WO2014068899A1 - Power supply device, vehicle and power storage device provided with power supply device, and battery system - Google Patents

Power supply device, vehicle and power storage device provided with power supply device, and battery system Download PDF

Info

Publication number
WO2014068899A1
WO2014068899A1 PCT/JP2013/006237 JP2013006237W WO2014068899A1 WO 2014068899 A1 WO2014068899 A1 WO 2014068899A1 JP 2013006237 W JP2013006237 W JP 2013006237W WO 2014068899 A1 WO2014068899 A1 WO 2014068899A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply device
battery
vehicle
case
Prior art date
Application number
PCT/JP2013/006237
Other languages
French (fr)
Japanese (ja)
Inventor
大隅 信幸
中島 薫
昭伸 常定
坂田 英樹
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2014544252A priority Critical patent/JPWO2014068899A1/en
Publication of WO2014068899A1 publication Critical patent/WO2014068899A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/04Arrangement of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a power supply device, a vehicle including the power supply device, a power storage device, and a battery system.
  • the present invention relates to a battery system for a vehicle in which a sub battery is connected in parallel with a lead storage battery, and a vehicle equipped with the battery system.
  • a conventional vehicle is equipped with a lead battery using a lead storage battery with a rated voltage of 12V as a battery for electrical equipment.
  • a lead storage battery with a rated voltage of 12V as a battery for electrical equipment.
  • two sets of 12V lead batteries are connected in series to obtain a rated voltage.
  • It is equipped with a 24V lead battery.
  • the lead battery is charged by the alternator of the vehicle and supplies power to the vehicle electrical equipment, the cell motor, and the like.
  • this lead battery has a small discharge resistance, it has a drawback that it is difficult to charge efficiently because the charge resistance is large.
  • a battery system for a vehicle in which a lithium ion secondary battery is connected in parallel with a lead battery has been developed ( Patent Document 1).
  • the outer shape of these storage cases also has a certain size.
  • the arrangement space of the sub-battery is limited, it is difficult to secure the installation space. Particularly in in-vehicle applications, since many members already exist in the engine room and the room (inside the cabin), it is not easy to secure a unified space.
  • the size of the sub-battery is further reduced, the number of secondary batteries to be used is reduced, leading to a decrease in output and capacity, and the desired performance cannot be exhibited.
  • a main object of the present invention is to provide a power supply device that uses a power storage device such as a plurality of secondary batteries and the like, a vehicle including the power supply device, a power storage device, and a battery system. is there.
  • a power storage block formed by connecting a plurality of power storage units in series or in parallel, a storage case for storing the power storage block, and the power storage block electrically
  • a power supply device comprising: a circuit unit connected to monitor the circuit unit; and the storage case for storing the circuit unit; and a circuit case as a separate member, wherein the storage case and the circuit case are connected to each other.
  • Each can be provided with a connection connector for electrical connection.
  • connection connectors can be connected to each other via a connection cable.
  • the connection connectors can be connected to each other via a connection cable.
  • connection connectors are directly engaged with each other, and the storage case and the circuit case can be brought into contact with each other.
  • the units can be connected together without interposing a connection cable, or can be separated through the connection cable, and can be individually integrated according to the use mode and purpose. The flexibility of the layout can be further enhanced.
  • connection connectors are directly engaged with each other, and the storage case and the circuit case can be brought into contact with each other.
  • a switching unit that switches ON / OFF of the output of the power storage block and a switch case that houses the switching unit can be further provided.
  • the switching unit can be arranged as a separate member from the power storage block or the like, so that each unit is installed in a suitable environment, for example, the switching unit that generates noise is outdoors and the power storage block is outside the engine room. It can be selected and convenience can be improved.
  • a switching unit that switches ON / OFF of the output of the power storage block is provided, and the switching unit can be housed in the circuit case.
  • the first material constituting the storage case and the second material constituting the circuit case can be made of different materials.
  • an appropriate material can be selected according to the characteristics of the storage case and the circuit case.
  • the first material can be a material with excellent heat dissipation
  • the second material can be a material with excellent noise resistance.
  • the storage case and the circuit case can each be formed in a rectangular shape.
  • the circuit case can include a communication connector for performing communication with the vehicle side.
  • each of the plurality of capacitors has an outer shape extended in one direction, and positive and negative electrode terminals are provided at both ends in the longitudinal direction.
  • the storage battery can be held in the storage case with the longitudinal direction of the storage battery being in a horizontal posture and the plurality of storage battery sets being arranged in a vertical direction in a posture parallel to each other. According to the above configuration, even when a situation occurs in which moisture accumulates inside the storage case due to dew condensation or the like, a situation in which the positive and negative of the total voltage are short-circuited can be avoided, and safety can be improved.
  • the battery can be formed of a secondary battery.
  • a power supply device can be configured with widely used secondary batteries, power can be stored at high density, and large capacity can be accommodated.
  • the power supply device can be an in-vehicle sub-battery connected in parallel with a lead battery.
  • the lead battery and the vehicle power supply device can be charged with the power of the regenerative power generation of the vehicle.
  • a traveling motor supplied with power from the power supply device, a vehicle main body including the power supply device and the motor, and the motor driven by the motor.
  • the vehicle main body can be provided with wheels.
  • the vehicle includes an engine for running the vehicle, and an alternator driven by the engine and driven by regenerative braking of the vehicle. It is possible to have an idling stop function for charging the battery.
  • the power storage device includes a power supply controller that controls charging / discharging of the power supply device, and the power supply controller charges the power supply device with external power.
  • the power supply device can be controlled to be charged.
  • the battery system includes a lead battery and a sub battery connected in parallel with the lead battery, wherein the sub battery connects a plurality of capacitors in series or in parallel.
  • a power storage block a storage case for storing the power storage block, a circuit unit that is electrically connected to and monitors the power storage block, and a circuit case for storing the circuit unit.
  • the storage case and the circuit case can be separate members.
  • FIG. 2 is a vertical sectional view taken along line II-II of the power supply device of FIG. 6 is a schematic perspective view showing a power supply device according to Embodiment 2.
  • FIG. 5 is a vertical sectional view taken along line IV-IV of the power supply device of FIG. 4.
  • FIG. 7 is an exploded perspective view of the in-vehicle battery system of FIG. 6. It is a circuit diagram which shows the state which connected the power supply device in parallel with the lead battery as a sub battery.
  • the embodiment described below exemplifies a power supply device, a vehicle including the power supply device, a power storage device, and a battery system for embodying the technical idea of the present invention.
  • the vehicle including the device, the power storage device, and the battery system are not specified as follows.
  • the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation.
  • each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
  • the contents described in some examples and embodiments may be used in other examples and embodiments.
  • FIG. 1 is a perspective view of a power supply device 100 according to Embodiment 1 of the present invention
  • FIG. 2 is a cross-sectional view of the internal structure of the power supply device 100 of the power supply device 100.
  • the power supply device 100 shown in these drawings includes a power storage unit 11, a control unit 21, and a switch unit 31.
  • the power storage unit 11 includes a power storage block 10 including a plurality of power storage units 1 and a storage case 30 that stores the power storage block 10.
  • the control unit 21 includes a circuit unit 20 that is electrically connected to the power storage block 10 and a circuit case 23 that houses the circuit unit 20.
  • the switch unit 31 includes a switching unit 25 and a switch case 29 that houses the switching unit 25.
  • the switching unit 25 is a member for switching ON / OFF of the output of the power storage block 10.
  • the power storage unit 11 and the control unit 21 are arranged as separate members, their arrangement can be flexibly changed.
  • the power supply case is divided into a plurality of smaller cases instead of a single large case, so that the layout can be changed, and the power storage block 10 and the circuit unit 20 are arranged in a limited space.
  • the storage case can be arranged in the vehicle room, and the circuit case can be arranged in the engine room.
  • the secondary battery can be eliminated from the harsh environment exposed to vibration at a high temperature such as an engine room, and its stable use and long life can be achieved, while the circuit unit 20 is excluded from the room. Therefore, it is possible to reduce the occupied area of the power supply device in the room and avoid impairing comfortable living.
  • the switching unit 25 is also a switch unit 31 that is a separate member from the power storage block 10 and the circuit unit 20.
  • the switching unit 25 includes a switch and a relay for switching the output ON / OFF of the power storage block 10. For this reason, the operation sound which opens and closes a contact at the time of ON / OFF switching arises.
  • the operation sound may be noisy and may cause discomfort to the user, and it is required not to be placed in the vehicle.
  • the desirable arrangement positions of the power storage block and the switching unit are different. Therefore, the power storage block 10 and the switching unit 25 are separate units so as to be able to flexibly respond to such a request for the arrangement position.
  • the units arranged at different positions with connection cables, it is possible to function them in an organic manner while arranging them in the units at different positions. The same effect can be realized.
  • Each unit has a connector for connecting the connection cable.
  • the power storage side connection connector 26 is provided on the side surface of the switch unit 31, and the circuit side connection connector 27 is provided on the control unit 21.
  • the switch unit 31 is provided with a switch-side connector 28. These connection connectors are connected with a connection cable.
  • the switch side connection connector 28 and the power storage side connection connector 26, and the switch side connection connector 28 and the circuit side connection connector 27 are connected by separate connection cables. A star or daisy chain connection can be used as required.
  • connection connectors may be directly engageable without using a connection cable (FIG. 5 described later).
  • the units can be directly connected to each other and arranged in the same place.
  • the switching part is arranged in the engine room and the storage block is arranged in the room. Can be selected according to the purpose and purpose, such as using a connection cable.
  • the power supply device 100 is used as an in-vehicle battery for a sub-battery SB connected in parallel with a 12V electrical battery such as a lead battery PB as shown in FIG. 8 described later.
  • a 12V electrical battery such as a lead battery PB as shown in FIG. 8 described later.
  • the power storage unit 11 is a member that houses the battery 1.
  • the power storage unit 11 includes a power storage block 10 and a storage case 30 that stores the power storage block 10.
  • the power storage block 10 is configured by connecting a plurality of power storage devices 1 directly or in parallel. (Control unit 21)
  • control unit 21 includes a circuit unit 20 and a circuit case 23 that houses the circuit unit 20.
  • the circuit unit is electrically connected to the power storage block 10 and monitors this.
  • the first material constituting the storage case 30 and the second material constituting the circuit case 23 are preferably made of different materials. By doing so, it is easy to select appropriate materials according to the characteristics of the storage case 30 and the circuit case 23 and to have functionality specialized for different specifications required for the control unit 21 and the power storage unit 11. it can. That is, the required specifications are different between the storage block 10 and the circuit unit 20. For this reason, when these are accommodated in a common case, it may be difficult to satisfy these requirements simultaneously. For example, on the storage case 30 side, it is required to efficiently dissipate the heat generated by the battery 1. On the other hand, when the heat generation amount of the circuit unit 20 is small, such a requirement is not so high. On the contrary, in the circuit unit 20, it is required to reduce noise from the outside, but such necessity is low in the power storage block.
  • the storage block 10 and the circuit unit 20 can be unitized as separate members, and the materials according to the specifications required for each unit can be provided by changing the material of the case including these units. It becomes.
  • the first material constituting the storage case 30 is a material with excellent heat dissipation.
  • a resin case having heat dissipation while providing insulation is used.
  • the second material constituting the circuit case 23 is made of a material excellent in noise resistance.
  • the shielding property can be improved by configuring the circuit case 23 with a metal case. In this way, by making the materials of the cases constituting each unit different, functions corresponding to the specifications required for each case are added, and appropriate protection is achieved. (Connection cable 60)
  • connection cable 60 Each of the power storage unit 11 and the control unit 21 includes a connection connector for connecting the connection cable 60. Since these units can be connected to each other through the connection cable 60, the power storage unit 11 and the control unit 21 can be physically separated from each other. Further, by providing a connection connector in each unit, the connection with the connection cable 60 can be made a connector type, and an advantage that it can be easily attached and detached is obtained. (Embodiment 2)
  • a switching part can also be put together with a circuit part, for example.
  • FIG. the switching unit 25B and the circuit unit 20B are accommodated in the circuit case 23B. Accordingly, there is an advantage that the power storage block 10 and the circuit system can be arranged at appropriate positions while a simple configuration in which the power storage block 10 and the circuit system are separated is obtained.
  • the electrical connection between the power storage unit 11 and the control unit 21 does not necessarily require a connection cable, and these can be directly connected.
  • FIGS. 4 and 5 Such an example is shown in FIGS. 4 and 5 as Embodiment 3.
  • FIG. in the power supply device 100B shown in these drawings the power storage unit 11 and the control unit 21 are brought into contact with each other and integrated.
  • the power storage side connection connector 26 provided on the side surface of the storage case 30 and the circuit side connection connector 27 provided on the side surface of the circuit case 23 are directly engaged and connected.
  • the circuit part 20 and the electrical storage block 10 can be electrically connected without interposing a connection cable, and routing of the connection cable can be eliminated.
  • the storage case 30 has a rectangular outer shape.
  • the storage case 30 is preferably made of a material having excellent insulating properties, for example, resin. Inside the storage case 30, a plurality of capacitors 1 are stored.
  • the output terminal 36 includes a positive output terminal 36+ connected to the positive side of the total voltage of the power storage block 10 and a negative output terminal 36- connected to the negative side.
  • the positive output terminal 36+ is connected to the positive lead plate 50+ inside the housing case 30, and the negative output terminal 36- is connected to the negative lead plate 50-.
  • a gas vent hole 37 is opened on the upper surface of the storage case 30. This is a hole 37 for discharging the gas from the storage case 30 so that the inside of the storage case 30 does not become excessively high pressure when the battery 1 discharges the gas.
  • the gas discharge hole 37 is preferably connected with a duct for safely discharging the gas discharged from here to the outside of the vehicle.
  • the power storage block 10 includes a negative electrode side connection terminal 12 positioned on the lower surface side in the storage case 30 and a positive electrode side connection terminal 14 positioned on the upper surface side in the storage case 30.
  • the negative output terminal 36- is positioned on the upper surface side of the storage case 30 and is connected to the negative connection terminal 12 positioned on the lower surface side of the storage case 30 by the negative lead plate 50-.
  • the positive output terminal 36+ is connected to the positive output terminal by the positive lead plate 50+.
  • the positive lead plate 50+ is shorter than the negative lead plate 50-.
  • the power storage block 10 has the negative electrode side connection terminal 12 grounded. (Accumulator 1)
  • the power storage device 1 is a member that can store power, and a secondary battery cell can be suitably used.
  • a nickel metal hydride battery can be suitably used.
  • the power supply voltage of the nickel metal hydride battery is 1.2V, it becomes 12V when 10 nickel metal hydride batteries are connected in series, and is suitable for parallel connection with a lead battery PB having a power supply voltage of 12V.
  • a battery block 10 is configured by arranging two battery packs 1 that are nickel-metal hydride batteries as a battery pack 2 connected in the longitudinal direction in parallel with each other on the same plane. That is, the power storage block 10 is composed of ten nickel metal hydride batteries.
  • the voltage of the power supply device 100 can be adjusted to match the lead battery PB of the connection destination.
  • a lead battery PB having a rated voltage of 24V such as a large vehicle such as a truck
  • the output voltage can be adjusted in multiples of 12V by connecting 10N nickel hydride batteries such as 36V, 48V, etc., in units of 10 units, that is, 10n (n is a natural number) in series.
  • 10N nickel hydride batteries such as 36V, 48V, etc.
  • any N (N is a natural number greater than n) nickel metal hydride batteries can be connected to adjust the total voltage of the storage block in increments of 1.2V.
  • nickel-metal hydride batteries may be connected in parallel, thereby increasing the electric capacity of the power supply device.
  • a nickel metal hydride battery can replace with a nickel metal hydride battery, and other secondary batteries, such as a lithium ion secondary battery and a lithium polymer battery, can also be used for an electrical storage device.
  • other secondary batteries such as a lithium ion secondary battery and a lithium polymer battery
  • a capacitor such as an electric double layer capacitor (EDLC) is used instead of or in addition to the battery cell as a capacitor. It can also be used.
  • the battery is used to include a capacitor.
  • the battery 1 uses a cylindrical outer can.
  • a plurality of cylindrical capacitors 1 are held in a horizontal posture and are arranged in a planar shape along the inner surface of the storage case 30.
  • each power storage device 1 constituting the power storage block 10 can be arranged so as to face the main surfaces on both sides of the storage case 30, and these main surfaces are arranged in the power storage device 1. It can be used as a heat radiating surface and can improve heat dissipation.
  • the circuit unit 20 has become a hindrance and the heat dissipation surface of the power storage block has been impaired, but by removing the circuit unit 20 from the inside of the storage case, a larger area of the surface constituting the storage case can be obtained. Thus, it is possible to dissipate heat from the battery.
  • a heat insulating structure such as separating the two or providing a heat insulating wall is necessary. In this respect, it is advantageous in terms of simplification of configuration, cost reduction, size reduction of the storage case, and the like.
  • the electrical storage block demonstrated the example which arrange
  • the control unit 21 includes a circuit unit 20 and a circuit case 23 for housing the circuit unit 20 as shown in FIGS.
  • the circuit unit 20 includes at least one of a monitoring circuit that monitors the state of the capacitor, such as temperature, voltage, and current, and a control circuit that controls charging and discharging of the capacitor.
  • the monitoring circuit also functions as a safety circuit that stops output or sends a signal that shuts off the circuit, for example, when an abnormality is detected in any of the capacitors.
  • a communication connector 24 that performs communication with the vehicle side is provided on the upper surface of the circuit case 23.
  • the communication connector 24 is connected to a vehicle-side control circuit via a cable or the like.
  • the control unit 21 performs data communication with the vehicle-side control circuit according to a predetermined protocol such as CAN, and supplies necessary power.
  • the output terminal 36 is provided in the power storage unit 11 and the communication connector 24 is provided in the control unit 21, but the present invention is not limited to this configuration. It may be provided on the unit side. It is also possible to group these terminals. For example, it is possible to use a connector that integrates communication and output, including an output terminal for the total voltage in the communication connector. (Horizontal position)
  • the electricity storage block 10 holds each electricity storage device 1 in a horizontal posture.
  • the horizontal orientation means a direction that is substantially parallel to the water surface when water accumulates in the storage case 30.
  • the capacitor set 2 is configured by connecting the capacitors 1 in the longitudinal direction.
  • the electrical storage block 10 is comprised so that the electrical storage assembly 2 may be piled up in the orthogonal
  • each set of capacitors is in a state of being located below the storage case. In this state, if water accumulates on the bottom surface of the storage case for some reason, the terminals of each battery set may be submerged, causing an unintended short circuit.
  • each capacitor is set in the horizontal orientation, so that even if water may accumulate in the storage case 30, it is possible to minimize the number of capacitors that are flooded.
  • each of the battery sets 2 constituting the power storage block 10 is arranged in the horizontal direction and in the vertical direction, so that only the both ends of the battery set located on the bottom surface are arranged. Will be submerged. In this state, even if a short circuit occurs, the potential difference of two capacitors is sufficient. For example, when a 1.2 V nickel metal hydride battery is used, the voltage difference is 2.4 V, and the short circuit current is small.
  • the storage case has a sealed structure such as opening a gas discharge hole. I can't.
  • the capacitor set 2 of each layer is connected to the edge of the capacitor set 2 arranged in the vertical direction by the first lead plate 51.
  • the first lead plate 51 conducts the battery sets 2 at the shortest distance.
  • Such a lead plate is composed of a metal plate having excellent conductivity.
  • the total voltage of the power storage block 10 is connected to the output terminal 36 through the positive lead plate 50+ and the negative lead plate 50-.
  • the positive electrode side of the power storage block 10 connected in series is connected to the positive electrode side output terminal 36 + via the positive electrode side lead plate 50 +, and the negative electrode side of the power storage block 10 is connected.
  • the negative electrode side output plate 36- is connected to the negative electrode side lead plate 50-.
  • the upper left edge and the lower right edge of the electricity storage block 10 are connected to the lower right capacitor edge with the negative lead plate 50-
  • the end of the capacitor is connected to the positive lead plate 50+.
  • the positive lead plate 50+ is disposed in the uppermost layer, that is, the highest position of the power storage block 10, even if the positive electrode lead plate 50+ may be submerged in the storage case 30, there is a relative possibility that this portion is short-circuited. The safety can be improved.
  • the output terminal 36 is provided on the upper surface of the storage case 30, that is, at the highest position of the storage case 30, an effect of reducing the possibility of short-circuiting between the output terminals 36 is obtained.
  • the distance from the positive electrode side output terminal 36+ becomes close, and the length of the positive electrode side lead plate 50+ connecting them can be shortened. This leads to a reduction in the area where the positive electrode side lead plate 50+ is exposed, and also a possibility that this portion can be short-circuited.
  • the length of the positive lead plate 50+ can be made considerably shorter than that of the negative lead plate 50-, a short circuit occurs as much as the exposed area is reduced. The risk can be reduced.
  • the negative lead plate 50- prevents the first lead plate 51 and the negative lead plate in order to prevent unintentional conduction with each first lead plate 51 facing the right side of the power storage block 10 in FIGS. It is desirable to place an insulating member such as an insulating sheet between 50-. (Battery system)
  • the battery system 1000 for vehicles can be comprised by connecting the above power supply device 100 as the sub battery SB in parallel with the lead battery PB.
  • This example is shown in the exploded perspective view of FIG.6 and FIG.7.
  • the battery system 1000 shown in these figures is fixed by a fixing mechanism 40 to a battery fixing tray TR provided in the vehicle.
  • the battery system 1000 includes a lead battery PB and a sub battery SB100.
  • the sub battery SB100 is electrically connected in parallel with the lead battery PB, and the output of the battery system 1000 is obtained from the output terminal of the lead battery PB.
  • As the lead battery PB a lead storage battery having an existing rated voltage of 12V is used.
  • the lead battery PB is box-shaped in appearance.
  • the size of the main surface of the storage case 30 is substantially equal to the size of the main surface of the lead battery PB.
  • the sub-battery SB and the lead battery PB can be stacked, and the vehicle battery system 1000 can be constructed integrally, and can be easily fixed by a fixed structure. Furthermore, by stacking with the lead battery PB having a large heat capacity, it is possible to efficiently absorb the heat released from the battery and to release the heat.
  • the main surface of the storage case 30 is formed slightly smaller than the main surface of the lead battery PB.
  • the main surface by the side of the upper surface of storage case 30 can be pressed with the main surface of lead battery PB, and it can fix on a tray by a fixing mechanism in this state.
  • the sub-battery SB100 presses the main surface on the upper surface side with the lead battery PB and presses the main surface on the lower surface side against the floor surface of the tray TR. Even if the internal storage block is about to expand due to charging / discharging, this can be suppressed mechanically, an increase in internal resistance due to expansion and internal short circuit can be suppressed, and the life of the storage battery can be extended.
  • the battery fixing tray TR is fixed in advance to the vehicle chassis SS.
  • the vehicle chassis itself can also be used as a tray.
  • a pair of output terminals 36 protrude from the side surface of the storage case 30.
  • the output terminal 36 is connected to the lead output terminal OT of the lead battery PB via the cable 50.
  • the positive output terminal is connected to the positive lead output terminal
  • the negative output terminal is connected to the negative lead output terminal.
  • a harness or a metal lead can be used for such a cable 50.
  • the surface of the cable 50 is insulated so as not to be short-circuited with a member such as the fixing mechanism 40. (Fixing mechanism 40)
  • the in-vehicle battery system 1000 includes a fixing mechanism 40 for fixing the storage case 30 to a predetermined position of the vehicle.
  • the fixing mechanism 40 fixes the lead battery PB and the sub-battery 100 together at a predetermined position of the vehicle in a state where the lead battery PB is stacked with the pressing surface 33 of the storage case 30 as an upper surface.
  • the sub battery 100 and the lead battery PB can be fixed by the common fixing mechanism 40, and the advantage which can simplify a fixing operation
  • the fixing mechanism 40 shown in FIGS. 6 and 7 is formed in a U shape in cross section so as to cover the periphery along the surface of the battery stack 101 in which the lead battery PB and the sub battery 100 are stacked.
  • the fixing mechanism 40 includes a fixing plate 42 and a pair of rods 44.
  • the fixing plate 42 and the rod 44 are preferably made of a material having sufficient strength, for example, metal.
  • the fixing plate 42 is disposed on the upper surface of the lead battery PB, and both ends thereof are protruded from the side surface of the lead battery PB, and screw holes are opened in each.
  • a rod 44 is disposed on each side surface of the battery stack 101.
  • the tip of the rod 44 cuts a thread groove that can be screwed into the screw hole of the fixing plate 42, and the other end is a hook-like portion 45 bent in a hook shape.
  • a slit SL is opened in advance on a side surface at a position where the battery stack 101 is disposed, and a hook-like portion 45 of the rod 44 is inserted into the slit SL, and a screw groove is formed on the fixing plate 42.
  • the battery stack 101 is fixed to the tray TR by the fixing mechanism 40 by being screwed into the screw hole and fixed by the nut 46 or the like.
  • the fixing mechanism 40 having this configuration can simultaneously fix the lead battery PB and the sub-battery 100 with the single fixing mechanism 40, an advantage of facilitating the fixing work can be obtained. Further, since the lead battery PB needs to be replaced periodically, labor saving of the fixing work is advantageous in terms of efficiency of the replacement work.
  • two fixing mechanisms 40 composed of such fixing plates 42 and rods 44 are provided in parallel while being separated from each other around the battery stack 101.
  • the number of fixing mechanisms is not limited to this, and may be one or three or more depending on the required fixing strength, the size of the battery stack, and the like.
  • the configuration of the fixing mechanism is not limited to the combination of the fixing plate and the rod, for example, the battery stack is wound in a belt shape, or screw holes that penetrate the lead battery and the sub battery are opened at the four corners and screwed, etc.
  • Known fixing methods can be used as appropriate.
  • the pressing surface 33 that presses one of the main surfaces of the storage case 30 with the lead battery PB is fixed by the fixing mechanism 40 in a state where the storage case 30 is pressed with the lead battery PB via the pressing surface 33. To do. Thereby, the change in stress due to the volume expansion of the secondary battery can be suppressed by the synergistic effect of the weight of the lead battery PB and the fixing mechanism 40, thereby extending the life of the secondary battery.
  • FIG. 8 shows an example of a circuit diagram of a vehicle battery system 1000 in which the power supply device 100 is connected to the lead battery PB.
  • the vehicle shown in this figure travels by driving wheels 97 with an engine 96.
  • the power supply device 100 is connected in parallel with the lead battery PB and functions as a sub battery SB that assists the lead battery PB.
  • the sub-battery SB is connected in parallel with the lead battery PB while being connected in series with the switching unit 25. By turning on the switching unit 25, the sub-battery SB is connected in parallel with the lead battery PB and turned off. Thus, the sub battery SB can be disconnected.
  • the power supply device 100 which is the lead battery PB and the sub battery SB is directly connected by the lead wire 50 without going through a current adjustment circuit or the like.
  • the voltages of the lead battery PB and the sub battery SB are always the same voltage.
  • the lead battery and the sub battery can be connected in parallel via a switching element such as a relay or a semiconductor switching element, and can be connected in parallel via a diode or the like.
  • the lead battery PB is a battery in which 6 cells are connected in series and the rated voltage is 12V. However, the present invention does not specify the rated voltage of the lead battery as 12V. Two lead batteries can be connected in series for a rated voltage of 24V, three lead batteries can be connected in series for 36V, and four lead batteries can be connected in series for 48V. Because. Conventional electrical equipment is designed to operate with a power supply voltage of 12V. A vehicle equipped with a lead battery of 24V to 48V is equipped with electrical equipment that operates with this voltage.
  • the sub-battery SB is connected in parallel in order to improve the charging / discharging efficiency and prevent the deterioration of the lead battery PB.
  • the sub battery SB is connected in parallel with the lead battery PB and has the same voltage. In this state, the current balance of charging / discharging between the sub battery SB and the lead battery PB, that is, compatibility is important. If the compatibility is poor, only the lead battery and sub-battery will be charged, or only the lead battery and sub-battery will be discharged, so even if both are connected in parallel, the charge / discharge efficiency cannot be improved. The life of the lead battery cannot be effectively extended.
  • the compatibility of the lead battery PB and the sub battery SB is realized by controlling the open circuit voltage-discharge depth characteristics of the sub battery SB.
  • the open circuit voltage-discharge depth characteristics of the sub-battery SB can be adjusted by, for example, the zinc amount of the positive electrode in a nickel metal hydride battery, and the lithium-containing compound that is a positive electrode active material in a lithium ion secondary battery or a lithium polymer battery. Can be adjusted by selection.
  • the battery system 1000 described above can improve fuel efficiency even in a vehicle that is charged by driving the alternator 6 with the engine 96 regardless of regenerative braking. This is because the power supply device 100 that is the sub-battery SB can be charged up to eight times as much power as the lead battery PB.
  • the alternator 6 of the vehicle stabilizes the output voltage at a constant voltage of about 14 V in order to prevent the deterioration by charging the lead battery PB with a constant voltage and to keep the supply voltage of the electrical equipment 5 constant. ing. Therefore, the current for the alternator 6 to charge the lead battery PB is small and is not charged with a large current.
  • the alternator 6 does not charge the lead battery PB at 100 A, and the alternator 6 outputs the output current to supply power to the electrical equipment 5.
  • the ability of the alternator 6 to charge the battery system 1000 with a large current is effective in improving the fuel efficiency of the vehicle. This is because the alternator 6 can be operated in a region where the power generation efficiency is high, and the engine 96 can also be operated in a region where the fuel consumption rate is small. This is because the alternator 6 has low power generation efficiency at light loads, and the engine 96 has a high fuel consumption rate at light loads.
  • the vehicle battery system 1000 using the power supply device 100 protects the lead battery PB from high-current charging by charging the power generated by the regenerative braking not only to the lead battery PB but also the power supply device 100, and an alternator.
  • the electric power is supplied from the charged power supply device 100 as well as the lead battery PB to the electrical equipment 5, so that the lead battery PB can be prevented from being charged and overdischarged and the life can be extended.
  • the above power supply apparatus can be used as a vehicle-mounted power supply.
  • a vehicle equipped with a power supply device an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and is used as a power source for these vehicles. . (Power supply for hybrid vehicles)
  • FIG. 9 shows an example in which a power supply device is mounted on a hybrid vehicle that runs with both an engine and a motor.
  • a vehicle HV equipped with the power supply device shown in this figure includes an engine 96 and a travel motor 93 that travel the vehicle HV, a power supply device 100 that supplies power to the motor 93, and a generator that charges a battery of the power supply device 100.
  • 94 a vehicle main body 90 on which the power supply device 100 and the motor 93 are mounted, and a wheel 97 that is driven by the motor 93 to run the vehicle main body 90 or drives the vehicle main body 90 by driving the engine 96.
  • the power supply apparatus 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the vehicle HV travels by both the motor 93 and the engine 96 while charging / discharging the battery of the power supply device 100.
  • the motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving.
  • the motor 93 is driven by power supplied from the power supply device 100.
  • the generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked to charge the battery of the power supply device 100. (Power supply for electric vehicles)
  • FIG. 10 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor.
  • a vehicle EV equipped with the power supply device shown in this figure includes a traveling motor 93 for traveling the vehicle EV, a power supply device 100 that supplies power to the motor 93, and a generator 94 that charges a battery of the power supply device 100.
  • the power supply apparatus 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the motor 93 is driven by power supplied from the power supply device 100.
  • the generator 94 is driven by energy when regeneratively braking the vehicle EV and charges the battery of the power supply device 100. (Power storage device for power storage)
  • this power supply device can be used not only as a power source for moving bodies but also as a stationary power storage facility.
  • a power source for home and factory use a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals.
  • FIG. The power supply apparatus 100 shown in this figure forms a battery unit 82 by connecting a plurality of battery packs 81 in a unit shape. Each battery pack 81 has a plurality of battery cells connected in series and / or in parallel. Each battery pack 81 is controlled by a power controller 84.
  • the power supply apparatus 100 drives the load LD after charging the battery unit 82 with the charging power supply CP. For this reason, the power supply apparatus 100 includes a charging mode and a discharging mode.
  • the load LD and the charging power source CP are connected to the power supply device 100 via the discharging switch DS and the charging switch CS, respectively.
  • ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the power supply apparatus 100.
  • the power supply controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging from the charging power supply CP to the power supply apparatus 100.
  • the power controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge.
  • the mode is switched to permit discharge from the power supply apparatus 100 to the load LD.
  • the charge switch CS can be turned on and the discharge switch DS can be turned on to supply power to the load LD and charge the power supply device 100 at the same time.
  • the load LD driven by the power supply device 100 is connected to the power supply device 100 via the discharge switch DS.
  • the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the power supply apparatus 100.
  • the discharge switch DS a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the power supply apparatus 100.
  • the power controller 84 also includes a communication interface for communicating with external devices. In the example of FIG. 11, the host device HT is connected according to an existing communication protocol such as UART or RS-232C. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
  • Each battery pack 81 includes a signal terminal and a power supply terminal.
  • the signal terminals include a pack input / output terminal DI, a pack abnormality output terminal DA, and a pack connection terminal DO.
  • the pack input / output terminal DI is a terminal for inputting / outputting signals from other pack batteries and the power supply controller 84
  • the pack connection terminal DO is for inputting / outputting signals to / from other pack batteries which are child packs.
  • the pack abnormality output terminal DA is a terminal for outputting the abnormality of the battery pack to the outside.
  • the power supply terminal is a terminal for connecting the battery packs 81 in series and in parallel.
  • the power supply device and the vehicle including the power supply device, the power storage device, and the battery system according to the present invention can be suitably used for an electric equipment battery or an auxiliary battery of the vehicle.
  • the present invention can be suitably used as a power supply device for a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle or the like that can switch between the EV traveling mode and the HEV traveling mode.
  • a backup power supply device that can be mounted on a rack of a computer server, a backup power supply device for a wireless base station such as a mobile phone, a power storage device for home use and a factory, a power supply for a street light, etc. Also, it can be used as appropriate for applications such as a backup power source such as a traffic light.

