WO2014068743A1 - センシング装置及びセンシング方法 - Google Patents

センシング装置及びセンシング方法 Download PDF

Info

Publication number
WO2014068743A1
WO2014068743A1 PCT/JP2012/078298 JP2012078298W WO2014068743A1 WO 2014068743 A1 WO2014068743 A1 WO 2014068743A1 JP 2012078298 W JP2012078298 W JP 2012078298W WO 2014068743 A1 WO2014068743 A1 WO 2014068743A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
measurement signal
switching
unit
filters
Prior art date
Application number
PCT/JP2012/078298
Other languages
English (en)
French (fr)
Inventor
深井利夫
松本淳
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to PCT/JP2012/078298 priority Critical patent/WO2014068743A1/ja
Priority to JP2014544157A priority patent/JP5913623B2/ja
Priority to CN201280075709.7A priority patent/CN104602599B/zh
Priority to EP12887813.9A priority patent/EP2915484A4/en
Publication of WO2014068743A1 publication Critical patent/WO2014068743A1/ja
Priority to US14/698,607 priority patent/US9995779B2/en
Priority to HK15108605.3A priority patent/HK1207955A1/xx

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/26Measuring noise figure; Measuring signal-to-noise ratio
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose

Definitions

  • the present invention relates to a sensing device and a sensing method for quantifying an analyte concentration continuously or intermittently.
  • a continuous blood glucose monitoring system also referred to as a CGM (Continuous Glucose Monitoring) system ⁇ that embeds a sensor unit in the body of a subject and continuously or intermittently determines the concentration of blood glucose as an analyte has recently been developed.
  • CGM Continuous Glucose Monitoring
  • various noises including electric noise or light amount noise are usually mixed in the measurement signal. Therefore, various techniques related to filtering that effectively remove noise components have been proposed in order to improve the quantitative determination of glucose concentration.
  • Japanese Patent Laid-Open No. 2005-131370 proposes a method of removing noise components using a time-domain filtering algorithm (in particular, a Kalman filter). More specifically, it is described that the filter coefficient is dynamically optimized by defining the error covariance matrix as a function of a signal difference parameter (for example, standard deviation).
  • a signal difference parameter for example, standard deviation
  • the present invention has been made in order to solve the above-described problems, and it is possible to effectively remove noise components from a measurement signal by using a filter in a frequency domain, which is a relatively simple configuration. It is an object of the present invention to provide a sensing device and a sensing method capable of maintaining followability with respect to changes in concentration over time.
  • a sensing device is a device that continuously or intermittently quantifies the concentration of an analyte, and includes a sensor unit that sequentially acquires a measurement signal correlated with the concentration of the analyte, and a plurality of types of filters.
  • a filter processing unit that performs a filtering process in a frequency domain on a time series of the measurement signal acquired by the sensor unit through one type of the plurality of types of filters;
  • a filter switching unit configured to switch the one type of filter used for the filter processing in accordance with a time change amount of the measurement signal.
  • the filter switching unit that switches one type of filter used for the filter processing in the frequency domain according to the time change amount of the measurement signal is provided, the time change of the measurement signal and the filter processing result. It is possible to select a filter in consideration of the phase delay characteristics to be selected in a timely manner. Accordingly, it is possible to maintain the follow-up property with respect to the temporal change in the concentration of the analyte while effectively removing the noise component from the measurement signal by using the filter in the frequency domain having a relatively simple configuration.
  • the filter processing unit includes at least an identity conversion filter that performs identity conversion on the time series of the measurement signal, and the filter switching unit is configured so that the time change amount is greater than a threshold value. It is preferable to switch to the identity conversion filter. Since the phase delay due to the filter processing is not generated when the time change amount is larger than the threshold value, it is possible to ensure the followability to the time change of the concentration of the analyte.
  • the filter processing unit includes at least two types of filters having different average values of phase delay amounts in a band equal to or lower than a cutoff frequency, and the filter switching unit is configured to output the phase delay when the time change amount is large. It is preferable to switch to a filter with a small average value and to switch to a filter with a large average value of the phase delay amount when the time variation is small. Since the phase delay due to the filter processing is not generated when the amount of time change is large, it is possible to ensure followability to the time change of the concentration of the analyte. In addition, when the amount of change with time is small, the followability described above is not so required, so that the noise component can be more effectively removed from the measurement signal.
  • the sensing method is a method for continuously or intermittently quantifying the concentration of an analyte, and using a sensor, sequentially acquires a measurement signal correlated with the concentration of the analyte, and a plurality of steps
  • a processing step of performing a filtering process in a frequency domain on the time series of the measurement signal acquired by the sensor by passing through one type of filter among the types of filters, and the processing used for the filtering process A switching step of switching one type of filter according to the amount of time change of the measurement signal.
  • the plurality of types of filters include at least an identity conversion filter that performs identity conversion on the time series of the measurement signal, and in the switching step, the time change amount is larger than a threshold value. It is preferable to switch to the identity conversion filter.
  • the plurality of types of filters include at least two types of filters having different average values of phase delay amounts in a band equal to or lower than a cutoff frequency.
  • the switching step when the time change amount is large, It is preferable to switch to a filter with a small average value of the phase delay amount, and to switch to a filter with a large average value of the phase delay amount when the time change amount is small.
  • the sensing device and the sensing method according to the present invention since one type of filter used for the filter processing in the frequency domain is switched according to the time change amount of the measurement signal, the time change of the measurement signal, the time change of the measurement signal, the time change of the measurement signal, the time change of the measurement signal, the time change of the measurement signal, the time change of the measurement signal, the time change of the measurement signal, the time change of the measurement signal, the time change of the measurement signal. Accordingly, it is possible to maintain the follow-up property with respect to the temporal change in the concentration of the analyte while effectively removing the noise component from the measurement signal by using the filter in the frequency domain having a relatively simple configuration.
  • FIG. 3 is a circuit configuration diagram of a first filter shown in FIG. 2.
  • 4A is a diagram illustrating filter coefficients of the first filter illustrated in FIG. 2.
  • FIG. 4B is a graph showing a filter characteristic corresponding to the filter coefficient of FIG. 4A.
  • FIG. 5A and FIG. 5B are graphs showing changes in blood glucose concentration and quantitative results thereof. It is a flowchart with which operation
  • FIG. 10A is a diagram illustrating filter coefficients of the second filter illustrated in FIG. 9.
  • FIG. 10B is a graph showing filter characteristics according to the filter coefficients of FIG. 10A. It is a flowchart with which operation
  • 6 is a cumulative histogram of glucose quantification error rates when quantified by performing four types of filter processing.
  • the sensing device 10 includes a sensor unit (sensor) 12, a sensor control circuit 14 (sensor control circuit 80), a calculation unit 16, a power supply circuit 18, and a ROM (Read Only Memory) 20.
  • a RAM (Random Access Memory) 22, a clock generator 24, an input unit 26, and a display 28 are basically provided.
  • the sensor unit 12 acquires a signal correlated with the concentration of the analyte (hereinafter referred to as measurement signal S).
  • an optical sensor for example, a fluorescence sensor
  • the form of the sensor unit 12 is not limited to this.
  • a sensor that measures blood glucose level electrically (electrochemical method) by an enzyme electrode method using an enzyme such as glucose oxidase (GOD) or the like is used. You may apply.
  • the sensor control circuit 14 can acquire the measurement signal S at a desired timing by driving and controlling the sensor unit 12.
  • the sensor control circuit 14 converts a current value (analog signal) as the measurement signal S into a voltage value, and quantizes the voltage value to convert it into a digital signal.
  • the sensor control circuit 14 removes noise components mixed in the measurement signal S by applying a predetermined filter process to the analog signal or digital signal.
