WO2014069264A1 - Thermal gas sensor - Google Patents

Thermal gas sensor Download PDF

Info

Publication number
WO2014069264A1
WO2014069264A1 PCT/JP2013/078408 JP2013078408W WO2014069264A1 WO 2014069264 A1 WO2014069264 A1 WO 2014069264A1 JP 2013078408 W JP2013078408 W JP 2013078408W WO 2014069264 A1 WO2014069264 A1 WO 2014069264A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heating element
heating
gas sensor
period
Prior art date
Application number
PCT/JP2013/078408
Other languages
French (fr)
Japanese (ja)
Inventor
中野 洋
松本 昌大
哲 浅野
保夫 小野瀬
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2014069264A1 publication Critical patent/WO2014069264A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/18Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by changes in the thermal conductivity of a surrounding material to be tested

Definitions

  • the present invention relates to a thermal gas sensor that measures, for example, a flow rate, a temperature, a pressure, a concentration, a humidity, and other physical quantities of gas from a change in heat conduction of a measurement target gas.
  • a thermal gas sensor is used to measure, for example, flow, temperature, pressure, concentration, humidity, and other physical quantities of a gas using changes in the heat conduction of the gas. Measured by the amount of heat released from the heating element exposed to.
  • Thermal gas sensors are used in various technical fields, and in internal combustion engines for automobiles, in order to reduce fuel consumption, environmental conditions such as humidity, in addition to the flow rate, temperature, and pressure of intake air are highly accurate. It is required to be measured.
  • the thermal gas sensor is also used to optimally operate the internal combustion engine by detecting the hydrogen concentration in an automobile internal combustion engine using hydrogen as a fuel.
  • Patent Document 1 describes a hygrometer that detects humidity based on a change in the resistance value of a resistor that is heated in an atmosphere. In this hygrometer, the resistance generated when the resistance change is heated to a low temperature that is affected only by the ambient temperature, and the resistance generated when the resistance change is heated to a high temperature that is sensitive to the ambient temperature and humidity. Humidity is detected by comparing the voltage generated at both ends of the body.
  • a small pulse current having a peak value of 2 mA and a pulse width of 50 ms is applied to the detection element for 50 ms from time t1 to time t2, and then 50 ms from time t2 to time t3.
  • a large pulse current having a peak value of 8 mA and a pulse width of 50 ms is applied, and after a pause of 100 ms from time t3 to time t4, a small pulse current and a large pulse current are applied again.
  • An example of driving is disclosed.
  • Patent Document 2 has a heating unit that heats the temperature-sensitive resistor by a heating element, and this heating unit applies two pulse voltages to the heating element in order within a predetermined time, thereby sensing the sensitivity.
  • a humidity sensor that switches the temperature of the temperature resistor between a first temperature of 300 ° C. or higher and a second temperature of 100 ° C. to 150 ° C., and detects humidity from the output voltage related to the voltage drop of each temperature sensitive resistor Is disclosed.
  • Patent Document 3 discloses a substrate having a cavity, a thin film support that is stacked in the cavity and is composed of a plurality of insulating layers, a first heating element sandwiched between the insulating layers of the thin film support, and A second heating element, the second heating element is disposed around the first heating element, the first heating element is controlled to a temperature higher than that of the second heating element, and the first heating element
  • a gas sensor is disclosed that measures the concentration of ambient gas based on the power applied to.
  • a pause time of 100 ms is provided between applying a small pulse current and a large pulse current and applying the small pulse current and the large pulse current again. During this pause time, the supply of current to the detection element is stopped and the heating control of the detection element is stopped.
  • An object of the present invention is to provide a thermal gas sensor that has little change over time, high antifouling property, and relaxes thermal stress caused by a temperature cycle.
  • a thermal gas sensor is a thermal gas sensor having a heating element and a heating control means for controlling heating of the heating element.
  • a heating period is set to a temperature, and a heating period is set to a second temperature lower than the first temperature, and the heating element is heated and controlled to be heated to the first temperature.
  • a period of heating to the second temperature is set longer than the period.
  • the present invention it is possible to obtain a highly accurate and highly reliable thermal gas sensor in which deterioration of a sensor element with time is reduced, fouling resistance is increased, and thermal stress caused by a temperature cycle is relaxed.
  • the top view of the gas sensor in a 1st Example Sectional drawing of the gas sensor in a 1st Example.
  • FIG. 1 is a plan view of a thermal gas sensor showing the first embodiment
  • FIG. 2 is a cross-sectional view taken along the line II-II of the sensor element 1 of FIG.
  • the sensor element 1 of the thermal gas sensor of the present embodiment has a substrate 2 made of single crystal silicon.
  • a cavity 4 is formed in the substrate 2, and the cavity 4 is covered with an insulating film 3a, and a heating element 5 is formed on the insulating film 3a.
  • a heating element 5 and temperature sensitive resistors 6-9 are formed on the insulating film 3a.
  • the heating element 5 is formed on the insulating film 3 a on the cavity portion 4, and the temperature sensitive resistors 6 to 9 are formed on the insulating film 3 a in a portion away from the cavity portion 4. Further, the surface is covered with an insulating film 3b in order to protect the heating element 5 and the temperature sensitive resistors 6-9.
  • electrodes 10a to 10f for supplying and taking out voltage and current are formed on the heating element 5 and the temperature sensitive resistors 6 to 9, respectively. Further, the electrodes 10a to 10f are electrically connected to the heating control device 12 by gold wire bonding wires 11a to 11f or the like.
  • the heating element 5 and the temperature sensitive resistors 6 to 9 for example, platinum (Pt), tantalum (Ta), molybdenum (Mo), silicon (Si), or the like is selected as a material having a high resistance temperature coefficient.
  • silicon oxide (SiO2) and silicon nitride (Si3N4) are selected in a single layer or stacked structure.
  • a resin material such as polyimide, ceramic, glass, or the like can be selected in a single layer or a laminated configuration.
  • aluminum (Al), gold (Au), or the like is selected as the electrodes 10a to 10f.
  • the heating element 5, the temperature sensitive resistors 6-9, the cavity 4, the insulating films 3a, 3b, and the electrodes 10a-10f are formed using a semiconductor microfabrication technique using photolithography and an anisotropic etching technique.
  • the cavity 4 is formed by anisotropic etching of the single crystal silicon substrate 2, it is better to use a metal resistant to an alkaline etching solution used for anisotropic etching for the electrodes 10a to 10f. .
  • the electrodes 10a to 10f are made of an alloy of aluminum and silicon to have resistance, or a protective material is provided on the electrodes 10a to 10f. It is preferable to perform anisotropic etching after forming the film.
  • FIG. 3 is a configuration diagram of the heating control device 12 of the sensor element 1 of the thermal gas sensor in the present embodiment.
  • the configuration of the heating control device for the thermal gas sensor in this embodiment will be described with reference to FIG.
  • the heating control device 12 is configured to supply a heating current to the heating element 5 incorporated in the bridge circuit 23 so as to maintain the balance of the bridge circuit 23 and to control the heating element 5 to a predetermined temperature. Yes.
  • the bridge circuit 23 also constitutes a part of the heating control device 12.
  • the bridge circuit 23 includes a series circuit 23a in which the heating element 5 and the fixed resistor 13 are connected in series, a temperature sensing resistor 6, a temperature sensing resistor 7, a temperature sensing resistor 8, and a temperature sensing resistor 9 in series.
  • the series circuit 23b is connected in parallel.
  • a voltage (first divided voltage) between the heating element 5 and the fixed resistor 13 is input to the differential amplifier 15.
  • a voltage (second divided voltage) between the temperature sensitive resistor 6 and the temperature sensitive resistor 7 is input to the differential amplifier 15 via the switch SW3 of the switch circuit 14.
  • a voltage (third divided voltage) between the temperature sensitive resistor 7 and the temperature sensitive resistor 8 is input to the differential amplifier 15 via the switch SW2 of the switch circuit 14.
  • a voltage (fourth divided voltage) between the temperature sensitive resistor 8 and the temperature sensitive resistor 9 is input to the differential amplifier 15 via the switch SW1 of the switch circuit 14.
  • the switch circuit 14 selects the voltage input to the differential amplifier 15 by electrically opening and closing.
  • the first divided voltage is input to one input terminal (a plus terminal in this embodiment) of the differential amplifier 15 as the divided voltage of the series circuit 23a, and the second divided voltage and the third divided voltage are The fourth divided voltage is inputted to one input terminal (minus terminal in this embodiment) of the differential amplifier 15 as a divided voltage of the series circuit 23b, and the difference between the input voltage of the plus terminal and the input voltage of the minus terminal. Accordingly, the supply current from the differential amplifier 15 to the bridge circuit 23 changes.
  • the switch circuit 14 can be formed of a semiconductor switch using a MOS transistor or the like. In this case, it is possible to switch at high speed electrically, and it is possible to make the heating control device 12 as one chip as an LSI, and to reduce the size.
  • the output of the differential amplifier 15 is connected between the heating element 5 and the temperature sensitive resistor 6 of the bridge circuit 23, and supplies a heating current to the heating element 5.
  • the heating temperature of the heating element 5 can be changed depending on which of the switches SW1 to SW3 of the switch circuit 14 is closed. When SW1 is closed, the highest temperature is controlled, and when SW3 is closed, the lowest temperature is controlled. When only SW2 is closed, the temperature is controlled between when SW1 is closed and when SW3 is closed. Thus, it is possible to switch to a plurality of temperatures with a simple configuration.
  • the humidity when the humidity changes, the power for heating the heating resistor 5 to a predetermined temperature changes. Therefore, the humidity can be measured by taking out and calculating the change in the heating voltage Vh1 of the differential amplifier 15.
  • the heating voltage Vh ⁇ b> 1 is amplified by the differential amplifier 17, taken into the sample hold circuit 18, the AD converter 19, and the digital signal processor 20, and high-precision humidity data Hout can be obtained by calculation.
  • the switch circuit 14 and the sample hold circuit 18 are controlled by a switch control circuit 21.
  • the switch control circuit 21 generates an opening / closing timing of the switch circuit 14 and an operation signal of the sample hold circuit based on the oscillator 22.
  • the switch control circuit 21 can also be operated based on a signal STB from the outside of the heating control means 12 (standby function). If the external signal STB is used, for example, the heating temperature of the heating element 5 can be switched based on a command from an ECU that is a control device of the internal combustion engine. Although the heating can be completely stopped by turning off the power, the heating element 5 is not heated and the contamination proceeds. With this standby function, during periods when humidity measurement is not required, the heating temperature of the heating element 5 can be switched to save power, reduce the contamination of the sensor element, and operate until the humidity is detected after recovery. You can also speed up.
  • FIG. 4 is a timing chart showing the operation of the heating control device 12 of the sensor element 1 of the gas sensor in the present embodiment.
  • the operation of the heating control device 12 of the thermal gas sensor in this embodiment will be described with reference to FIGS.
  • tsw1 to tsw3 are signals for instructing to open and close the switches SW1 to SW3 of the switch circuit 14. It is “closed” when ON, and “open” when OFF.
  • tsw2 is turned ON at the timing t1 of CLK, and the switch SW2 of the switch circuit 14 is “closed”.
  • tsw1 is turned ON, and the switch SW1 of the switch circuit 14 is “closed”.
  • tsw3 is turned ON, and the switch SW3 of the switch circuit 14 is “closed”.
  • the period during which these switches SW1 to SW3 are “closed” is the longest period during which SW3 is “closed”.
  • Vh1 When Vh1 is large, the heating temperature of the heating element 5 becomes high. Vh1 varies depending on which switch among SW1 to SW3 is closed.
  • tsw2 When tsw2 is ON, Vh1 becomes a voltage value necessary for heating the heating element 5 to a constant temperature in the range of 100 ° C to 150 ° C.
  • tsw1 When tsw1 is ON, Vh1 becomes a voltage value necessary for heating the heating element 5 to a constant temperature of 300 ° C. or higher.
  • tsw3 When tsw3 is ON, Vh1 is a voltage value necessary for heating the heating element 5 to a constant temperature of 100 ° C. or lower.
  • the heating temperature is the first temperature
  • the switch SW3 is turned on and the heating element 5 is 100 ° C. or less.
  • the heating temperature when heated to a constant temperature is the second temperature
  • the heating temperature when the switch SW2 is turned on and the heating element 5 is heated to a constant temperature in the range of 100 ° C. to 150 ° C. is the third temperature.
  • the temperature range of the second temperature is 100 ° C. or less
  • the third temperature is in the range of 100 ° C. to 150 ° C.
  • both the second temperature and the third temperature are set to 100 ° C.
  • the second temperature and the third temperature are the same.
  • the second temperature and the third temperature are set to different temperatures within the above temperature ranges so that the second temperature is lower than the third temperature.
  • Vh2 in FIG. 4 is a voltage obtained by amplifying the change in Vh1 due to humidity by the differential amplifier 17 in FIG. Specifically, it is a value obtained by amplifying the difference voltage between Vh1 and the reference voltage source 16.
  • Vh3 (L) and Vh3 (H) read at the timings t2 and t5 are read by the AD converter 19 in FIG. 3 and become digital data. Further, the absolute humidity Hout is calculated by the digital signal processor 20 using the values of Vh3 (L) and Vh3 (H).
  • FIG. 5 shows the temperature change of the heating element 5 due to the operation of the switches SW1 to SW3.
  • the switch SW2 is “closed” (tsw2 is ON) (period d1)
  • the heating element 5 is held at the third temperature Th3 in the range of 100 ° C. to 150 ° C.
  • the switch SW1 is “closed” (tsw1 is ON) (period d2)
  • the heating element 5 is held at the first temperature Th1 in the range of 300 ° C. or higher.
  • the switch SW3 is “closed” (tsw3 is ON) (period d3)
  • the heating element 5 is held at the second temperature Th2 in the range of 100 ° C. or less.
  • the heating element 5 is energized and controlled in the period d3 as well. For this reason, the second temperature Th2 is higher than the ambient temperature or the temperature Tb of the substrate 2 of the sensor element 1.
  • the period d1 and the period d2 are periods for humidity measurement (detection operation period).
  • the period d3 in which the temperature of the heating element 5 is Th2 is a period (standby period) in which the operation for measuring humidity is stopped. Among these periods d1, d2, and d3, the period d2 that is the standby period is the longest.
  • the temperature difference of the heating element 5 that rises and falls through the periods d1, d2, and d3 is reduced as compared with the case where the heating element 5 is not heated. Fatigue due to stress that repeats expansion and contraction due to temperature cycling can be reduced.
