WO2014069221A1 - 移動通信システム、ユーザ端末、基地局、プロセッサ及び通信制御方法 - Google Patents

移動通信システム、ユーザ端末、基地局、プロセッサ及び通信制御方法 Download PDF

Info

Publication number
WO2014069221A1
WO2014069221A1 PCT/JP2013/077815 JP2013077815W WO2014069221A1 WO 2014069221 A1 WO2014069221 A1 WO 2014069221A1 JP 2013077815 W JP2013077815 W JP 2013077815W WO 2014069221 A1 WO2014069221 A1 WO 2014069221A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
user terminal
base station
amount
specific data
Prior art date
Application number
PCT/JP2013/077815
Other languages
English (en)
French (fr)
Inventor
憲由 福田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2014544413A priority Critical patent/JP6087370B2/ja
Priority to US14/438,684 priority patent/US9763273B2/en
Priority to EP13851802.2A priority patent/EP2914054B1/en
Publication of WO2014069221A1 publication Critical patent/WO2014069221A1/ja
Priority to US15/700,622 priority patent/US10098162B2/en
Priority to US16/128,279 priority patent/US20190014558A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/23Manipulation of direct-mode connections

Definitions

  • the present invention relates to a mobile communication system that supports D2D communication.
  • D2D communication a plurality of adjacent user terminals perform direct communication within a frequency band assigned to the mobile communication system.
  • the D2D communication may also be referred to as proximity service communication.
  • the present invention provides a mobile communication system, a user terminal, a base station, a processor, and a communication control method that can appropriately control D2D communication.
  • the mobile communication system includes a base station and a first user terminal and a second user terminal that establish a connection with the base station.
  • the first user terminal starts D2D communication, which is direct inter-terminal communication, with the second user terminal, the first user terminal notifies the base station of the amount of specific data that is preferably transmitted by the D2D communication. .
  • 1 is a configuration diagram of an LTE system. It is a block diagram of UE. It is a block diagram of eNB. It is a protocol stack figure of the radio
  • the mobile communication system includes a base station and a first user terminal and a second user terminal that establish a connection with the base station.
  • the first user terminal starts D2D communication, which is direct inter-terminal communication
  • the second user terminal the first user terminal notifies the base station of the amount of specific data that is preferably transmitted by the D2D communication. .
  • the base station can grasp
  • the first user terminal notifies the base station of the amount of the specific data when notifying the base station that the D2D communication is desired. Therefore, since the amount of the specific data can be included in the notification that the D2D communication is to be performed, an increase in signaling can be suppressed.
  • the first user terminal may notify the base station of required transmission power in the D2D communication when notifying the base station that the D2D communication is desired. Thereby, the base station can determine whether to permit D2D communication in consideration of the required transmission power in D2D communication.
  • the first user terminal notifies the base station of the amount of the specific data after being notified from the base station that the D2D communication is permitted. Thereby, when it is decided to start D2D communication, the amount of specific data can be notified to the base station.
  • the first user terminal may notify the base station of the amount of the specific data, which is data addressed to the second user terminal and corresponding to a predetermined application. Thereby, data corresponding to a predetermined application can be appropriately transmitted by D2D communication.
  • the first user terminal notifies the base station of the amount of data that is addressed to the second user terminal and that requires a predetermined service quality as the amount of the specific data. Also good. As a result, it is possible to appropriately transmit data requiring a predetermined quality of service through D2D communication.
  • the second user terminal when starting the D2D communication, notifies the base station of the amount of specific data that is preferably transmitted by the D2D communication. Thereby, since the base station can grasp not only the amount of specific data corresponding to the first user terminal but also the amount of specific data corresponding to the second user terminal, the D2D communication control (radio resource for D2D communication) Can be appropriately performed.
  • the second user terminal notifies the first user terminal of the amount of specific data that is preferably transmitted by the D2D communication.
  • the first user terminal not only notifies the base station of the amount of the specific data corresponding to the first user terminal, but also determines the amount of the specific data corresponding to the second user terminal. Notify the station. Accordingly, the first user terminal can notify the base station not only of the amount of specific data corresponding to itself but also the amount of specific data corresponding to the second user terminal. Therefore, signaling between the base station and the second user terminal can be reduced.
  • the first user terminal and / or the second user terminal may transmit the amount of the specific data corresponding to the first user terminal included in a discovery signal for discovering a communication partner in the D2D communication. . Thereby, the amount of specific data can be notified between terminals at the stage of the discovery process for D2D communication.
  • the base station, the amount of the specific data corresponding to each of the first user terminal and the second user terminal, the radio state notified from the first user terminal and / or the second user terminal Whether or not to permit the D2D communication may be determined based on at least one of the report and the required transmission power in the D2D communication. Thereby, it is possible to appropriately determine whether or not to permit D2D communication.
  • the said base station allocates a radio
  • radio resources can be appropriately allocated in consideration of the amount of specific data.
  • the base station notifies the first user terminal and / or the second user terminal of D2D resource information indicating the radio resource to be allocated to the D2D communication.
  • the D2D resource information may include at least one of a subframe number allocated to the D2D communication, a time range allocated to the D2D communication, and a resource block number allocated to the D2D communication.
  • the first user terminal and / or the second user terminal can allocate the specific data amount corresponding to itself to the range of the radio resources allocated to the D2D communication. If the data cannot be completely transmitted, the remaining amount of the specific data is notified to the base station. Accordingly, the base station can newly allocate radio resources for transmitting the remaining specific data.
  • the mobile communication system is the quantity of the said specific data notified to the said base station from each of a said 1st user terminal and a said 2nd user terminal, and / or said D2D.
  • the apparatus further includes a server that charges for the D2D communication based on the amount of the radio resource allocated to the communication. Thereby, it is possible to appropriately charge for D2D communication.
  • the user terminal establishes a connection with the base station.
  • the user terminal includes a control unit that notifies the base station of the amount of specific data that is preferably transmitted by the D2D communication when starting D2D communication, which is direct inter-terminal communication, with other user terminals.
  • the processors according to the first to fourth embodiments are provided in a user terminal that establishes a connection with a base station.
  • the processor notifies the base station of the amount of specific data that is preferably transmitted by the D2D communication when the user terminal starts D2D communication, which is direct inter-terminal communication, with another user terminal. Process.
  • the base station establishes a connection with the first user terminal and the second user terminal in a mobile communication system that supports D2D communication that is direct inter-terminal communication. .
  • the base station transmits radio resources to the D2D communication by the first user terminal and the second user terminal based on the amount of specific data corresponding to each of the first user terminal and the second user terminal.
  • a control unit for assigning The amount of the specific data is the amount of data that is preferably transmitted by the D2D communication.
  • or 4th Embodiment is the base which establishes a connection with a 1st user terminal and a 2nd user terminal in the mobile communication system which supports D2D communication which is direct communication between terminals.
  • the processor allows the base station to perform the D2D communication by the first user terminal and the second user terminal based on specific data corresponding to each of the first user terminal and the second user terminal. Processing for assigning radio resources is performed.
  • the amount of the specific data is the amount of data that is preferably transmitted by the D2D communication.
  • the communication control method is used in a mobile communication system including a base station and a first user terminal and a second user terminal that establish a connection with the base station. .
  • the communication control method when the first user terminal starts D2D communication that is direct inter-terminal communication with the second user terminal, the amount of specific data that is preferably transmitted by the D2D communication is And notifying the base station.
  • FIG. 1 is a configuration diagram of an LTE system according to the present embodiment.
  • the LTE system includes a plurality of UEs (User Equipment) 100, an E-UTRAN (Evolved Universal Terrestrial Radio Access Network) 10, an EPC (Evolved Packet Core) 20, and the like.
  • the E-UTRAN 10 and the EPC 20 constitute a network.
  • the UE 100 is a mobile radio communication device, and performs radio communication with a cell (serving cell) that has established a connection.
  • UE100 is corresponded to a user terminal.
  • the E-UTRAN 10 includes a plurality of eNBs 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 manages a cell and performs radio communication with the UE 100 that has established a connection with the cell.
  • cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the eNB 200 has, for example, a radio resource management (RRM) function, a user data routing function, and a measurement control function for mobility control and scheduling.
  • RRM radio resource management
  • the EPC 20 includes an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300 and an AAA server 400.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • AAA server 400 AAA server
  • the MME is a network node that performs various types of mobility control for the UE 100, and corresponds to a control station.
  • the S-GW is a network node that performs transfer control of user data, and corresponds to an exchange.
  • the eNB 200 is connected to each other via the X2 interface.
  • the eNB 200 is connected to the MME / S-GW 300 via the S1 interface.
  • the AAA server 400 is a server device that performs authentication, authorization, and accounting.
  • FIG. 2 is a block diagram of the UE 100.
  • the UE 100 includes an antenna 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160.
  • the memory 150 and the processor 160 constitute a control unit.
  • the UE 100 may not have the GNSS receiver 130. Further, the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 '.
  • the antenna 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals.
  • the antenna 101 includes a plurality of antenna elements.
  • the radio transceiver 110 converts the baseband signal output from the processor 160 into a radio signal and transmits it from the antenna 101. Further, the radio transceiver 110 converts a radio signal received by the antenna 101 into a baseband signal and outputs the baseband signal to the processor 160.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain position information indicating the geographical position of the UE 100.
  • the battery 140 stores power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. .
  • the processor 160 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the processor 160 executes various processes and various communication protocols described later.
  • FIG. 3 is a block diagram of the eNB 200.
  • the eNB 200 includes an antenna 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240.
  • the memory 230 and the processor 240 constitute a control unit.
  • the memory 230 may be integrated with the processor 240, and this set (ie, chip set) may be used as the processor.
  • the antenna 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals.
  • the antenna 201 includes a plurality of antenna elements.
  • the wireless transceiver 210 converts the baseband signal output from the processor 240 into a wireless signal and transmits it from the antenna 201.
  • the radio transceiver 210 converts a radio signal received by the antenna 201 into a baseband signal and outputs the baseband signal to the processor 240.
  • the network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface.
  • the network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes programs stored in the memory 230 and performs various processes.
  • the processor 240 executes various processes and various communication protocols described later.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system.
  • the radio interface protocol is divided into layers 1 to 3 of the OSI reference model, and layer 1 is a physical (PHY) layer.
  • Layer 2 includes a MAC (Media Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • Layer 3 includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Data is transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Data is transmitted via the transport channel between the MAC layer of the UE 100 and the MAC layer of the eNB 200.
  • the MAC layer of the eNB 200 includes a scheduler that determines uplink / downlink transport formats (transport block size, modulation / coding scheme, and the like) and allocated resource blocks.
