 3.0 remainder 3 ⁇ 4: Table 2 Performance test data sheets of aluminum alloys prepared in the examples and comparative examples
- Example 1 60% 90 30% 200 90%
- Example 2 61% 95 30% 195 91%
- Example 3 59% 91 32% 198 90%
- Example 4 62% 91 31% 205 90%
- Example 5 62% 90 31% 202 91%
- Example 6 60% 90 30% 200 92%
- Example 7 62% 94 32% 204 92%
- Example 8 61% 92 31% 202 91% Comparative Example 1 58% 150 2.10% 150 90% Comparative Example 2 53% 140 1.50% 180 89% Comparative Example 3 58% 190 2.10% 150 90%
- Table 2 Performance Test Data Sheet of Aluminum Alloy Prepared in Examples and Comparative Examples Continuoused) Group Fatigue Resistance Minimum Bending Radius Corrosion resistance processing performance (90 degree repeated bending times) ( g/m 2 -hr ) (single wire minimum diameter / m)
- Example 1 34 4 0.28 0.10 Example 2 36 5 0.33 0.12 Example 3 35 6 0.48 0.13 Example 4 34 5.5 0.59 0.11 Example 5 36 6 0.67 0.09 Example 6 34 5 0.55 0.08 Example 7 35 5.5 0.76 0.10 Implementation Example 8 34 4.5 0.45 0.12 Comparative Example 1 19 10 2.67 0.35 Comparative Example 2 23 9.5 0.89 0.50 Comparative Example 3 18 8 0.95 0.40 It can be seen from the comparison of Table 2 that the aluminum alloy material of the present invention has obvious advantages in comprehensive performance.
- the long-term heat-resistant temperature can reach 200 °C
- the residual rate of strength after heat-resistant operation test can reach 90%
- the number of repeated bending times of 90 degrees reaches 34 times
- the minimum bending radius is more than 4 times the outer diameter of the cable
- 400h is corrosion-resistant.
- the test mass loss is less than 1.0 g/m 2 ⁇ hr
- the minimum processing diameter of the monofilament is greater than 0.1 mm.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Conductive Materials (AREA)
Abstract
一种Al-Fe-RE铝合金,包括:0.01〜1.6wt%的Fe;0.01〜3.0wt%的RE和余量的铝。该Al-Fe-RE铝合金的制备方法,包括以下步骤:a)铸造如下成分的铝合金铸锭:0.01〜1.6wt%的Fe,0.01〜3.0wt%的RE和余量的铝;b)将所述铝合金铸锭进行均匀化处理,将均匀化处理后的铝合金铸锭进行轧制,得到铝合金杆材;c)将步骤b)得到的铝合金杆材进行间歇式退火处理;d)将步骤c)得到的铝合金杆材进行时效处理,得到铝合金。以及将该Al-Fe-RE铝合金用作电力电缆。
Description
Al-Fe-RE铝合金及其制备方法和电力电缆 本申请要求于 2012 年 11 月 09 日提交中国专利局、 申请号为 201210445323.2、发明名称为 "Al-Fe-RE铝合金及其制备方法和电力电缆" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及合金技术领域, 尤其涉及 Al-Fe-RE铝合金及其制备方法 和电力电缆。 背景技术
铝合金是工业中应用最广泛的一类有色金属结构材料, 在航空、 航 天、 汽车、 机械制造、 船舶及化学工业中得到广泛应用。 随着科学技术以 及工业经济的飞速发展,铝合金的需求日益增多,则铝合金的研究也随之 深入。铝合金的广泛应用促进了铝合金在电力行业的发展, 同时电力行业 的发展又拓展了铝合金的应用领域。
电力电缆是用来输送和分配电能的资源, 其基本结构由线芯、 绝缘 层、 屏蔽层和保护层四部分组成。 其中, 线芯是电力电缆的导电部分, 用 来输送电能,其是电力电缆的主要部分; 绝缘层将线芯与大地以及不同相 的线芯间在电气间彼此隔离,保证电能输送,其是电力电缆结构中不可缺 少的组成部分;保护层是保护电力电缆免受外界杂质和水分的侵入, 以及 防止外力直接损坏电力电缆。 由于铜具有良好的导电性,铜广泛用于电力 电缆的线芯。但是随着铜资源的日益匮乏, 而铝的含量很丰富, 以铝代替 铜受到了研究者的关注, 因此铝合金作为电缆导体成为了研究的热点。