Abstract

The present invention facilitates the installation of a power supply device, which uses a plurality of accumulators such as secondary cells, in a restricted space. The power supply device (100) is provided with: a power storage block (10) formed by connecting a plurality of accumulators (1) in series or in parallel; a housing case (30) that houses the power storage block (10); a circuit part (20) that is electrically connected to the power storage block (10) and monitors the power storage block; and a circuit case (23) that houses the circuit part (20). Furthermore, the housing case (30) and the circuit case (23) are treated as separate members. According to the abovementioned configuration, the housing case (30), which houses the power storage block (10), and the circuit case (23), which houses the circuit part (20), are treated as separate members, allowing the positions of said cases to be flexibly changed, thereby facilitating positioning even in a restricted space.

Description

電源装置及び電源装置を備える車両並びに蓄電装置、バッテリシステムPower supply device, vehicle including power supply device, power storage device, and battery system
 本発明は、電源装置及びこれを備える車両並びに蓄電装置、バッテリシステムに関し、例えば鉛蓄電池と並列にサブバッテリを接続した車両用のバッテリシステムや、このバッテリシステムを搭載する車両に関する。 The present invention relates to a power supply device, a vehicle including the power supply device, a power storage device, and a battery system. For example, the present invention relates to a battery system for a vehicle in which a sub battery is connected in parallel with a lead storage battery, and a vehicle equipped with the battery system.
 従来の車両は、電装用のバッテリとして、定格電圧を12Vとする鉛蓄電池を用いた鉛バッテリを搭載し、また大型車両にあっては12Vの鉛バッテリを2組直列に接続して定格電圧を24Vとする鉛バッテリを搭載している。鉛バッテリは、車両のオルタネータで充電されて、車両の電装機器やセルモータ等に電力を供給している。この鉛バッテリは、放電抵抗は小さいが、充電抵抗が大きいので、効率よく充電するのが難しい欠点がある。この欠点を改善し、さらに容積や重量に対する電池容量(Ah)を大きくすることを目的として、鉛バッテリと並列にリチウムイオン二次電池を接続している車両用のバッテリシステムは開発されている(特許文献1参照)。 A conventional vehicle is equipped with a lead battery using a lead storage battery with a rated voltage of 12V as a battery for electrical equipment. In a large vehicle, two sets of 12V lead batteries are connected in series to obtain a rated voltage. It is equipped with a 24V lead battery. The lead battery is charged by the alternator of the vehicle and supplies power to the vehicle electrical equipment, the cell motor, and the like. Although this lead battery has a small discharge resistance, it has a drawback that it is difficult to charge efficiently because the charge resistance is large. In order to improve this drawback and further increase the battery capacity (Ah) with respect to volume and weight, a battery system for a vehicle in which a lithium ion secondary battery is connected in parallel with a lead battery has been developed ( Patent Document 1).
特開2007-46508号公報JP 2007-46508 A
 このようなサブバッテリでは、内部に多数の二次電池と、これを制御する制御回路を実装した回路基板を備えているため、これらの収納ケースの外形もある程度の大きさとなる。しかしながら、サブバッテリの配置スペースは限られているため、その設置空間の確保が困難となる。特に車載用途においては、エンジンルームや室内(キャビン内)は既に多くの部材が存在するため、纏まった空間を確保することは容易でない。かといって、サブバッテリの一層の小型化を図ろうとすれば、使用する二次電池の本数を減らす等、出力や容量の低下に繋がることとなって、所期の性能を発揮できなくなる。 Since such a sub-battery includes a circuit board on which a large number of secondary batteries and a control circuit for controlling the secondary battery are mounted, the outer shape of these storage cases also has a certain size. However, since the arrangement space of the sub-battery is limited, it is difficult to secure the installation space. Particularly in in-vehicle applications, since many members already exist in the engine room and the room (inside the cabin), it is not easy to secure a unified space. However, if the size of the sub-battery is further reduced, the number of secondary batteries to be used is reduced, leading to a decrease in output and capacity, and the desired performance cannot be exhibited.
 本発明は、従来のこのような問題点に鑑みてなされたものである。本発明の主な目的は、複数の二次電池等の蓄電器を使用する電源装置を限られたスペースに設置し易くした電源装置及び電源装置を備える車両並びに蓄電装置、バッテリシステムを提供することにある。 The present invention has been made in view of such conventional problems. SUMMARY OF THE INVENTION A main object of the present invention is to provide a power supply device that uses a power storage device such as a plurality of secondary batteries and the like, a vehicle including the power supply device, a power storage device, and a battery system. is there.
課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention
 上記目的を達成するために、本発明の電源装置によれば、複数の蓄電器を直列又は並列に接続してなる蓄電ブロックと、前記蓄電ブロックを収納する収納ケースと、前記蓄電ブロックと電気的に接続されてこれを監視するための回路部と、前記回路部を収納するための、前記収納ケースと別部材の回路ケースとを備える電源装置であって、前記収納ケースと回路ケースは、互いを電気的に接続するための接続コネクタをそれぞれを備えることができる。上記構成により、蓄電ブロックを収納した収納ケースと、回路部を収納した回路ケースとを別体としたことで、これらの配置を柔軟に変更できるので、限られたスペース内でも配置し易くできる。 In order to achieve the above object, according to the power supply device of the present invention, a power storage block formed by connecting a plurality of power storage units in series or in parallel, a storage case for storing the power storage block, and the power storage block electrically A power supply device comprising: a circuit unit connected to monitor the circuit unit; and the storage case for storing the circuit unit; and a circuit case as a separate member, wherein the storage case and the circuit case are connected to each other. Each can be provided with a connection connector for electrical connection. With the above configuration, since the storage case storing the power storage block and the circuit case storing the circuit unit are separated, their arrangement can be changed flexibly, so that the storage case can be easily arranged even in a limited space.
 また、他の電源装置によれば、前記接続コネクタ同士を、接続ケーブルを介して接続することができる。これにより、蓄電ブロックと回路部とを別ユニットとしつつも、電気的な接続は維持され、一体的な電源装置と同様に利用できる。 Further, according to another power supply apparatus, the connection connectors can be connected to each other via a connection cable. Thus, while the power storage block and the circuit unit are separate units, the electrical connection is maintained and the power storage block and the circuit unit can be used in the same manner as an integrated power supply device.
 さらに、他の電源装置によれば、前記接続コネクタ同士を、直接係合させて接続しており、前記収納ケースと回路ケースとを接触させることができる。上記構成により、ユニット同士の接続を、接続ケーブルを介在させることなく一体的に接続することも、また接続ケーブルを介して離間させることも可能となり、使用態様や目的に応じて一体的にも個別にも利用可能としてレイアウトの柔軟性を一層高められる。 Furthermore, according to another power supply device, the connection connectors are directly engaged with each other, and the storage case and the circuit case can be brought into contact with each other. With the above configuration, the units can be connected together without interposing a connection cable, or can be separated through the connection cable, and can be individually integrated according to the use mode and purpose. The flexibility of the layout can be further enhanced.
 さらにまた、他の電源装置によれば、前記接続コネクタ同士を、直接係合させて接続しており、前記収納ケースと回路ケースとを接触させることができる。上記構成により、これら収納ケースと回路ケースを接触部分でもって電気接続できるため、ハーネスを不要とでき、コスト削減や信頼性向上が図られる。 Furthermore, according to another power supply apparatus, the connection connectors are directly engaged with each other, and the storage case and the circuit case can be brought into contact with each other. With the above configuration, since the storage case and the circuit case can be electrically connected at the contact portion, a harness can be eliminated, and cost reduction and reliability improvement can be achieved.
 さらにまた、他の電源装置によれば、さらに前記蓄電ブロックの出力のON/OFFを切り替えるスイッチング部と、前記スイッチング部を収納するスイッチケースとを備えることができる。上記構成により、スイッチング部を蓄電ブロック等と別部材に配置できるので、例えば騒音を発するスイッチング部を室外に、蓄電ブロックをエンジンルーム外に、といった、各ユニットをそれぞれ適した環境下に設置するよう選択でき、利便性を高められる。 Furthermore, according to another power supply apparatus, a switching unit that switches ON / OFF of the output of the power storage block and a switch case that houses the switching unit can be further provided. With the above configuration, the switching unit can be arranged as a separate member from the power storage block or the like, so that each unit is installed in a suitable environment, for example, the switching unit that generates noise is outdoors and the power storage block is outside the engine room. It can be selected and convenience can be improved.
 さらにまた、他の電源装置によれば、前記蓄電ブロックの出力のON/OFFを切り替えるスイッチング部を備えており、前記スイッチング部を、前記回路ケースに収納することができる。上記構成により、スイッチング部と回路部の回路系を纏めることができ、構成を簡素化しつつも、蓄電ブロックとは別部材としてそれぞれに適した環境下に配置できる利点を担保できる。 Still further, according to another power supply apparatus, a switching unit that switches ON / OFF of the output of the power storage block is provided, and the switching unit can be housed in the circuit case. With the above configuration, the circuit system of the switching unit and the circuit unit can be integrated, and the advantage of being able to be arranged in an environment suitable for each as a separate member from the power storage block can be secured while simplifying the configuration.
 さらにまた、他の電源装置によれば、前記収納ケースを構成する第一材質と、前記回路ケースを構成する第二材質とを異なる材質で構成できる。上記構成により、収納ケースと回路ケースの特性に応じて適切な材質を選択できる。 Furthermore, according to another power supply device, the first material constituting the storage case and the second material constituting the circuit case can be made of different materials. With the above configuration, an appropriate material can be selected according to the characteristics of the storage case and the circuit case.
 さらに、他の電源装置によれば、前記第一材質を、放熱性に優れた材質とし、前記第二材質を、耐ノイズ性に優れた材質とすることができる。上記構成により、収納ケース側では蓄電器の発熱を効率よく放熱させる一方、回路ケース側では回路部をノイズから保護して、それぞれのケースの機能に応じた適切な保護が図られる。 Furthermore, according to another power supply apparatus, the first material can be a material with excellent heat dissipation, and the second material can be a material with excellent noise resistance. With the above configuration, the storage case side efficiently dissipates the heat generated by the capacitor, while the circuit case side protects the circuit portion from noise, and appropriate protection according to the function of each case is achieved.
 さらにまた、他の電源装置によれば、前記収納ケース及び回路ケースを、それぞれ外形を矩形状に形成できる。上記構成により、収納ケースや回路ケースを組み合わせ易くなり、配置変更を比較的容易に行える利点が得られる。 Furthermore, according to another power supply device, the storage case and the circuit case can each be formed in a rectangular shape. With the above configuration, it is easy to combine the storage case and the circuit case, and there is an advantage that the arrangement can be changed relatively easily.
 さらにまた、他の電源装置によれば、前記回路ケースが、車両側との通信を行う通信コネクタを備えることができる。上記構成により、車両側とのデータ通信が可能となり、負荷側である車両の状態に応じた充放電が可能となる。 Furthermore, according to another power supply apparatus, the circuit case can include a communication connector for performing communication with the vehicle side. With the above configuration, data communication with the vehicle side becomes possible, and charging / discharging according to the state of the vehicle on the load side becomes possible.
 さらにまた、他の電源装置によれば、前記複数の蓄電器は、それぞれ一方向に延長された外形を有すると共に、長手方向の両端に正負の電極端子が設けられており、前記蓄電器組は、各記蓄電器を、その長手方向を水平姿勢として、かつ前記複数の蓄電器組を互いに平行な姿勢で鉛直方向に並べた状態で、前記収納ケース内に保持させることができる。上記構成により、収納ケースの内部に結露等によって水分が溜まる事態が生じても、総電圧の正負が短絡する事態を回避し、安全性を高めることができる。 Furthermore, according to another power supply device, each of the plurality of capacitors has an outer shape extended in one direction, and positive and negative electrode terminals are provided at both ends in the longitudinal direction. The storage battery can be held in the storage case with the longitudinal direction of the storage battery being in a horizontal posture and the plurality of storage battery sets being arranged in a vertical direction in a posture parallel to each other. According to the above configuration, even when a situation occurs in which moisture accumulates inside the storage case due to dew condensation or the like, a situation in which the positive and negative of the total voltage are short-circuited can be avoided, and safety can be improved.
 さらにまた、他の電源装置によれば、前記蓄電器を、二次電池で構成することができる。上記構成により、広く普及した二次電池でもって電源装置を構成でき、高密度での蓄電が可能となり、大容量化等にも対応できる。 Furthermore, according to another power supply device, the battery can be formed of a secondary battery. With the above-described configuration, a power supply device can be configured with widely used secondary batteries, power can be stored at high density, and large capacity can be accommodated.
 さらにまた、他の電源装置によれば、前記電源装置を、鉛バッテリと並列に接続される車載用のサブバッテリとすることができる。 Furthermore, according to another power supply device, the power supply device can be an in-vehicle sub-battery connected in parallel with a lead battery.
 さらにまた、他の電源装置によれば、アイドリングストップ機能を有する車両に搭載可能であり、該車両の回生発電の電力でもって、鉛バッテリと車両用電源装置の両方を充電可能とできる。 Furthermore, according to another power supply device, it can be mounted on a vehicle having an idling stop function, and both the lead battery and the vehicle power supply device can be charged with the power of the regenerative power generation of the vehicle.
 さらにまた、本発明の電源装置を備える車両によれば、前記電源装置から電力供給される走行用のモータと、前記電源装置及び前記モータを搭載してなる車両本体と、前記モータで駆動されて前記車両本体を走行させる車輪とを備えることができる。 Furthermore, according to the vehicle including the power supply device of the present invention, a traveling motor supplied with power from the power supply device, a vehicle main body including the power supply device and the motor, and the motor driven by the motor. The vehicle main body can be provided with wheels.
 さらにまた、他の電源装置を備える車両によれば、車両を走行させるエンジンと、前記エンジンで駆動され、かつ車両の回生制動で駆動されるオルタネータとを備え、前記オルタネータで、回生制動時に電源装置を充電するアイドリングストップ機能を有することができる。 Furthermore, according to a vehicle including another power supply device, the vehicle includes an engine for running the vehicle, and an alternator driven by the engine and driven by regenerative braking of the vehicle. It is possible to have an idling stop function for charging the battery.
 さらにまた、本発明の電源装置を備える蓄電装置によれば、前記電源装置への充放電を制御する電源コントローラを備えており、前記電源コントローラでもって、外部からの電力により前記電源装置への充電を可能とすると共に、前記電源装置に対し充電を行うよう制御可能とできる。 Furthermore, according to the power storage device including the power supply device of the present invention, the power storage device includes a power supply controller that controls charging / discharging of the power supply device, and the power supply controller charges the power supply device with external power. In addition, the power supply device can be controlled to be charged.
 さらにまた、本発明のバッテリシステムによれば、鉛バッテリと、前記鉛バッテリと並列に接続されるサブバッテリとを備えるバッテリシステムであって、前記サブバッテリは、複数の蓄電器を直列又は並列に接続してなる蓄電ブロックと、前記蓄電ブロックを収納する収納ケースと、前記蓄電ブロックと電気的に接続されてこれを監視するための回路部と、前記回路部を収納する回路ケースとを備えており、前記収納ケースと回路ケースを別部材とすることができる。上記構成により、蓄電ブロックを収納した収納ケースと、回路部を収納した回路ケースとを別体としたことで、これらの配置を柔軟に変更できるので、限られたスペース内でも配置し易くできる。 Furthermore, according to the battery system of the present invention, the battery system includes a lead battery and a sub battery connected in parallel with the lead battery, wherein the sub battery connects a plurality of capacitors in series or in parallel. A power storage block, a storage case for storing the power storage block, a circuit unit that is electrically connected to and monitors the power storage block, and a circuit case for storing the circuit unit. The storage case and the circuit case can be separate members. With the above configuration, since the storage case storing the power storage block and the circuit case storing the circuit unit are separated, their arrangement can be changed flexibly, so that the storage case can be easily arranged even in a limited space.