  • the calculation unit 16 is constituted by a CPU (Central Processing Unit), an MPU (Micro-Processing Unit), and the like, reads a program stored in the ROM 20 in advance, and executes various signal processing described later.
  • the calculation unit 16 functions as a concentration quantification unit 29 that quantifies the concentration of the analyte based on the signal value Sf (k) acquired from the sensor control circuit 14.
  • the power supply circuit 18 supplies power to each component in the sensing device 10 including the calculation unit 16.
  • the RAM 22 can read or write various data necessary for performing the sensing method according to the present invention, in addition to the measurement signal S input via the sensor unit 12.
  • the clock generator 24 generates a clock signal at a predetermined cycle and supplies it to the computing unit 16 side. Thereby, the calculating part 16 can control the acquisition timing of signal value Sf (k).
  • the input unit 26 is provided so that various information (for example, a quantitative interval Td) provided for calculation in the calculation unit 16 can be input.
  • various information for example, a quantitative interval Td
  • a push button may be used, or a touch panel incorporated in the display device 28 may be used.
  • the display 28 visualizes and displays various types of information related to the concentration of the analyte quantified by the calculation unit 16 (hereinafter also referred to as a quantitative concentration).
  • the display 28 is a display module capable of monochrome or color display, and may be composed of a liquid crystal panel, an organic EL (Electro-Luminescence), an inorganic EL panel, or the like.
  • the sensor unit 12 can be applied to various uses such as an enzyme sensor, a glucose sensor, a pH sensor, an immune sensor, or a microorganism sensor. Further, the configuration of the sensor unit 12 is not limited to this configuration, and various configurations can be adopted.
  • the sensor control circuit 14 (80) and the calculation unit 16 that are physically separated can be wirelessly communicated, so that the sensor unit 12 is completely or continuously embedded in the body of the subject. Quantitatively.
  • a standard for near field communication for example, a body area network defined by “IEEE802.15.6” may be applied.
  • FIG. 2 is a block diagram of the sensor control circuit 14 (see FIG. 1) according to the first embodiment.
  • the sensor control circuit 14 includes a signal input unit 30 that inputs the measurement signal S from the sensor unit 12, and an analog / digital conversion unit that converts the measurement signal S that is an analog signal into an original signal value S (k) that is a digital signal.
  • ADC 32 an analog / digital conversion unit that converts the measurement signal S that is an analog signal into an original signal value S (k) that is a digital signal.
  • ADC 32 an analog / digital conversion unit that converts the measurement signal S that is an analog signal into an original signal value S (k) that is a digital signal.
  • ADC 32 analog / digital conversion unit that converts the measurement signal S that is an analog signal into an original signal value S (k) that is a digital signal.
  • ADC 32 analog / digital conversion unit that converts the measurement signal S that is an analog signal into an original signal value S (k) that is a digital signal.
  • ADC 32 an analog / digital conversion unit that converts the measurement signal S that is an analog signal into an original signal value S (k) that is
  • the switch 44 of the filter switching unit 34 is connected to either the first terminal 46a or the second terminal 46b (on state), or connected to either the first terminal 46a or the second terminal 46b. No state (off state) can be taken.
  • the filter processing unit 36 includes a first filter 48 for performing a filtering process in the frequency domain.
  • the first filter 48 is connected to the first terminal 46 a side of the filter switching unit 34.
  • no filter is connected to the second terminal 46 b side of the filter switching unit 34.
  • the filter processing unit 36 further includes an identity conversion filter 49 that performs identity conversion on the original signal value S (k).
  • FIG. 3 is a circuit configuration diagram of the first filter 48.
  • the first filter 48 includes five multipliers 51, 52, 53, 54, 55, four adders 56, 57, 58, 59, and four delay units 60, 61, 62, 63. That is, the first filter 48 corresponds to an FIR (Finite Impulse Response) filter having 5 taps.
  • the multipliers hereinafter referred to as filter coefficients
  • the multipliers set in the multipliers 51 to 55 are respectively expressed as h0, h1, h2, h3, and h4. Since the FIR filter is a well-known electric circuit, description of the function and connection relationship of each arithmetic unit will be omitted.
  • FIG. 4B is a graph showing the filter characteristics according to the filter coefficient of FIG. 4A.
  • the horizontal axis of the graph indicated by the solid line is the frequency (unit: mHz), and the vertical axis is the amplitude ratio (unit: none).
  • the amplitude ratio is the ratio of the amplitude of the output signal to the amplitude of the input periodic signal (sinusoidal waveform signal). Ideally, it is 1 in the frequency band that allows the signal component to pass through and 0 in the frequency band that blocks the signal component.
  • the filter characteristic of this example is a so-called low-pass filter type in which 50% or more of signal components are allowed to pass in a band of 0 to fc [mHz], and 50% or more of signal components are blocked in a band of fc [mHz] or more. It shows the characteristics.
  • fc 0.44 [mHz] is referred to as a cutoff frequency (cut-off frequency).
  • the horizontal axis of the graph indicated by the broken line is the frequency (unit: mHz), and the vertical axis is the phase delay amount (unit: sec).
  • the phase delay amount is a difference in phase of the output signal with respect to the phase of the input periodic signal (sinusoidal waveform signal), and is ideally zero.
  • the filter characteristic of this example is characterized in that a relatively large phase delay occurs in the band of 0 to 0.9 [mHz], and the phase delay amount becomes relatively small in the band of 0.9 [mHz] or higher. Is shown.
  • the average value of the phase delay amount in the band R1 below the cutoff frequency fc is about 600 [sec].
  • any one of a low-pass filter, a high-pass filter, a band-pass filter, a band elimination filter, and an all-pass filter may be applied to the signal pass band.
  • any of a Butterworth characteristic, a Chebyshev characteristic, an inverse Chebyshev characteristic, and a simultaneous Chebyshev characteristic may be applied.
  • FIG. 5A and FIG. 5B are graphs showing changes in blood glucose concentration and quantitative results thereof.
  • the horizontal axis of each graph is time (unit: min), and the vertical axis is glucose concentration, so-called blood glucose level (unit: mg / dl).
  • the change in blood glucose level indicated by the solid line graph simulates the temporal change in blood glucose level in the body before and after the meal of the subject.
  • the broken line graph in FIG. 5A shows the quantitative result obtained without filtering the measurement signal S.
  • a high-frequency noise component is mixed in the measurement signal S, an irregular error occurs between the actual value and the quantitative value.
  • the influence on the quantitative accuracy due to the noise component appears remarkably.
  • the broken line graph in FIG. 5B shows the quantitative result obtained by subjecting the measurement signal S to the filter processing by the first filter 48.
  • a quantitative value with less irregular errors due to noise components can be obtained.
  • the phase delay caused by the first filter 48 causes a difference between the actual value and the quantitative value.
  • the influence on the quantitative accuracy due to the decrease in the follow-up property appears remarkably.
  • step S1 the signal input unit 30 inputs the measurement signal S from the sensor unit 12 according to a predetermined sampling interval Ts. Thereafter, the ADC 32 converts the analog signal acquired from the signal input unit 30 into a digital signal ⁇ hereinafter referred to as an original signal value S (k) ⁇ .
  • step S2 the original signal value S (k) input / acquired in step S1 is temporarily stored in the buffer memory 40.
  • step S3 the sensor control circuit 14 determines whether or not there is an instruction to quantify the concentration of the analyte. Specifically, the sensor control circuit 14 determines whether or not a signal for instructing concentration quantification (hereinafter, a quantification instruction signal) is received from the calculation unit 16.
  • a quantification instruction signal a signal for instructing concentration quantification
  • the calculation unit 16 counts the number of pulses of the clock signal input from the clock generator 24 in parallel with the execution of steps S1 and S2. When the count upper limit value (value corresponding to the quantitative interval Td) is reached, the calculation unit 16 sends a quantitative instruction signal to the sensor control circuit 14 side, and proceeds to the next step (S4).
  • step S1 when the count upper limit value has not been reached, the calculation unit 16 continues to count the number of pulses without sending a quantitative instruction signal. That is, returning to step S1, steps S1 and S2 are sequentially repeated.
  • the sampling interval Ts is a time interval for inputting the measurement signal S to the sensor control circuit 14 side
  • the quantification interval Td is a time interval for quantifying the concentration of the analyte on the calculation unit 16 side. That is, since the fixed interval Td is a parameter different from the sampling interval Ts, it may take the same or different value as the sampling interval Ts. Further, when the quantitative interval Td is equal to the sampling interval Ts, the sensor control circuit 14 may acquire and store the original signal value S (k) after receiving the quantitative instruction signal.