铝合金电力电缆替代铜缆逐渐成为一种趋势, 并得到了广泛应用。 现有技术中的铝合金导体材料,在电性能、耐腐蚀性能和机械性能等方面 较为优异, 但是在抗疲劳性能方面还是比较差, 从而容易出现质量问题, 影响铝合金材料的使用寿命或带来安全隐患, 因此,铝合金电力电缆综合 性能仍较差。
发明内容
本发明解决的技术问题在于提供一种综合性能较好的用于电力电缆 的铝合金及其制备方法。
有鉴于此, 本发明提供了一种 Al-Fe-RE铝合金, 包括:
0.01〜1.6wt%的 Fe;
0.01〜3.0wto/ RE;
余量的铝。
优选的, 包括 0.25〜0.6wt%的 Fe。
优选的, 包括 0.1〜0.6wt%的 RE。
优选的, 所述 RE为 Pm、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Tm和 Lu中 的一种或多种。
本发明提供了一种 Al-Fe-RE铝合金的制备方法, 包括以下步骤: a )铸造如下成分的铝合金铸锭: 0.01〜1.6wt。/(^ Fe , 0.01〜3.0wt%的 RE和余量的铝;
b )将所述铝合金铸锭进行均勾化处理, 将均勾化处理后的铝合金铸 锭进行轧制, 得到铝合金杆材;
c )将步骤 b )得到的铝合金杆材进行间歇式退火处理;
d )将步骤 c )得到的铝合金杆材进行时效处理, 得到铝合金。
优选的, 所述均勾化处理的温度为 450〜550 °C , 所述均勾化处理的时 间为 6〜16h, 所述均匀化处理的升温速度为 3〜8 °C/min。
优选的 , 所述步骤 c )具体为:
将步骤 b )得到的铝合金杆材加热至 280〜350 °C , 保温 2〜8h后进行 降温, 温度降至 150〜200 °C , 保温 2〜4h后冷却。
优选的, 所述时效处理在电场强度为 5〜15KV/cm均匀电场中进行。 优选的, 所述时效处理的温度为 250〜320 °C , 所述时效处理的时间为 4〜20h。
本发明还提供了一种电力电缆,包括线芯、绝缘层、屏蔽层和保护层, 所述线芯为上述方案所述的铝合金或上述方案所制备的铝合金。
本发明提供了一种 Al-Fe-RE 铝合金, 包括: 0.01〜1.6wt%的 Fe, 0.01〜3.0wt%的 RE和余量的铝。 本发明以铝为基, 添加了 量的铁, 铝 能与铁形成 Al3Fe, 析出的 Al3Fe弥散粒子抑制了合金的蠕变变形, 部分 Fe还与 RE形成 AlFeRE化合物析出, 析出相 AlFeRE能增强合金的抗疲 劳性能和高温运行的耐热性能,且稀土化合物析出相还能提高屈服极限强 度; 稀土元素对氧、 石克、 氮和氢的亲和力都 4艮强, 因而其脱氧、 脱石克、 去 除氢气和氮气的作用都很强,稀土为表面活性元素,可集中分布在晶界面 上, 降低相与相之间的拉力, 从而使晶粒细化, 通过对合金元素的选择和 含量的控制, 有利于铝合金综合性能的提高。
本发明还提供了一种 Al-Fe-RE铝合金的制备方法, 首先通过铸锭进 行均匀化处理, 均匀化处理使铸锭受热均匀, 且优化合金的组织结构; 然 后将均勾化处理的铝合金铸锭轧制成杆材进行间歇式退火处理,消除机械 加工过程中产生的内应力和对 观结构的损伤,优化晶体结构,恢复线材 的电性能, 优化机械性能, 使材料的拉伸性能、 柔韧性能和抗疲劳性能方 面保持较好的匹配;再将退火处理后的铝合金杆材在均勾电场中进行时效 处理,通过时效处理可以使整个材料的性能达到均勾分布,各项性能综合 指标达到倶佳的匹配。本发明通过对铝合金制备方法的优化,使材料的拉 伸性能、 柔韧性能、 电性能、 耐腐蚀性能和抗疲劳性能方面保持较好的匹 配,并且使整个材料的性能达到均匀分布,从而得到综合性能较好的铝合 金。 具体实施方式
为了进一步理解本发明 ,下面结合实施例对本发明优选实施方案进行 描述, 但是应当理解, 这些描述只是为进一步说明本发明的特征和优点, 而不是对本发明权利要求的限制。
本发明实施例公开了一种 Al-Fe-RE铝合金, 包括:
0.01〜1.6wt%的 Fe;
0.01〜3.0wto/ RE;
余量的铝。
按照本发明, 铁作为特征微合金元素, 由于铝能与铁形成 Al3Fe, 析 出的 Al3Fe 弥散粒子抑制了合金的蠕变变形, 并提高连接的稳定性。 Fe 可以提高铝基的抗张强度、屈服极限以及耐热性能, 同时还可以提高合金 的提高塑性。 在铝合金的制备过程中, 合金中部分 Fe以 Al3Fe的形式析 出 , 部分 Fe与 RE形成 AlFeRE化合物析出 , 高温退火处理后 , Fe在铝 基中的固溶更小, 则 Fe对合金的电性能影响很小; 但是这些弥散析出相 能增强合金的抗疲劳性能和高温运行的耐热性能,且稀土化合物析出相还 能提高屈服极限强度, 合金中 Fe的含量在 0.01wt%以下, 对铝基性能改 变很小, 起不到效果, 因此 Fe的含量不能低于 0.01wt%, 但是 Fe的含量 不能太高, 若超过 1.6wt%, 铝基电性能的削弱较为明显, 对于用于电线 电缆导体、电缆附件及电器领域方面的使用会有影响, 因此总体含量控制 1.2wt%以下, 效果较好。 所述 Fe 的含量为 0.01〜1.6wt% , 优选为 0.20-1.0wt%, 更优选为 0.25〜0.6wt%, 更优选为 0.30〜0.45wt%。