  • these periods d1, d2, and d3 by setting the duty ratio so that the period of d3 becomes the longest, the number of times of receiving stress due to the temperature difference can be reduced, and the period d2 where the temperature becomes high is relatively set. The progress of deterioration can be further reduced.
  • the present embodiment has a configuration in which the error due to contamination is further reduced in the gas sensor of the first embodiment.
  • FIG. 6 shows the result of evaluating the resistance deterioration of the heating element 5 formed of a Si material such as polycrystalline silicon or a metal material such as platinum (Pt).
  • Si material the progress of deterioration is accelerated at 200 ° C. or more, and the resistance value fluctuates greatly.
  • a metal material such as Pt
  • the progress of deterioration is accelerated at 300 ° C. or higher, and the resistance value fluctuates greatly. Therefore, in order to delay the progress of deterioration in the Si material, an effect can be obtained by providing a period during which the heating temperature is lowered to 200 ° C. or less.
  • a metal material such as Pt, an effect can be obtained by providing a period for lowering the temperature to 300 ° C.
  • the set value of the temperature Th2 of the heating element 5 in the period d3 in FIG. 5 is set to 100 ° C. or lower, which is lower than Th3. Therefore, it may be in the range of 100 ° C. to 200 ° C. for single crystal silicon and 100 ° C. to 300 ° C. for Pt.
  • the heating element 5 can be heated to a higher temperature in a range where the deterioration does not accelerate as compared with the first embodiment, and the fouling can be further reduced.
  • the temperature of Th3 has a change in the thermal conductivity of air due to humidity. It is necessary to have a small condition. For this reason, when Th3 is set to a high temperature outside the range of 100 ° C. to 150 ° C., high-precision humidity measurement cannot be performed. Therefore, in this embodiment, in addition to Th1 and Th3, the fouling resistance is further improved by setting a period of a second temperature Th2 that is higher than Th3 and lower than Th1.
  • FIG. 7 shows the operation timing of the switches SW1 to SW3 and the temperature change of the heating element 5 in this embodiment.
  • the heating element 5 When the switch SW3 is “closed” (tsw3 is ON), the heating element 5 is held at the third temperature Th3 in the range of 100 ° C. to 150 ° C.
  • the switch SW1 When the switch SW1 is “closed” (tsw1 is ON), the heating element 5 is held at the first temperature Th1 in the range of 300 ° C. or higher.
  • the switch SW2 When the switch SW2 is “closed” (tsw2 is ON), the heating element 5 is held at the second temperature Th2 in the range of 100 ° C. to 200 ° C.
  • a period d2 in which the temperature of the heating element 5 is Th1 and a period d1 in which the temperature of the heating element 5 is set are provided, and data on the heating voltage of the heating element 5 at the two temperatures is used. Therefore, the period d2 and the period d1 are periods (detection operation periods) for measuring humidity.
  • the period d3 in which the temperature of the heating element 5 is Th2 is a period (standby period) in which the operation for measuring humidity is stopped. Of these periods d1, d2, and d3, the period d3 is the longest.
  • the third temperature Th3 may be set in the range of 100 ° C. to 150 ° C., and the second temperature Th2 may be matched with Th3.
  • the stain resistance is inferior to that in the case where the second temperature Th2 is set higher than the third temperature Th3, but the stain resistance is improved as compared with the first embodiment.
  • the period during which heating control is performed to the third temperature Th3 (that is, the second temperature Th2) is set longer than the period during which heating control is performed to the first temperature Th1.
  • the switch that is closed when the heating control is performed to the second temperature Th2 and the switch that is closed when the heating control is performed to the third temperature Th3 are switched with respect to the first embodiment.
  • the second temperature Th2 is also set to a temperature different from that of the first embodiment. For this reason, the resistance values of the temperature sensitive resistors 6, 7, and 8 constituting the bridge circuit 23 are changed with respect to the first embodiment.
  • the temperature of the heating element 5 in the standby period d3 is higher than the temperature in the detection operation period d1
  • the temperature difference between the heating elements 5 that rise and fall through the periods d1, d2, and d3 is further reduced as compared with the first embodiment.
  • fatigue due to stress that repeats expansion and contraction due to a temperature cycle can be reduced.
  • the duty ratio so that the period d3 out of these periods d1, d2, and d3 is the longest, the number of times of stress due to the temperature difference can be reduced, and the period d2 where the temperature becomes high is relatively set. It can be shortened, and the progress of deterioration can be further reduced.
  • FIG. 8 is a plan view of a thermal gas sensor 31 showing a third embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of the sensor element 31 in FIG.
  • the sensor element 31 of the thermal gas sensor of the present embodiment has a substrate 2 made of single crystal silicon.
  • a cavity 4 is formed in the substrate 2.
  • the cavity 4 is covered with an insulating film 3 a, and a first heating element 35 and a second heating element 36 are formed on the insulating film 3 a on the cavity 4. Is formed.
  • the surface is covered with an insulating film 3b in order to protect the first heating element 35 and the second heating element 36.
  • electrodes 40a to 40d for supplying and taking out voltage and current are formed on the first heating element 35 and the second heating element 36.
  • the electrodes 40a to 40d are electrically connected to the heating control device 42 by gold wire bonding wires 41a to 41d.
  • the ambient temperature of the first heating element 35 becomes the temperature of the second heating element 36 ( It is possible to reduce the dependency (influence) on the ambient temperature T3. Further, in this embodiment, it is not necessary to measure the voltage and current of the heating element under the two temperature conditions of Th1 and Th3 for the humidity measurement as in the first and second embodiments, and the measurement is performed under one temperature condition of Th1. Thus, the absolute humidity can be measured based on the voltage or current of the heating element 35.
  • FIG. 10 is a configuration diagram of the heating control device 42 of the sensor element 31 in the present embodiment.
  • the operation of the thermal gas sensor in this embodiment will be described with reference to FIG.
  • a bridge circuit 49 in which the first heating element 35 is incorporated and a bridge circuit 53 in which the second heating resistor 36 is incorporated are provided.
  • the bridge circuit 49 controls the heating current of the first heating element 35 so as to maintain the balance of the bridge circuit 49.
  • the bridge circuit 53 controls the heating current of the second heating element 36 so as to maintain the balance of the bridge circuit 53.
  • the bridge circuit 49 and the bridge circuit 53 constitute a part of the heating control device 42.
  • the drive circuit of the sensor element 31 includes a drive circuit portion 50 that controls the heating current of the first heating element 35 and a drive circuit portion 51 that controls the heating current of the second heating element 36.
  • a heating current is supplied to the heating element 35 and the second heating element 36.
  • the first heating element 35 is controlled to the first temperature Th1
  • the second heating element 36 is controlled to the second temperature Th2, which is lower than the first temperature Th1.
  • the drive circuit portion 50 of the drive circuit of the sensor element 31 includes a series circuit 49a in which the heating element 35 and the fixed resistor 39 are connected in series, and a series circuit 49b in which the fixed resistor 37 and the fixed resistor 38 are connected in series.
  • the bridge circuit 49 is configured to be connected in parallel.
  • a connection terminal potential between the heating element 35 and the fixed resistor 39 is input to the differential amplifier 15.
  • the connection terminal potential between the fixed resistor 37 and the fixed resistor 38 is input to the differential amplifier 15 via the switch SW1 of the switch circuit 46.
  • the switch circuit 46 is provided with a switch SW2, and a reference voltage source 47 having a predetermined reference potential is connected to an input of the differential amplifier 15.
  • the heating temperature of the heating element 35 can be changed depending on which of the switches SW1 and SW2 of the switch circuit 46 is closed.
  • SW1 heating control is performed to a predetermined temperature Th1
  • SW2 heating control is stopped.
  • the voltage of the reference voltage source 47 is sufficiently higher than the voltage between the heating resistor 35 and the fixed resistor 39.
  • a switch for opening and closing the connection may be provided in the wiring 52 that connects the output side of the differential amplifier 15 and the bridge circuit 49.
  • the reference voltage source 47, the switch SW1, and the switch SW2 are unnecessary, and the portion of the switch SW1 only needs to be always electrically connected.
  • the drive circuit portion 51 that controls the heating of the heating element 36 includes a series circuit 53a in which the heating element 36 and the fixed resistor 45 are connected in series, and a series circuit 53b in which the fixed resistor 43 and the fixed resistor 44 are connected in series.
  • the bridge circuit 53 is configured to be connected in parallel.
  • the potential at the connection end between the heating element 36 and the fixed resistor 45 and the potential at the connection end between the fixed resistor 43 and the fixed resistor 44 are input to the differential amplifier 48.
  • the output terminal of the differential amplifier 48 is connected between the heating element 36 and the fixed resistor 43, and is heated and controlled by applying a voltage corresponding to the difference in input voltage. With this configuration, feedback control is performed so that the temperature of the heating element 36 becomes the second temperature Th2 which is a constant temperature of 100 ° C. or higher.
  • the humidity can be measured by taking out the change in the heating voltage Vh1 of the differential amplifier 15.
  • the heating voltage Vh1 is amplified by the differential amplifier 17, and highly accurate humidity data Hout can be obtained by the sample hold circuit 18 and the AD converter 19.
  • the switch circuit 46 and the sample hold circuit 18 are controlled by the switch control circuit 21.
  • the switch control circuit 21 generates an opening / closing timing of the switch circuit 14 and an operation signal of the sample hold circuit 18 based on the clock signal CLK of the oscillator 22.
  • the switch control circuit 21 can also be operated based on a signal STB from the outside of the heating control device 12.
  • FIG. 11 is a timing chart showing the operation of the heating control device 42 of the sensor element 31 of the thermal gas sensor in this embodiment.
  • the operation of the heating control device for the thermal gas sensor in this embodiment will be described with reference to FIGS. 10 and 11.
  • tsw is a signal for instructing to open and close the switches SW1 and SW2 of the switch circuit 46.
  • SW1 is “closed” at a high level
  • SW2 is “closed” at a low level.
  • tsw becomes high level at the timing t1 of CLK
  • the switch SW1 of the switch circuit 14 is “closed”.
  • tsw becomes low level
  • the switch SW2 of the switch circuit 14 is “closed”.
  • the period during which these switches SW1 and SW2 are “closed” is the longest period during which SW2 is “closed”.
  • Vh1 in FIG. 11 indicates a change in the output voltage value of the differential amplifier 15 in FIG. 10, that is, a voltage for heating the heating element 35.
  • Vh1 When Vh1 is large, the heating temperature of the heating element 35 becomes high. Vh1 changes depending on which switch of SW1 and SW2 is closed.
  • tsw When tsw is at a high level, the temperature of the heating element 35 becomes Vh1 necessary for heating to a constant temperature in the range of 400 ° C to 500 ° C.
  • tsw is at a low level, heating of the heating element 35 is stopped. At this time, the temperature of the heating element 35 is approximately the same as the temperature of the heating element 36.
  • Vh2 in FIG. 11 is a voltage obtained by amplifying the change in Vh1 due to humidity by the differential amplifier 17 in FIG. Specifically, it is a value obtained by amplifying the difference voltage between Vh1 and the reference voltage source 16.
  • FIG. 11 is a signal generated by the switch control circuit shown in FIG. 10 and is a signal for controlling the operation of the sample hold circuit 18.
  • the sample hold circuit 18 reads the input voltage Vh2.
  • the read Vh2 is held.
  • the timing at which the sample hold circuit 18 reads Vh2 is a period (t1 to t4) in which the switch SW1 is “closed”.
  • the value Vh3 read at this time is read by the AD converter 19 in FIG. 10 and becomes digital data.
  • this digital data becomes the absolute humidity Hout.
  • FIG. 12 shows the operation timing of the switches SW1 and SW2 and the temperature change of the heating element 35.
  • the switch SW1 is “closed” (tsw is at a high level)
  • the heating element 5 is held at the first temperature Th1 in the range of 400 ° C. to 500 ° C.
  • the switch SW2 is “closed” (tsw is at a low level)
  • the heating element 35 is held at the second temperature Th2 (temperature of the heating element 36) in the range of 200 ° C. to 300 ° C.
  • the period d1 is a period for measuring humidity (detection operation period).
  • a period d2 in which the temperature of the heating element 35 is Th2 is a period (standby period) in which the operation for humidity measurement is stopped. Of these periods d1 and d2, the period d2 is the longest.
  • the energization of the heating element 35 is stopped during the period d2 when the heating element 35 is held at the second temperature Th2. During the period d2, the temperature of the heating element 35 is maintained at the second temperature Th2 by energization (heating control) of the heating element 36.
  • the temperature difference generated in the heating element 35 is reduced by switching from the period d1 to the period d2, and fatigue due to stress that repeatedly expands and contracts due to the temperature cycle can be reduced.
  • the duty ratio so that the period d2 of these periods d1 and d2 becomes the longest, the number of times of stress due to the temperature difference can be reduced, and the period d1 during which the temperature rises is relatively shortened. And the progress of deterioration can be further reduced.
  • the heating element 36 is heated. Therefore, by stopping the heating control of the heating element 36, the current flowing through the heating element 35 can be made substantially zero. Thereby, deterioration (electromigration) of the heat generating body 35 due to current flow can be reduced. In particular, it is important to reduce deterioration of the heating element 35 because humidity measurement is detected based on the heating element 35.
  • the sensor element portion can be configured by using a heat ray or a plate-like material as a heating element.
  • the heat capacity of the sensor element can be reduced.
  • the sensor element described in each of the above embodiments has excellent responsiveness, and can immediately recover from the standby temperature in the standby period to the detection operation temperature in the detection operation period, thereby solving the problem of the present invention. It is more preferable as a form for the above.
  • SYMBOLS 1 Sensor element, 2 ... Board

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

The purpose of the present invention is to provide a thermal gas sensor such that there is little change over time, resistance to fouling is high, and thermal stress caused by temperature cycles is mitigated. The thermal gas sensor comprises a heating element (5) and a heating controlling means (12) for controlling heating of the heating element (5). The heating controlling means (12) controls heating of the heating element (5) in a period for controlling heating of the heating element (5) to a first temperature and a period for controlling heating of the heating element (5) to a second temperature that is lower than the first temperature, and the period for the heating element (5) to be heated to the second temperature is set to be longer than the period for the heating element (5) to be heated to the first temperature.