本発明の実施の形態1に係る電源装置を示す斜視図である。It is a perspective view which shows the power supply device which concerns on Embodiment 1 of this invention. 図1の電源装置のII-II線における垂直断面図である。FIG. 2 is a vertical sectional view taken along line II-II of the power supply device of FIG. 実施の形態2に係る電源装置を示す模式斜視図である。6 is a schematic perspective view showing a power supply device according to Embodiment 2. FIG. 本発明の実施の形態3に係る電源装置を示す斜視図である。It is a perspective view which shows the power supply device which concerns on Embodiment 3 of this invention. 図4の電源装置のIV-IV線における垂直断面図である。FIG. 5 is a vertical sectional view taken along line IV-IV of the power supply device of FIG. 4. 車載用のバッテリシステムを示す斜視図である。It is a perspective view which shows the battery system for vehicle mounting. 図6の車載用のバッテリシステムの分解斜視図である。FIG. 7 is an exploded perspective view of the in-vehicle battery system of FIG. 6. 電源装置をサブバッテリとして鉛バッテリと並列に接続した状態を示す回路図である。It is a circuit diagram which shows the state which connected the power supply device in parallel with the lead battery as a sub battery. エンジンとモータで走行するハイブリッド車に電源装置を搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a power supply device in the hybrid vehicle which drive | works with an engine and a motor. モータのみで走行する電気自動車に電源装置を搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a power supply device in the electric vehicle which drive | works only with a motor. 蓄電用の電源装置に適用する例を示すブロック図である。It is a block diagram which shows the example applied to the power supply device for electrical storage.
 以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための電源装置及び電源装置を備える車両並びに蓄電装置、バッテリシステムを例示するものであって、本発明は電源装置及び電源装置を備える車両並びに蓄電装置、バッテリシステムを以下のものに特定しない。また実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は、特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。
(実施の形態1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a power supply device, a vehicle including the power supply device, a power storage device, and a battery system for embodying the technical idea of the present invention. The vehicle including the device, the power storage device, and the battery system are not specified as follows. Further, the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments.
(Embodiment 1)
 本発明の実施の形態1に係る電源装置100の斜視図を図1に、この電源装置100のこの電源装置100の内部構造を図2の断面図に、それぞれ示す。これらの図に示す電源装置100は、蓄電ユニット11と制御ユニット21とスイッチユニット31で構成される。蓄電ユニット11は、複数の蓄電器1で構成された蓄電ブロック10と、蓄電ブロック10を収納する収納ケース30とで構成される。一方制御ユニット21は、蓄電ブロック10と電気的に接続される回路部20と、回路部20を収納する回路ケース23とで構成される。またスイッチユニット31は、スイッチング部25と、このスイッチング部25を収納するスイッチケース29で構成される。このスイッチング部25は、蓄電ブロック10の出力のON/OFFを切り替えるための部材である。これら制御ユニット21と蓄電ユニット11とスイッチユニット31との間は、接続ケーブル60を介して接続されている。 FIG. 1 is a perspective view of a power supply device 100 according to Embodiment 1 of the present invention, and FIG. 2 is a cross-sectional view of the internal structure of the power supply device 100 of the power supply device 100. The power supply device 100 shown in these drawings includes a power storage unit 11, a control unit 21, and a switch unit 31. The power storage unit 11 includes a power storage block 10 including a plurality of power storage units 1 and a storage case 30 that stores the power storage block 10. On the other hand, the control unit 21 includes a circuit unit 20 that is electrically connected to the power storage block 10 and a circuit case 23 that houses the circuit unit 20. The switch unit 31 includes a switching unit 25 and a switch case 29 that houses the switching unit 25. The switching unit 25 is a member for switching ON / OFF of the output of the power storage block 10. These control unit 21, power storage unit 11, and switch unit 31 are connected via a connection cable 60.
 このように蓄電ユニット11と制御ユニット21とを別部材としたことで、これらの配置を柔軟に変更できる。すなわち、電源ケースを一の大きなケースとせずに、これよりも小さい複数のケースに分割したことで、レイアウトの変更を可能とし、限られたスペース内に蓄電ブロック10と回路部20とを配置し易くできる。例えば、収納ケースを車両の室内に配置し、回路ケースをエンジンルームに配置することもできる。この結果、エンジンルームのような高温で振動に晒される過酷な環境から二次電池を排除して、その安定利用と長寿命化を図ることができ、一方で回路部20は室内から排除することで、室内における電源装置の専有面積を低減して、快適な居住性を損なうことを回避できる。 Thus, by arranging the power storage unit 11 and the control unit 21 as separate members, their arrangement can be flexibly changed. In other words, the power supply case is divided into a plurality of smaller cases instead of a single large case, so that the layout can be changed, and the power storage block 10 and the circuit unit 20 are arranged in a limited space. Easy to do. For example, the storage case can be arranged in the vehicle room, and the circuit case can be arranged in the engine room. As a result, the secondary battery can be eliminated from the harsh environment exposed to vibration at a high temperature such as an engine room, and its stable use and long life can be achieved, while the circuit unit 20 is excluded from the room. Therefore, it is possible to reduce the occupied area of the power supply device in the room and avoid impairing comfortable living.
 加えて、スイッチング部25も、蓄電ブロック10や回路部20と別部材のスイッチユニット31としている。これより、蓄電ブロックの位置に制約されない、柔軟な配置が可能となる。特にスイッチング部25は、蓄電ブロック10の出力ON/OFFを切り替えるためのスイッチやリレーを備えている。このため、ON/OFFの切り替え時に接点を開閉させる動作音が生じる。この結果、例えば車両の車内に配置すると動作音が騒音となってユーザに不快感を与えることがあり、車内に配置しないことが求められる。一方で蓄電ブロックは、上述の通りエンジンルームに配置することは、環境温度や振動などの点で望ましくない。このように、蓄電ブロックとスイッチング部は、望ましい配置位置が異なる。そこで、このような配置位置の要求に柔軟に対応できるように、蓄電ブロック10とスイッチング部25を個別のユニットとした。また、異なる位置に配置されたユニット間を接続ケーブルで電気的に接続することで、異なる位置にユニットに配置しつつもこれらを有機的に連携させて機能させることができ、一体型とした場合と同様の効果が実現できる。 In addition, the switching unit 25 is also a switch unit 31 that is a separate member from the power storage block 10 and the circuit unit 20. Thereby, flexible arrangement | positioning which is not restrained by the position of an electrical storage block is attained. In particular, the switching unit 25 includes a switch and a relay for switching the output ON / OFF of the power storage block 10. For this reason, the operation sound which opens and closes a contact at the time of ON / OFF switching arises. As a result, for example, when it is placed in the vehicle, the operation sound may be noisy and may cause discomfort to the user, and it is required not to be placed in the vehicle. On the other hand, it is not desirable to place the power storage block in the engine room as described above in terms of environmental temperature and vibration. As described above, the desirable arrangement positions of the power storage block and the switching unit are different. Therefore, the power storage block 10 and the switching unit 25 are separate units so as to be able to flexibly respond to such a request for the arrangement position. In addition, by connecting the units arranged at different positions with connection cables, it is possible to function them in an organic manner while arranging them in the units at different positions. The same effect can be realized.
 各ユニットは、接続ケーブルを接続するための接続コネクタを設けている。図1の例では、スイッチユニット31の側面には蓄電側接続コネクタ26を、制御ユニット21には回路側接続コネクタ27を、それぞれ設けている。またスイッチユニット31には、スイッチ側接続コネクタ28を設けている。これらの接続コネクタ間を、接続ケーブルでもって接続する。この例ではスイッチ側接続コネクタ28と蓄電側接続コネクタ26、スイッチ側接続コネクタ28と回路側接続コネクタ27を、それぞれ別個の接続ケーブルで接続している。必要に応じてスター型やデイジーチェーン型の接続を採用することもできる。 Each unit has a connector for connecting the connection cable. In the example of FIG. 1, the power storage side connection connector 26 is provided on the side surface of the switch unit 31, and the circuit side connection connector 27 is provided on the control unit 21. The switch unit 31 is provided with a switch-side connector 28. These connection connectors are connected with a connection cable. In this example, the switch side connection connector 28 and the power storage side connection connector 26, and the switch side connection connector 28 and the circuit side connection connector 27 are connected by separate connection cables. A star or daisy chain connection can be used as required.
 加えて、接続ケーブルを介することなく、接続コネクタ同士を直接係合可能としてもよい(後述する図5)。この場合は、各ユニットの配置位置に制限がない場合は、ユニット同士を直接接続させて同じ場所に配置することができ、一方で例えばスイッチング部はエンジンルーム、蓄電ブロックは室内といったように配置位置に指定がある場合は、接続ケーブルを利用して接続するといった、用途や目的に応じた柔軟な配置が選択できる。 In addition, the connection connectors may be directly engageable without using a connection cable (FIG. 5 described later). In this case, if there is no restriction on the arrangement position of each unit, the units can be directly connected to each other and arranged in the same place. On the other hand, for example, the switching part is arranged in the engine room and the storage block is arranged in the room. Can be selected according to the purpose and purpose, such as using a connection cable.
 以下では、電源装置100を車載用の電池として、後述する図8に示すように、鉛バッテリPBのような12Vの電装用バッテリと並列に接続されたサブバッテリSBに利用する例を説明する。
(蓄電ユニット11)
Hereinafter, an example will be described in which the power supply device 100 is used as an in-vehicle battery for a sub-battery SB connected in parallel with a 12V electrical battery such as a lead battery PB as shown in FIG. 8 described later.
(Power storage unit 11)
 蓄電ユニット11は、蓄電器1を収納する部材である。蓄電ユニット11は、蓄電ブロック10と、蓄電ブロック10を収納する収納ケース30とで構成される。蓄電ブロック10は、複数の蓄電器1を直接又は並列に接続して構成される。
(制御ユニット21)
The power storage unit 11 is a member that houses the battery 1. The power storage unit 11 includes a power storage block 10 and a storage case 30 that stores the power storage block 10. The power storage block 10 is configured by connecting a plurality of power storage devices 1 directly or in parallel.
(Control unit 21)
 一方制御ユニット21は、回路部20と、この回路部20を収納する回路ケース23とで構成される。回路部は、蓄電ブロック10と電気的に接続され、これを監視する。 On the other hand, the control unit 21 includes a circuit unit 20 and a circuit case 23 that houses the circuit unit 20. The circuit unit is electrically connected to the power storage block 10 and monitors this.
 ここで、収納ケース30を構成する第一材質と、回路ケース23を構成する第二材質とは、異なる材質で構成することが好ましい。このようにすることで、収納ケース30と回路ケース23の特性に応じて適切な材質を選択して、制御ユニット21と蓄電ユニット11とで求められる異なる仕様に特化した機能性を持たせやすくできる。すなわち、蓄電ブロック10と、回路部20とでは、求められる仕様も異なる。このため、これらを共通のケースに収納する場合は、これらの要求を同時に満たすことが困難な場合もあった。例えば、収納ケース30側では蓄電器1の発熱を効率よく放熱させることが求められる一方、回路部20の発熱量が少ない場合は、そのような要求はさほど高くない。逆に回路部20では、外部からのノイズを低減させることが求められるところ、蓄電ブロックではそのような必要性は低い。 Here, the first material constituting the storage case 30 and the second material constituting the circuit case 23 are preferably made of different materials. By doing so, it is easy to select appropriate materials according to the characteristics of the storage case 30 and the circuit case 23 and to have functionality specialized for different specifications required for the control unit 21 and the power storage unit 11. it can. That is, the required specifications are different between the storage block 10 and the circuit unit 20. For this reason, when these are accommodated in a common case, it may be difficult to satisfy these requirements simultaneously. For example, on the storage case 30 side, it is required to efficiently dissipate the heat generated by the battery 1. On the other hand, when the heat generation amount of the circuit unit 20 is small, such a requirement is not so high. On the contrary, in the circuit unit 20, it is required to reduce noise from the outside, but such necessity is low in the power storage block.
 そこで、蓄電ブロック10と回路部20とを別途の部材にユニット化すると共に、これらを含むケースの材質を異ならせることで、各ユニットで要求される仕様に応じた機能性を持たせることが可能となる。例えば、蓄電ユニット11側では蓄電器1の発熱を効率よく放熱させることが求められるので、収納ケース30を構成する第一材質は放熱性に優れた材質とする。例えば、絶縁性を備えつつも放熱性を備えた樹脂製のケースとする。その一方、制御ユニット21側では回路部20を外乱やノイズから保護することが重要となるので、回路ケース23を構成する第二材質を耐ノイズ性に優れた材質とする。例えば金属製のケースで回路ケース23を構成することで、シールド性を高められる。このように、各ユニットを構成するケースの材質を、それぞれ異ならせることで、それぞれのケースで求められる仕様に応じた機能を付加し、適切な保護が図られる。
(接続ケーブル60)
Therefore, the storage block 10 and the circuit unit 20 can be unitized as separate members, and the materials according to the specifications required for each unit can be provided by changing the material of the case including these units. It becomes. For example, since it is required to efficiently dissipate the heat generated by the battery 1 on the power storage unit 11 side, the first material constituting the storage case 30 is a material with excellent heat dissipation. For example, a resin case having heat dissipation while providing insulation is used. On the other hand, since it is important to protect the circuit unit 20 from disturbance and noise on the control unit 21 side, the second material constituting the circuit case 23 is made of a material excellent in noise resistance. For example, the shielding property can be improved by configuring the circuit case 23 with a metal case. In this way, by making the materials of the cases constituting each unit different, functions corresponding to the specifications required for each case are added, and appropriate protection is achieved.
(Connection cable 60)
 また、蓄電ブロック10を回路部20で監視するため、これらを電気的に接続する必要がある。このため蓄電ユニット11と制御ユニット21とは、接続ケーブル60でもって接続されている。蓄電ユニット11と制御ユニット21はそれぞれ、接続ケーブル60を接続するための接続コネクタを備えている。接続ケーブル60を介在させてこれらのユニット同士を接続できるので、蓄電ユニット11と制御ユニット21とは物理的に離間させて配置できる。また各ユニットに接続コネクタを設けることで、接続ケーブル60との接続をコネクタ式とでき、その着脱も容易に行える利点が得られる。
(実施の形態2)
Moreover, since the electrical storage block 10 is monitored by the circuit unit 20, it is necessary to electrically connect them. For this reason, the power storage unit 11 and the control unit 21 are connected by the connection cable 60. Each of the power storage unit 11 and the control unit 21 includes a connection connector for connecting the connection cable 60. Since these units can be connected to each other through the connection cable 60, the power storage unit 11 and the control unit 21 can be physically separated from each other. Further, by providing a connection connector in each unit, the connection with the connection cable 60 can be made a connector type, and an advantage that it can be easily attached and detached is obtained.
(Embodiment 2)
 一方で、上記の例ではスイッチング部25と蓄電ブロック10と回路部20とを別ユニットで構成した例を説明したが、例えばスイッチング部を回路部と纏めることもできる。このような例を実施の形態2として、図3に示す。ここでは、回路ケース23Bにスイッチング部25Bと回路部20Bとを収納している。これにより、蓄電ブロック10と回路系とを分離したシンプルな構成としつつ、蓄電ブロック10と回路系とをそれぞれ適した位置に配置できる利点が得られる。なおこの場合は、スイッチング部25Bを、回路部20Bより上方に配置することが好ましい。これによって、スイッチング部25Bの発熱が伝わりやすい上方には回路部20Bを配置せず、伝熱し難い下方に配置したことで回路部20Bに熱の影響が及ぶ事態を抑制して、回路部20Bを保護できる。
(実施の形態3)
On the other hand, although the example which comprised the switching part 25, the electrical storage block 10, and the circuit part 20 by another unit was demonstrated in said example, a switching part can also be put together with a circuit part, for example. Such an example is shown in FIG. Here, the switching unit 25B and the circuit unit 20B are accommodated in the circuit case 23B. Accordingly, there is an advantage that the power storage block 10 and the circuit system can be arranged at appropriate positions while a simple configuration in which the power storage block 10 and the circuit system are separated is obtained. In this case, it is preferable to arrange the switching unit 25B above the circuit unit 20B. As a result, the circuit unit 20B is not disposed on the upper side where the heat generation of the switching unit 25B is easily transmitted, and is disposed on the lower side where heat is not easily transmitted. Can protect.
(Embodiment 3)
 さらに、蓄電ユニット11と制御ユニット21との電器接続は、必ずしも接続ケーブルを要するものでなく、これらを直接接続することもできる。このような例を実施の形態3として、図4及び図5に示す。これらの図に示す電源装置100Bは、蓄電ユニット11と制御ユニット21とを接触させて一体化させている。ここでは、収納ケース30の側面に設けられた蓄電側接続コネクタ26と、回路ケース23の側面に設けられた回路側接続コネクタ27とを直接係合させて接続している。これにより、接続ケーブルを介在させることなく回路部20と蓄電ブロック10とを電気接続でき、接続ケーブルの引き回しも不要とできる。また、このように蓄電ユニット11と制御ユニット21とを接触させる構成においても、回路部20と蓄電ブロック10の位置関係を比較的自由に設定できることから、与えられる設置空間の形状に応じて、蓄電ユニット11と制御ユニット21の配置位置を調整でき、一意的な従来の電源装置の外形に比べて、より柔軟な設計が可能となり、限られた設置スペースへの配置に寄与し得る。
(収納ケース30)
Furthermore, the electrical connection between the power storage unit 11 and the control unit 21 does not necessarily require a connection cable, and these can be directly connected. Such an example is shown in FIGS. 4 and 5 as Embodiment 3. FIG. In the power supply device 100B shown in these drawings, the power storage unit 11 and the control unit 21 are brought into contact with each other and integrated. Here, the power storage side connection connector 26 provided on the side surface of the storage case 30 and the circuit side connection connector 27 provided on the side surface of the circuit case 23 are directly engaged and connected. Thereby, the circuit part 20 and the electrical storage block 10 can be electrically connected without interposing a connection cable, and routing of the connection cable can be eliminated. Even in the configuration in which the power storage unit 11 and the control unit 21 are in contact with each other in this way, the positional relationship between the circuit unit 20 and the power storage block 10 can be set relatively freely. The arrangement positions of the unit 11 and the control unit 21 can be adjusted, and a more flexible design is possible compared to the unique external shape of the conventional power supply device, which can contribute to the arrangement in a limited installation space.