  • step S4 the switching variable calculation unit 42 calculates a switching variable Vs that is a parameter representing the amount of time change of the measurement signal S based on the time series of the original signal value S (k) sequentially stored in step S2.
  • the time change amount means a variation tendency (trend) of the measurement signal S estimated from a plurality of latest sample points.
  • the switching variable calculation unit 42 calculates the absolute value of the gradient (first time derivative) of the regression line 76 as the switching variable Vs.
  • the switching variable calculation unit 42 is not limited to the gradient of the regression line 76, and for example, a statistical value (for example, an average value) of a linear gradient that connects adjacent sample points, a curvature (second derivative of time) in an approximate curve, and the like. May be used to calculate the switching variable Vs.
  • step S5 the filter switching unit 34 switches the switch 44 of the filter switching unit 34 according to the switching variable Vs calculated in step S4. Specifically, the filter switching unit 34 determines the switching state of the switch 44 based on the magnitude relationship with a preset threshold value Vs * .
  • the filter switching unit 34 switches the switch 44 to the first terminal 46a side for a predetermined time (step S6). Then, the original signal value S (k) is output to the outside of the sensor control circuit 14 via the switch 44, the first terminal 46a, and the first filter 48.
  • the filter switching unit 34 switches the switch 44 to the second terminal 46b side for a predetermined time (step S7). Then, the original signal value S (k) is output to the outside of the sensor control circuit 14 via the switch 44 and the second terminal 46b.
  • the original signal value S (k) that passes through the filter processing unit 36 and is output from the sensor control circuit 14 is referred to as “signal value Sf (k)”.
  • the filter switching unit 34 may provide a dead band (dead band) in the determination process based on the threshold value Vs * . Thereby, the fluctuation of the time-series discrimination result can be suppressed, and the filter switching control can be stably executed.
  • step S8 the concentration quantification unit 29 quantifies the concentration based on the signal value Sf (k) output from the sensor control circuit 14 using the quantification coefficient read from the RAM 22.
  • concentration determination method various methods suitable for the detection method, material, sensitivity characteristics, individual differences, and the like in the sensor unit 12 can be adopted.
  • step S9 the indicator 28 displays the quantitative result in step S8.
  • the calculation unit 16 determines visible information (hereinafter referred to as “quantitative visible information”) to be displayed on the display unit 28 from the obtained quantitative results, and then transmits a control signal corresponding to the quantitative visible information. Supply to the display 28 side.
  • quantitative visible information not only a quantitative value but a trend, the success or failure of quantitative measurement, a quantitative time, a diagnostic result, etc. are mentioned, for example.
  • step S10 the calculation unit 16 determines whether or not there is an instruction to end the series of quantitative operations. If it is determined that there is no end instruction, the process returns to step S1, and the operations of steps S1 to S9 are repeated in the same manner. On the other hand, if there is an end instruction, the sensing device 10 ends the analyte quantitative operation. In this way, the calculation unit 16 obtains time-series data of the concentration at each quantification time according to the predetermined quantification interval Td.
  • FIG. 8 is a cumulative histogram of the quantitative error rate of glucose when quantified by applying three kinds of filter processing.
  • the horizontal axis of the histogram is the error rate (unit:%) of the quantitative value, and the vertical axis is the cumulative frequency (unit:%).
  • no filter in the figure corresponds to a quantitative result (broken line graph shown in FIG. 5A) when the switch 44 is always connected to the second terminal 46b.
  • Fixed filter corresponds to the quantitative result (broken line graph shown in FIG. 5B) when the switch 44 is always connected to the first terminal 46a.
  • Fan switching corresponds to the quantitative result when the switch 44 is switched in a timely manner according to the flowchart of FIG.
  • FIG. 9 is a block diagram of a sensor control circuit 80 (see FIG. 1) according to the second embodiment.
  • the sensor control circuit 80 has substantially the same configuration as that of the sensor control circuit 14 (FIG. 2), but includes a filter processing unit 82 having another configuration instead of the filter processing unit 36.
  • the filter processing unit 82 includes a first filter 48 and a second filter 84 having the same circuit configuration as the first filter 48 (see FIG. 3).
  • the second filter 84 is connected to the second terminal 46 b side of the filter switching unit 34.
  • the second filter 84 functions as an FIR filter having substantially three taps.
  • FIG. 10B is a graph showing the filter characteristics according to the filter coefficient of FIG. 10A.
  • the horizontal axis of the graph indicated by the solid line is the frequency (unit: mHz), and the vertical axis is the amplitude ratio (unit: none).
  • the horizontal axis of the graph indicated by the broken line is the frequency (unit: mHz), and the vertical axis is the phase delay amount (unit: sec).
  • the average value of the phase delay amount in the band R2 below the cutoff frequency fc is about 300 [sec]
  • the average value of the phase delay amount in the first filter 48 (see FIG. 4B; about 600 [sec]) Smaller than.
  • step S5 the filter switching unit 34 switches the switch 44 according to the calculated switching variable Vs. If Vs ⁇ Vs * is satisfied, the filter switching unit 34 switches the switch 44 to the first terminal 46a side for a predetermined time (step S6).
  • the filter switching unit 34 switches the switch 44 to the second terminal 46b side for a predetermined time (step S7A). Then, the original signal value S (k) is output to the outside of the sensor control circuit 80 via the switch 44, the second terminal 46b, and the second filter 84.
  • the calculation unit 16 obtains time-series data of concentrations at each quantification time according to a predetermined quantification interval Td.
  • FIG. 12 is a cumulative histogram of the quantification error rate of glucose when quantified by performing four types of filter processing.
  • the horizontal axis of the histogram is the error rate (unit:%) of the quantitative value, and the vertical axis is the cumulative frequency (unit:%).
  • no filter and “first filter fixed” correspond to “no filter” and “filter fixed” in FIG. 8, respectively.
  • Fixed second filter corresponds to the quantitative result when the switch 44 is always connected to the second terminal 46b.
  • Fan switching corresponds to the quantitative result when the switch 44 is switched in a timely manner according to the flowchart of FIG.
  • the sensing device 10 passes through the sensor unit 12 that sequentially acquires the measurement signal S correlated with the concentration of the analyte, and one type of filter among a plurality of types of filters (48, 49, 84).
  • filter processing units 36 and 82 are provided that perform filter processing in the frequency domain on the time series of the measurement signal S.
  • the filter switching part 34 which switches one type of filter used for the filter process in a frequency domain according to the time change amount (for example, switching variable Vs) of the measurement signal S was provided, the time change of the measurement signal,
  • the first filter 48 and the like in consideration of the phase delay characteristics resulting from the filter processing in a timely manner. This makes it possible to eliminate the noise component from the measurement signal S by using a filter in the frequency domain (such as the first filter 48) having a relatively simple configuration, while preventing the noise concentration from changing over time.
  • followability can be maintained.
  • the filter processing unit 36 includes at least an identity conversion filter 49 that performs identity conversion on the time series of the measurement signal S, and the filter switching unit 34 has a case where the switching variable Vs is larger than the threshold value Vs *.
  • the identity conversion filter 49 may be switched.
  • the filter processing unit 82 includes at least two types of filters (48, 84) having different average values of phase delay amounts in a band equal to or lower than the cutoff frequency fc, and the filter switching unit 34 has a large switching variable Vs.
  • the filter may be switched to the second filter 84 having a small average value of the phase delay amount, and may be switched to the first filter 48 having a large average value of the phase delay amount when the switching variable Vs is small.
  • phase delay due to the filter processing is not generated when the switching variable Vs is large, it is possible to ensure the followability to the time change of the concentration of the analyte. Further, when the switching variable Vs is small, the followability described above is not so required, so that the noise component can be more effectively removed from the measurement signal S.
  • the filter processing units 36 and 82 are configured by digital filter circuits, but may be configured by analog filter circuits. Moreover, when applying a digital filter, you may implement

