WO2014069637A1 - Organic electroluminescent element, lighting device and display device - Google Patents

Organic electroluminescent element, lighting device and display device Download PDF

Info

Publication number
WO2014069637A1
WO2014069637A1 PCT/JP2013/079761 JP2013079761W WO2014069637A1 WO 2014069637 A1 WO2014069637 A1 WO 2014069637A1 JP 2013079761 W JP2013079761 W JP 2013079761W WO 2014069637 A1 WO2014069637 A1 WO 2014069637A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
organic
light emitting
general formula
Prior art date
Application number
PCT/JP2013/079761
Other languages
French (fr)
Japanese (ja)
Inventor
みゆき 岡庭
川邉 里美
大津 信也
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014544611A priority Critical patent/JP6295959B2/en
Publication of WO2014069637A1 publication Critical patent/WO2014069637A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes

Definitions

  • the present invention relates to an organic electroluminescence element, an illumination device provided with the organic electroluminescence device, and a display device.
  • An organic electroluminescence element (hereinafter also referred to as an organic EL element) has a configuration in which a light-emitting layer containing a light-emitting compound is sandwiched between a cathode and an anode, and a positive electrode injected from the anode by applying an electric field.
  • This is a light emitting device that uses the emission of light (fluorescence / phosphorescence) when excitons are generated by recombining electrons injected from holes and cathodes in the light emitting layer to generate excitons. is there.
  • An organic EL element is an all-solid-state element composed of an organic material film with a thickness of only a submicron between electrodes, and can emit light at a voltage of several volts to several tens of volts. It is expected to be used for next-generation flat display and lighting.
  • Non-Patent Document 1 As for the development of organic EL elements for practical use, Princeton University has reported organic EL elements that use phosphorescence emission from excited triplets (see, for example, Non-Patent Document 1). Research on materials that exhibit phosphorescence has become active (see, for example, Patent Document 1 and Non-Patent Document 2). In addition, organic EL elements that utilize phosphorescence emission can in principle achieve light emission efficiency that is approximately four times that of organic EL elements that utilize fluorescence emission. Research and development of device layer configurations and electrodes are performed all over the world. For example, many compounds have been studied focusing on heavy metal complexes such as iridium complexes (see Non-Patent Document 3, for example).
  • the phosphorescence emission method is a method having a very high potential.
  • an organic EL device using phosphorescence emission is greatly different from an organic EL device using fluorescence emission, and controls the position of the emission center.
  • the method particularly how to recombine within the light emitting layer to stabilize the light emission, is an important technical issue in grasping the efficiency and lifetime of the device. Therefore, in recent years, a multi-layered element having a hole transport layer located on the anode side of the light emitting layer and an electron transport layer located on the cathode side of the light emitting layer in a form adjacent to the light emitting layer is well known. (For example, refer to Patent Document 2).
  • a mixed layer using a host compound and a phosphorescent compound as a dopant is often used for the light emitting layer.
  • organic EL elements are required to have high light emission efficiency and long light emission lifetime. Therefore, materials having high carrier transportability and thermally and electrically stable materials are required. Is required.
  • a short-wavelength blue light-emitting dopant that exhibits an emission maximum wavelength of 470 nm, more preferably 460 nm or less, is required. Indispensable.
  • fluorescent light-emitting dopants having anthracene, chrysene or the like in the skeleton are well known, but as described above, they are disadvantageous compared to phosphorescent light-emitting dopants in terms of light emission efficiency.
  • FIrpic is a material well known as a short wavelength phosphorescent blue light emitting dopant.
  • FIrpic is realized by using two fluorine atoms in the main ligand, phenylpyridine, and using picolinic acid as a sub-ligand, but with two fluorine atoms with high electronegativity. Due to the substitution, iridium as a central metal is easily oxidized, and the HOMO is very deep at about ⁇ 5.90 eV in a calculated value. Therefore, it becomes difficult to inject holes from the anode side into the light emitting layer, the balance of hole and electron injection is deteriorated, and problems such as a decrease in recombination probability and an increase in driving voltage occur in the light emitting layer.
  • the recombination region is easily limited to a narrow region near the transport layer interface, and exciton leakage occurs from the light emitting layer to the adjacent transport layer. For this reason, the subject of the light emission efficiency fall and the light emission lifetime fall resulting from deterioration of a material generate
  • a light emitting dopant having a shallow HOMO for example, less than ⁇ 4.50 eV
  • the LUMO becomes relatively shallow and the compound becomes unstable. In addition, it is easily affected by external factors such as oxygen, and there is a problem in terms of stability of device performance.
  • Patent Document 3 a high-efficiency element and a long lifetime are achieved by using a biscarbazole derivative with improved hole transportability and electron transportability as a host.
  • the light emission maximum wavelength of the light-emitting dopant used in Examples in Patent Document 3 shows a light emission maximum wavelength exceeding 470 nm as studied by the present inventor, and is used for high color temperature illumination applications and displays with a wide color gamut. It was found that the wavelength is not long and satisfactory.
  • the above document does not describe the relationship between the luminescent dopant and the HOMO of the material used for the host.
  • such a light emitting dopant with a short wavelength often has a feature that the light emission efficiency is lowered at a high temperature. This is thought to be due to the large non-radiative process knr other than the radiative process kr that emits light in the process of deactivation of the dopant from the excited state to the ground state. This is thought to be due to the large deactivation process.
  • a large knr leads to a problem of reduced efficiency, but it is largely due to the structure of the luminescent dopant, and there is a problem of coexistence with required performance such as emission of light having a long wavelength by reducing thermal vibration.
  • the present invention has been made in view of the above problems, and has high luminous efficiency, low driving voltage, long life, and good chromaticity, an organic electroluminescence element having good chromaticity, and an illumination device and a display device using the element It is an issue to provide.
  • an organic electroluminescent device including at least one light emitting layer sandwiched between an anode and a cathode, at least one layer of the light emitting layer contains at least one kind of light emitting dopant and at least one kind of host.
  • At least one is a phosphorescent light emitting dopant having an emission maximum wavelength on the shortest wavelength side of 470 nm or less and a HOMO value of ⁇ 4.50 to ⁇ 5.50 eV in an emission spectrum in a solution
  • At least one of the compounds represented by any one of the following general formulas (1) to (4) is a compound having a HOMO value of ⁇ 4.60 to ⁇ 5.10 eV.
  • Electroluminescence element is a compound having a HOMO value of ⁇ 4.60 to ⁇ 5.10 eV.
  • R 111 and R 112 represent a hydrogen atom, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group, (The compound represented may further have a substituent.)
  • R 211 and R 212 represent an alkyl group, an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • Rings Z 1 to Z 3 represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring. Represents a residue to be formed and may have a substituent.
  • R 211 and R 212 represent an alkyl group, an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • Rings Z 1 to Z 3 represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring. Represents a residue to be formed and may have a substituent.
  • R 311 and R 312 each represent a hydrogen atom, an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a diarylamino group, or an alkyl group.
  • 1 to A 8 each independently represents C—Rx or N, and a plurality of Rxs may be the same or different, and Rx each independently represents a hydrogen atom or a substituent.
  • M represents Ir, Pt, Rh, Ru, Ag or Cu
  • X 1 and X 2 represent a carbon atom or a nitrogen atom
  • ring Z 1 represents a 6-membered aromatic with C ⁇ C.
  • L ′ represents a monoanionic divalent ring coordinated to M A bidentate ligand, m ′ represents an integer of 0 to 2, n ′ is an integer of at least 1, and m ′ + n ′ is 2 or 3.
  • M represents Ir, Pt, Rh, Ru, Ag, or Cu
  • X 1 and X 2 represent a carbon atom or a nitrogen atom
  • ring Z 2 is a 5-membered member together with X 1 -X 2.
  • R 1 represents an electron-withdrawing group
  • R 2 represents an electron-donating group or F.
  • L ′ is a monoanionic bidentate ligand coordinated to M
  • m ′ is 0.
  • n ′ is an integer of at least 1 and m ′ + n ′ is 2 or 3.
  • M represents Ir, Pt, Rh, Ru, Ag or Cu
  • R 3 , R 4 , and R 5 each represent a hydrogen atom or a substituent, and R 4 and R 5 may form a ring
  • L ′ is a monoanionic divalent group coordinated to M.
  • a bidentate ligand, m ′ represents an integer of 0 to 2, n ′ is an integer of at least 1, and m ′ + n ′ is 2 or 3.
  • M represents Ir, Pt, Rh, Ru, Ag or Cu
  • X 1 to X 4 represent —CR 6 or a nitrogen atom
  • X 3 and X 4 are —CR 6 .
  • the ring Z 3 represents a 6-membered aromatic hydrocarbon ring, or a 5-membered or 6-membered aromatic heterocycle
  • the ring Z 4 is a 5-membered with X 1 -X 2 R 6 represents a carbon atom or a nitrogen atom
  • L ′ represents a monoanionic bidentate ligand coordinated to M
  • m ′ represents an integer of 0 to 2
  • n ′ Is an integer of at least 1 and m ′ + n ′ is 2 or 3.
  • the ring Z 2 is an organic electroluminescent device according to the 3, characterized in that a substituted or unsubstituted triazole ring.
  • An illumination device comprising the organic electroluminescence element according to any one of 1 to 8 above.
  • a display device comprising the organic electroluminescence element according to any one of 1 to 8 above.
  • the present invention can provide an organic electroluminescence element that realizes high luminous efficiency and long life, low driving voltage, and good chromaticity, an illumination device using the element, and a display device.
  • FIG. 4 is a schematic diagram of a passive matrix type full-color display device according to display unit A of FIG. 3. It is the schematic of an illuminating device. It is a schematic diagram of an illuminating device.
  • (A)-(e) is a schematic block diagram of an organic electroluminescent full color display apparatus.
  • the organic EL device of the present invention includes at least one light emitting layer sandwiched between an anode and a cathode. At least one light emitting dopant and at least one host are contained in at least one layer of the light emitting layer, and at least one of the light emitting dopants has a light emission maximum at the shortest wavelength side in the light emission spectrum in the solution.
  • At least one of the luminescent dopants may be a phosphorescent luminescent dopant having an emission maximum wavelength of 470 nm or less and a HOMO value of ⁇ 4.50 to ⁇ 5.50 eV.
  • the phosphorescent light emitting dopant may be used.
  • at least one of the hosts may be a compound represented by any one of the general formulas (1) to (4) and a compound having a HOMO value of ⁇ 4.60 to ⁇ 5.10 eV, All of the hosts may be the compound.
  • hole injection from the adjacent layer to the light emitting layer is improved by making the relationship between the HOMO of the light emitting dopant and the HOMO of the host as in the present invention.
  • the compound having the structure represented by (4) as a host, the carrier injection balance into the light emitting layer was improved, and the recombination region was separated from the vicinity of the interface between the light emitting layer and the adjacent layer.
  • an organic electroluminescence device having both high luminous efficiency and a long lifetime could be obtained.
  • the compounds represented by the general formulas (1) to (4) have a condensed ring structure, the molecules are more molecules than the triarylamine derivatives typically represented by ⁇ -NPD having hole transport properties. As a result, the carrier mobility in the layer is improved and a low driving voltage can be achieved. Furthermore, it was confirmed that knr could be reduced by using the compounds represented by the general formulas (1) to (4). This is because the arrangement of molecules of such a compound has a role like a housing, and by dispersing a light emitting dopant there, thermal vibration is suppressed, knr is reduced, while kr is increased. it is conceivable that.
  • a non-light emitting intermediate layer may be provided between the light emitting layers.
  • an organic layer including a light emitting layer excluding an anode and a cathode can be used as one light emitting unit, and a plurality of light emitting units can be stacked.
  • the plurality of stacked light emitting units may have a non-light emitting intermediate layer between the light emitting units, and the intermediate layer may further include a charge generation layer.
  • the organic EL element of the present invention is preferably a white light emitting layer, and is preferably an illumination device or a display device using these. That is, the organic EL element preferably emits white light.
  • Each layer which comprises the organic EL element of this invention is demonstrated.
  • the light-emitting layer is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer. It may be an interface with an adjacent layer.
  • the total film thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the uniformity of the film, preventing unnecessary application of high voltage during light emission, and improving the stability of the emission color with respect to the drive current. It is preferable to adjust in the range of 2 nm to 5 ⁇ m, more preferably in the range of 2 nm to 200 nm, and particularly preferably in the range of 5 nm to 100 nm.
  • a light emitting dopant or host compound described later is used, for example, a vacuum deposition method, a wet method (also referred to as a wet process, for example, a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method,
  • the film can be formed by an inkjet method, a printing method, a spray coating method, a curtain coating method, an LB method (such as Langmuir-Blodgett method) and the like.
  • the light emitting layer of the organic EL device of the present invention contains a light emitting dopant and a host.
  • Light-emitting host also referred to as light-emitting host compound or host compound
  • the present invention is characterized in that the host material of the light emitting layer contains a compound represented by any one of the general formulas (1) to (4).
  • the compounds represented by the general formulas (1) to (4) are non-metallic complex compounds and have a HOMO value of ⁇ 4.60 to ⁇ 5.10 eV.
  • the HOMO value referred to in the present invention is Gaussian 03 (Gaussian 03, Revision D02, MJ Frisch, et al, Gaussian, Inc., Wallingford CT, 2004.), which is a molecular orbital calculation software manufactured by Gaussian, USA. This is the calculated value.
  • the compound represented by the general formulas (1) to (4), the host compound, the hole transport material, and the electron transport material of the present invention use B3LYP / 6-31G * as a keyword, and the phosphorescent dopant compound is B3LYP /
  • the HOMO value is calculated by performing structural optimization of the target molecular structure using LanL2DZ (eV unit conversion value). It is known that the correlation between the calculated value obtained by this method and the experimental value is high as a background to the effectiveness of this calculated value.
  • the HOMO values of the compounds represented by the general formulas (1) to (4) of the present invention are ⁇ 4.60 to ⁇ 5.10 eV.
  • the reason why the HOMO value is in the above range is that when the HOMO value is deeper than ⁇ 5.10 eV, hole injection into the light emitting layer is remarkably reduced, resulting in deterioration of efficiency and lifetime.
  • the hole trapping property of the dopant in the light emitting layer is strong, so that holes are likely to accumulate at the light emitting layer / hole transporting layer interface, and the efficiency and life are also reduced.
  • the HOMO value is preferably ⁇ 4.70 to ⁇ 5.10 eV.
  • R 111 and R 112 represent a hydrogen atom, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group, and represented by the general formula (1)
  • the compound to be obtained may further have a substituent.
  • Examples of the aromatic hydrocarbon ring group represented by R 111 and R 112 in the general formula (1) include, for example, a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, Naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, And monovalent groups derived from a pyranthrene ring, anthraanthrene ring, and the like.
  • Examples of the aromatic heterocyclic group represented by R 111 and R 112 in the general formula (1) include a silole ring, a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, and a pyrazine.
  • Aromatic hydrocarbon ring represented by R 111, R 112, aromatic heterocycle may be substituted with the later-described R 111, the compound has optionally may substituent represented by R 112.
  • R 112 substituent represented by R 112.
  • a compound represented by R 111 or R 112 described later may be included. What was demonstrated by the good substituent can be used.
  • Examples of the substituent that the compound represented by R 111 and R 112 in the general formula (1) may have include, for example, a hydrogen atom, an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, (T) butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group etc.), alkenyl group (eg, vinyl group) , Allyl group, etc.), alkynyl group (eg, propargyl group, etc.), aromatic hydrocarbon ring group (also referred to as aryl group, eg, phenyl group, p-chlorophenyl group, mesityl group, toly
  • R 111 and R 112 are more preferably a phenyl group, dibenzofuran, dibenzothiophene or carbazole.
  • R 111, R 112 in formula (11) to (13) has the same meaning as R 111, R 112 in formula (1).
  • R 111 and R 112 are more preferably a phenyl group, dibenzofuran, dibenzothiophene, or carbazole.
  • R 211 and R 212 represent an alkyl group, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group.
  • Rings Z 1 to Z 3 represent a residue that forms an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and may have a substituent.
  • the alkyl group, aromatic hydrocarbon ring group or aromatic heterocyclic group in general formulas (2) and (3) has the same meaning as described for R 111 and R 112 in general formula (1).
  • the substituents for the rings Z 1 to Z 3 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 11 carbon atoms, an aromatic hydrocarbon ring group having 6 to 12 carbon atoms, or Represents an aromatic heterocyclic group having 3 to 11 carbon atoms.
  • the substituent of the ring Z 2 may form a condensed ring together with the ring to which the substituent is bonded.
  • rings Z 1 to Z 3 are aromatic hydrocarbon rings, more preferably benzene rings.
  • the rings Z 1 to Z 3 are all benzene rings.
  • R 211 and R 212 are preferably an aromatic hydrocarbon ring group or an aromatic heterocyclic group, and more preferably a benzene ring, a pyridine ring, a pyrimidine ring, a triazine ring, or a quinoline ring.
  • R 311 and R 312 each represent a hydrogen atom, an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a diarylamino group, or an alkyl group.
  • R 311 and R 312 are preferably any of an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, and an aromatic heterocyclic group, and any of an aromatic hydrocarbon ring group or an aromatic heterocyclic group More preferably.
  • a substituent containing an oxygen atom or a sulfur atom is preferable.
  • the aromatic hydrocarbon ring group or aromatic heterocyclic group in R 311 and R 312 has the same meaning as described for R 111 and R 112 in the general formula (1).
  • a dibenzofuryl group, a dibenzothienyl group, etc. are mentioned as the most preferable substituents.
  • the arylsilyl group, arylphosphoryl group, diarylamino group, and alkyl group those described for R 111 and R 112 in the general formula (1) can be used.
  • a 1 to A 8 each independently represent C—Rx or N, and the plurality of Rx may be the same or different.
  • Rx each independently represents a hydrogen atom or a substituent. As a substituent, it is synonymous with the substituent quoted by General formula (1).
  • any one or more of A 1 , A 2 , A 4 is preferably C—Rx, and more preferably A 1 or A preferably any one or more of 2 is C-Rx, in particular a 1 may be mentioned as more preferred form to be a C-Rx.
  • Rx is an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, or a diarylamino group. It is preferably any one, and further preferably any one of an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, and an aromatic heterocyclic group, and among them, an aromatic hydrocarbon ring group or an aromatic heterocyclic group. It is more preferably any of a cyclic group, and particularly preferably an aromatic heterocyclic group.
  • a substituent containing an oxygen atom or a sulfur atom is preferable because it has a high charge transporting ability and high durability against charges, and an aromatic heterocyclic group is preferable because of high thermal stability.
  • a dibenzofuryl group, a dibenzothienyl group, etc. are mentioned as the most preferable substituents.
  • the substituent represented by Rx is preferably further substituted, and the substituent is any of an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, and a diarylamino group. And more preferably an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group, and among them, an aromatic hydrocarbon ring group or an aromatic heterocyclic ring Particularly preferred is any of the groups.
  • any one or more of Rx, R 311 and R 312 in the general formula (4) is a pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrazinyl group.
  • R 311 and R 312 may be functional groups other than those described above, and specific examples thereof are also shown.
  • a plurality of known luminescent hosts may be used in combination as long as the effects of the present invention are not impaired.
  • Specific examples of the known light-emitting host include compounds described in the following documents.
  • the light emitting layer used in the organic EL device of the present invention as a known light emitting host include, for example, the compounds OC-1 to OC32 described in JP2012-164731A. It is not limited.
  • Light emitting dopant also referred to as light emitting dopant, light emitting dopant compound, light emitting dopant compound
  • the luminescent dopant will be described.
  • a fluorescent dopant also referred to as a fluorescent compound
  • a phosphorescent light emitting dopant phosphorescent dopant, phosphorescent light emitting dopant, phosphorescent light emitting dopant group, phosphorescent light emitting dopant compound, phosphorescent light emitting dopant
  • Compounds, phosphorescent emitters, phosphorescent compounds, phosphorescent compounds, and the like) can be used.
  • a phosphorescent light-emitting dopant compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and is defined as a compound having a phosphorescence quantum yield of 0.01 or more at 25 ° C. 1 or more.
  • the phosphorescence quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence emission dopant should just achieve the said phosphorescence quantum yield (0.01 or more) in any solvent. .
  • the energy transfer type in which light emission from the phosphorescent light-emitting dopant is obtained by transferring to the light dopant, and the other is that the phosphorescent dopant becomes a carrier trap, and carrier recombination occurs on the phosphorescent light-emitting dopant, and phosphorescence
  • the excited state energy of the phosphorescent light emitting dopant is lower than the excited state energy of the host compound.
  • the present inventors have found that at least one of the light emitting layers of the organic EL element is on the shortest wavelength side in the emission spectrum in the solution.
  • Inclusion of at least one phosphorescent light-emitting dopant having an emission maximum wavelength of 470 nm or less and a HOMO value of ⁇ 4.50 to ⁇ 5.50 eV improves the light emission efficiency, lifetime, and driving voltage of the organic EL device, It was clarified that the color gamut of the element can be improved.
  • At least one of the phosphorescent dopants used in the present invention has an emission maximum wavelength on the shortest wavelength side of 470 nm or less and a HOMO value of ⁇ 4 in the emission spectrum of the solution in the region of 400 to 700 nm.
  • the phosphorescent emission dopant used in the present invention has an emission maximum wavelength (peak wavelength) of emission at the shortest wavelength side of 470 nm or less.
  • peak wavelength peak wavelength
  • the emission maximum wavelength of the phosphorescent light emitting dopant is 470 nm or less.
  • the thickness is preferably 460 nm or less.
  • the emission spectrum in the solution can be obtained from, for example, a fluorescence spectrum obtained by irradiating a solution obtained by dissolving a dopant in a nonpolar solvent with excitation light.
  • a dopant was dissolved in 2-methyltetrahydrofuran, and a fluorescence spectrum in the region of 400 to 700 nm was measured using Hitachi F-4500.
  • the HOMO value of the phosphorescent light-emitting dopant used in the present invention is ⁇ 4.50 to ⁇ 5.50 eV.
  • the value of HOMO in the phosphorescent light emitting dopant can be obtained by the calculation method described for the light emitting host compound.
  • the reason why the HOMO value is in the above range is that when the HOMO value is deeper than ⁇ 5.50 eV, the hole injection property from the hole transport layer to the light emitting layer is remarkably reduced, resulting in deterioration of efficiency and lifetime. It is because it becomes.
  • the HOMO value is shallower than ⁇ 4.50 eV
  • the LUMO of the dopant becomes shallow or the compound becomes unstable in order to make a blue phosphorescent light-emitting dopant whose emission maximum wavelength is 470 nm or less.
  • a preferred phosphorescent light emitting dopant is a compound represented by the following general formula (5).
  • M represents Ir, Pt, Rh, Ru, Ag or Cu
  • X 1 and X 2 represent a carbon atom or a nitrogen atom
  • the ring Z 1 is a 6-membered aromatic together with C ⁇ C. hydrocarbon ring or an aromatic 5- or 6-membered heterocyclic ring
  • the ring Z 2 represents a heterocyclic 5-membered together with X 1 -X 2.
  • Examples of the 6-membered aromatic hydrocarbon ring of the ring Z 1 include a benzene ring.
  • Examples of the 5-membered or 6-membered aromatic heterocycle include furan ring, thiophene ring, oxazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, oxadiazole ring, triazole ring, An imidazole ring, a pyrazole ring, a thiazole ring, etc. are mentioned.
  • Ring Z 1 and ring Z 2 may have a substituent, and those exemplified in formula (1) can be used.
  • L ′ is a monoanionic bidentate ligand coordinated to M
  • m ′ represents an integer of 0 to 2
  • n ′ is an integer of at least 1
  • m ′ + n ′ is 2 or 3. is there.
  • ring Z 1 is a substituted or unsubstituted benzene ring or pyridine ring
  • ring Z 2 is a substituted or unsubstituted imidazole ring, substituted or unsubstituted pyrazole ring, or substituted or unsubstituted triazole ring. It is preferable that it represents.
  • Preferred as the compound represented by the general formula (5) are compounds represented by the following general formulas (6), (7) and (8).
  • R 1 represents an electron withdrawing group
  • R 2 represents an electron donating group or F
  • X 1 and X 2 represents a carbon atom or a nitrogen atom
  • the ring Z 2 represents a heterocyclic 5-membered together with X 1 -X 2.
  • the electron withdrawing group include a keto group such as a halogen atom, a cyano group, a nitro group, a phenyl group, and an acyl group
  • examples of the electron donating group include an alkyl group, a hydroxyl group, an alkoxy group, and an amino group.
  • the ring Z 2 represents a substituted or unsubstituted triazole ring.
  • R 3 , R 4 and R 5 each represent a hydrogen atom or a substituent, and R 4 and R 5 may form a ring.
  • Ring Z 1 represents a 6-membered aromatic hydrocarbon ring together with C ⁇ C, or a 5-membered or 6-membered aromatic heterocycle.
  • the substituent for R3, R4, and R5 represents a group having the same meaning as the substituent represented by Formula (1).
  • X 1 to X 4 each represent —CR 6 or a nitrogen atom.
  • X 3 and X 4 may form a ring.
  • Ring Z 3 represents a 6-membered aromatic hydrocarbon ring or a 5-membered or 6-membered aromatic heterocycle, and ring Z 4 represents a 5-membered heterocycle together with X 1 -X 2 .
  • R 6 represents a carbon atom or a nitrogen atom.
  • Fluorescent dopants include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes , Polythiophene dyes, rare earth complex phosphors, and the like, and compounds having a high fluorescence quantum yield such as laser dyes.
  • the light emitting dopant may be used in combination of a plurality of types of compounds, or may be a combination of phosphorescent light emitting dopants having different structures, or a combination of a phosphorescent light emitting dopant and a fluorescent dopant.
  • the region contributing to light emission can be calculated from the value of ⁇ PL / ⁇ EL and the width of the region can be estimated from the calculation result.
  • ⁇ EL and ⁇ PL respectively represent the intensity decay rates of electroluminescence (EL) and photoluminescence (PL) before and after driving, and can be represented by the following equations.
  • ⁇ EL 1 ⁇ [EL (after driving) / EL (before driving)]
  • ⁇ PL 1 ⁇ [PL (after driving) / PL (before driving)]
  • the PL value after the PL driving is measured in a state after driving the organic EL element until the light emission luminance is about half from the initial luminance ( ⁇ EL is about 0.5).
  • ⁇ PL represents a recombination region with respect to the entire light emitting layer.
  • FIG. 1 is a schematic view showing each region in the layer thickness direction of the light emitting layer 100, and the left-right direction in the drawing corresponds to the layer thickness direction.
  • the light emitting layer 100 is partitioned into a region contributing to light emission (recombination region T1) and a region T2 not contributing to light emission.
  • the “EL before driving” is the measurement target in the recombination region T1.
  • the PL before driving is a measurement target in the region T3 representing the entire light emitting layer.
  • “PL after driving” is the measurement target of the remaining region T6 obtained by subtracting the non-light emitting region T4 from the region T3 representing the entire light emitting layer in accordance with the formation of the non-light emitting region T4 in the recombination region T1. It becomes.
  • the injection layer is a layer provided between the electrode and the organic layer for reducing the driving voltage and improving the light emission luminance as required.
  • the organic EL element and its industrialization front line June 30, 1998 Chapter 2 “Electrode Materials” (pages 123 to 166) of Volume 2 of “TS Co., Ltd.”) is described in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • anode buffer layer hole injection layer
  • copper phthalocyanine is used.
  • Representative phthalocyanine buffer layer oxide buffer layer typified by vanadium oxide, amorphous carbon buffer layer, polymer buffer layer using conductive polymer such as polyaniline (emeraldine) or polythiophene, tris (2-phenylpyridine) )
  • Orthometalated complex layers represented by iridium complexes and the like.
  • the details of the cathode buffer layer are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc.