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data is transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane. Control messages (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer. If there is an RRC connection between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in a connected state, otherwise, the UE 100 is in an idle state.
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • SC-FDMA Single Carrier Frequency Multiple Access
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the radio frame is composed of 10 subframes arranged in the time direction, and each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • a guard interval called a cyclic prefix (CP) is provided at the head of each symbol.
  • the resource block includes a plurality of subcarriers in the frequency direction.
  • frequency resources can be specified by resource blocks, and time resources can be specified by subframes (or slots).
  • the section of the first few symbols of each subframe is a control region mainly used as a physical downlink control channel (PDCCH).
  • the remaining section of each subframe is an area that can be used mainly as a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • CRS cell-specific reference signals
  • both ends in the frequency direction in each subframe are control regions mainly used as a physical uplink control channel (PUCCH). Further, the central portion in the frequency direction in each subframe is an area that can be used mainly as a physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • D2D communication The LTE system according to the present embodiment supports D2D communication.
  • D2D communication will be described in comparison with normal communication (cellular communication) of the LTE system.
  • cellular communication data communication is performed between the network (eNB 200) and the UE 100.
  • D2D communication data communication is performed directly between two or more UEs 100.
  • FIG. 6 shows a data path in cellular communication.
  • a data path means a transfer path of user data (user plane).
  • the data path of cellular communication goes through the network (core network). Specifically, a data path passing through the eNB 200-1, the S-GW 300, and the eNB 200-2 is set.
  • FIG. 7 shows a data path in D2D communication.
  • D2D communication is performed between the UE 100-1 that has established a connection with the eNB 200-1 and the UE 100-2 that has established a connection with the eNB 200-2 is illustrated.
  • the data path of D2D communication does not go through the core network. That is, direct radio communication is performed between UEs.
  • direct radio communication is performed between UEs.
  • the UE 100-2 exists in the vicinity of the UE 100-1, the traffic load of the core network and the battery consumption of the UE 100 are reduced by performing D2D communication between the UE 100-1 and the UE 100-2. Effects such as reduction can be obtained.
  • D2D communication As a case where D2D communication is started, (a) a case where D2D communication is started after the partner terminal is discovered by performing an operation for discovering the partner terminal, and (b) a partner terminal is discovered. There is a case where D2D communication is started without performing the operation for.
  • D2D communication is started when one of the UEs 100-1 and 100-2 discovers the other UE 100 in the vicinity.
  • the UE 100 discovers another UE 100 existing in the vicinity of the UE 100 in order to discover the partner terminal (Discover), and / or the UE 100 is discovered from the other UE 100 (Discoverable). It has a function.
  • one of the UE 100-1 and the UE 100-2 transmits a discovery signal (Discover signal) to its surroundings, and the other UE receives the discovery signal, so that the other UE Discover UEs.
  • the other UE transmits a response signal to the discovery signal to its surroundings, and the one UE receives the response signal, whereby the one UE discovers the other UE.
  • the UE 100 does not necessarily need to perform D2D communication even if it discovers the counterpart terminal.
  • the UE 100-1 and the UE 100-2 may negotiate each other and then perform D2D communication after discovering each other. It may be determined.
  • Each of the UE 100-1 and the UE 100-2 starts D2D communication when agreeing to perform D2D communication.
  • the UE 100 starts broadcasting a signal for D2D communication by broadcasting.
  • UE100 can start D2D communication irrespective of the presence or absence of a partner terminal's discovery.
  • the D2D communication is performed in the frequency band of the LTE system (that is, in the frequency band of the cellular communication). For example, in order to avoid interference with the cellular communication, D2D communication is performed.
  • FIG. 8 is a diagram for explaining the operating environment according to the present embodiment.
  • UE 100-1 and UE 100-2 start D2D communication in an operating environment having eNB 200 and UE 100-1 and UE 100-2 establishing a connection with eNB 200.
  • the UE 100-1 When starting the D2D communication with the UE 100-2, the UE 100-1 notifies the eNB 200 of the amount of specific data that is preferably transmitted by the D2D communication.
  • the UE 100-2 when starting the D2D communication with the UE 100-1, notifies the eNB 200 of the amount of specific data that is preferably transmitted by the D2D communication.
  • the specific data is data addressed to a communication partner in D2D communication and data corresponding to a predetermined application.
  • the predetermined application is an application suitable for D2D communication, for example, an application requesting a low delay or an application requesting a large data capacity.
  • the specific data may be data destined for a communication partner in D2D communication and data that requires a predetermined quality of service (QoS; Quality of Service).
  • the predetermined quality of service is a high quality of service quality and means, for example, data transmitted by a bearer having a QCI (QoS Class Identifier) of a predetermined value or more.
  • the QCI is an index indicating a priority level determined according to the presence / absence of transmission rate guarantee, allowable delay time, allowable packet loss rate, and the like.
  • the UE 100-1 when notifying the eNB 200 that the UE 100-1 wants to perform D2D communication, the UE 100-1 notifies the eNB 200 of the amount of specific data corresponding to itself. Similarly, when notifying the eNB 200 that the UE 100-2 wishes to perform D2D communication, the UE 100-2 notifies the eNB 200 of the amount of specific data corresponding to itself.
  • the radio status report is a report (Measurement report) including information indicating the measurement result of the reception status of the reference signal received by the UE 100 from the eNB 200.
  • Such measurement results are, for example, reference signal received power (RSRP) and reference signal received quality (RSRQ).
  • the eNB 200 allocates radio resources to the D2D communication based on the amount of specific data corresponding to each of the UE 100-1 and the UE 100-2. Then, the eNB 200 notifies the UE 100-1 and / or the UE 100-2 of D2D resource information indicating radio resources to be allocated to D2D communication.
  • the D2D resource information includes at least one of a subframe number assigned to D2D communication, a time range assigned to D2D communication, and a resource block number assigned to D2D communication.
  • the time range allocated to D2D communication is, for example, a combination of a start subframe number and an end subframe number, or a timer value (a value indicating a period).
  • the D2D resource information may be information indicating a resource block number to be used after a predetermined subframe from the notification of the D2D resource information, similarly to the allocation resource information of the cellular communication.
  • the UE 100 that has received the D2D resource information uses the resource block indicated by the D2D resource information for D2D communication after a predetermined subframe after the notification of the D2D resource information.
  • UE100-1 and UE100-2 perform D2D communication using the radio
  • the eNB 200 allocates radio resources for transmitting the remaining specific data again.
  • the AAA server 400 charges the D2D communication based on the amount of specific data notified to the eNB 200 from each of the UE 100-1 and the UE 100-2 and / or the amount of radio resources allocated to the D2D communication.
  • FIG. 9 is an operation sequence diagram according to the present embodiment. This sequence shows an operation after the UE 100-1 and the UE 100-2 determine to start the D2D communication by the above-described discovery process.
  • step S101 the UE 100-1 transmits a notification (Indication) indicating that D2D communication is to be performed to the eNB 200.
  • the UE 100-1 transmits data amount information 1 indicating the amount of specific data that is preferably transmitted by D2D communication in the notification.
  • the eNB 200 grasps the amount of specific data corresponding to the UE 100-1 from the data amount information 1 included in the notification.
  • the UE 100-2 transmits to the eNB 200 a notification (Indication) indicating that D2D communication is to be performed.
  • the UE 100-2 includes the data amount information 2 indicating the amount of specific data that is preferably transmitted by D2D communication in the notification and transmits the data.
  • the eNB 200 grasps the amount of specific data corresponding to the UE 100-2 from the data amount information 2 included in the notification.
  • step S103 the UE 100-1 transmits a reception status report (Measurement report) to the eNB 200 based on the reference signal received from the eNB 200.
  • a reception status report (Measurement report)
  • the eNB 200 grasps the radio status corresponding to the UE 100-1.
  • step S104 the UE 100-2 transmits a reception status report (Measurement report) to the eNB 200 based on the reference signal received from the eNB 200.
  • a reception status report (Measurement report)
  • the eNB 200 grasps the radio status corresponding to the UE 100-2.
  • the eNB 200 determines the UE 100-1 and the UE 100 based on the amount of specific data corresponding to each of the UE 100-1 and the UE 100-2 and the radio state corresponding to each of the UE 100-1 and the UE 100-2. -2 determines whether to permit D2D communication. For example, when the reception power of the reference signal received by each of the UE 100-1 and the UE 100-2 from the eNB 200 is high, the eNB 200 uses the D2D to avoid interference caused by the D2D communication by the UE 100-1 and the UE 100-2. You may refuse communication.
  • the eNB 200 may consider D2D communication to be low and reject D2D communication.
  • description will be made assuming that the eNB 200 permits D2D communication.
  • the eNB 200 determines radio resources to be allocated to D2D communication by the UE 100-1 and the UE 100-2 based on the amount of specific data corresponding to each of the UE 100-1 and the UE 100-2. For example, the eNB 200 increases the amount of radio resources allocated to D2D communication as the amount of specific data corresponding to each of the UE 100-1 and the UE 100-2 increases.
  • the eNB 200 transmits a notification (D2D communication permission) indicating that the D2D communication is permitted to the UE 100-1.
  • the eNB 200 transmits D2D allocation resource information indicating radio resources to be allocated to D2D communication by the UE 100-1 and the UE 100-2 in the notification (D2D communication permission).
  • the UE 100-1 grasps the radio resource allocated to the D2D communication from the D2D allocated resource information included in the D2D communication permission.
  • the eNB 200 transmits a notification (D2D communication permission) indicating that the D2D communication is permitted to the UE 100-2.
  • the eNB 200 transmits D2D allocation resource information indicating radio resources to be allocated to D2D communication by the UE 100-1 and the UE 100-2 in the notification (D2D communication permission).
  • the UE 100-2 recognizes the radio resource allocated to the D2D communication from the D2D allocated resource information included in the D2D communication permission.
  • step S108 the UE 100-1 and the UE 100-2 perform D2D communication using the radio resource allocated from the eNB 200.
  • the UE 100-1 and the UE 100-2 notify the eNB 200 of the remaining specific data amount when the specific data amount corresponding to the UE 100-1 and the UE 100-2 cannot be transmitted within the range of the radio resource allocated to the D2D communication. .
  • the UE 100-1 and the UE 100-2 may notify the eNB 200 of the data amount transmitted using the previously allocated radio resource (previous D2D allocation period).
  • the AAA server 400 charges the D2D communication based on the amount of specific data notified to the eNB 200 from each of the UE 100-1 and the UE 100-2 and / or the amount of radio resources allocated to the D2D communication. Further, the AAA server 400 may use the amount of data transmitted using the previously allocated radio resource (previous D2D allocation period) notified to the eNB 200 from each of the UE 100-1 and the UE 100-2 for charging. Good.
  • each of the UE 100-1 and the UE 100-2 notifies the eNB 200 of the amount of specific data corresponding to itself when notifying the eNB 200 that D2D communication is to be performed.
  • each of the UE 100-1 and the UE 100-2 notifies the eNB 200 of the amount of specific data after being notified from the eNB 200 that D2D communication is permitted.
  • FIG. 10 is an operation sequence diagram according to the present embodiment.
  • step S201 the UE 100-1 transmits a notification (Indication) indicating that D2D communication is to be performed to the eNB 200.
  • a notification Indication
  • step S202 the UE 100-2 transmits a notification (Indication) indicating that the D2D communication is to be performed to the eNB 200.
  • a notification Indication
  • step S203 the UE 100-1 transmits a reception status report (Measurement report) to the eNB 200 based on the reference signal received from the eNB 200.
  • a reception status report (Measurement report)
  • the eNB 200 grasps the radio status corresponding to the UE 100-1.
  • step S204 the UE 100-2 transmits a reception status report (Measurement report) to the eNB 200 based on the reference signal received from the eNB 200.
  • a reception status report (Measurement report)
  • the eNB 200 grasps the radio status corresponding to the UE 100-2.