Abstract

 本発明は、アナライトの濃度を連続的又は間欠的に定量するセンシング装置及びセンシング方法に関する。センサ(12)を用いて、アナライトの濃度に相関する計測信号を逐次取得する。複数種類のフィルタ(48、49、84)のうち1種類のフィルタを介すことで、センサ(12)により取得された計測信号の時系列に対して周波数領域でのフィルタ処理を施す。フィルタ処理に使用される1種類のフィルタを計測信号の時間変化量に応じて切り替える。

Description

センシング装置及びセンシング方法
 この発明は、アナライトの濃度を連続的又は間欠的に定量するセンシング装置及びセンシング方法に関する。
 例えば、被検体の体内にセンサ部を埋め込み、アナライトとしての血中グルコースの濃度を連続的又は間欠的に定量する持続血糖モニタシステム{CGM(Continuous Glucose Monitoring)システムともいう}が近時開発されている。センサ部を介して計測信号を取得する際、通常、電気ノイズ又は光量ノイズを含む各種ノイズがこの計測信号に混入する。そこで、グルコースの濃度の定量精度を向上させるため、ノイズ成分を効果的に除去するフィルタリングに関する技術が種々提案されている。
 特開2005-131370号公報では、時間領域でのフィルタリング・アルゴリズム(特に、カルマンフィルタ)を用いて、ノイズ成分を除去する方法が提案されている。より詳細には、誤差共分散行列を信号差パラメータ(例えば、標準偏差)の関数で定義することで、フィルタ係数が動的に最適化される旨が記載されている。
 ところで、装置の小型化や消費電力の削減を図るため、電気回路による処理演算量を極力少なくしたいという設計上の要望がある。しかし、特開2005-131370号公報に記載の方法では処理演算量が大きくなる傾向があり、上記した要望に応えられないという問題があった。
 本発明は上記した問題を解決するためになされたもので、比較的に簡便な構成である周波数領域でのフィルタを用いて、計測信号からノイズ成分を効果的に除去しつつも、アナライトの濃度の時間変化に対する追従性を維持可能なセンシング装置及びセンシング方法を提供することを目的とする。
 本発明に係るセンシング装置は、アナライトの濃度を連続的又は間欠的に定量する装置であって、前記アナライトの濃度に相関する計測信号を逐次取得するセンサ部と、複数種類のフィルタを備えており、該複数種類のフィルタのうち1種類のフィルタを介すことで、前記センサ部により取得された前記計測信号の時系列に対して周波数領域でのフィルタ処理を施すフィルタ処理部と、前記フィルタ処理に使用される前記1種類のフィルタを前記計測信号の時間変化量に応じて切り替えるフィルタ切替部とを備える。
 このように、周波数領域でのフィルタ処理に使用される1種類のフィルタを計測信号の時間変化量に応じて切り替えるフィルタ切替部を設けたので、前記計測信号の時間変化、及び前記フィルタ処理に起因する位相遅延特性を併せて考慮したフィルタを適時に選択可能である。これにより、比較的に簡便な構成である周波数領域でのフィルタを用いて、計測信号からノイズ成分を効果的に除去しつつも、アナライトの濃度の時間変化に対する追従性を維持できる。
 また、前記フィルタ処理部は、前記計測信号の時系列に対して恒等変換を施す恒等変換フィルタを少なくとも備えており、前記フィルタ切替部は、前記時間変化量が閾値よりも大きい場合に前記恒等変換フィルタに切り替えることが好ましい。時間変化量が閾値よりも大きい場合にフィルタ処理による位相遅延を発生させないようにしたので、アナライトの濃度の時間変化に対する追従性を確保できる。
 更に、前記フィルタ処理部は、遮断周波数以下の帯域での位相遅延量の平均値が異なる2種類のフィルタを少なくとも備えており、前記フィルタ切替部は、前記時間変化量が大きい場合に前記位相遅延量の平均値が小さいフィルタに切り替えると共に、前記時間変化量が小さい場合に前記位相遅延量の平均値が大きいフィルタに切り替えることが好ましい。時間変化量が大きい場合にフィルタ処理による位相遅延を発生させないようにしたので、アナライトの濃度の時間変化に対する追従性を確保できる。また、時間変化量が小さい場合には、上記した追従性がそれほど要求されないので、計測信号からノイズ成分を一層効果的に除去できる。
 本発明に係るセンシング方法は、アナライトの濃度を連続的又は間欠的に定量する方法であって、センサを用いて、前記アナライトの濃度に相関する計測信号を逐次取得する取得ステップと、複数種類のフィルタのうち1種類のフィルタを介すことで、前記センサにより取得された前記計測信号の時系列に対して周波数領域でのフィルタ処理を施す処理ステップと、前記フィルタ処理に使用される前記1種類のフィルタを前記計測信号の時間変化量に応じて切り替える切替ステップとを備える。
 また、前記複数種類のフィルタには、前記計測信号の時系列に対して恒等変換を施す恒等変換フィルタが少なくとも含まれており、前記切替ステップでは、前記時間変化量が閾値よりも大きい場合に前記恒等変換フィルタに切り替えることが好ましい。
 更に、前記複数種類のフィルタには、遮断周波数以下の帯域での位相遅延量の平均値が異なる2種類のフィルタが少なくとも含まれており、前記切替ステップでは、前記時間変化量が大きい場合に前記位相遅延量の平均値が小さいフィルタに切り替えると共に、前記時間変化量が小さい場合に前記位相遅延量の平均値が大きいフィルタに切り替えることが好ましい。
 本発明に係るセンシング装置及びセンシング方法によれば、周波数領域でのフィルタ処理に使用される1種類のフィルタを計測信号の時間変化量に応じて切り替えるようにしたので、前記計測信号の時間変化、及び前記フィルタ処理に起因する位相遅延特性を併せて考慮したフィルタを適時に選択可能である。これにより、比較的に簡便な構成である周波数領域でのフィルタを用いて、計測信号からノイズ成分を効果的に除去しつつも、アナライトの濃度の時間変化に対する追従性を維持できる。
第1及び第2実施形態に共通するセンシング装置の概略ブロック図である。 第1実施形態に係るセンサ制御回路のブロック図である。 図2に示す第1フィルタの回路構成図である。 図4Aは、図2に示す第1フィルタのフィルタ係数を示す図である。図4Bは、図4Aのフィルタ係数に応じたフィルタ特性を示すグラフである。 図5A及び図5Bは、血中グルコースの濃度変化及びその定量結果を表すグラフである。 第1実施形態に係るセンシング装置の動作説明に供されるフローチャートである。 複数の標本点から時間変化量を算出する一例を表す概略説明図である。 3通りのフィルタ処理を施して定量した場合における、グルコースの定量誤差率の累積ヒストグラムである。 第2実施形態に係るセンサ制御回路のブロック図である。 図10Aは、図9に示す第2フィルタのフィルタ係数を示す図である。図10Bは、図10Aのフィルタ係数に応じたフィルタ特性を示すグラフである。 第2実施形態に係るセンシング装置の動作説明に供されるフローチャートである。 4通りのフィルタ処理を施して定量した場合における、グルコースの定量誤差率の累積ヒストグラムである。
 以下、本発明に係るセンシング方法について、センシング装置との関係において好適な実施形態を挙げ、添付の図面を参照しながら説明する。
[第1及び第2実施形態に共通するセンシング装置10の構成]
 先ず、第1及び第2実施形態に共通するセンシング装置10の構成について、図1の概略ブロック図を参照しながら説明する。
 図1に示すように、センシング装置10は、センサ部(センサ)12と、センサ制御回路14(センサ制御回路80)と、演算部16と、電源回路18と、ROM(Read Only Memory)20と、RAM(Random Access Memory)22と、クロック発生器24と、入力部26と、表示器28とを基本的に備える。
 センサ部12は、アナライトの濃度に相関する信号(以下、計測信号S)を取得する。センサ部12として、サンプリング間隔Tsを容易に変更可能な光学センサ(例えば、蛍光センサ)を適用することが好ましい。なお、センサ部12の形態はこれに限定されるものではなく、例えば、血糖値をグルコースオキシダーゼ(GOD)等の酵素を用いた酵素電極法等による電気的(電気化学方式)に測定するセンサを適用してもよい。
 センサ制御回路14は、センサ部12を駆動制御することで、所望のタイミングで計測信号Sを取得可能である。センサ制御回路14は、計測信号Sとしての電流値(アナログ信号)を電圧値に変換すると共に、この電圧値を量子化してデジタル信号に変換する。センサ制御回路14は、このアナログ信号又はデジタル信号に対して所定のフィルタ処理を施すことで、計測信号Sに混入するノイズ成分を除去する。
 演算部16は、CPU(Central Processing Unit)、MPU(Micro-Processing Unit)等で構成されており、ROM20に予め記憶されたプログラムを読み出し、後述する各種信号処理を実行する。演算部16は、センサ制御回路14から取得した信号値Sf(k)に基づいてアナライトの濃度を定量する濃度定量部29として機能する。
 電源回路18は、演算部16を含むセンシング装置10内の各構成要素に電力を供給する。RAM22は、センサ部12を介して入力された計測信号Sの他、本発明に係るセンシング方法を実施するために必要な各種データを読み出し又は書込み可能である。クロック発生器24は、所定周期でクロック信号を発生し、演算部16側に供給する。これにより、演算部16は、信号値Sf(k)の取得タイミングを制御可能である。
 入力部26は、演算部16での演算に供される各種情報(例えば、定量間隔Td)を入力可能に設けられている。例えば、押圧式ボタンであってもよいし、表示器28に組み込まれたタッチパネルであってもよい。表示器28は、演算部16により定量されたアナライトの濃度(以下、定量濃度ともいう)に関する各種情報を可視化して表示する。表示器28は、モノクロ又はカラー表示可能な表示モジュールであり、液晶パネル、有機EL(Electro-Luminescence)、無機ELパネル等で構成されてもよい。