Description

熱式ガスセンサThermal gas sensor
 本発明は、被計測ガスの熱伝導の変化から、例えば、流量、温度、圧力、濃度、湿度、その他のガスの物理量を測定する熱式ガスセンサに関わる。 The present invention relates to a thermal gas sensor that measures, for example, a flow rate, a temperature, a pressure, a concentration, a humidity, and other physical quantities of gas from a change in heat conduction of a measurement target gas.
 熱式ガスセンサは、ガスの熱伝導の変化を用いて、例えば、流量、温度、圧力、濃度、湿度、その他のガスの物理量の測定を行うために使われ、ガスの熱伝導の変化はガス中に晒された発熱体の放熱量により測定される。 A thermal gas sensor is used to measure, for example, flow, temperature, pressure, concentration, humidity, and other physical quantities of a gas using changes in the heat conduction of the gas. Measured by the amount of heat released from the heating element exposed to.
 熱式ガスセンサは、種々の技術分野で使用されており、自動車用の内燃機関等においては、低燃費化を図るために、吸入空気の流量、温度、圧力に加え湿度等の環境状態を高精度に計測することが求められている。また熱式ガスセンサは、水素を燃料とする自動車用の内燃機関において、水素濃度を検出することで内燃機関を最適に運転するためにも使用される。 Thermal gas sensors are used in various technical fields, and in internal combustion engines for automobiles, in order to reduce fuel consumption, environmental conditions such as humidity, in addition to the flow rate, temperature, and pressure of intake air are highly accurate. It is required to be measured. The thermal gas sensor is also used to optimally operate the internal combustion engine by detecting the hydrogen concentration in an automobile internal combustion engine using hydrogen as a fuel.
 湿度やガスの濃度を計測するガスセンサとしての熱式ガスセンサは、水分の吸収がなく、汚損などの耐環境性や長期安定性に優れている。特許文献1には、雰囲気中において加熱される抵抗体の抵抗値の変化に基づいて湿度を検知する湿度計が記載されている。この湿度計では、抵抗変化が雰囲気温度のみに影響される低温度に加熱したときに抵抗体の両端に生じる電圧と、抵抗変化が雰囲気の温度および湿度に感応する高温度に加熱したときに抵抗体の両端に生じる電圧とを比較して湿度を検知している。特許文献1には、検出素子に対し、時点t1から時点t2に至る50msの間は波高値が2mAでパルス幅が50msの小パルス電流を印加し、続いて、時点t2から時点t3に至る50msの間は波高値が8mAでパルス幅が50msの大パルス電流を印加し、時点t3から時点t4に至る100msの休止時間を置いて、再び小パルス電流と大パルス電流とを印加する電流パルス列により駆動する例が開示されている。 A thermal gas sensor as a gas sensor for measuring humidity and gas concentration does not absorb moisture and has excellent environmental resistance such as fouling and long-term stability. Patent Document 1 describes a hygrometer that detects humidity based on a change in the resistance value of a resistor that is heated in an atmosphere. In this hygrometer, the resistance generated when the resistance change is heated to a low temperature that is affected only by the ambient temperature, and the resistance generated when the resistance change is heated to a high temperature that is sensitive to the ambient temperature and humidity. Humidity is detected by comparing the voltage generated at both ends of the body. In Patent Document 1, a small pulse current having a peak value of 2 mA and a pulse width of 50 ms is applied to the detection element for 50 ms from time t1 to time t2, and then 50 ms from time t2 to time t3. During the period, a large pulse current having a peak value of 8 mA and a pulse width of 50 ms is applied, and after a pause of 100 ms from time t3 to time t4, a small pulse current and a large pulse current are applied again. An example of driving is disclosed.
 また、特許文献2には、発熱体により感温抵抗体を加熱する加熱手段を有し、この加熱手段は発熱体に対して一定時間内に2つのパルス電圧を順番に印加することにより、感温抵抗体の温度を300℃以上の第1の温度と100℃~150℃の第2の温度とに切り替え、それぞれの感温抵抗体の電圧降下に関連する出力電圧から湿度を検知する湿度センサが開示されている。 Further, Patent Document 2 has a heating unit that heats the temperature-sensitive resistor by a heating element, and this heating unit applies two pulse voltages to the heating element in order within a predetermined time, thereby sensing the sensitivity. A humidity sensor that switches the temperature of the temperature resistor between a first temperature of 300 ° C. or higher and a second temperature of 100 ° C. to 150 ° C., and detects humidity from the output voltage related to the voltage drop of each temperature sensitive resistor Is disclosed.
 また、特許文献3には、空洞部を有する基板と、空洞部に積層され、複数の絶縁層から構成される薄膜支持体と、薄膜支持体の絶縁層に挟持された第1の発熱体および第2の発熱体とを有し、第2の発熱体は第1の発熱体の周辺に配置され、第1の発熱体は第2の発熱体よりも高温に制御され、第1の発熱体に印加される電力に基づいて周囲ガスの濃度を測定するガスセンサが開示されている。 Patent Document 3 discloses a substrate having a cavity, a thin film support that is stacked in the cavity and is composed of a plurality of insulating layers, a first heating element sandwiched between the insulating layers of the thin film support, and A second heating element, the second heating element is disposed around the first heating element, the first heating element is controlled to a temperature higher than that of the second heating element, and the first heating element A gas sensor is disclosed that measures the concentration of ambient gas based on the power applied to.
特許第2889909号公報Japanese Patent No. 2889909 特許第3343801号公報Japanese Patent No. 3343801 特開2011-137679号公報JP2011-137679A
 特許文献2の熱式ガスセンサでは、ガスの濃度変化を高精度に計測するために発熱体の加熱温度を300℃以上に高める必要がある。発熱体を高温で加熱すると発熱体の抵抗値が経時変化し計測精度の悪化や寿命の低下が起きる。経時変化の原因としては、高温に長時間さらされることによる酸化や、高温に加熱するため、発熱体に流れる電流によるマイグレーションなどがある。そのため可能な範囲で加熱を停止する期間を設けた構成が有効である。 In the thermal gas sensor of Patent Document 2, it is necessary to increase the heating temperature of the heating element to 300 ° C. or higher in order to measure the gas concentration change with high accuracy. When the heating element is heated at a high temperature, the resistance value of the heating element changes with time, and the measurement accuracy is deteriorated and the life is shortened. Causes of the change with time include oxidation due to exposure to a high temperature for a long time and migration due to a current flowing through a heating element because of heating to a high temperature. For this reason, it is effective to provide a period for stopping heating as much as possible.
 特許文献1の熱式ガスセンサ(湿度計)では、小パルス電流と大パルス電流とを印加し、再び小パルス電流と大パルス電流とを印加するまでの間に100msの休止時間を設けているが、この休止時間の間は検出素子に対して電流の供給を停止して検出素子の加熱制御を停止している。 In the thermal gas sensor (hygrometer) of Patent Document 1, a pause time of 100 ms is provided between applying a small pulse current and a large pulse current and applying the small pulse current and the large pulse current again. During this pause time, the supply of current to the detection element is stopped and the heating control of the detection element is stopped.
 しかし、熱式ガスセンサのセンサ素子の加熱を停止すると、測定環境に浮遊する粒子などの汚損物質がセンサ素子に付着しやすくなる。また、湿度が高い環境である場合、結露により水滴が付着すると計測精度に誤差が発生する。また、駆動時と停止時のヒータの温度差による温度サイクルが頻繁に加わり熱応力による疲労が起きる。特に、内燃機関の吸入空気の湿度計測に用いる場合には、オイルやカーボンなどの汚損物の浮遊や、天候や地域による湿度環境の変化など厳しい条件のもとで高精度な湿度計測が望まれる。 However, when heating of the sensor element of the thermal gas sensor is stopped, pollutants such as particles floating in the measurement environment tend to adhere to the sensor element. In addition, in a high humidity environment, if water droplets adhere due to condensation, an error occurs in measurement accuracy. Further, a temperature cycle due to a difference in temperature of the heater at the time of driving and stopping is frequently applied, and fatigue due to thermal stress occurs. In particular, when measuring the humidity of the intake air of an internal combustion engine, high-precision humidity measurement is desired under severe conditions such as the floating of pollutants such as oil and carbon, and changes in the humidity environment depending on the weather and the region. .
 本発明の目的は、経時変化が少なく、耐汚損性が高く、温度サイクルによって生じる熱応力を緩和した熱式ガスセンサを提供することにある。 An object of the present invention is to provide a thermal gas sensor that has little change over time, high antifouling property, and relaxes thermal stress caused by a temperature cycle.
 上記課題を解決するために、本発明の熱式ガスセンサは、発熱体と前記発熱体を加熱制御する加熱制御手段とを有する熱式ガスセンサにおいて、前記加熱制御手段は、前記発熱体を第1の温度に加熱制御する期間と、前記発熱体を前記第1の温度よりも低い第2の温度に加熱制御する期間とを設けて前記発熱体を加熱制御し、前記第1の温度に加熱される期間よりも前記第2の温度に加熱される期間を長く設定する。 In order to solve the above-described problems, a thermal gas sensor according to the present invention is a thermal gas sensor having a heating element and a heating control means for controlling heating of the heating element. A heating period is set to a temperature, and a heating period is set to a second temperature lower than the first temperature, and the heating element is heated and controlled to be heated to the first temperature. A period of heating to the second temperature is set longer than the period.
 本発明によれば、センサ素子の経時劣化を低減し、耐汚損性を高め、温度サイクルによって生じる熱応力を緩和した高精度で信頼性の高い熱式ガスセンサが得られる。 According to the present invention, it is possible to obtain a highly accurate and highly reliable thermal gas sensor in which deterioration of a sensor element with time is reduced, fouling resistance is increased, and thermal stress caused by a temperature cycle is relaxed.
第1の実施例におけるガスセンサの平面図。The top view of the gas sensor in a 1st Example. 第1の実施例におけるガスセンサの断面図。Sectional drawing of the gas sensor in a 1st Example. 第1の実施例におけるガスセンサの加熱制御手段。The heating control means of the gas sensor in a 1st Example. 第1の実施例におけるガスセンサの動作を示すタイムチャート。The time chart which shows operation | movement of the gas sensor in a 1st Example. 第1の実施例におけるガスセンサの発熱体の温度を示すタイムチャート。The time chart which shows the temperature of the heat generating body of the gas sensor in a 1st Example. 第2の実施例におけるガスセンサの発熱体の抵抗劣化。Resistance deterioration of the heating element of the gas sensor in the second embodiment. 第2の実施例におけるガスセンサの発熱体の温度を示すタイムチャート。The time chart which shows the temperature of the heat generating body of the gas sensor in a 2nd Example. 第3の実施例におけるガスセンサの平面図。The top view of the gas sensor in a 3rd Example. 第3の実施例におけるガスセンサの断面図。Sectional drawing of the gas sensor in a 3rd Example. 第3の実施例におけるガスセンサの加熱制御手段。The heating control means of the gas sensor in a 3rd Example. 第3の実施例におけるガスセンサの動作を示すタイムチャート。The time chart which shows operation | movement of the gas sensor in a 3rd Example. 第3の実施例におけるガスセンサの第1の発熱体の温度を示すタイムチャート。The time chart which shows the temperature of the 1st heat generating body of the gas sensor in a 3rd Example.
 以下、本発明の実施例について図面に基づき詳細に説明する。以下の実施例では、自動車用の内燃機関の吸気システムに組み込まれ、吸気の湿度を測定する熱式ガスセンサに適用した例を説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following embodiments, an example will be described in which the present invention is applied to a thermal gas sensor that is incorporated in an intake system of an internal combustion engine for an automobile and measures the humidity of the intake air.
 図1は第一実施例を示す熱式ガスセンサの平面図、図2は、図1のセンサ素子1のII-II矢視断面図である。 FIG. 1 is a plan view of a thermal gas sensor showing the first embodiment, and FIG. 2 is a cross-sectional view taken along the line II-II of the sensor element 1 of FIG.
 本実施例の熱式ガスセンサのセンサ素子1は、単結晶シリコンで形成された基板2を有している。基板2には、空洞部4が形成されており、この空洞部4は絶縁膜3aで覆われ、絶縁膜3a上に発熱体5が形成されている。絶縁膜3a上には発熱体5や感温抵抗体6~9が形成される。発熱体5は空洞部4上の絶縁膜3a上に形成され、感温抵抗体6~9は空洞部4から外れた部分の絶縁膜3a上に形成される。さらに、発熱体5や感温抵抗体6~9を保護するために表面は絶縁膜3bで覆われる。また、発熱体5、感温抵抗体6~9に電圧、電流の供給、取り出しなどのための電極10a~10fが形成される。さらに、電極10a~10fは加熱制御装置12に金線ボンディングワイヤー11a~11fなどにより電気的に接続される。 The sensor element 1 of the thermal gas sensor of the present embodiment has a substrate 2 made of single crystal silicon. A cavity 4 is formed in the substrate 2, and the cavity 4 is covered with an insulating film 3a, and a heating element 5 is formed on the insulating film 3a. On the insulating film 3a, a heating element 5 and temperature sensitive resistors 6-9 are formed. The heating element 5 is formed on the insulating film 3 a on the cavity portion 4, and the temperature sensitive resistors 6 to 9 are formed on the insulating film 3 a in a portion away from the cavity portion 4. Further, the surface is covered with an insulating film 3b in order to protect the heating element 5 and the temperature sensitive resistors 6-9. Also, electrodes 10a to 10f for supplying and taking out voltage and current are formed on the heating element 5 and the temperature sensitive resistors 6 to 9, respectively. Further, the electrodes 10a to 10f are electrically connected to the heating control device 12 by gold wire bonding wires 11a to 11f or the like.
 発熱体5及び感温抵抗体6~9としては、抵抗温度係数が高い材料として、例えば、白金(Pt)、タンタル(Ta)、モリブデン(Mo)、シリコン(Si)等が選定され、絶縁層3a、3bとしては酸化シリコン(SiO2)と窒化シリコン(Si3N4)が単層あるいは積層構成にて選定される。また,絶縁層3a、3bとして、ポリイミドなどの樹脂材料やセラミック、ガラスなどを単層あるいは積層構成にて選定することもできる。また、電極10a~10fとしては、アルミニウム(Al)または金(Au)等が選定される。 As the heating element 5 and the temperature sensitive resistors 6 to 9, for example, platinum (Pt), tantalum (Ta), molybdenum (Mo), silicon (Si), or the like is selected as a material having a high resistance temperature coefficient. As 3a and 3b, silicon oxide (SiO2) and silicon nitride (Si3N4) are selected in a single layer or stacked structure. Further, as the insulating layers 3a and 3b, a resin material such as polyimide, ceramic, glass, or the like can be selected in a single layer or a laminated configuration. Further, aluminum (Al), gold (Au), or the like is selected as the electrodes 10a to 10f.
 発熱体5、感温抵抗体6~9、空洞部4、絶縁膜3a、3bおよび電極10a~10fは、フォトリソグラフィーを利用した半導体微細加工技術、異方性エッチング技術を用いて形成される。特に、空洞部4は、単結晶シリコン基板2を異方性エッチングして形成するので、電極10a~10fには、異方性エッチングに用いるアルカリエッチング溶液への耐性のある金属を用いる方が良い。 The heating element 5, the temperature sensitive resistors 6-9, the cavity 4, the insulating films 3a, 3b, and the electrodes 10a-10f are formed using a semiconductor microfabrication technique using photolithography and an anisotropic etching technique. In particular, since the cavity 4 is formed by anisotropic etching of the single crystal silicon substrate 2, it is better to use a metal resistant to an alkaline etching solution used for anisotropic etching for the electrodes 10a to 10f. .
 また、アルミニウムなどのアルカリエッチング溶液に対する耐性の無い金属を使用するときは、電極10a~10fをアルミニウムとシリコンの合金で構成して耐性を持たせるか、または、電極10a~10fの上に保護材を形成しておいてから異方性エッチングを行うことが好ましい。 Further, when a metal having no resistance to an alkaline etching solution such as aluminum is used, the electrodes 10a to 10f are made of an alloy of aluminum and silicon to have resistance, or a protective material is provided on the electrodes 10a to 10f. It is preferable to perform anisotropic etching after forming the film.
 図3は、本実施例における熱式ガスセンサのセンサ素子1の加熱制御装置12の構成図である。以下、図3を用いて、本実施例における熱式ガスセンサの加熱制御装置の構成を説明する。 FIG. 3 is a configuration diagram of the heating control device 12 of the sensor element 1 of the thermal gas sensor in the present embodiment. Hereinafter, the configuration of the heating control device for the thermal gas sensor in this embodiment will be described with reference to FIG.
 加熱制御装置12は、ブリッジ回路23に組み込まれた発熱体5に対してブリッジ回路23のバランスを維持するように加熱電流を供給し、発熱体5を所定の温度に制御する構成を有している。ブリッジ回路23も加熱制御装置12の一部を構成している。 The heating control device 12 is configured to supply a heating current to the heating element 5 incorporated in the bridge circuit 23 so as to maintain the balance of the bridge circuit 23 and to control the heating element 5 to a predetermined temperature. Yes. The bridge circuit 23 also constitutes a part of the heating control device 12.