(Storage case 30)
 以下、各ユニットの詳細について説明する。まず蓄電ユニット11について、図1等に示すように、収納ケース30は、外形を矩形状としている。収納ケース30は、好ましくは絶縁性に優れた材質、例えば樹脂製とする。収納ケース30の内部には、複数の蓄電器1を収納している。 The details of each unit are described below. First, regarding the power storage unit 11, as shown in FIG. 1 and the like, the storage case 30 has a rectangular outer shape. The storage case 30 is preferably made of a material having excellent insulating properties, for example, resin. Inside the storage case 30, a plurality of capacitors 1 are stored.
 また収納ケース30の上面には、一対の出力端子36を突出させている。出力端子36は、蓄電ブロック10の総電圧の正極側と接続された正極側出力端子36+と、負極側と接続された負極側出力端子36-とで構成される。また正極側出力端子36+は収納ケース30の内部で、正極側リード板50+と、負極側出力端子36-は負極側リード板50-と、それぞれ接続されている。 Further, a pair of output terminals 36 are projected from the upper surface of the storage case 30. The output terminal 36 includes a positive output terminal 36+ connected to the positive side of the total voltage of the power storage block 10 and a negative output terminal 36- connected to the negative side. The positive output terminal 36+ is connected to the positive lead plate 50+ inside the housing case 30, and the negative output terminal 36- is connected to the negative lead plate 50-.
 また収納ケースの30上面には、ガス抜き用の孔37を開口している。これは、蓄電器1がガスを排出するものである場合に、収納ケース30内部が過度に高圧にならないよう、ガスを収納ケース30から排出するための孔37である。またガス排出孔37には、ここから排出されるガスを安全に車外に排出するためのダクトを接続することが好ましい。 Further, a gas vent hole 37 is opened on the upper surface of the storage case 30. This is a hole 37 for discharging the gas from the storage case 30 so that the inside of the storage case 30 does not become excessively high pressure when the battery 1 discharges the gas. The gas discharge hole 37 is preferably connected with a duct for safely discharging the gas discharged from here to the outside of the vehicle.
 蓄電ブロック10は、収納ケース30内の下面側に位置する負極側接続端子12と、収納ケース30内の上面側に位置する正極側接続端子14とを備える。負極側出力端子36-は収納ケース30の上面側に位置され、収納ケース30の下面側に位置する負極側接続端子12と、負極側リード板50-で接続している。また正極側出力端子36+は、正極側の出力端子と正極側リード板50+で接続される。この正極側リード板50+は、負極側リード板50-よりも短くしている。さらに蓄電ブロック10は、負極側接続端子12を接地している。
(蓄電器1)
The power storage block 10 includes a negative electrode side connection terminal 12 positioned on the lower surface side in the storage case 30 and a positive electrode side connection terminal 14 positioned on the upper surface side in the storage case 30. The negative output terminal 36-is positioned on the upper surface side of the storage case 30 and is connected to the negative connection terminal 12 positioned on the lower surface side of the storage case 30 by the negative lead plate 50-. The positive output terminal 36+ is connected to the positive output terminal by the positive lead plate 50+. The positive lead plate 50+ is shorter than the negative lead plate 50-. Further, the power storage block 10 has the negative electrode side connection terminal 12 grounded.
(Accumulator 1)
 蓄電器1は、蓄電可能な部材であり、二次電池セルが好適に利用できる。二次電池セルとしては、ニッケル水素電池が好適に利用できる。特にニッケル水素電池の電源電圧は、1.2Vであるので、10個のニッケル水素電池を直列に接続すれば12Vとなり、電源電圧を12Vとする鉛バッテリPBとの並列接続に適合する。図2、図5の例では、2本のニッケル水素電池である蓄電器1を、長手方向に接続した蓄電器組2として、これを5組互いに平行に同一平面上に並べて蓄電ブロック10を構成する。すなわち蓄電ブロック10は、10本のニッケル水素電池で構成される。直列接続する本数を調整することで、電源装置100の電圧を、接続先の鉛バッテリPBと一致させるように調整できる。例えば、トラック等の大型車両のように、定格電圧を24Vとする鉛バッテリPBに対しては、ニッケル水素電池の蓄電器1を20本直列に接続することで、24Vに対応させることができる。また必要に応じて36V、48V等、ニッケル水素電池を10本単位で、すなわち10n(nは自然数)個を直列に接続することにより、12Vの倍数で出力電圧を調整でき、多くの規格化された電源装置の電圧に適合できる。あるいは、任意のN個(Nはnより大きい自然数)のニッケル水素電池を接続して、1.2V刻みで蓄電ブロックの総電圧を調整できる。さらにニッケル水素電池を並列接続してもよく、これによって電源装置の電気容量を増加できる。 The power storage device 1 is a member that can store power, and a secondary battery cell can be suitably used. As the secondary battery cell, a nickel metal hydride battery can be suitably used. In particular, since the power supply voltage of the nickel metal hydride battery is 1.2V, it becomes 12V when 10 nickel metal hydride batteries are connected in series, and is suitable for parallel connection with a lead battery PB having a power supply voltage of 12V. In the example of FIG. 2 and FIG. 5, a battery block 10 is configured by arranging two battery packs 1 that are nickel-metal hydride batteries as a battery pack 2 connected in the longitudinal direction in parallel with each other on the same plane. That is, the power storage block 10 is composed of ten nickel metal hydride batteries. By adjusting the number of units connected in series, the voltage of the power supply device 100 can be adjusted to match the lead battery PB of the connection destination. For example, a lead battery PB having a rated voltage of 24V, such as a large vehicle such as a truck, can be adapted to 24V by connecting 20 capacitors 1 of nickel-metal hydride batteries in series. If necessary, the output voltage can be adjusted in multiples of 12V by connecting 10N nickel hydride batteries such as 36V, 48V, etc., in units of 10 units, that is, 10n (n is a natural number) in series. Adaptable to the power supply voltage. Alternatively, any N (N is a natural number greater than n) nickel metal hydride batteries can be connected to adjust the total voltage of the storage block in increments of 1.2V. Furthermore, nickel-metal hydride batteries may be connected in parallel, thereby increasing the electric capacity of the power supply device.
 また、蓄電器組2を2つの蓄電器1を長手方向に接続して構成することで、蓄電器1同士の間に挟まれた蓄電器が存在することをなくし、各蓄電器1の端面の一方が必ず、他の蓄電器の存在しない開放面となるので、この面からの放熱性を確保できる。すなわち、長手方向に多数の蓄電器を連結する構成に比べ、中間に配置された蓄電器が他の蓄電器よりも放熱され難くなって劣化が進行する事態を阻止でき、均等な放熱が図られる。また、この面を収納ケース30の側面に面するように配置することで、さらに放熱性を向上できる。 In addition, by configuring the capacitor set 2 by connecting the two capacitors 1 in the longitudinal direction, there is no capacitor sandwiched between the capacitors 1, and one of the end faces of each capacitor 1 is always the other. Therefore, heat dissipation from this surface can be ensured. In other words, compared to a configuration in which a large number of capacitors are connected in the longitudinal direction, it is possible to prevent a situation in which a capacitor disposed in the middle is less likely to dissipate heat than other capacitors, and the deterioration proceeds, and uniform heat dissipation is achieved. Further, by disposing this surface so as to face the side surface of the storage case 30, heat dissipation can be further improved.
 なお蓄電器には、ニッケル水素電池に代えて、リチウムイオン二次電池やリチウムポリマー電池等、他の二次電池も使用できる。また、この例では蓄電器として二次電池セルを使用する例を説明しているが、本発明は蓄電器として電池セルに代えて、あるいはこれに加えて、電気二重層キャパシタ(EDLC)等のキャパシタを利用することもできる。本明細書においては、バッテリにキャパシタを包含する意味で使用する。 In addition, it can replace with a nickel metal hydride battery, and other secondary batteries, such as a lithium ion secondary battery and a lithium polymer battery, can also be used for an electrical storage device. Further, in this example, an example in which a secondary battery cell is used as a capacitor is described. However, in the present invention, a capacitor such as an electric double layer capacitor (EDLC) is used instead of or in addition to the battery cell as a capacitor. It can also be used. In this specification, the battery is used to include a capacitor.
 図2、図5に示す例では、蓄電器1は円筒形の外装缶を利用している。ここでは、複数本の円筒形の蓄電器1を、水平姿勢に保持して、収納ケース30の内面に沿うように平面状に並べている。また、収納ケース30内から回路部20を排除したことで、蓄電ブロック10を構成する各蓄電器1が、収納ケース30の両側の主面に面するように配置でき、これらの主面を蓄電器1の放熱面として利用でき、放熱性を向上できる。すなわち、従来であれば回路部20が邪魔になって蓄電ブロックの放熱面が損なわれていたところ、回路部20を収納ケース内から除去したことで、収納ケースを構成する面のより広い面積でもって、蓄電器の放熱を図ることが可能となる。加えて、従来であれば蓄電器1の発熱が回路部20に影響を与える事態を回避するため、両者を離間させたり、断熱壁を設けたりする等の断熱構造が必要であったところ、このような断熱機構も不要とでき、この点においても構成の簡素化、低コスト化、収納ケースの小型化等の面において有利となる。また、以上の例では蓄電ブロックは、蓄電器を同一平面上に並べる例を説明したが、複数の層状に配置することもできる。
(制御ユニット21)
In the example shown in FIGS. 2 and 5, the battery 1 uses a cylindrical outer can. Here, a plurality of cylindrical capacitors 1 are held in a horizontal posture and are arranged in a planar shape along the inner surface of the storage case 30. Further, by eliminating the circuit unit 20 from the inside of the storage case 30, each power storage device 1 constituting the power storage block 10 can be arranged so as to face the main surfaces on both sides of the storage case 30, and these main surfaces are arranged in the power storage device 1. It can be used as a heat radiating surface and can improve heat dissipation. That is, in the conventional case, the circuit unit 20 has become a hindrance and the heat dissipation surface of the power storage block has been impaired, but by removing the circuit unit 20 from the inside of the storage case, a larger area of the surface constituting the storage case can be obtained. Thus, it is possible to dissipate heat from the battery. In addition, conventionally, in order to avoid a situation in which the heat generation of the capacitor 1 affects the circuit unit 20, a heat insulating structure such as separating the two or providing a heat insulating wall is necessary. In this respect, it is advantageous in terms of simplification of configuration, cost reduction, size reduction of the storage case, and the like. Moreover, although the electrical storage block demonstrated the example which arrange | positions an electrical storage device on the same plane in the above example, it can also be arrange | positioned in several layers.
(Control unit 21)
 一方、制御ユニット21は図2、図5等に示すように、回路部20と、これを収納する回路ケース23で構成される。回路部20は、蓄電器の温度や電圧、電流等の状態を監視する監視回路や、蓄電器の充放電を制御する制御回路等の少なくともいずれかを含む。監視回路は、例えば何れかの蓄電器の異常を検出した際に、出力を停止したり、回路を遮断する信号を送出する安全回路としても機能する。また回路ケース23の上面には、車両側との通信を行う通信コネクタ24を備えている。通信コネクタ24は、車両側の制御回路とケーブル等を介して接続される。これにより制御ユニット21は車両側制御回路と、CAN等の所定のプロトコルに従ってデータ通信を行い、必要な電力を供給する。 On the other hand, the control unit 21 includes a circuit unit 20 and a circuit case 23 for housing the circuit unit 20 as shown in FIGS. The circuit unit 20 includes at least one of a monitoring circuit that monitors the state of the capacitor, such as temperature, voltage, and current, and a control circuit that controls charging and discharging of the capacitor. The monitoring circuit also functions as a safety circuit that stops output or sends a signal that shuts off the circuit, for example, when an abnormality is detected in any of the capacitors. In addition, a communication connector 24 that performs communication with the vehicle side is provided on the upper surface of the circuit case 23. The communication connector 24 is connected to a vehicle-side control circuit via a cable or the like. Thereby, the control unit 21 performs data communication with the vehicle-side control circuit according to a predetermined protocol such as CAN, and supplies necessary power.
 なお、図1~図5の例では、出力端子36を蓄電ユニット11に、通信コネクタ24を制御ユニット21に、それぞれ設けた例を示しているが、この構成に限らず、これらの端子はいずれのユニット側に設けてもよい。また、これらの端子を纏めることも可能である。例えば、通信コネクタに総電圧の出力端子を含めた、通信と出力を統合したコネクタを利用することもできる。
(横置き姿勢)
1 to 5 show examples in which the output terminal 36 is provided in the power storage unit 11 and the communication connector 24 is provided in the control unit 21, but the present invention is not limited to this configuration. It may be provided on the unit side. It is also possible to group these terminals. For example, it is possible to use a connector that integrates communication and output, including an output terminal for the total voltage in the communication connector.
(Horizontal position)
 蓄電ブロック10は、図2、図5の垂直断面図に示すように、各蓄電器1を横置き姿勢として保持している。横置き姿勢とは、収納ケース30内に水が溜まった場合の、水面とほぼ平行となる方向を意味する。ここでは、蓄電器1を長手方向に連結して蓄電器組2を構成する。そして、垂直方向、すなわち水面と交差する方向に、蓄電器組2を積み上げるようにして蓄電ブロック10を構成する。このような配置とすることで、冠水時に端子が水分と触れる蓄電器の数を制限できる。すなわち、仮に蓄電器を縦置き姿勢で収納ケース内に配置した場合は、各蓄電器の組の底面が収納ケースの下部に位置する状態となる。この状態で、収納ケースの底面に何らかの理由で水分が溜まってしまうと、各蓄電器の組の端子が冠水してしまい、意図しない短絡を生じる可能性があった。 As shown in the vertical cross-sectional views of FIGS. 2 and 5, the electricity storage block 10 holds each electricity storage device 1 in a horizontal posture. The horizontal orientation means a direction that is substantially parallel to the water surface when water accumulates in the storage case 30. Here, the capacitor set 2 is configured by connecting the capacitors 1 in the longitudinal direction. And the electrical storage block 10 is comprised so that the electrical storage assembly 2 may be piled up in the orthogonal | vertical direction, ie, the direction which cross | intersects the water surface. By setting it as such an arrangement | positioning, the number of the capacitors which a terminal contacts with a water | moisture content at the time of flooding can be restrict | limited. In other words, if the capacitors are arranged in the storage case in a vertically installed posture, the bottom surface of each set of capacitors is in a state of being located below the storage case. In this state, if water accumulates on the bottom surface of the storage case for some reason, the terminals of each battery set may be submerged, causing an unintended short circuit.
 これに対し、本実施の形態では各蓄電器を横置き姿勢としたことで、万一収納ケース30内に水分が溜まることがあっても、冠水する蓄電器の本数を最小限に抑えることが可能となる。すなわち、図2、図5の断面図に示すように、蓄電ブロック10を構成する各蓄電器組2は、それぞれ水平姿勢で、鉛直方向に並べられているため、底面に位置する蓄電器組の両端のみが冠水する状態となる。この状態では、短絡が生じても蓄電器2個分の電位差で足りるため、例えば1.2Vのニッケル水素電池を用いた場合は2.4Vとなって、短絡電流も少なくて済む。特に、ニッケル水素電池を用いた電源装置の場合、過充電時等にニッケル水素電池から排出されるガスを外部へ排気する必要があり、ガス排出孔を開口する等、収納ケースを密閉構造とすることができない。この結果、収納ケース内への浸水を完全に遮断することが困難となるものの、上述の通り、ガス排出用の開口を有する収納ケースに各蓄電器を横置き姿勢で配置する構成とすることで、冠水による被害を大幅に抑制しつつ、ニッケル水素電池から排出されるガスを収納ケースの外部へ安全に排気させることができる。 On the other hand, in the present embodiment, each capacitor is set in the horizontal orientation, so that even if water may accumulate in the storage case 30, it is possible to minimize the number of capacitors that are flooded. Become. That is, as shown in the cross-sectional views of FIGS. 2 and 5, each of the battery sets 2 constituting the power storage block 10 is arranged in the horizontal direction and in the vertical direction, so that only the both ends of the battery set located on the bottom surface are arranged. Will be submerged. In this state, even if a short circuit occurs, the potential difference of two capacitors is sufficient. For example, when a 1.2 V nickel metal hydride battery is used, the voltage difference is 2.4 V, and the short circuit current is small. In particular, in the case of a power supply device using a nickel metal hydride battery, it is necessary to exhaust the gas discharged from the nickel metal hydride battery to the outside during overcharge, etc., and the storage case has a sealed structure such as opening a gas discharge hole. I can't. As a result, although it is difficult to completely block out the water in the storage case, as described above, by configuring each capacitor in a horizontal orientation in the storage case having an opening for gas discharge, It is possible to safely exhaust the gas discharged from the nickel-metal hydride battery to the outside of the storage case while greatly suppressing damage caused by flooding.
 さらに、出力端子36と接続する蓄電ブロック10の総電圧の内、底面側に位置する蓄電器を負極側とすることで、安全性を向上できる。すなわち、負極側はシャーシアース等と接続される場合が多いため、この部分が短絡しても、正極側の短絡に比べて電位差が少なくて済む。
(第一リード板51)
Furthermore, safety can be improved by setting the capacitor located on the bottom side of the total voltage of the power storage block 10 connected to the output terminal 36 to the negative electrode side. That is, since the negative electrode side is often connected to chassis ground or the like, even if this part is short-circuited, the potential difference is small compared to the short-circuit on the positive electrode side.
(First lead plate 51)
 各層の蓄電器組2は、上下に並ぶ蓄電器組2の端縁と、第一リード板51によって接続される。第一リード板51は、蓄電器組2同士を最短距離で導通させる。このようなリード板は、導電性に優れた金属板で構成される。 The capacitor set 2 of each layer is connected to the edge of the capacitor set 2 arranged in the vertical direction by the first lead plate 51. The first lead plate 51 conducts the battery sets 2 at the shortest distance. Such a lead plate is composed of a metal plate having excellent conductivity.
 また蓄電ブロック10の総電圧は、正極側リード板50+及び負極側リード板50-を介して出力端子36と接続される。図2、図5の断面図に示す例では、直列接続された蓄電ブロック10の正極側を、正極側リード板50+を介して正極側出力端子36+と接続し、また蓄電ブロック10の負極側を、負極側リード板50-を介して負極側出力端子36-と接続している。ここで、上述の通り蓄電ブロック10の総電圧が表れる蓄電器の端縁の内、最下層を負極側リード板50-と接続することが好ましい。すなわち図2、図5に示す蓄電器1の配列において、蓄電ブロック10の左上の端縁と右下の端縁の内、右下の蓄電器の端縁を負極側リード板50-と接続し、左上の蓄電器の端縁を正極側リード板50+と接続する。これにより、蓄電ブロック10の最下層には負極側の総電圧が位置するため、万一浸水等によって短絡することがあっても、電位差を小さくして大きな短絡電流が通電することを回避できる。 The total voltage of the power storage block 10 is connected to the output terminal 36 through the positive lead plate 50+ and the negative lead plate 50-. In the example shown in the cross-sectional views of FIGS. 2 and 5, the positive electrode side of the power storage block 10 connected in series is connected to the positive electrode side output terminal 36 + via the positive electrode side lead plate 50 +, and the negative electrode side of the power storage block 10 is connected. The negative electrode side output plate 36- is connected to the negative electrode side lead plate 50-. Here, as described above, it is preferable to connect the lowermost layer to the negative electrode side lead plate 50- out of the edges of the battery where the total voltage of the battery block 10 appears. That is, in the arrangement of the capacitors 1 shown in FIG. 2 and FIG. 5, the upper left edge and the lower right edge of the electricity storage block 10 are connected to the lower right capacitor edge with the negative lead plate 50- The end of the capacitor is connected to the positive lead plate 50+. Thereby, since the total voltage on the negative electrode side is located in the lowermost layer of the power storage block 10, even if a short circuit occurs due to flooding or the like, it is possible to reduce the potential difference and prevent a large short circuit current from being applied.
 また収納ケース30内に浸水した水分の水位が上昇しても、上昇分に応じて蓄電器組の本数が増えるのみであって、蓄電ブロック10が完全に冠水しない限りは総電圧に相当する短絡は生じないため、相応の短絡電流に抑制できるという利点も得られる。 Further, even if the water level of the water immersed in the storage case 30 rises, only the number of capacitor sets increases according to the rise, and a short circuit corresponding to the total voltage is not caused unless the electricity storage block 10 is completely flooded. Since it does not occur, there is an advantage that it can be suppressed to a corresponding short-circuit current.
 さらに、正極側リード板50+は最上層、すなわち蓄電ブロック10の最も高い位置に配置されるため、収納ケース30内に浸水することがあっても、この部分までもが短絡する可能性を相対的に低減でき、安全性を向上できる。加えて、出力端子36を収納ケース30の上面、すなわち収納ケース30の最も高い位置に設けたことでも、同様にこの出力端子36同士の短絡の可能性を低減できる効果が得られる。 Further, since the positive lead plate 50+ is disposed in the uppermost layer, that is, the highest position of the power storage block 10, even if the positive electrode lead plate 50+ may be submerged in the storage case 30, there is a relative possibility that this portion is short-circuited. The safety can be improved. In addition, even when the output terminal 36 is provided on the upper surface of the storage case 30, that is, at the highest position of the storage case 30, an effect of reducing the possibility of short-circuiting between the output terminals 36 is obtained.
 さらに加えて、正極側の総電圧が蓄電ブロック10の最上層に位置することで、正極側出力端子36+との距離が近くなり、これらを接続する正極側リード板50+の長さを短くできる。このことは、正極側リード板50+が表出する面積を小さくできることに繋がり、この部分が短絡する可能性も抑制できることに繋がる。特に図2、図5の断面図に示すように、正極側リード板50+の長さを、負極側リード板50-よりも相当短くできるため、表出面積を小さくした分だけ、短絡が発生するリスクも低減できることに繋がる。 In addition, since the total voltage on the positive electrode side is located in the uppermost layer of the power storage block 10, the distance from the positive electrode side output terminal 36+ becomes close, and the length of the positive electrode side lead plate 50+ connecting them can be shortened. This leads to a reduction in the area where the positive electrode side lead plate 50+ is exposed, and also a possibility that this portion can be short-circuited. In particular, as shown in the cross-sectional views of FIGS. 2 and 5, since the length of the positive lead plate 50+ can be made considerably shorter than that of the negative lead plate 50-, a short circuit occurs as much as the exposed area is reduced. The risk can be reduced.
 なお、負極側リード板50-は、図2、図5において蓄電ブロック10の右側に面した各第一リード板51との意図しない導通を防ぐため、これら第一リード板51と負極側リード板50-との間に、絶縁シート等の絶縁製部材を配置することが望ましい。
(バッテリシステム)
The negative lead plate 50- prevents the first lead plate 51 and the negative lead plate in order to prevent unintentional conduction with each first lead plate 51 facing the right side of the power storage block 10 in FIGS. It is desirable to place an insulating member such as an insulating sheet between 50-.
(Battery system)
 以上の電源装置100をサブバッテリSBとして、鉛バッテリPBと並列に接続することで、車両用のバッテリシステム1000を構成できる。この例を、図6及び図7の分解斜視図に示す。これらの図に示すバッテリシステム1000は、車両に備えられたバッテリ固定用のトレイTRに、固定機構40でもって固定されている。このバッテリシステム1000は、鉛バッテリPBと、サブバッテリSB100で構成される。サブバッテリSB100は、鉛バッテリPBと並列に電気接続されており、鉛バッテリPBの出力端子から、バッテリシステム1000の出力が得られる。鉛バッテリPBには、既存の定格電圧を12Vとする鉛蓄電池が用いられる。また鉛バッテリPBは、外観を箱形としている。 The battery system 1000 for vehicles can be comprised by connecting the above power supply device 100 as the sub battery SB in parallel with the lead battery PB. This example is shown in the exploded perspective view of FIG.6 and FIG.7. The battery system 1000 shown in these figures is fixed by a fixing mechanism 40 to a battery fixing tray TR provided in the vehicle. The battery system 1000 includes a lead battery PB and a sub battery SB100. The sub battery SB100 is electrically connected in parallel with the lead battery PB, and the output of the battery system 1000 is obtained from the output terminal of the lead battery PB. As the lead battery PB, a lead storage battery having an existing rated voltage of 12V is used. The lead battery PB is box-shaped in appearance.
 この場合、収納ケース30の主面の大きさを、鉛バッテリPBの主面の大きさとほぼ等しくすることが好ましい。これにより、サブバッテリSBと鉛バッテリPBとを積層して、車両用のバッテリシステム1000を一体的に構築でき、また固定構造で固定し易くなる。さらに、熱容量の大きな鉛バッテリPBと積層することで、蓄電器の放熱を効率よく吸収して放熱を図ることもできる。 In this case, it is preferable that the size of the main surface of the storage case 30 is substantially equal to the size of the main surface of the lead battery PB. As a result, the sub-battery SB and the lead battery PB can be stacked, and the vehicle battery system 1000 can be constructed integrally, and can be easily fixed by a fixed structure. Furthermore, by stacking with the lead battery PB having a large heat capacity, it is possible to efficiently absorb the heat released from the battery and to release the heat.
 なお、図6、図7の例では、収納ケース30の主面を、鉛バッテリPBの主面よりもやや小さく形成している。このようにすることで、収納ケース30の上面側の主面を、鉛バッテリPBの主面で押圧して、この状態で固定機構によりトレイ上に固定できる。この状態で、サブバッテリSB100は上面側の主面を鉛バッテリPBで押圧し、下面側の主面をトレイTRの床面に押圧して、これらの間で狭持される結果、収納ケース30内部の蓄電ブロックが充放電によって膨張しようとしても、これを機械的に抑制でき、膨張による内部抵抗の増加や内部短絡を抑え、蓄電器の長寿命化を図ることができる。なお、バッテリ固定用のトレイTRは、車両のシャーシSSに予め固定されている。また車両のシャーシ自体を、トレイとして利用することもできる 6 and 7, the main surface of the storage case 30 is formed slightly smaller than the main surface of the lead battery PB. By doing in this way, the main surface by the side of the upper surface of storage case 30 can be pressed with the main surface of lead battery PB, and it can fix on a tray by a fixing mechanism in this state. In this state, the sub-battery SB100 presses the main surface on the upper surface side with the lead battery PB and presses the main surface on the lower surface side against the floor surface of the tray TR. Even if the internal storage block is about to expand due to charging / discharging, this can be suppressed mechanically, an increase in internal resistance due to expansion and internal short circuit can be suppressed, and the life of the storage battery can be extended. The battery fixing tray TR is fixed in advance to the vehicle chassis SS. The vehicle chassis itself can also be used as a tray.
 また収納ケース30の側面には、一対の出力端子36を突出させている。出力端子36は、鉛バッテリPBの鉛出力端子OTとケーブル50を介して接続される。サブバッテリ100を鉛バッテリPBと並列に接続するために、正極側出力端子は正極側の鉛出力端子と、負極側出力端子は、負極側の鉛出力端子と、それぞれ接続されている。このようなケーブル50には、ハーネスや金属リードが利用できる。またケーブル50は、固定機構40等の部材と短絡しないよう、表面を絶縁することが好ましい。
(固定機構40)
In addition, a pair of output terminals 36 protrude from the side surface of the storage case 30. The output terminal 36 is connected to the lead output terminal OT of the lead battery PB via the cable 50. In order to connect the sub battery 100 in parallel with the lead battery PB, the positive output terminal is connected to the positive lead output terminal, and the negative output terminal is connected to the negative lead output terminal. A harness or a metal lead can be used for such a cable 50. Moreover, it is preferable that the surface of the cable 50 is insulated so as not to be short-circuited with a member such as the fixing mechanism 40.
(Fixing mechanism 40)
 また車載用のバッテリシステム1000は、収納ケース30を車両の所定位置に固定するための固定機構40を備えている。固定機構40は、収納ケース30の押圧面33を上面とする姿勢で、鉛バッテリPBを重ねた状態で、該鉛バッテリPBとサブバッテリ100とを纏めて車両の所定位置に固定する。これにより、サブバッテリ100と鉛バッテリPBを共通の固定機構40で固定でき、固定作業を簡素化できる利点が得られる。 The in-vehicle battery system 1000 includes a fixing mechanism 40 for fixing the storage case 30 to a predetermined position of the vehicle. The fixing mechanism 40 fixes the lead battery PB and the sub-battery 100 together at a predetermined position of the vehicle in a state where the lead battery PB is stacked with the pressing surface 33 of the storage case 30 as an upper surface. Thereby, the sub battery 100 and the lead battery PB can be fixed by the common fixing mechanism 40, and the advantage which can simplify a fixing operation | work is acquired.
 図6、図7に示す固定機構40は、鉛バッテリPBとサブバッテリ100とを積層したバッテリ積層体101の表面に沿って、周囲を覆うように断面視コ字状に形成されている。ここでは、固定機構40は固定板42と一対のロッド44で構成される。これら固定板42やロッド44は、十分な強度を備える材質、例えば金属製とすることが好ましい。固定板42は、鉛バッテリPBの上面に配置され、その両端を鉛バッテリPBの側面から突出させて、各々にねじ穴を開口させている。そしてバッテリ積層体101の側面には、それぞれロッド44を配置する。ロッド44の先端は、固定板42のねじ穴に螺合可能なねじ溝を切っており、また他端は、鉤状に折曲させた鉤状部45としている。トレイTRには、バッテリ積層体101を配置する位置の側面に、予めスリットSLを開口しており、このスリットSLにロッド44の鉤状部45を挿入して、またねじ溝を固定板42のねじ穴に螺合させてナット46等で固定し、固定機構40でもってバッテリ積層体101をトレイTRに固定する。 The fixing mechanism 40 shown in FIGS. 6 and 7 is formed in a U shape in cross section so as to cover the periphery along the surface of the battery stack 101 in which the lead battery PB and the sub battery 100 are stacked. Here, the fixing mechanism 40 includes a fixing plate 42 and a pair of rods 44. The fixing plate 42 and the rod 44 are preferably made of a material having sufficient strength, for example, metal. The fixing plate 42 is disposed on the upper surface of the lead battery PB, and both ends thereof are protruded from the side surface of the lead battery PB, and screw holes are opened in each. A rod 44 is disposed on each side surface of the battery stack 101. The tip of the rod 44 cuts a thread groove that can be screwed into the screw hole of the fixing plate 42, and the other end is a hook-like portion 45 bent in a hook shape. In the tray TR, a slit SL is opened in advance on a side surface at a position where the battery stack 101 is disposed, and a hook-like portion 45 of the rod 44 is inserted into the slit SL, and a screw groove is formed on the fixing plate 42. The battery stack 101 is fixed to the tray TR by the fixing mechanism 40 by being screwed into the screw hole and fixed by the nut 46 or the like.
 この構成の固定機構40は、一の固定機構40で鉛バッテリPBとサブバッテリ100を同時に固定できるので、固定作業を容易にできる利点が得られる。また鉛バッテリPBは定期的に交換する必要があることから、固定作業の省力化は交換作業の効率化の面でも有利となる。 Since the fixing mechanism 40 having this configuration can simultaneously fix the lead battery PB and the sub-battery 100 with the single fixing mechanism 40, an advantage of facilitating the fixing work can be obtained. Further, since the lead battery PB needs to be replaced periodically, labor saving of the fixing work is advantageous in terms of efficiency of the replacement work.
 図6、図7の例では、このような固定板42やロッド44で構成された固定機構40を2つ、バッテリ積層体101の周囲で互いに離間させつつ平行に設けている。ただ、固定機構の数はこれに限らず、求められる固定強度やバッテリ積層体の大きさ等に応じて、1のみ、あるいは3以上とすることもできる。さらに固定機構の構成も、固定板とロッドの組み合わせに限らず、例えばベルト状にバッテリ積層体を巻き付けたり、あるいは鉛バッテリとサブバッテリを貫通するねじ穴を四隅に開口させて螺合させる等、既知の固定方法が適宜利用できる。 In the example of FIGS. 6 and 7, two fixing mechanisms 40 composed of such fixing plates 42 and rods 44 are provided in parallel while being separated from each other around the battery stack 101. However, the number of fixing mechanisms is not limited to this, and may be one or three or more depending on the required fixing strength, the size of the battery stack, and the like. Furthermore, the configuration of the fixing mechanism is not limited to the combination of the fixing plate and the rod, for example, the battery stack is wound in a belt shape, or screw holes that penetrate the lead battery and the sub battery are opened at the four corners and screwed, etc. Known fixing methods can be used as appropriate.
 このように、収納ケース30の主面の一方を鉛バッテリPBで押圧させる押圧面33として、この押圧面33を介して、鉛バッテリPBで収納ケース30を押圧した状態に、固定機構40で固定する。これにより、鉛バッテリPBの重量と固定機構40の相乗効果によって二次電池の体積膨張による応力変化を抑制でき、もって二次電池の長寿命化が図られる。
(回路図)
As described above, the pressing surface 33 that presses one of the main surfaces of the storage case 30 with the lead battery PB is fixed by the fixing mechanism 40 in a state where the storage case 30 is pressed with the lead battery PB via the pressing surface 33. To do. Thereby, the change in stress due to the volume expansion of the secondary battery can be suppressed by the synergistic effect of the weight of the lead battery PB and the fixing mechanism 40, thereby extending the life of the secondary battery.
(circuit diagram)
 また、電源装置100を鉛バッテリPBと接続した車両用のバッテリシステム1000の回路図の一例を、図8に示す。この図に示す車両は、エンジン96で車輪97を駆動して走行する。また電源装置100は、鉛バッテリPBと並列に接続されており、鉛バッテリPBを補助するサブバッテリSBとして機能する。さらにサブバッテリSBは、スイッチング部25と直列に接続された状態で鉛バッテリPBと並列に接続されており、スイッチング部25をONさせることでサブバッテリSBを鉛バッテリPBと並列接続し、OFFさせることでサブバッテリSBを切り離すことができる。鉛バッテリPBとサブバッテリSBである電源装置100は、電流調整回路等を介することなく、リード線50で直接に接続される。したがって、鉛バッテリPBとサブバッテリSBの電圧は常に同じ電圧となる。ただ、本発明のバッテリシステムは、鉛バッテリとサブバッテリとをリレーや半導体スイッチング素子等のスイッチング素子を介して並列に接続し、ダイオード等を介して並列に接続することもできる。 FIG. 8 shows an example of a circuit diagram of a vehicle battery system 1000 in which the power supply device 100 is connected to the lead battery PB. The vehicle shown in this figure travels by driving wheels 97 with an engine 96. The power supply device 100 is connected in parallel with the lead battery PB and functions as a sub battery SB that assists the lead battery PB. Further, the sub-battery SB is connected in parallel with the lead battery PB while being connected in series with the switching unit 25. By turning on the switching unit 25, the sub-battery SB is connected in parallel with the lead battery PB and turned off. Thus, the sub battery SB can be disconnected. The power supply device 100 which is the lead battery PB and the sub battery SB is directly connected by the lead wire 50 without going through a current adjustment circuit or the like. Therefore, the voltages of the lead battery PB and the sub battery SB are always the same voltage. However, in the battery system of the present invention, the lead battery and the sub battery can be connected in parallel via a switching element such as a relay or a semiconductor switching element, and can be connected in parallel via a diode or the like.
 鉛バッテリPBは、6セルを直列に接続して定格電圧を12Vとするバッテリである。ただ、本発明は鉛バッテリの定格電圧を12Vには特定しない。2個の鉛バッテリを直列に接続して定格電圧を24Vとし、また、3個の鉛バッテリを直列に接続して36V、4個の鉛バッテリを直列に接続して48Vとして使用することもできるからである。従来の電装機器は、12Vの電源電圧で動作するように設計されているが、24V~48Vの鉛バッテリを搭載する車両は、この電圧で動作する電装機器を搭載する。 The lead battery PB is a battery in which 6 cells are connected in series and the rated voltage is 12V. However, the present invention does not specify the rated voltage of the lead battery as 12V. Two lead batteries can be connected in series for a rated voltage of 24V, three lead batteries can be connected in series for 36V, and four lead batteries can be connected in series for 48V. Because. Conventional electrical equipment is designed to operate with a power supply voltage of 12V. A vehicle equipped with a lead battery of 24V to 48V is equipped with electrical equipment that operates with this voltage.
 サブバッテリSBは、充放電の効率を改善し、かつ鉛バッテリPBの劣化を防止するために並列に接続される。サブバッテリSBは、鉛バッテリPBと並列に接続されて、同じ電圧となる。この状態において、サブバッテリSBと鉛バッテリPBとの充放電の電流バランス、すなわち適合性が大切である。適合性が悪いと、鉛バッテリやサブバッテリのみが充電されたり、あるいは鉛バッテリやサブバッテリのみが放電されたりするため、両方を並列に接続しても、充放電の効率を改善できず、また鉛バッテリの寿命も効果的には長くできなくなる。 The sub-battery SB is connected in parallel in order to improve the charging / discharging efficiency and prevent the deterioration of the lead battery PB. The sub battery SB is connected in parallel with the lead battery PB and has the same voltage. In this state, the current balance of charging / discharging between the sub battery SB and the lead battery PB, that is, compatibility is important. If the compatibility is poor, only the lead battery and sub-battery will be charged, or only the lead battery and sub-battery will be discharged, so even if both are connected in parallel, the charge / discharge efficiency cannot be improved. The life of the lead battery cannot be effectively extended.
 鉛バッテリPBとサブバッテリSBの適合性は、サブバッテリSBの開路電圧-放電深度特性をコントロールして実現する。サブバッテリSBの開路電圧-放電深度特性は、例えばニッケル水素電池においては正極の亜鉛量等で調整でき、リチウムイオン二次電池やリチウムポリマー電池にあっては、正極活物質であるリチウム含有化合物の選択により調整できる。 The compatibility of the lead battery PB and the sub battery SB is realized by controlling the open circuit voltage-discharge depth characteristics of the sub battery SB. The open circuit voltage-discharge depth characteristics of the sub-battery SB can be adjusted by, for example, the zinc amount of the positive electrode in a nickel metal hydride battery, and the lithium-containing compound that is a positive electrode active material in a lithium ion secondary battery or a lithium polymer battery. Can be adjusted by selection.
 以上のバッテリシステム1000は、回生制動によらずエンジン96でオルタネータ6を駆動して充電する車両においても、燃費効率を改善できる。それは、鉛バッテリPBの最大で8倍もの電力を、サブバッテリSBである電源装置100に充電できるからである。車両のオルタネータ6は、鉛バッテリPBを一定の電圧で充電して劣化を防止し、かつ電装機器5の供給電圧を一定とするために、出力電圧を常に一定の電圧である約14Vに安定化している。したがって、オルタネータ6が鉛バッテリPBを充電する電流は小さく、大電流では充電されない。したがって、車両には出力電流を100Aとするオルタネータ6が搭載されても、このオルタネータ6が100Aで鉛バッテリPBを充電することはなく、オルタネータ6は電装機器5に電力を供給するために出力電流を大きくしている。このオルタネータ6がバッテリシステム1000を大電流で充電できることは、車両の燃費効率を改善することに有効である。それは、オルタネータ6を高い発電効率の領域で運転し、かつエンジン96も燃料消費率の小さい領域で運転できるからである。オルタネータ6は軽負荷での発電効率が低く、エンジン96は軽負荷での燃料消費率が大きくなるからである。 The battery system 1000 described above can improve fuel efficiency even in a vehicle that is charged by driving the alternator 6 with the engine 96 regardless of regenerative braking. This is because the power supply device 100 that is the sub-battery SB can be charged up to eight times as much power as the lead battery PB. The alternator 6 of the vehicle stabilizes the output voltage at a constant voltage of about 14 V in order to prevent the deterioration by charging the lead battery PB with a constant voltage and to keep the supply voltage of the electrical equipment 5 constant. ing. Therefore, the current for the alternator 6 to charge the lead battery PB is small and is not charged with a large current. Therefore, even if the alternator 6 having an output current of 100 A is mounted on the vehicle, the alternator 6 does not charge the lead battery PB at 100 A, and the alternator 6 outputs the output current to supply power to the electrical equipment 5. Has increased. The ability of the alternator 6 to charge the battery system 1000 with a large current is effective in improving the fuel efficiency of the vehicle. This is because the alternator 6 can be operated in a region where the power generation efficiency is high, and the engine 96 can also be operated in a region where the fuel consumption rate is small. This is because the alternator 6 has low power generation efficiency at light loads, and the engine 96 has a high fuel consumption rate at light loads.
 さらに、この電源装置100を用いた車両用のバッテリシステム1000は、回生制動の発電電力を鉛バッテリPBのみでなく、電源装置100に充電して鉛バッテリPBを大電流充電から保護し、またオルタネータ6で充電されない状態では、鉛バッテリPBのみでなく充電された電源装置100から電装機器5に電力を供給するので、鉛バッテリPBを充電と過放電から防止して、寿命を長くできる。 Further, the vehicle battery system 1000 using the power supply device 100 protects the lead battery PB from high-current charging by charging the power generated by the regenerative braking not only to the lead battery PB but also the power supply device 100, and an alternator. In the state where the battery is not charged at 6, the electric power is supplied from the charged power supply device 100 as well as the lead battery PB to the electrical equipment 5, so that the lead battery PB can be prevented from being charged and overdischarged and the life can be extended.
 以上の電源装置は、車載用の電源として利用できる。電源装置を搭載する車両としては、エンジンとモータの両方で走行するハイブリッド自動車やプラグインハイブリッド自動車、あるいはモータのみで走行する電気自動車等の電動車両が利用でき、これらの車両の電源として使用される。
(ハイブリッド車用電源装置)
The above power supply apparatus can be used as a vehicle-mounted power supply. As a vehicle equipped with a power supply device, an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and is used as a power source for these vehicles. .
(Power supply for hybrid vehicles)
 図9に、エンジンとモータの両方で走行するハイブリッド自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両HVは、車両HVを走行させるエンジン96及び走行用のモータ93と、モータ93に電力を供給する電源装置100と、電源装置100の電池を充電する発電機94と、電源装置100とモータ93を搭載する車両本体90と、モータ93で駆動されて車両本体90を走行させ、又はエンジン96の駆動によって車両本体90を走行させる車輪97とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、電源装置100の電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、例えば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、電源装置100の電池を充電する。
(電気自動車用電源装置)
FIG. 9 shows an example in which a power supply device is mounted on a hybrid vehicle that runs with both an engine and a motor. A vehicle HV equipped with the power supply device shown in this figure includes an engine 96 and a travel motor 93 that travel the vehicle HV, a power supply device 100 that supplies power to the motor 93, and a generator that charges a battery of the power supply device 100. 94, a vehicle main body 90 on which the power supply device 100 and the motor 93 are mounted, and a wheel 97 that is driven by the motor 93 to run the vehicle main body 90 or drives the vehicle main body 90 by driving the engine 96. The power supply apparatus 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The vehicle HV travels by both the motor 93 and the engine 96 while charging / discharging the battery of the power supply device 100. The motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving. The motor 93 is driven by power supplied from the power supply device 100. The generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked to charge the battery of the power supply device 100.
(Power supply for electric vehicles)
 また、図10に、モータのみで走行する電気自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両EVは、車両EVを走行させる走行用のモータ93と、このモータ93に電力を供給する電源装置100と、この電源装置100の電池を充電する発電機94と、電源装置100とモータ93を搭載する車両本体90と、モータ93で駆動されて車両本体90を走行させる車輪97とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、電源装置100の電池を充電する。
(蓄電用電源装置)
FIG. 10 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor. A vehicle EV equipped with the power supply device shown in this figure includes a traveling motor 93 for traveling the vehicle EV, a power supply device 100 that supplies power to the motor 93, and a generator 94 that charges a battery of the power supply device 100. And a vehicle main body 90 on which the power supply device 100 and the motor 93 are mounted, and wheels 97 that are driven by the motor 93 and cause the vehicle main body 90 to travel. The power supply apparatus 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The motor 93 is driven by power supplied from the power supply device 100. The generator 94 is driven by energy when regeneratively braking the vehicle EV and charges the battery of the power supply device 100.
(Power storage device for power storage)
 さらに、この電源装置は、移動体用の動力源としてのみならず、定置型の蓄電用設備としても利用できる。例えば家庭用、工場用の電源として、太陽光や深夜電力等で充電し、必要時に放電する電源システム、あるいは日中の太陽光を充電して夜間に放電する街路灯用の電源や、停電時に駆動する信号機用のバックアップ電源等にも利用できる。このような例を図11に示す。この図に示す電源装置100は、複数の電池パック81をユニット状に接続して電池ユニット82を構成している。各電池パック81は、複数の電池セルが直列及び/又は並列に接続されている。各電池パック81は、電源コントローラ84により制御される。この電源装置100は、電池ユニット82を充電用電源CPで充電した後、負荷LDを駆動する。このため電源装置100は、充電モードと放電モードを備える。負荷LDと充電用電源CPはそれぞれ、放電スイッチDS及び充電スイッチCSを介して電源装置100と接続されている。放電スイッチDS及び充電スイッチCSのON/OFFは、電源装置100の電源コントローラ84によって切り替えられる。充電モードにおいては、電源コントローラ84は充電スイッチCSをONに、放電スイッチDSをOFFに切り替えて、充電用電源CPから電源装置100への充電を許可する。また充電が完了し満充電になると、あるいは所定値以上の容量が充電された状態で負荷LDからの要求に応じて、電源コントローラ84は充電スイッチCSをOFFに、放電スイッチDSをONにして放電モードに切り替え、電源装置100から負荷LDへの放電を許可する。また、必要に応じて、充電スイッチCSをONに、放電スイッチDSをONにして、負荷LDの電力供給と、電源装置100への充電を同時に行うこともできる。 Furthermore, this power supply device can be used not only as a power source for moving bodies but also as a stationary power storage facility. For example, as a power source for home and factory use, a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals. Such an example is shown in FIG. The power supply apparatus 100 shown in this figure forms a battery unit 82 by connecting a plurality of battery packs 81 in a unit shape. Each battery pack 81 has a plurality of battery cells connected in series and / or in parallel. Each battery pack 81 is controlled by a power controller 84. The power supply apparatus 100 drives the load LD after charging the battery unit 82 with the charging power supply CP. For this reason, the power supply apparatus 100 includes a charging mode and a discharging mode. The load LD and the charging power source CP are connected to the power supply device 100 via the discharging switch DS and the charging switch CS, respectively. ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the power supply apparatus 100. In the charging mode, the power supply controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging from the charging power supply CP to the power supply apparatus 100. Further, when the charging is completed and the battery is fully charged, or in response to a request from the load LD in a state where a capacity of a predetermined value or more is charged, the power controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge. The mode is switched to permit discharge from the power supply apparatus 100 to the load LD. Further, if necessary, the charge switch CS can be turned on and the discharge switch DS can be turned on to supply power to the load LD and charge the power supply device 100 at the same time.
 電源装置100で駆動される負荷LDは、放電スイッチDSを介して電源装置100と接続されている。電源装置100の放電モードにおいては、電源コントローラ84が放電スイッチDSをONに切り替えて、負荷LDに接続し、電源装置100からの電力で負荷LDを駆動する。放電スイッチDSはFET等のスイッチング素子が利用できる。放電スイッチDSのON/OFFは、電源装置100の電源コントローラ84によって制御される。また電源コントローラ84は、外部機器と通信するための通信インターフェースを備えている。図11の例では、UARTやRS-232C等の既存の通信プロトコルに従い、ホスト機器HTと接続されている。また必要に応じて、電源システムに対してユーザが操作を行うためのユーザインターフェースを設けることもできる。 The load LD driven by the power supply device 100 is connected to the power supply device 100 via the discharge switch DS. In the discharge mode of the power supply apparatus 100, the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the power supply apparatus 100. As the discharge switch DS, a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the power supply apparatus 100. The power controller 84 also includes a communication interface for communicating with external devices. In the example of FIG. 11, the host device HT is connected according to an existing communication protocol such as UART or RS-232C. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
 各電池パック81は、信号端子と電源端子を備える。信号端子は、パック入出力端子DIと、パック異常出力端子DAと、パック接続端子DOとを含む。パック入出力端子DIは、他のパック電池や電源コントローラ84からの信号を入出力するための端子であり、パック接続端子DOは子パックである他のパック電池に対して信号を入出力するための端子である。またパック異常出力端子DAは、パック電池の異常を外部に出力するための端子である。さらに電源端子は、電池パック81同士を直列、並列に接続するための端子である。 Each battery pack 81 includes a signal terminal and a power supply terminal. The signal terminals include a pack input / output terminal DI, a pack abnormality output terminal DA, and a pack connection terminal DO. The pack input / output terminal DI is a terminal for inputting / outputting signals from other pack batteries and the power supply controller 84, and the pack connection terminal DO is for inputting / outputting signals to / from other pack batteries which are child packs. Terminal. The pack abnormality output terminal DA is a terminal for outputting the abnormality of the battery pack to the outside. Furthermore, the power supply terminal is a terminal for connecting the battery packs 81 in series and in parallel.
 本発明に係る電源装置及び電源装置を備える車両並びに蓄電装置、バッテリシステムは、車両の電装用バッテリや補機バッテリに好適に利用できる。特に、回生制動で鉛バッテリを充電するアイドリングストップ機能を備えた車両に適用すると、鉛バッテリの負荷を軽減できる。さらに本発明は、EV走行モードとHEV走行モードとを切り替え可能なプラグイン式ハイブリッド電気自動車やハイブリッド式電気自動車、電気自動車等の電源装置として好適に利用できる。またコンピュータサーバのラックに搭載可能なバックアップ電源装置、携帯電話等の無線基地局用のバックアップ電源装置、家庭内用、工場用の蓄電用電源、街路灯の電源等、太陽電池と組み合わせた蓄電装置、信号機等のバックアップ電源用等の用途にも適宜利用できる。 The power supply device and the vehicle including the power supply device, the power storage device, and the battery system according to the present invention can be suitably used for an electric equipment battery or an auxiliary battery of the vehicle. In particular, when applied to a vehicle having an idling stop function for charging a lead battery by regenerative braking, the load of the lead battery can be reduced. Furthermore, the present invention can be suitably used as a power supply device for a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle or the like that can switch between the EV traveling mode and the HEV traveling mode. Also, a backup power supply device that can be mounted on a rack of a computer server, a backup power supply device for a wireless base station such as a mobile phone, a power storage device for home use and a factory, a power supply for a street light, etc. Also, it can be used as appropriate for applications such as a backup power source such as a traffic light.
1000…バッテリシステム
100、100B…電源装置
101…バッテリ積層体
1…蓄電器
2…蓄電器組
5…電装機器
6…オルタネータ
10…蓄電ブロック
11…蓄電ユニット
12…負極側接続端子
14…正極側接続端子
20、20B…回路部
21…制御ユニット
22…仕切壁
23、23B…回路ケース
24…通信コネクタ
25、25B…スイッチング部
26…蓄電側接続コネクタ
27…回路側接続コネクタ
28…スイッチ側接続コネクタ
29…スイッチケース
30…収納ケース
31…スイッチユニット
36…出力端子;36+…正極側出力端子;36-…負極側出力端子
37…ガス排出孔
40…固定機構
42…固定板
44…ロッド
45…鉤状部
46…ナット
50…リード線
50+…正極側リード板
50-…負極側リード板
51…第一リード板
54…バスバー
60…接続ケーブル
81…電池パック
82…電池ユニット
84…電源コントローラ
85…並列接続スイッチ
90…車両本体
93…モータ
94…発電機
95…DC/ACインバータ
96…エンジン
97…車輪
PB…鉛バッテリ
SB…サブバッテリ
TR…トレイ
SL…スリット
SS…シャーシ
EV、HV…車両
LD…負荷
CP…充電用電源
DS…放電スイッチ
CS…充電スイッチ
OL…出力ライン
HT…ホスト機器
DI…パック入出力端子;DA…パック異常出力端子;DO…パック接続端子
DESCRIPTION OF SYMBOLS 1000 ... Battery system 100,100B ... Power supply device 101 ... Battery laminated body 1 ... Accumulator 2 ... Accumulator set 5 ... Electrical equipment 6 ... Alternator 10 ... Storage block 11 ... Storage unit 12 ... Negative electrode side connection terminal 14 ... Positive electrode side connection terminal 20 , 20B ... Circuit unit 21 ... Control unit 22 ... Partition wall 23, 23B ... Circuit case 24 ... Communication connector 25, 25B ... Switching unit 26 ... Storage side connection connector 27 ... Circuit side connection connector 28 ... Switch side connection connector 29 ... Switch Case 30 ... Storage case 31 ... Switch unit 36 ... Output terminal; 36 + ... Positive electrode side output terminal; 36 -... Negative electrode side output terminal 37 ... Gas discharge hole 40 ... Fixing mechanism 42 ... Fixing plate 44 ... Rod 45 ... ... Nut 50 ... Lead wire 50 + ... Positive lead plate 50 -... Negative lead plate 51 ... First lead Plate 54 ... Bus bar 60 ... Connection cable 81 ... Battery pack 82 ... Battery unit 84 ... Power supply controller 85 ... Parallel connection switch 90 ... Vehicle main body 93 ... Motor 94 ... Generator 95 ... DC / AC inverter 96 ... Engine 97 ... Wheel PB ... Lead battery SB ... Sub battery TR ... Tray SL ... Slit SS ... Chassis EV, HV ... Vehicle LD ... Load CP ... Charge power supply DS ... Discharge switch CS ... Charge switch OL ... Output line HT ... Host equipment DI ... Pack input / output terminal ; DA ... Pack abnormal output terminal; DO ... Pack connection terminal

Claims (17)

  1.  複数の蓄電器を直列又は並列に接続してなる蓄電ブロックと、
     前記蓄電ブロックを収納する収納ケースと、
     前記蓄電ブロックと電気的に接続されてこれを監視するための回路部と、
     前記回路部を収納するための、前記収納ケースと別部材の回路ケースと
    を備える電源装置であって、
     前記収納ケースと回路ケースは、互いを電気的に接続するための接続コネクタをそれぞれを備えてなることを特徴とする電源装置。
    A storage block formed by connecting a plurality of capacitors in series or in parallel;
    A storage case for storing the power storage block;
    A circuit unit electrically connected to and monitored by the storage block;
    A power supply device comprising the storage case and a separate circuit case for storing the circuit unit,
    The power supply device, wherein the storage case and the circuit case are each provided with a connection connector for electrically connecting each other.
  2.  請求項1に記載の電源装置であって、
     前記接続コネクタ同士を、接続ケーブルを介して接続してなることを特徴とする電源装置。
    The power supply device according to claim 1,
    A power supply device comprising the connection connectors connected via a connection cable.
  3.  請求項1に記載の電源装置であって、
     前記接続コネクタ同士を、直接係合させて接続しており、
     前記収納ケースと回路ケースとを接触させてなることを特徴とする電源装置。
    The power supply device according to claim 1,
    The connection connectors are connected by direct engagement,
    A power supply apparatus comprising the storage case and a circuit case in contact with each other.
  4.  請求項1~3のいずれか一に記載の電源装置であって、さらに、
     前記蓄電ブロックの出力のON/OFFを切り替えるスイッチング部と、
     前記スイッチング部を収納するスイッチケースと
    を備えてなることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 3, further comprising:
    A switching unit for switching ON / OFF of the output of the power storage block;
    A power supply apparatus comprising: a switch case that houses the switching unit.
  5.  請求項1~3のいずれか一に記載の電源装置であって、さらに、
     前記蓄電ブロックの出力のON/OFFを切り替えるスイッチング部を備えており、
     前記スイッチング部が、前記回路ケースに収納されてなることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 3, further comprising:
    A switching unit for switching ON / OFF of the output of the storage block;
    The power supply apparatus, wherein the switching unit is housed in the circuit case.
  6.  請求項1~5のいずれか一に記載の電源装置であって、
     前記収納ケースを構成する第一材質と、前記回路ケースを構成する第二材質とを異なる材質で構成してなることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 5,
    A power supply device comprising a first material constituting the storage case and a second material constituting the circuit case made of different materials.
  7.  請求項6に記載の電源装置であって、
     前記第一材質を、放熱性に優れた材質とし、
     前記第二材質を、耐ノイズ性に優れた材質としてなることを特徴とする電源装置。
    The power supply device according to claim 6,
    The first material is a material with excellent heat dissipation,
    The power supply apparatus, wherein the second material is a material having excellent noise resistance.
  8.  請求項1~7のいずれか一に記載の電源装置であって、
     前記収納ケース及び回路ケースは、それぞれ外形を矩形状としてなることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 7,
    The storage case and the circuit case each have a rectangular outer shape.
  9.  請求項1~8のいずれか一に記載の電源装置であって、
     前記回路ケースは、車両側との通信を行う通信コネクタを備えてなることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 8,
    The circuit case includes a communication connector for performing communication with a vehicle side.
  10.  請求項1~9のいずれか一に記載の電源装置であって、
     前記複数の蓄電器は、それぞれ一方向に延長された外形を有すると共に、長手方向の両端に正負の電極端子が設けられており、
     前記蓄電器組は、各記蓄電器を、その長手方向を水平姿勢として、かつ前記複数の蓄電器組を互いに平行な姿勢で鉛直方向に並べた状態で、前記収納ケース内に保持されてなることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 9,
    The plurality of capacitors each have an outer shape extended in one direction, and positive and negative electrode terminals are provided at both ends in the longitudinal direction,
    The capacitor set is held in the storage case with each capacitor set in a horizontal posture in the longitudinal direction and the plurality of capacitor sets arranged in a vertical direction in a posture parallel to each other. Power supply.
  11.  請求項1~10のいずれか一に記載の電源装置であって、
     前記蓄電器を、二次電池で構成してなることを特徴とする電源装置。
    A power supply device according to any one of claims 1 to 10,
    A power supply apparatus comprising the secondary battery as the capacitor.
  12.  請求項1~11のいずれか一に記載の電源装置であって、
     前記電源装置は、鉛バッテリと並列に接続される車載用のサブバッテリであることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 11,
    The power supply apparatus is an in-vehicle sub-battery connected in parallel with a lead battery.
  13.  請求項12に記載の電源装置であって、
     アイドリングストップ機能を有する車両に搭載可能であり、該車両の回生発電の電力でもって、鉛バッテリと車両用電源装置の両方を充電可能としてなることを特徴とする電源装置。
    The power supply device according to claim 12,
    A power supply device that can be mounted on a vehicle having an idling stop function, and that can recharge both a lead battery and a vehicle power supply device with electric power of regenerative power generation of the vehicle.
  14.  請求項1~13のいずれか一に記載の電源装置を備える車両であって、
     前記電源装置から電力供給される走行用のモータと、
     前記電源装置及び前記モータを搭載してなる車両本体と、
     前記モータで駆動されて前記車両本体を走行させる車輪と
    を備えることを特徴とする車両。
    A vehicle comprising the power supply device according to any one of claims 1 to 13,
    A traveling motor powered by the power supply device;
    A vehicle body on which the power supply device and the motor are mounted;
    A vehicle comprising: a wheel driven by the motor to cause the vehicle body to travel.
  15.  請求項1~13のいずれか一に記載の電源装置を備える車両であって、
     車両を走行させるエンジンと、
     前記エンジンで駆動され、かつ車両の回生制動で駆動されるオルタネータと
    を備え、
     前記オルタネータで、回生制動時に電源装置を充電するアイドリングストップ機能を有することを特徴とする車両。
    A vehicle comprising the power supply device according to any one of claims 1 to 13,
    An engine for running the vehicle;
    An alternator driven by the engine and driven by regenerative braking of the vehicle,
    The alternator has an idling stop function of charging a power supply device during regenerative braking.
  16.  請求項1~11のいずれか一に記載の電源装置を備える蓄電装置であって、
     前記電源装置への充放電を制御する電源コントローラを備えており、
     前記電源コントローラでもって、外部からの電力により前記電源装置への充電を可能とすると共に、前記電源装置に対し充電を行うよう制御可能としてなることを特徴とする蓄電装置。
    A power storage device comprising the power supply device according to any one of claims 1 to 11,
    A power supply controller for controlling charging and discharging of the power supply device;
    The power storage device, wherein the power supply controller can charge the power supply device with electric power from the outside and can be controlled to charge the power supply device.
  17.  鉛バッテリと、
     前記鉛バッテリと並列に接続されるサブバッテリと
    を備えるバッテリシステムであって、
     前記サブバッテリは、
      複数の蓄電器を直列又は並列に接続してなる蓄電ブロックと、
      前記蓄電ブロックを収納する収納ケースと、
      前記蓄電ブロックと電気的に接続されてこれを監視するための回路部と、
      前記回路部を収納する回路ケースと
    を備えており、
     前記収納ケースと回路ケースを別部材としてなることを特徴とするバッテリシステム。
    Lead battery,
    A battery system comprising a sub-battery connected in parallel with the lead battery,
    The sub-battery is
    A storage block formed by connecting a plurality of capacitors in series or in parallel;
    A storage case for storing the power storage block;
    A circuit unit electrically connected to and monitored by the storage block;
    A circuit case that houses the circuit portion;
    A battery system comprising the storage case and the circuit case as separate members.
PCT/JP2013/006237 2012-10-29 2013-10-22 Power supply device, vehicle and power storage device provided with power supply device, and battery system WO2014068899A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014544252A JPWO2014068899A1 (en) 2012-10-29 2013-10-22 Power supply device, vehicle including power supply device, power storage device, and battery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-238121 2012-10-29
JP2012238121 2012-10-29

Publications (1)

Publication Number Publication Date
WO2014068899A1 true WO2014068899A1 (en) 2014-05-08

Family

ID=50626850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006237 WO2014068899A1 (en) 2012-10-29 2013-10-22 Power supply device, vehicle and power storage device provided with power supply device, and battery system

Country Status (2)

Country Link
JP (1) JPWO2014068899A1 (en)
WO (1) WO2014068899A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI561430B (en) * 2015-12-01 2016-12-11 Ind Tech Res Inst Integrated power module and electric vehicle having the same
JP2016220475A (en) * 2015-05-25 2016-12-22 トヨタ自動車株式会社 Electric vehicle and battery pack
JP2017050093A (en) * 2015-08-31 2017-03-09 トヨタ自動車株式会社 Battery pack
WO2018070310A1 (en) * 2016-10-14 2018-04-19 株式会社デンソー Battery device
JP2018067533A (en) * 2016-10-14 2018-04-26 株式会社デンソー Battery device
WO2020261478A1 (en) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 Leaning vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319232A (en) * 2003-04-16 2004-11-11 Panasonic Ev Energy Co Ltd Battery pack
JP2008152956A (en) * 2006-12-14 2008-07-03 Toyota Motor Corp Electric storage device and automobile
JP2011239566A (en) * 2010-05-10 2011-11-24 Sanyo Electric Co Ltd Power supply device
JP2012074350A (en) * 2010-09-03 2012-04-12 Hitachi Vehicle Energy Ltd Automotive power storage device
JP2012080706A (en) * 2010-10-05 2012-04-19 Denso Corp Battery system controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319232A (en) * 2003-04-16 2004-11-11 Panasonic Ev Energy Co Ltd Battery pack
JP2008152956A (en) * 2006-12-14 2008-07-03 Toyota Motor Corp Electric storage device and automobile
JP2011239566A (en) * 2010-05-10 2011-11-24 Sanyo Electric Co Ltd Power supply device
JP2012074350A (en) * 2010-09-03 2012-04-12 Hitachi Vehicle Energy Ltd Automotive power storage device
JP2012080706A (en) * 2010-10-05 2012-04-19 Denso Corp Battery system controller

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016220475A (en) * 2015-05-25 2016-12-22 トヨタ自動車株式会社 Electric vehicle and battery pack
JP2017050093A (en) * 2015-08-31 2017-03-09 トヨタ自動車株式会社 Battery pack
TWI561430B (en) * 2015-12-01 2016-12-11 Ind Tech Res Inst Integrated power module and electric vehicle having the same
WO2018070310A1 (en) * 2016-10-14 2018-04-19 株式会社デンソー Battery device
JP2018067533A (en) * 2016-10-14 2018-04-26 株式会社デンソー Battery device
JP2020021751A (en) * 2016-10-14 2020-02-06 株式会社デンソー Battery device
JP2020021752A (en) * 2016-10-14 2020-02-06 株式会社デンソー Battery device
WO2020261478A1 (en) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 Leaning vehicle

Also Published As

Publication number Publication date
JPWO2014068899A1 (en) 2016-09-08

Similar Documents

Publication Publication Date Title
WO2014068897A1 (en) Power supply device, vehicle and power storage device provided with power supply device, and battery system
JP5868676B2 (en) Power supply device, vehicle including the same, and power storage device
US9937801B2 (en) Electric motor vehicle and battery pack
JP6138688B2 (en) Power supply device, vehicle including the same, and power storage device
WO2014068899A1 (en) Power supply device, vehicle and power storage device provided with power supply device, and battery system
JP6087838B2 (en) Power supply device, circuit board, vehicle including power supply device, and power storage device
JP6720354B2 (en) Vehicle battery pack and automobile including the same
JP6124292B2 (en) In-vehicle power supply device and vehicle equipped with power supply device
WO2014068922A1 (en) Vehicle-mounted power supply device and vehicle comprising power supply device
WO2013031614A1 (en) Power supply device, vehicle provided with same, and power storage device
KR20120016350A (en) Battery module and battery pack employed with the same
JPWO2012053426A1 (en) Power supply device, vehicle using the same, and power storage device
JP2012243534A (en) Battery laminate structure, vehicle equipped with the same, and bind bar for the same
WO2014024450A1 (en) Power source device, electric vehicle provided with same, and electricity storage device
JPWO2014024434A1 (en) Power supply device, electric vehicle including the same, and power storage device
JP2013114951A (en) Power supply device and vehicle including the same, power storage device, coupling unit
JP6652030B2 (en) Battery device
WO2014068880A1 (en) Power supply device and vehicle provided with power supply device
WO2013187280A1 (en) Battery for automotive electrical/electronic systems
JP2014088068A (en) Onboard electric spare power-storage-unit and vehicle equipped with the same
CN113410558A (en) Vehicle battery unit
JP2015187914A (en) Power supply device, and electrically driven vehicle and power storage device having the same
JP2014175128A (en) On-vehicle power supply device and vehicle comprising power supply device
JP6193016B2 (en) In-vehicle power supply device and vehicle equipped with power supply device
WO2006059469A1 (en) Film packed electric device assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544252

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13850345

Country of ref document: EP

Kind code of ref document: A1