 なお、センサ部12は、酵素センサ、グルコースセンサ、pHセンサ、免疫センサ、又は微生物センサ等、多様な用途に適用可能である。また、センサ部12の構成は、本構成に限られることなく種々の構成を採り得る。例えば、物理的に分離されたセンサ制御回路14(80)及び演算部16の間を無線で通信可能に設けることで、センサ部12を被検体の体内に完全に埋め込んだ状態で間欠的又は連続的に定量可能である。なお、無線通信の際には、近距離通信用の規格(例えば、「IEEE 802.15.6」で規定するボディエリアネットワーク等)を適用してもよい。
<第1実施形態>
 続いて、第1実施形態に係るセンサ制御回路14の構成及び動作について、図2~図7を参照しながら説明する。なお、本明細書では、アナライトとしてグルコースを用いた場合の定量動作を中心に説明する。
[センサ制御回路14のブロック図]
 図2は、第1実施形態に係るセンサ制御回路14(図1参照)のブロック図である。
 センサ制御回路14は、センサ部12からの計測信号Sを入力する信号入力部30と、アナログ信号である計測信号Sをデジタル信号である原信号値S(k)に変換するアナログ・デジタル変換部(以下、ADC32という)と、複数種類のフィルタの中から1種類のフィルタを択一的に切り替えるフィルタ切替部34と、原信号値S(k)に対して周波数領域でのフィルタ処理を施すフィルタ処理部36と、直近の原信号値S(k)を一時的に格納するバッファメモリ40と、フィルタ切替部34が備える複数種類のフィルタを切り替える変数(以下、切替変数Vs)を算出する切替変数算出部42と、を備える。
 フィルタ切替部34のスイッチ44は、第1端子46a又は第2端子46bのいずれか一方に接続された状態(オン状態)、或いは、第1端子46a及び第2端子46bのいずれにも接続されていない状態(オフ状態)を採り得る。
 フィルタ処理部36は、周波数領域でのフィルタリング処理を実行するための第1フィルタ48を備える。第1フィルタ48は、フィルタ切替部34の第1端子46a側に接続されている。一方、フィルタ切替部34の第2端子46b側には、フィルタが接続されていない。換言すれば、フィルタ処理部36は、原信号値S(k)に対して恒等変換を施す恒等変換フィルタ49を更に備えている。
 図3は、第1フィルタ48の回路構成図である。第1フィルタ48は、5つの乗算器51、52、53、54、55、4つの加算器56、57、58、59、並びに4つの遅延器60、61、62、63で構成される。すなわち、第1フィルタ48は、タップ数が5であるFIR(Finite Impulse Response)フィルタに相当する。以下、乗算器51~55に設定された乗数(以下、フィルタ係数)をそれぞれ順番に、h0、h1、h2、h3、h4と表記する。なお、FIRフィルタは周知の電気回路であるため、各演算器の機能及び接続関係についての説明を省略する。
 図4Aは、図2に示す第1フィルタ48のフィルタ係数を示す図である。具体的には、乗算器51(以下、図3参照)のフィルタ係数をh0=0.159、乗算器52のフィルタ係数をh1=0.220、乗算器53のフィルタ係数をh2=0.243、乗算器54のフィルタ係数をh3=0.220、乗算器55のフィルタ係数をh4=0.159、にそれぞれ設定する。
 図4Bは、図4Aのフィルタ係数に応じたフィルタ特性を示すグラフである。
 実線で示すグラフの横軸は周波数(単位:mHz)であり、縦軸は振幅比(単位:なし)である。ここで、振幅比とは、入力される周期信号(正弦波形信号)の振幅に対する出力信号の振幅の比である。理想的には、信号成分を通過させる周波数帯域で1であり、信号成分を遮断させる周波数帯域で0である。本図例のフィルタ特性は、0~fc[mHz]の帯域では50%以上の信号成分を通過させると共に、fc[mHz]以上の帯域では50%以上の信号成分を遮断させる、いわゆるローパスフィルタ型の特徴を示している。以下、fc=0.44[mHz]のことを遮断周波数(カットオフ周波数)と称する。
 破線で示すグラフの横軸は周波数(単位:mHz)であり、縦軸は位相遅延量(単位:sec)である。ここで、位相遅延量とは、入力される周期信号(正弦波形信号)の位相に対する出力信号の位相の差であり、理想的には0である。本図例のフィルタ特性は、0~0.9[mHz]の帯域では相対的に大きな位相の遅延が生じると共に、0.9[mHz]以上の帯域では位相遅延量が相対的に小さくなる特徴を示している。なお、遮断周波数fc以下の帯域R1での位相遅延量の平均値は、約600[sec]である。
 なお、第1フィルタ48(又は後述する第2フィルタ84)を決定する際、FIRフィルタ又はIIR(Infinite Impulse Response)フィルタに関する公知の設計手法を種々適用してもよい。例えば、信号の通過域に関して、低域通過フィルタ、高域通過フィルタ、帯域通過フィルタ、帯域除去フィルタ、及び全域通過フィルタのうちのいずれかを適用してもよい。また、振幅特性の形状に関して、バターワース特性、チェビシェフ特性、逆チェビシェフ特性、及び連立チェビシェフ特性(楕円特性)のうちのいずれかを適用してもよい。
[フィルタ処理と定量結果との関係]
 図5A及び図5Bは、血中グルコースの濃度変化及びその定量結果を表すグラフである。各グラフの横軸は時間(単位:min)であり、縦軸はグルコースの濃度、いわゆる血糖値(単位:mg/dl)である。実線のグラフでそれぞれ示す血糖値の変化は、被検体の食事前後における体内の血糖値の時間変化を模擬している。
 図5Aにおける破線のグラフは、計測信号Sに対してフィルタ処理を施すことなく得られた定量結果を示す。本グラフから理解されるように、計測信号Sに高周波数のノイズ成分が混入することで、実際値と定量値との間に不規則な誤差が生じている。特に、信号のレベルが相対的に低いB領域において、ノイズ成分に起因する定量精度への影響が顕著に現われている。
 図5Bにおける破線のグラフは、計測信号Sに対して第1フィルタ48によるフィルタ処理を施して得られた定量結果を示す。本グラフから理解されるように、ノイズ成分に起因する不規則な誤差が少ない定量値が得られる。しかし、第1フィルタ48による位相遅延が起こることで、実際値と定量値との間に乖離が生じている。特に、信号の時間変化量が大きいA領域において、追従性の低下に起因する定量精度への影響が顕著に現われている。
[センサ制御回路14を含むセンシング装置10の動作]
 上記した定量誤差の発生を抑制するため、第1実施形態に係るセンシング方法ではフィルタの有無を適時に切り替える。以下、センサ制御回路14(図2)を含むセンシング装置10の動作について、図6のフローチャートを参照しながら詳細に説明する。初期状態では、フィルタ切替部34のスイッチ44はオフ状態であったとする。
 ステップS1において、信号入力部30は、所定のサンプリング間隔Tsに従って、センサ部12から計測信号Sを入力する。その後、ADC32は、信号入力部30から取得したアナログ信号をデジタル信号{以下、原信号値S(k)という}に変換する。
 ステップS2において、ステップS1で入力・取得された原信号値S(k)をバッファメモリ40に一時的に格納する。
 ステップS3において、センサ制御回路14は、アナライトの濃度を定量する指示があったか否かを判別する。具体的には、センサ制御回路14は、濃度の定量を指示する信号(以下、定量指示信号)を演算部16から受信したか否かを判別する。
 演算部16は、ステップS1及びS2の実行と並列して、クロック発生器24から入力されたクロック信号のパルス数をカウントする。そして、カウント上限値(定量間隔Tdに相当する値)に到達した場合、演算部16は、センサ制御回路14側に定量指示信号を送出し、次のステップ(S4)に進む。
 一方、上記したカウント上限値に到達していない場合、演算部16は、定量指示信号を送出することなく、パルス数のカウントを継続する。すなわち、ステップS1に戻り、以下ステップS1及びS2を順次繰り返す。
 ところで、サンプリング間隔Tsは、センサ制御回路14側に計測信号Sを入力する時間の間隔であると共に、定量間隔Tdは、演算部16側でアナライトの濃度を定量する時間間隔である。すなわち、定量間隔Tdは、サンプリング間隔Tsと異なるパラメータであることから、サンプリング間隔Tsと同一の又は異なる値を取ってもよい。また、定量間隔Tdがサンプリング間隔Tsに等しい場合、センサ制御回路14は、定量指示信号を受け付けた後に原信号値S(k)を取得・格納してもよい。
 ステップS4において、切替変数算出部42は、ステップS2で順次格納された原信号値S(k)の時系列に基づいて、計測信号Sの時間変化量を表すパラメータである切替変数Vsを算出する。ここで、時間変化量とは、直近の複数の標本点から推定される計測信号Sの変動傾向(トレンド)を意味する。
 図7に示すように、現在の標本点75から時間的に近い順に、標本点74、73、72、71が既に得られていたとする。この場合、過去の標本点71~74のみならず標本点75も併せ用いて、破線で図示する回帰直線76を求めることができる。そして、切替変数算出部42は、この回帰直線76の勾配(時間の1次微分)の絶対値を切替変数Vsとして算出する。
 なお、上記勾配を算出する手法は、加重平均、最小二乗法を含む種々の最適化手法を用いることができる。また、トレンドの推定に供される標本点の個数は5つに限られず、演算量、処理時間等を総合的に考慮して適宜決定してもよい。更に、切替変数算出部42は、回帰直線76の勾配に限られず、例えば、隣接する標本点を結ぶ直線勾配の統計値(例えば、平均値)、近似曲線における曲率(時間の2次微分)等を用いて、切替変数Vsを算出してもよい。
 ステップS5において、フィルタ切替部34は、ステップS4で算出された切替変数Vsに応じて、フィルタ切替部34のスイッチ44を切り替える。具体的には、フィルタ切替部34は、予め設定された閾値Vsとの大小関係によってスイッチ44の切替状態を決定する。
 Vs≦Vsを満たす場合、フィルタ切替部34は、スイッチ44を一定時間だけ第1端子46a側に切り替える(ステップS6)。そうすると、原信号値S(k)は、スイッチ44、第1端子46a及び第1フィルタ48を介して、センサ制御回路14の外部に出力される。
 Vs>Vsを満たす場合、フィルタ切替部34は、スイッチ44を一定時間だけ第2端子46b側に切り替える(ステップS7)。そうすると、原信号値S(k)は、スイッチ44及び第2端子46bを介して、センサ制御回路14の外部に出力される。以下、用語の区別を明確にするため、フィルタ処理部36を通過し、センサ制御回路14から出力された原信号値S(k)を「信号値Sf(k)」と称する。