 ブリッジ回路23は、発熱体5と固定抵抗13が直列接続された直列回路23aと、感温抵抗体6と感温抵抗体7と感温抵抗体8と感温抵抗体9が直列接続された直列回路23bとを並列に接続して構成される。固定抵抗13としては、抵抗温度係数ができるだけ小さいものが選定される。発熱体5と固定抵抗13との間の電圧(第1の分圧電圧)は差動増幅器15に入力される。感温抵抗体6と感温抵抗体7の間の電圧(第2の分圧電圧)はスイッチ回路14のスイッチSW3を介して差動増幅器15に入力される。感温抵抗体7と感温抵抗体8の間の電圧(第3の分圧電圧)はスイッチ回路14のスイッチSW2を介して差動増幅器15に入力される。感温抵抗体8と感温抵抗体9の間の電圧(第4の分圧電圧)はスイッチ回路14のスイッチSW1を介して差動増幅器15に入力される。スイッチ回路14は差動増幅器15に入力する電圧を電気的に開閉することで選択する。第1の分圧電圧は直列回路23aの分圧電圧として差動増幅器15の一方の入力端子(本実施例ではプラス端子)に入力され、第2の分圧電圧と第3の分圧電圧と第4の分圧電圧とは直列回路23bの分圧電圧として差動増幅器15の一方の入力端子(本実施例ではマイナス端子)に入力され、プラス端子の入力電圧とマイナス端子の入力電圧の差分に応じて差動増幅器15からブリッジ回路23への供給電流が変化する。 The bridge circuit 23 includes a series circuit 23a in which the heating element 5 and the fixed resistor 13 are connected in series, a temperature sensing resistor 6, a temperature sensing resistor 7, a temperature sensing resistor 8, and a temperature sensing resistor 9 in series. The series circuit 23b is connected in parallel. As the fixed resistor 13, a resistor having a resistance temperature coefficient as small as possible is selected. A voltage (first divided voltage) between the heating element 5 and the fixed resistor 13 is input to the differential amplifier 15. A voltage (second divided voltage) between the temperature sensitive resistor 6 and the temperature sensitive resistor 7 is input to the differential amplifier 15 via the switch SW3 of the switch circuit 14. A voltage (third divided voltage) between the temperature sensitive resistor 7 and the temperature sensitive resistor 8 is input to the differential amplifier 15 via the switch SW2 of the switch circuit 14. A voltage (fourth divided voltage) between the temperature sensitive resistor 8 and the temperature sensitive resistor 9 is input to the differential amplifier 15 via the switch SW1 of the switch circuit 14. The switch circuit 14 selects the voltage input to the differential amplifier 15 by electrically opening and closing. The first divided voltage is input to one input terminal (a plus terminal in this embodiment) of the differential amplifier 15 as the divided voltage of the series circuit 23a, and the second divided voltage and the third divided voltage are The fourth divided voltage is inputted to one input terminal (minus terminal in this embodiment) of the differential amplifier 15 as a divided voltage of the series circuit 23b, and the difference between the input voltage of the plus terminal and the input voltage of the minus terminal. Accordingly, the supply current from the differential amplifier 15 to the bridge circuit 23 changes.
 スイッチ回路14としては、MOSトランジスタなどを用いた半導体スイッチで形成することができる。この場合、電気的に高速に切り替えることが可能であるとともに、加熱制御装置12をLSIとして1チップにすることができ、小型化が可能である。差動増幅器15の出力はブリッジ回路23の発熱体5と感温抵抗体と6の間に接続され、発熱体5に加熱のための電流を供給する。 The switch circuit 14 can be formed of a semiconductor switch using a MOS transistor or the like. In this case, it is possible to switch at high speed electrically, and it is possible to make the heating control device 12 as one chip as an LSI, and to reduce the size. The output of the differential amplifier 15 is connected between the heating element 5 and the temperature sensitive resistor 6 of the bridge circuit 23, and supplies a heating current to the heating element 5.
 発熱体5の加熱温度はスイッチ回路14のスイッチSW1~SW3のうちどれを閉じるかによって変更することができる。SW1を閉じた場合、もっとも高温に制御され、SW3を閉じた場合もっとも低い温度に制御される。SW2のみ閉じた場合、SW1を閉じた場合とSW3を閉じた場合の間の温度に制御される。このように簡易な構成で複数の温度に切替ることが可能である。 The heating temperature of the heating element 5 can be changed depending on which of the switches SW1 to SW3 of the switch circuit 14 is closed. When SW1 is closed, the highest temperature is controlled, and when SW3 is closed, the lowest temperature is controlled. When only SW2 is closed, the temperature is controlled between when SW1 is closed and when SW3 is closed. Thus, it is possible to switch to a plurality of temperatures with a simple configuration.
 このような加熱制御装置12を用いた場合、湿度が変化すると発熱抵抗体5を所定の温度に加熱するための電力が変化する。したがって、差動増幅器15の加熱電圧Vh1の変化を取り出し演算すことにより湿度計測が可能である。加熱電圧Vh1は、差動増幅器17により増幅され、サンプルホールド回路18、AD変換器19、さらにデジタルシグナルプロセッサ20に取り込まれ、演算することにより高精度な湿度データHoutを得ることができる。また、スイッチ回路14およびサンプルホールド回路18は、スイッチ制御回路21により制御される。 When such a heating control device 12 is used, when the humidity changes, the power for heating the heating resistor 5 to a predetermined temperature changes. Therefore, the humidity can be measured by taking out and calculating the change in the heating voltage Vh1 of the differential amplifier 15. The heating voltage Vh <b> 1 is amplified by the differential amplifier 17, taken into the sample hold circuit 18, the AD converter 19, and the digital signal processor 20, and high-precision humidity data Hout can be obtained by calculation. The switch circuit 14 and the sample hold circuit 18 are controlled by a switch control circuit 21.
 スイッチ制御回路21は発振器22を基にスイッチ回路14の開閉タイミングやサンプルホールド回路の動作信号を生成する。また、スイッチ制御回路21は加熱制御手段12の外部からの信号STBに基づいて動作させることもできる(スタンバイ機能)。外部信号STBを用いれば例えば内燃機関の制御装置であるECUからの指令にもとづいて、発熱体5の加熱温度を切り替えることができる。電源をOFFにすることで加熱を完全に停止することもできるが、発熱体5が加熱されなくなり汚損が進行してしまう。このスタンバイ機能によって、湿度計測が不要な期間は、発熱体5の加熱温度を切替えることにより、省電力化が可能になるとともに、センサ素子の汚損を低減し、復帰後の湿度検出までの動作を速めることもできる。 The switch control circuit 21 generates an opening / closing timing of the switch circuit 14 and an operation signal of the sample hold circuit based on the oscillator 22. The switch control circuit 21 can also be operated based on a signal STB from the outside of the heating control means 12 (standby function). If the external signal STB is used, for example, the heating temperature of the heating element 5 can be switched based on a command from an ECU that is a control device of the internal combustion engine. Although the heating can be completely stopped by turning off the power, the heating element 5 is not heated and the contamination proceeds. With this standby function, during periods when humidity measurement is not required, the heating temperature of the heating element 5 can be switched to save power, reduce the contamination of the sensor element, and operate until the humidity is detected after recovery. You can also speed up.
 図4は、本実施例におけるガスセンサのセンサ素子1の加熱制御装置12の動作を示すタイミングチャートである。以下、図3、図4を用いて、本実施例における熱式ガスセンサの加熱制御装12置の動作を説明する。 FIG. 4 is a timing chart showing the operation of the heating control device 12 of the sensor element 1 of the gas sensor in the present embodiment. Hereinafter, the operation of the heating control device 12 of the thermal gas sensor in this embodiment will be described with reference to FIGS.
 図4におけるCLKは発振器22により生成したクロック波形である。tsw1~tsw3はスイッチ回路14のスイッチSW1~SW3の開閉を指示する信号であり。ONで「閉」、OFFで「開」になる。スイッチSW1~SW3の開閉タイミングとしては、まずCLKのタイミングt1においてtsw2がONになり、スイッチ回路14のスイッチSW2が「閉」になる。つぎにCLKのタイミングt4においてtsw1がONになり、スイッチ回路14のスイッチSW1が「閉」になる。つぎにCLKのタイミングt7においてtsw3がONになり、スイッチ回路14のスイッチSW3が「閉」になる。これらのスイッチSW1~SW3の「閉」となる期間としては、SW3が“閉”となる期間がもっとも長い。 4 is a clock waveform generated by the oscillator 22. tsw1 to tsw3 are signals for instructing to open and close the switches SW1 to SW3 of the switch circuit 14. It is “closed” when ON, and “open” when OFF. As the opening / closing timing of the switches SW1 to SW3, first, tsw2 is turned ON at the timing t1 of CLK, and the switch SW2 of the switch circuit 14 is “closed”. Next, at the timing t4 of CLK, tsw1 is turned ON, and the switch SW1 of the switch circuit 14 is “closed”. Next, at the timing t7 of CLK, tsw3 is turned ON, and the switch SW3 of the switch circuit 14 is “closed”. The period during which these switches SW1 to SW3 are “closed” is the longest period during which SW3 is “closed”.
 図4におけるVh1は図3における差動増幅器15の出力電圧値の変動、すなわち発熱体5を加熱する電圧を示している。Vh1が大きいと発熱体5の加熱温度が高くなる。Vh1はSW1~SW3のうちどのスイッチを閉じているかによって変化する。tsw2がONのときVh1は発熱体5の温度が100℃~150℃の範囲の一定温度に加熱するために必要な電圧値となる。tsw1がONのときVh1は発熱体5の温度が300℃以上の一定温度に加熱するために必要な電圧値となる。tsw3がONのときVh1は発熱体5の温度が100℃以下の一定温度に加熱するために必要な電圧値となる。 4 represents a change in the output voltage value of the differential amplifier 15 in FIG. 3, that is, a voltage for heating the heating element 5. When Vh1 is large, the heating temperature of the heating element 5 becomes high. Vh1 varies depending on which switch among SW1 to SW3 is closed. When tsw2 is ON, Vh1 becomes a voltage value necessary for heating the heating element 5 to a constant temperature in the range of 100 ° C to 150 ° C. When tsw1 is ON, Vh1 becomes a voltage value necessary for heating the heating element 5 to a constant temperature of 300 ° C. or higher. When tsw3 is ON, Vh1 is a voltage value necessary for heating the heating element 5 to a constant temperature of 100 ° C. or lower.
 以下の説明においては、スイッチSW1がONになり発熱体5が300℃以上の一定温度に加熱される場合の加熱温度を第1の温度、スイッチSW3がONになり発熱体5が100℃以下の一定温度に加熱される場合の加熱温度を第2の温度、スイッチSW2がONになり発熱体5が100℃~150℃の範囲の一定温度に加熱される場合の加熱温度を第3の温度とする。 In the following description, when the switch SW1 is turned on and the heating element 5 is heated to a constant temperature of 300 ° C. or higher, the heating temperature is the first temperature, and the switch SW3 is turned on and the heating element 5 is 100 ° C. or less. The heating temperature when heated to a constant temperature is the second temperature, and the heating temperature when the switch SW2 is turned on and the heating element 5 is heated to a constant temperature in the range of 100 ° C. to 150 ° C. is the third temperature. To do.
 本実施例では、第2の温度の温度範囲は100℃以下であり、第3の温度は100℃~150℃の範囲であり、第2の温度と第3の温度とを共に100℃にすると、第2の温度と第3の温度とが同じになってしまう。第2の温度と第3の温度とは、第2の温度が第3の温度よりも低くなるように、上記各温度範囲内で異なる温度に設定される。 In this embodiment, the temperature range of the second temperature is 100 ° C. or less, the third temperature is in the range of 100 ° C. to 150 ° C., and both the second temperature and the third temperature are set to 100 ° C. The second temperature and the third temperature are the same. The second temperature and the third temperature are set to different temperatures within the above temperature ranges so that the second temperature is lower than the third temperature.
 図4におけるVh2は図3における差動増幅器17により湿度によるVh1の変化を増幅した電圧である。具体的にはVh1と基準電圧源16の差電圧を増幅した値となる。 Vh2 in FIG. 4 is a voltage obtained by amplifying the change in Vh1 due to humidity by the differential amplifier 17 in FIG. Specifically, it is a value obtained by amplifying the difference voltage between Vh1 and the reference voltage source 16.
 図4におけるtshは図3に示すスイッチ制御回路により生成した信号であり、サンプルホールド回路18の動作を制御する信号である。tshがONのときサンプルホールド回路18は入力電圧Vh2を読み込む。tshがOFFのときは読み込んだVh2の電圧値を保持する。サンプルホールド回路18がVh2を読み込むタイミングとしては、スイッチSW1またはスイッチSW2が「閉」の期間(t2、t5)である。このt2とt5のタイミングで読み込んだ値Vh3(L)とVh3(H)とは、図3のAD変換器19により読み込まれデジタルデータとなる。さらに、デジタルシグナルプロセッサ20によりVh3(L)とVh3(H)の値を用いて絶対湿度Houtが計算される。 4 is a signal generated by the switch control circuit shown in FIG. 3 and is a signal for controlling the operation of the sample hold circuit 18. When tsh is ON, the sample hold circuit 18 reads the input voltage Vh2. When tsh is OFF, the read voltage value of Vh2 is held. The timing at which the sample hold circuit 18 reads Vh2 is a period (t2, t5) in which the switch SW1 or the switch SW2 is “closed”. The values Vh3 (L) and Vh3 (H) read at the timings t2 and t5 are read by the AD converter 19 in FIG. 3 and become digital data. Further, the absolute humidity Hout is calculated by the digital signal processor 20 using the values of Vh3 (L) and Vh3 (H).
 図5はスイッチSW1~SW3の動作による発熱体5の温度変化を示したものである。スイッチSW2が「閉」(tsw2がON)のとき(期間d1)、発熱体5は100℃~150℃の範囲の第3の温度Th3に保持される。スイッチSW1が「閉」(tsw1がON)のとき(期間d2)、発熱体5は300℃以上の範囲の第1の温度Th1に保持される。スイッチSW3が「閉」(tsw3がON)のとき(期間d3)、発熱体5は100℃以下範囲の第2の温度Th2に保持される。期間d3においても発熱体5は通電され加熱制御されている。このため、第2の温度Th2は、周囲の温度やセンサ素子1の基板2の温度Tbよりも高い温度である。 FIG. 5 shows the temperature change of the heating element 5 due to the operation of the switches SW1 to SW3. When the switch SW2 is “closed” (tsw2 is ON) (period d1), the heating element 5 is held at the third temperature Th3 in the range of 100 ° C. to 150 ° C. When the switch SW1 is “closed” (tsw1 is ON) (period d2), the heating element 5 is held at the first temperature Th1 in the range of 300 ° C. or higher. When the switch SW3 is “closed” (tsw3 is ON) (period d3), the heating element 5 is held at the second temperature Th2 in the range of 100 ° C. or less. The heating element 5 is energized and controlled in the period d3 as well. For this reason, the second temperature Th2 is higher than the ambient temperature or the temperature Tb of the substrate 2 of the sensor element 1.
 湿度の計測には発熱体5の温度がTh3の期間d1とTh1の期間d2を設けこの2温度の状態における発熱体5の加熱電圧のデータが必要である。したがって、期間d1及び期間d2は湿度計測のための期間(検出動作期間)である。発熱体5の温度がTh2の期間d3は湿度計測のための動作を停止している期間(待機期間)である。これらの期間d1、d2、d3の内、待機期間であるd2の期間がもっとも長い。 For measuring the humidity, a period d1 in which the temperature of the heating element 5 is Th3 and a period d2 in which the temperature is Th1 are provided, and data on the heating voltage of the heating element 5 in the two-temperature state is necessary. Therefore, the period d1 and the period d2 are periods for humidity measurement (detection operation period). The period d3 in which the temperature of the heating element 5 is Th2 is a period (standby period) in which the operation for measuring humidity is stopped. Among these periods d1, d2, and d3, the period d2 that is the standby period is the longest.
 本構成における効果を説明する。上記のd2の状態を設けることによって、発熱体5の温度を下げる期間を設けることができ、センサ素子1(特に発熱体5)の劣化を低減することができる。発熱体5の温度が下がると劣化の進行を低減することができるためである。また、d2の状態は基板温度Tbよりも発熱体5とその周辺が高温に保持されているため、発熱体5の周辺は加熱による空気の分子運動の増加により、汚損物質となる粒子に反発させることができ、汚損物質の付着を低減することができる。また、湿度が高い環境である場合、結露による水滴の付着を防止することができる。また、待機期間d3において発熱体5を加熱してその温度を高めることにより、発熱体5を加熱しない場合と比べて、期間d1、d2、d3を通じて上下する発熱体5の温度差が低減し、温度サイクルによる膨張収縮を繰り返すストレスによる疲労を低減することができる。これらの期間d1、d2、d3の内、d3の期間がもっとも長くなるようにデューティ比を設定することにより温度差によるストレスを受ける回数を低減することができるとともに、高温になる期間d2を相対的に短くすることができ、より劣化の進行を低減することができる。 The effect of this configuration will be described. By providing the state of d2 described above, it is possible to provide a period for lowering the temperature of the heating element 5, and to reduce the deterioration of the sensor element 1 (particularly the heating element 5). This is because the progress of deterioration can be reduced when the temperature of the heating element 5 decreases. Further, in the state of d2, since the heating element 5 and its periphery are kept at a higher temperature than the substrate temperature Tb, the periphery of the heating element 5 is repelled by particles that become a pollutant due to an increase in the molecular motion of air by heating. And the adhesion of fouling substances can be reduced. Moreover, when the environment is high in humidity, it is possible to prevent water droplets from adhering due to condensation. Further, by heating the heating element 5 in the standby period d3 and increasing its temperature, the temperature difference of the heating element 5 that rises and falls through the periods d1, d2, and d3 is reduced as compared with the case where the heating element 5 is not heated. Fatigue due to stress that repeats expansion and contraction due to temperature cycling can be reduced. Of these periods d1, d2, and d3, by setting the duty ratio so that the period of d3 becomes the longest, the number of times of receiving stress due to the temperature difference can be reduced, and the period d2 where the temperature becomes high is relatively set. The progress of deterioration can be further reduced.
 本発明を適用してなるさらに効果的な実施例を説明する。本実施例は実施例1のガスセンサにおいてさらに汚損による誤差を低減しした構成である。 A more effective embodiment to which the present invention is applied will be described. The present embodiment has a configuration in which the error due to contamination is further reduced in the gas sensor of the first embodiment.
 図6は、多結晶シリコンなどのSi材料や、白金(Pt)などの金属材料で形成した発熱体5の抵抗劣化を評価した結果である。Si材料では200℃以上において劣化の進行が加速し抵抗値の変動が大きくなる。Ptなどの金属材料では、300℃以上において劣化の進行が加速し抵抗値の変動が大きくなる。したがって、Si材料では劣化の進行を遅らせるために加熱温度を200℃以下に下げる期間を設けることで効果がえられる。Ptなどの金属材料においては300℃以下に下げる期間を設けることによって効果が得られる。一方、汚損物となる粒子の付着を低減するためには発熱体5が高温であるほどより低減効果が得られる。実施例1では図5における期間d3での発熱体5の温度Th2の設定値としてTh3より低い100℃以下としたが、さらに高温でも発熱体5の抵抗劣化の抑制効果が得られる。したがって、単結晶シリコンの場合は100℃~200℃、Ptの場合は100℃から300℃の範囲であればよい。実施例1にくらべ劣化が加速しない範囲で発熱体5を高温化することができ汚損をより低減することができる。 FIG. 6 shows the result of evaluating the resistance deterioration of the heating element 5 formed of a Si material such as polycrystalline silicon or a metal material such as platinum (Pt). In Si material, the progress of deterioration is accelerated at 200 ° C. or more, and the resistance value fluctuates greatly. In a metal material such as Pt, the progress of deterioration is accelerated at 300 ° C. or higher, and the resistance value fluctuates greatly. Therefore, in order to delay the progress of deterioration in the Si material, an effect can be obtained by providing a period during which the heating temperature is lowered to 200 ° C. or less. In the case of a metal material such as Pt, an effect can be obtained by providing a period for lowering the temperature to 300 ° C. or lower. On the other hand, in order to reduce the adhesion of particles that become fouling substances, the higher the temperature of the heating element 5, the more effective the reduction. In the first embodiment, the set value of the temperature Th2 of the heating element 5 in the period d3 in FIG. 5 is set to 100 ° C. or lower, which is lower than Th3. Therefore, it may be in the range of 100 ° C. to 200 ° C. for single crystal silicon and 100 ° C. to 300 ° C. for Pt. The heating element 5 can be heated to a higher temperature in a range where the deterioration does not accelerate as compared with the first embodiment, and the fouling can be further reduced.
 上記のように汚損を低減するには、劣化の進行が加速しない範囲で加熱温度を高めることが必要である。従来の構成で第1の温度Th1と第3の温度Th3の2温度で制御し、Th3の期間を長く設定することも可能であるが、Th3の温度は湿度による空気の熱伝導率の変化が小さい条件であることが必要である。そのため、Th3が100℃~150℃の範囲から外れた高温度に設定されると高精度な湿度計測ができなくなる。そこで、本実施例ではTh1、Th3に加えてTh3より高温でTh1よりも低温となる第2の温度Th2の期間を設定することでさらに耐汚損性を高めている。 In order to reduce the fouling as described above, it is necessary to increase the heating temperature within a range where the progress of deterioration does not accelerate. Although it is possible to control the two temperatures of the first temperature Th1 and the third temperature Th3 in the conventional configuration and set the period of Th3 to be long, the temperature of Th3 has a change in the thermal conductivity of air due to humidity. It is necessary to have a small condition. For this reason, when Th3 is set to a high temperature outside the range of 100 ° C. to 150 ° C., high-precision humidity measurement cannot be performed. Therefore, in this embodiment, in addition to Th1 and Th3, the fouling resistance is further improved by setting a period of a second temperature Th2 that is higher than Th3 and lower than Th1.
 図7は本実施例におけるスイッチSW1~SW3の動作タイミングと発熱体5の温度変化を示したものである。 FIG. 7 shows the operation timing of the switches SW1 to SW3 and the temperature change of the heating element 5 in this embodiment.
 スイッチSW3が「閉」(tsw3がON)のとき、発熱体5は100℃~150℃の範囲の第3の温度Th3に保持される。スイッチSW1が「閉」(tsw1がON)のとき、発熱体5は300℃以上の範囲の第1の温度Th1に保持される。スイッチSW2が「閉」(tsw2がON)のとき、発熱体5は100℃~200℃の範囲の第2の温度Th2に保持される。湿度の計測には発熱体5の温度がTh1の期間d2とTh3の期間d1を設けこの2温度の状態における発熱体5の加熱電圧のデータを用いる。したがって、期間d2及び期間d1は湿度計測のための期間(検出動作期間)である。発熱体5の温度がTh2の期間d3は湿度計測のための動作を停止している期間(待機期間)である。これらの期間d1、d2、d3の内d3の期間がもっとも長い。 When the switch SW3 is “closed” (tsw3 is ON), the heating element 5 is held at the third temperature Th3 in the range of 100 ° C. to 150 ° C. When the switch SW1 is “closed” (tsw1 is ON), the heating element 5 is held at the first temperature Th1 in the range of 300 ° C. or higher. When the switch SW2 is “closed” (tsw2 is ON), the heating element 5 is held at the second temperature Th2 in the range of 100 ° C. to 200 ° C. For the measurement of humidity, a period d2 in which the temperature of the heating element 5 is Th1 and a period d1 in which the temperature of the heating element 5 is set are provided, and data on the heating voltage of the heating element 5 at the two temperatures is used. Therefore, the period d2 and the period d1 are periods (detection operation periods) for measuring humidity. The period d3 in which the temperature of the heating element 5 is Th2 is a period (standby period) in which the operation for measuring humidity is stopped. Of these periods d1, d2, and d3, the period d3 is the longest.
 第3の温度Th3を100℃~150℃の範囲とし、第2の温度Th2をTh3と一致させてもよい。この場合、第2の温度Th2を第3の温度Th3よりも高くする場合と比べて、耐汚損性は劣ることになるが、実施例1に比べて耐汚損性は向上する。尚、この場合、第3の温度Th3(すなわち第2の温度Th2)に加熱制御される期間は第1の温度Th1に加熱制御される期間よりも長く設定される。 The third temperature Th3 may be set in the range of 100 ° C. to 150 ° C., and the second temperature Th2 may be matched with Th3. In this case, the stain resistance is inferior to that in the case where the second temperature Th2 is set higher than the third temperature Th3, but the stain resistance is improved as compared with the first embodiment. In this case, the period during which heating control is performed to the third temperature Th3 (that is, the second temperature Th2) is set longer than the period during which heating control is performed to the first temperature Th1.
 本実施例では、実施例1に対して、第2の温度Th2に加熱制御するときに閉じられるスイッチと第3の温度Th3に加熱制御するときに閉じられるスイッチとが入れ替わっている。また、第2の温度Th2も実施例1に対して異なる温度に設定されている。このため、ブリッジ回路23を構成する感温抵抗体6、7、8の抵抗値は実施例1に対して変更されている。 In the present embodiment, the switch that is closed when the heating control is performed to the second temperature Th2 and the switch that is closed when the heating control is performed to the third temperature Th3 are switched with respect to the first embodiment. Further, the second temperature Th2 is also set to a temperature different from that of the first embodiment. For this reason, the resistance values of the temperature sensitive resistors 6, 7, and 8 constituting the bridge circuit 23 are changed with respect to the first embodiment.
 本構成における効果を説明する。上記のd3の状態を設けることによって、発熱体5の温度を劣化を抑制或いは劣化に影響しない温度まで下げる期間を設けることができ、劣化を低減することができる。また、d3の状態は実施例1よりも高温に保持されているため、発熱体5の周辺は加熱による空気の分子運動の増加により、汚損物質となる粒子に反発させることができ、付着をより低減することができる。また、湿度が高い環境である場合、結露による水滴の付着を防止することができる。また、待機期間d3における発熱体5の温度を検出動作期間d1における温度よりも高くしたことにより、実施例1と比べてさらに、期間d1、d2、d3を通じて上下する発熱体5の温度差が低減し、温度サイクルによる膨張収縮を繰り返すストレスによる疲労を低減することができる。これらの期間d1、d2、d3の内d3の期間がもっとも長くなるようにデューティ比を設定することにより温度差によるストレスを受ける回数を低減することができるとともに、高温になる期間d2を相対的に短くすることができ、より劣化の進行を低減することができる。 The effect of this configuration will be described. By providing the state of d3 described above, it is possible to provide a period during which the temperature of the heating element 5 is reduced to a temperature that suppresses or does not affect the deterioration, and the deterioration can be reduced. In addition, since the state of d3 is maintained at a higher temperature than in Example 1, the periphery of the heating element 5 can be repelled by particles that become fouling substances due to an increase in the molecular motion of air due to heating, and adhesion can be further improved. Can be reduced. Moreover, when the environment is high in humidity, it is possible to prevent water droplets from adhering due to condensation. In addition, since the temperature of the heating element 5 in the standby period d3 is higher than the temperature in the detection operation period d1, the temperature difference between the heating elements 5 that rise and fall through the periods d1, d2, and d3 is further reduced as compared with the first embodiment. In addition, fatigue due to stress that repeats expansion and contraction due to a temperature cycle can be reduced. By setting the duty ratio so that the period d3 out of these periods d1, d2, and d3 is the longest, the number of times of stress due to the temperature difference can be reduced, and the period d2 where the temperature becomes high is relatively set. It can be shortened, and the progress of deterioration can be further reduced.
 図8は、本発明の第三の実施例を示す熱式ガスセンサ31の平面図である。図9は、図8のセンサ素子31のIX-IX矢視断面図である。 FIG. 8 is a plan view of a thermal gas sensor 31 showing a third embodiment of the present invention. FIG. 9 is a cross-sectional view of the sensor element 31 in FIG.
 本実施例の熱式ガスセンサのセンサ素子31は、単結晶シリコンで形成された基板2を有している。基板2には、空洞部4が形成されており、この空洞部4は絶縁膜3aで覆われ、空洞部4上の絶縁膜3a上に第1の発熱体35と第2の発熱体36が形成されている。さらに、第1の発熱体35や第2の発熱体36を保護するために表面は絶縁膜3bで覆われる。また、第1の発熱体35、第2の発熱体36に電圧、電流の供給、取り出しのための電極40a~40dが形成される。さらに、電極40a~40dは加熱制御装置42に金線ボンディングワイヤー41a~41dなどにより電気的に接続される。 The sensor element 31 of the thermal gas sensor of the present embodiment has a substrate 2 made of single crystal silicon. A cavity 4 is formed in the substrate 2. The cavity 4 is covered with an insulating film 3 a, and a first heating element 35 and a second heating element 36 are formed on the insulating film 3 a on the cavity 4. Is formed. Further, the surface is covered with an insulating film 3b in order to protect the first heating element 35 and the second heating element 36. Further, electrodes 40a to 40d for supplying and taking out voltage and current are formed on the first heating element 35 and the second heating element 36. Furthermore, the electrodes 40a to 40d are electrically connected to the heating control device 42 by gold wire bonding wires 41a to 41d.
 図8に示すように、第1の発熱体35の周辺を取り囲むように第2の発熱体36を配置することにより、第1の発熱体35の周囲温度が第2の発熱体36の温度(Th2)で維持され、周囲温度T3への依存性(影響)を低減することが可能である。また本実施例では、実施例1、2のように湿度計測のためにTh1とTh3との二温度条件での発熱体の電圧・電流を測定する必要がなく、Th1の一温度条件での測定で発熱体35の電圧または電流に基づいて絶対湿度を計測することが可能な構成である。 As shown in FIG. 8, by arranging the second heating element 36 so as to surround the periphery of the first heating element 35, the ambient temperature of the first heating element 35 becomes the temperature of the second heating element 36 ( It is possible to reduce the dependency (influence) on the ambient temperature T3. Further, in this embodiment, it is not necessary to measure the voltage and current of the heating element under the two temperature conditions of Th1 and Th3 for the humidity measurement as in the first and second embodiments, and the measurement is performed under one temperature condition of Th1. Thus, the absolute humidity can be measured based on the voltage or current of the heating element 35.
 図10は、本実施例におけるセンサ素子31の加熱制御装置42の構成図である。以下、図10を用いて、本実施例における熱式ガスセンサの動作について説明する。 FIG. 10 is a configuration diagram of the heating control device 42 of the sensor element 31 in the present embodiment. Hereinafter, the operation of the thermal gas sensor in this embodiment will be described with reference to FIG.
 本実施例では、第一の発熱体35が組み込まれたブリッジ回路49と第二の発熱抵抗体36が組み込まれたブリッジ回路53が設けられている。ブリッジ回路49はブリッジ回路49のバランスを維持するように第一の発熱体35の加熱電流を制御する。ブリッジ回路53はブリッジ回路53のバランスを維持するように第二の発熱体36の加熱電流を制御する。ブリッジ回路49とブリッジ回路53とは加熱制御装置42の一部を構成している。 In this embodiment, a bridge circuit 49 in which the first heating element 35 is incorporated and a bridge circuit 53 in which the second heating resistor 36 is incorporated are provided. The bridge circuit 49 controls the heating current of the first heating element 35 so as to maintain the balance of the bridge circuit 49. The bridge circuit 53 controls the heating current of the second heating element 36 so as to maintain the balance of the bridge circuit 53. The bridge circuit 49 and the bridge circuit 53 constitute a part of the heating control device 42.
 センサ素子31の駆動回路は、第一の発熱体35の加熱電流を制御する駆動回路部分50と、第二の発熱体36の加熱電流を制御する駆動回路部分51とによって構成され、第一の発熱体35と第2の発熱体36とに対して加熱電流を供給する。この場合、第一の発熱体35は第一の温度Th1に制御され、第二の発熱体36は第一の温度Th1よりも低温である第二の温度Th2に制御される。 The drive circuit of the sensor element 31 includes a drive circuit portion 50 that controls the heating current of the first heating element 35 and a drive circuit portion 51 that controls the heating current of the second heating element 36. A heating current is supplied to the heating element 35 and the second heating element 36. In this case, the first heating element 35 is controlled to the first temperature Th1, and the second heating element 36 is controlled to the second temperature Th2, which is lower than the first temperature Th1.
 センサ素子31の駆動回路のうち駆動回路部分50は、発熱体35と固定抵抗39とが直列接続された直列回路49aと、固定抵抗37と固定抵抗38とが直列接続された直列回路49bとを並列に接続して構成されたブリッジ回路49を有する。発熱体35と固定抵抗39との接続端電位が差動増幅器15に入力される。固定抵抗37と固定抵抗38との接続端電位はスイッチ回路46のスイッチSW1を介して差動増幅器15に入力される。スイッチ回路46にはスイッチSW2が設けられ所定の基準電位を持つ基準電圧源47を差動増幅器15の入力に接続している。 The drive circuit portion 50 of the drive circuit of the sensor element 31 includes a series circuit 49a in which the heating element 35 and the fixed resistor 39 are connected in series, and a series circuit 49b in which the fixed resistor 37 and the fixed resistor 38 are connected in series. The bridge circuit 49 is configured to be connected in parallel. A connection terminal potential between the heating element 35 and the fixed resistor 39 is input to the differential amplifier 15. The connection terminal potential between the fixed resistor 37 and the fixed resistor 38 is input to the differential amplifier 15 via the switch SW1 of the switch circuit 46. The switch circuit 46 is provided with a switch SW2, and a reference voltage source 47 having a predetermined reference potential is connected to an input of the differential amplifier 15.
 発熱体35の加熱温度はスイッチ回路46のスイッチSW1、SW2のうちどれを閉じるかによって変更することができる。SW1を閉じた場合、所定の温度Th1に加熱制御され、SW2が閉じた場合、加熱制御が停止する。基準電圧源47の電圧は発熱抵抗体35と固定抵抗39との間の電圧よりも十分高い電圧である。こうすることによって、SW2が選択された場合、差動増幅器15の出力がほぼゼロになり加熱制御を停止することができる。すなわち、差動増幅器15の負側の入力電圧を大きくして出力がほぼゼロになるようにしている。これにより、差動増幅器15からブリッジ回路49への電流供給が停止する。 The heating temperature of the heating element 35 can be changed depending on which of the switches SW1 and SW2 of the switch circuit 46 is closed. When SW1 is closed, heating control is performed to a predetermined temperature Th1, and when SW2 is closed, heating control is stopped. The voltage of the reference voltage source 47 is sufficiently higher than the voltage between the heating resistor 35 and the fixed resistor 39. By doing so, when SW2 is selected, the output of the differential amplifier 15 becomes almost zero and the heating control can be stopped. That is, the input voltage on the negative side of the differential amplifier 15 is increased so that the output becomes almost zero. Thereby, the current supply from the differential amplifier 15 to the bridge circuit 49 is stopped.
 差動増幅器15からブリッジ回路49への電流供給を完全に停止するだけであれば、差動増幅器15の出力側とブリッジ回路49とを接続する配線52に接続を開閉するスイッチを設けても良い。この場合、基準電圧源47とスイッチSW1とスイッチSW2とが不要になり、スイッチSW1の部分は常時電気的に接続されていればよい。 If the current supply from the differential amplifier 15 to the bridge circuit 49 is only stopped completely, a switch for opening and closing the connection may be provided in the wiring 52 that connects the output side of the differential amplifier 15 and the bridge circuit 49. . In this case, the reference voltage source 47, the switch SW1, and the switch SW2 are unnecessary, and the portion of the switch SW1 only needs to be always electrically connected.
 発熱体36の加熱制御を行う駆動回路部分51は、発熱体36と固定抵抗45とが直列接続された直列回路53aと、固定抵抗43と固定抵抗44とが直列接続された直列回路53bとを並列に接続して構成されるブリッジ回路53を有する。発熱体36と固定抵抗45との接続端の電位と、固定抵抗43と固定抵抗44との接続端の電位とが差動増幅器48に入力される。差動増幅器48の出力端子は発熱体36と固定抵抗43との間に接続され、入力電圧の差に応じた電圧を印加することにより加熱制御される。この構成により、発熱体36の温度が100℃以上の一定温度である第二の温度Th2になるようにフィードバック制御される。 The drive circuit portion 51 that controls the heating of the heating element 36 includes a series circuit 53a in which the heating element 36 and the fixed resistor 45 are connected in series, and a series circuit 53b in which the fixed resistor 43 and the fixed resistor 44 are connected in series. The bridge circuit 53 is configured to be connected in parallel. The potential at the connection end between the heating element 36 and the fixed resistor 45 and the potential at the connection end between the fixed resistor 43 and the fixed resistor 44 are input to the differential amplifier 48. The output terminal of the differential amplifier 48 is connected between the heating element 36 and the fixed resistor 43, and is heated and controlled by applying a voltage corresponding to the difference in input voltage. With this configuration, feedback control is performed so that the temperature of the heating element 36 becomes the second temperature Th2 which is a constant temperature of 100 ° C. or higher.
 このような加熱制御装置42の場合、湿度が変化すると発熱抵抗体35を所定の温度に加熱するための電力が変化する。したがって、差動増幅器15の加熱電圧Vh1の変化を取り出すことにより湿度計測が可能である。加熱電圧Vh1は、差動増幅器17により増幅され、サンプルホールド回路18、AD変換器19により高精度な湿度データHoutを得ることができる。また、スイッチ回路46およびサンプルホールド回路18は、スイッチ制御回路21により制御される。スイッチ制御回路21は発振器22のクロック信号CLKに基づいてスイッチ回路14の開閉タイミングやサンプルホールド回路18の動作信号を生成する。また、スイッチ制御回路21は加熱制御装置12の外部からの信号STBに基づいて動作させることもできる。 In the case of such a heating control device 42, when the humidity changes, the power for heating the heating resistor 35 to a predetermined temperature changes. Therefore, the humidity can be measured by taking out the change in the heating voltage Vh1 of the differential amplifier 15. The heating voltage Vh1 is amplified by the differential amplifier 17, and highly accurate humidity data Hout can be obtained by the sample hold circuit 18 and the AD converter 19. The switch circuit 46 and the sample hold circuit 18 are controlled by the switch control circuit 21. The switch control circuit 21 generates an opening / closing timing of the switch circuit 14 and an operation signal of the sample hold circuit 18 based on the clock signal CLK of the oscillator 22. The switch control circuit 21 can also be operated based on a signal STB from the outside of the heating control device 12.
 図11は、本実施例における熱式ガスセンサのセンサ素子31の加熱制御装置42の動作を示すタイミングチャートである。以下、図10、図11を用いて、本実施例における熱式ガスセンサの加熱制御装置の動作を説明する。 FIG. 11 is a timing chart showing the operation of the heating control device 42 of the sensor element 31 of the thermal gas sensor in this embodiment. Hereinafter, the operation of the heating control device for the thermal gas sensor in this embodiment will be described with reference to FIGS. 10 and 11.
 図11におけるCLKは発振器22により生成したクロック波形である。tswはスイッチ回路46のスイッチSW1、SW2の開閉を指示する信号であり。ハイレベルでSW1が「閉」、ローレベルでSW2が「閉」になる。スイッチSW1、SW2の開閉タイミングとしては、まずCLKのタイミングt1においてtswがハイレベルになり、スイッチ回路14のスイッチSW1が「閉」になる。つぎにCLKのタイミングt4においてtswがローレベルになり、スイッチ回路14のスイッチSW2が「閉」になる。これらのスイッチSW1、SW2の「閉」となる期間としては、SW2が“閉”となる期間がもっとも長い。 11 is a clock waveform generated by the oscillator 22. tsw is a signal for instructing to open and close the switches SW1 and SW2 of the switch circuit 46. SW1 is “closed” at a high level, and SW2 is “closed” at a low level. As the opening / closing timing of the switches SW1 and SW2, first, tsw becomes high level at the timing t1 of CLK, and the switch SW1 of the switch circuit 14 is “closed”. Next, at timing t4 of CLK, tsw becomes low level, and the switch SW2 of the switch circuit 14 is “closed”. The period during which these switches SW1 and SW2 are “closed” is the longest period during which SW2 is “closed”.
 図11におけるVh1は図10おける差動増幅器15の出力電圧値の変動、すなわち発熱体35を加熱する電圧を示している。Vh1が大きいと発熱体35の加熱温度が高くなる。Vh1はSW1、SW2のうちどのスイッチを閉じているかによって変化する。tswがハイレベルのとき発熱体35の温度が400℃~500℃の範囲の一定温度に加熱するために必要なVh1となる。tswがローレベルのとき発熱体35の加熱が停止する。
このとき発熱体35の温度は発熱体36の温度とほぼ同程度になる。
Vh1 in FIG. 11 indicates a change in the output voltage value of the differential amplifier 15 in FIG. 10, that is, a voltage for heating the heating element 35. When Vh1 is large, the heating temperature of the heating element 35 becomes high. Vh1 changes depending on which switch of SW1 and SW2 is closed. When tsw is at a high level, the temperature of the heating element 35 becomes Vh1 necessary for heating to a constant temperature in the range of 400 ° C to 500 ° C. When tsw is at a low level, heating of the heating element 35 is stopped.
At this time, the temperature of the heating element 35 is approximately the same as the temperature of the heating element 36.
 図11におけるVh2は図10における差動増幅器17により湿度によるVh1の変化を増幅した電圧である。具体的にはVh1と基準電圧源16の差電圧を増幅した値となる。 Vh2 in FIG. 11 is a voltage obtained by amplifying the change in Vh1 due to humidity by the differential amplifier 17 in FIG. Specifically, it is a value obtained by amplifying the difference voltage between Vh1 and the reference voltage source 16.
 図11におけるtshは図10に示すスイッチ制御回路により生成した信号であり、サンプルホールド回路18の動作を制御する信号である。tshがONのときサンプルホールド回路18は入力電圧Vh2を読み込む。tshがOFFのときは読み込んだVh2を保持する。サンプルホールド回路18がVh2を読み込むタイミングとしては、スイッチSW1が「閉」の期間(t1~t4)である。このときに読み込んだ値Vh3は、図10のAD変換器19により読み込まれデジタルデータとなる。本実施例では発熱体36により発熱体35の環境温度(周囲温度)の変化を低減した構成であるため、このデジタルデータが絶対湿度Houtとなる。 11 is a signal generated by the switch control circuit shown in FIG. 10 and is a signal for controlling the operation of the sample hold circuit 18. When tsh is ON, the sample hold circuit 18 reads the input voltage Vh2. When tsh is OFF, the read Vh2 is held. The timing at which the sample hold circuit 18 reads Vh2 is a period (t1 to t4) in which the switch SW1 is “closed”. The value Vh3 read at this time is read by the AD converter 19 in FIG. 10 and becomes digital data. In the present embodiment, since the change in the environmental temperature (ambient temperature) of the heating element 35 is reduced by the heating element 36, this digital data becomes the absolute humidity Hout.
 図12はスイッチSW1、SW2の動作タイミングと発熱体35の温度変化を示したものである。
スイッチSW1が「閉」(tswがハイレベル)のとき、発熱体5は400℃~500℃の範囲の第一の温度Th1に保持される。スイッチSW2が「閉」(tswがローレベル)のとき、発熱体35は200℃から300℃の範囲の第二の温度Th2(発熱体36の温度)に保持される。
FIG. 12 shows the operation timing of the switches SW1 and SW2 and the temperature change of the heating element 35.
When the switch SW1 is “closed” (tsw is at a high level), the heating element 5 is held at the first temperature Th1 in the range of 400 ° C. to 500 ° C. When the switch SW2 is “closed” (tsw is at a low level), the heating element 35 is held at the second temperature Th2 (temperature of the heating element 36) in the range of 200 ° C. to 300 ° C.
 湿度の計測には発熱体35の温度がTh1の期間d1を設けこの状態における発熱体35の加熱電圧のデータが必要である。したがって、期間d1は湿度計測のための期間(検出動作期間)である。発熱体35の温度がTh2の期間d2は湿度計測のための動作を停止している期間(待機期間)である。これらの期間d1、d2の内d2の期間がもっとも長い。 For measurement of humidity, a period d1 in which the temperature of the heating element 35 is Th1 is provided, and data on the heating voltage of the heating element 35 in this state is required. Therefore, the period d1 is a period for measuring humidity (detection operation period). A period d2 in which the temperature of the heating element 35 is Th2 is a period (standby period) in which the operation for humidity measurement is stopped. Of these periods d1 and d2, the period d2 is the longest.
 発熱体35が第二の温度Th2に保持されるd2の期間は発熱体35への通電は停止されている。このd2の期間は発熱体36の通電(加熱制御)により発熱体35の温度が第二の温度Th2に保持されることになる。 The energization of the heating element 35 is stopped during the period d2 when the heating element 35 is held at the second temperature Th2. During the period d2, the temperature of the heating element 35 is maintained at the second temperature Th2 by energization (heating control) of the heating element 36.
 本構成における効果を説明する。上記のd2の状態を設けることによって、発熱体35の温度を下げる期間を設けることができ劣化を低減することができる。発熱体35の温度が下がると劣化の進行を低減することができるためである。また、d2の状態では発熱体35の周辺の温度が発熱体36の加熱により基板2の温度Tbよりも高温に保持されているため、空気の分子運動の増加により、汚損物質となる粒子に反発させることができ、発熱体35に対する汚損物質の付着を低減することができる。また、湿度が高い環境である場合、結露による水滴の付着を防止することができる。また、期間d1から期間d2に切り替わることにより発熱体35に生じる温度差が低減し、温度サイクルによる膨張収縮を繰り返すストレスによる疲労を低減することができる。これらの期間d1、d2の内d2の期間がもっとも長くなるようにデューティ比を設定することにより温度差によるストレスを受ける回数を低減することができるとともに、高温になる期間d1を相対的に短くすることができ、より劣化の進行を低減することができる。 The effect of this configuration will be described. By providing the state of d2 described above, it is possible to provide a period during which the temperature of the heating element 35 is lowered, and deterioration can be reduced. This is because the progress of deterioration can be reduced when the temperature of the heating element 35 decreases. Further, in the state d2, the temperature around the heating element 35 is maintained at a temperature higher than the temperature Tb of the substrate 2 by heating the heating element 36. Therefore, the increase in the molecular motion of the air repels particles that become pollutants. It is possible to reduce the adhesion of fouling substances to the heating element 35. Moreover, when the environment is high in humidity, it is possible to prevent water droplets from adhering due to condensation. Further, the temperature difference generated in the heating element 35 is reduced by switching from the period d1 to the period d2, and fatigue due to stress that repeatedly expands and contracts due to the temperature cycle can be reduced. By setting the duty ratio so that the period d2 of these periods d1 and d2 becomes the longest, the number of times of stress due to the temperature difference can be reduced, and the period d1 during which the temperature rises is relatively shortened. And the progress of deterioration can be further reduced.
 また、本構成によれば発熱体35の加熱制御を停止しても、発熱体36により加熱されている。したがって発熱体36の加熱制御を停止することにより発熱体35に流れる電流をほぼゼロにすることできる。これにより、電流が流れることによる発熱体35の劣化(エレクトロマイグレーション)を低減することができる。とくに発熱体35の劣化を低減することは、湿度計測が発熱体35に基づいて検出されるため重要である。 Further, according to this configuration, even if the heating control of the heating element 35 is stopped, the heating element 36 is heated. Therefore, by stopping the heating control of the heating element 36, the current flowing through the heating element 35 can be made substantially zero. Thereby, deterioration (electromigration) of the heat generating body 35 due to current flow can be reduced. In particular, it is important to reduce deterioration of the heating element 35 because humidity measurement is detected based on the heating element 35.
 上記各実施例において、発熱体として熱線や板状のものを用いてセンサ素子部分を構成することも可能である。ただし、上記各実施例で説明した単結晶シリコンで形成された基板に空洞部を形成してセンサ素子を構成する実施例では、センサ素子部の熱容量を小さくすることができる。このため、上記各実施例で説明したセンサ素子は、応答性に優れており、待機期間における待機温度から検出動作期間における検出動作温度まですぐに回復することができ、本発明の課題を解決するための形態としてより好適である。 In each of the above embodiments, the sensor element portion can be configured by using a heat ray or a plate-like material as a heating element. However, in the embodiment in which the cavity is formed in the substrate formed of single crystal silicon described in each of the above embodiments and the sensor element is configured, the heat capacity of the sensor element can be reduced. For this reason, the sensor element described in each of the above embodiments has excellent responsiveness, and can immediately recover from the standby temperature in the standby period to the detection operation temperature in the detection operation period, thereby solving the problem of the present invention. It is more preferable as a form for the above.
 1…センサ素子、2…基板、3a、3b…絶縁膜、4…空洞部、5…発熱体、6~9…感温抵抗体、10a~10f…電極、11a~11f…金線ボンディングワイヤー、12…加熱制御手段、13…固定抵抗、14…スイッチ回路、15…差動増幅器、16…、17…差動増幅器、18…サンプルホールド回路、19…AD変換器、20…デジタルシグナルプロセッサ、21…スイッチ制御回路、22…発振器、23…ブリッジ回路、31…センサ素子、35…発熱体、36…発熱体、37~39…固定抵抗、40a~40d…電極、41a~41d…金線ボンディングワイヤー、42…加熱制御手段、43~45…固定抵抗、46…スイッチ回路、47…基準電圧減、48…差動増幅器、49…ブリッジ回路、50…ブリッジ回路49の駆動回路、51…ブリッジ回路53の駆動回路、53…ブリッジ回路。 DESCRIPTION OF SYMBOLS 1 ... Sensor element, 2 ... Board | substrate, 3a, 3b ... Insulating film, 4 ... Cavity part, 5 ... Heat generating body, 6-9 ... Temperature sensitive resistor, 10a-10f ... Electrode, 11a-11f ... Gold wire bonding wire, DESCRIPTION OF SYMBOLS 12 ... Heating control means, 13 ... Fixed resistance, 14 ... Switch circuit, 15 ... Differential amplifier, 16 ..., 17 ... Differential amplifier, 18 ... Sample hold circuit, 19 ... AD converter, 20 ... Digital signal processor, 21 Switch control circuit 22 Oscillator 23 Bridge circuit 31 Sensor element 35 Heating element 36 Heating element 37 to 39 Fixed resistor 40a to 40d Electrode 41a to 41d Gold wire bonding wire 42 ... heating control means, 43 to 45 ... fixed resistor, 46 ... switch circuit, 47 ... reference voltage reduction, 48 ... differential amplifier, 49 ... bridge circuit, 50 ... bridge circuit 49 Drive circuit, the drive circuit 51 ... bridge circuit 53, 53 ... bridge circuit.

Claims (9)

  1.  発熱体と前記発熱体を加熱制御する加熱制御装置とを有する熱式ガスセンサにおいて、 前記加熱制御装置は、前記発熱体を第1の温度に加熱制御する期間と、前記発熱体を前記第1の温度よりも低い第2の温度に加熱制御する期間とを設けて前記発熱体を加熱制御し、前記第1の温度に加熱制御される期間よりも前記第2の温度に加熱制御される期間を長く設定したことを特徴とする熱式ガスセンサ。 In the thermal gas sensor having a heating element and a heating control device that controls heating of the heating element, the heating control device includes a period during which the heating element is controlled to be heated to a first temperature, and the heating element is controlled by the first heating element. A period of heating control to a second temperature lower than the temperature to control the heating of the heating element, and a period of heating control to the second temperature than the period of heating control to the first temperature A thermal gas sensor characterized by a long setting.
  2.  請求項1に記載の熱式ガスセンサにおいて、
     空洞部を有する基板と前記基板に積層され前記空洞部を覆う絶縁膜で構成される薄膜支持体とを有し、前記発熱体は前記薄膜支持体に形成され、前記第2の温度は前記基板の温度よりも高い温度に設定され、前記発熱体を含むセンサ素子の出力に基づいて湿度を検出することを特徴とする熱式ガスセンサ。
    The thermal gas sensor according to claim 1,
    A substrate having a cavity and a thin film support formed of an insulating film stacked on the substrate and covering the cavity, the heating element is formed on the thin film support, and the second temperature is the substrate A thermal gas sensor characterized in that the humidity is detected based on an output of a sensor element including the heating element.
  3.  請求項2に記載の熱式ガスセンサにおいて、
     前記第1の温度に加熱制御される期間に前記センサ素子による検出動作を行い、前記第2の温度に加熱制御される期間に検出動作を行わない待機期間を設けたことを特徴とする熱式ガスセンサ。
    The thermal gas sensor according to claim 2,
    A thermal type characterized in that a detection operation is performed by the sensor element during a period in which the heating control is performed to the first temperature, and a standby period in which the detection operation is not performed in a period in which the heating control is performed to the second temperature. Gas sensor.
  4.  請求項3に記載の熱式ガスセンサにおいて、
     前記第1の温度よりも低く前記第2の温度とは異なる第3の温度に前記発熱体を加熱制御する期間を設け、前記第3の温度に加熱制御する期間に前記センサ素子による検出動作を行い、前記第2の温度に加熱制御する期間を待機期間としたことを特徴とする熱式ガスセンサ。
    The thermal gas sensor according to claim 3,
    A period for heating control of the heating element is provided at a third temperature lower than the first temperature and different from the second temperature, and the detection operation by the sensor element is performed during the period for heating control to the third temperature. The thermal gas sensor is characterized in that a period for performing the heating control to the second temperature is a standby period.
  5.  請求項4に記載の熱式ガスセンサにおいて、
     前記第2の温度は前記第3の温度よりも低く設定されたことを特徴とする熱式ガスセンサ。
    The thermal gas sensor according to claim 4,
    The thermal gas sensor, wherein the second temperature is set lower than the third temperature.
  6.  請求項4に記載の熱式ガスセンサにおいて、
     前記第2の温度は前記第3の温度よりも高く設定されたことを特徴とする熱式ガスセンサ。
    The thermal gas sensor according to claim 4,
    The thermal gas sensor, wherein the second temperature is set higher than the third temperature.
  7.  請求項5又は6に記載の熱式ガスセンサにおいて、
     前記加熱制御装置は、
     前記発熱体と第1の抵抗が直列接続された第1の直列回路と、第2の抵抗体と第3の抵抗体と第4の抵抗体と第5の抵抗体とが直列接続された第2の直列回路とを並列に接続したブリッジ回路と、
     前記発熱体と第1の抵抗体との間の接続点の電圧を第1の入力とし、前記第2の抵抗体と前記第3の抵抗体との間の第1の接続点の電圧、前記第3の抵抗体と前記第4の抵抗体との間の第2の接続点の電圧又は前記第4の抵抗体と前記第5の抵抗体との間の第3の接続点の電圧のいずれかを選択して第2の入力とする差動増幅器と、
    を備え、
     前記第1の接続点の電圧、前記第2の接続点の電圧又は前記第3の接続点の電圧のいずれかを選択することにより前記発熱体の加熱温度が切り替わるように構成されたことを特徴とする熱式ガスセンサ。
    The thermal gas sensor according to claim 5 or 6,
    The heating control device
    A first series circuit in which the heating element and the first resistor are connected in series, a second resistor, a third resistor, a fourth resistor, and a fifth resistor are connected in series. A bridge circuit in which two series circuits are connected in parallel;
    The voltage at the connection point between the heating element and the first resistor is a first input, the voltage at the first connection point between the second resistor and the third resistor, Either the voltage at the second connection point between the third resistor and the fourth resistor or the voltage at the third connection point between the fourth resistor and the fifth resistor A differential amplifier for selecting the second input,
    With
    The heating temperature of the heating element is switched by selecting one of the voltage at the first connection point, the voltage at the second connection point, or the voltage at the third connection point. Thermal gas sensor.
  8.  請求項1に記載の熱式ガスセンサにおいて、
     前記発熱体として、第1の発熱体と、前記第1の発熱体の周辺を取り巻くように形成された第2の発熱体とを設け、
     前記第2の発熱体は前記第1の発熱体よりも低い温度に加熱制御され、
     前記発熱体を第1の温度に加熱制御する期間に、前記第1の発熱体への加熱電流を制御することにより前記第1の発熱体を前記第1の温度に加熱制御し、
     前記発熱体を前記第1の温度よりも低い第2の温度に加熱制御する期間に、前記第1の発熱体の加熱制御を停止し、前記第2の発熱体が発生する熱で前記第1の発熱体を加熱することを特徴とする熱式ガスセンサ。
    The thermal gas sensor according to claim 1,
    As the heating element, a first heating element and a second heating element formed so as to surround the periphery of the first heating element are provided,
    The second heating element is controlled to be heated to a temperature lower than that of the first heating element;
    Controlling the heating of the first heating element to the first temperature by controlling a heating current to the first heating element during a period of controlling the heating of the heating element to the first temperature;
    During the period in which the heating element is heated to a second temperature lower than the first temperature, the heating control of the first heating element is stopped, and the first heat is generated by the heat generated by the second heating element. A thermal gas sensor characterized by heating a heating element.
  9.  請求項8に記載の熱式ガスセンサにおいて、
     前記加熱制御装置は、
     前記第1の発熱体と第1の抵抗体とが直列接続された第1の直列回路と、第2抵抗体と第3抵抗体とが直列接続された第2の直列回路とを並列に接続したブリッジ回路と、前記第1の発熱体と前記第1抵抗体との接続点電位と、前記第2の抵抗体と前記第3の抵抗体との接続点電位とに基づいて前記第1の発熱体の加熱電流を制御する差動増幅器と、前記差動増幅器による加熱電流の出力を停止する回路とを有することを特徴とする熱式ガスセンサ。
    The thermal gas sensor according to claim 8,
    The heating control device
    A first series circuit in which the first heating element and the first resistor are connected in series and a second series circuit in which the second resistor and the third resistor are connected in series are connected in parallel. On the basis of the bridge circuit, the connection point potential between the first heating element and the first resistor, and the connection point potential between the second resistor and the third resistor. A thermal gas sensor comprising: a differential amplifier that controls a heating current of a heating element; and a circuit that stops output of the heating current from the differential amplifier.
PCT/JP2013/078408 2012-10-29 2013-10-21 Thermal gas sensor WO2014069264A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012237438A JP5981301B2 (en) 2012-10-29 2012-10-29 Thermal gas sensor
JP2012-237438 2012-10-29

Publications (1)

Publication Number Publication Date
WO2014069264A1 true WO2014069264A1 (en) 2014-05-08

Family

ID=50627176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078408 WO2014069264A1 (en) 2012-10-29 2013-10-21 Thermal gas sensor

Country Status (2)

Country Link
JP (1) JP5981301B2 (en)
WO (1) WO2014069264A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10307839B2 (en) 2015-03-20 2019-06-04 Mitsubishi Hitachi Tool Engineering, Ltd. End mill

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6297918B2 (en) * 2014-05-19 2018-03-20 アズビル株式会社 Function combined type sensor
JP7415493B2 (en) * 2019-12-02 2024-01-17 Tdk株式会社 gas sensor
JP7287344B2 (en) * 2020-05-13 2023-06-06 Tdk株式会社 gas sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422861A (en) * 1990-05-17 1992-01-27 Matsushita Seiko Co Ltd Gaseous carbon dioxide detector
JPH08136491A (en) * 1994-11-02 1996-05-31 Ricoh Seiki Co Ltd Ambient air detecting apparatus
JPH08136490A (en) * 1994-11-02 1996-05-31 Ricoh Seiki Co Ltd Ambient air detecting apparatus equipped with temperature compensating function
JP2000146886A (en) * 1998-11-18 2000-05-26 Shimadzu Corp Gas chromatograph unit having thermal conductivity detector
JP2005221370A (en) * 2004-02-05 2005-08-18 Yazaki Corp Gas detection method and its device using adsorbing combustion type gas sensor
JP2006010670A (en) * 2004-05-27 2006-01-12 Ngk Spark Plug Co Ltd Combustible gas detecting device and combustible gas detecting method
JP2011137679A (en) * 2009-12-28 2011-07-14 Hitachi Automotive Systems Ltd Thermal gas sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422861A (en) * 1990-05-17 1992-01-27 Matsushita Seiko Co Ltd Gaseous carbon dioxide detector
JPH08136491A (en) * 1994-11-02 1996-05-31 Ricoh Seiki Co Ltd Ambient air detecting apparatus
JPH08136490A (en) * 1994-11-02 1996-05-31 Ricoh Seiki Co Ltd Ambient air detecting apparatus equipped with temperature compensating function
JP2000146886A (en) * 1998-11-18 2000-05-26 Shimadzu Corp Gas chromatograph unit having thermal conductivity detector
JP2005221370A (en) * 2004-02-05 2005-08-18 Yazaki Corp Gas detection method and its device using adsorbing combustion type gas sensor
JP2006010670A (en) * 2004-05-27 2006-01-12 Ngk Spark Plug Co Ltd Combustible gas detecting device and combustible gas detecting method
JP2011137679A (en) * 2009-12-28 2011-07-14 Hitachi Automotive Systems Ltd Thermal gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10307839B2 (en) 2015-03-20 2019-06-04 Mitsubishi Hitachi Tool Engineering, Ltd. End mill

Also Published As

Publication number Publication date
JP2014089048A (en) 2014-05-15
JP5981301B2 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP6012515B2 (en) Gas sensor
US8225652B2 (en) Thermal flow meter measuring flow rate based on temperature difference measurement and driving energy of the heater
JP5055349B2 (en) Thermal gas sensor
JP6802703B2 (en) Gas sensor device
US7140263B2 (en) Anemometer circuit
WO2014069264A1 (en) Thermal gas sensor
JP4359705B2 (en) Heating resistance type flow measuring device
US7287424B2 (en) Thermal type flow measurement apparatus having asymmetrical passage for flow rate measurement
JP4118819B2 (en) Sensor temperature control in thermal anemometer
JP2017156293A (en) Gas detector
JP5986833B2 (en) Combustible gas detector
JP2017166826A (en) Gas sensor
JP2008014729A (en) Fluid flow velocity measuring instrument
JP5079723B2 (en) Humidity sensor
JP5111180B2 (en) Thermal flow meter
JP2009097925A (en) Heat radiation type flow sensor
JP3454265B2 (en) Thermal flow sensor
US20090056410A1 (en) Self diagnostic measurement method to detect microbridge null drift and performance
JPH09318412A (en) Thermal flow velocity sensor
JP3153787B2 (en) Heat conduction parameter sensing method and sensor circuit using resistor
JP5178264B2 (en) Thermal flow meter
Shen et al. An intelligent wind sensor system with auto-zero function
JPWO2003102974A1 (en) Platinum thin film and thermal sensor
Kohl et al. Towards system-ready flow sensors
JP3806002B2 (en) Thermal flow meter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13850702

Country of ref document: EP

Kind code of ref document: A1