  • the eNB 200 determines whether to permit D2D communication by the UE 100-1 and the UE 100-2 based on the radio state corresponding to each of the UE 100-1 and the UE 100-2. For example, when the reception power of the reference signal received by each of the UE 100-1 and the UE 100-2 from the eNB 200 is high, the eNB 200 uses the D2D to avoid interference caused by the D2D communication by the UE 100-1 and the UE 100-2. You may refuse communication. Here, description will be made assuming that the eNB 200 permits D2D communication.
  • step S206 the eNB 200 transmits a notification (D2D communication permission) indicating that the D2D communication is permitted to the UE 100-1.
  • a notification D2D communication permission
  • step S207 the eNB 200 transmits a notification (D2D communication permission) indicating that the D2D communication is permitted to the UE 100-2.
  • a notification D2D communication permission
  • step S208 in response to receiving the notification (D2D communication permission) in step S206, the UE 100-1 transmits data amount information 1 indicating the amount of specific data that is preferably transmitted by D2D communication to the eNB 200.
  • the eNB 200 grasps the amount of specific data corresponding to the UE 100-1.
  • step S209 in response to receiving the notification (D2D communication permission) in step S207, the UE 100-2 transmits data amount information 2 indicating the amount of specific data that is preferably transmitted by D2D communication to the eNB 200.
  • the eNB 200 grasps the amount of specific data corresponding to the UE 100-2.
  • ENB 200 determines radio resources to be allocated to D2D communication by UE 100-1 and UE 100-2 based on the amount of specific data corresponding to each of UE 100-1 and UE 100-2. For example, the eNB 200 increases the amount of radio resources allocated to D2D communication as the amount of specific data corresponding to each of the UE 100-1 and the UE 100-2 increases.
  • step S210 the eNB 200 transmits D2D allocation resource information indicating radio resources allocated to the D2D communication performed by the UE 100-1 and the UE 100-2 to the UE 100-1.
  • the UE 100-1 grasps radio resources allocated to D2D communication.
  • step S211 the eNB 200 transmits D2D allocation resource information indicating radio resources allocated to D2D communication by the UE 100-1 and the UE 100-2 to the UE 100-2.
  • the UE 100-2 grasps radio resources allocated to D2D communication.
  • step S212 the UE 100-1 and the UE 100-2 perform D2D communication using the radio resource allocated from the eNB 200. Subsequent operations are the same as those in the first embodiment.
  • each of the UE 100-1 and the UE 100-2 notifies the eNB 200 of the amount of specific data corresponding to itself.
  • the UE 100-2 notifies the UE 100-1 of the amount of specific data that is preferably transmitted by D2D communication.
  • the UE 100-1 not only notifies the eNB 200 of the amount of specific data corresponding to the UE 100-1, but also notifies the eNB 200 of the amount of specific data corresponding to the UE 100-2.
  • the UE 100-1 performs communication (specifically, control plane communication) with the eNB 200 on behalf of the UE group (UE 100-1 and UE 100-2) to be D2D communication target. And control of D2D communication.
  • a UE 100-1 may be referred to as an “anchor UE”.
  • FIG. 11 is an operation sequence diagram according to the present embodiment.
  • the UE 100-2 notifies the UE 100-1 of data amount information 2 indicating the amount of specific data that is preferably transmitted by D2D communication.
  • the UE 100-2 may notify the UE 100-1 of the data amount information 2 by including the data amount information 2 in the discovery signal for discovering the communication partner in the D2D communication.
  • the UE 100-1 transmits to the eNB 200 a notification (Indication) indicating that D2D communication is to be performed.
  • the UE 100-1 transmits data amount information 1 indicating the amount of specific data that is preferably transmitted by D2D communication, in the notification (Indication).
  • the UE 100-1 transmits the data amount information 2 notified from the UE 100-2 in the notification (Indication).
  • the eNB 200 grasps the amount of specific data corresponding to each of the UE 100-1 and the UE 100-2 from the data amount information 1 and 2 included in the notification.
  • step S303 the UE 100-1 transmits a reception status report (Measurement report) to the eNB 200 based on the reference signal received from the eNB 200.
  • a reception status report (Measurement report)
  • the eNB 200 grasps the radio status corresponding to the UE 100-1.
  • step S304 the UE 100-2 transmits a reception status report (Measurement report) to the eNB 200 based on the reference signal received from the eNB 200.
  • a reception status report (Measurement report)
  • the eNB 200 grasps the radio status corresponding to the UE 100-2.
  • step S305 the eNB 200 determines the UE 100-1 and the UE 100 based on the amount of specific data corresponding to each of the UE 100-1 and the UE 100-2 and the radio state corresponding to each of the UE 100-1 and the UE 100-2. -2 determines whether to permit D2D communication.
  • description will be made assuming that the eNB 200 permits D2D communication.
  • the eNB 200 determines radio resources to be allocated to D2D communication by the UE 100-1 and the UE 100-2 based on the amount of specific data corresponding to each of the UE 100-1 and the UE 100-2.
  • step S306 the eNB 200 transmits a notification (D2D communication permission) indicating that the D2D communication is permitted to the UE 100-1.
  • the eNB 200 transmits D2D allocation resource information indicating radio resources to be allocated to D2D communication by the UE 100-1 and the UE 100-2 in the notification (D2D communication permission).
  • the UE 100-1 grasps the radio resource allocated to the D2D communication from the D2D allocated resource information included in the D2D communication permission.
  • step S307 the UE 100-1 and the UE 100-2 perform D2D communication using the radio resource allocated from the eNB 200.
  • UE 100-2 notifies UE 100-1 of the amount of remaining specific data when the amount of specific data corresponding to itself cannot be transmitted within the range of radio resources allocated to D2D communication. In this case, the UE 100-2 may notify the UE 100-1 of the data amount transmitted using the previously allocated radio resource. The UE 100-1 notifies the eNB 200 of the amount of the remaining specific data notified from the UE 100-2 (and the amount of data transmitted using the previously allocated radio resource).
  • the communication environment according to the fourth embodiment is the same as that of the first embodiment.
  • the fourth embodiment is the same as the third embodiment in that an anchor UE exists.
  • the UE 100-1 notifies the eNB 200 of the amount of specific data when notifying the eNB 200 that D2D communication is desired.
  • the UE 100-1 notifies the eNB 200 of the amount of specific data after being notified from the eNB 200 that D2D communication is permitted.
  • FIG. 12 is an operation sequence diagram according to the present embodiment.
  • the UE 100-2 notifies the UE 100-1 of data amount information 2 indicating the amount of specific data that is preferably transmitted by D2D communication.
  • the UE 100-2 may notify the UE 100-1 of the data amount information 2 by including the data amount information 2 in the discovery signal for discovering the communication partner in the D2D communication.
  • step S402 the UE 100-1 transmits to the eNB 200 a notification (Indication) indicating that D2D communication is desired.
  • a notification Indication
  • step S403 the UE 100-1 transmits a reception status report (Measurement report) to the eNB 200 based on the reference signal received from the eNB 200.
  • a reception status report (Measurement report)
  • the eNB 200 grasps the radio status corresponding to the UE 100-1.
  • step S404 the UE 100-2 transmits a reception status report (Measurement report) to the eNB 200 based on the reference signal received from the eNB 200.
  • a reception status report (Measurement report)
  • the eNB 200 grasps the radio status corresponding to the UE 100-2.
  • step S405 the eNB 200 determines whether to permit D2D communication by the UE 100-1 and the UE 100-2 based on the radio state corresponding to each of the UE 100-1 and the UE 100-2.
  • description will be made assuming that the eNB 200 permits D2D communication.
  • step S406 the eNB 200 transmits a notification (D2D communication permission) indicating that the D2D communication is permitted to the UE 100-1.
  • a notification D2D communication permission
  • step S407 the UE 100-1 transmits, to the eNB 200, data amount information 1 indicating the amount of specific data that is preferably transmitted by D2D communication and data amount information 2 notified from the UE 100-2.
  • the eNB 200 grasps the amount of specific data corresponding to each of the UE 100-1 and the UE 100-2.
  • ENB 200 determines radio resources to be allocated to D2D communication by UE 100-1 and UE 100-2 based on the amount of specific data corresponding to each of UE 100-1 and UE 100-2.
  • step S408 the eNB 200 transmits D2D allocation resource information indicating radio resources allocated to the D2D communication performed by the UE 100-1 and the UE 100-2 to the UE 100-1.
  • the UE 100-1 grasps radio resources allocated to D2D communication.
  • step S409 the UE 100-1 and the UE 100-2 perform D2D communication using the radio resource allocated from the eNB 200. Subsequent operations are the same as those in the third embodiment.
  • the UE 100-2 notifies the UE 100-1 of the data amount information 2 by including the data amount information 2 in the discovery signal.
  • the data amount information 2 may be acquired from the UE 100-2 after the UE 100-1 receives the D2D communication permission from the eNB 200.
  • transmission power related to D2D communication is not particularly considered. However, when transmission power related to D2D communication is considered, in addition to the above-described operation (or to the above-described operation). Alternatively, the following operations may be applied.
  • the UE 100-1 (and the UE 100-2) performs D2D communication with the communication counterpart UE based on the reception power of the discovery signal or the reception power of the response signal.
  • Transmission power hereinafter referred to as “required transmission power for D2D communication”.
  • the UE 100-1 when the UE 100-1 (and the UE 100-2) notifies that it wants to perform the D2D communication (Indication), it also notifies the required transmission power of the D2D communication. For example, information on required transmission power of D2D communication is included in the notification (Indication).
  • the eNB 200 when determining whether or not to permit D2D communication, the eNB 200 also considers required transmission power of D2D communication in order to avoid interference that D2D communication gives to cellular communication. For example, the eNB 200 may reject the D2D communication when the required transmission power of the D2D communication is higher than the transmission power of the UE 100-1 (and the UE 100-2) in the cellular communication estimated by the eNB 200.
  • the UE 100-1 (and the UE 100-2) notifies the eNB 200 of the amount of remaining specific data that cannot be transmitted within the range of the allocated radio resource (that is, the reallocation of radio resources for D2D communication)
  • the current transmission power of the D2D communication is also notified. For example, information on the current transmission power of D2D communication is included in the notification or request.
  • the eNB 200 determines whether or not to permit the D2D communication to continue based on the current transmission power of the D2D communication. For example, the eNB 200 may refuse to continue the D2D communication when the current transmission power of the D2D communication is higher than the transmission power of the UE 100-1 (and the UE 100-2) in the cellular communication estimated by the eNB 200.
  • the UE 100-2 notifies the UE 100-1 of the data amount information 2 by including the data amount information 2 in the discovery signal.
  • the UE 100-1 may notify the UE 100-2 of the data amount information 1 by including the data amount information 1 in the discovery signal.
  • the data amount information may be included in the discovery signal.
  • the eNB 200 allocates radio resources to D2D communication by the UE 100-1 and the UE 100-2 based on the amount of specific data corresponding to the UE 100-1 and the UE 100-2, respectively. Had decided. However, the eNB 200 determines that the UE 100-1 and the UE 100-2 are based on the radio state corresponding to each of the UE 100-1 and the UE 100-2 and the amount of specific data corresponding to each of the UE 100-1 and the UE 100-2. A radio resource to be allocated to D2D communication according to may be determined. For example, the eNB 200 may determine that it is possible to increase the amount of radio resources allocated to D2D communication when the received power of the reference signal received from the eNB 200 by each of the UE 100-1 and the UE 100-2 is low.
  • the eNB 200 controls D2D communication, but is not limited thereto.
  • an upper network node MME or the like that configures the core network may perform control related to D2D communication according to the present embodiment. Therefore, the network node may receive information (data amount information or the like) from the UE 100 via the eNB 200, or transmit information (such as a notification that D2D communication is permitted) to the UE 100 via the eNB 200. May be. In this way, a network device such as eNB 200 or MME can perform control related to D2D communication.
  • the data path is the direct communication mode that does not pass through the eNB 200, but the data path may be a local relay mode that passes through the eNB 200 without passing through the core network.
  • the local relay mode is referred to as a locally routed (LR) mode. If it is a local relay mode, the effect of reducing the traffic load of EPC20 and the battery consumption of UE100 will be acquired.
  • the present invention is not limited to the LTE system, and the present invention may be applied to a system other than the LTE system.
  • the mobile communication system, the user terminal, the base station, the processor, and the communication control method according to the present invention are useful in the mobile communication field because they can appropriately control D2D communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 移動通信システムは、基地局と、前記基地局との接続を確立する第1のユーザ端末及び第2のユーザ端末と、を有する。前記第1のユーザ端末は、直接的な端末間通信であるD2D通信を前記第2のユーザ端末と開始するにあたり、前記D2D通信で送信した方が好ましい特定データの量を前記基地局に通知する。