 なお、フィルタ切替部34は、閾値Vsによる判別処理の際にデッドバンド(不感帯)を設けてもよい。これにより、時系列的な判別結果のゆらぎを抑制可能であり、フィルタの切替制御を安定的に実行できる。
 ステップS8において、濃度定量部29は、RAM22から読み出した定量係数等を用いて、センサ制御回路14から出力された信号値Sf(k)に基づく濃度の定量を行う。ここで、濃度の定量方法は、センサ部12における検出方式、材質、感度特性、個体差等に適した種々の手法を採ることができる。
 ステップS9において、表示器28は、ステップS8における定量結果を表示する。表示処理に先立ち、演算部16は、得られた定量結果のうち、表示器28に表示させる可視情報(以下、定量可視情報という。)を決定した後、その定量可視情報に応じた制御信号を表示器28側に供給する。なお、定量可視情報として、定量値のみならず、例えば、トレンド、定量の成否、定量時刻、診断結果等が挙げられる。
 ステップS10において、演算部16は、この一連の定量動作の終了指示があったか否かを判別する。終了指示がなかったと判別された場合、ステップS1に戻り、以下ステップS1~S9の動作を同様に繰り返す。一方、終了指示があった場合、センシング装置10は、アナライトの定量動作を終了する。このようにして、演算部16は、所定の定量間隔Tdに従って、各定量時点における濃度の時系列データを得る。
[第1実施形態に係るセンシング方法により得られる作用効果]
 以下、第1実施形態に係るセンシング方法により得られる作用効果について、図8を参照しながら説明する。より詳細には、図5A及び図5Bに示す血中グルコースの濃度変化(実線のグラフ)の下、異なる形態のフィルタ処理を用いてそれぞれ定量した結果を比較する。いずれの場合も、サンプリング間隔Ts=5[min]、定量間隔Td=5[min]として計測・定量した。また、回帰直線76(図7)の勾配の絶対値に関する閾値を、Vs=0.3[1/min]に設定した。
 図8は、3通りのフィルタ処理を施して定量した場合における、グルコースの定量誤差率の累積ヒストグラムである。ヒストグラムの横軸は定量値の誤差率(単位:%)であり、縦軸は累積頻度(単位:%)である。
 なお、本図中における「フィルタなし」は、スイッチ44が第2端子46bに常時接続された場合での定量結果(図5Aに示す破線のグラフ)に対応する。「フィルタ固定」は、スイッチ44が第1端子46aに常時接続された場合での定量結果(図5Bに示す破線のグラフ)に対応する。「フィルタ切替」は、図6のフローチャートに従ってスイッチ44を適時切り替えた場合での定量結果に対応する。
 本図から理解されるように、誤差率が10%以下の頻度は、「フィルタ切替」>「フィルタなし」>「フィルタ固定」の順番で高くなっている。そして、誤差率が20%以下の頻度は、「フィルタ切替」>「フィルタ固定」>「フィルタなし」の順番で高くなっている。このように、「フィルタ切替」は、「フィルタなし」及び「フィルタ固定」と比べて、濃度の定量誤差が有意に少ないと結論付けられる。
<第2実施形態>
 続いて、第2実施形態に係るセンサ制御回路80の構成及び動作について、図9~図12を参照しながら説明する。なお、第1実施形態と同様の構成については、同一の参照符号を付すると共にその説明を省略する。
[センサ制御回路80のブロック図]
 図9は、第2実施形態に係るセンサ制御回路80(図1参照)のブロック図である。センサ制御回路80は、センサ制御回路14(図2)と略同様の構成を採るが、フィルタ処理部36に代わって別の構成のフィルタ処理部82を備える。
 フィルタ処理部82は、第1フィルタ48と、該第1フィルタ48と同じ回路構成(図3参照)である第2フィルタ84とを備える。第2フィルタ84は、フィルタ切替部34の第2端子46b側に接続されている。
 図10Aは、図9に示す第2フィルタ84のフィルタ係数を示す図である。具体的には、乗算器51(以下、図3参照)のフィルタ係数をh0=0.301、乗算器52のフィルタ係数をh1=0.398、乗算器53のフィルタ係数をh2=0.301、乗算器54のフィルタ係数をh3=0.000、乗算器55のフィルタ係数をh4=0.000、にそれぞれ設定する。このように、h3=h4=0.000であることから、第2フィルタ84は、実質的にタップ数が3であるFIRフィルタとして機能する。
 図10Bは、図10Aのフィルタ係数に応じたフィルタ特性を示すグラフである。実線で示すグラフの横軸は周波数(単位:mHz)であり、縦軸は振幅比(単位:なし)である。本図例のフィルタ特性は、図4Bと同様に、ローパスフィルタ型の特徴を示しており、遮断周波数fcは、fc=0.74[mHz]である。つまり、第2フィルタ84の遮断周波数fcは、第1フィルタ48の遮断周波数fc(=0.44)よりも高い。
 破線で示すグラフの横軸は周波数(単位:mHz)であり、縦軸は位相遅延量(単位:sec)である。本図例では、0~1.7[mHz]の帯域で位相遅延は略一定(=300[sec])である。この場合、遮断周波数fc以下の帯域R2での位相遅延量の平均値は約300[sec]であり、第1フィルタ48での位相遅延量の平均値(図4B参照;約600[sec])よりも小さい。
[センサ制御回路80を含むセンシング装置10の動作]
 上記した欠点を相互に補完するため、第2実施形態に係るセンシング方法では複数種類のフィルタを適時に切り替える。以下、センサ制御回路80(図9)を含むセンシング装置10の動作について、図11のフローチャートを参照しながら説明する。ステップS1~S4、ステップS8~S10に関して、図6のフローチャート(第1実施形態)と同様であるため、その説明を割愛する。
 ステップS5において、フィルタ切替部34は、算出された切替変数Vsに応じてスイッチ44を切り替える。Vs≦Vsを満たす場合、フィルタ切替部34は、スイッチ44を一定時間だけ第1端子46a側に切り替える(ステップS6)。
 一方、Vs>Vsを満たす場合、フィルタ切替部34は、スイッチ44を一定時間だけ第2端子46b側に切り替える(ステップS7A)。そうすると、原信号値S(k)は、スイッチ44、第2端子46b及び第2フィルタ84を介して、センサ制御回路80の外部に出力される。
 このようにして、演算部16は、所定の定量間隔Tdに従って、各定量時点における濃度の時系列データを得る。
[第2実施形態に係るセンシング方法での定量結果]
 以下、第2実施形態に係るセンシング方法により得られる作用効果について、図12を参照しながら説明する。より詳細には、図5A及び図5Bに示す血中グルコースの濃度変化(実線のグラフ)の下、異なる形態のフィルタ処理を用いてそれぞれ定量した結果を比較する。いずれの場合も、サンプリング間隔Ts=5[min]、定量間隔Td=5[min]として計測・定量した。また、閾値Vs=0.3[1/min]に設定した。
 図12は、4通りのフィルタ処理を施して定量した場合における、グルコースの定量誤差率の累積ヒストグラムである。ヒストグラムの横軸は定量値の誤差率(単位:%)であり、縦軸は累積頻度(単位:%)である。
 なお、本図中における「フィルタなし」及び「第1フィルタ固定」は、図8の「フィルタなし」及び「フィルタ固定」にそれぞれ対応する。「第2フィルタ固定」は、スイッチ44が第2端子46bに常時接続された場合での定量結果に対応する。「フィルタ切替」は、図11のフローチャートに従ってスイッチ44を適時切り替えた場合での定量結果に対応する。
 本図から理解されるように、誤差率が10%以下の頻度は、「フィルタ切替」>「第2フィルタ固定」>「フィルタなし」>「第1フィルタ固定」の順番で高くなっている。そして、誤差率が20%以下の頻度は、「フィルタ切替」>「第2フィルタ固定」>「第1フィルタ固定」>「フィルタなし」の順番で高くなっている。このように、「フィルタ切替」は、「フィルタなし」、「第1フィルタ固定」及び「第2フィルタ固定」と比べて、濃度の定量誤差が相対的に少ないと結論付けられる。
[本発明の効果]
 以上のように、このセンシング装置10は、アナライトの濃度に相関する計測信号Sを逐次取得するセンサ部12と、複数種類のフィルタ(48、49、84)のうち1種類のフィルタを介すことで、計測信号Sの時系列に対して周波数領域でのフィルタ処理を施すフィルタ処理部36、82を備える。
 そして、周波数領域でのフィルタ処理に使用される1種類のフィルタを計測信号Sの時間変化量(例えば、切替変数Vs)に応じて切り替えるフィルタ切替部34を設けたので、計測信号の時間変化、及びフィルタ処理に起因する位相遅延特性を併せて考慮した第1フィルタ48等を適時に選択可能である。これにより、比較的に簡便な構成である周波数領域でのフィルタ(第1フィルタ48等)を用いて、計測信号Sからノイズ成分を効果的に除去しつつも、アナライトの濃度の時間変化に対する追従性を維持できる。
 また、フィルタ処理部36は、計測信号Sの時系列に対して恒等変換を施す恒等変換フィルタ49を少なくとも備えており、フィルタ切替部34は、切替変数Vsが閾値Vsよりも大きい場合に恒等変換フィルタ49に切り替えてもよい。
 更に、フィルタ処理部82は、遮断周波数fc以下の帯域での位相遅延量の平均値が異なる2種類のフィルタ(48、84)を少なくとも備えており、フィルタ切替部34は、切替変数Vsが大きい場合に位相遅延量の平均値が小さい第2フィルタ84に切り替えると共に、切替変数Vsが小さい場合に位相遅延量の平均値が大きい第1フィルタ48に切り替えてもよい。
 切替変数Vsが大きい場合にフィルタ処理による位相遅延を発生させないようにしたので、アナライトの濃度の時間変化に対する追従性を確保できる。また、切替変数Vsが小さい場合には、上記した追従性がそれほど要求されないので、計測信号Sからノイズ成分を一層効果的に除去できる。
 なお、この発明は、上述した実施形態に限定されるものではなく、この発明の主旨を逸脱しない範囲で自由に変更できることは勿論である。
 例えば、第1及び第2実施形態では、フィルタ処理部36、82をデジタルフィルタ回路で構成する例を示したが、アナログフィルタ回路で構成してもよい。また、デジタルフィルタを適用する場合、ハードウェア及び/又はソフトウェアで実現してもよい。更に、このフィルタ処理をソフトウェアで実現する場合、センサ制御回路14、80に代わって演算部16に実行させてもよい。