  • Metal buffer layer typified by, alkali metal compound buffer layer typified by lithium fluoride, sodium fluoride and potassium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, and aluminum oxide And an oxide buffer layer.
  • the buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m, although it depends on the material.
  • the materials used for the anode buffer layer and the cathode buffer layer can be used in combination with other materials. For example, they can be mixed in the hole transport layer or the electron transport layer.
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (issued by NTT Corporation on November 30, 1998)” on page 237.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the structure of the above-mentioned electron carrying layer can be used as a hole-blocking layer concerning this invention as needed.
  • the hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
  • the hole blocking layer contains carbazole derivatives, azacarbazole derivatives (where azacarbazole derivatives are those in which one or more carbon atoms constituting the carbazole ring are replaced by nitrogen atoms), pyridine derivatives, and the like. It is preferable to contain a nitrogen compound. Further, in the present invention, when a plurality of light emitting layers having different emission colors are provided, the light emitting layer having the shortest wavelength of the light emission maximum wavelength (shortest wave layer) is closest to the anode among all the light emitting layers. preferable. In such a case, it is preferable to additionally provide a hole blocking layer between the shortest wave layer and the light emitting layer next to the anode next to the shortest wave layer.
  • the thickness of the hole blocking layer and electron blocking layer that can be used in the present invention is preferably 3 nm to 100 nm, and more preferably 3 nm to 30 nm.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives,
  • stilbene derivatives silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material as described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used.
  • these materials are preferably used because a light-emitting element with higher efficiency can be obtained.
  • the hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can.
  • the thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • a hole transport layer having a high p property doped with impurities can be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided with a single layer or a plurality of layers.
  • An electron transport material (including a hole blocking material and an electron injection material) used for the electron transport layer only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer. Can be selected from any conventionally known compounds and used alone or in combination.
  • electron transport materials examples include heterocyclic tetracarboxylic acid anhydrides such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, And azacarbazole derivatives including carbodiimide, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, carboline derivatives, and the like.
  • the azacarbazole derivative refers to one in which one or more carbon atoms constituting the carbazole ring are replaced with a nitrogen atom.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron transport material. It is also possible to use a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, A metal complex replaced with Cu, Ca, Sn, Ga, or Pb can also be used as an electron transport material.
  • metal-free or metal phthalocyanine or those having the terminal substituted with an alkyl group or a sulfonic acid group can also be used as the electron transport material.
  • inorganic semiconductors such as n-type-Si and n-type-SiC can also be used as the electron transport material.
  • the electron transport layer is made of an electron transport material such as a vacuum deposition method, a wet method (also referred to as a wet process, such as a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method, an ink jet method, a printing method, or a spraying method.
  • the film is preferably formed by thinning by a coating method, curtain coating method, LB method (Langmuir Brodgett method, etc.).
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5000 nm, preferably 5 nm to 200 nm.
  • This electron transport layer may have a single layer structure composed of one or more of the above materials.
  • you may dope and use n-type dopants, such as metal compounds, such as a metal complex and a metal halide.
  • Examples of conventionally known compounds (electron transport materials) that are preferably used for forming an electron transport layer include, for example, compounds of ET-1-ET-43 described in JP2012-164731A, but are not limited thereto. Not.
  • an electrode material made of a metal, an alloy, an electrically conductive compound and a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 ⁇ m or more)
  • a pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • wet film-forming methods such as a printing system and a coating system, can also be used.
  • the transmittance be greater than 10%
  • the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.
  • a material having a low work function (4 eV or less) metal referred to as an electron injecting metal
  • an alloy referred to as an electrically conductive compound and a mixture thereof as an electrode material
  • Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • the light emission luminance is improved, which is convenient.
  • a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a film thickness of 1 nm to 20 nm. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
  • a support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention, there is no particular limitation on the type of glass, plastic, etc., and it is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • a desired electrode material for example, a thin film made of an anode material is formed on a suitable substrate so as to have a thickness of 1 ⁇ m or less, preferably 10 nm to 200 nm, and an anode is manufactured.
  • a thin film containing an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, and an electron injection layer, which is a device material, is formed thereon.
  • the thin film can be formed by a vacuum deposition method, a wet method (also referred to as a wet process), or the like.
  • Wet methods include spin coating, casting, die coating, blade coating, roll coating, ink jet, printing, spray coating, curtain coating, and LB, but precise thin films can be formed. From the viewpoint of high productivity, a method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, or a spray coating method is preferable. Different film formation methods may be applied for each layer.
  • liquid medium for dissolving or dispersing the organic EL material examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, Aromatic hydrocarbons such as xylene, mesitylene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as DMF and DMSO can be used.
  • a dispersion method it can disperse
  • a thin film made of a cathode material is formed thereon so as to have a thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm, and a desired organic EL device can be obtained by providing a cathode.
  • the cathode, electron injection layer, electron transport layer, hole blocking layer, light emitting layer, hole transport layer, hole injection layer, and anode can be formed in this order in the reverse order.
  • the organic EL device of the present invention is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is preferable to perform the work in a dry inert gas atmosphere.
  • a sealing means used for this invention the method of adhere
  • a sealing member it should just be arrange
  • sandblasting, chemical etching, or the like is used.
  • the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film. .
  • a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or on the sealing film.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, and the like used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • the organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.
  • a method for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (US Pat. No. 4,774,435), A method for improving efficiency by giving light condensing property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on the side surface of an element (Japanese Patent Laid-Open No. 1-220394), and light emission from the substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the bodies (Japanese Patent Laid-Open No.
  • these methods can be used in combination with the organic EL device of the present invention.
  • a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • by combining these means it is possible to obtain an element having higher luminance or durability.
  • the organic EL device of the present invention is processed on the light extraction side of the substrate so as to provide, for example, a microlens array structure, or combined with a so-called condensing sheet, for example, with respect to a specific direction, for example, the device light emitting surface.
  • a specific direction for example, the device light emitting surface.
  • the luminance in a specific direction can be increased.
  • the microlens array quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 ⁇ m to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • Other details of the “sheet” and the like can be the same as those described in publicly known documents such as Japanese Patent Application Laid-Open No. 2012-164731 and Japanese Patent Application Laid-Open No. 2012-156299.
  • the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
  • lighting devices home lighting, interior lighting
  • clock and liquid crystal backlights billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light
  • the light source of a sensor etc. are mentioned, It is not limited to this, It can use effectively for the use as a backlight of a liquid crystal display device, and an illumination light source especially.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like as needed during film formation.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned.
  • a conventionally known method is used. Can do.
  • the light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total of CS-1000 (manufactured by Konica Minolta Sensing Co., Ltd.) is applied to the CIE chromaticity coordinates.
  • the display device of the present invention will be described.
  • the display device of the present invention includes the organic EL element of the present invention.
  • the display device of the present invention may be single color or multicolor, the multicolor display device will be described here.
  • a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by vapor deposition, casting, spin coating, ink jet, printing, or the like.
  • the method is not limited.
  • the vapor deposition method, the ink jet method, the spin coating method, and the printing method are preferable.
  • the configuration of the organic EL element provided in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
  • the manufacturing method of an organic EL element is as having shown to the one aspect
  • the multicolor display device can be used as a display device, a display, and various light emission sources. In display devices and displays, full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
  • Examples of the display device and display include a television, a personal computer, a mobile device, an AV device, a character broadcast display, and an information display in an automobile.
  • it may be used as a display device for reproducing still images and moving images
  • the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
  • Light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc. The present invention is not limited to these examples.
  • FIG. 2 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
  • the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside, and the pixels for each scanning line respond to the image data signal by the scanning signal.
  • the image information is sequentially emitted to scan the image and display the image information on the display unit A.
  • FIG. 3 is a schematic diagram of the display unit A.
  • the display unit A includes a wiring unit including a plurality of scanning lines 5 and data lines 6, a plurality of pixels 3 and the like on a substrate.
  • the main members of the display unit A will be described below.
  • the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
  • the scanning lines 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at orthogonal positions (details are shown in the figure). Not) When a scanning signal is applied from the scanning line 5, the pixel 3 receives an image data signal from the data line 6 and emits light according to the received image data. Full-color display is possible by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • FIG. 4 is a schematic diagram of a pixel.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • a full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
  • an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6.
  • a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the power supply line 7 connects to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.
  • the driving of the switching transistor 11 is turned off. However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 maintains the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues.
  • the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the light emission of the organic EL element 10 is performed by providing the switching transistor 11 and the drive transistor 12 which are active elements with respect to the organic EL element 10 of each of the plurality of pixels. It is carried out.
  • Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good.
  • the potential of the capacitor 13 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • a passive matrix light emission drive in which the organic EL element emits light according to the data signal only when the scanning signal is scanned.
  • FIG. 5 is a schematic view of a passive matrix display device according to the display unit A of FIG.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the scanning signal of the scanning line 5 is applied by sequential scanning, the pixels 3 connected to the applied scanning line 5 emit light according to the image data signal.
  • the pixel 3 has no active element, and the manufacturing cost can be reduced.
  • the lighting device of the present invention includes the organic EL element of the present invention.
  • the organic EL element of the present invention may be used as an organic EL element having a resonator structure.
  • the purpose of use of the organic EL element having such a resonator structure is as follows.
  • the light source of a machine, the light source of an optical communication processing machine, the light source of a photosensor, etc. are mentioned, However It is not limited to these. Moreover, you may use for the said use by making a laser oscillation.
  • the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a display for directly viewing a still image or a moving image. It may be used as a device (display).
  • the driving method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
  • a full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.
  • the organic EL material of the present invention can be applied to an organic EL element that emits substantially white light as a lighting device.
  • a plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing.
  • the combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or two using the relationship of complementary colors such as blue and yellow, blue green and orange, etc.
  • the thing containing the light emission maximum wavelength may be used.
  • the combination of luminescent materials for obtaining multiple luminescent colors is a combination of multiple phosphorescent or fluorescent materials that emit light, fluorescent materials or phosphorescent materials, and light from the luminescent materials. Any combination with a dye material that emits light as light may be used, but in the white organic EL device according to the present invention, it is only necessary to mix and mix a plurality of light emitting dopants.
  • an electrode film can be formed by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is also improved. According to this method, unlike a white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves are luminescent white.
  • luminescent material used for a light emitting layer For example, if it is a backlight in a liquid crystal display element, the metal complex which concerns on this invention so that it may suit the wavelength range corresponding to CF (color filter) characteristic, Any one of known luminescent materials may be selected and combined to whiten.
  • CF color filter
  • One aspect of the lighting device of the present invention that includes the organic EL element of the present invention will be described.
  • the non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a glass substrate having a thickness of 300 ⁇ m is used as a sealing substrate, and an epoxy-based photocurable adhesive (LUX TRACK manufactured by Toagosei Co., Ltd.) is used as a sealing material.
  • LC0629B is applied, and this is overlaid on the cathode to be in close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured and sealed, and as shown in FIG. 6 and FIG. Can be formed.
  • FIG. 6 and FIG. Can be formed FIG.
  • FIG. 6 shows a schematic diagram of the lighting device, and the organic EL element 101 of the present invention is covered with a glass cover 102 (in the sealing operation with the glass cover, the organic EL element 101 is brought into contact with the atmosphere. And a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more).
  • 7 shows a cross-sectional view of the lighting device.
  • reference numeral 105 denotes a cathode
  • 106 denotes an organic EL layer
  • 107 denotes a glass substrate with a transparent electrode (anode).
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • the supporting substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
  • PEDOT / PSS polystyrene sulfonate
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus, and on the other hand, it is the same as 1-12 (compound (1) described in WO2011 / 122132) as a host compound in a resistance heating boat made of molybdenum. 200 mg), 200 mg of ET-8 as an electron transport material is put into another molybdenum resistance heating boat, and 100 mg of the compound (DP-BL1) as a dopant compound is put into another resistance heating boat made of molybdenum.
  • TPD hole transport material
  • lithium fluoride was placed in another molybdenum resistance heating boat as a cathode buffer material, and attached to a vacuum deposition apparatus.
  • the pressure in the vacuum chamber was reduced to 4 ⁇ 10 ⁇ 4 Pa, and the heating boat containing TPD was heated by energization.
  • a hole having a thickness of 20 nm was formed on the hole injection layer at a deposition rate of 0.1 nm / second.
  • a transport layer was provided.
  • the heating boat containing 1-12 as a host compound and the compound (DP-BL1) as a dopant compound is heated by energization, and the hole transport is performed at a deposition rate of 0.1 nm / second and 0.025 nm / second, respectively.
  • a light-emitting layer having a thickness of 30 nm was provided by co-evaporation on the layer.
  • the heating boat containing ET-8 was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide an electron transport layer having a thickness of 30 nm.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • lithium fluoride was vapor-deposited to form a cathode buffer layer having a thickness of 0.5 nm, and aluminum was further vapor-deposited to form a cathode having a thickness of 110 nm.
  • a comparative organic EL element 1-1 was produced.
  • Organic EL elements 1-2 to 1-15 were prepared by the same method except that the dopant compound and the host compound in the light emitting layer were changed to the compounds shown in Table 1 in the production of the organic EL element 1-1. .
  • External extraction quantum efficiency also simply referred to as EQE
  • EQE External extraction quantum efficiency
  • the organic EL element is lighted under a constant current condition of 20 ° C. and 2.5 mA / cm 2 , and the light emission luminance (L) [cd / m 2 ] immediately after the start of lighting is measured.
  • L light emission luminance
  • the external extraction quantum efficiency ( ⁇ @ 20 ° C.) was calculated.
  • the temperature was set to 50 ° C., and the external extraction quantum efficiency ( ⁇ @ 50 ° C.) was similarly calculated.
  • a value calculated as follows from these values was used as a measure of the EQE reduction rate during heating.
  • EQE reduction rate upon heating [( ⁇ @ 20 ° C- ⁇ @ 50 ° C) / ⁇ @ 20 ° C] x 100
  • the measurement of light emission luminance is performed using CS-1000 (manufactured by Konica Minolta Sensing Co., Ltd.), and becomes 0 when the external extraction efficiency does not change between 20 ° C. and 50 ° C.
  • the element chromaticity is the chromaticity in the CIE 1931 color system at 1000 cd / m 2 when the 2-degree viewing angle front luminance is measured using CS-1000 (manufactured by Konica Minolta Sensing Co., Ltd.).
  • the measurement of the light emitting region (recombination region) is as follows.
  • the maximum intensity was calculated to calculate the attenuation rate ( ⁇ PL).
  • ⁇ EL indicates the intensity decay rate of the electroluminescence (EL) before and after driving
  • ⁇ PL indicates the intensity decay rate of the photoluminescence (PL) before and after driving.
  • each value of ⁇ EL and ⁇ PL is expressed by the following formula.
  • ⁇ EL 1 ⁇ [EL (after driving) / EL (before driving)]
  • ⁇ PL 1 ⁇ [PL (after driving) / PL (before driving)]
  • USB spectrum manufactured by Ocean Optics
  • the spectrum measurement after the drive was performed within 2 hours from that time after the EL was driven until the initial luminance became about half. Thereafter, the ratio of each value between ⁇ PL and ⁇ EL ( ⁇ PL / ⁇ EL) was calculated.
  • the calculation results are shown in Table 1.
  • the light emitting area is expressed as a relative value in which the light emitting area of the organic EL element 1-1 is set to 100.
  • the organic EL devices 1-5, 1-7 to 1-10, and 1-13 to 1-15 of the present invention each exhibit high luminous efficiency and long life, and have a low driving voltage. It can be seen that the characteristics are improved. Moreover, it turns out that the thing using the host compound which concerns on this invention has a low EQE fall rate at the time of a heating. In addition, it can be seen that the device characteristics are improved by making the HOMO level of the light emitting dopant and the host material the relationship of the present invention.
  • the obtained organic EL devices 2-1 to 2-15 were subjected to the same method as in Example 1, (1) external extraction quantum efficiency (also simply referred to as EQE), (2) half-life, and (3) driving voltage. And (4) The EQE reduction rate during heating was evaluated, and the values other than the EQE reduction rate during heating were expressed as relative values with the organic EL element 2-1 being 100. Further, the element chromaticity and the light emitting region were measured in the same manner as in Example 1. The light emitting area is expressed as a relative value in which the light emitting area of the organic EL element 2-1 is set to 100.
  • each of the organic EL devices 2-7 to 2-12 of the present invention exhibits high luminous efficiency and long life, low driving voltage, and improved device characteristics. Moreover, it turns out that the thing using the host compound which concerns on this invention has a low EQE fall rate at the time of a heating. In addition, it can be seen that the device characteristics are improved by making the HOMO level of the light emitting dopant and the host material the relationship of the present invention.
  • the obtained organic EL devices 3-1 to 3-12 were subjected to the same method as in Example 1, (1) external extraction quantum efficiency (also simply referred to as EQE), (2) half-life, and (3) driving voltage. (4) The EQE reduction rate during heating was evaluated, and the values other than the EQE reduction rate during heating were expressed as relative values with the organic EL element 3-1 being 100. Further, the element chromaticity and the light emitting region were measured in the same manner as in Example 1. The light emitting area is expressed as a relative value in which the light emitting area of the organic EL element 3-1 is set to 100.
  • the organic EL devices 3-7 to 3-11 of the present invention each exhibit high luminous efficiency and long life, low driving voltage, and improved device characteristics. Moreover, it turns out that the thing using the host compound which concerns on this invention has a low EQE fall rate at the time of a heating. In addition, it can be seen that the device characteristics are improved by making the HOMO level of the light emitting dopant and the host material the relationship of the present invention.
  • the hole injection layer was not provided and fixed to the substrate holder of the vacuum evaporation apparatus, the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then the HT-30 was added. A heating boat was energized and heated, and a hole injection layer having a thickness of 10 nm was provided on the transparent support substrate at a deposition rate of 0.1 nm / second.
  • Organic EL elements 4-1 to 4-11 were produced in exactly the same manner except that the hole transport material was changed to ⁇ -NPD.
  • the obtained organic EL devices 4-1 to 4-11 were subjected to the same method as in Example 1, (1) external extraction quantum efficiency (also simply referred to as EQE), (2) half-life, and (3) driving voltage. And (4) The EQE reduction rate during heating was evaluated. Except for the EQE reduction rate during heating, each was expressed as a relative value where the organic EL element 4-1 was 100. Further, the element chromaticity and the light emitting region were measured in the same manner as in Example 1. The light emitting area is expressed as a relative value in which the light emitting area of the organic EL element 4-1 is set to 100.
  • Table 4 shows that each of the organic EL elements 4-7 to 4-10 of the present invention exhibits high luminous efficiency and long life, has a low driving voltage, and has improved characteristics as an element. Moreover, it turns out that the thing using the host compound which concerns on this invention has a low EQE fall rate at the time of a heating. In addition, it can be seen that the device characteristics are improved by making the HOMO level of the light emitting dopant and the host material the relationship of the present invention.
  • Preparation of white light-emitting organic EL element 5-1 A transparent substrate provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) as an anode on a glass substrate of 100 mm ⁇ 100 mm ⁇ 1.1 mm.
  • the supporting substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus.
  • 200 mg of ⁇ -NPD as a hole transport material is placed in a molybdenum resistance heating boat and a comparative compound as a host compound in another molybdenum resistance heating boat.
  • 200 mg of H-1, 200 mg of ET-8 as an electron transport material in another molybdenum resistance heating boat, 100 mg of DP-BL1 as a dopant compound in another molybdenum resistance heating boat, another resistance heating made of molybdenum 100 mg of D-1 as a dopant compound was placed in a boat and attached to a vacuum deposition apparatus.
  • the heating boat containing ⁇ -NPD After reducing the vacuum chamber to 4 ⁇ 10 ⁇ 4 Pa, energizing the heating boat containing ⁇ -NPD and depositing it on the transparent support substrate at a deposition rate of 0.1 nm / second, transporting holes with a thickness of 20 nm. A layer was provided. Further, the heating boat containing DP-BL1 and D-1 as comparative compounds H-1 as the host compounds and DP-BL1 and D-1 as the dopant compounds is heated and heated so that the respective deposition rates become 100: 5: 0.6. And a light emitting layer having a thickness of 40 nm was provided.
  • the heating boat containing ET-8 was energized and heated, and deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide an electron transport layer having a thickness of 30 nm.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • the obtained organic EL elements 5-1 to 5-6 were subjected to the same method as in Example 1.
  • the drive voltage and (4) the EQE reduction rate during heating were evaluated, and the values other than the EQE reduction rate during heating were expressed as relative values with the organic EL element 5-1 being 100.
  • the light emitting region was measured by the same method as in Example 1.
  • the light emitting area is expressed as a relative value in which the light emitting area of the organic EL element 5-1 is set to 100.
  • each of the organic EL devices 5-2 to 5-6 of the present invention has high luminous efficiency and long life, low driving voltage, and improved device characteristics. Moreover, it turns out that the thing using the host compound which concerns on this invention has a low EQE fall rate at the time of a heating. In addition, it can be seen that the device characteristics are improved by making the HOMO level of the light emitting dopant and the host material the relationship of the present invention.
  • FIG. 8 shows a schematic configuration diagram of an organic EL full-color display device. After patterning at a pitch of 100 ⁇ m on a substrate (NA45 manufactured by NH Techno Glass Co., Ltd.) having a 100 nm ITO transparent electrode 202 formed as an anode on a glass substrate 201 (see FIG. 8A), on this glass substrate 201 Then, a non-photosensitive polyimide partition wall 203 (width 20 ⁇ m, thickness 2.0 ⁇ m) was formed between the ITO transparent electrodes 202 by photolithography (see FIG. 8B).
  • a substrate NA45 manufactured by NH Techno Glass Co., Ltd.
  • a hole injection layer composition having the following composition is ejected and injected on the ITO transparent electrode 202 between the partition walls 203 using an inkjet head (manufactured by Epson Corporation; MJ800C), irradiated with ultraviolet light for 200 seconds, 60
  • a hole injection layer 204 having a thickness of 40 nm was provided by a drying process at 10 ° C. for 10 minutes (see FIG. 8C).
  • a blue light-emitting layer composition, a green light-emitting layer composition, and a red light-emitting layer composition having the following compositions are similarly ejected and injected onto the hole injection layer 204 using an inkjet head, and dried at 60 ° C. for 10 minutes. Then, the light emitting layers 205B, 205G, and 205R for each color were provided (see FIG. 8D). Next, an electron transport material is deposited so as to cover each of the light emitting layers 205B, 205G, and 205R to provide an electron transport layer (not shown) with a thickness of 20 nm, and further lithium fluoride is deposited to have a thickness of 0.6 nm.
  • a cathode buffer layer (not shown) was provided, Al was vapor-deposited, and a cathode 206 having a film thickness of 130 nm was provided to produce an organic EL device (see FIG. 8E). It was found that the produced organic EL elements each emitted blue, green, and red light when a voltage was applied to the electrodes, and could be used as a full-color display device.
  • Host compound (H-1) 0.7 parts by mass D-1 0.04 parts by mass cyclohexylbenzene 50 parts by mass Isopropylbiphenyl 50 parts by mass
  • the organic EL device of the present invention exhibits performance such as EQE, life, and driving voltage while the emission maximum wavelength of the dopant and the device chromaticity satisfy the required characteristics. It is known that the shorter the emission maximum wavelength (emission spectrum) of the dopant is, the more easily the dopant material becomes unstable, and the performance such as EQE, life, and driving voltage does not come out. However, it can be said that there is a gain in the case of a short wave as in the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Indole Compounds (AREA)

Abstract

An organic electroluminescent element which contains at least one light emitting layer that is sandwiched between a positive electrode and a negative electrode. This organic electroluminescent element is characterized in that: at least one of the light emitting layer(s) contains at least one light emitting dopant and at least one host; at least one of the light emitting dopant(s) is a phosphorescent dopant that has an emission peak wavelength of 470 nm or less and a HOMO value of from -4.50 eV to -5.50 eV; and at least one of the host(s) is a compound represented by general formula (1) or a specific compound, which has a HOMO value of from -4.60 eV to -5.10 eV.

Description

有機エレクトロルミネッセンス素子、照明装置および表示装置Organic electroluminescence element, lighting device and display device
 本発明は、有機エレクトロルミネッセンス素子、それが具備された照明装置および表示装置に関する。 The present invention relates to an organic electroluminescence element, an illumination device provided with the organic electroluminescence device, and a display device.
 有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう)は、発光する化合物を含有する発光層を、陰極と陽極とで挟んだ構成を有し、電界を印加することにより、陽極から注入された正孔と陰極から注入された電子を発光層内で再結合させることで励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・リン光)を利用した発光素子である。また、有機EL素子は、電極と電極の間を厚さわずかサブミクロン程度の有機材料の膜で構成する全固体素子であり、数V~数十V程度の電圧で発光が可能であることから、次世代の平面ディスプレイや照明への利用が期待されている。 An organic electroluminescence element (hereinafter also referred to as an organic EL element) has a configuration in which a light-emitting layer containing a light-emitting compound is sandwiched between a cathode and an anode, and a positive electrode injected from the anode by applying an electric field. This is a light emitting device that uses the emission of light (fluorescence / phosphorescence) when excitons are generated by recombining electrons injected from holes and cathodes in the light emitting layer to generate excitons. is there. An organic EL element is an all-solid-state element composed of an organic material film with a thickness of only a submicron between electrodes, and can emit light at a voltage of several volts to several tens of volts. It is expected to be used for next-generation flat display and lighting.
 実用化に向けた有機EL素子の開発としては、プリンストン大学より、励起三重項からのリン光発光を用いる有機EL素子の報告がされており(例えば、非特許文献1参照)、以来、室温でリン光を示す材料の研究が活発になってきている(例えば、特許文献1、非特許文献2参照)。
 さらに、リン光発光を利用する有機EL素子は、以前の蛍光発光を利用する有機EL素子に比べ原理的に約4倍の発光効率が実現可能であることから、その材料開発を初めとし、発光素子の層構成や電極の研究開発が世界中で行われている。例えば、イリジウム錯体系等重金属錯体を中心に多くの化合物について合成検討なされている(例えば、非特許文献3参照)。
As for the development of organic EL elements for practical use, Princeton University has reported organic EL elements that use phosphorescence emission from excited triplets (see, for example, Non-Patent Document 1). Research on materials that exhibit phosphorescence has become active (see, for example, Patent Document 1 and Non-Patent Document 2).
In addition, organic EL elements that utilize phosphorescence emission can in principle achieve light emission efficiency that is approximately four times that of organic EL elements that utilize fluorescence emission. Research and development of device layer configurations and electrodes are performed all over the world. For example, many compounds have been studied focusing on heavy metal complexes such as iridium complexes (see Non-Patent Document 3, for example).
 このように、リン光発光方式は大変ポテンシャルの高い方式であるが、リン光発光を利用する有機ELデバイスにおいては、蛍光発光を利用する有機ELデバイスとは大きく異なり、発光中心の位置をコントロールする方法、とりわけ発光層の内部で再結合を行い、いかに発光を安定に行わせることができるかが、素子の効率・寿命を捉える上で重要な技術的な課題となっている。
 そこで近年、発光層に隣接する形で、発光層の陽極側に位置する正孔輸送層と発光層の陰極側に位置する電子輸送層とを備えた多層積層型の素子が良く知られている(例えば、特許文献2参照)。また、発光層にはホスト化合物とドーパントとしてのリン光発光性化合物とを用いた混合層が多く用いられている。
 また、ディスプレイや、照明への利用の観点から、有機EL素子には、高い発光効率、長い発光寿命が求められているため、高いキャリア輸送性を有する材料や熱的、電気的に安定な材料が求められている。
As described above, the phosphorescence emission method is a method having a very high potential. However, an organic EL device using phosphorescence emission is greatly different from an organic EL device using fluorescence emission, and controls the position of the emission center. The method, particularly how to recombine within the light emitting layer to stabilize the light emission, is an important technical issue in grasping the efficiency and lifetime of the device.
Therefore, in recent years, a multi-layered element having a hole transport layer located on the anode side of the light emitting layer and an electron transport layer located on the cathode side of the light emitting layer in a form adjacent to the light emitting layer is well known. (For example, refer to Patent Document 2). In addition, a mixed layer using a host compound and a phosphorescent compound as a dopant is often used for the light emitting layer.
In addition, from the viewpoint of use in displays and lighting, organic EL elements are required to have high light emission efficiency and long light emission lifetime. Therefore, materials having high carrier transportability and thermally and electrically stable materials are required. Is required.
 さらに近年は、色温度の高い照明光源や、色域の広いディスプレイが求められており、これらを達成するためには470nm、より好ましくは460nm以下の発光極大波長を示す短波長の青色発光ドーパントが必要不可欠である。
 短波長の青色発光ドーパントとしてはアントラセンやクリセン等を骨格に有する蛍光発光性の発光ドーパントが良く知られているが、上述したように発光効率の点からリン光発光ドーパントに比較し不利である。
 一方、短波長のリン光性青色発光ドーパントとして良く知られている材料にFIrpicがある。FIrpicは主配位子のフェニルピリジンに2つのフッ素が置換をすること、および副配位子としてピコリン酸を用いることにより短波化が実現されているが、電気陰性度の大きいフッ素原子2個で置換しているために中心金属のイリジウムが酸化されやすい状態になり、HOMOが計算値で-5.90eV程度と非常に深くなっている。そのため陽極側から発光層への正孔注入がしにくくなり、正孔と電子の注入のバランスが悪くなり、発光層内での再結合確率の低下や駆動電圧の上昇という課題が発生する。
Furthermore, in recent years, an illumination light source with a high color temperature and a display with a wide color gamut have been demanded. To achieve these, a short-wavelength blue light-emitting dopant that exhibits an emission maximum wavelength of 470 nm, more preferably 460 nm or less, is required. Indispensable.
As short-wavelength blue light-emitting dopants, fluorescent light-emitting dopants having anthracene, chrysene or the like in the skeleton are well known, but as described above, they are disadvantageous compared to phosphorescent light-emitting dopants in terms of light emission efficiency.
On the other hand, FIrpic is a material well known as a short wavelength phosphorescent blue light emitting dopant. FIrpic is realized by using two fluorine atoms in the main ligand, phenylpyridine, and using picolinic acid as a sub-ligand, but with two fluorine atoms with high electronegativity. Due to the substitution, iridium as a central metal is easily oxidized, and the HOMO is very deep at about −5.90 eV in a calculated value. Therefore, it becomes difficult to inject holes from the anode side into the light emitting layer, the balance of hole and electron injection is deteriorated, and problems such as a decrease in recombination probability and an increase in driving voltage occur in the light emitting layer.
 また、キャリアの注入バランスが崩れることで再結合領域が輸送層界面近傍の狭い領域に限定されやすくなるため、発光層から隣接する輸送層に励起子の漏れが生じてしまう。このため、発光効率の低下や、材料の劣化に起因する発光寿命低下の課題が発生する。
 その一方で、HOMOが浅い、例えば-4.50eVよりも浅い発光ドーパントを用いた場合には、相対的にLUMOが浅くなるため化合物が不安定になる。また酸素などの外因の影響を受けやすくなり、素子性能の安定性という点で課題がある。
Further, since the carrier injection balance is lost, the recombination region is easily limited to a narrow region near the transport layer interface, and exciton leakage occurs from the light emitting layer to the adjacent transport layer. For this reason, the subject of the light emission efficiency fall and the light emission lifetime fall resulting from deterioration of a material generate | occur | produces.
On the other hand, when a light emitting dopant having a shallow HOMO, for example, less than −4.50 eV, is used, the LUMO becomes relatively shallow and the compound becomes unstable. In addition, it is easily affected by external factors such as oxygen, and there is a problem in terms of stability of device performance.
 上記課題に対して、例えば特許文献3においては、ホストに正孔輸送性と電子輸送性を改良したビスカルバゾール誘導体を使用することによって、高効率の素子、長寿命を達成している。しかしながら特許文献3における実施例で用いられている発光ドーパントの発光極大波長は、本発明者が検討したところ470nmを超える発光極大波長を示し、高色温度の照明用途や色域の広いディスプレイに用いるには波長が長く満足出来るレベルではないことが分かった。また上記文献には発光ドーパントとホストに用いる材料のHOMOの関係については一切記載がない。 In response to the above problem, for example, in Patent Document 3, a high-efficiency element and a long lifetime are achieved by using a biscarbazole derivative with improved hole transportability and electron transportability as a host. However, the light emission maximum wavelength of the light-emitting dopant used in Examples in Patent Document 3 shows a light emission maximum wavelength exceeding 470 nm as studied by the present inventor, and is used for high color temperature illumination applications and displays with a wide color gamut. It was found that the wavelength is not long and satisfactory. In addition, the above document does not describe the relationship between the luminescent dopant and the HOMO of the material used for the host.
 さらに、このような短波長の発光ドーパントは、高温下において発光効率が低下するという特徴を持つことが多いことが知られている。これは、ドーパントが励起状態から基底状態への失活過程において、発光を呈する放射過程kr以外の、無放射過程knrが大きいためと考えられ、特に前記のような場合にはドーパントの熱振動による失活過程が大きいためと考えている。knrが大きいことは効率低下という課題につながるが、発光ドーパントの構造に起因するところが大きく、熱振動を低減させることにより発光が長波長になるなど、必要性能との両立が課題となっていた。 Furthermore, it is known that such a light emitting dopant with a short wavelength often has a feature that the light emission efficiency is lowered at a high temperature. This is thought to be due to the large non-radiative process knr other than the radiative process kr that emits light in the process of deactivation of the dopant from the excited state to the ground state. This is thought to be due to the large deactivation process. A large knr leads to a problem of reduced efficiency, but it is largely due to the structure of the luminescent dopant, and there is a problem of coexistence with required performance such as emission of light having a long wavelength by reducing thermal vibration.
米国特許6,097,147号明細書US Pat. No. 6,097,147 特開2005-112765号公報JP 2005-112765 A 国際公開第2011/132683号International Publication No. 2011/132683
 このように従来においては、有機EL素子材料に関して様々な化合物が開示されており、低駆動電圧で発光効率が高く長寿命である有機EL素子の開発が試みられている。しかしながら、これらの性能を従来よりも増してさらに向上させた有機EL素子の開発が望まれている。また、高色温度の照明用途や色域の広いディスプレイ用途に適した(すなわち、色度が良好な)有機EL素子の開発が望まれている。 Thus, conventionally, various compounds relating to organic EL element materials have been disclosed, and attempts have been made to develop organic EL elements having low driving voltage, high luminous efficiency and long life. However, it is desired to develop an organic EL device that further improves these performances compared to the conventional one. In addition, it is desired to develop an organic EL element suitable for illumination use at a high color temperature and display application having a wide color gamut (that is, having good chromaticity).
 本発明は、上記課題に鑑みてなされたもので、発光効率が高く、低駆動電圧、長寿命であり、かつ色度が良好な有機エレクトロルミネッセンス素子、該素子を用いた照明装置、および表示装置を提供することを課題とする。 The present invention has been made in view of the above problems, and has high luminous efficiency, low driving voltage, long life, and good chromaticity, an organic electroluminescence element having good chromaticity, and an illumination device and a display device using the element It is an issue to provide.
 本発明に係る上記課題は、以下の手段により解決される。
1.陽極と陰極に挟まれた少なくとも1層の発光層を含む有機エレクトロルミネッセンス素子において、該発光層の少なくとも1層に、少なくとも1種の発光ドーパントと少なくとも1種のホストを含有し、該発光ドーパントの少なくとも1種は、溶液中の発光スペクトルにおいて、最も短波側にある発光極大波長が470nm以下、且つHOMO値が-4.50~-5.50eVであるリン光性発光ドーパントであり、該ホストの少なくとも1種は、下記一般式(1)~(4)のいずれかで表される化合物であって、HOMO値が-4.60~-5.10eVである化合物であることを特徴とする有機エレクトロルミネッセンス素子。
The above-mentioned problem according to the present invention is solved by the following means.
1. In an organic electroluminescent device including at least one light emitting layer sandwiched between an anode and a cathode, at least one layer of the light emitting layer contains at least one kind of light emitting dopant and at least one kind of host. At least one is a phosphorescent light emitting dopant having an emission maximum wavelength on the shortest wavelength side of 470 nm or less and a HOMO value of −4.50 to −5.50 eV in an emission spectrum in a solution, At least one of the compounds represented by any one of the following general formulas (1) to (4) is a compound having a HOMO value of −4.60 to −5.10 eV. Electroluminescence element.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(一般式(1)において、R111およびR112は水素原子、アルキル基、シクロアルキル基、ヘテロシクロアルキル基、芳香族炭化水素環基または芳香族複素環基を表し、一般式(1)で表される化合物はさらに置換基を有していてもよい。) (In General Formula (1), R 111 and R 112 represent a hydrogen atom, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group, (The compound represented may further have a substituent.)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(一般式(2)において、R211およびR212はアルキル基、芳香族炭化水素環基または芳香族複素環基を表す。環Z~Zは芳香族炭化水素環または芳香族複素環を形成する残基を表し、置換基を有していてもよい。) (In the general formula (2), R 211 and R 212 represent an alkyl group, an aromatic hydrocarbon ring group or an aromatic heterocyclic group. Rings Z 1 to Z 3 represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring. Represents a residue to be formed and may have a substituent.)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(一般式(3)において、R211およびR212はアルキル基、芳香族炭化水素環基または芳香族複素環基を表す。環Z~Zは芳香族炭化水素環または芳香族複素環を形成する残基を表し、置換基を有していてもよい。) (In the general formula (3), R 211 and R 212 represent an alkyl group, an aromatic hydrocarbon ring group or an aromatic heterocyclic group. Rings Z 1 to Z 3 represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring. Represents a residue to be formed and may have a substituent.)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(一般式(4)において、R311およびR312は水素原子、アリールシリル基、アリールホスホリル基、芳香族炭化水素環基、芳香族複素環基、ジアリールアミノ基、または、アルキル基を表す。A~Aは各々独立にC-RxまたはNを表し、複数のRxはそれぞれ同じであっても異なっていてもよい。Rxは各々独立に水素原子または置換基を表す。) (In General Formula (4), R 311 and R 312 each represent a hydrogen atom, an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a diarylamino group, or an alkyl group. 1 to A 8 each independently represents C—Rx or N, and a plurality of Rxs may be the same or different, and Rx each independently represents a hydrogen atom or a substituent.
2.前記リン光性発光ドーパントが下記一般式(5)で表される化合物であることを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。 2. 2. The organic electroluminescent device according to 1 above, wherein the phosphorescent luminescent dopant is a compound represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(一般式(5)において、MはIr、Pt、Rh、Ru、AgまたはCuを表し、XおよびXは炭素原子または窒素原子を表し、環ZはC=Cと共に6員の芳香族炭化水素環、または5員または6員の芳香族複素環を表し、環ZはX-Xと共に5員の複素環を表す。L’はMに配位したモノアニオン性の二座配位子であり、m’は0~2の整数を表し、n’は少なくとも1の整数であり、m’+n’は2または3である。) (In the general formula (5), M represents Ir, Pt, Rh, Ru, Ag or Cu, X 1 and X 2 represent a carbon atom or a nitrogen atom, and ring Z 1 represents a 6-membered aromatic with C═C. Represents a 5-membered aromatic ring, or a 5- or 6-membered aromatic heterocyclic ring, wherein ring Z 2 represents a 5-membered heterocyclic ring together with X 1 -X 2. L ′ represents a monoanionic divalent ring coordinated to M A bidentate ligand, m ′ represents an integer of 0 to 2, n ′ is an integer of at least 1, and m ′ + n ′ is 2 or 3.)
3.前記リン光性発光ドーパントが下記一般式(6)で表される化合物であることを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。 3. 2. The organic electroluminescent device according to 1 above, wherein the phosphorescent luminescent dopant is a compound represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(一般式(6)において、MはIr、Pt、Rh、Ru、AgまたはCuを表し、XおよびXは炭素原子または窒素原子を表し、環ZはX-Xと共に5員の複素環を表す。Rは電子吸引基を表し、Rは電子供与基またはFを表す。L’はMに配位したモノアニオン性の二座配位子であり、m’は0~2の整数を表し、n’は少なくとも1の整数であり、m’+n’は2または3である。) (In General Formula (6), M represents Ir, Pt, Rh, Ru, Ag, or Cu, X 1 and X 2 represent a carbon atom or a nitrogen atom, and ring Z 2 is a 5-membered member together with X 1 -X 2. R 1 represents an electron-withdrawing group, R 2 represents an electron-donating group or F. L ′ is a monoanionic bidentate ligand coordinated to M, and m ′ is 0. Represents an integer of ˜2, n ′ is an integer of at least 1 and m ′ + n ′ is 2 or 3.)
4.前記リン光性発光ドーパントが下記一般式(7)で表される化合物であることを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。 4). 2. The organic electroluminescence device according to 1 above, wherein the phosphorescent light-emitting dopant is a compound represented by the following general formula (7).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(一般式(7)において、MはIr、Pt、Rh、Ru、AgまたはCuを表し、環ZはC=Cと共に6員の芳香族炭化水素環、または5員または6員の芳香族複素環を表す。R、R、Rは、水素原子、置換基を表し、RとRは環を形成してもよい。L’はMに配位したモノアニオン性の二座配位子であり、m’は0~2の整数を表し、n’は少なくとも1の整数であり、m’+n’は2または3である。) (In the general formula (7), M represents Ir, Pt, Rh, Ru, Ag or Cu, and ring Z 1 is a 6-membered aromatic hydrocarbon ring together with C = C, or a 5-membered or 6-membered aromatic ring. R 3 , R 4 , and R 5 each represent a hydrogen atom or a substituent, and R 4 and R 5 may form a ring, and L ′ is a monoanionic divalent group coordinated to M. A bidentate ligand, m ′ represents an integer of 0 to 2, n ′ is an integer of at least 1, and m ′ + n ′ is 2 or 3.)
5.前記リン光性発光ドーパントが下記一般式(8)で表される化合物であることを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。 5. 2. The organic electroluminescent device according to 1 above, wherein the phosphorescent luminescent dopant is a compound represented by the following general formula (8).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(一般式(8)において、MはIr、Pt、Rh、Ru、AgまたはCuを表し、X~Xは、-CRまたは窒素原子を表し、XとXが-CRの場合、環を形成してもよい。環Zは、6員の芳香族炭化水素環、または5員または6員の芳香族複素環を表し、環ZはX-Xと共に5員の複素環を表す。Rは炭素原子または窒素原子を表す。L’はMに配位したモノアニオン性の二座配位子であり、m’は0~2の整数を表し、n’は少なくとも1の整数であり、m’+n’は2または3である。) (In the general formula (8), M represents Ir, Pt, Rh, Ru, Ag or Cu, X 1 to X 4 represent —CR 6 or a nitrogen atom, and X 3 and X 4 are —CR 6 . The ring Z 3 represents a 6-membered aromatic hydrocarbon ring, or a 5-membered or 6-membered aromatic heterocycle, and the ring Z 4 is a 5-membered with X 1 -X 2 R 6 represents a carbon atom or a nitrogen atom, L ′ represents a monoanionic bidentate ligand coordinated to M, m ′ represents an integer of 0 to 2, and n ′ Is an integer of at least 1 and m ′ + n ′ is 2 or 3.)
6.前記一般式(6)で表される化合物において、環Zは、置換または無置換のトリアゾール環を表すことを特徴とする前記3に記載の有機エレクトロルミネッセンス素子。 6). In the compound represented by the general formula (6), the ring Z 2 is an organic electroluminescent device according to the 3, characterized in that a substituted or unsubstituted triazole ring.
7.前記リン光性発光ドーパントは、溶液中の発光スペクトルにおいて、最も短波側にある発光極大波長が460nm以下であることを特徴とする前記1~6のいずれか1項に記載の有機エレクトロルミネッセンス素子。 7). 7. The organic electroluminescence device according to any one of 1 to 6, wherein the phosphorescent luminescent dopant has an emission maximum wavelength on the shortest wavelength side in an emission spectrum in a solution of 460 nm or less.
8.発光色が白色であることを特徴とする前記1~7のいずれか1項に記載の有機エレクトロルミネッセンス素子。 8). 8. The organic electroluminescence device as described in any one of 1 to 7 above, wherein the emission color is white.
9.前記1~8のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。 9. 9. An illumination device comprising the organic electroluminescence element according to any one of 1 to 8 above.
10.前記1~8のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。 10. 9. A display device comprising the organic electroluminescence element according to any one of 1 to 8 above.
 本発明は、高い発光効率と長寿命を実現し、かつ駆動電圧が低く、色度が良好な有機エレクトロルミネッセンス素子、該素子を用いた照明装置、および表示装置を提供することができる。 The present invention can provide an organic electroluminescence element that realizes high luminous efficiency and long life, low driving voltage, and good chromaticity, an illumination device using the element, and a display device.
(a)~(d)は発光層中の再結合領域の広狭を示す模式図である。(A)-(d) is a schematic diagram which shows the width of the recombination area | region in a light emitting layer. 有機EL素子から構成される表示装置の一例を示した模式図である。It is the schematic diagram which showed an example of the display apparatus comprised from an organic EL element. 図2における表示部Aの模式図である。It is a schematic diagram of the display part A in FIG. 画素の模式図である。It is a schematic diagram of a pixel. 図3の表示部Aに係るパッシブマトリクス方式フルカラー表示装置の模式図である。FIG. 4 is a schematic diagram of a passive matrix type full-color display device according to display unit A of FIG. 3. 照明装置の概略図である。It is the schematic of an illuminating device. 照明装置の模式図である。It is a schematic diagram of an illuminating device. (a)~(e)は有機ELフルカラー表示装置の概略構成図である。(A)-(e) is a schematic block diagram of an organic electroluminescent full color display apparatus.
 以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although the form for implementing this invention is demonstrated in detail, this invention is not limited to these.
《有機EL素子》
 本発明の有機EL素子は、陽極と陰極に挟まれた少なくとも1層の発光層を含むものである。そして、該発光層の少なくとも1層に、少なくとも1種の発光ドーパントと少なくとも1種のホストを含有し、該発光ドーパントの少なくとも1種は、溶液中の発光スペクトルにおいて、最も短波側にある発光極大波長が470nm以下、且つHOMO値が-4.50~-5.50eVであるリン光性発光ドーパントであり、該ホストの少なくとも1種は、一般式(1)~(4)のいずれかで表される化合物であって、HOMO値が-4.60~-5.10eVである化合物である。
<< Organic EL element >>
The organic EL device of the present invention includes at least one light emitting layer sandwiched between an anode and a cathode. At least one light emitting dopant and at least one host are contained in at least one layer of the light emitting layer, and at least one of the light emitting dopants has a light emission maximum at the shortest wavelength side in the light emission spectrum in the solution. A phosphorescent light-emitting dopant having a wavelength of 470 nm or less and a HOMO value of −4.50 to −5.50 eV, wherein at least one of the hosts is represented by any one of the general formulas (1) to (4): Which has a HOMO value of −4.60 to −5.10 eV.
 本発明においては、発光ドーパントの少なくとも1種が、発光極大波長が470nm以下、且つHOMO値が-4.50~-5.50eVであるリン光性発光ドーパントであればよく、発光ドーパントの全てが前記リン光性発光ドーパントであってもよい。
 また、ホストの少なくとも1種が、一般式(1)~(4)のいずれかで表される化合物であって、HOMO値が-4.60~-5.10eVである化合物であればよく、ホストの全てが前記化合物であってもよい。
In the present invention, at least one of the luminescent dopants may be a phosphorescent luminescent dopant having an emission maximum wavelength of 470 nm or less and a HOMO value of −4.50 to −5.50 eV. The phosphorescent light emitting dopant may be used.
Further, at least one of the hosts may be a compound represented by any one of the general formulas (1) to (4) and a compound having a HOMO value of −4.60 to −5.10 eV, All of the hosts may be the compound.
 本発明においては前述の課題を鑑み、発光ドーパントのHOMOとホストのHOMOの関係を本発明のようにすることによって隣接層から発光層への正孔注入を改良し、さらに一般式(1)~(4)で表される構造を有する化合物をホストに用いることによって、発光層へのキャリアの注入バランスを改善し再結合領域を発光層と隣接層の界面近傍から離した。これによって、高い発光効率と長寿命を両立させた有機エレクトロルミネッセンス素子を得ることができた。
 ここで、一般式(1)~(4)で表される化合物が縮環構造を有することにより、一般的に正孔輸送性のあるα-NPDに代表されるトリアリールアミン誘導体よりも分子同士が配列しやすくなり、結果層内でのキャリア移動度が向上し、低駆動電圧を達成できた。
 さらに、一般式(1)~(4)で表される化合物を使用することによりknrを低減できることを確認できた。これは、このような化合物の分子同士の配列が筐体のような役割を持ち、そこに発光ドーパントを分散することで熱振動を抑制し、knrが小さくなり、その反面krが大きくなっていると考えられる。
In the present invention, in view of the above-mentioned problems, hole injection from the adjacent layer to the light emitting layer is improved by making the relationship between the HOMO of the light emitting dopant and the HOMO of the host as in the present invention. By using the compound having the structure represented by (4) as a host, the carrier injection balance into the light emitting layer was improved, and the recombination region was separated from the vicinity of the interface between the light emitting layer and the adjacent layer. As a result, an organic electroluminescence device having both high luminous efficiency and a long lifetime could be obtained.
Here, since the compounds represented by the general formulas (1) to (4) have a condensed ring structure, the molecules are more molecules than the triarylamine derivatives typically represented by α-NPD having hole transport properties. As a result, the carrier mobility in the layer is improved and a low driving voltage can be achieved.
Furthermore, it was confirmed that knr could be reduced by using the compounds represented by the general formulas (1) to (4). This is because the arrangement of molecules of such a compound has a role like a housing, and by dispersing a light emitting dopant there, thermal vibration is suppressed, knr is reduced, while kr is increased. it is conceivable that.
《有機EL素子の構成層》
 有機EL素子の構成層について説明する。本発明において、有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
 (i)陽極/正孔輸送層/発光層/電子輸送層/陰極
 (ii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
 (iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
 (iv)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
 (V)陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
 なお、阻止層としては正孔阻止層の他に、電子阻止層を用いることもできる。
<< Constituent layers of organic EL elements >>
The constituent layers of the organic EL element will be described. In this invention, although the preferable specific example of the layer structure of an organic EL element is shown below, this invention is not limited to these.
(I) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (ii) Anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode (iii) Anode / hole transport layer / Light emitting layer / hole blocking layer / electron transport layer / electron injection layer / cathode (iv) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (V) anode / Hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / cathode In addition to the hole blocking layer, an electron blocking layer can also be used as the blocking layer.
 複数の発光層が含まれる場合、該発光層間に非発光性の中間層を有してもよい。また、上記層構成の内、陽極および陰極を除く発光層を含む有機層を1つの発光ユニットとし、複数の発光ユニットを積層することが可能である。該複数の積層された発光ユニットにおいては、発光ユニット間に非発光性の中間層を有していてもよく、さらに中間層は電荷発生層を含んでいてもよい。
 本発明の有機EL素子としては白色発光層であることが好ましく、これらを用いた照明装置あるいは表示装置であることが好ましい。すなわち、有機EL素子は白色に発光することが好ましい。
 本発明の有機EL素子を構成する各層について説明する。
When a plurality of light emitting layers are included, a non-light emitting intermediate layer may be provided between the light emitting layers. In addition, among the above layer structures, an organic layer including a light emitting layer excluding an anode and a cathode can be used as one light emitting unit, and a plurality of light emitting units can be stacked. The plurality of stacked light emitting units may have a non-light emitting intermediate layer between the light emitting units, and the intermediate layer may further include a charge generation layer.
The organic EL element of the present invention is preferably a white light emitting layer, and is preferably an illumination device or a display device using these. That is, the organic EL element preferably emits white light.
Each layer which comprises the organic EL element of this invention is demonstrated.
《発光層》
 発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子および正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
 発光層の膜厚の総和は特に制限はないが、膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm~5μmの範囲に調整することが好ましく、さらに好ましくは2nm~200nmの範囲に調整され、特に好ましくは、5nm~100nmの範囲である。
<Light emitting layer>
The light-emitting layer is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer. It may be an interface with an adjacent layer.
The total film thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the uniformity of the film, preventing unnecessary application of high voltage during light emission, and improving the stability of the emission color with respect to the drive current. It is preferable to adjust in the range of 2 nm to 5 μm, more preferably in the range of 2 nm to 200 nm, and particularly preferably in the range of 5 nm to 100 nm.
 発光層の作製には、後述する発光ドーパントやホスト化合物を、例えば、真空蒸着法、湿式法(ウェットプロセスともいい、例えば、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法)等を挙げることができる。)等により製膜して形成することができる。
 本発明の有機EL素子の発光層には、発光ドーパントと、ホストとを含有する。
For the production of the light emitting layer, a light emitting dopant or host compound described later is used, for example, a vacuum deposition method, a wet method (also referred to as a wet process, for example, a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method, The film can be formed by an inkjet method, a printing method, a spray coating method, a curtain coating method, an LB method (such as Langmuir-Blodgett method) and the like.
The light emitting layer of the organic EL device of the present invention contains a light emitting dopant and a host.
<発光ホスト(発光ホスト化合物、ホスト化合物ともいう)>
 本発明では、発光層のホスト材料に一般式(1)~(4)のいずれかで表される化合物を含有することを特徴とする。
<Light-emitting host (also referred to as light-emitting host compound or host compound)>
The present invention is characterized in that the host material of the light emitting layer contains a compound represented by any one of the general formulas (1) to (4).
<一般式(1)~(4)で表される化合物>
 次に、一般式(1)~(4)で表される化合物について説明する。
 一般式(1)~(4)で表される化合物は、非金属錯体化合物であって、HOMO値が-4.60~-5.10eVである。
<Compounds represented by general formulas (1) to (4)>
Next, the compounds represented by the general formulas (1) to (4) will be described.
The compounds represented by the general formulas (1) to (4) are non-metallic complex compounds and have a HOMO value of −4.60 to −5.10 eV.
 本発明でいうHOMO値は、米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian03(Gaussian03、Revision D02,M.J.Frisch,et al, Gaussian, Inc., Wallingford CT, 2004. )を用いて求めた値である。 The HOMO value referred to in the present invention is Gaussian 03 (Gaussian 03, Revision D02, MJ Frisch, et al, Gaussian, Inc., Wallingford CT, 2004.), which is a molecular orbital calculation software manufactured by Gaussian, USA. This is the calculated value.
 本発明の一般式(1)~(4)で表される化合物、ホスト化合物、正孔輸送材料、電子輸送材料はキーワードとしてB3LYP/6-31G*を用い、リン光発光性ドーパント化合物はB3LYP/LanL2DZを用いて、対象とする分子構造の構造最適化を行うことによりHOMO値を算出する(eV単位換算値)。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いことが知られている。 The compound represented by the general formulas (1) to (4), the host compound, the hole transport material, and the electron transport material of the present invention use B3LYP / 6-31G * as a keyword, and the phosphorescent dopant compound is B3LYP / The HOMO value is calculated by performing structural optimization of the target molecular structure using LanL2DZ (eV unit conversion value). It is known that the correlation between the calculated value obtained by this method and the experimental value is high as a background to the effectiveness of this calculated value.
 本発明の一般式(1)~(4)で表される化合物のHOMO値は、-4.60~-5.10eVである。
 HOMOの値を上記範囲としたのは、HOMOの値が-5.10eVよりも深いと、発光層への正孔注入が著しく減少するため、効率・寿命が劣化する結果となるためである。一方、-4.60eVよりも浅いと、発光層のドーパントのホールトラップ性が強いために発光層/正孔輸送層界面にホールが溜まり易く、同じく効率・寿命が低下する結果となるためである。HOMO値は、好ましくは-4.70~-5.10eVである。
The HOMO values of the compounds represented by the general formulas (1) to (4) of the present invention are −4.60 to −5.10 eV.
The reason why the HOMO value is in the above range is that when the HOMO value is deeper than −5.10 eV, hole injection into the light emitting layer is remarkably reduced, resulting in deterioration of efficiency and lifetime. On the other hand, if it is shallower than −4.60 eV, the hole trapping property of the dopant in the light emitting layer is strong, so that holes are likely to accumulate at the light emitting layer / hole transporting layer interface, and the efficiency and life are also reduced. . The HOMO value is preferably −4.70 to −5.10 eV.
<一般式(1)> <General formula (1)>
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 一般式(1)において、R111およびR112は水素原子、アルキル基、シクロアルキル基、ヘテロシクロアルキル基、芳香族炭化水素環基または芳香族複素環基を表し、一般式(1)で表される化合物はさらに置換基を有していてもよい。 In the general formula (1), R 111 and R 112 represent a hydrogen atom, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group, and represented by the general formula (1) The compound to be obtained may further have a substituent.
 一般式(1)においてR111、R112で表される芳香族炭化水素環基としては、例えば、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピラントレン環、アンスラアントレン環等から導出される1価の基が挙げられる。 Examples of the aromatic hydrocarbon ring group represented by R 111 and R 112 in the general formula (1) include, for example, a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, Naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, And monovalent groups derived from a pyranthrene ring, anthraanthrene ring, and the like.
 一般式(1)においてR111、R112で表される芳香族複素環基としては、例えば、シロール環、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンズイミダゾール環、ベンズチアゾール環、ベンズオキサゾール環、キノリン環、キノキサリン環、キナゾリン環、フタラジン環、チエノチオフェン環、カルバゾール環、アザカルバゾール環(カルバゾール環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、ジベンゾシロール環、ジベンゾフラン環、ジベンゾチオフェン環、ベンゾチオフェン環やジベンゾフラン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わった環、ベンゾジフラン環、ベンゾジチオフェン環、アクリジン環、ベンゾキノリン環、フェナジン環、フェナントリジン環、フェナントロリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ナフトフラン環、ナフトチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、ジベンゾカルバゾール環、インドロカルバゾール環、ジチエノベンゼン環等から導出される1価の基が挙げられる。
 R111、R112で表される芳香族炭化水素環、芳香族複素環は、後記するR111、R112で表される化合物が有していてもよい置換基で置換されていてもよい。
 その他、一般式(1)においてR111、R112で表される芳香族炭化水素環基あるいは芳香族複素環基としては、後記するR111、R112で表される化合物が有していてもよい置換基で説明したものを用いることができる。
Examples of the aromatic heterocyclic group represented by R 111 and R 112 in the general formula (1) include a silole ring, a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, and a pyrazine. Ring, triazine ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzthiazole ring, benzoxazole ring, quinoline ring, quinoxaline ring, quinazoline ring, phthalazine ring, thieno Thiophene ring, carbazole ring, azacarbazole ring (representing any one or more of the carbon atoms constituting the carbazole ring replaced by a nitrogen atom), dibenzosilole ring, dibenzofuran ring, dibenzothiophene ring, benzothiophene ring, dibenzofuran Ring Rings in which any one or more of the carbon atoms formed are replaced by nitrogen atoms, benzodifuran ring, benzodithiophene ring, acridine ring, benzoquinoline ring, phenazine ring, phenanthridine ring, phenanthroline ring, cyclazine ring, kindrin ring, Tepenidine ring, quinindrin ring, triphenodithiazine ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, naphthofuran ring, naphthothiophene ring, naphthodifuran ring, naphthodithiophene ring, anthrafuran ring, anthradifuran And monovalent groups derived from a ring, anthrathiophene ring, anthradithiophene ring, thianthrene ring, phenoxathiin ring, dibenzocarbazole ring, indolocarbazole ring, dithienobenzene ring and the like.
Aromatic hydrocarbon ring represented by R 111, R 112, aromatic heterocycle may be substituted with the later-described R 111, the compound has optionally may substituent represented by R 112.
In addition, as the aromatic hydrocarbon ring group or aromatic heterocyclic group represented by R 111 or R 112 in the general formula (1), a compound represented by R 111 or R 112 described later may be included. What was demonstrated by the good substituent can be used.
 一般式(1)においてR111、R112で表される化合物が有していてもよい置換基としては、例えば、水素原子、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、(t)ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、プロパルギル基等)、芳香族炭化水素環基(アリール基ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、複素環基(例えば、エポキシ環、アジリジン環、チイラン環、オキセタン環、アゼチジン環、チエタン環、テトラヒドロフラン環、ジオキソラン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、テトラヒドロチオフェン環、スルホラン環、チアゾリジン環、ε-カプロラクトン環、ε-カプロラクタム環、ピペリジン環、ヘキサヒドロピリダジン環、ヘキサヒドロピリミジン環、ピペラジン環、モルホリン環、テトラヒドロピラン環、1,3-ジオキサン環、1,4-ジオキサン環、トリオキサン環、テトラヒドロチオピラン環、チオモルホリン環、チオモルホリン-1,1-ジオキシド環、ピラノース環、ジアザビシクロ[2,2,2]-オクタン環等)、芳香族複素環基(ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、インドロインドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、ハロゲン原子(例えば、塩素原子、臭素原子、ヨウ素原子、フッ素原子等)、アルコキシル基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシル基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2-ピリジルアミノウレイド基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基またはアリールスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基)、アニリノ基、ジアリールアミノ基(例えば、ジフェニルアミノ基、ジナフチルアミノ基、フェニルナフチルアミノ基等)、ナフチルアミノ基、2-ピリジルアミノ基等)、ニトロ基、シアノ基、ヒドロキシル基、メルカプト基、アルキルシリル基またはアリールシリル基(例えば、トリメチルシリル基、トリエチルシリル基、(t)ブチルジメチルシリル基、トリイソプロピルシリル基、(t)ブチルジフェニルシリル基、トリフェニルシリル基、トリナフチルシリル基、2-ピリジルシリル基等)、アルキルホスフィノ基またはアリールホスフィノ基(ジメチルホスフィノ基、ジエチルホスフィノ基、ジシクロヘキシルホスフィノ基、メチルフェニルホスフィノ基、ジフェニルホスフィノ基、ジナフチルホスフィノ基、ジ(2-ピリジル)ホスホスフィノ基)、アルキルホスホリル基またはアリールホスホリル基(ジメチルホスホリル基、ジエチルホスホリル基、ジシクロヘキシルホスホリル基、メチルフェニルホスホリル基、ジフェニルホスホリル基、ジナフチルホスホリル基、ジ(2-ピリジル)ホスホリル基)、アルキルチオホスホリル基またはアリールチオホスホリル基(ジメチルチオホスホリル基、ジエチルチオホスホリル基、ジシクロヘキシルチオホスホリル基、メチルフェニルチオホスホリル基、ジフェニルチオホスホリル基、ジナフチルチオホスホリル基、ジ(2-ピリジル)チオホスホリル基)から選ばれる何れかの基を表す。なお、これらの置換基はさらに上記の置換基によって置換されていてもよいし、また、それらが互いに縮合してさらに環を形成してもよい。
 さらに、好ましくはアルキル基、芳香族炭化水素環基、芳香族複素環基、複素環基、シクロアルキル基である。
Examples of the substituent that the compound represented by R 111 and R 112 in the general formula (1) may have include, for example, a hydrogen atom, an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, (T) butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group etc.), alkenyl group (eg, vinyl group) , Allyl group, etc.), alkynyl group (eg, propargyl group, etc.), aromatic hydrocarbon ring group (also referred to as aryl group, eg, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, Anthryl, azulenyl, acenaphthenyl, fluorenyl, phenanthryl, indenyl, Renyl group, biphenylyl group, etc.), heterocyclic group (for example, epoxy ring, aziridine ring, thiirane ring, oxetane ring, azetidine ring, thietane ring, tetrahydrofuran ring, dioxolane ring, pyrrolidine ring, pyrazolidine ring, imidazolidine ring, oxazolidine ring , Tetrahydrothiophene ring, sulfolane ring, thiazolidine ring, ε-caprolactone ring, ε-caprolactam ring, piperidine ring, hexahydropyridazine ring, hexahydropyrimidine ring, piperazine ring, morpholine ring, tetrahydropyran ring, 1,3-dioxane ring 1,4-dioxane ring, trioxane ring, tetrahydrothiopyran ring, thiomorpholine ring, thiomorpholine-1,1-dioxide ring, pyranose ring, diazabicyclo [2,2,2] -octane ring), aromatic heterocycle Ring group (pi Zyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1,2,4-triazol-1-yl group, 1,2,3-triazole- 1-yl group, etc.), oxazolyl group, benzoxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, quinolyl group, benzofuryl group, dibenzofuryl group, benzothienyl group, dibenzothienyl group, indolyl A group, an indoloindolyl group, a carbazolyl group, a carbolinyl group, a diazacarbazolyl group (in which one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom), a quinoxalinyl group, a pyridazinyl group, Triazinyl group, quinazolinyl group Phthalazinyl group, etc.), halogen atom (eg, chlorine atom, bromine atom, iodine atom, fluorine atom, etc.), alkoxyl group (eg, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group) , Dodecyloxy group etc.), cycloalkoxyl group (eg cyclopentyloxy group, cyclohexyloxy group etc.), aryloxy group (eg phenoxy group, naphthyloxy group etc.), alkylthio group (eg methylthio group, ethylthio group, propylthio) Group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (for example, cyclopentylthio group, cyclohexylthio group, etc.), arylthio group (for example, phenylthio group, naphthylthio group, etc.), alkoxycarbo Nyl group (for example, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (for example, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.) Sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, Naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentylureido group, cyclyl) Hexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylaminoureido group, etc.), acyl group (for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group) Group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octyl) Carbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethyl carbonate) Bonylamino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group ( For example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylamino Carbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), sulfinyl group (for example, methyls Rufinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkylsulfonyl group or arylsulfonyl group (for example, Methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (for example, amino group) Ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group), anilino group, diary Ruamino group (eg, diphenylamino group, dinaphthylamino group, phenylnaphthylamino group, etc.), naphthylamino group, 2-pyridylamino group, etc.), nitro group, cyano group, hydroxyl group, mercapto group, alkylsilyl group or arylsilyl group Groups (for example, trimethylsilyl group, triethylsilyl group, (t) butyldimethylsilyl group, triisopropylsilyl group, (t) butyldiphenylsilyl group, triphenylsilyl group, trinaphthylsilyl group, 2-pyridylsilyl group, etc.), Alkylphosphino group or arylphosphino group (dimethylphosphino group, diethylphosphino group, dicyclohexylphosphino group, methylphenylphosphino group, diphenylphosphino group, dinaphthylphosphino group, di (2-pyridyl) phosphosphino group ) Alkylphosphoryl group or arylphosphoryl group (dimethylphosphoryl group, diethylphosphoryl group, dicyclohexylphosphoryl group, methylphenylphosphoryl group, diphenylphosphoryl group, dinaphthylphosphoryl group, di (2-pyridyl) phosphoryl group), alkylthiophosphoryl group or arylthio group Any one selected from a phosphoryl group (dimethylthiophosphoryl group, diethylthiophosphoryl group, dicyclohexylthiophosphoryl group, methylphenylthiophosphoryl group, diphenylthiophosphoryl group, dinaphthylthiophosphoryl group, di (2-pyridyl) thiophosphoryl group) Represents a group of These substituents may be further substituted with the above-mentioned substituents, or they may be condensed with each other to further form a ring.
Furthermore, an alkyl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a heterocyclic group, and a cycloalkyl group are preferable.
 一般式(1)においては、R111、R112が、フェニル基、ジベンゾフラン、ジベンゾチオフェンまたはカルバゾールであることがより好ましい。 In the general formula (1), R 111 and R 112 are more preferably a phenyl group, dibenzofuran, dibenzothiophene or carbazole.
 一般式(1)で表される化合物として、下記一般式(11)~(13)で表される化合物が好ましい。 As the compound represented by the general formula (1), compounds represented by the following general formulas (11) to (13) are preferable.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 一般式(11)~(13)のR111、R112は、一般式(1)のR111、R112と同義である。
 一般式(11)~(13)において、R111、R112が、フェニル基、ジベンゾフラン、ジベンゾチオフェン、またはカルバゾールであることがより好ましい。
R 111, R 112 in formula (11) to (13) has the same meaning as R 111, R 112 in formula (1).
In the general formulas (11) to (13), R 111 and R 112 are more preferably a phenyl group, dibenzofuran, dibenzothiophene, or carbazole.
 以下に、一般式(1)、(11)~(13)で表される化合物の具体例を挙げるが、本発明はこれらに限定されるものではない。 Specific examples of the compounds represented by the general formulas (1) and (11) to (13) are given below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
<一般式(2)、(3)> <General formula (2), (3)>
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 一般式(2)および一般式(3)において、R211およびR212はアルキル基、芳香族炭化水素環基または芳香族複素環基を表す。環Z~Zは芳香族炭化水素環または芳香族複素環を形成する残基を表し、置換基を有していてもよい。 In General Formula (2) and General Formula (3), R 211 and R 212 represent an alkyl group, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group. Rings Z 1 to Z 3 represent a residue that forms an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and may have a substituent.
 一般式(2)、(3)におけるアルキル基、芳香族炭化水素環基あるいは芳香族複素環基としては、一般式(1)のR111、R112で説明したものと同義である。
 環Z~Zの置換基としては、それぞれ独立に、水素、炭素数1~10のアルキル基、炭素数3~11のシクロアルキル基、炭素数6~12の芳香族炭化水素環基または、炭素数3~11の芳香族複素環基を示す。環Zの置換基は、置換基が結合する環とともに、縮合環を形成してもよい。好ましくは、環Z~Zが芳香族炭化水素環で、より好ましくはベンゼン環である。さらに好ましくは、環Z~Zが、すべてベンゼン環である。
 R211およびR212は、好ましくは芳香族炭化水素環基または芳香族複素環基で、より好ましくは、ベンゼン環、ピリジン環、ピリミジン環、トリアジン環、キノリン環である。
The alkyl group, aromatic hydrocarbon ring group or aromatic heterocyclic group in general formulas (2) and (3) has the same meaning as described for R 111 and R 112 in general formula (1).
The substituents for the rings Z 1 to Z 3 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 11 carbon atoms, an aromatic hydrocarbon ring group having 6 to 12 carbon atoms, or Represents an aromatic heterocyclic group having 3 to 11 carbon atoms. The substituent of the ring Z 2 may form a condensed ring together with the ring to which the substituent is bonded. Preferably, rings Z 1 to Z 3 are aromatic hydrocarbon rings, more preferably benzene rings. More preferably, the rings Z 1 to Z 3 are all benzene rings.
R 211 and R 212 are preferably an aromatic hydrocarbon ring group or an aromatic heterocyclic group, and more preferably a benzene ring, a pyridine ring, a pyrimidine ring, a triazine ring, or a quinoline ring.
 下記に、一般式(2)または一般式(3)で表される化合物の好ましい具体例を示すが、これらに限定されるものではない。 Preferred examples of the compound represented by the general formula (2) or the general formula (3) are shown below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
<一般式(4)> <General formula (4)>
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 一般式(4)において、R311およびR312は水素原子、アリールシリル基、アリールホスホリル基、芳香族炭化水素環基、芳香族複素環基、ジアリールアミノ基、または、アルキル基を表す。
 R311およびR312は、アリールシリル基、アリールホスホリル基、芳香族炭化水素環基、芳香族複素環基のいずれかであることが好ましく、芳香族炭化水素環基または芳香族複素環基のいずれかであることがより好ましい。中でも酸素原子または硫黄原子を含む置換基であることが好ましい。
 R311およびR312における、芳香族炭化水素環基または芳香族複素環基としては、前記した一般式(1)のR111、R112で説明したものと同義である。特にジベンゾフリル基、ジベンゾチエニル基等が最も好ましい置換基として挙げられる。
 また、アリールシリル基、アリールホスホリル基、ジアリールアミノ基、アルキル基としては、前記した一般式(1)のR111、R112で説明したものを用いることができる。
In the general formula (4), R 311 and R 312 each represent a hydrogen atom, an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a diarylamino group, or an alkyl group.
R 311 and R 312 are preferably any of an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, and an aromatic heterocyclic group, and any of an aromatic hydrocarbon ring group or an aromatic heterocyclic group More preferably. Among these, a substituent containing an oxygen atom or a sulfur atom is preferable.
The aromatic hydrocarbon ring group or aromatic heterocyclic group in R 311 and R 312 has the same meaning as described for R 111 and R 112 in the general formula (1). In particular, a dibenzofuryl group, a dibenzothienyl group, etc. are mentioned as the most preferable substituents.
As the arylsilyl group, arylphosphoryl group, diarylamino group, and alkyl group, those described for R 111 and R 112 in the general formula (1) can be used.
 A~Aは各々独立にC-RxまたはNを表し、複数のRxはそれぞれ同じであっても異なっていてもよい。Rxは各々独立に水素原子または置換基を表す。
 置換基としては、一般式(1)で挙げた置換基と同義である。
A 1 to A 8 each independently represent C—Rx or N, and the plurality of Rx may be the same or different. Rx each independently represents a hydrogen atom or a substituent.
As a substituent, it is synonymous with the substituent quoted by General formula (1).
 各々独立した複数のRxのうち、1つ以上が置換基であることが好ましく、さらに1つまたは2つが置換基であることがより好ましい。
 複数のRxのうち1つ以上のRxが各々独立に置換基を表す場合、A、A、Aのいずれか1つ以上がC-Rxであることが好ましく、さらにはAまたはAのいずれか1つ以上がC-Rxであることが好ましく、特にAがC-Rxであることがより好ましい形態として挙げられる。
Of the plurality of independent Rx's, one or more are preferably substituents, and more preferably one or two are substituents.
When one or more Rxs out of a plurality of Rx each independently represent a substituent, any one or more of A 1 , A 2 , A 4 is preferably C—Rx, and more preferably A 1 or A preferably any one or more of 2 is C-Rx, in particular a 1 may be mentioned as more preferred form to be a C-Rx.
 各々独立した複数のRxのうち1つ以上のRxが各々独立に置換基を表す場合、Rxはアリールシリル基、アリールホスホリル基、芳香族炭化水素環基、芳香族複素環基、ジアリールアミノ基のいずれかであることが好ましく、さらにはアリールシリル基、アリールホスホリル基、芳香族炭化水素環基、芳香族複素環基のいずれかであることが好ましく、中でも芳香族炭化水素環基または芳香族複素環基のいずれかであることがより好ましく、芳香族複素環基であることが特に好ましい。中でも酸素原子または硫黄原子を含む置換基である場合には、高い電荷輸送能を有し電荷に対する耐久性が高いため好ましく、芳香族複素環基である場合には熱的安定性も高いため好ましい。特にジベンゾフリル基、ジベンゾチエニル基等が最も好ましい置換基として挙げられる。 In the case where one or more Rx's in the plurality of independent Rx's each independently represent a substituent, Rx is an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, or a diarylamino group. It is preferably any one, and further preferably any one of an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, and an aromatic heterocyclic group, and among them, an aromatic hydrocarbon ring group or an aromatic heterocyclic group. It is more preferably any of a cyclic group, and particularly preferably an aromatic heterocyclic group. Among them, a substituent containing an oxygen atom or a sulfur atom is preferable because it has a high charge transporting ability and high durability against charges, and an aromatic heterocyclic group is preferable because of high thermal stability. . In particular, a dibenzofuryl group, a dibenzothienyl group, etc. are mentioned as the most preferable substituents.
 また、Rxで表される置換基はさらに置換されていることが好ましく、置換基としてはアリールシリル基、アリールホスホリル基、芳香族炭化水素環基、芳香族複素環基、ジアリールアミノ基のいずれかであることが好ましく、さらにはアリールシリル基、アリールホスホリル基、芳香族炭化水素環基、芳香族複素環基のいずれかであることがより好ましく、中でも芳香族炭化水素環基または芳香族複素環基のいずれかであることが特に好ましい。 The substituent represented by Rx is preferably further substituted, and the substituent is any of an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, and a diarylamino group. And more preferably an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group, and among them, an aromatic hydrocarbon ring group or an aromatic heterocyclic ring Particularly preferred is any of the groups.
 本発明において、一般式(4)における複数のRx、R311およびR312のうち何れか1つ以上は、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、インドロインドリル基、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基、アリールシリル基、アリールホスホリル基から選ばれる何れかの基であることが好ましい。 In the present invention, any one or more of Rx, R 311 and R 312 in the general formula (4) is a pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrazinyl group. Group, triazolyl group, oxazolyl group, benzoxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, quinolyl group, benzofuryl group, dibenzofuryl group, benzothienyl group, dibenzothienyl group, indolyl group, It is preferably any group selected from an indoloindolyl group, a quinoxalinyl group, a pyridazinyl group, a triazinyl group, a quinazolinyl group, a phthalazinyl group, an arylsilyl group, and an arylphosphoryl group.
 下記に、一般式(4)で表される化合物の好ましい具体例を示すが、これらに限定されるものではない。なお、R311およびR312としては、前記以外の官能基であってもよく、その具体例も同時に示す。 Although the preferable specific example of a compound represented by General formula (4) below is shown, it is not limited to these. R 311 and R 312 may be functional groups other than those described above, and specific examples thereof are also shown.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 本発明の一般式(1)~(4)で表わされる化合物以外に、本発明の効果を損なわない範囲で、公知の発光ホストを複数種併用してもよい。
 公知の発光ホストの具体例としては、以下の文献に記載の化合物が挙げられる。
 特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等。
 なお、本発明の有機EL素子の発光層の公知の発光ホストとして用いられる具体例としては、例えば、特開2012-164731号公報に記載のOC-1~OC32の化合物が挙げられるが、これらに限定されない。
In addition to the compounds represented by the general formulas (1) to (4) of the present invention, a plurality of known luminescent hosts may be used in combination as long as the effects of the present invention are not impaired.
Specific examples of the known light-emitting host include compounds described in the following documents.
JP-A-2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002-105445 gazette, 2002-343568 gazette, 2002-141173 gazette, 2002-352957 gazette, 2002-203683 gazette, 2002-363227 gazette, 2002-231453 gazette, No. 003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-260861, No. 2002-280183, No. 2002-299060, No. 2002. -302516, 2002-305083, 2002-305084, 2002-308837, and the like.
Specific examples of the light emitting layer used in the organic EL device of the present invention as a known light emitting host include, for example, the compounds OC-1 to OC32 described in JP2012-164731A. It is not limited.
<発光ドーパント(発光性ドーパント、発光性ドーパント化合物、発光ドーパント化合物ともいう)>
 発光ドーパントについて説明する。
 発光ドーパントとしては、蛍光ドーパント(蛍光性化合物ともいう)、リン光性発光ドーパント(リン光ドーパント、リン光発光性ドーパント、リン光発光性ドーパント基、リン光発光性ドーパント化合物、リン光性発光ドーパント化合物、リン光発光体、リン光性化合物、リン光発光性化合物等ともいう)を用いることができる。
<Light emitting dopant (also referred to as light emitting dopant, light emitting dopant compound, light emitting dopant compound)>
The luminescent dopant will be described.
As the light emitting dopant, a fluorescent dopant (also referred to as a fluorescent compound), a phosphorescent light emitting dopant (phosphorescent dopant, phosphorescent light emitting dopant, phosphorescent light emitting dopant group, phosphorescent light emitting dopant compound, phosphorescent light emitting dopant) Compounds, phosphorescent emitters, phosphorescent compounds, phosphorescent compounds, and the like) can be used.
 (リン光性発光ドーパント)
 リン光性発光ドーパントについて説明する。
 リン光性発光ドーパント化合物は、励起三重項からの発光が観測される化合物である。具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、リン光性発光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
(Phosphorescent dopant)
The phosphorescent light emitting dopant will be described.
A phosphorescent light-emitting dopant compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and is defined as a compound having a phosphorescence quantum yield of 0.01 or more at 25 ° C. 1 or more.
The phosphorescence quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence emission dopant should just achieve the said phosphorescence quantum yield (0.01 or more) in any solvent. .
 リン光性発光ドーパントの発光は原理としては2種挙げられ、1つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こって発光性ホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光性発光ドーパントからの発光を得るというエネルギー移動型、もう1つはリン光ドーパントがキャリアトラップとなり、リン光性発光ドーパント上でキャリアの再結合が起こり、リン光性発光ドーパント化合物からの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、リン光性発光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。 There are two types of light emission of the phosphorescent light emitting dopant in principle. One is that the recombination of carriers occurs on the host compound to which carriers are transported, and an excited state of the light emitting host compound is generated. The energy transfer type, in which light emission from the phosphorescent light-emitting dopant is obtained by transferring to the light dopant, and the other is that the phosphorescent dopant becomes a carrier trap, and carrier recombination occurs on the phosphorescent light-emitting dopant, and phosphorescence In any case, the excited state energy of the phosphorescent light emitting dopant is lower than the excited state energy of the host compound. .
 ここで、本発明者らは、上記本発明の目的を達成するために鋭意研究を重ねた結果、有機EL素子の発光層の少なくとも1層に、溶液中の発光スペクトルにおいて、最も短波側にある発光極大波長が470nm以下、且つ、HOMO値が-4.50~-5.50eVのリン光性発光ドーパントを少なくとも1種含有させることで、有機EL素子の発光効率、寿命および駆動電圧の向上、素子の色域を向上させられることを明らかにした。
 よって、本発明に用いるリン光性発光ドーパントは、少なくとも1種が、400~700nmの領域の溶液中の発光スペクトルにおいて、最も短波側にある発光極大波長が470nm以下、且つ、HOMO値が-4.50~-5.50eVの化合物である。
Here, as a result of intensive studies to achieve the object of the present invention, the present inventors have found that at least one of the light emitting layers of the organic EL element is on the shortest wavelength side in the emission spectrum in the solution. Inclusion of at least one phosphorescent light-emitting dopant having an emission maximum wavelength of 470 nm or less and a HOMO value of −4.50 to −5.50 eV improves the light emission efficiency, lifetime, and driving voltage of the organic EL device, It was clarified that the color gamut of the element can be improved.
Therefore, at least one of the phosphorescent dopants used in the present invention has an emission maximum wavelength on the shortest wavelength side of 470 nm or less and a HOMO value of −4 in the emission spectrum of the solution in the region of 400 to 700 nm. A compound of .50 to −5.50 eV.
 本発明に用いるリン光性発光ドーパントは、溶液中の発光スペクトルにおいて、複数の発光ピークがある場合、最も短波側にある発光の発光極大波長(ピーク波長)を470nm以下とする。
 発光極大波長が470nmを超えると、高色温度の照明用途や色域の広いディスプレイに用いるのに不向きとなる。したがって、リン光性発光ドーパントの発光極大波長は、470nm以下とする。さらに効果を向上させるため、好ましくは460nm以下である。
 溶液中の発光スペクトルは、例えば、無極性溶媒にドーパントを溶解した溶液に励起光を照射することにより得られる蛍光スペクトルから求めることができる。本発明では、2-メチルテトラヒドロフランにドーパントを溶解し、日立製F-4500を用いて、400~700nmの領域の蛍光スペクトル測定を行った。
When there are a plurality of emission peaks in the emission spectrum in the solution, the phosphorescent emission dopant used in the present invention has an emission maximum wavelength (peak wavelength) of emission at the shortest wavelength side of 470 nm or less.
When the emission maximum wavelength exceeds 470 nm, it is unsuitable for use in high color temperature illumination applications or displays with a wide color gamut. Therefore, the emission maximum wavelength of the phosphorescent light emitting dopant is 470 nm or less. In order to further improve the effect, the thickness is preferably 460 nm or less.
The emission spectrum in the solution can be obtained from, for example, a fluorescence spectrum obtained by irradiating a solution obtained by dissolving a dopant in a nonpolar solvent with excitation light. In the present invention, a dopant was dissolved in 2-methyltetrahydrofuran, and a fluorescence spectrum in the region of 400 to 700 nm was measured using Hitachi F-4500.
 本発明に用いるリン光性発光ドーパントのHOMO値は、-4.50~-5.50eVである。リン光性発光ドーパントでのHOMOの値は、発光ホスト化合物で説明した計算方法で求めることができる。
 HOMOの値を上記範囲としたのは、HOMO値が-5.50eVよりも深いと、正孔輸送層から、発光層への正孔注入性が著しく減少するため、効率・寿命が劣化する結果となるためである。一方、HOMO値が-4.50eVよりも浅いと、発光極大波長を470nm以下の青色のリン光性発光ドーパントにするには、ドーパントのLUMOが浅くなったり、化合物が不安定になるためである。
The HOMO value of the phosphorescent light-emitting dopant used in the present invention is −4.50 to −5.50 eV. The value of HOMO in the phosphorescent light emitting dopant can be obtained by the calculation method described for the light emitting host compound.
The reason why the HOMO value is in the above range is that when the HOMO value is deeper than −5.50 eV, the hole injection property from the hole transport layer to the light emitting layer is remarkably reduced, resulting in deterioration of efficiency and lifetime. It is because it becomes. On the other hand, if the HOMO value is shallower than −4.50 eV, the LUMO of the dopant becomes shallow or the compound becomes unstable in order to make a blue phosphorescent light-emitting dopant whose emission maximum wavelength is 470 nm or less. .
 本発明において、好ましいリン光性発光ドーパントは、下記の一般式(5)で表される化合物である。 In the present invention, a preferred phosphorescent light emitting dopant is a compound represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 一般式(5)において、MはIr、Pt、Rh、Ru、AgまたはCuを表し、XおよびXは炭素原子または窒素原子を表し、環ZはC=Cと共に6員の芳香族炭化水素環、または5員または6員の芳香族複素環を表し、環ZはX-Xと共に5員の複素環を表す。 In the general formula (5), M represents Ir, Pt, Rh, Ru, Ag or Cu, X 1 and X 2 represent a carbon atom or a nitrogen atom, and the ring Z 1 is a 6-membered aromatic together with C═C. hydrocarbon ring or an aromatic 5- or 6-membered heterocyclic ring, the ring Z 2 represents a heterocyclic 5-membered together with X 1 -X 2.
 環Zの6員の芳香族炭化水素環としては、例えばベンゼン環が挙げられる。5員または6員の芳香族複素環としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、等が挙げられる。環Z、環Zは置換基を有してもよく、一般式(1)で挙げたものを用いることが出来る。
 L'はMに配位したモノアニオン性の二座配位子であり、m’は0~2の整数を表し、n’は少なくとも1の整数であり、m’+n’は2または3である。
Examples of the 6-membered aromatic hydrocarbon ring of the ring Z 1 include a benzene ring. Examples of the 5-membered or 6-membered aromatic heterocycle include furan ring, thiophene ring, oxazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, oxadiazole ring, triazole ring, An imidazole ring, a pyrazole ring, a thiazole ring, etc. are mentioned. Ring Z 1 and ring Z 2 may have a substituent, and those exemplified in formula (1) can be used.
L ′ is a monoanionic bidentate ligand coordinated to M, m ′ represents an integer of 0 to 2, n ′ is an integer of at least 1, and m ′ + n ′ is 2 or 3. is there.
 ここで、環Zは、置換または無置換のベンゼン環またはピリジン環、環Zは、置換または無置換のイミダゾール環、置換または無置換のピラゾール環、あるいは、置換または無置換のトリアゾール環を表すものであることが好ましい。 Here, ring Z 1 is a substituted or unsubstituted benzene ring or pyridine ring, ring Z 2 is a substituted or unsubstituted imidazole ring, substituted or unsubstituted pyrazole ring, or substituted or unsubstituted triazole ring. It is preferable that it represents.
 一般式(5)で表される化合物として好ましいものは、下記一般式(6)、(7)、(8)で表される化合物である。 Preferred as the compound represented by the general formula (5) are compounds represented by the following general formulas (6), (7) and (8).
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 一般式(6)において、M、L’、m’、n'は、一般式(5)と同義である。Rは電子吸引基を表し、Rは電子供与基またはFを表す。XおよびXは炭素原子または窒素原子を表し、環ZはX-Xと共に5員の複素環を表す。電子吸引基としては、ハロゲン原子、シアノ基、ニトロ基、フェニル基、アシル基等のケト基が挙げられ、電子供与基としては、アルキル基、水酸基、アルコキシ基、アミノ基等が挙げられる。 In general formula (6), M, L ′, m ′, and n ′ have the same meaning as in general formula (5). R 1 represents an electron withdrawing group, and R 2 represents an electron donating group or F. X 1 and X 2 represents a carbon atom or a nitrogen atom, the ring Z 2 represents a heterocyclic 5-membered together with X 1 -X 2. Examples of the electron withdrawing group include a keto group such as a halogen atom, a cyano group, a nitro group, a phenyl group, and an acyl group, and examples of the electron donating group include an alkyl group, a hydroxyl group, an alkoxy group, and an amino group.
 ここで、一般式(6)で表される化合物において、環Zは、置換または無置換のトリアゾール環を表すものであることが好ましい。 Here, in the compound represented by the general formula (6), it is preferable that the ring Z 2 represents a substituted or unsubstituted triazole ring.
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 一般式(7)において、M、L’、m’、n'は、一般式(5)と同義である。R、R、Rは、水素原子、置換基を表し、RとRは環を形成してもよい。環ZはC=Cと共に6員の芳香族炭化水素環、または5員または6員の芳香族複素環を表す。
 R3、R4、R5の置換基としては、一般式(1)で示した置換基と同義の基を表す。
In the general formula (7), M, L ′, m ′, and n ′ have the same meaning as in the general formula (5). R 3 , R 4 and R 5 each represent a hydrogen atom or a substituent, and R 4 and R 5 may form a ring. Ring Z 1 represents a 6-membered aromatic hydrocarbon ring together with C═C, or a 5-membered or 6-membered aromatic heterocycle.
The substituent for R3, R4, and R5 represents a group having the same meaning as the substituent represented by Formula (1).
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 一般式(8)において、M、L’、m’、n'は、一般式(5)と同義である。X~Xは、-CRまたは窒素原子を表し、XとXが-CRの場合、環を形成してもよい。環Zは、6員の芳香族炭化水素環、または5員または6員の芳香族複素環を表し、環ZはX-Xと共に5員の複素環を表す。Rは炭素原子または窒素原子を表す。 In the general formula (8), M, L ′, m ′, and n ′ have the same meaning as in the general formula (5). X 1 to X 4 each represent —CR 6 or a nitrogen atom. When X 3 and X 4 are —CR 6 , they may form a ring. Ring Z 3 represents a 6-membered aromatic hydrocarbon ring or a 5-membered or 6-membered aromatic heterocycle, and ring Z 4 represents a 5-membered heterocycle together with X 1 -X 2 . R 6 represents a carbon atom or a nitrogen atom.
 以下、一般式(5)~(8)の具体例を挙げるが、本発明はこれらに限定されない。 Specific examples of the general formulas (5) to (8) are given below, but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
 本発明に関わるリン光性発光ドーパント以外に、以下の特許公報に記載されている化合物等を併用してもよい。
 例えば、国際公開第00/70655号、特開2002-280178号公報、特開2001-181616号公報、特開2002-280179号公報、特開2001-181617号公報、特開2002-280180号公報、特開2001-247859号公報、特開2002-299060号公報、特開2001-313178号公報、特開2002-302671号公報、特開2001-345183号公報、特開2002-324679号公報、国際公開第02/15645号、特開2002-332291号公報、特開2002-50484号公報、特開2002-332292号公報、特開2002-83684号公報、特表2002-540572号公報、特開2002-117978号公報、特開2002-338588号公報、特開2002-170684号公報、特開2002-352960号公報、国際公開第01/93642号、特開2002-50483号公報、特開2002-100476号公報、特開2002-173674号公報、特開2002-359082号公報、特開2002-175884号公報、特開2002-363552号公報、特開2002-184582号公報、特開2003-7469号公報、特表2002-525808号公報、特開2003-7471号公報、特表2002-525833号公報、特開2003-31366号公報、特開2002-226495号公報、特開2002-234894号公報、特開2002-235076号公報、特開2002-241751号公報、特開2001-319779号公報、特開2001-319780号公報、特開2002-62824号公報、特開2002-100474号公報、特開2002-203679号公報、特開2002-343572号公報、特開2002-203678号公報等である。
In addition to the phosphorescent light-emitting dopant related to the present invention, compounds described in the following patent publications may be used in combination.
For example, International Publication No. 00/70655, JP 2002-280178, JP 2001-181616, JP 2002-280179, JP 2001-181617, JP 2002-280180, JP 2001-247859, JP 2002-299060, JP 2001-313178, JP 2002-302671, JP 2001-345183, JP 2002-324679, International publication No. 02/15645, JP 2002-332291 A, JP 2002-50484 A, JP 2002-332292 A, JP 2002-83684 A, JP 2002-540572 A, JP 2002-2002 A. No. 117978, Japanese Patent Laid-Open No. 2002-33858 Publication No. 2002-170684 Publication No. 2002-352960 Publication No. WO 01/93642 Publication No. 2002-50483 Publication No. 2002-1000047 Publication No. 2002-173684 Publication JP-A-2002-359082, JP-A-2002-17584, JP-A-2002-363552, JP-A-2002-184582, JP-A-2003-7469, JP-A-2002-525808, JP 2003-7471, JP-A 2002-525833, JP-A 2003-31366, JP-A 2002-226495, JP-A 2002-234894, JP-A 2002-23576, JP-A 2002 -241751 and JP-A-2001-319779 Japanese Patent Laid-Open No. 2001-319780, Japanese Patent Laid-Open No. 2002-62824, Japanese Patent Laid-Open No. 2002-1000047, Japanese Patent Laid-Open No. 2002-203679, Japanese Patent Laid-Open No. 2002-343572, Japanese Patent Laid-Open No. 2002-203678, etc. It is.
(蛍光ドーパント(蛍光性化合物ともいう))
 蛍光ドーパントとしては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等や、レーザー色素に代表される蛍光量子収率が高い化合物が挙げられる。
 また発光ドーパントは、複数種の化合物を併用して用いてもよく、構造の異なるリン光性発光ドーパント同士の組み合わせや、リン光性発光ドーパントと蛍光ドーパントを組み合わせて用いてもよい。
(Fluorescent dopant (also called fluorescent compound))
Fluorescent dopants include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes , Polythiophene dyes, rare earth complex phosphors, and the like, and compounds having a high fluorescence quantum yield such as laser dyes.
The light emitting dopant may be used in combination of a plurality of types of compounds, or may be a combination of phosphorescent light emitting dopants having different structures, or a combination of a phosphorescent light emitting dopant and a fluorescent dopant.
(再結合領域)
 発光層全体の領域のうち、発光に寄与する領域(再結合領域)は、ΔPL/ΔELの値を算出してその算出結果から当該領域の広狭を推測することができる。
 ΔEL、ΔPLはそれぞれ駆動前後のエレクトロルミネッセンス(EL)、フォトルミネッセンス(PL)の強度減衰率を表し、以下の式で表すことができる。
(Recombination area)
Of the entire region of the light emitting layer, the region contributing to light emission (recombination region) can be calculated from the value of ΔPL / ΔEL and the width of the region can be estimated from the calculation result.
ΔEL and ΔPL respectively represent the intensity decay rates of electroluminescence (EL) and photoluminescence (PL) before and after driving, and can be represented by the following equations.
 ΔEL=1-[EL(駆動後)/EL(駆動前)]
 ΔPL=1-[PL(駆動後)/PL(駆動前)]
ΔEL = 1− [EL (after driving) / EL (before driving)]
ΔPL = 1− [PL (after driving) / PL (before driving)]
 EL駆動では再結合領域でのみ発光が起きるのに対し、PL駆動では素子全体に光照射が行われるため発光は発光層の膜厚方向全体(層厚方向全体)で起きると考えられる。この測定条件として、PL駆動後のPLの値は、有機EL素子を、発光輝度が初期輝度から約半分になるまで駆動させた後(ΔELが約0.5)の状態で測定する。ここでΔPLは発光層全体に対する再結合領域を表していることから、ΔPL/ΔELが小さい場合には発光に寄与する再結合領域が狭いと推測され、ΔPL/ΔELが大きい場合には発光に寄与する再結合領域が広いと推測される。 In the EL drive, light emission occurs only in the recombination region, whereas in the PL drive, light irradiation is performed on the entire element, so that the light emission is considered to occur in the entire film thickness direction (layer thickness direction) of the light emitting layer. As a measurement condition, the PL value after the PL driving is measured in a state after driving the organic EL element until the light emission luminance is about half from the initial luminance (ΔEL is about 0.5). Here, ΔPL represents a recombination region with respect to the entire light emitting layer. Therefore, when ΔPL / ΔEL is small, it is estimated that the recombination region contributing to light emission is narrow, and when ΔPL / ΔEL is large, it contributes to light emission. It is presumed that the recombination region to be wide is wide.
 これらを模式的に説明すると下記のとおりである。
 図1は発光層100における層厚方向の各領域を示す模式図であり、同図中の左右方向が層厚方向に対応している。
 図1(a)に示すとおり、発光層100は、発光に寄与する領域(再結合領域T1)と、発光に寄与しない領域T2とに、区画される。
 したがって、「駆動前のEL」は再結合領域T1が測定対象となる。
 他方、上記のとおり、PL駆動では素子全体に光照射がおこなわれるため、「駆動前のPL」は、発光層全体を表す領域T3が測定対象となる。
 その後、発光輝度が初期輝度からその約半分になるまでEL駆動させると(ΔELが約0.5)、図1(b)に示すとおり、再結合領域T1中の約半分の領域で発光しなくなると考えられ、これを模式的に表現すると再結合領域T1中に非発光領域T4が形成されているように考えられる。
 したがって、「駆動後のEL」は、再結合領域T1から非発光領域T4を差し引いた領域T5が測定対象となる。
 他方、「駆動後のPL」は、再結合領域T1中に非発光領域T4が形成されたことに伴い、発光層全体を表す領域T3から非発光領域T4を差し引いた残りの領域T6が測定対象となる。
These are schematically described as follows.
FIG. 1 is a schematic view showing each region in the layer thickness direction of the light emitting layer 100, and the left-right direction in the drawing corresponds to the layer thickness direction.
As shown in FIG. 1A, the light emitting layer 100 is partitioned into a region contributing to light emission (recombination region T1) and a region T2 not contributing to light emission.
Accordingly, the “EL before driving” is the measurement target in the recombination region T1.
On the other hand, as described above, in the PL driving, light irradiation is performed on the entire element, and therefore, “PL before driving” is a measurement target in the region T3 representing the entire light emitting layer.
Thereafter, when EL driving is performed until the light emission luminance is about half that of the initial luminance (ΔEL is about 0.5), as shown in FIG. 1B, light is not emitted in about half of the recombination region T1. When this is schematically expressed, it is considered that the non-light emitting region T4 is formed in the recombination region T1.
Therefore, “EL after driving” is a measurement target in a region T5 obtained by subtracting the non-light emitting region T4 from the recombination region T1.
On the other hand, “PL after driving” is the measurement target of the remaining region T6 obtained by subtracting the non-light emitting region T4 from the region T3 representing the entire light emitting layer in accordance with the formation of the non-light emitting region T4 in the recombination region T1. It becomes.
 ΔPL/ΔELが小さい場合、ΔELが約0.5で固定されるため、「ΔPL」が小さいことになる。ΔPLが小さい場合、「1-[PL(駆動後)/PL(駆動前)]」が小さいことになる。{1-[PL(駆動後)/PL(駆動前)]}が小さい場合、駆動前のPLは発光層全体の領域T3が測定対象となり固定されるため、「PL(駆動後)」が大きいことになる。PL(駆動後)が大きい場合、駆動後のPLは領域T6が測定対象となることから、領域T6の領域が広いことにつながる。
 したがって、ΔPL/ΔELが小さい場合は領域T6の領域が広くなり、図1(c)に示すとおり、もとの再結合領域T1は「狭い」と結論付けることができる。逆に、ΔPL/ΔELが大きい場合は領域T6の領域が狭くなり、図1(d)に示すとおり、もとの再結合領域T1は「広い」と結論付けることができる。
When ΔPL / ΔEL is small, since ΔEL is fixed at about 0.5, “ΔPL” is small. When ΔPL is small, “1− [PL (after driving) / PL (before driving)]” is small. When {1- [PL (after driving) / PL (before driving)]} is small, the PL before driving is fixed with the region T3 of the entire light emitting layer as a measurement target, and thus “PL (after driving)” is large. It will be. When the PL (after driving) is large, the region after the driving is the region T6 to be measured, which leads to the wide region T6.
Therefore, when ΔPL / ΔEL is small, the region T6 is widened. As shown in FIG. 1C, it can be concluded that the original recombination region T1 is “narrow”. Conversely, when ΔPL / ΔEL is large, the region T6 is narrowed, and it can be concluded that the original recombination region T1 is “wide” as shown in FIG.
<注入層:正孔注入層(陽極バッファー層)、電子注入層(陰極バッファー層)>
 注入層とは、必要に応じて、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123頁~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
<Injection layer: hole injection layer (anode buffer layer), electron injection layer (cathode buffer layer)>
The injection layer is a layer provided between the electrode and the organic layer for reducing the driving voltage and improving the light emission luminance as required. “The organic EL element and its industrialization front line (November 30, 1998 Chapter 2 “Electrode Materials” (pages 123 to 166) of Volume 2 of “TS Co., Ltd.”) is described in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer). )
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体層等が挙げられる。 The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. As a specific example, copper phthalocyanine is used. Representative phthalocyanine buffer layer, oxide buffer layer typified by vanadium oxide, amorphous carbon buffer layer, polymer buffer layer using conductive polymer such as polyaniline (emeraldine) or polythiophene, tris (2-phenylpyridine) ) Orthometalated complex layers represented by iridium complexes and the like.
 陰極バッファー層(電子注入層)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウム、フッ化ナトリウムやフッ化カリウム等に代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm~5μmの範囲が好ましい。
 また、陽極バッファー層および陰極バッファー層に用いられる材料は、他の材料と併用して用いることも可能であり、例えば正孔輸送層や電子輸送層中に混合して用いることも可能である。
The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc. Metal buffer layer typified by, alkali metal compound buffer layer typified by lithium fluoride, sodium fluoride and potassium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, and aluminum oxide And an oxide buffer layer. The buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 μm, although it depends on the material.
In addition, the materials used for the anode buffer layer and the cathode buffer layer can be used in combination with other materials. For example, they can be mixed in the hole transport layer or the electron transport layer.
<阻止層:正孔阻止層、電子阻止層>
 阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、および「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、前述の電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。
 本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。
<Blocking layer: hole blocking layer, electron blocking layer>
The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (issued by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
The hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.
Moreover, the structure of the above-mentioned electron carrying layer can be used as a hole-blocking layer concerning this invention as needed.
The hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
 正孔阻止層には、カルバゾール誘導体、アザカルバゾール誘導体(ここで、アザカルバゾール誘導体とは、カルバゾール環を構成する炭素原子の1つ以上が窒素原子で置き換わったものを示す)、ピリジン誘導体等、含窒素化合物を含有することが好ましい。
 また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層(最短波層)が、全発光層中、最も陽極に近いことが好ましい。そしてこのような場合、該最短波層とこの最短波層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。
 本発明に用いることができる正孔阻止層、電子阻止層の膜厚としては、好ましくは3nm~100nmであり、さらに好ましくは3nm~30nmである。
The hole blocking layer contains carbazole derivatives, azacarbazole derivatives (where azacarbazole derivatives are those in which one or more carbon atoms constituting the carbazole ring are replaced by nitrogen atoms), pyridine derivatives, and the like. It is preferable to contain a nitrogen compound.
Further, in the present invention, when a plurality of light emitting layers having different emission colors are provided, the light emitting layer having the shortest wavelength of the light emission maximum wavelength (shortest wave layer) is closest to the anode among all the light emitting layers. preferable. In such a case, it is preferable to additionally provide a hole blocking layer between the shortest wave layer and the light emitting layer next to the anode next to the shortest wave layer.
The thickness of the hole blocking layer and electron blocking layer that can be used in the present invention is preferably 3 nm to 100 nm, and more preferably 3 nm to 30 nm.
<正孔輸送層>
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
 正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
<Hole transport layer>
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
The hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
The above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
 芳香族第3級アミン化合物およびスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、さらには米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N -Di (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadri N; N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenyl Amino- (2-diphenylvinyl) benzene; 3-methoxy-4′-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and further described in US Pat. No. 5,061,569 Having four condensed aromatic rings in the molecule, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-3 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 8688 are linked in a starburst type ( MTDATA) and the like.
 さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。
Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material as described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, these materials are preferably used because a light-emitting element with higher efficiency can be obtained.
 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5nm~200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
 また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。
The hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can. The thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 nm to 200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.
Alternatively, a hole transport layer having a high p property doped with impurities can be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
In the present invention, it is preferable to use a hole transport layer having such a high p property because a device with lower power consumption can be produced.
<電子輸送層>
 電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層もしくは複数層を設けることができる。電子輸送層に用いられる電子輸送材料(正孔阻止材料、電子注入材料も含む)としては陰極より注入された電子を発光層に伝達する機能を有していればよく、電子輸送層の構成材料としては従来公知の化合物の中から任意のものを選択して、単独または組み合わせて用いることが可能である。
<Electron transport layer>
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided with a single layer or a plurality of layers. An electron transport material (including a hole blocking material and an electron injection material) used for the electron transport layer only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer. Can be selected from any conventionally known compounds and used alone or in combination.
 電子輸送層に用いられる従来公知の材料(以下、電子輸送材料という)の例としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体、カルボリン誘導体、を含むアザカルバゾール誘導体等が挙げられる。
 ここで、アザカルバゾール誘導体とは、カルバゾール環を構成する炭素原子の1つ以上が窒素原子で置き換わったものを示す。
 さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引性基として知られているキノキサリン環を有するキノキサリン誘導体も電子輸送材料として用いることができる。
 これらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
Examples of conventionally known materials used for the electron transport layer (hereinafter referred to as electron transport materials) include heterocyclic tetracarboxylic acid anhydrides such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, And azacarbazole derivatives including carbodiimide, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, carboline derivatives, and the like.
Here, the azacarbazole derivative refers to one in which one or more carbon atoms constituting the carbazole ring are replaced with a nitrogen atom.
Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron transport material.
It is also possible to use a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、およびこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き換わった金属錯体も電子輸送材料として用いることができる。
 その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも電子輸送材料として用いることができる。
 また、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
In addition, metal complexes of 8-quinolinol derivatives, such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, A metal complex replaced with Cu, Ca, Sn, Ga, or Pb can also be used as an electron transport material.
In addition, metal-free or metal phthalocyanine, or those having the terminal substituted with an alkyl group or a sulfonic acid group can also be used as the electron transport material.
Further, similarly to the hole injection layer and the hole transport layer, inorganic semiconductors such as n-type-Si and n-type-SiC can also be used as the electron transport material.
 電子輸送層は電子輸送材料を、例えば、真空蒸着法、湿式法(ウェットプロセスともいい、例えば、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法)等を挙げることができる。))等により、薄膜化することにより形成することが好ましい。 The electron transport layer is made of an electron transport material such as a vacuum deposition method, a wet method (also referred to as a wet process, such as a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method, an ink jet method, a printing method, or a spraying method. The film is preferably formed by thinning by a coating method, curtain coating method, LB method (Langmuir Brodgett method, etc.).
 電子輸送層の膜厚については特に制限はないが、通常は5nm~5000nm程度、好ましくは5nm~200nmである。この電子輸送層は上記材料の一種または二種以上からなる一層構造であってもよい。
 また、金属錯体やハロゲン化金属等、金属化合物等のn型ドーパントをドープして用いてもよい。
The thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5000 nm, preferably 5 nm to 200 nm. This electron transport layer may have a single layer structure composed of one or more of the above materials.
Moreover, you may dope and use n-type dopants, such as metal compounds, such as a metal complex and a metal halide.
 電子輸送層の形成に好ましく用いられる従来公知の化合物(電子輸送材料)としては、例えば、特開2012-164731号公報に記載のET-1-ET-43の化合物が挙げられるが、これらに限定されない。 Examples of conventionally known compounds (electron transport materials) that are preferably used for forming an electron transport layer include, for example, compounds of ET-1-ET-43 described in JP2012-164731A, but are not limited thereto. Not.
<陽極>
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。
 また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
 あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10nm~1000nm、好ましくは10nm~200nmの範囲で選ばれる。
<Anode>
As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound and a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used. For the anode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 μm or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
Or when using the substance which can be apply | coated like an organic electroconductivity compound, wet film-forming methods, such as a printing system and a coating system, can also be used. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.
<陰極>
 一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極物質とするものが用いられる。
 このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
 これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
<Cathode>
On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof as an electrode material is used.
Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
Among these, from the point of durability against electron injection and oxidation, a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
 陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50nm~200nmの範囲で選ばれる。
 なお、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば発光輝度が向上し好都合である。
 また、陰極に上記金属を1nm~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 nm to 200 nm.
In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is improved, which is convenient.
In addition, a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a film thickness of 1 nm to 20 nm. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
《支持基板》
 本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。
 好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
《Support substrate》
As a support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention, there is no particular limitation on the type of glass, plastic, etc., and it is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent.
Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
《有機EL素子の製造方法》
 有機EL素子の製造方法の一例として、陽極/正孔注入層(陽極バッファー層)/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層(陰極バッファー層)/陰極からなる素子の製造方法について説明する。
<< Method for Manufacturing Organic EL Element >>
As an example of the manufacturing method of the organic EL element, from anode / hole injection layer (anode buffer layer) / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer (cathode buffer layer) / cathode A method for manufacturing the device will be described.
 まず、適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10nm~200nmの膜厚になるように形成させ、陽極を作製する。
 次に、この上に素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層等の有機化合物を含有する薄膜を形成させる。
 薄膜の形成方法としては、例えば、真空蒸着法、湿式法(ウェットプロセスともいう)等により成膜して形成することができる。
First, a desired electrode material, for example, a thin film made of an anode material is formed on a suitable substrate so as to have a thickness of 1 μm or less, preferably 10 nm to 200 nm, and an anode is manufactured.
Next, a thin film containing an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, and an electron injection layer, which is a device material, is formed thereon.
As a method for forming the thin film, for example, the thin film can be formed by a vacuum deposition method, a wet method (also referred to as a wet process), or the like.
 湿式法としては、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法等があるが、精密な薄膜が形成可能で、且つ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法等のロール・ツー・ロール方式適性の高い方法が好ましい。また、層ごとに異なる成膜法を適用してもよい。 Wet methods include spin coating, casting, die coating, blade coating, roll coating, ink jet, printing, spray coating, curtain coating, and LB, but precise thin films can be formed. From the viewpoint of high productivity, a method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, or a spray coating method is preferable. Different film formation methods may be applied for each layer.
 本発明に用いることができる有機EL材料を溶解または分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。
 また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
Examples of the liquid medium for dissolving or dispersing the organic EL material that can be used in the present invention include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, Aromatic hydrocarbons such as xylene, mesitylene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as DMF and DMSO can be used.
Moreover, as a dispersion method, it can disperse | distribute by dispersion methods, such as an ultrasonic wave, high shear force dispersion | distribution, and media dispersion | distribution.
 これらの層の形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50~200nmの範囲の膜厚になるように形成させ、陰極を設けることにより所望の有機EL素子が得られる。
 また、順序を逆にして、陰極、電子注入層、電子輸送層、正孔阻止層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
 本発明の有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行うことが好ましい。
After these layers are formed, a thin film made of a cathode material is formed thereon so as to have a thickness of 1 μm or less, preferably in the range of 50 to 200 nm, and a desired organic EL device can be obtained by providing a cathode. .
Alternatively, the cathode, electron injection layer, electron transport layer, hole blocking layer, light emitting layer, hole transport layer, hole injection layer, and anode can be formed in this order in the reverse order.
The organic EL device of the present invention is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is preferable to perform the work in a dry inert gas atmosphere.
《封止》
 本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
 封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
 また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。
<Sealing>
As a sealing means used for this invention, the method of adhere | attaching a sealing member, an electrode, and a support substrate with an adhesive agent can be mentioned, for example.
As a sealing member, it should just be arrange | positioned so that the display area | region of an organic EL element may be covered, and concave plate shape or flat plate shape may be sufficient. Further, transparency and electrical insulation are not particularly limited. Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
In addition, it is also preferable that the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film. .
《保護膜、保護板》
 有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。
 これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量且つ薄膜化ということからポリマーフィルムを用いることが好ましい。
《Protective film, protective plate》
In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or on the sealing film. In particular, when the sealing is performed by the sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, and the like used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
《光取り出し》
 有機EL素子は空気よりも屈折率の高い(屈折率が1.7~2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
《Light extraction》
The organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said. This is because light incident on the interface (interface between the transparent substrate and air) at an angle θ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)等がある。 As a method for improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (US Pat. No. 4,774,435), A method for improving efficiency by giving light condensing property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on the side surface of an element (Japanese Patent Laid-Open No. 1-220394), and light emission from the substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the bodies (Japanese Patent Laid-Open No. 62-172691), a flat having a lower refractive index between the substrate and the light emitter than the substrate A method of introducing a layer (Japanese Patent Laid-Open No. 2001-202827), a method of forming a diffraction grating between any one of a substrate, a transparent electrode layer and a light emitting layer (including between the substrate and the outside) (Japanese Patent Laid-Open No. 11-283951) Gazette).
 本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
 本発明はこれらの手段を組み合わせることにより、さらに高輝度あるいは耐久性に優れた素子を得ることができる。
In the present invention, these methods can be used in combination with the organic EL device of the present invention. However, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
In the present invention, by combining these means, it is possible to obtain an element having higher luminance or durability.
《集光シート》
 本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10μm~100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。
《Condensing sheet》
The organic EL device of the present invention is processed on the light extraction side of the substrate so as to provide, for example, a microlens array structure, or combined with a so-called condensing sheet, for example, with respect to a specific direction, for example, the device light emitting surface. By condensing in the front direction, the luminance in a specific direction can be increased.
As an example of the microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate. One side is preferably 10 μm to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.
 なお、前記した「有機EL素子を構成する各層」についての本発明の特徴的部分以外や、「支持基板」、「封止」、「保護膜、保護板」、「光取り出し」、「集光シート」等についてのその他の詳細については、例えば、特開2012-164731号公報、特開2012-156299号公報等の公知文献に記載のものと同様とすることができる。 In addition, the “supporting substrate”, “sealing”, “protective film, protective plate”, “light extraction”, “light condensing” other than the characteristic portions of the present invention regarding the “each layer constituting the organic EL element” described above. Other details of the “sheet” and the like can be the same as those described in publicly known documents such as Japanese Patent Application Laid-Open No. 2012-164731 and Japanese Patent Application Laid-Open No. 2012-156299.
 また、前記した化合物例1-1~1-40、21-1~26-21、4-1~4-155等の合成は、例えば、国際公開第2008/056746号、米国特許出願公開第2011/0260138号明細書、特願2011-195331等を参考に合成することができる。また、DP-1~DP-31等の合成は、国際公開第2008/140069号等を参考に合成することができる。 Further, the synthesis of the compound examples 1-1 to 1-40, 21-1 to 26-21, 4-1 to 4-155, etc. described above is described in, for example, International Publication No. 2008/056746, US Patent Application Publication No. 2011. / 0260138, Japanese Patent Application No. 2011-195331, and the like. DP-1 to DP-31 and the like can be synthesized with reference to International Publication No. 2008/140069 and the like.
《用途》
 本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
<Application>
The organic EL element of the present invention can be used as a display device, a display, and various light emission sources. For example, lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Although the light source of a sensor etc. are mentioned, It is not limited to this, It can use effectively for the use as a backlight of a liquid crystal display device, and an illumination light source especially.
 本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。
 本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタセンシング(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
In the organic EL element of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like as needed during film formation. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.
The light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total of CS-1000 (manufactured by Konica Minolta Sensing Co., Ltd.) is applied to the CIE chromaticity coordinates.
 また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることを言う。 When the organic EL element of the present invention is a white element, white means that the chromaticity in the CIE1931 color system at 1000 cd / m 2 is X when the 2 ° viewing angle front luminance is measured by the above method. = 0.33 ± 0.07 and Y = 0.33 ± 0.1.
《表示装置》
 本発明の表示装置について説明する。本発明の表示装置は、本発明の有機EL素子を備えたものである。
 本発明の表示装置は単色でも多色でもよいが、ここでは多色表示装置について説明する。
<Display device>
The display device of the present invention will be described. The display device of the present invention includes the organic EL element of the present invention.
Although the display device of the present invention may be single color or multicolor, the multicolor display device will be described here.
 多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
 発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、スピンコート法、印刷法である。
 表示装置に具備される有機EL素子の構成は、必要に応じて上記の有機EL素子の構成例の中から選択される。
 また、有機EL素子の製造方法は、上記の本発明の有機EL素子の製造の一態様に示したとおりである。
In the case of a multicolor display device, a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by vapor deposition, casting, spin coating, ink jet, printing, or the like.
In the case of patterning only the light emitting layer, the method is not limited. However, the vapor deposition method, the ink jet method, the spin coating method, and the printing method are preferable.
The configuration of the organic EL element provided in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
Moreover, the manufacturing method of an organic EL element is as having shown to the one aspect | mode of manufacture of the organic EL element of said invention.
 得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2V~40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。さらに交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。
 多色表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。
When a DC voltage is applied to the obtained multicolor display device, light emission can be observed by applying a voltage of about 2V to 40V with the anode as + and the cathode as-polarity. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state. The alternating current waveform to be applied may be arbitrary.
The multicolor display device can be used as a display device, a display, and various light emission sources. In display devices and displays, full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
 表示デバイス、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
 発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、本発明はこれらに限定されない。
Examples of the display device and display include a television, a personal computer, a mobile device, an AV device, a character broadcast display, and an information display in an automobile. In particular, it may be used as a display device for reproducing still images and moving images, and the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
Light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc. The present invention is not limited to these examples.
 以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
 図2は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。
Hereinafter, an example of a display device having the organic EL element of the present invention will be described with reference to the drawings.
FIG. 2 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
 ディスプレイ1は複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。
 制御部Bは表示部Aと電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。
The display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
The control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside, and the pixels for each scanning line respond to the image data signal by the scanning signal. The image information is sequentially emitted to scan the image and display the image information on the display unit A.
 図3は表示部Aの模式図である。
 表示部Aは基板上に、複数の走査線5およびデータ線6を含む配線部と複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。
 図においては、画素3の発光した光が白矢印方向(下方向)へ取り出される場合を示している。
FIG. 3 is a schematic diagram of the display unit A.
The display unit A includes a wiring unit including a plurality of scanning lines 5 and data lines 6, a plurality of pixels 3 and the like on a substrate. The main members of the display unit A will be described below.
In the figure, the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
 配線部の走査線5および複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。
 画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。
 発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。
The scanning lines 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at orthogonal positions (details are shown in the figure). Not)
When a scanning signal is applied from the scanning line 5, the pixel 3 receives an image data signal from the data line 6 and emits light according to the received image data.
Full-color display is possible by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
 次に、画素の発光プロセスを説明する。
 図4は画素の模式図である。
 画素は有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサ13等を備えている。複数の画素に有機EL素子10として、赤色、緑色、青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
Next, the light emission process of the pixel will be described.
FIG. 4 is a schematic diagram of a pixel.
The pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like. A full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
 図4において、制御部Bからデータ線6を介してスイッチングトランジスタ11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスタ11のゲートに走査信号が印加されると、スイッチングトランジスタ11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサ13と駆動トランジスタ12のゲートに伝達される。 4, an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6. When a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5, the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.
 画像データ信号の伝達により、コンデンサ13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。 By transmitting the image data signal, the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on. The drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the power supply line 7 connects to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.
 制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。
 しかし、スイッチングトランジスタ11の駆動がオフしてもコンデンサ13は充電された画像データ信号の電位を保持するので、駆動トランジスタ12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。
 順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動して有機EL素子10が発光する。
 即ち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。
When the scanning signal is moved to the next scanning line 5 by the sequential scanning of the control unit B, the driving of the switching transistor 11 is turned off.
However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 maintains the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues.
When the scanning signal is next applied by sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
That is, the light emission of the organic EL element 10 is performed by providing the switching transistor 11 and the drive transistor 12 which are active elements with respect to the organic EL element 10 of each of the plurality of pixels. It is carried out. Such a light emitting method is called an active matrix method.
 ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサ13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。
Here, the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good. The potential of the capacitor 13 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
In the present invention, not only the active matrix method described above, but also a passive matrix light emission drive in which the organic EL element emits light according to the data signal only when the scanning signal is scanned.
 図5は図3の表示部Aに係るパッシブマトリクス方式による表示装置の模式図である。図5において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。
 順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。
 パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。
FIG. 5 is a schematic view of a passive matrix display device according to the display unit A of FIG. In FIG. 5, a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
When the scanning signal of the scanning line 5 is applied by sequential scanning, the pixels 3 connected to the applied scanning line 5 emit light according to the image data signal.
In the passive matrix system, the pixel 3 has no active element, and the manufacturing cost can be reduced.
《照明装置》
 本発明の照明装置について説明する。本発明の照明装置は、本発明の有機EL素子を備えたものである。
 本発明の有機EL素子に共振器構造を持たせた有機EL素子として用いてもよく、このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
 また、本発明の有機EL素子は照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。
 動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。または、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
《Lighting device》
The lighting device of the present invention will be described. The lighting device of the present invention includes the organic EL element of the present invention.
The organic EL element of the present invention may be used as an organic EL element having a resonator structure. The purpose of use of the organic EL element having such a resonator structure is as follows. The light source of a machine, the light source of an optical communication processing machine, the light source of a photosensor, etc. are mentioned, However It is not limited to these. Moreover, you may use for the said use by making a laser oscillation.
Further, the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a display for directly viewing a still image or a moving image. It may be used as a device (display).
The driving method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method. Alternatively, a full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.
 また、本発明の有機EL材料は照明装置として、実質白色の発光を生じる有機EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得る。
 複数の発光色の組み合わせとしては、青色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。
 また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光または蛍光で発光する材料を複数組み合わせたもの、蛍光またはリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、本発明に係る白色有機EL素子においては、発光ドーパントを複数組み合わせ混合するだけでよい。
The organic EL material of the present invention can be applied to an organic EL element that emits substantially white light as a lighting device. A plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing.
The combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or two using the relationship of complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
In addition, the combination of luminescent materials for obtaining multiple luminescent colors is a combination of multiple phosphorescent or fluorescent materials that emit light, fluorescent materials or phosphorescent materials, and light from the luminescent materials. Any combination with a dye material that emits light as light may be used, but in the white organic EL device according to the present invention, it is only necessary to mix and mix a plurality of light emitting dopants.
 発光層、正孔輸送層あるいは電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよく、他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産性も向上する。
 この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が発光白色である。
 発光層に用いる発光材料としては特に制限はなく、例えば、液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。
It is only necessary to provide a mask only when forming a light emitting layer, a hole transport layer, an electron transport layer, etc., and simply arrange them separately by coating with the mask. Since other layers are common, patterning of the mask or the like is not necessary. In addition, for example, an electrode film can be formed by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is also improved.
According to this method, unlike a white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves are luminescent white.
There is no restriction | limiting in particular as a luminescent material used for a light emitting layer, For example, if it is a backlight in a liquid crystal display element, the metal complex which concerns on this invention so that it may suit the wavelength range corresponding to CF (color filter) characteristic, Any one of known luminescent materials may be selected and combined to whiten.
《本発明の照明装置の一態様》
 本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。
 本発明の有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図6、図7に示すような照明装置を形成することができる。
 図6は、照明装置の概略図を示し、本発明の有機EL素子101はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。
 図7は、照明装置の断面図を示し、図7において、105は陰極、106は有機EL層、107は透明電極(陽極)付きガラス基板を示す。
 なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
<< One Embodiment of Lighting Device of the Present Invention >>
One aspect of the lighting device of the present invention that includes the organic EL element of the present invention will be described.
The non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a glass substrate having a thickness of 300 μm is used as a sealing substrate, and an epoxy-based photocurable adhesive (LUX TRACK manufactured by Toagosei Co., Ltd.) is used as a sealing material. LC0629B) is applied, and this is overlaid on the cathode to be in close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured and sealed, and as shown in FIG. 6 and FIG. Can be formed.
FIG. 6 shows a schematic diagram of the lighting device, and the organic EL element 101 of the present invention is covered with a glass cover 102 (in the sealing operation with the glass cover, the organic EL element 101 is brought into contact with the atmosphere. And a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more).
7 shows a cross-sectional view of the lighting device. In FIG. 7, reference numeral 105 denotes a cathode, 106 denotes an organic EL layer, and 107 denotes a glass substrate with a transparent electrode (anode).
The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
 以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されない。
 また、実施例に用いる化合物の構造を以下に示す。なお、その他の化合物については、本件明細書中に記載のものである。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.
Moreover, the structure of the compound used for an Example is shown below. In addition, about another compound, it is a thing as described in this specification.
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
《有機EL素子1-1の作製》
 100mm×100mm×1.1mmのガラス基板上に、陽極としてITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
<< Production of Organic EL Element 1-1 >>
A transparent substrate provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) as an anode on a glass substrate of 100 mm × 100 mm × 1.1 mm. The supporting substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、H.C. スタルク社製、CLEVIO P VP AI 4083)を純水で70%に希釈した溶液を用い、3000rpm、30秒の条件でスピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、膜厚20nmの正孔注入層を設けた。 A solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, manufactured by HC Starck, CLVIO P VP AI 4083) to 70% with pure water on the transparent support substrate. After forming a thin film by spin coating at 3000 rpm for 30 seconds, the film was dried at 200 ° C. for 1 hour to provide a hole injection layer having a thickness of 20 nm.
 この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートにホスト化合物として1-12(WO2011/122132に記載の化合物(1)と同一。以下、1-12と記載する。)を200mg入れ、別のモリブデン製抵抗加熱ボートに電子輸送材料としてET-8を200mg入れ、別のモリブデン製抵抗加熱ボートにドーパント化合物として化合物(DP-BL1)を100mg入れ、別のモリブデン製抵抗加熱ボートに正孔輸送材料としてTPDを100mg入れ、また別のモリブデン製抵抗加熱ボートに陰極バッファー材料としてフッ化リチウムを100mg入れ、真空蒸着装置に取り付けた。 This transparent support substrate is fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus, and on the other hand, it is the same as 1-12 (compound (1) described in WO2011 / 122132) as a host compound in a resistance heating boat made of molybdenum. 200 mg), 200 mg of ET-8 as an electron transport material is put into another molybdenum resistance heating boat, and 100 mg of the compound (DP-BL1) as a dopant compound is put into another resistance heating boat made of molybdenum. 100 mg of TPD as a hole transport material was placed in a molybdenum resistance heating boat, and 100 mg of lithium fluoride was placed in another molybdenum resistance heating boat as a cathode buffer material, and attached to a vacuum deposition apparatus.
 次いで真空槽を4×10-4Paまで減圧した後、TPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記正孔注入層上に膜厚20nmの正孔輸送層を設けた。
 さらに、ホスト化合物として1-12とドーパント化合物として化合物(DP-BL1)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.025nm/秒で前記正孔輸送層上に共蒸着して膜厚30nmの発光層を設けた。
 さらにET-8入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層上に蒸着して膜厚30nmの電子輸送層を設けた。
 なお、蒸着時の基板温度は室温であった。
 引き続き、フッ化リチウムを蒸着して膜厚0.5nmの陰極バッファー層を形成し、さらにアルミニウムを蒸着して膜厚110nmの陰極を形成し、比較の有機EL素子1-1を作製した。
Next, the pressure in the vacuum chamber was reduced to 4 × 10 −4 Pa, and the heating boat containing TPD was heated by energization. A hole having a thickness of 20 nm was formed on the hole injection layer at a deposition rate of 0.1 nm / second. A transport layer was provided.
Further, the heating boat containing 1-12 as a host compound and the compound (DP-BL1) as a dopant compound is heated by energization, and the hole transport is performed at a deposition rate of 0.1 nm / second and 0.025 nm / second, respectively. A light-emitting layer having a thickness of 30 nm was provided by co-evaporation on the layer.
Further, the heating boat containing ET-8 was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide an electron transport layer having a thickness of 30 nm.
In addition, the substrate temperature at the time of vapor deposition was room temperature.
Subsequently, lithium fluoride was vapor-deposited to form a cathode buffer layer having a thickness of 0.5 nm, and aluminum was further vapor-deposited to form a cathode having a thickness of 110 nm. Thus, a comparative organic EL element 1-1 was produced.
《有機EL素子1-2~1-15の作製》
 有機EL素子1-1の作製において、発光層のドーパント化合物および、ホスト化合物を、表1に記載の化合物に変更する以外は、同様な方法で有機EL素子1-2~1-15を作製した。
<< Production of Organic EL Elements 1-2 to 1-15 >>
Organic EL elements 1-2 to 1-15 were prepared by the same method except that the dopant compound and the host compound in the light emitting layer were changed to the compounds shown in Table 1 in the production of the organic EL element 1-1. .
《有機EL素子1-1~1-15の評価》
 得られた有機EL素子1-1~1-15を評価するに際しては、作製後の各有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密着させ、ガラス基板側からUV光を照射して硬化させて封止し、図6および図7に示すような照明装置を作製して評価した。
 このようにして作製した各サンプルについて下記の評価を行った。評価結果を表1に示す。
<< Evaluation of Organic EL Elements 1-1 to 1-15 >>
When evaluating the obtained organic EL elements 1-1 to 1-15, the non-light-emitting surface of each organic EL element after production was covered with a glass case, and a glass substrate having a thickness of 300 μm was used as a sealing substrate. An epoxy photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealant around the periphery, and this is placed on the cathode so as to be in close contact with the transparent support substrate and irradiated with UV light from the glass substrate side. Then, it was cured and sealed, and a lighting device as shown in FIGS. 6 and 7 was produced and evaluated.
The following evaluation was performed for each sample thus prepared. The evaluation results are shown in Table 1.
(1)外部取り出し量子効率(単に、EQEともいう)
 有機EL素子を室温(約23~25℃)、2.5mA/cmの定電流条件下による点灯を行い、点灯開始直後の発光輝度(L)[cd/m]を測定することにより、外部取り出し量子効率(η)を算出した。
 ここで、発光輝度の測定はCS-1000(コニカミノルタセンシング製)を用いて行い、外部取り出し量子効率は有機EL素子1-1を100とする相対値で表した。
 値が大きいほど、効率が高く好ましい。
(1) External extraction quantum efficiency (also simply referred to as EQE)
By lighting the organic EL element under a constant current condition of room temperature (about 23 to 25 ° C.) and 2.5 mA / cm 2 , and measuring the emission luminance (L) [cd / m 2 ] immediately after the start of lighting, The external extraction quantum efficiency (η) was calculated.
Here, the measurement of emission luminance was performed using CS-1000 (manufactured by Konica Minolta Sensing), and the external extraction quantum efficiency was expressed as a relative value where the organic EL element 1-1 was 100.
Larger values are preferred because of higher efficiency.
(2)半減寿命
 下記に示す測定法に従って、半減寿命の評価を行った。
 各有機EL素子を初期輝度1000cd/mを与える電流で定電流駆動して、初期輝度の1/2(500cd/m)になる時間を求め、これを半減寿命の尺度とした。
 なお、半減寿命は有機EL素子1-1を100とする相対値で表した。
 値が大きいほど、長寿命で好ましい。
(2) Half-life The half-life was evaluated according to the measurement method shown below.
Each organic EL device driven with a constant current at a current giving an initial luminance 1000 cd / m 2, obtains the time to be 1/2 (500cd / m 2) of the initial luminance, which was used as a measure of the half-life.
The half life was expressed as a relative value with the organic EL element 1-1 as 100.
Larger values are preferred for longer life.
(3)駆動電圧
 有機EL素子を室温(約23℃~25℃)、2.5mA/cmの定電流条件下により駆動した時の電圧を各々測定し有機EL素子1-1を100とする相対値で表した。
 値が小さいほど、駆動電圧が低く好ましい。
(3) Drive voltage The voltage when the organic EL element is driven at room temperature (about 23 ° C. to 25 ° C.) and a constant current of 2.5 mA / cm 2 is measured, and the organic EL element 1-1 is set to 100. Expressed as a relative value.
The smaller the value, the lower the drive voltage and the better.
(4)加熱時のEQE低下率
 有機EL素子を20℃、2.5mA/cmの定電流条件下による点灯を行い、点灯開始直後の発光輝度(L)[cd/m]を測定することにより、外部取り出し量子効率(η@20℃)を算出した。さらに、温度を50℃とし、同様に外部取り出し量子効率(η@50℃)を算出した。
 これらの数値から以下のように算出した値を、加熱時のEQE低下率の尺度とした。
 
  加熱時のEQE低下率 = [(η@20℃-η@50℃)/η@20℃]×100
 ここで、発光輝度の測定はCS-1000(コニカミノルタセンシング(株)製)を用いて行い、外部取り出し効率が20℃と50℃で変化しない場合には、0となる。
 加熱時のEQE低下率は数値が小さいほど、EQEが安定で好ましい。
(4) EQE reduction rate at the time of heating The organic EL element is lighted under a constant current condition of 20 ° C. and 2.5 mA / cm 2 , and the light emission luminance (L) [cd / m 2 ] immediately after the start of lighting is measured. Thus, the external extraction quantum efficiency (η @ 20 ° C.) was calculated. Furthermore, the temperature was set to 50 ° C., and the external extraction quantum efficiency (η @ 50 ° C.) was similarly calculated.
A value calculated as follows from these values was used as a measure of the EQE reduction rate during heating.

EQE reduction rate upon heating = [(η @ 20 ° C-η @ 50 ° C) / η @ 20 ° C] x 100
Here, the measurement of light emission luminance is performed using CS-1000 (manufactured by Konica Minolta Sensing Co., Ltd.), and becomes 0 when the external extraction efficiency does not change between 20 ° C. and 50 ° C.
The smaller the numerical value of the EQE reduction rate during heating, the more stable and preferable EQE is.
 なお、素子色度は、2度視野角正面輝度をCS-1000(コニカミノルタセンシング(株)製)を用いて測定した際に、1000cd/mでのCIE1931表色系における色度である。
 また、発光領域(再結合領域)の測定については、以下のとおりである。
The element chromaticity is the chromaticity in the CIE 1931 color system at 1000 cd / m 2 when the 2-degree viewing angle front luminance is measured using CS-1000 (manufactured by Konica Minolta Sensing Co., Ltd.).
The measurement of the light emitting region (recombination region) is as follows.
 各サンプルを、正面の発光輝度が初期輝度からその約半分になるまで電気駆動させ(この状態をΔEL=0.5と目標設定する。)、その駆動前後でフォトルミネッセンスのスペクトルを測定して発光極大の強度を算出して減衰率(ΔPL)を算出した。
 「ΔEL」は駆動前後のエレクトロルミネッセンス(EL)の強度減衰率を示し、「ΔPL」は駆動前後のフォトルミネッセンス(PL)の強度減衰率を示す。
 具体的に、ΔELおよびΔPLの各値は下記の式で表される。
Each sample is electrically driven until the front light emission luminance is about half of the initial luminance (this state is set to ΔEL = 0.5), and the photoluminescence spectrum is measured before and after the driving to emit light. The maximum intensity was calculated to calculate the attenuation rate (ΔPL).
“ΔEL” indicates the intensity decay rate of the electroluminescence (EL) before and after driving, and “ΔPL” indicates the intensity decay rate of the photoluminescence (PL) before and after driving.
Specifically, each value of ΔEL and ΔPL is expressed by the following formula.
 ΔEL=1-[EL(駆動後)/EL(駆動前)]
 ΔPL=1-[PL(駆動後)/PL(駆動前)]
ΔEL = 1− [EL (after driving) / EL (before driving)]
ΔPL = 1− [PL (after driving) / PL (before driving)]
 PLのスペクトル測定にはUSB2000(Ocean Optics製)を用い、当該スペクトル測定は室温(23℃)、励起波長365nmの条件でおこなった。駆動後のスペクトル測定は、ELの初期輝度が約半分になるまで駆動させた後、その時点から2時間以内におこなった。
 その後、ΔPLとΔELとの各値の比(ΔPL/ΔEL)を算出した。
 算出結果を表1に示す。
 なお、発光領域は有機EL素子1-1の発光領域を100と設定する相対値で表した。
USB spectrum (manufactured by Ocean Optics) was used for PL spectrum measurement, and the spectrum measurement was performed under conditions of room temperature (23 ° C.) and excitation wavelength of 365 nm. The spectrum measurement after the drive was performed within 2 hours from that time after the EL was driven until the initial luminance became about half.
Thereafter, the ratio of each value between ΔPL and ΔEL (ΔPL / ΔEL) was calculated.
The calculation results are shown in Table 1.
The light emitting area is expressed as a relative value in which the light emitting area of the organic EL element 1-1 is set to 100.
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000071
 表1から、本発明の有機EL素子1-5、1-7~1-10、1-13~1-15は、各々高い発光効率および長寿命を示すとともに、駆動電圧が低く、素子としての特性が向上していることが分かる。また、本発明に係るホスト化合物を用いたものは、加熱時のEQE低下率が低いことが分かる。また、発光ドーパントとホスト材料のHOMOレベルを、本発明の関係にすることで、素子特性が向上していることが分かる。 From Table 1, the organic EL devices 1-5, 1-7 to 1-10, and 1-13 to 1-15 of the present invention each exhibit high luminous efficiency and long life, and have a low driving voltage. It can be seen that the characteristics are improved. Moreover, it turns out that the thing using the host compound which concerns on this invention has a low EQE fall rate at the time of a heating. In addition, it can be seen that the device characteristics are improved by making the HOMO level of the light emitting dopant and the host material the relationship of the present invention.
《有機EL素子2-1~2-15の作製》
 実施例1の有機EL素子1-1において、正孔注入層を設けず真空蒸着装置の基板ホルダーに固定し、正孔輸送材料をα-NPDに変更し、電子輸送材料をAlqに変更し、発光層のドーパント化合物およびホスト化合物を、表2に記載の化合物に変更する以外は、同様な方法で有機EL素子2-1~2-15を作製した。
<< Preparation of organic EL elements 2-1 to 2-15 >>
In the organic EL element 1-1 of Example 1, was fixed to a substrate holder of a vacuum deposition apparatus without providing the hole injection layer, and change the hole transporting material to the alpha-NPD, change the electron transporting material Alq 3 Organic EL devices 2-1 to 2-15 were produced in the same manner except that the dopant compound and host compound in the light emitting layer were changed to the compounds shown in Table 2.
 得られた有機EL素子2-1~2-15は、実施例1と同様な方法で、(1)外部取り出し量子効率(単に、EQEともいう)、(2)半減寿命、(3)駆動電圧および(4)加熱時のEQE低下率の評価を行い、加熱時のEQE低下率以外は、各々有機EL素子2-1を100とする相対値で表わした。また、実施例1と同様な方法で、素子色度および発光領域を測定した。なお、発光領域は有機EL素子2-1の発光領域を100と設定する相対値で表した。 The obtained organic EL devices 2-1 to 2-15 were subjected to the same method as in Example 1, (1) external extraction quantum efficiency (also simply referred to as EQE), (2) half-life, and (3) driving voltage. And (4) The EQE reduction rate during heating was evaluated, and the values other than the EQE reduction rate during heating were expressed as relative values with the organic EL element 2-1 being 100. Further, the element chromaticity and the light emitting region were measured in the same manner as in Example 1. The light emitting area is expressed as a relative value in which the light emitting area of the organic EL element 2-1 is set to 100.
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000072
 表2から、本発明の有機EL素子2-7~2-12は、各々高い発光効率および長寿命を示すとともに、駆動電圧が低く、素子としての特性が向上していることが分かる。また、本発明に係るホスト化合物を用いたものは、加熱時のEQE低下率が低いことが分かる。また、発光ドーパントとホスト材料のHOMOレベルを、本発明の関係にすることで、素子特性が向上していることが分かる。 From Table 2, it can be seen that each of the organic EL devices 2-7 to 2-12 of the present invention exhibits high luminous efficiency and long life, low driving voltage, and improved device characteristics. Moreover, it turns out that the thing using the host compound which concerns on this invention has a low EQE fall rate at the time of a heating. In addition, it can be seen that the device characteristics are improved by making the HOMO level of the light emitting dopant and the host material the relationship of the present invention.
 有機EL素子2-1のα-NPDの蒸着膜をHTM1:F4-TCNQ=97:3の共蒸着膜に変更し、Alqの蒸着膜をBPhen:Cs=1:1の共蒸着膜に変更し、LiFを蒸着しなかった以外、全く同様に有機EL素子3-1~3-12を作製した。 The α-NPD vapor deposition film of the organic EL device 2-1 was changed to a co-deposition film of HTM1: F4-TCNQ = 97: 3, and the vapor deposition film of Alq 3 was changed to a co-deposition film of BPhen: Cs = 1: 1. Then, organic EL elements 3-1 to 3-12 were produced in exactly the same manner except that LiF was not deposited.
 得られた有機EL素子3-1~3-12は、実施例1と同様な方法で、(1)外部取り出し量子効率(単に、EQEともいう)、(2)半減寿命、(3)駆動電圧および(4)加熱時のEQE低下率の評価を行い、加熱時のEQE低下率以外は、各々有機EL素子3-1を100とする相対値で表わした。また、実施例1と同様な方法で、素子色度および発光領域を測定した。なお、発光領域は有機EL素子3-1の発光領域を100と設定する相対値で表した。 The obtained organic EL devices 3-1 to 3-12 were subjected to the same method as in Example 1, (1) external extraction quantum efficiency (also simply referred to as EQE), (2) half-life, and (3) driving voltage. (4) The EQE reduction rate during heating was evaluated, and the values other than the EQE reduction rate during heating were expressed as relative values with the organic EL element 3-1 being 100. Further, the element chromaticity and the light emitting region were measured in the same manner as in Example 1. The light emitting area is expressed as a relative value in which the light emitting area of the organic EL element 3-1 is set to 100.
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000073
 表3から、本発明の有機EL素子3-7~3-11は、各々高い発光効率および長寿命を示すとともに、駆動電圧が低く、素子としての特性が向上していることが分かる。また、本発明に係るホスト化合物を用いたものは、加熱時のEQE低下率が低いことが分かる。また、発光ドーパントとホスト材料のHOMOレベルを、本発明の関係にすることで、素子特性が向上していることが分かる。 From Table 3, it can be seen that the organic EL devices 3-7 to 3-11 of the present invention each exhibit high luminous efficiency and long life, low driving voltage, and improved device characteristics. Moreover, it turns out that the thing using the host compound which concerns on this invention has a low EQE fall rate at the time of a heating. In addition, it can be seen that the device characteristics are improved by making the HOMO level of the light emitting dopant and the host material the relationship of the present invention.
 実施例1の有機EL素子1-1において、正孔注入層を設けず真空蒸着装置の基板ホルダーに固定し、真空槽を4×10-4Paまで減圧した後、HT-30の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、透明支持基板に蒸着し厚さ10nmの正孔注入層を設けた。正孔輸送材料をα-NPDに変更した以外、全く同様に有機EL素子4-1~4-11を作製した。 In the organic EL element 1-1 of Example 1, the hole injection layer was not provided and fixed to the substrate holder of the vacuum evaporation apparatus, the vacuum chamber was depressurized to 4 × 10 −4 Pa, and then the HT-30 was added. A heating boat was energized and heated, and a hole injection layer having a thickness of 10 nm was provided on the transparent support substrate at a deposition rate of 0.1 nm / second. Organic EL elements 4-1 to 4-11 were produced in exactly the same manner except that the hole transport material was changed to α-NPD.
 得られた有機EL素子4-1~4-11は、実施例1と同様な方法で、(1)外部取り出し量子効率(単に、EQEともいう)、(2)半減寿命、(3)駆動電圧および(4)加熱時のEQE低下率の評価を行い、加熱時のEQE低下率以外は、各々有機EL素子4-1を100とする相対値で表わした。また、実施例1と同様な方法で、素子色度および発光領域を測定した。なお、発光領域は有機EL素子4-1の発光領域を100と設定する相対値で表した。 The obtained organic EL devices 4-1 to 4-11 were subjected to the same method as in Example 1, (1) external extraction quantum efficiency (also simply referred to as EQE), (2) half-life, and (3) driving voltage. And (4) The EQE reduction rate during heating was evaluated. Except for the EQE reduction rate during heating, each was expressed as a relative value where the organic EL element 4-1 was 100. Further, the element chromaticity and the light emitting region were measured in the same manner as in Example 1. The light emitting area is expressed as a relative value in which the light emitting area of the organic EL element 4-1 is set to 100.
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000074
 表4から、本発明の有機EL素子4-7~4-10は、各々高い発光効率および長寿命を示すとともに、駆動電圧が低く、素子としての特性が向上していることが分かる。また、本発明に係るホスト化合物を用いたものは、加熱時のEQE低下率が低いことが分かる。また、発光ドーパントとホスト材料のHOMOレベルを、本発明の関係にすることで、素子特性が向上していることが分かる。 Table 4 shows that each of the organic EL elements 4-7 to 4-10 of the present invention exhibits high luminous efficiency and long life, has a low driving voltage, and has improved characteristics as an element. Moreover, it turns out that the thing using the host compound which concerns on this invention has a low EQE fall rate at the time of a heating. In addition, it can be seen that the device characteristics are improved by making the HOMO level of the light emitting dopant and the host material the relationship of the present invention.
《白色発光有機EL素子5-1の作製》
 100mm×100mm×1.1mmのガラス基板上に、陽極としてITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
<< Preparation of white light-emitting organic EL element 5-1 >>
A transparent substrate provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) as an anode on a glass substrate of 100 mm × 100 mm × 1.1 mm. The supporting substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
 この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートに正孔輸送材料としてα-NPDを200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物として比較化合物H-1を200mg入れ、別のモリブデン製抵抗加熱ボートに電子輸送材料としてET-8を200mg入れ、別のモリブデン製抵抗加熱ボートにドーパント化合物としてDP-BL1を100mg入れ、別のモリブデン製抵抗加熱ボートにドーパント化合物としてD-1を100mg入れ真空蒸着装置に取り付けた。 This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus. Meanwhile, 200 mg of α-NPD as a hole transport material is placed in a molybdenum resistance heating boat and a comparative compound as a host compound in another molybdenum resistance heating boat. Put 200 mg of H-1, 200 mg of ET-8 as an electron transport material in another molybdenum resistance heating boat, 100 mg of DP-BL1 as a dopant compound in another molybdenum resistance heating boat, another resistance heating made of molybdenum 100 mg of D-1 as a dopant compound was placed in a boat and attached to a vacuum deposition apparatus.
 次いで真空槽を4×10-4Paまで減圧した後、α-NPDの入った前記加熱ボートを通電して、蒸着速度0.1nm/秒で透明支持基板に蒸着し膜厚20nmの正孔輸送層を設けた。
 さらに、ホスト化合物として比較化合物H-1とドーパント化合物として、DP-BL1、D-1の入った前記加熱ボートに通電して加熱し、それぞれの蒸着速度が100:5:0.6になるように調整し、膜厚40nmの発光層を設けた。
 さらにET-8の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層上に蒸着して膜厚30nmの電子輸送層を設けた。
 なお、蒸着時の基板温度は室温であった。
Next, after reducing the vacuum chamber to 4 × 10 −4 Pa, energizing the heating boat containing α-NPD and depositing it on the transparent support substrate at a deposition rate of 0.1 nm / second, transporting holes with a thickness of 20 nm. A layer was provided.
Further, the heating boat containing DP-BL1 and D-1 as comparative compounds H-1 as the host compounds and DP-BL1 and D-1 as the dopant compounds is heated and heated so that the respective deposition rates become 100: 5: 0.6. And a light emitting layer having a thickness of 40 nm was provided.
Further, the heating boat containing ET-8 was energized and heated, and deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide an electron transport layer having a thickness of 30 nm.
In addition, the substrate temperature at the time of vapor deposition was room temperature.
 引き続き、フッ化リチウムを蒸着して膜厚0.5nmの陰極バッファー層を形成し、さらにアルミニウムを蒸着して膜厚110nmの陰極を形成し、有機EL素子5-1を作製した。
 作製した有機EL素子5-1に通電したところほぼ白色の光が得られ、照明装置として使用出来ることが分かった。
Subsequently, lithium fluoride was vapor-deposited to form a cathode buffer layer having a thickness of 0.5 nm, and aluminum was further vapor-deposited to form a cathode having a thickness of 110 nm. Thus, an organic EL element 5-1 was produced.
When the produced organic EL element 5-1 was energized, almost white light was obtained, and it was found that it could be used as a lighting device.
《有機EL素子5-2~5-6の作製》
 有機EL素子5-1の作製において、発光層に用いるホストの比較化合物H-1と、ドーパント化合物DP-BL1を、表5に示す化合物に変更した以外は同様にして、有機EL素子5-2~5-6を各々作製した。なお、ドーパント化合物にはD-1も含まれる。作製した有機EL素子5-2~5-6に通電したところほぼ白色の光が得られ、照明装置として使用出来ることが分かった。
<< Production of organic EL elements 5-2 to 5-6 >>
In the production of the organic EL device 5-1, the organic EL device 5-2 was prepared in the same manner except that the host comparison compound H-1 and dopant compound DP-BL1 used in the light emitting layer were changed to the compounds shown in Table 5. ~ 5-6 were prepared respectively. The dopant compound includes D-1. When the produced organic EL elements 5-2 to 5-6 were energized, almost white light was obtained, and it was found that they could be used as a lighting device.
 また、得られた有機EL素子5-1~5-6は、実施例1と同様な方法で、(1)外部取り出し量子効率(単に、EQEともいう)、(2)半減寿命、(3)駆動電圧および(4)加熱時のEQE低下率の評価を行い、加熱時のEQE低下率以外は、各々有機EL素子5-1を100とする相対値で表わした。また、実施例1と同様な方法で、発光領域を測定した。なお、発光領域は有機EL素子5-1の発光領域を100と設定する相対値で表した。 In addition, the obtained organic EL elements 5-1 to 5-6 were subjected to the same method as in Example 1. (1) External extraction quantum efficiency (also simply referred to as EQE), (2) Half life, (3) The drive voltage and (4) the EQE reduction rate during heating were evaluated, and the values other than the EQE reduction rate during heating were expressed as relative values with the organic EL element 5-1 being 100. Further, the light emitting region was measured by the same method as in Example 1. The light emitting area is expressed as a relative value in which the light emitting area of the organic EL element 5-1 is set to 100.
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000075
 表5から、本発明の有機EL素子5-2~5-6は、各々高い発光効率および長寿命を示すとともに、駆動電圧が低く、素子としての特性が向上していることが分かる。また、本発明に係るホスト化合物を用いたものは、加熱時のEQE低下率が低いことが分かる。また、発光ドーパントとホスト材料のHOMOレベルを、本発明の関係にすることで、素子特性が向上していることが分かる。 From Table 5, it can be seen that each of the organic EL devices 5-2 to 5-6 of the present invention has high luminous efficiency and long life, low driving voltage, and improved device characteristics. Moreover, it turns out that the thing using the host compound which concerns on this invention has a low EQE fall rate at the time of a heating. In addition, it can be seen that the device characteristics are improved by making the HOMO level of the light emitting dopant and the host material the relationship of the present invention.
《有機ELフルカラー表示装置の作製》
 図8は、有機ELフルカラー表示装置の概略構成図を示す。
 ガラス基板201上に、陽極としてITO透明電極202を100nm成膜した基板(NHテクノグラス社製NA45)に100μmのピッチでパターニングを行った後(図8(a)参照)、このガラス基板201上であってITO透明電極202の間に非感光性ポリイミドの隔壁203(幅20μm、厚さ2.0μm)をフォトリソグラフィーで形成した(図8(b)参照)。
<< Production of organic EL full-color display device >>
FIG. 8 shows a schematic configuration diagram of an organic EL full-color display device.
After patterning at a pitch of 100 μm on a substrate (NA45 manufactured by NH Techno Glass Co., Ltd.) having a 100 nm ITO transparent electrode 202 formed as an anode on a glass substrate 201 (see FIG. 8A), on this glass substrate 201 Then, a non-photosensitive polyimide partition wall 203 (width 20 μm, thickness 2.0 μm) was formed between the ITO transparent electrodes 202 by photolithography (see FIG. 8B).
 ITO透明電極202上であって隔壁203同士の間に下記組成の正孔注入層組成物を、インクジェットヘッド(エプソン社製;MJ800C)を用いて吐出注入し、紫外光を200秒間照射し、60℃、10分間の乾燥処理により、膜厚40nmの正孔注入層204を設けた(図8(c)参照)。 A hole injection layer composition having the following composition is ejected and injected on the ITO transparent electrode 202 between the partition walls 203 using an inkjet head (manufactured by Epson Corporation; MJ800C), irradiated with ultraviolet light for 200 seconds, 60 A hole injection layer 204 having a thickness of 40 nm was provided by a drying process at 10 ° C. for 10 minutes (see FIG. 8C).
 この正孔注入層204上に、各々下記組成の青色発光層組成物、緑色発光層組成物、赤色発光層組成物を同様にインクジェットヘッドを使用して吐出注入し、60℃、10分間乾燥処理し、各色の発光層205B,205G,205Rを設けた(図8(d)参照)。
 次に、各発光層205B,205G,205Rを覆うように電子輸送材料を蒸着して膜厚20nmの電子輸送層(図示略)を設け、更にフッ化リチウムを蒸着して膜厚0.6nmの陰極バッファー層(図示略)を設け、Alを蒸着して膜厚130nmの陰極206を設けて有機EL素子を作製した(図8(e)参照)。
 作製した有機EL素子はそれぞれ電極に電圧を印加することにより青色、緑色、赤色の発光を示し、フルカラー表示装置として利用できることがわかった。
A blue light-emitting layer composition, a green light-emitting layer composition, and a red light-emitting layer composition having the following compositions are similarly ejected and injected onto the hole injection layer 204 using an inkjet head, and dried at 60 ° C. for 10 minutes. Then, the light emitting layers 205B, 205G, and 205R for each color were provided (see FIG. 8D).
Next, an electron transport material is deposited so as to cover each of the light emitting layers 205B, 205G, and 205R to provide an electron transport layer (not shown) with a thickness of 20 nm, and further lithium fluoride is deposited to have a thickness of 0.6 nm. A cathode buffer layer (not shown) was provided, Al was vapor-deposited, and a cathode 206 having a film thickness of 130 nm was provided to produce an organic EL device (see FIG. 8E).
It was found that the produced organic EL elements each emitted blue, green, and red light when a voltage was applied to the electrodes, and could be used as a full-color display device.
(正孔注入層組成物)
1-12 20質量部
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部
(Hole injection layer composition)
1-12 20 parts by mass Cyclohexylbenzene 50 parts by mass Isopropylbiphenyl 50 parts by mass
(青色発光層組成物)
ホスト化合物(1-12)  0.7質量部  ホスト
DP-1        0.04質量部 ドーパント
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部
(Blue light emitting layer composition)
Host compound (1-12) 0.7 parts by mass Host DP-1 0.04 parts by mass Dopant cyclohexylbenzene 50 parts by mass Isopropylbiphenyl 50 parts by mass
(緑色発光層組成物)
ホスト化合物(H-1)  0.7質量部
D-2 0.04質量部     
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部
(Green light emitting layer composition)
Host compound (H-1) 0.7 parts by mass D-2 0.04 parts by mass
Cyclohexylbenzene 50 parts by mass Isopropyl biphenyl 50 parts by mass
(赤色発光層組成物)
ホスト化合物 (H-1)  0.7質量部
D-1 0.04質量部
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部
(Red light emitting layer composition)
Host compound (H-1) 0.7 parts by mass D-1 0.04 parts by mass cyclohexylbenzene 50 parts by mass Isopropylbiphenyl 50 parts by mass
 以上のとおり、本発明の有機EL素子は、ドーパントの発光極大波長や素子色度が要求特性を満たしながら、EQEや寿命、駆動電圧等の性能が出ている。ドーパントの発光極大波長(発光スペクトル)が短波なものほどドーパント材料が不安定になりやすく、EQEや寿命、駆動電圧等の性能が出なくなることが知られているため、これらが同等性能であっても、本発明のように短波である方が利得があるといえる。 As described above, the organic EL device of the present invention exhibits performance such as EQE, life, and driving voltage while the emission maximum wavelength of the dopant and the device chromaticity satisfy the required characteristics. It is known that the shorter the emission maximum wavelength (emission spectrum) of the dopant is, the more easily the dopant material becomes unstable, and the performance such as EQE, life, and driving voltage does not come out. However, it can be said that there is a gain in the case of a short wave as in the present invention.
 1 ディスプレイ
 3 画素
 5 走査線
 6 データ線
 7 電源ライン
 10 有機EL素子
 11 スイッチングトランジスタ
 12 駆動トランジスタ
 13 コンデンサ
 100 発光層
 101 有機EL素子
 102 ガラスカバー
 105 陰極
 106 有機EL層
 107 透明電極付きガラス基板
 108 窒素ガス
 109 捕水剤
 201 ガラス基板
 202 ITO透明電極
 203 隔壁
 204 正孔注入層
 205B、205G、205R 発光層
 206 陰極
 A 表示部
 B 制御部
 T1 再結合領域
 T2 発光に寄与しない領域
 T4 非発光領域
 T3,T5,T6 領域
DESCRIPTION OF SYMBOLS 1 Display 3 Pixel 5 Scan line 6 Data line 7 Power supply line 10 Organic EL element 11 Switching transistor 12 Drive transistor 13 Capacitor 100 Light emitting layer 101 Organic EL element 102 Glass cover 105 Cathode 106 Organic EL layer 107 Glass substrate 108 with a transparent electrode 108 Nitrogen gas 109 Water capturing agent 201 Glass substrate 202 ITO transparent electrode 203 Partition 204 Hole injection layer 205B, 205G, 205R Light emitting layer 206 Cathode A Display part B Control part T1 Recombination area T2 Area not contributing to light emission T4 Non-light emitting area T3, T5 , T6 area

Claims (10)

  1.  陽極と陰極に挟まれた少なくとも1層の発光層を含む有機エレクトロルミネッセンス素子において、
     該発光層の少なくとも1層に、少なくとも1種の発光ドーパントと少なくとも1種のホストを含有し、
     該発光ドーパントの少なくとも1種は、溶液中の発光スペクトルにおいて、最も短波側にある発光極大波長が470nm以下、且つHOMO値が-4.50~-5.50eVであるリン光性発光ドーパントであり、
     該ホストの少なくとも1種は、下記一般式(1)~(4)のいずれかで表される化合物であって、HOMO値が-4.60~-5.10eVである化合物であることを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)において、R111およびR112は水素原子、アルキル基、シクロアルキル基、ヘテロシクロアルキル基、芳香族炭化水素環基または芳香族複素環基を表し、一般式(1)で表される化合物はさらに置換基を有していてもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)において、R211およびR212はアルキル基、芳香族炭化水素環基または芳香族複素環基を表す。環Z~Zは芳香族炭化水素環または芳香族複素環を形成する残基を表し、置換基を有していてもよい。)
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3)において、R211およびR212はアルキル基、芳香族炭化水素環基または芳香族複素環基を表す。環Z~Zは芳香族炭化水素環または芳香族複素環を形成する残基を表し、置換基を有していてもよい。)
    Figure JPOXMLDOC01-appb-C000004
    (一般式(4)において、R311およびR312は水素原子、アリールシリル基、アリールホスホリル基、芳香族炭化水素環基、芳香族複素環基、ジアリールアミノ基、または、アルキル基を表す。A~Aは各々独立にC-RxまたはNを表し、複数のRxはそれぞれ同じであっても異なっていてもよい。Rxは各々独立に水素原子または置換基を表す。)
    In an organic electroluminescence device including at least one light emitting layer sandwiched between an anode and a cathode,
    At least one of the light emitting layers contains at least one light emitting dopant and at least one host,
    At least one of the light-emitting dopants is a phosphorescent light-emitting dopant having an emission maximum wavelength on the shortest wavelength side of 470 nm or less and a HOMO value of −4.50 to −5.50 eV in an emission spectrum in a solution. ,
    At least one of the hosts is a compound represented by any one of the following general formulas (1) to (4), and has a HOMO value of −4.60 to −5.10 eV. An organic electroluminescence element.
    Figure JPOXMLDOC01-appb-C000001
    (In General Formula (1), R 111 and R 112 represent a hydrogen atom, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group, (The compound represented may further have a substituent.)
    Figure JPOXMLDOC01-appb-C000002
    (In the general formula (2), R 211 and R 212 represent an alkyl group, an aromatic hydrocarbon ring group or an aromatic heterocyclic group. Rings Z 1 to Z 3 represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring. Represents a residue to be formed and may have a substituent.)
    Figure JPOXMLDOC01-appb-C000003
    (In the general formula (3), R 211 and R 212 represent an alkyl group, an aromatic hydrocarbon ring group or an aromatic heterocyclic group. Rings Z 1 to Z 3 represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring. Represents a residue to be formed and may have a substituent.)
    Figure JPOXMLDOC01-appb-C000004
    (In General Formula (4), R 311 and R 312 each represent a hydrogen atom, an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a diarylamino group, or an alkyl group. 1 to A 8 each independently represents C—Rx or N, and a plurality of Rxs may be the same or different, and Rx each independently represents a hydrogen atom or a substituent.
  2.  前記リン光性発光ドーパントが下記一般式(5)で表される化合物であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(5)において、MはIr、Pt、Rh、Ru、AgまたはCuを表し、XおよびXは炭素原子または窒素原子を表し、環ZはC=Cと共に6員の芳香族炭化水素環、または5員または6員の芳香族複素環を表し、環ZはX-Xと共に5員の複素環を表す。L’はMに配位したモノアニオン性の二座配位子であり、m’は0~2の整数を表し、n’は少なくとも1の整数であり、m’+n’は2または3である。)
    The organic electroluminescence device according to claim 1, wherein the phosphorescent light-emitting dopant is a compound represented by the following general formula (5).
    Figure JPOXMLDOC01-appb-C000005
    (In the general formula (5), M represents Ir, Pt, Rh, Ru, Ag or Cu, X 1 and X 2 represent a carbon atom or a nitrogen atom, and ring Z 1 represents a 6-membered aromatic with C═C. Represents a 5-membered aromatic ring, or a 5- or 6-membered aromatic heterocyclic ring, wherein ring Z 2 represents a 5-membered heterocyclic ring together with X 1 -X 2. L ′ represents a monoanionic divalent ring coordinated to M A bidentate ligand, m ′ represents an integer of 0 to 2, n ′ is an integer of at least 1, and m ′ + n ′ is 2 or 3.)
  3.  前記リン光性発光ドーパントが下記一般式(6)で表される化合物であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000006
    (一般式(6)において、MはIr、Pt、Rh、Ru、AgまたはCuを表し、XおよびXは炭素原子または窒素原子を表し、環ZはX-Xと共に5員の複素環を表す。Rは電子吸引基を表し、Rは電子供与基またはFを表す。L’はMに配位したモノアニオン性の二座配位子であり、m’は0~2の整数を表し、n’は少なくとも1の整数であり、m’+n’は2または3である。)
    The organic electroluminescence device according to claim 1, wherein the phosphorescent light-emitting dopant is a compound represented by the following general formula (6).
    Figure JPOXMLDOC01-appb-C000006
    (In General Formula (6), M represents Ir, Pt, Rh, Ru, Ag, or Cu, X 1 and X 2 represent a carbon atom or a nitrogen atom, and ring Z 2 is a 5-membered member together with X 1 -X 2. R 1 represents an electron-withdrawing group, R 2 represents an electron-donating group or F. L ′ is a monoanionic bidentate ligand coordinated to M, and m ′ is 0. Represents an integer of ˜2, n ′ is an integer of at least 1 and m ′ + n ′ is 2 or 3.)
  4.  前記リン光性発光ドーパントが下記一般式(7)で表される化合物であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000007
    (一般式(7)において、MはIr、Pt、Rh、Ru、AgまたはCuを表し、環ZはC=Cと共に6員の芳香族炭化水素環、または5員または6員の芳香族複素環を表す。R、R、Rは、水素原子、置換基を表し、RとRは環を形成してもよい。L’はMに配位したモノアニオン性の二座配位子であり、m’は0~2の整数を表し、n’は少なくとも1の整数であり、m’+n’は2または3である。)
    The organic electroluminescence device according to claim 1, wherein the phosphorescent light-emitting dopant is a compound represented by the following general formula (7).
    Figure JPOXMLDOC01-appb-C000007
    (In the general formula (7), M represents Ir, Pt, Rh, Ru, Ag or Cu, and ring Z 1 is a 6-membered aromatic hydrocarbon ring together with C = C, or a 5-membered or 6-membered aromatic ring. R 3 , R 4 , and R 5 each represent a hydrogen atom or a substituent, and R 4 and R 5 may form a ring, and L ′ is a monoanionic divalent group coordinated to M. A bidentate ligand, m ′ represents an integer of 0 to 2, n ′ is an integer of at least 1, and m ′ + n ′ is 2 or 3.)
  5.  前記リン光性発光ドーパントが下記一般式(8)で表される化合物であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000008
    (一般式(8)において、MはIr、Pt、Rh、Ru、AgまたはCuを表し、X~Xは、-CRまたは窒素原子を表し、XとXが-CRの場合、環を形成してもよい。環Zは、6員の芳香族炭化水素環、または5員または6員の芳香族複素環を表し、環ZはX-Xと共に5員の複素環を表す。Rは炭素原子または窒素原子を表す。L’はMに配位したモノアニオン性の二座配位子であり、m’は0~2の整数を表し、n’は少なくとも1の整数であり、m’+n’は2または3である。)
    2. The organic electroluminescence device according to claim 1, wherein the phosphorescent light-emitting dopant is a compound represented by the following general formula (8).
    Figure JPOXMLDOC01-appb-C000008
    (In the general formula (8), M represents Ir, Pt, Rh, Ru, Ag or Cu, X 1 to X 4 represent —CR 6 or a nitrogen atom, and X 3 and X 4 are —CR 6 . The ring Z 3 represents a 6-membered aromatic hydrocarbon ring, or a 5-membered or 6-membered aromatic heterocycle, and the ring Z 4 is a 5-membered with X 1 -X 2 R 6 represents a carbon atom or a nitrogen atom, L ′ represents a monoanionic bidentate ligand coordinated to M, m ′ represents an integer of 0 to 2, and n ′ Is an integer of at least 1 and m ′ + n ′ is 2 or 3.)
  6.  前記一般式(6)で表される化合物において、
     環Zは、置換または無置換のトリアゾール環を表すことを特徴とする請求項3に記載の有機エレクトロルミネッセンス素子。
    In the compound represented by the general formula (6),
    Ring Z 2 is an organic electroluminescent device according to claim 3, characterized in that a substituted or unsubstituted triazole ring.
  7.  前記リン光性発光ドーパントは、溶液中の発光スペクトルにおいて、最も短波側にある発光極大波長が460nm以下であることを特徴とする請求項1~6のいずれか1項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 6, wherein the phosphorescent luminescent dopant has an emission maximum wavelength on the shortest wavelength side in an emission spectrum in a solution of 460 nm or less. .
  8.  発光色が白色であることを特徴とする請求項1~7のいずれか1項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 7, wherein the emission color is white.
  9.  請求項1~8のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。 A lighting device comprising the organic electroluminescence element according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。 A display device comprising the organic electroluminescence element according to any one of claims 1 to 8.
PCT/JP2013/079761 2012-11-02 2013-11-01 Organic electroluminescent element, lighting device and display device WO2014069637A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014544611A JP6295959B2 (en) 2012-11-02 2013-11-01 Organic electroluminescence element, lighting device and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012242800 2012-11-02
JP2012-242800 2012-11-02

Publications (1)

Publication Number Publication Date
WO2014069637A1 true WO2014069637A1 (en) 2014-05-08

Family

ID=50627530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079761 WO2014069637A1 (en) 2012-11-02 2013-11-01 Organic electroluminescent element, lighting device and display device

Country Status (2)

Country Link
JP (1) JP6295959B2 (en)
WO (1) WO2014069637A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105085412A (en) * 2014-05-20 2015-11-25 三星Sdi株式会社 Organic compound, composition, organic optoelectric device, and display device
KR20150135070A (en) * 2014-05-22 2015-12-02 제일모직주식회사 Organic compound and composition and organic optoelectric device and display device
JP2016111346A (en) * 2014-12-09 2016-06-20 三星エスディアイ株式会社Samsung SDI Co., Ltd. Organic photoelectric element and display device
WO2016181844A1 (en) * 2015-05-08 2016-11-17 コニカミノルタ株式会社 Π-conjugated compound, delayed fluorescent body, light-emitting thin film, organic electroluminescence element, display device, and illumination device
CN106935712A (en) * 2015-12-29 2017-07-07 三星显示有限公司 Organic luminescent device
KR101791739B1 (en) 2015-07-30 2017-10-30 이-레이 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 Phosphorescent materials for organic electroluminescent devices
US11245080B2 (en) 2015-04-06 2022-02-08 Universal Display Corporation Organic electroluminescent materials and devices
US11450811B2 (en) 2018-08-10 2022-09-20 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US11495749B2 (en) 2015-04-06 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11818949B2 (en) 2015-04-06 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US11834459B2 (en) 2018-12-12 2023-12-05 Universal Display Corporation Host materials for electroluminescent devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122132A1 (en) * 2010-03-31 2011-10-06 出光興産株式会社 Material for organic electroluminescence element, and organic electroluminescence element using same
WO2011155507A1 (en) * 2010-06-08 2011-12-15 出光興産株式会社 Organic electroluminescence element
WO2012098996A1 (en) * 2011-01-17 2012-07-26 コニカミノルタホールディングス株式会社 Organic electroluminescent element, display device, lighting device, and organic electroluminescent element material
JP2012175025A (en) * 2011-02-24 2012-09-10 Konica Minolta Holdings Inc Organic electroluminescent element, display device, and lighting device
JP2013089928A (en) * 2011-10-24 2013-05-13 Konica Minolta Holdings Inc Organic electroluminescent element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122132A1 (en) * 2010-03-31 2011-10-06 出光興産株式会社 Material for organic electroluminescence element, and organic electroluminescence element using same
WO2011155507A1 (en) * 2010-06-08 2011-12-15 出光興産株式会社 Organic electroluminescence element
WO2012098996A1 (en) * 2011-01-17 2012-07-26 コニカミノルタホールディングス株式会社 Organic electroluminescent element, display device, lighting device, and organic electroluminescent element material
JP2012175025A (en) * 2011-02-24 2012-09-10 Konica Minolta Holdings Inc Organic electroluminescent element, display device, and lighting device
JP2013089928A (en) * 2011-10-24 2013-05-13 Konica Minolta Holdings Inc Organic electroluminescent element

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105085412A (en) * 2014-05-20 2015-11-25 三星Sdi株式会社 Organic compound, composition, organic optoelectric device, and display device
US10446764B2 (en) 2014-05-22 2019-10-15 Samsung Sdi Co., Ltd. Organic compound, composition, organic optoelectric device, and display device
US20170047529A1 (en) * 2014-05-22 2017-02-16 Samsung Sdi Co., Ltd. Organic compound, composition, organic optoelectric device, and display device
KR20150135070A (en) * 2014-05-22 2015-12-02 제일모직주식회사 Organic compound and composition and organic optoelectric device and display device
KR101897039B1 (en) 2014-05-22 2018-09-10 제일모직 주식회사 Organic compound and composition and organic optoelectric device and display device
JP2016111346A (en) * 2014-12-09 2016-06-20 三星エスディアイ株式会社Samsung SDI Co., Ltd. Organic photoelectric element and display device
US11495749B2 (en) 2015-04-06 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11245080B2 (en) 2015-04-06 2022-02-08 Universal Display Corporation Organic electroluminescent materials and devices
US11818949B2 (en) 2015-04-06 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US11672175B2 (en) 2015-04-06 2023-06-06 Universal Display Corporation Organic electroluminescent materials and devices
WO2016181844A1 (en) * 2015-05-08 2016-11-17 コニカミノルタ株式会社 Π-conjugated compound, delayed fluorescent body, light-emitting thin film, organic electroluminescence element, display device, and illumination device
KR101791739B1 (en) 2015-07-30 2017-10-30 이-레이 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 Phosphorescent materials for organic electroluminescent devices
CN106935712A (en) * 2015-12-29 2017-07-07 三星显示有限公司 Organic luminescent device
US11329231B2 (en) 2015-12-29 2022-05-10 Samsung Display Co., Ltd. Organic light-emitting device
US11450811B2 (en) 2018-08-10 2022-09-20 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US11834459B2 (en) 2018-12-12 2023-12-05 Universal Display Corporation Host materials for electroluminescent devices

Also Published As

Publication number Publication date
JP6295959B2 (en) 2018-03-20
JPWO2014069637A1 (en) 2016-09-08

Similar Documents

Publication Publication Date Title
JP5742586B2 (en) Organic electroluminescence element, lighting device and display device
JP5659478B2 (en) Organic electroluminescence element, lighting device and display device
JP6319097B2 (en) Organic electroluminescence element, display device and lighting device
JP6295959B2 (en) Organic electroluminescence element, lighting device and display device
JP5812014B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL
JP6056763B2 (en) Organic electroluminescence device
JP5760896B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND ORGANIC ELECTROLUMINESCENT MATERIAL
JP5708176B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
WO2015087739A1 (en) Organic electroluminescence element, illumination device, and display device
JP5569531B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, DISPLAY DEVICE AND LIGHTING DEVICE
JP5862117B2 (en) Organic electroluminescence element, lighting device and display device
JP2014045101A (en) Organic electroluminescent element, lighting device, and display device
JP2013168552A (en) Organic electroluminescent element, and display device and lighting device including the same
JP5987830B2 (en) Organic electroluminescence device
JP5919726B2 (en) Organic electroluminescence device
JP6098518B2 (en) Organic electroluminescence device
JP5817469B2 (en) Organic electroluminescence device
JP5987281B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
JP6172154B2 (en) Organic electroluminescence element, lighting device and display device
WO2013042460A1 (en) Organic electroluminescent element, lighting device and display device
JP5790322B2 (en) Organic electroluminescence device
JP6468314B2 (en) Organic electroluminescence element, lighting device and display device
JP6160685B2 (en) Organic electroluminescence element, lighting device and display device
JP6070758B2 (en) Organic electroluminescence element, lighting device and display device
JP2016048796A (en) Organic electroluminescent element, display device including the same, and luminaire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851332

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544611

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13851332

Country of ref document: EP

Kind code of ref document: A1