本发明在铝合金中添加了稀土元素,所述稀土元素能提高合金的导电 性, 由于稀土元素能细化晶粒, 并与合金中的 Fe形成稳定的化合物, 从 晶体内析出, 降低电解质的初晶温度,使离子在电场的作用下运动速度加 快, 减少浓差过电位, 从使铝合金的电阻率降低。 另一方面, 稀土元素与 氢、 氧、 氮等元素的亲和力比铝更大, 形成多种化合物, 因而稀土是合金 中一种除气、脱氮、造渣、 中和微量低熔点杂质、改变杂质状态的净化机, 可以起到较好的精炼作用,使得合金变得更纯净,从而使电阻率得到很大 的提高, 导电率能达到 60%IACS。 另一方面, 稀土元素能形成致密氧化 膜结构,对于提高合金的氧化性和耐电化学腐蚀起到极好的效果,提高了 铝合金的使用寿命。此外,稀土为表面活性元素,可集中分布在晶界面上, 降低相与相之间的拉力, 因此使形成临界尺寸晶核的功减小,结晶核数量 增加, 从而使晶粒细化。 其次, 经过熔炼、 高温退火和均匀电场中时效处 理后, Fe在 A1中与 RE形成复杂的铝铁稀土金属, 提高了合金的抗疲劳 极限和屈服极限, 增加合金在实际应用中的使用效果和使用寿命。
所述稀土元素 RE为镧 (La )、 铈 (Ce )、 镨 (Pr )、 钕 (Nd )、 钷 ( Pm )、 钐 ( Sm )、 铕 ( Eu )、 1 ( Gd )、 铽 ( Tb )、 镝 ( Dy )、 钬 ( Ho )、
铒 ( Er )、 铥 ( Tm )、 镱 ( Yb )、 镥 ( Lu )、 钪 ( Sc ) 和钇 ( Y ) 中的 一种或多种, 优选为 Pm、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Tm和 Lu中的 一种或多种。 其中, 稀土 Pm在合金中形成 AluPm3〜AlPm2等 6种活性金 属化合物;稀土 Sm在合金中形成 AluSm4、 Al3Sm、 Al2Sm、 AlSm、 AlSm3 等活性金属化合物; 稀土 Eu在合金中形成 EuAl4、 EuAl2、 EuAl等活性 金属化合物; 稀土 Gd在合金中形成 Al4Gd〜Al17Gd2等 7种难熔性金属化 合物; 稀土 Tb在合金中形成 Al3Tb、 Al2Tb、 AlTb、 AlTb2、 AlTb3等难熔 活性金属化合物; 稀土 Dy在合金中形成 Al5Dy〜Al17Dy2等 8种难熔活性 金属化合物; 稀土 Ho在合金中形成 Α15Ηο3、 Α13Ηο、 Α1Ηο2、 Α1Ηο3等难 熔活性金属化合物;稀土 Tm在合金中形成 Al3Tm2、 Al3Tm、 AlTm、 AlTm3 等难熔活性金属化合物; 稀土 Lu在合金中形成 Al7Lu3、 Al5Lu3、 Al2Lu3、 AlLu2、 AlLu3等难熔活性金属化合物。 上述高熔点的活性金属化合物弥 散分布于呈网状或骨架状的晶间和枝晶间,并与基体牢固结合,起到了强 化和稳定晶界的作用。 同时, 还可中和金属液中的元素 Fe, 形成高熔点 的化合物或使它们从枝晶间整个晶体组织内均匀分布, 消除了枝晶组织, 以提高合金材料的综合性能。 所述稀土元素的含量为 0.01〜3.0wt%, 优选 为 0.03〜2.5wt%, 更优选为 0.05〜1.5wt%, 最优选为 0.1〜0.6wt%。
按照本发明, 对于铝合金中的基体铝, 可以采用工业用的 A199.70的 纯铝, 使本发明制备的铝合金具有原料供应充足、成本低、 采购方便等优 势; 同时铝基还可以采用精铝或高纯级铝作为基体合金,该铝基比普通铝 基材料具有更高的品质, 加工成的产品在电性能和机械性能方面更具优 势。
本发明还提供了一种 Al-Fe-RE铝合金的制备方法, 包括以下步骤: a )将如下成分的原料铸造, 得到铝合金铸锭: 0.01〜1.6wt%的 Fe, 0.01〜3.0wt%的 RE和余量的铝;
b )将所述铝合金铸锭进行均勾化处理, 将均勾化处理后的铝合金铸 锭进行轧制, 得到铝合金杆材;
c )将步骤 b )得到的铝合金杆材进行间歇式退火处理;
d )将步骤 C )得到的铝合金杆材进行时效处理, 得到铝合金。
按照本发明, 步骤 a )为铸造工序, 得到铝合金铸锭, 为了使各种元 素充分熔解, 均勾分布, 作为优选方案, 上述铸造工艺具体包括: 将铝锭 投入熔炉中, 在密闭环境中加热至 720〜800°C并保温, 待铝锭熔化后再加 入 Fe或 Al-Fe中间合金,搅拌均匀后,加入稀土元素 RE,得到合金熔体; 将所述合金熔体加入精炼剂, 进行炉内精炼, 保温 20〜40min, 得到合金 液;将所述合金液经除气、除渣,进入铸造机进行铸造,得到铝合金铸锭。 由于铝不易烧损, 且加入量较多, 因此先将铝加入熔炼炉, 而后加入铁和 稀土。本发明合金元素优选采用上述顺序加入,使各种元素熔炼后不发生 损耗, 同时各种元素能够充分熔解, 均匀分布。
步骤 b )为均勾化处理阶段, 所述均勾化处理的温度优选为 450〜550
°C , 更优选为 480°C〜520°C , 所述均匀化处理的时间优选为 2〜8h, 更优 选为 3〜6h。 将铝合金铸锭进行均勾化处理, 能够保证铸锭在轧制杆材的 过程中,其强度和延展性具有较好的匹配,从而避免采用传统方式导致材 料微观结构的破坏而进一步影响加工性能。为了保证铸锭受热均匀,优化 构缺陷的产生, 所述均匀化处理的升温速度优选为 3〜8°C/min, 更优选为 5 °C/min。 将铝合金铸锭进行均匀化处理后, 则将铝合金铸锭轧制, 得到 铝合金杆材。
随后将铝合金杆材进行热处理,首先将铝合金杆材在退火炉中进行间 歇退火处理。 所述间歇退火处理具体为: 将所述铝合金杆材加热至 280〜350°C , 保温 2〜8h后进行降温, 温度降至 150〜200°C , 保温 2〜4h后 冷却。为了避免铝合金材料在高温下发生氧化而导致材料在电性能和表面 耐腐蚀性能方面减弱,所述退火处理优选在惰性气氛下进行。本发明采用 间歇式分步退火处理 ,并逐步降温冷却 ,该种处理方式可以消除机械加工 过程中产生的内应力和对 观结构的损伤,优化晶体结构,恢复线材的电 性能, 优化机械性能,使材料的拉伸性能、 柔韧性能和抗疲劳性能方面保 持较好的匹配。
在将铝合金杆材进行退火处理后,则将退火处理后的铝合金杆材进行 时效处理。所述时效处理优选在电场强度为 5〜15KV/cm均匀电场中进行。
所述时效处理的温度优选为 250〜320°C , 更优选为 280〜300°C , 所述时效 处理的时间优选为 4〜20h, 更优选为 8〜15h, 最优选为 10〜13h。 在退火处 理技术的基石出上进行时效处理,可以进一步弥补退火处理过程中热量传导 不均,导致材料内外性能分布不均或局部缺陷的特点。通过时效处理可以 使整个材料的性能达到均匀分布,各项性能综合指标达到倶佳的匹配。 因 此退火处理和时效处理, 两者有效的结合,对于材料整体性能的优化起到 了至关重要的作用,二者缺一不可。本发明优选在高强度的均匀电场中进 行时效处理, 第一方面改变了原子的排列、 匹配和迁移, 第二方面, 提高 了合金元素的固溶程度, 诱发了 T1相的均匀形核 提高了合金的屈服强 度; 使均匀化处理的样品进行时效处理后,析出相均匀 散分布, 合金的 力学性能大大提高; 第三方面, 改变了细小晶体组织的析出形态和数量, 使材料固态相变中发生形态、 大小、 分布等取向得以控制,从而控制材料 的组织, 最终获得优良的机械性能和电气性能。
本发明提供了一种 Al-Fe-RE 铝合金, 包括: 0.01〜1.6wt%的 Fe, 0.01〜3.0wt%的 RE和余量的铝。 本发明以铝为基, 添加了 量的铁, 铝 能与铁形成 Al3Fe, 析出的 Al3Fe弥散粒子抑制了合金的蠕变变形, 部分 Fe还与 RE形成 AlFeRE化合物析出, 析出相 AlFeRE能增强合金的抗疲 劳性能和高温运行的耐热性能,且稀土化合物析出相还能提高屈服极限强 度; 稀土元素对氧、 石克、 氮和氢的亲和力都 4艮强, 因而其脱氧、 脱石克、 去 除氢气和氮气的作用都很强,稀土为表面活性元素,可集中分布在晶界面 上, 降低相与相之间的拉力, 从而使晶粒细化。 本发明还提供了一种铝合 金的制备方法,首先通过铸锭进行均匀化处理,然后将均匀化处理的铝合 金铸锭轧制成杆材再放入退火炉中,进行退火处理,再在均匀电场中进行 时效处理, 使材料的拉伸性能、 柔韧性能、 电性能、 耐腐蚀性能和抗疲劳 性能方面保持较好的匹配,并且使整个材料的性能达到均勾分布,从而得 到综合性能较好的铝合金。
本发明的铝合金材料通过添加多种合金元素以及采用热处理技术,极 大的提高了纯铝的耐热性能, 使得该铝合金材料长期运行温度在 200°C, 蠕变现象较小, 抗拉强度保持 90%的残存率, 保障了在高温运行下机械
性能改变较小, 同时抗疲劳性能也获得了很好的提高,铝合金的反复弯折 损失;且通过热处理技术使得合金的柔韧性相当好, 电缆安装弯曲半径在 4倍电缆外径以上, 大大提高了铝合金的延展性, 延伸率超过 30%, 不会 由于拉力作用而容易出现损伤现象,且加工性能非常好,适用于拉制成单 丝直径在 0.1mm以上大小不等的单丝。
本发明还提供了一种电力电缆, 所述电力电缆包括线芯、 绝缘层、屏 蔽层和保护层, 所述线芯为铝合金, 所述铝合金含有 0.01〜1.6wt%的 Fe; 0.01〜3.0wt%的 RE; 余量的铝; 所述铝合金的制备方法由按照上述方案的 方法制备。所述电力电缆的制备方法本发明没有特殊的限制,为本领域技 术人员熟知的方式即可。
将本发明上述方案中的铝合金作为电力电缆的线芯,可使电力电缆具 有较好的综合性能,实验结果表明:本发明制备的铝合金导电率大于 60%, 抗拉强度大于 90MPa, 断裂伸长率大于 30%, 长期运行耐热温度能达到 200 °C , 且耐热运行试验后强度残存率能达到 90%, 90度反复弯折次数达 到 34次, 400h耐腐蚀性能质量损失小于 1.0g/m2 - hr, 最小弯曲半径大于
4倍电缆外径, 单丝最小直径大于 0.1m。
为了进一步理解本发明 ,下面结合实施例对本发明提供的铝合金及其 制备方法进行详细说明, 本发明的保护范围不受以下实施例的限制。
实施例 1
( 1 )将铝锭投入熔炉中, 加热使之熔化并在 720 °C下保温, 熔化过 程在密封环境内完成; 先加入 Fe纯金属或 Al-Fe中间合金, 搅拌均匀后 再加入稀土 RE搅拌 20min直至充分搅拌均勾, 静置保温 30min; 然后对 上述合金熔体进行炉内精炼; 在合金熔体中加入精炼剂, 并搅拌均勾, 再 静置保温 30min, 熔体精炼在密封环境中操作; 精炼后打渣、 静置、 调温 至 650°C , 合金液倾倒出炉, 再经线除气、 除渣处理后, 进入铸造机进行 铸造, 得到铝合金铸锭, 铸锭成分列于表 1 ;
( 2 )将步骤 ( 1 )得到的铝合金铸锭进行 5 °C/min的速度升温, 温度 至 450 °C , 保温 6h后轧制成杆材;
( 3 )将步骤(2 )得到的杆材在惰性气氛下进行退火处理, 加热至 280°C保温 2h, 再将退火温度降至 150°C保温 3h, 冷却至室温;
( 4 )将步骤( 3 )得到的杆材在电场强度为 5kV/cm的均匀电场中进 行时效处理, 时效温度为 250°C , 时效时间为 4h, 得到铝合金。
将按照上述方法制备的铝合金进行性能测试, 结果参见表 2。
实施例 2
( 1 )将铝锭投入熔炉中, 加热使之熔化并在 740 °C下保温, 熔化过 程在密封环境内完成; 先加入 Fe纯金属或 Al-Fe中间合金, 搅拌均匀后 再加入稀土 RE搅拌 20min直至充分搅拌均勾, 静置保温 30min; 然后对 上述合金熔体进行炉内精炼; 在合金熔体中加入精炼剂, 并搅拌均匀, 再 静置保温 30min, 熔体精炼在密封环境中操作; 精炼后打渣、 静置、 调温 至 720°C , 合金液倾倒出炉, 再经线除气、 除渣处理后, 进入铸造机进行 铸造, 得到铝合金铸锭, 铸锭成分列于表 1 ;
( 2 )将步骤 ( 1 )得到的铝合金铸锭进行 3 °C/min的速度升温, 温度 至 550°C , 保温 16h后轧制成杆材;
( 3 )将步骤(2 )得到的杆材在惰性气氛下进行退火处理, 加热至 360°C保温 8h, 再将退火温度降至 200°C保温 2h, 冷却至室温;
( 4 )将步骤(3 )得到的杆材在电场强度为 15kV/cm的均匀电场中 进行时效处理, 时效温度为 320 °C , 时效时间为 20h, 得到铝合金。
将按照上述方法制备的铝合金进行性能测试, 结果参见表 2。
实施例 3
( 1 )将铝锭投入熔炉中, 加热使之熔化并在 760 °C下保温, 熔化过 程在密封环境内完成; 先加入 Fe纯金属或 Al-Fe中间合金, 搅拌均匀后 再加入稀土 RE搅拌 20min直至充分搅拌均勾, 静置保温 30min; 然后对 上述合金熔体进行炉内精炼; 在合金熔体中加入精炼剂, 并搅拌均勾, 再 静置保温 30min, 熔体精炼在密封环境中操作; 精炼后打渣、 静置、 调温 至 680°C , 合金液倾倒出炉, 再经线除气、 除渣处理后, 进入铸造机进行 铸造, 得到铝合金铸锭, 铸锭成分列于表 1 ;
( 2 )将步骤 ( 1 )得到的铝合金铸锭进行 8°C/min的速度升温, 温度
至 500 °C, 保温 lOh后轧制成杆材;
(3)将步骤(2)得到的杆材在惰性气氛下进行退火处理, 加热至 300°C保温 4h, 再将退火温度降至 160°C保温 3h, 冷却至室温;
(4)将步骤(3)得到的杆材在电场强度为 10kV/cm的均匀电场中 进行时效处理, 时效温度为 260 °C, 时效时间为 10h, 得到铝合金。
将按照上述方法制备的铝合金进行性能测试, 结果参见表 2。
实施例 4
(1)将铝锭投入熔炉中, 加热使之熔化并在 780°C下保温, 熔化过 程在密封环境内完成; 先加入 Fe纯金属或 Al-Fe中间合金, 搅拌均匀后 再加入稀土 RE搅拌 20min直至充分搅拌均勾, 静置保温 30min; 然后对 上述合金熔体进行炉内精炼; 在合金熔体中加入精炼剂, 并搅拌均勾, 再 静置保温 30min, 熔体精炼在密封环境中操作; 精炼后打渣、 静置、 调温 至 750°C, 合金液倾倒出炉, 再经线除气、 除渣处理后, 进入铸造机进行 铸造, 得到铝合金铸锭, 铸锭成分列于表 1;
(2)将步骤 ( 1 )得到的铝合金铸锭进行 5°C/min的速度升温, 温度 至 480 °C , 保温 8h后轧制成杆材;
(3)将步骤(2)得到的杆材在惰性气氛下进行退火处理, 加热至 350°C保温 4h, 再将退火温度降至 170°C保温 3h, 冷却至室温;
(4)将步骤(3)得到的杆材在电场强度为 12kV/cm的均匀电场中 进行时效处理, 时效温度为 260 °C, 时效时间为 14h, 得到铝合金。
将按照上述方法制备的铝合金进行性能测试, 结果参见表 2。
实施例 5
(1)将铝锭投入熔炉中, 加热使之熔化并在 800 °C下保温, 熔化过 程在密封环境内完成; 先加入 Fe纯金属或 Al-Fe中间合金, 搅拌均匀后 再加入稀土 RE搅拌 20min直至充分搅拌均勾, 静置保温 30min; 然后对 上述合金熔体进行炉内精炼; 在合金熔体中加入精炼剂, 并搅拌均勾, 再 静置保温 30min, 熔体精炼在密封环境中操作; 精炼后打渣、 静置、 调温 至 700°C, 合金液倾倒出炉, 再经线除气、 除渣处理后, 进入铸造机进行 铸造, 得到铝合金铸锭, 铸锭成分列于表 1;
( 2 )将步骤 ( 1 )得到的铝合金铸锭进行 6°C/min的速度升温, 温度 至 490 °C , 保温 18h后轧制成杆材;
( 3 )将步骤(2 )得到的杆材在惰性气氛下进行退火处理, 加热至 320°C保温 6h, 再将退火温度降至 190°C保温 3h, 冷却至室温;
( 4 )将步骤( 3 )得到的杆材在电场强度为 12kV/cm的均匀电场中 进行时效处理, 时效温度为 310°C , 时效时间为 16h, 得到铝合金。
将按照上述方法制备的铝合金进行性能测试, 结果参见表 2。
实施例 6
( 1 )将铝锭投入熔炉中, 加热使之熔化并在 730°C下保温, 熔化过 程在密封环境内完成; 先加入 Fe纯金属或 Al-Fe中间合金, 搅拌均匀后 再加入稀土 RE搅拌 20min直至充分搅拌均勾, 静置保温 30min; 然后对 上述合金熔体进行炉内精炼; 在合金熔体中加入精炼剂, 并搅拌均勾, 再 静置保温 30min, 熔体精炼在密封环境中操作; 精炼后打渣、 静置、 调温 至 800°C , 合金液倾倒出炉, 再经线除气、 除渣处理后, 进入铸造机进行 铸造, 得到铝合金铸锭, 铸锭成分列于表 1 ;
( 2 )将步骤 ( 1 )得到的铝合金铸锭进行 7°C/min的速度升温, 温度 至 460 °C , 保温 14h后轧制成杆材;
( 3 )将步骤(2 )得到的杆材在惰性气氛下进行退火处理, 加热至 350°C保温 7h, 再将退火温度降至 190°C保温 4h, 冷却至室温;
( 4 )将步骤( 3 )得到的杆材在电场强度为 llkV/cm的均匀电场中 进行时效处理, 时效温度为 305 °C , 时效时间为 18h, 得到铝合金。
将按照上述方法制备的铝合金进行性能测试, 结果参见表 2。
实施例 7
( 1 )将铝锭投入熔炉中, 加热使之熔化并在 750°C下保温, 熔化过 程在密封环境内完成; 先加入 Fe纯金属或 Al-Fe中间合金, 搅拌均匀后 再加入稀土 RE搅拌 20min直至充分搅拌均勾, 静置保温 30min; 然后对 上述合金熔体进行炉内精炼; 在合金熔体中加入精炼剂, 并搅拌均勾, 再 静置保温 30min, 熔体精炼在密封环境中操作; 精炼后打渣、 静置、 调温 至 720°C , 合金液倾倒出炉, 再经线除气、 除渣处理后, 进入铸造机进行
铸造, 得到铝合金铸锭, 铸锭成分列于表 1;
( 2 )将步骤 ( 1 )得到的铝合金铸锭进行 4°C/min的速度升温, 温度 至 470 °C , 保温 12h后轧制成杆材;
( 3 )将步骤(2)得到的杆材在惰性气氛下进行退火处理, 加热至 340°C保温 5h, 再将退火温度降至 170°C保温 4h, 冷却至室温;
( 4 )将步骤( 3 )得到的杆材在电场强度为 12.5kV/cm的均匀电场中 进行时效处理, 时效温度为 315°C, 时效时间为 17h, 得到铝合金。
将按照上述方法制备的铝合金进行性能测试, 结果参见表 2。
实施例 8
( 1 )将铝锭投入熔炉中, 加热使之熔化并在 790 °C下保温, 熔化过 程在密封环境内完成; 先加入 Fe纯金属或 Al-Fe中间合金, 搅拌均匀后 再加入稀土 RE搅拌 20min直至充分搅拌均勾, 静置保温 30min; 然后对 上述合金熔体进行炉内精炼; 在合金熔体中加入精炼剂, 并搅拌均勾, 再 静置保温 30min, 熔体精炼在密封环境中操作; 精炼后打渣、 静置、 调温 至 750°C, 合金液倾倒出炉, 再经线除气、 除渣处理后, 进入铸造机进行 铸造, 得到铝合金铸锭, 铸锭成分列于表 1;
( 2 )将步骤 ( 1 )得到的铝合金铸锭进行 5°C/min的速度升温, 温度 510°C, 保温 13h后轧制成杆材;
( 3 )将步骤(2)得到的杆材在惰性气氛下进行退火处理, 加热至 310°C保温 5h, 再将退火温度降至 170°C保温 4h, 冷却至室温;
( 4 )将步骤( 3 )得到的杆材在电场强度为 8kV/cm的均匀电场中进 行时效处理, 时效温度为 285 °C, 时效时间为 14h, 得到铝合金。
将按照上述方法制备的铝合金进行性能测试, 结果参见表 2。
对比例 1
选取 99.7%纯度的标准铝锭, 其杂质除硅、 铁、 铜外含量不超过
0.02wt%; 将所述铝锭放入熔铝炉中熔化, 加入 0.15wt%的锆、 0.25wt% 的铜、 0.70wt%的铁以及 0.25wt%的钇, 合金化温度为 750°C; 经均匀化 搅拌、 精炼除气、 造渣、 除渣, 铝合金液精炼温度为 725 °C, 用固体覆盖 剂覆盖铝合金液表面, 静置 60min, 进行炉前化学成分分析, 监测、 调整
以控制元素含量; 将铝液进行连续浇铸, 得到铝合金铸条; 将铝合金铸条 轧成铝合金杆,铝合金铸条进轧温度为 500 °C ,铝合金杆的终轧温度为 250 °C ; 将铝合金杆进行拉线处理, 拉线速度为 20米 /秒, 多次拉线后, 拉制 成所需的高强度耐热铝合金圓线;将所述铝合金圓线进行调质热处理,温 度为 200°C , 时间为 120min, 将热处理后的铝合金圓线冷却, 得到耐热 铝合金圓线。 将制备的铝合金圓线进行性能测试, 结果参见表 2。
对比例 2
选用八吨铝锭, 其杂质含量(硅、 铁、 铜除外)不超过 0.02wt%, 放 入圓形熔铝炉熔化, 同时加入加入 0.10wt%的锆、 0.02wt%的铜、 0.35wt% 的铁、 0.20wt%的硅以及 0.35wt%的稀土, 合金化温度为 730°C ; 经均匀 化搅拌、 精炼除气、 造渣、 除渣, 铝合金液精炼温度为 725 °C , 用固体覆 盖剂覆盖铝合金液表面, 静置 40min, 进行炉前化学成分分析, 监测、 调 整以控制元素含量; 将铝液进行连续浇铸,得到铝合金铸条; 将铝合金铸 条轧成铝合金杆, 铝合金铸条进轧温度为 500 °C , 铝合金杆的终轧温度为 250 °C ; 将铝合金杆进行拉线处理, 拉线速度为 10米 /秒, 多次拉线后, 拉制成所需的高强度耐热铝合金圓线; 将所述铝合金圓线进行调质热处 理, 温度为 200 °C , 时间为 200min, 将热处理后的铝合金圓线冷却, 得 到耐热铝合金圓线。 将制备的铝合金圓线进行性能测试, 结果参见表 2。
对比例 3
在竖炉中加入纯度大于 99.70wt%的铝锭, 升温至 750°C , 使铝锭熔 化,将温度升高至 750°C ,依次加入 0.86wt%的 Fe、 0.11wt%的 Cu、 0.15wt% 的 Mg、0.13wt%的 Zr、0.29wt%的 Ca、0.13wt%的 Sc、0.33wt%的 Y、0.23wt% 的 Er, 使其完全溶解, 并调节合金成分至设定范围, 合金元素都是以铝 中间合金的形式加入; 在 760°C保温 30min, 再加入 0.15wt%的精炼剂, 进行除渣、 除气, 然后再浇铸成铝合金铸件; 将铝合金铸件导入轧机, 导 入轧机的温度为 450°C , 导入轧机成铝合金杆的终轧温度为 300 °C ; 将铝 合金杆进行冷拉加工成 3.0mm的铝合金线, 将 7根拉制成铝合金线进行 绞合, 制备成导体线芯; 将所述铝合金导体进行退火处理, 退火温度为 370 °C , 时间为 12h, 停止对炉体加热, 再退火炉中日然冷却, 24h后从炉
中取出, 得到铝合金导线。 将制备的铝合金导线进行性能测试, 结果参见 表 2
表 1 实施例制备的铝合金的成分表(wt% )
組别 Fe RE A1 实施例 1 0.01 0.01 余 f 实施例 2 0.25 0.05 余 f 实施例 3 1.0 0.6 余 f 实施例 4 0.5 0.3 余 f 实施例 5 1.6 1.0 余 f 实施例 6 0.6 2.0 余 f 实施例 7 0.35 1.5 余 f 实施例 8 0.45 3.0 余¾: 表 2 实施例及对比例制备的铝合金的性能测试数据表
耐热试验强度 导电率 (IACS ) 抗拉强度 断裂伸长率 长期运行耐热温度
組别 残存率
> (MPa) > > C)
> 实施例 1 60% 90 30% 200 90% 实施例 2 61% 95 30% 195 91% 实施例 3 59% 91 32% 198 90% 实施例 4 62% 91 31% 205 90% 实施例 5 62% 90 31% 202 91% 实施例 6 60% 90 30% 200 92% 实施例 7 62% 94 32% 204 92% 实施例 8 61% 92 31% 202 91% 对比例 1 58% 150 2.10% 150 90% 对比例 2 53% 140 1.50% 180 89% 对比例 3 58% 190 2.10% 150 90% 表 2实施例及对比例制备的铝合金的性能测试数据表(续表) 组别 抗疲劳性能 最小弯曲半径 耐腐蚀性能 加工性能
(90度反复弯折次数) ( g/m2-hr ) (单丝最小直径 /m)
( 400h )
<
实施例 1 34 4 0.28 0.10 实施例 2 36 5 0.33 0.12 实施例 3 35 6 0.48 0.13 实施例 4 34 5.5 0.59 0.11 实施例 5 36 6 0.67 0.09 实施例 6 34 5 0.55 0.08 实施例 7 35 5.5 0.76 0.10 实施例 8 34 4.5 0.45 0.12 对比例 1 19 10 2.67 0.35 对比例 2 23 9.5 0.89 0.50 对比例 3 18 8 0.95 0.40 通过表 2的比较可以看出,本发明的铝合金材料从综合性能有明显的 优势, 特别是长期运行耐热温度能达到 200 °C , 且耐热运行试验后强度残 存率能达到 90%, 90度反复弯折次数达到 34次, 最小弯曲半径大于 4倍 电缆外径, 400h耐腐蚀试验质量损失小于 1.0g/m2 · hr, 单丝最小加工直 径大于 0.1mm。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应 当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前 提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发 明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使 用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显 而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的 情况下, 在其它实施例中实现。 因此, 本发明将不会被限制于本文所示的 这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的 范围。
Claims
1、 一种 Al-Fe-RE铝合金, 包括:
0.01〜1.6wt%的 Fe;
0.01〜3.0\¥ /0的 RE;
余量的铝。
2、 如权利要求 1所述的铝合金, 其特征在于, 包括 0.25〜0.6wt%的
Fe。
3、 如权利要求 1 所述的铝合金, 其特征在于, 包括 0.1〜0.6wt%的 RE。
4、 如权利要求 1所述的铝合金, 其特征在于, 所述 RE为 Pm、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Tm和 Lu中的一种或多种。
5、 一种 Al-Fe-RE铝合金的制备方法, 其特征在于, 包括以下步骤: a )铸造如下成分的铝合金铸锭: 0.01〜1.6wt。/(^ Fe, 0.01〜3.0wt%的 RE和余量的铝;
b )将所述铝合金铸锭进行均勾化处理, 将均勾化处理后的铝合金铸 锭进行轧制, 得到铝合金杆材;
c )将步骤 b )得到的铝合金杆材进行间歇式退火处理;
d )将步骤 c )得到的铝合金杆材进行时效处理, 得到铝合金。
6、 如权利要求 5所述的制备方法, 其特征在于, 所述均匀化处理的 温度为 450〜550°C , 所述均勾化处理的时间为 6〜16h, 所述均勾化处理的 升温速度为 3〜8°C/min。
7、 如权利要求 5所述的制备方法, 其特征在于, 所述步骤 c )具体 为:
将步骤 b )得到的铝合金杆材加热至 280〜350°C , 保温 2〜8h后进行 降温, 温度降至 150〜200 °C , 保温 2〜4h后冷却。
8、 如权利要求 5所述的制备方法, 其特征在于, 所述时效处理在电 场强度为 5〜15KV/cm均匀电场中进行。
9、 如权利要求 5所述的制备方法, 其特征在于, 所述时效处理的温
度为 250〜320°C , 所述时效处理的时间为 4〜20h。
10、 一种电力电缆, 包括线芯、 绝缘层、 屏蔽层和保护层, 其特征在 于, 所述线芯为权利要求 1〜4任意一项所述的铝合金或权利要求 5〜9任 意一项所制备的铝合金。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210445323.2 | 2012-11-09 | ||
CN2012104453232A CN102978469A (zh) | 2012-11-09 | 2012-11-09 | Al-Fe-RE铝合金及其制备方法和电力电缆 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014071877A1 true WO2014071877A1 (zh) | 2014-05-15 |
Family
ID=47852803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/086823 WO2014071877A1 (zh) | 2012-11-09 | 2013-11-11 | Al-Fe-RE铝合金及其制备方法和电力电缆 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102978469A (zh) |
WO (1) | WO2014071877A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102978469A (zh) * | 2012-11-09 | 2013-03-20 | 安徽欣意电缆有限公司 | Al-Fe-RE铝合金及其制备方法和电力电缆 |
CN103667806A (zh) * | 2013-12-27 | 2014-03-26 | 安徽欣意电缆有限公司 | Al-Fe-Ag铝合金、其制备方法以及铝合金电缆 |
CN104099495A (zh) * | 2014-08-03 | 2014-10-15 | 朱岳群 | 一种压铸铝铁合金 |
CN108893657A (zh) * | 2018-06-29 | 2018-11-27 | 华峰日轻铝业股份有限公司 | 一种添加稀土La的高导电率三元铝合金箔材及其制造方法 |
WO2021210352A1 (ja) * | 2020-04-17 | 2021-10-21 | 住友電気工業株式会社 | アルミニウム合金材 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1057152A (en) * | 1963-06-12 | 1967-02-01 | Furukawa Electric Co Ltd | Aluminium alloys for electric conductors |
CN101587757A (zh) * | 2009-06-19 | 2009-11-25 | 金杯电工股份有限公司 | 一种含稀土元素钇的铝合金电缆线及其制备方法 |
CN101886198A (zh) * | 2010-07-13 | 2010-11-17 | 安徽欣意电缆有限公司 | 电缆用高导电率铝合金材料及其制备方法 |
CN102978469A (zh) * | 2012-11-09 | 2013-03-20 | 安徽欣意电缆有限公司 | Al-Fe-RE铝合金及其制备方法和电力电缆 |
-
2012
- 2012-11-09 CN CN2012104453232A patent/CN102978469A/zh active Pending
-
2013
- 2013-11-11 WO PCT/CN2013/086823 patent/WO2014071877A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1057152A (en) * | 1963-06-12 | 1967-02-01 | Furukawa Electric Co Ltd | Aluminium alloys for electric conductors |
CN101587757A (zh) * | 2009-06-19 | 2009-11-25 | 金杯电工股份有限公司 | 一种含稀土元素钇的铝合金电缆线及其制备方法 |
CN101886198A (zh) * | 2010-07-13 | 2010-11-17 | 安徽欣意电缆有限公司 | 电缆用高导电率铝合金材料及其制备方法 |
CN102978469A (zh) * | 2012-11-09 | 2013-03-20 | 安徽欣意电缆有限公司 | Al-Fe-RE铝合金及其制备方法和电力电缆 |
Also Published As
Publication number | Publication date |
---|---|
CN102978469A (zh) | 2013-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102978460B (zh) | Al-Fe-Ni-RE铝合金及其制备方法和电力电缆 | |
CN103103392B (zh) | Al-Fe-Ag-RE铝合金及其制备方法和电力电缆 | |
CN102978458B (zh) | Al-Fe-Si-B-RE铝合金及其制备方法和电力电缆 | |
CN103103382B (zh) | Al-Fe-Rh-RE铝合金及其制备方法和电力电缆 | |
CN102978454B (zh) | Al-Fe-Pd-RE铝合金及其制备方法和电力电缆 | |
CN103103388B (zh) | Al-Fe-Cr-RE铝合金及其制备方法和电力电缆 | |
CN102978478B (zh) | Al-Fe-Mn-RE铝合金及其制备方法和电力电缆 | |
CN102978471B (zh) | Al-Fe-Ga-RE铝合金及其制备方法和电力电缆 | |
CN102978450A (zh) | Al-Fe-Mo-RE铝合金及其制备方法和电力电缆 | |
CN102978457B (zh) | Al-Fe-Nb-RE铝合金及其制备方法和电力电缆 | |
WO2014071877A1 (zh) | Al-Fe-RE铝合金及其制备方法和电力电缆 | |
WO2014071875A1 (zh) | Al-Fe-Cu-Mg-RE铝合金及其制备方法和电力电缆 | |
CN102978477B (zh) | Al-Fe-Ru-RE铝合金及其制备方法和电力电缆 | |
CN102978453B (zh) | Al-Fe-In-RE铝合金及其制备方法和电力电缆 | |
CN102978466B (zh) | Al-Fe-Zr-RE铝合金及其制备方法和电力电缆 | |
CN103103397B (zh) | Al-Fe-Cd-RE铝合金及其制备方法和电力电缆 | |
CN102978456B (zh) | Al-Fe-Li-RE铝合金及其制备方法和电力电缆 | |
CN103103391A (zh) | Al-Fe-Cu-RE铝合金及其制备方法和电力电缆 | |
CN102978464B (zh) | Al-Fe-Ti-RE铝合金及其制备方法和电力电缆 | |
CN103014419B (zh) | Al-Fe-Ge-RE铝合金及其制备方法和电力电缆 | |
CN102978462B (zh) | Al-Fe-V-RE铝合金及其制备方法和电力电缆 | |
CN102978465B (zh) | Al-Fe-Tc-RE铝合金及其制备方法和电力电缆 | |
CN102978459B (zh) | Al-Fe-Sr-RE铝合金及其制备方法和电力电缆 | |
CN102978470A (zh) | Al-Fe-Ca-RE铝合金及其制备方法和电力电缆 | |
CN103103386A (zh) | Al-Fe-Mg-RE铝合金及其制备方法和电力电缆 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13853680 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13853680 Country of ref document: EP Kind code of ref document: A1 |