Claims (6)

  1.  アナライトの濃度を連続的又は間欠的に定量するセンシング装置(10)であって、
     前記アナライトの濃度に相関する計測信号を逐次取得するセンサ部(12)と、
     複数種類のフィルタ(48、49、84)を備えており、該複数種類のフィルタ(48、49、84)のうち1種類のフィルタを介すことで、前記センサ部(12)により取得された前記計測信号の時系列に対して周波数領域でのフィルタ処理を施すフィルタ処理部(36、82)と、
     前記フィルタ処理に使用される前記1種類のフィルタを前記計測信号の時間変化量に応じて切り替えるフィルタ切替部(34)と
     を備えることを特徴とするセンシング装置(10)。
  2.  請求項1記載のセンシング装置(10)において、
     前記フィルタ処理部(36)は、前記計測信号の時系列に対して恒等変換を施す恒等変換フィルタ(49)を少なくとも備えており、
     前記フィルタ切替部(34)は、前記時間変化量が閾値よりも大きい場合に前記恒等変換フィルタ(49)に切り替える
     ことを特徴とするセンシング装置(10)。
  3.  請求項1又は2に記載のセンシング装置(10)において、
     前記フィルタ処理部(82)は、遮断周波数以下の帯域での位相遅延量の平均値が異なる2種類のフィルタ(48、84)を少なくとも備えており、
     前記フィルタ切替部(34)は、前記時間変化量が大きい場合に前記位相遅延量の平均値が小さいフィルタ(84)に切り替えると共に、前記時間変化量が小さい場合に前記位相遅延量の平均値が大きいフィルタ(48)に切り替える
     ことを特徴とするセンシング装置(10)。
  4.  アナライトの濃度を連続的又は間欠的に定量するセンシング方法であって、
     センサ(12)を用いて、前記アナライトの濃度に相関する計測信号を逐次取得する取得ステップと、
     複数種類のフィルタ(48、49、84)のうち1種類のフィルタを介すことで、前記センサ(12)により取得された前記計測信号の時系列に対して周波数領域でのフィルタ処理を施す処理ステップと、
     前記フィルタ処理に使用される前記1種類のフィルタを前記計測信号の時間変化量に応じて切り替える切替ステップと
     を備えることを特徴とするセンシング方法。
  5.  請求項4記載のセンシング方法において、
     前記複数種類のフィルタ(48、49、84)には、前記計測信号の時系列に対して恒等変換を施す恒等変換フィルタ(49)が少なくとも含まれており、
     前記切替ステップでは、前記時間変化量が閾値よりも大きい場合に前記恒等変換フィルタ(49)に切り替える
     ことを特徴とするセンシング方法。
  6.  請求項4又は5に記載のセンシング方法において、
     前記複数種類のフィルタ(48、49、84)には、遮断周波数以下の帯域での位相遅延量の平均値が異なる2種類のフィルタ(48、84)が少なくとも含まれており、
     前記切替ステップでは、前記時間変化量が大きい場合に前記位相遅延量の平均値が小さいフィルタ(84)に切り替えると共に、前記時間変化量が小さい場合に前記位相遅延量の平均値が大きいフィルタ(48)に切り替える
     ことを特徴とするセンシング方法。
PCT/JP2012/078298 2012-11-01 2012-11-01 センシング装置及びセンシング方法 WO2014068743A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2012/078298 WO2014068743A1 (ja) 2012-11-01 2012-11-01 センシング装置及びセンシング方法
JP2014544157A JP5913623B2 (ja) 2012-11-01 2012-11-01 センシング装置及びセンシング方法
CN201280075709.7A CN104602599B (zh) 2012-11-01 2012-11-01 感测装置及感测方法
EP12887813.9A EP2915484A4 (en) 2012-11-01 2012-11-01 DETECTION DEVICE AND DETECTION METHOD
US14/698,607 US9995779B2 (en) 2012-11-01 2015-04-28 Sensing device and sensing method
HK15108605.3A HK1207955A1 (en) 2012-11-01 2015-09-02 Sensing device and sensing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/078298 WO2014068743A1 (ja) 2012-11-01 2012-11-01 センシング装置及びセンシング方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/698,607 Continuation US9995779B2 (en) 2012-11-01 2015-04-28 Sensing device and sensing method