Description

移動通信システム、ユーザ端末、基地局、プロセッサ及び通信制御方法
 本発明は、D2D通信をサポートする移動通信システムに関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、リリース12以降の新機能として、端末間(Device to Device:D2D)通信の導入が検討されている(非特許文献1参照)。
 D2D通信は、近接する複数のユーザ端末が、移動通信システムに割り当てられた周波数帯域内で直接的な通信を行うものである。なお、D2D通信は、近傍サービス(Proximity Service)通信と称されることもある。
3GPP技術報告 「TR 22.803 V0.3.0」 2012年5月
 現状では、D2D通信を適切に制御するための仕様が策定されていない。
 そこで、本発明は、D2D通信を適切に制御できる移動通信システム、ユーザ端末、基地局、プロセッサ及び通信制御方法を提供する。
 一実施形態によれば、移動通信システムは、基地局と、前記基地局との接続を確立する第1のユーザ端末及び第2のユーザ端末と、を有する。前記第1のユーザ端末は、直接的な端末間通信であるD2D通信を前記第2のユーザ端末と開始するにあたり、前記D2D通信で送信した方が好ましい特定データの量を前記基地局に通知する。
LTEシステムの構成図である。 UEのブロック図である。 eNBのブロック図である。 LTEシステムにおける無線インターフェイスのプロトコルスタック図である。 LTEシステムで使用される無線フレームの構成図である。 セルラ通信におけるデータパスを説明するための図である。 D2D通信におけるデータパスを説明するための図である。 第1実施形態乃至第4実施形態に係る動作環境を説明するための図である。 第1実施形態に係る動作シーケンス図である。 第2実施形態に係る動作シーケンス図である。 第3実施形態に係る動作シーケンス図である。 第4実施形態に係る動作シーケンス図である。
 [実施形態の概要]
 第1実施形態乃至第4実施形態に係る移動通信システムは、基地局と、前記基地局との接続を確立する第1のユーザ端末及び第2のユーザ端末と、を有する。前記第1のユーザ端末は、直接的な端末間通信であるD2D通信を前記第2のユーザ端末と開始するにあたり、前記D2D通信で送信した方が好ましい特定データの量を前記基地局に通知する。これにより、基地局は、D2D通信で送信した方が好ましい特定データの量を把握できるため、D2D通信制御(D2D通信への無線リソースの割当など)を適切に行うことができる。
 第1実施形態及び第3実施形態では、前記第1のユーザ端末は、前記D2D通信を行いたい旨を前記基地局に通知する際に、前記特定データの量を前記基地局に通知する。これにより、前記D2D通信を行いたい旨の通知に前記特定データの量を含めることができるため、シグナリングの増加を抑制できる。
 前記第1のユーザ端末は、前記D2D通信を行いたい旨を前記基地局に通知する際に、前記D2D通信における所要送信電力を前記基地局に通知してもよい。これにより、基地局は、D2D通信における所要送信電力を考慮してD2D通信を許可するか否かの判断を行うことができる。
 第2実施形態及び第4実施形態では、前記第1のユーザ端末は、前記D2D通信を許可する旨を前記基地局から通知された後に、前記特定データの量を前記基地局に通知する。これにより、D2D通信を開始することが確定された際に特定データの量を基地局に通知できる。
 前記第1のユーザ端末は、前記特定データの量として、前記第2のユーザ端末宛てのデータであって、且つ所定のアプリケーションに対応するデータの量を前記基地局に通知してもよい。これにより、所定のアプリケーションに対応するデータをD2D通信で適切に送信可能にすることができる。
 或いは、前記第1のユーザ端末は、前記特定データの量として、前記第2のユーザ端末宛てのデータであって、且つ所定のサービス品質が要求されるデータの量を前記基地局に通知してもよい。これにより、所定のサービス品質が要求されるデータをD2D通信で適切に送信可能にすることができる。
 第1実施形態及び第2実施形態では、前記第2のユーザ端末は、前記D2D通信を開始するにあたり、前記D2D通信で送信した方が好ましい特定データの量を前記基地局に通知する。これにより、基地局は、第1のユーザ端末に対応する特定データの量だけでなく、第2のユーザ端末に対応する特定データの量も把握できるため、D2D通信制御(D2D通信への無線リソースの割当など)を適切に行うことができる。
 第3実施形態及び第4実施形態では、前記第2のユーザ端末は、前記D2D通信で送信した方が好ましい特定データの量を前記第1のユーザ端末に通知する。前記第1のユーザ端末は、該第1のユーザ端末に対応する前記特定データの量を前記基地局に通知するだけでなく、前記第2のユーザ端末に対応する前記特定データの量も前記基地局に通知する。これにより、第1のユーザ端末は、自身に対応する特定データの量だけでなく、第2のユーザ端末に対応する特定データの量も基地局に通知できる。従って、基地局と第2のユーザ端末との間のシグナリングを削減できる。
 前記第1のユーザ端末及び/又は前記第2のユーザ端末は、自身に対応する前記特定データの量を、前記D2D通信における通信相手を発見するための発見用信号に含めて送信してもよい。これにより、D2D通信のための発見処理の段階で、特定データの量を端末間で通知できる。
 前記基地局は、前記第1のユーザ端末及び前記第2のユーザ端末のそれぞれに対応する前記特定データの量、前記第1のユーザ端末及び/又は前記第2のユーザ端末から通知される無線状態報告、及び前記D2D通信における所要送信電力のうち、少なくとも1つに基づいて、前記D2D通信を許可するか否かを判断してもよい。これにより、D2D通信を許可するか否かの判断を適切に行うことができる。
 第1実施形態乃至第4実施形態では、前記基地局は、前記第1のユーザ端末及び前記第2のユーザ端末のそれぞれに対応する前記特定データの量に基づいて、前記D2D通信に無線リソースを割り当てる。これにより、特定データの量を考慮して無線リソースを適切に割り当てることができる。
 第1実施形態乃至第4実施形態では、前記基地局は、前記D2D通信に割り当てる前記無線リソースを示すD2Dリソース情報を前記第1のユーザ端末及び/又は前記第2のユーザ端末に通知する。前記D2Dリソース情報は、前記D2D通信に割り当てるサブフレームの番号、前記D2D通信に割り当てる時間範囲、前記D2D通信に割り当てるリソースブロックの番号のうち、少なくとも1つを含んでもよい。これにより、D2D通信に対して無線リソースを適切に割り当てることができる。
 第1実施形態乃至第4実施形態では、前記第1のユーザ端末及び/又は前記第2のユーザ端末は、自身に対応する前記特定データの量を、前記D2D通信に割り当てられる前記無線リソースの範囲内で送信しきれない場合に、残りの前記特定データの量を前記基地局に通知する。これにより、基地局は、残りの特定データを送信するための無線リソースを改めて割り当てることができる。
 第1実施形態乃至第4実施形態では、移動通信システムは、前記第1のユーザ端末及び前記第2のユーザ端末のそれぞれから前記基地局に通知される前記特定データの量、及び/又は前記D2D通信に割り当てられる前記無線リソースの量に基づいて、前記D2D通信に対する課金を行うサーバをさらに有する。これにより、D2D通信に対する課金を適切に行うことができる。
 第1実施形態乃至第4実施形態に係るユーザ端末は、基地局との接続を確立する。ユーザ端末は、直接的な端末間通信であるD2D通信を他のユーザ端末と開始するにあたり、前記D2D通信で送信した方が好ましい特定データの量を前記基地局に通知する制御部を有する。
 第1実施形態乃至第4実施形態に係るプロセッサは、基地局との接続を確立するユーザ端末に備えられる。プロセッサは、前記ユーザ端末が、直接的な端末間通信であるD2D通信を他のユーザ端末と開始するにあたり、前記D2D通信で送信した方が好ましい特定データの量を前記基地局に通知するための処理を行う。
 第1実施形態乃至第4実施形態に係る基地局は、直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて、第1のユーザ端末及び第2のユーザ端末との接続を確立する。基地局は、前記第1のユーザ端末及び前記第2のユーザ端末のそれぞれに対応する特定データの量に基づいて、前記第1のユーザ端末及び前記第2のユーザ端末による前記D2D通信に無線リソースを割り当てる制御部を有する。前記特定データの量は、前記D2D通信で送信した方が好ましいデータの量である。
 第1実施形態乃至第4実施形態に係るプロセッサは、直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて、第1のユーザ端末及び第2のユーザ端末との接続を確立する基地局に備えられる。プロセッサは、前記基地局が、前記第1のユーザ端末及び前記第2のユーザ端末のそれぞれに対応する特定データに基づいて、前記第1のユーザ端末及び前記第2のユーザ端末による前記D2D通信に無線リソースを割り当てるための処理を行う。前記特定データの量は、前記D2D通信で送信した方が好ましいデータの量である。
 第1実施形態乃至第4実施形態に係る通信制御方法は、基地局と、前記基地局との接続を確立する第1のユーザ端末及び第2のユーザ端末と、を有する移動通信システムにおいて用いられる。通信制御方法は、前記第1のユーザ端末が、直接的な端末間通信であるD2D通信を前記第2のユーザ端末と開始するにあたり、前記D2D通信で送信した方が好ましい特定データの量を前記基地局に通知するステップを有する。
 [第1実施形態]
 以下、図面を参照して、3GPP規格に準拠して構成される移動通信システム(LTEシステム)にD2D通信を導入する場合の実施形態を説明する。
 (LTEシステム)
 図1は、本実施形態に係るLTEシステムの構成図である。
 図1に示すように、LTEシステムは、複数のUE(User Equipment)100と、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)10と、EPC(Evolved Packet Core)20と、を含む。E-UTRAN10及びEPC20は、ネットワークを構成する。
 UE100は、移動型の無線通信装置であり、接続を確立したセル(サービングセル)との無線通信を行う。UE100はユーザ端末に相当する。
 E-UTRAN10は、複数のeNB200(evolved Node-B)を含む。eNB200は基地局に相当する。eNB200は、セルを管理しており、セルとの接続を確立したUE100との無線通信を行う。
 なお、「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。
 eNB200は、例えば、無線リソース管理(RRM)機能と、ユーザデータのルーティング機能と、モビリティ制御及びスケジューリングのための測定制御機能と、を有する。
 EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300と、AAAサーバ400と、を含む。
 MMEは、UE100に対する各種モビリティ制御等を行うネットワークノードであり、制御局に相当する。S-GWは、ユーザデータの転送制御を行うネットワークノードであり、交換局に相当する。
 eNB200は、X2インターフェイスを介して相互に接続される。また、eNB200は、S1インターフェイスを介してMME/S-GW300と接続される。
 AAAサーバ400は、認証(Authentication)、認可(Authorization), 課金(Accounting)を行うサーバ装置である。
 次に、UE100及びeNB200の構成を説明する。
 図2は、UE100のブロック図である。図2に示すように、UE100は、アンテナ101と、無線送受信機110と、ユーザインターフェイス120と、GNSS(Global Navigation Satellite System)受信機130と、バッテリ140と、メモリ150と、プロセッサ160と、を有する。メモリ150及びプロセッサ160は、制御部を構成する。
 UE100は、GNSS受信機130を有していなくてもよい。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)をプロセッサ160’としてもよい。
 アンテナ101及び無線送受信機110は、無線信号の送受信に用いられる。アンテナ101は、複数のアンテナ素子を含む。無線送受信機110は、プロセッサ160が出力するベースバンド信号を無線信号に変換してアンテナ101から送信する。また、無線送受信機110は、アンテナ101が受信する無線信号をベースバンド信号に変換してプロセッサ160に出力する。
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス120は、ユーザからの操作を受け付けて、該操作の内容を示す信号をプロセッサ160に出力する。
 GNSS受信機130は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。
 バッテリ140は、UE100の各ブロックに供給すべき電力を蓄える。
 メモリ150は、プロセッサ160によって実行されるプログラムと、プロセッサ160による処理に使用される情報と、を記憶する。
 プロセッサ160は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ150に記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサ160は、さらに、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサ160は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図3は、eNB200のブロック図である。図3に示すように、eNB200は、アンテナ201と、無線送受信機210と、ネットワークインターフェイス220と、メモリ230と、プロセッサ240と、を有する。メモリ230及びプロセッサ240は、制御部を構成する。なお、メモリ230をプロセッサ240と一体化し、このセット(すなわち、チップセット)をプロセッサとしてもよい。
 アンテナ201及び無線送受信機210は、無線信号の送受信に用いられる。アンテナ201は、複数のアンテナ素子を含む。無線送受信機210は、プロセッサ240が出力するベースバンド信号を無線信号に変換してアンテナ201から送信する。また、無線送受信機210は、アンテナ201が受信する無線信号をベースバンド信号に変換してプロセッサ240に出力する。
 ネットワークインターフェイス220は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。ネットワークインターフェイス220は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に用いられる。
 メモリ230は、プロセッサ240によって実行されるプログラムと、プロセッサ240による処理に使用される情報と、を記憶する。
 プロセッサ240は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ230に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ240は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。
 図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルのレイヤ1乃至レイヤ3に区分されており、レイヤ1は物理(PHY)レイヤである。レイヤ2は、MAC(Media Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、を含む。レイヤ3は、RRC(Radio Resource Control)レイヤを含む。
 物理レイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理レイヤとeNB200の物理レイヤとの間では、物理チャネルを介してデータが伝送される。
 MACレイヤは、データの優先制御、及びハイブリッドARQ(HARQ)による再送処理などを行う。UE100のMACレイヤとeNB200のMACレイヤとの間では、トランスポートチャネルを介してデータが伝送される。eNB200のMACレイヤは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式など)、及び割当リソースブロックを決定するスケジューラを含む。
 RLCレイヤは、MACレイヤ及び物理レイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとeNB200のRLCレイヤとの間では、論理チャネルを介してデータが伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRCレイヤは、制御プレーンでのみ定義される。UE100のRRCレイヤとeNB200のRRCレイヤとの間では、各種設定のための制御メッセージ(RRCメッセージ)が伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間にRRC接続がある場合、UE100は接続状態であり、そうでない場合、UE100はアイドル状態である。
 RRCレイヤの上位に位置するNAS(Non-Access Stratum)レイヤは、セッション管理及びモビリティ管理などを行う。
 図5は、LTEシステムで使用される無線フレームの構成図である。LTEシステムは、下りリンクにはOFDMA(Orthogonal Frequency Division Multiplexing Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。複信方式としては、FDD(Frequency Division Duplex)方式又はTDD(Time Division Duplex)方式の何れかが適用される。
 図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成され、各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各シンボルの先頭には、サイクリックプレフィックス(CP)と呼ばれるガード区間が設けられる。リソースブロックは、周波数方向に複数個のサブキャリアを含む。
 UE100に割り当てられる無線リソースのうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に物理下りリンク制御チャネル(PDCCH)として使用される制御領域である。また、各サブフレームの残りの区間は、主に物理下りリンク共有チャネル(PDSCH)として使用できる領域である。さらに、各サブフレームには、セル固有参照信号(CRS)が分散して配置される。
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に物理上りリンク制御チャネル(PUCCH)として使用される制御領域である。また、各サブフレームにおける周波数方向の中央部は、主に物理上りリンク共有チャネル(PUSCH)として使用できる領域である。
 (D2D通信)
 本実施形態に係るLTEシステムは、D2D通信をサポートする。ここでは、D2D通信を、LTEシステムの通常の通信(セルラ通信)と比較して説明する。セルラ通信では、ネットワーク(eNB200)及びUE100間でデータ通信を行う。これに対し、D2D通信では、2以上のUE100間で直接的にデータ通信を行う。
 図6は、セルラ通信におけるデータパスを示す。ここでは、eNB200-1との接続を確立したUE100-1と、eNB200-2との接続を確立したUE100-2と、の間でセルラ通信を行う場合を例示している。なお、データパスとは、ユーザデータ(ユーザプレーン)の転送経路を意味する。
 図6に示すように、セルラ通信のデータパスはネットワーク(コアネットワーク)を経由する。詳細には、eNB200-1、S-GW300、及びeNB200-2を経由するデータパスが設定される。
 図7は、D2D通信におけるデータパスを示す。ここでは、eNB200-1との接続を確立したUE100-1と、eNB200-2との接続を確立したUE100-2と、の間でD2D通信を行う場合を例示している。
 図7に示すように、D2D通信のデータパスはコアネットワークを経由しない。すなわち、UE間で直接的な無線通信を行う。このように、UE100-1の近傍にUE100-2が存在するのであれば、UE100-1とUE100-2との間でD2D通信を行うことによって、コアネットワークのトラフィック負荷及びUE100のバッテリ消費量を削減するなどの効果が得られる。
 なお、D2D通信が開始されるケースとして、(a)相手端末を発見するための動作を行うことによって相手端末を発見した後に、D2D通信が開始されるケースと、(b)相手端末を発見するための動作を行わずにD2D通信が開始されるケースがある。
 例えば、上記(a)のケースでは、UE100-1及びUE100-2のうち一方のUE100が、近傍に存在する他方のUE100を発見することで、D2D通信が開始される。
 このケースの場合、UE100は、相手端末を発見するために、自身の近傍に存在する他のUE100を発見する(Discover)機能、及び/又は、UE100は、他のUE100から発見される(Discoverable)機能を有する。
 例えば、UE100-1及びUE100-2のうち一方のUEが発見用信号(Discover信号)を自身の周辺に送信し、発見用信号を他方のUEが受信することで、当該他方のUEが当該一方のUEを発見する。また、当該他方のUEが発見用信号に対する応答信号を自身の周辺に送信し、応答信号を当該一方のUEが受信することで、当該一方のUEが当該他方のUEを発見する。
 なお、UE100は、相手端末を発見しても必ずしもD2D通信を行う必要はなく、例えば、UE100-1及びUE100-2は、互いに相手を発見した後に、ネゴシエーションを行って、D2D通信を行うか否かを判定してもよい。UE100-1及びUE100-2のそれぞれは、D2D通信を行うことに同意した場合に、D2D通信を開始する。
 一方、上記(b)のケースでは、例えば、UE100は、ブロードキャストによってD2D通信用の信号の報知を開始する。これにより、UE100は、相手端末の発見の有無にかかわらず、D2D通信を開始できる。
 ただし、D2D通信はLTEシステムの周波数帯域(すなわち、セルラ通信の周波数帯域内)で行われることが想定されており、例えばセルラ通信への干渉を回避するために、ネットワーク(eNB200)の管理下でD2D通信が行われる。
 (第1実施形態に係る動作)
 図8は、本実施形態に係る動作環境を説明するための図である。
 図8に示すように、eNB200と、eNB200との接続を確立するUE100-1及びUE100-2と、を有する動作環境において、UE100-1及びUE100-2がD2D通信を開始するケースを想定する。
 UE100-1は、D2D通信をUE100-2と開始するにあたり、D2D通信で送信した方が好ましい特定データの量をeNB200に通知する。
 また、UE100-2は、D2D通信をUE100-1と開始するにあたり、D2D通信で送信した方が好ましい特定データの量をeNB200に通知する。
 ここで、特定データとは、D2D通信における通信相手宛てのデータであって、且つ所定のアプリケーションに対応するデータである。所定のアプリケーションとは、D2D通信に相応しいアプリケーションであり、例えば、低遅延を要求するアプリケーション或いは大データ容量を要求するアプリケーションを意味する。
 或いは、特定データとは、D2D通信における通信相手宛てのデータであって、且つ所定のサービス品質(QoS;Quality of Service)が要求されるデータであってもよい。所定のサービス品質(QoS)とは、高品質のサービス品質であり、例えば、QCI(QoS Class Identifier)が所定値以上のベアラで伝送されるデータを意味する。なお、QCIとは、伝送レート保証の有無、遅延許容時間、及び許容パケットロス率などに応じて定められる優先度を示すインデックスである。
 本実施形態では、UE100-1は、D2D通信を行いたい旨をeNB200に通知する際に、自身に対応する特定データの量をeNB200に通知する。同様に、UE100-2は、D2D通信を行いたい旨をeNB200に通知する際に、自身に対応する特定データの量をeNB200に通知する。
 eNB200は、UE100-1及びUE100-2のそれぞれに対応する特定データの量と、UE100-1及び/又はUE100-2から通知される無線状態報告と、に基づいて、D2D通信を許可するか否かを判断する。無線状態報告は、UE100がeNB200から受信する参照信号の受信状態の測定結果を示す情報を含む報告(Measurement report)である。このような測定結果は、例えば参照信号受信電力(RSRP)及び参照信号受信品質(RSRQ)である。
 D2D通信を許可すると判断した場合において、eNB200は、UE100-1及びUE100-2のそれぞれに対応する特定データの量に基づいて、当該D2D通信に無線リソースを割り当てる。そして、eNB200は、D2D通信に割り当てる無線リソースを示すD2Dリソース情報をUE100-1及び/又はUE100-2に通知する。
 例えば、D2Dリソース情報は、D2D通信に割り当てるサブフレームの番号、D2D通信に割り当てる時間範囲、D2D通信に割り当てるリソースブロックの番号のうち、少なくとも1つを含む。D2D通信に割り当てる時間範囲とは、例えば、開始サブフレーム番号と終了サブフレーム番号との組み合わせ、又はタイマ値(期間を示す値)である。
 或いは、D2Dリソース情報は、セルラ通信の割当リソース情報と同様に、当該D2Dリソース情報の通知から所定サブフレーム後に使用すべきリソースブロックの番号を示す情報であってもよい。この場合、D2Dリソース情報を受信したUE100は、当該D2Dリソース情報が通知されてから所定サブフレーム後に、当該D2Dリソース情報が示すリソースブロックをD2D通信に使用する。
 そして、UE100-1及びUE100-2は、eNB200によりD2D通信に割り当てられる無線リソースを用いてD2D通信を行う。
 その後、UE100-1及び/又はUE100-2は、自身に対応する特定データの量を、D2D通信に割り当てられる無線リソースの範囲内で送信しきれない場合に、残りの特定データの量をeNB200に通知する。この場合、eNB200は、残りの特定データを送信するための無線リソースを改めて割り当てる。
 また、AAAサーバ400は、UE100-1及びUE100-2のそれぞれからeNB200に通知される特定データの量、及び/又はD2D通信に割り当てられる無線リソースの量に基づいて、D2D通信に対する課金を行う。
 次に、本実施形態に係る動作シーケンスの具体例を説明する。図9は、本実施形態に係る動作シーケンス図である。本シーケンスは、UE100-1及びUE100-2が、上述した発見処理によりD2D通信を開始することを決定した後の動作を示している。
 図9に示すように、ステップS101において、UE100-1は、D2D通信を行いたい旨の通知(Indication)をeNB200に送信する。ここで、UE100-1は、D2D通信で送信した方が好ましい特定データの量を示すデータ量情報1を当該通知に含めて送信する。eNB200は、UE100-1から通知(Indication)を受信すると、当該通知に含まれるデータ量情報1から、UE100-1に対応する特定データの量を把握する。
 ステップS102において、UE100-2は、D2D通信を行いたい旨の通知(Indication)をeNB200に送信する。ここで、UE100-2は、D2D通信で送信した方が好ましい特定データの量を示すデータ量情報2を当該通知に含めて送信する。eNB200は、UE100-2から通知(Indication)を受信すると、当該通知に含まれるデータ量情報2から、UE100-2に対応する特定データの量を把握する。
 ステップS103において、UE100-1は、eNB200から受信する参照信号に基づいて、受信状態報告(Measurement report)をeNB200に送信する。eNB200は、UE100-1から受信状態報告を受信すると、UE100-1に対応する無線状態を把握する。
 ステップS104において、UE100-2は、eNB200から受信する参照信号に基づいて、受信状態報告(Measurement report)をeNB200に送信する。eNB200は、UE100-2から受信状態報告を受信すると、UE100-2に対応する無線状態を把握する。
 ステップS105において、eNB200は、UE100-1及びUE100-2のそれぞれに対応する特定データの量と、UE100-1及びUE100-2のそれぞれに対応する無線状態と、に基づいて、UE100-1及びUE100-2によるD2D通信を許可するか否かを判断する。例えば、eNB200は、UE100-1及びUE100-2のそれぞれがeNB200から受信する参照信号の受信電力が高い場合には、UE100-1及びUE100-2によるD2D通信が与える干渉を回避するために、D2D通信を拒否してもよい。また、eNB200は、UE100-1及びUE100-2のそれぞれに対応する特定データの量が少ない場合には、D2D通信を開始する必要性が低いとみなして、D2D通信を拒否してもよい。ここでは、eNB200がD2D通信を許可したと仮定して説明を進める。
 さらに、eNB200は、UE100-1及びUE100-2のそれぞれに対応する特定データの量に基づいて、UE100-1及びUE100-2によるD2D通信に割り当てる無線リソースを決定する。例えば、eNB200は、UE100-1及びUE100-2のそれぞれに対応する特定データの量が多いほど、D2D通信に割り当てる無線リソースの量を多くする。
 ステップS106において、eNB200は、D2D通信を許可する旨の通知(D2D通信許可)をUE100-1に送信する。ここで、eNB200は、UE100-1及びUE100-2によるD2D通信に割り当てる無線リソースを示すD2D割当リソース情報を通知(D2D通信許可)に含めて送信する。UE100-1は、D2D通信許可を受信すると、当該D2D通信許可に含まれるD2D割当リソース情報から、D2D通信に割り当てられた無線リソースを把握する。
 ステップS107において、eNB200は、D2D通信を許可する旨の通知(D2D通信許可)をUE100-2に送信する。ここで、eNB200は、UE100-1及びUE100-2によるD2D通信に割り当てる無線リソースを示すD2D割当リソース情報を通知(D2D通信許可)に含めて送信する。UE100-2は、D2D通信許可を受信すると、当該D2D通信許可に含まれるD2D割当リソース情報から、D2D通信に割り当てられた無線リソースを把握する。
 ステップS108において、UE100-1及びUE100-2は、eNB200から割り当てられた無線リソースを用いてD2D通信を行う。
 その後、UE100-1及びUE100-2は、自身に対応する特定データの量を、D2D通信に割り当てられる無線リソースの範囲内で送信しきれない場合に、残りの特定データの量をeNB200に通知する。この場合、UE100-1及びUE100-2は、前回割り当てられた無線リソース(前回のD2D割当期間)を用いて送信したデータ量をeNB200に通知してもよい。
 また、AAAサーバ400は、UE100-1及びUE100-2のそれぞれからeNB200に通知される特定データの量、及び/又はD2D通信に割り当てられる無線リソースの量に基づいて、D2D通信に対する課金を行う。さらに、AAAサーバ400は、UE100-1及びUE100-2のそれぞれからeNB200に通知される、前回割り当てられた無線リソース(前回のD2D割当期間)を用いて送信したデータ量を課金に使用してもよい。
 [第2実施形態]
 以下、第2実施形態について、第1実施形態との相違点を主として説明する。第2実施形態に係る通信環境は、第1実施形態と同様である。
 上述した第1実施形態では、UE100-1及びUE100-2のそれぞれは、D2D通信を行いたい旨をeNB200に通知する際に、自身に対応する特定データの量をeNB200に通知していた。これに対し、第2実施形態では、UE100-1及びUE100-2のそれぞれは、D2D通信を許可する旨をeNB200から通知された後に、特定データの量をeNB200に通知する。
 次に、本実施形態に係る動作シーケンスの具体例を説明する。図10は、本実施形態に係る動作シーケンス図である。
 図10に示すように、ステップS201において、UE100-1は、D2D通信を行いたい旨の通知(Indication)をeNB200に送信する。
 ステップS202において、UE100-2は、D2D通信を行いたい旨の通知(Indication)をeNB200に送信する。
 ステップS203において、UE100-1は、eNB200から受信する参照信号に基づいて、受信状態報告(Measurement report)をeNB200に送信する。eNB200は、UE100-1から受信状態報告を受信すると、UE100-1に対応する無線状態を把握する。
 ステップS204において、UE100-2は、eNB200から受信する参照信号に基づいて、受信状態報告(Measurement report)をeNB200に送信する。eNB200は、UE100-2から受信状態報告を受信すると、UE100-2に対応する無線状態を把握する。
 ステップS205において、eNB200は、UE100-1及びUE100-2のそれぞれに対応する無線状態に基づいて、UE100-1及びUE100-2によるD2D通信を許可するか否かを判断する。例えば、eNB200は、UE100-1及びUE100-2のそれぞれがeNB200から受信する参照信号の受信電力が高い場合には、UE100-1及びUE100-2によるD2D通信が与える干渉を回避するために、D2D通信を拒否してもよい。ここでは、eNB200がD2D通信を許可したと仮定して説明を進める。
 ステップS206において、eNB200は、D2D通信を許可する旨の通知(D2D通信許可)をUE100-1に送信する。
 ステップS207において、eNB200は、D2D通信を許可する旨の通知(D2D通信許可)をUE100-2に送信する。
 ステップS208において、UE100-1は、ステップS206で通知(D2D通信許可)を受信したことに応じて、D2D通信で送信した方が好ましい特定データの量を示すデータ量情報1をeNB200に送信する。eNB200は、データ量情報1を受信すると、UE100-1に対応する特定データの量を把握する。
 ステップS209において、UE100-2は、ステップS207で通知(D2D通信許可)を受信したことに応じて、D2D通信で送信した方が好ましい特定データの量を示すデータ量情報2をeNB200に送信する。eNB200は、データ量情報2を受信すると、UE100-2に対応する特定データの量を把握する。
 eNB200は、UE100-1及びUE100-2のそれぞれに対応する特定データの量に基づいて、UE100-1及びUE100-2によるD2D通信に割り当てる無線リソースを決定する。例えば、eNB200は、UE100-1及びUE100-2のそれぞれに対応する特定データの量が多いほど、D2D通信に割り当てる無線リソースの量を多くする。
 ステップS210において、eNB200は、UE100-1及びUE100-2によるD2D通信に割り当てる無線リソースを示すD2D割当リソース情報をUE100-1に送信する。UE100-1は、D2D割当リソース情報を受信すると、D2D通信に割り当てられた無線リソースを把握する。
 ステップS211において、eNB200は、UE100-1及びUE100-2によるD2D通信に割り当てる無線リソースを示すD2D割当リソース情報をUE100-2に送信する。UE100-2は、D2D割当リソース情報を受信すると、D2D通信に割り当てられた無線リソースを把握する。
 ステップS212において、UE100-1及びUE100-2は、eNB200から割り当てられた無線リソースを用いてD2D通信を行う。以降の動作は第1実施形態と同様である。
 [第3実施形態]
 以下、第3実施形態について、第1実施形態及び第2実施形態との相違点を主として説明する。第3実施形態に係る通信環境は、第1実施形態と同様である。
 上述した第1実施形態では、UE100-1及びUE100-2のそれぞれは、自身に対応する特定データの量をeNB200に通知していた。これに対し、第3実施形態では、UE100-2は、D2D通信で送信した方が好ましい特定データの量をUE100-1に通知する。UE100-1は、UE100-1に対応する特定データの量をeNB200に通知するだけでなく、UE100-2に対応する特定データの量もeNB200に通知する。
 このように、第3実施形態では、UE100-1は、D2D通信対象のUE群(UE100-1及びUE100-2)を代表してeNB200との通信(具体的には、制御プレーンの通信)を行うと共に、D2D通信の制御を行う。そのようなUE100-1は、「アンカーUE」と称されることがある。
 次に、本実施形態に係る動作シーケンスの具体例を説明する。図11は、本実施形態に係る動作シーケンス図である。
 図11に示すように、ステップS301において、UE100-2は、D2D通信で送信した方が好ましい特定データの量を示すデータ量情報2をUE100-1に通知する。ここで、UE100-2は、D2D通信における通信相手を発見するための発見用信号にデータ量情報2を含めることで、データ量情報2をUE100-1に通知してもよい。
 ステップS302において、UE100-1は、D2D通信を行いたい旨の通知(Indication)をeNB200に送信する。ここで、UE100-1は、D2D通信で送信した方が好ましい特定データの量を示すデータ量情報1を当該通知(Indication)に含めて送信する。さらに、UE100-1は、UE100-2から通知されたデータ量情報2を当該通知(Indication)に含めて送信する。eNB200は、UE100-1から通知(Indication)を受信すると、当該通知に含まれるデータ量情報1及び2から、UE100-1及びUE100-2のそれぞれに対応する特定データの量を把握する。
 ステップS303において、UE100-1は、eNB200から受信する参照信号に基づいて、受信状態報告(Measurement report)をeNB200に送信する。eNB200は、UE100-1から受信状態報告を受信すると、UE100-1に対応する無線状態を把握する。
 ステップS304において、UE100-2は、eNB200から受信する参照信号に基づいて、受信状態報告(Measurement report)をeNB200に送信する。eNB200は、UE100-2から受信状態報告を受信すると、UE100-2に対応する無線状態を把握する。
 ステップS305において、eNB200は、UE100-1及びUE100-2のそれぞれに対応する特定データの量と、UE100-1及びUE100-2のそれぞれに対応する無線状態と、に基づいて、UE100-1及びUE100-2によるD2D通信を許可するか否かを判断する。ここでは、eNB200がD2D通信を許可したと仮定して説明を進める。
 さらに、eNB200は、UE100-1及びUE100-2のそれぞれに対応する特定データの量に基づいて、UE100-1及びUE100-2によるD2D通信に割り当てる無線リソースを決定する。
 ステップS306において、eNB200は、D2D通信を許可する旨の通知(D2D通信許可)をUE100-1に送信する。ここで、eNB200は、UE100-1及びUE100-2によるD2D通信に割り当てる無線リソースを示すD2D割当リソース情報を通知(D2D通信許可)に含めて送信する。UE100-1は、D2D通信許可を受信すると、当該D2D通信許可に含まれるD2D割当リソース情報から、D2D通信に割り当てられた無線リソースを把握する。
 ステップS307において、UE100-1及びUE100-2は、eNB200から割り当てられた無線リソースを用いてD2D通信を行う。
 以降の動作は第1実施形態と同様であるが、以下の点で第1実施形態とは異なる。UE100-2は、自身に対応する特定データの量を、D2D通信に割り当てられる無線リソースの範囲内で送信しきれない場合に、残りの特定データの量をUE100-1に通知する。この場合、UE100-2は、前回割り当てられた無線リソースを用いて送信したデータ量をUE100-1に通知してもよい。UE100-1は、UE100-2から通知された残りの特定データの量(及び前回割り当てられた無線リソースを用いて送信したデータ量)をeNB200に通知する。
 [第4実施形態]
 以下、第4実施形態について、第1実施形態乃至第3実施形態との相違点を主として説明する。第4実施形態に係る通信環境は、第1実施形態と同様である。また、第4実施形態は、アンカーUEが存在する点で第3実施形態と同様である。
 上述した第3実施形態では、UE100-1は、D2D通信を行いたい旨をeNB200に通知する際に特定データの量をeNB200に通知していた。これに対し、第4実施形態では、UE100-1は、D2D通信を許可する旨をeNB200から通知された後に、特定データの量をeNB200に通知する。
 次に、本実施形態に係る動作シーケンスの具体例を説明する。図12は、本実施形態に係る動作シーケンス図である。
 図12に示すように、ステップS401において、UE100-2は、D2D通信で送信した方が好ましい特定データの量を示すデータ量情報2をUE100-1に通知する。ここで、UE100-2は、D2D通信における通信相手を発見するための発見用信号にデータ量情報2を含めることで、データ量情報2をUE100-1に通知してもよい。
 ステップS402において、UE100-1は、D2D通信を行いたい旨の通知(Indication)をeNB200に送信する。
 ステップS403において、UE100-1は、eNB200から受信する参照信号に基づいて、受信状態報告(Measurement report)をeNB200に送信する。eNB200は、UE100-1から受信状態報告を受信すると、UE100-1に対応する無線状態を把握する。
 ステップS404において、UE100-2は、eNB200から受信する参照信号に基づいて、受信状態報告(Measurement report)をeNB200に送信する。eNB200は、UE100-2から受信状態報告を受信すると、UE100-2に対応する無線状態を把握する。
 ステップS405において、eNB200は、UE100-1及びUE100-2のそれぞれに対応する無線状態に基づいて、UE100-1及びUE100-2によるD2D通信を許可するか否かを判断する。ここでは、eNB200がD2D通信を許可したと仮定して説明を進める。
 ステップS406において、eNB200は、D2D通信を許可する旨の通知(D2D通信許可)をUE100-1に送信する。
 ステップS407において、UE100-1は、D2D通信で送信した方が好ましい特定データの量を示すデータ量情報1と、UE100-2から通知されたデータ量情報2と、をeNB200に送信する。eNB200は、データ量情報1及び2を受信すると、UE100-1及びUE100-2のそれぞれに対応する特定データの量を把握する。
 eNB200は、UE100-1及びUE100-2のそれぞれに対応する特定データの量に基づいて、UE100-1及びUE100-2によるD2D通信に割り当てる無線リソースを決定する。
 ステップS408において、eNB200は、UE100-1及びUE100-2によるD2D通信に割り当てる無線リソースを示すD2D割当リソース情報をUE100-1に送信する。UE100-1は、D2D割当リソース情報を受信すると、D2D通信に割り当てられた無線リソースを把握する。
 ステップS409において、UE100-1及びUE100-2は、eNB200から割り当てられた無線リソースを用いてD2D通信を行う。以降の動作は第3実施形態と同様である。
 なお、本実施形態では、UE100-2が発見用信号にデータ量情報2を含めることで、データ量情報2をUE100-1に通知する一例を説明した。しかしながら、UE100-1がeNB200からD2D通信許可を受信した後にデータ量情報2をUE100-2から取得してもよい。
 [その他の実施形態]
 上記のように、本発明は第1実施形態乃至第4実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
 上述した第1実施形態乃至第4実施形態は、D2D通信に関する送信電力を特に考慮していないが、D2D通信に関する送信電力を考慮する場合には、上述した動作に加えて(又は上述した動作に代えて)、以下の動作を適用してもよい。
 第1に、上述した発見処理において、UE100-1(及びUE100-2)は、発見用信号の受信電力、又はその応答信号の受信電力などに基づいて、通信相手UEとのD2D通信を行うために必要な送信電力(以下、「D2D通信の所要送信電力」と称する)を決定する。
 第2に、UE100-1(及びUE100-2)は、D2D通信を行いたい旨を通知(Indication)する際に、D2D通信の所要送信電力も通知する。例えば、D2D通信の所要送信電力の情報を当該通知(Indication)に含める。
 第3に、eNB200は、D2D通信を許可するか否かを判断する際に、D2D通信がセルラ通信に与える干渉を回避するために、D2D通信の所要送信電力も考慮する。例えば、eNB200は、D2D通信の所要送信電力が、eNB200で推定したセルラ通信におけるUE100-1(及びUE100-2)の送信電力よりも高い場合、D2D通信を拒否してもよい。
 第4に、UE100-1(及びUE100-2)は、割当無線リソースの範囲内で送信しきれない残りの特定データの量をeNB200に通知する際(すなわち、D2D通信用の無線リソースの再割当を要求する際)に、D2D通信の現在の送信電力も通知する。例えば、D2D通信の現在の送信電力の情報を当該通知又は要求に含める。
 第5に、eNB200は、D2D通信の現在の送信電力に基づいて、当該D2D通信の継続を許可するか否かを判断する。例えば、eNB200は、D2D通信の現在の送信電力が、eNB200で推定したセルラ通信におけるUE100-1(及びUE100-2)の送信電力よりも高い場合、D2D通信の継続を拒否してもよい。
 上述した第3実施形態及び第4実施形態では、UE100-2が発見用信号にデータ量情報2を含めることで、データ量情報2をUE100-1に通知する一例を説明した。しかしながら、UE100-1が発見用信号にデータ量情報1を含めることで、データ量情報1をUE100-2に通知してもよい。また、第3実施形態及び第4実施形態に限らず、第1実施形態及び第2実施形態においても、発見用信号にデータ量情報を含めてもよい。
 上述した第1実施形態乃至第4実施形態では、eNB200は、UE100-1及びUE100-2のそれぞれに対応する特定データの量に基づいて、UE100-1及びUE100-2によるD2D通信に割り当てる無線リソースを決定していた。しかしながら、eNB200は、UE100-1及びUE100-2のそれぞれに対応する無線状態と、UE100-1及びUE100-2のそれぞれに対応する特定データの量と、に基づいて、UE100-1及びUE100-2によるD2D通信に割り当てる無線リソースを決定してもよい。例えば、eNB200は、UE100-1及びUE100-2のそれぞれがeNB200から受信する参照信号の受信電力が低い場合には、D2D通信に割り当てる無線リソースの量を増やすことが可能と判断してもよい。
 上述した第1実施形態乃至第4実施形態では、eNB200が、D2D通信の制御を行っていたがこれに限られない。例えば、eNB200の代わりに、コアネットワークを構成する上位のネットワークノード(MMEなど)が本実施形態に係るD2D通信に関する制御を行ってもよい。従って、ネットワークノードは、eNB200を介して、UE100からの情報(データ量情報など)を受信してもよいし、eNB200を介して、UE100に情報(D2D通信を許可する旨の通知など)を送信してもよい。このように、eNB200又はMMEなどのネットワーク装置がD2D通信に関する制御を行うことができる。
 なお、上述した実施形態では、データパスが、eNB200を経由しない直接通信モードであったが、データパスが、コアネットワークを経由せずにeNB200を経由する局所中継モードであってもよい。なお、局所中継モードは、Locally Routed(L.R)モードと称される。局所中継モードであれば、EPC20のトラフィック負荷及びUE100のバッテリ消費量を削減するなどの効果が得られる。
 なお、上述した実施形態では、本発明をLTEシステムに適用する一例を説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。
 なお、米国仮出願第61/719604号(2012年10月29日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明に係る移動通信システム、ユーザ端末、基地局、プロセッサ及び通信制御方法は、D2D通信を適切に制御できるため、移動通信分野において有用である。

Claims (19)

  1.  基地局と、前記基地局との接続を確立する第1のユーザ端末及び第2のユーザ端末と、を有する移動通信システムであって、
     前記第1のユーザ端末は、直接的な端末間通信であるD2D通信を前記第2のユーザ端末と開始するにあたり、前記D2D通信で送信した方が好ましい特定データの量を前記基地局に通知することを特徴とする移動通信システム。
  2.  前記第1のユーザ端末は、前記D2D通信を行いたい旨を前記基地局に通知する際に、前記特定データの量を前記基地局に通知することを特徴とする請求項1に記載の移動通信システム。
  3.  前記第1のユーザ端末は、前記D2D通信を行いたい旨を前記基地局に通知する際に、前記D2D通信における所要送信電力を前記基地局に通知することを特徴とする請求項1に記載の移動通信システム。
  4.  前記第1のユーザ端末は、前記D2D通信を許可する旨を前記基地局から通知された後に、前記特定データの量を前記基地局に通知することを特徴とする請求項1に記載の移動通信システム。
  5.  前記第1のユーザ端末は、前記特定データの量として、前記第2のユーザ端末宛てのデータであって、且つ所定のアプリケーションに対応するデータの量を前記基地局に通知することを特徴とする請求項1に記載の移動通信システム。
  6.  前記第1のユーザ端末は、前記特定データの量として、前記第2のユーザ端末宛てのデータであって、且つ所定のサービス品質が要求されるデータの量を前記基地局に通知することを特徴とする請求項1に記載の移動通信システム。
  7.  前記第2のユーザ端末は、前記D2D通信を開始するにあたり、前記D2D通信で送信した方が好ましい特定データの量を前記基地局に通知することを特徴とする請求項1に記載の移動通信システム。
  8.  前記第2のユーザ端末は、前記D2D通信で送信した方が好ましい特定データの量を前記第1のユーザ端末に通知し、
     前記第1のユーザ端末は、該第1のユーザ端末に対応する前記特定データの量を前記基地局に通知するだけでなく、前記第2のユーザ端末に対応する前記特定データの量も前記基地局に通知することを特徴とする請求項1に記載の移動通信システム。
  9.  前記第1のユーザ端末及び/又は前記第2のユーザ端末は、自身に対応する前記特定データの量を、前記D2D通信における通信相手を発見するための発見用信号に含めて送信することを特徴とする請求項1に記載の移動通信システム。
  10.  前記基地局は、前記第1のユーザ端末及び前記第2のユーザ端末のそれぞれに対応する前記特定データの量、前記第1のユーザ端末及び/又は前記第2のユーザ端末から通知される無線状態報告、及び前記D2D通信における所要送信電力のうち、少なくとも1つに基づいて、前記D2D通信を許可するか否かを判断することを特徴とする請求項7又は8に記載の移動通信システム。
  11.  前記基地局は、前記第1のユーザ端末及び前記第2のユーザ端末のそれぞれに対応する前記特定データの量に基づいて、前記D2D通信に無線リソースを割り当てることを特徴とする請求項7又は8に記載の移動通信システム。
  12.  前記基地局は、前記D2D通信に割り当てる前記無線リソースを示すD2Dリソース情報を前記第1のユーザ端末及び/又は前記第2のユーザ端末に通知し、
     前記D2Dリソース情報は、前記D2D通信に割り当てるサブフレームの番号、前記D2D通信に割り当てる時間範囲、前記D2D通信に割り当てるリソースブロックの番号のうち、少なくとも1つを含むことを特徴とする請求項11に記載の移動通信システム。
  13.  前記第1のユーザ端末及び/又は前記第2のユーザ端末は、自身に対応する前記特定データの量を、前記D2D通信に割り当てられる前記無線リソースの範囲内で送信しきれない場合に、残りの前記特定データの量を前記基地局に通知することを特徴とする請求項11に記載の移動通信システム。
  14.  前記第1のユーザ端末及び前記第2のユーザ端末のそれぞれから前記基地局に通知される前記特定データの量、及び/又は前記D2D通信に割り当てられる前記無線リソースの量に基づいて、前記D2D通信に対する課金を行うサーバをさらに有することを特徴とする請求項11に記載の移動通信システム。
  15.  基地局との接続を確立するユーザ端末であって、
     直接的な端末間通信であるD2D通信を他のユーザ端末と開始するにあたり、前記D2D通信で送信した方が好ましい特定データの量を前記基地局に通知する制御部を有することを特徴とするユーザ端末。
  16.  基地局との接続を確立するユーザ端末に備えられるプロセッサであって、
     前記ユーザ端末が、直接的な端末間通信であるD2D通信を他のユーザ端末と開始するにあたり、前記D2D通信で送信した方が好ましい特定データの量を前記基地局に通知するための処理を行うことを特徴とするプロセッサ。
  17.  直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて、第1のユーザ端末及び第2のユーザ端末との接続を確立する基地局であって、
     前記第1のユーザ端末及び前記第2のユーザ端末のそれぞれに対応する特定データの量に基づいて、前記第1のユーザ端末及び前記第2のユーザ端末による前記D2D通信に無線リソースを割り当てる制御部を有し、
     前記特定データの量は、前記D2D通信で送信した方が好ましいデータの量であることを特徴とする基地局。
  18.  直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて、第1のユーザ端末及び第2のユーザ端末との接続を確立する基地局に備えられるプロセッサであって、
     前記基地局が、前記第1のユーザ端末及び前記第2のユーザ端末のそれぞれに対応する特定データに基づいて、前記第1のユーザ端末及び前記第2のユーザ端末による前記D2D通信に無線リソースを割り当てるための処理を行い、
     前記特定データの量は、前記D2D通信で送信した方が好ましいデータの量であることを特徴とするプロセッサ。
  19.  基地局と、前記基地局との接続を確立する第1のユーザ端末及び第2のユーザ端末と、を有する移動通信システムにおける通信制御方法であって、
     前記第1のユーザ端末が、直接的な端末間通信であるD2D通信を前記第2のユーザ端末と開始するにあたり、前記D2D通信で送信した方が好ましい特定データの量を前記基地局に通知するステップを有することを特徴とする通信制御方法。
PCT/JP2013/077815 2012-10-29 2013-10-11 移動通信システム、ユーザ端末、基地局、プロセッサ及び通信制御方法 WO2014069221A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014544413A JP6087370B2 (ja) 2012-10-29 2013-10-11 ユーザ端末、プロセッサ及び通信制御方法
US14/438,684 US9763273B2 (en) 2012-10-29 2013-10-11 Mobile communication system, user terminal, base station, processor, and communication control method
EP13851802.2A EP2914054B1 (en) 2012-10-29 2013-10-11 Mobile communication system, base station, processor, and communication control method
US15/700,622 US10098162B2 (en) 2012-10-29 2017-09-11 Mobile communication system, user terminal, base station, processor, and communication control method
US16/128,279 US20190014558A1 (en) 2012-10-29 2018-09-11 Mobile communication system, user terminal, base station, processor, and communication control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261719604P 2012-10-29 2012-10-29
US61/719,604 2012-10-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/438,684 A-371-Of-International US9763273B2 (en) 2012-10-29 2013-10-11 Mobile communication system, user terminal, base station, processor, and communication control method
US15/700,622 Continuation US10098162B2 (en) 2012-10-29 2017-09-11 Mobile communication system, user terminal, base station, processor, and communication control method

Publications (1)

Publication Number Publication Date
WO2014069221A1 true WO2014069221A1 (ja) 2014-05-08

Family

ID=50627135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077815 WO2014069221A1 (ja) 2012-10-29 2013-10-11 移動通信システム、ユーザ端末、基地局、プロセッサ及び通信制御方法

Country Status (4)

Country Link
US (3) US9763273B2 (ja)
EP (1) EP2914054B1 (ja)
JP (2) JP6087370B2 (ja)
WO (1) WO2014069221A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016032294A (ja) * 2014-07-25 2016-03-07 住友電気工業株式会社 制御装置、無線装置、及び無線通信装置
JP2016512669A (ja) * 2013-02-14 2016-04-28 アルカテル−ルーセント 直接通信を確立するための方法、ならびに基地局、ゲートウェイ、およびそのためのデバイス
WO2016142974A1 (ja) * 2015-03-06 2016-09-15 日本電気株式会社 近接サービス通信のための装置及び方法
WO2016163471A1 (ja) * 2015-04-10 2016-10-13 京セラ株式会社 基地局及び無線端末
CN106664546A (zh) * 2014-08-06 2017-05-10 富士通株式会社 通信系统、通信方法、通信装置和移动终端
WO2020224659A1 (zh) * 2019-05-09 2020-11-12 维沃移动通信有限公司 信息上报方法、信息接收方法、终端和网络控制实体

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050396A1 (en) * 2013-10-03 2015-04-09 Lg Electronics Inc. Method and apparatus for partitioning radio resources in wireless communication system
EP3190844B1 (en) * 2014-09-26 2019-07-24 Huawei Technologies Co., Ltd. D2d signal frequency hopping method and base station
CN107846708B (zh) * 2016-09-19 2021-11-19 中国移动通信有限公司研究院 V2x数据传输方法及装置
JP6819772B2 (ja) * 2017-03-27 2021-01-27 日本電気株式会社 通信装置、基地局、及び無線リソース割当方法
JP7061254B2 (ja) 2020-05-12 2022-04-28 株式会社シプソル 梱包システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009516418A (ja) * 2005-11-11 2009-04-16 テレフオンアクチーボラゲット エル エム エリクソン(パブル) ピア・ツー・ピア通信の干渉を制限する方法および装置
JP2011009873A (ja) * 2009-06-23 2011-01-13 Canon Inc 通信装置、通信装置の制御方法
JP2012119827A (ja) * 2010-11-30 2012-06-21 Ntt Docomo Inc 移動通信方法、無線基地局及び移動局
WO2012144320A1 (ja) * 2011-04-22 2012-10-26 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法、無線基地局及び移動局
JP2013229746A (ja) * 2012-04-25 2013-11-07 Ntt Docomo Inc 課金システム、課金装置及び課金方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080259853A1 (en) 2005-03-31 2008-10-23 Pioneer Corporation Radio Lan System, and Base Station and Terminal Station Thereof
CN102246575A (zh) * 2008-10-29 2011-11-16 诺基亚公司 用于针对无线通信系统中设备对设备通信的动态通信资源分配的装置和方法
US8606289B2 (en) * 2008-11-10 2013-12-10 Qualcomm Incorporated Power headroom-sensitive scheduling
WO2010082084A1 (en) * 2009-01-16 2010-07-22 Nokia Corporation Apparatus and method ofscheduling resources for device-to-device communications
US8977232B2 (en) * 2009-01-29 2015-03-10 Qualcomm Incorporated Certified device-based accounting
EP2407001B1 (en) * 2009-03-12 2013-12-25 Nokia Solutions and Networks Oy Device-to-device communication
JP2011055221A (ja) * 2009-09-01 2011-03-17 Hitachi Kokusai Electric Inc 無線通信システム
US8885507B2 (en) * 2009-12-11 2014-11-11 Nokia Corporation Method, apparatus and computer program product for allocating resources in wireless communication network
WO2012049351A1 (en) * 2010-10-13 2012-04-19 Nokia Corporation Selection of communication mode
US20140023008A1 (en) 2010-12-27 2014-01-23 Jae-Young Ahn Method for establishing a device-to-device link connection and scheduling for device-to-device communication and terminal relaying
KR20120080327A (ko) * 2011-01-07 2012-07-17 삼성전자주식회사 무선통신시스템에서 상향링크 송신전력을 제어하기 위한 방법 및 장치
CN103733682A (zh) * 2011-06-01 2014-04-16 株式会社Ntt都科摩 使用小节点设备的移动通信中的增强的本地接入
TWI620459B (zh) * 2012-05-31 2018-04-01 內數位專利控股公司 在蜂巢式通訊系統中賦能直鏈通訊排程及控制方法
US9398630B2 (en) * 2012-08-10 2016-07-19 Alcatel Lucent Methods and apparatuses for controlling and scheduling device-to-device communications
US11496948B2 (en) * 2012-10-19 2022-11-08 Samsung Electronics Co., Ltd. System and method for ad-hoc/network assisted device discovery protocol for device to device communications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009516418A (ja) * 2005-11-11 2009-04-16 テレフオンアクチーボラゲット エル エム エリクソン(パブル) ピア・ツー・ピア通信の干渉を制限する方法および装置
JP2011009873A (ja) * 2009-06-23 2011-01-13 Canon Inc 通信装置、通信装置の制御方法
JP2012119827A (ja) * 2010-11-30 2012-06-21 Ntt Docomo Inc 移動通信方法、無線基地局及び移動局
WO2012144320A1 (ja) * 2011-04-22 2012-10-26 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法、無線基地局及び移動局
JP2013229746A (ja) * 2012-04-25 2013-11-07 Ntt Docomo Inc 課金システム、課金装置及び課金方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"TR 22.803 V0.3.0", 3GPP TECHNICAL REPORT, May 2012 (2012-05-01)
See also references of EP2914054A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016512669A (ja) * 2013-02-14 2016-04-28 アルカテル−ルーセント 直接通信を確立するための方法、ならびに基地局、ゲートウェイ、およびそのためのデバイス
JP2016032294A (ja) * 2014-07-25 2016-03-07 住友電気工業株式会社 制御装置、無線装置、及び無線通信装置
CN106664546A (zh) * 2014-08-06 2017-05-10 富士通株式会社 通信系统、通信方法、通信装置和移动终端
EP3179756A4 (en) * 2014-08-06 2017-11-01 Fujitsu Limited Communication system, communication method, communication device, and mobile terminal
US10264443B2 (en) 2014-08-06 2019-04-16 Fujitsu Connected Technologies Limited Communications system, communications method, communications apparatus, and mobile terminal
CN106664546B (zh) * 2014-08-06 2020-04-17 富士通互联科技有限公司 通信系统、通信方法、通信装置和移动终端
WO2016142974A1 (ja) * 2015-03-06 2016-09-15 日本電気株式会社 近接サービス通信のための装置及び方法
US10568154B2 (en) 2015-03-06 2020-02-18 Nec Corporation Apparatus and method for proximity-based service communication
WO2016163471A1 (ja) * 2015-04-10 2016-10-13 京セラ株式会社 基地局及び無線端末
JPWO2016163471A1 (ja) * 2015-04-10 2017-12-28 京セラ株式会社 通信方法、無線端末、プロセッサ及び基地局
US10433150B2 (en) 2015-04-10 2019-10-01 Kyocera Corporation Communication method, radio terminal, processor and base station
WO2020224659A1 (zh) * 2019-05-09 2020-11-12 维沃移动通信有限公司 信息上报方法、信息接收方法、终端和网络控制实体

Also Published As

Publication number Publication date
JP6087370B2 (ja) 2017-03-01
JP2017022762A (ja) 2017-01-26
US10098162B2 (en) 2018-10-09
US20150257186A1 (en) 2015-09-10
US9763273B2 (en) 2017-09-12
US20190014558A1 (en) 2019-01-10
EP2914054A4 (en) 2016-07-13
EP2914054B1 (en) 2018-05-16
JP6282705B2 (ja) 2018-02-21
EP2914054A1 (en) 2015-09-02
JPWO2014069221A1 (ja) 2016-09-08
US20180014343A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6282705B2 (ja) ユーザ端末、プロセッサ及び通信制御方法
JP6153681B2 (ja) ユーザ端末、基地局、プロセッサ及び通信制御方法
JP5826937B2 (ja) 移動通信システム、基地局、ユーザ端末、及びプロセッサ
JP6239280B2 (ja) ユーザ端末、プロセッサ及び移動通信システム
WO2015064679A1 (ja) 移動通信システム及びユーザ端末
JP6026549B2 (ja) 移動通信システム、基地局及びユーザ端末
JP6147848B2 (ja) 通信制御方法及びプロセッサ
WO2014129465A1 (ja) 通信制御方法、ユーザ端末及び基地局
JP6140180B2 (ja) 移動通信システム、ユーザ端末、基地局、プロセッサ及び通信制御方法
WO2015046272A1 (ja) ユーザ端末、ネットワーク装置及びプロセッサ
JP6140292B2 (ja) ネットワーク装置及びユーザ端末
JP6302129B1 (ja) 基地局及びプロセッサ
WO2014192629A1 (ja) ユーザ端末、基地局及びプロセッサ
JP2015019175A (ja) 移動通信システム、ユーザ端末及びネットワーク装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544413

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14438684

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013851802

Country of ref document: EP