Publications (1)

Publication Number Publication Date
WO2014068743A1 true WO2014068743A1 (ja) 2014-05-08

Family

ID=50626709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078298 WO2014068743A1 (ja) 2012-11-01 2012-11-01 センシング装置及びセンシング方法

Country Status (6)

Country Link
US (1) US9995779B2 (ja)
EP (1) EP2915484A4 (ja)
JP (1) JP5913623B2 (ja)
CN (1) CN104602599B (ja)
HK (1) HK1207955A1 (ja)
WO (1) WO2014068743A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6447530B2 (ja) 2016-01-29 2019-01-09 オムロン株式会社 信号処理装置、信号処理装置の制御方法、制御プログラム、および記録媒体
JP6447531B2 (ja) * 2016-01-29 2019-01-09 オムロン株式会社 信号処理装置、信号処理装置の制御方法、制御プログラム、および記録媒体
US10302687B2 (en) * 2016-06-14 2019-05-28 General Electric Company Filtration thresholding
US10244230B2 (en) 2017-03-01 2019-03-26 Avalon Holographics Inc. Directional pixel for multiple view display

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005131370A (ja) 2003-09-23 2005-05-26 F Hoffmann-La Roche Ag 検体成分濃度の連続的監視方法ならびに監視機器
JP2007516783A (ja) * 2003-12-31 2007-06-28 メドトロニック ミニメド インコーポレイテッド 生理学的特性値モニタ
JP2007523709A (ja) * 2004-02-26 2007-08-23 ダイアベティス ツールズ スウェーデン アーベー 被検者の健康に関連する状態を表示するための代謝監視、方法および装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572545B2 (en) * 2000-09-22 2003-06-03 Knobbe, Lim & Buckingham Method and apparatus for real-time control of physiological parameters
WO2002093181A1 (fr) * 2001-05-15 2002-11-21 Synchro Co., Ltd. Detecteur de forme d'onde et systeme de suivi d'etat l'utilisant
EP2239567B1 (en) * 2003-12-05 2015-09-02 DexCom, Inc. Calibration techniques for a continuous analyte sensor
WO2006091636A2 (en) * 2005-02-23 2006-08-31 Digital Intelligence, L.L.C. Signal decomposition and reconstruction
JP2008067070A (ja) * 2006-09-07 2008-03-21 Nippon Telegr & Teleph Corp <Ntt> 適応型ノイズフィルタ
US9320470B2 (en) * 2008-12-31 2016-04-26 Medtronic Minimed, Inc. Method and/or system for sensor artifact filtering
JP5605269B2 (ja) * 2011-02-28 2014-10-15 セイコーエプソン株式会社 拍動検出装置
JP5716466B2 (ja) * 2011-03-10 2015-05-13 セイコーエプソン株式会社 フィルター装置および拍動検出装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005131370A (ja) 2003-09-23 2005-05-26 F Hoffmann-La Roche Ag 検体成分濃度の連続的監視方法ならびに監視機器
JP2007516783A (ja) * 2003-12-31 2007-06-28 メドトロニック ミニメド インコーポレイテッド 生理学的特性値モニタ
JP2007523709A (ja) * 2004-02-26 2007-08-23 ダイアベティス ツールズ スウェーデン アーベー 被検者の健康に関連する状態を表示するための代謝監視、方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2915484A4

Also Published As

Publication number Publication date
JPWO2014068743A1 (ja) 2016-09-08
CN104602599A (zh) 2015-05-06
EP2915484A4 (en) 2016-07-06
EP2915484A1 (en) 2015-09-09
US9995779B2 (en) 2018-06-12
CN104602599B (zh) 2017-07-11
HK1207955A1 (en) 2016-02-19
JP5913623B2 (ja) 2016-04-27
US20150247887A1 (en) 2015-09-03

Similar Documents

Publication Publication Date Title
JP5913623B2 (ja) センシング装置及びセンシング方法
CN104969666B (zh) Rf脉冲发生与rf计量、处理和控制的同步
RU2006134033A (ru) Метаболический контроль, способ и устройство для получения показаний об определяющем здоровье состоянии обследуемого лица
JP2013506523A5 (ja)
ATE554699T1 (de) Herzüberwachungsvorrichtung und -verfahren
EP2551753A3 (en) Control circuit and method for sensing an electrode array and touch control sensing system using the same
WO2004095175A3 (en) Autonomic determination of configuration settings by walking the configuration space
EP2559004A1 (en) System and method for determining motion of a biological object
JP2012177568A (ja) データ処理装置、データ処理方法、及びデータ処理プログラム
US20070202997A1 (en) Step number measuring apparatus
RU2680266C2 (ru) Измерение концентрации аналита
CN105809633A (zh) 去除颜色噪声的方法及装置
US20170258405A1 (en) Measurement device and measurement method
US10386417B2 (en) Electronic battery sensor and method for determining an internal resistance of a battery
CN111860102A (zh) 用于在含噪环境中分析系统的状态的设备和方法
JPWO2021009851A5 (ja) 生体信号推定装置、生体信号推定方法、及び、生体信号推定プログラム
CN111488012B (zh) 一种烟草病菌溶液温控方法及系统
CN113229788B (zh) 一种基于薄膜压力传感器的脉搏波去噪方法及装置
JP2004020427A (ja) ノイズ除去方法及びノイズ除去フィルタ
CN107884712B (zh) 电机输入电流的波动量曲线的确定方法及装置
CN109270591B (zh) 红外机芯组件噪声盲元查找方法、装置以及红外机芯组件
CN107850496B (zh) 一种压力检测系统、模组及方法
CN110584650A (zh) 一种基于hrv的驾驶舒适度量化方法、装置和存储介质
JP6551194B2 (ja) 処理装置
KR101597943B1 (ko) 혈당량과 헤마토크릿의 동시측정을 위한 센서 측정장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887813

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544157

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012887813

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE