WO2014068728A1 - Feed water control system and feed water control method - Google Patents

Feed water control system and feed water control method Download PDF

Info

Publication number
WO2014068728A1
WO2014068728A1 PCT/JP2012/078236 JP2012078236W WO2014068728A1 WO 2014068728 A1 WO2014068728 A1 WO 2014068728A1 JP 2012078236 W JP2012078236 W JP 2012078236W WO 2014068728 A1 WO2014068728 A1 WO 2014068728A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
water supply
pump
demand
water level
Prior art date
Application number
PCT/JP2012/078236
Other languages
French (fr)
Japanese (ja)
Inventor
信補 高橋
藤井 健司
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2014544143A priority Critical patent/JPWO2014068728A1/en
Priority to PCT/JP2012/078236 priority patent/WO2014068728A1/en
Publication of WO2014068728A1 publication Critical patent/WO2014068728A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/16Pumping installations or systems with storage reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems

Definitions

  • a receiving tank and an elevated water tank are often provided.
  • the water supplied from the water company is temporarily stored in the water receiving tank, and the water stored in the water receiving tank is carried by the water supply pump to the elevated water tank placed on the roof of a large-volume consumer. And the water stored by the elevated water tank is supplied to a consumer using gravity.
  • Patent Document 1 describes a water supply pump control device that prevents water stored in an elevated water tank from being reduced during a disaster.
  • a sensor for detecting the water level is provided in the elevated water tank, and when it is detected that the water level of the elevated water tank is below a predetermined lower limit water level, the pump is activated.
  • Supply water to the elevated water tank so that the water level of the elevated water tank falls between the upper limit water level and the lower limit water level by controlling the water supply to stop when the specified upper limit water level is exceeded. Is controlled so that the supply of water does not stop against the demand.
  • the water demand of large consumers tends to be large during daytime hours (for example, from 10:00 to 18:00) and small during other time periods. Therefore, since the amount of stored water in the elevated water tank tends to be insufficient during periods of high water demand, the number of times the water pump is started (or startup time) is increased compared to the period of low water demand. Power consumption due to startup and operation increases. And since there is a tendency that the time when the water demand is high overlaps with the time when the power demand is high, there is a problem that the power consumption by the feed water pump increases during the time when the power demand is high and cannot contribute to power saving.
  • the present invention has been made in consideration of the above points, and intends to propose a water supply control system and a water supply control method capable of suppressing power consumption by a water supply pump in a time zone where power demand is large.
  • the operation of the water supply pump is controlled so that a part of the water demand is supplied in a time zone when the power demand is small, and the water supply pump operates according to the control of the water supply pump control unit, and the first water demand The amount of water corresponding to the predicted amount Water supply control system for water in the first water tank at the predetermined period is provided.
  • the water supply control system in the water supply control method by a water supply control system for supplying water supplied from a water supplier to a consumer, the water supply control system is configured to supply the water supply business via a water supply pipe.
  • a first water tank that stores water supplied from a person, a water supply pump that sends water supplied from the water utility to the first water tank, a water supply pump control unit that controls the operation of the water supply pump, A water demand prediction step for predicting a first water demand prediction amount indicating a total amount of water demand in a predetermined period based on data indicating past water demand, and the water supply pump
  • the control unit is configured so that the total amount of water to be fed to the first water tank during the predetermined period matches the first water demand prediction amount predicted in the water demand prediction step, and the power demand is large.
  • a water supply control method comprising: a water supply step of supplying a water amount corresponding to the first water demand prediction amount to the first water tank during the predetermined period.
  • FIG. 1 is a block diagram showing the configuration of the water supply control system according to the first embodiment.
  • a water supply control system 1 shown in FIG. 1 is a water supply control system that controls water supply to a building 15 that is an example of a large-volume consumer, and includes a water receiving tank 11, a water supply pump 12, an elevated water tank 13, and a water supply control device 14. I have.
  • a water supply pipe 161 is connected to the water receiving tank 11 on the side to which water is supplied from a water supplier, and a water supply pipe 162 is connected to the water supply pump 12.
  • water supply pump 12 and the elevated water tank 13 are connected by a water supply pipe 163, and the elevated water tank 13 is connected to a water supply pipe 164 provided for delivering water to consumers of the building 15. Yes.
  • These water supply pipes 161 to 164 are tubular pipes that can flow, and the material is not particularly limited.
  • the water receiving tank 11 is a water tank arranged in the vicinity of the building 15, and temporarily stores water supplied from the water company through the water supply pipe 161.
  • the water receiving tank 11 is connected to the water supply pump 12 via the water supply pipe 162.
  • the elevated water tank 13 is a water tank disposed on the roof of the building 15 and stores water supplied from the water receiving tank 12 by the water supply pump 12.
  • the elevated water tank 13 is installed at a position higher than the installation position of the water receiving tank 11.
  • the water stored in the elevated water tank 13 is supplied to consumers of the building 15 through the water supply pipe 164 using gravity energy.
  • the elevated water tank 13 is provided with water level sensors 131 and 132 for detecting the water level of the water stored in the elevated water tank 13 so as to detect different water levels.
  • the water level sensor 131 is provided at a position for detecting the water level 133 that is almost full of the elevated water tank 13.
  • the water level 133 is a stop water level necessary for the water supply control device 14 to determine whether or not to stop water supply to the high water tank 13, and is, for example, a level of 95% of the capacity of the high water tank 13.
  • the water level sensor 132 is provided at a position where the water level 134 below the water level 133 is detected.
  • the water level 132 is an activation water level necessary for the water supply control device 14 to determine whether or not to start water supply to the high water tank 13 and is, for example, a level of 90% of the capacity of the high water tank 13.
  • the water level sensors 131 and 132 detect the corresponding water levels 133 and 134, they notify the water supply control device 14 of the water level detection.
  • the water supply control device 14 is a device that controls the operation of the water supply pump 12, and is realized by an embedded computer or a personal computer.
  • FIG. 2 is a block diagram illustrating a hardware configuration of the water supply control device illustrated in FIG. 1.
  • the water supply control device 14 includes a CPU (Central Processing Unit) 143 that controls the operation of each unit, a ROM (Read Only Memory) 144 that stores a control program, sensor information and information necessary for control.
  • a RAM (Random Access Memory) 145 to be stored, a timer 146 having a timekeeping function, and an input / output interface (I / F) 147 are connected via a bus 148.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • I / F input / output interface
  • the water supply control device 14 includes a water demand prediction unit 140, a pump start / stop determination unit 141, and a pump start / stop execution unit 142.
  • the water demand prediction unit 140 calculates the maximum water demand (for example, maximum water demand Qmax described later) assumed in a predetermined period based on the past water demand data.
  • the pump start / stop determination unit 141 and the pump start / stop execution unit 142 are functional elements realized by the CPU 143 executing the control program stored in the ROM 144, and the pump start / stop determination unit 141 includes the water level sensors 131 and 132.
  • the pump start / stop execution unit 142 starts or stops the feed water pump 12 according to the determination result of the pump start / stop determination unit 141.
  • the water supply pump 12 is required to have a water supply capacity capable of reliably supplying the high water tank 13 with the amount of water required by the building 15 of the large-volume consumer. However, since the amount of water demanded by the building 15 varies depending on the season or time, the water supply pump 12 is required to have a water supply capacity that can respond to the maximum water demand (for example, corresponding to the maximum water demand Qmax) in a predetermined period. As one solution, it is conceivable to use a sufficiently high-performance feedwater pump, but generally the higher the performance, the higher the price of the feedwater pump.
  • FIG. 3 is a diagram for explaining a method of setting the capacity of the feed water pump.
  • FIG. 3A shows a performance curve 171 and a resistance curve 172 indicated by a flow rate Q [m 3 / h] and a head H [m].
  • the performance curve 171 shows the performance characteristics of the feed pump, and the flow rate that can be pumped decreases as the pumping head increases.
  • a resistance curve 172 indicates resistance due to pressure loss, gravity, and the like that occur when water is supplied from the water receiving tank 11 to the elevated water tank 13 via the water supply pipes 162 and 163.
  • the resistance R is expressed by the following equation.
  • the approximate value is calculated by the approximate expression of the quadratic function of the flow rate Q.
  • FIG. 3 (b) shows an efficiency curve 173 indicating the supply efficiency of water supplied by the water supply pump.
  • the efficiency curve 173 is determined based on the performance curve 171 and the resistance curve 172, and indicates the efficiency ⁇ corresponding to the flow rate Q.
  • a feed water pump that satisfies the pump performance shown in FIG. 3A is selected with the vicinity of the apex of the efficiency curve 173 as Qmax.
  • the water supply pump 12 selected in this way has a supply capacity capable of supplying the daily maximum water demand Qmax or the amount of water in the vicinity of Qmax, and can efficiently supply water at the flow rate Qmax when the water supply pump 12 is started. it can.
  • Qmax which is the daily maximum water demand
  • the maximum water demand for another predetermined period for example, 12 hours
  • the supply performance of such a water supply pump 12 is determined based on the maximum water demand Qmax calculated by the water demand prediction unit 140, even if the water supply pump 12 is always operated, the water supply pump 12 is supplied to the elevated water tank 13. The amount of water that does not significantly exceed the maximum water demand Qmax for a predetermined period. Therefore, in the present embodiment, the feed water pump 12 operates in an almost ON state with a small proportion of the OFF state.
  • a program for the water demand prediction unit 140 to calculate the maximum water demand Qmax is stored in the ROM 144, for example, and is executed by the CPU 143. Further, data necessary for execution of each process by the water demand prediction unit 140 (for example, meter reading data and data indicating a performance curve for each water supply pump) and the like are stored in the ROM 144.
  • FIG. 4 is a flowchart showing a processing procedure for determining whether the feed water pump is started or stopped. Note that the series of processes shown in FIG. 4 is periodically and repeatedly executed.
  • the pump start / stop determination unit 141 determines whether the current water level in the elevated water tank 13 is equal to or higher than the stop water level (water level 133) (step S101).
  • the determination in step S ⁇ b> 101 is determined based on whether or not the pump start / stop determination unit 141 is notified of water level detection from the water level sensor 131.
  • step S101 When the current water level is equal to or higher than the stop water level in step S101 (YES in step S101), that is, when the water level detection is notified from the water level sensor 131, water is sufficiently stored in the elevated water tank 13 and water is supplied. Since the operation of the pump 12 should not be permitted, the pump start / stop determination unit 141 sets “0” to the pump start flag (step S102), and waits until the next series of processing is started. It becomes.
  • the pump activation flag is a flag for controlling the operation of the feed water pump 12, and is set to a value of “0” or “1”, for example.
  • the pump activation flag is stored in, for example, the RAM 145 shown in FIG.
  • step S101 When the current water level is lower than the stop water level in step S101 (NO in step S101), that is, when the water level detection is not notified from the water level sensor 131, the pump start / stop determination unit 141 determines the current level in the elevated water tank 13. It is determined whether the water level is lower than the activation water level (water level 134) (step S103). The determination in step S ⁇ b> 103 is determined based on whether or not the pump start / stop determination unit 141 is notified of water level detection from the water level sensor 132.
  • step S103 If the current water level is lower than the starting water level in step S103 (YES in step S103), that is, if water level detection is not notified from the water level sensor 132, water is not sufficiently stored in the elevated water tank 13 and water is supplied. Since the pump 12 is to be operated, the pump start / stop determination unit 141 sets “1” to the pump start flag (step S104), and enters a standby state until the next series of processes is started.
  • the pump start / stop determination unit 141 determines whether the feed water pump 12 is started or stopped based on the water level in the elevated water tank 13.
  • the pump start / stop execution unit 142 causes the feed water pump 12 to start or stop according to the determination by the pump start / stop determination unit 141.
  • the water supply control device 14 realizes water supply control so as to maintain the water level in the elevated water tank 13 between the water level 133 and the water level 134.
  • the water supply pump 12 operates in an almost ON state as described above, and the water level in the elevated water tank 13 rises or falls too much during the operation, as shown in FIG.
  • the operation of the feed water pump 12 is controlled by the processing.
  • FIG. 5D shows the change in the amount of water supplied to the elevated water tank 13 by the operation of the water supply pump 12.
  • the water supply amount 184 in FIG. 5D when the pump state 183 is ON, water supply is performed according to the supply capacity set in the water supply pump 12, and when the pump state 183 is OFF, water supply is not performed. It is shown that.
  • the pump state 183 is substantially constant throughout the day (24 hours), and the water level 182 of the elevated water tank 13 is “0” regardless of the change in the demand 181. It can be read that the water level 133 was not exceeded.
  • FIG. 6 is a graph for explaining an execution result example of the conventional water supply control.
  • 6 (a) to 6 (d) are graphs corresponding to FIGS. 5 (a) to 5 (d), respectively, regarding an example of execution results of conventional water supply control.
  • the change of the demand amount 981 shown to Fig.6 (a) is the same as the change of the demand amount 181 of Fig.5 (a), and the size of a high water tank, the diameter of a water supply pipe, etc. are also in the water supply control system 1. Suppose they are the same.
  • the water supply pump 12 having the supply performance determined based on the predetermined maximum water demand Qmax is selected.
  • Such a water supply pump 12 only needs to be able to supply an amount of water exceeding the maximum water demand Qmax for a predetermined period by operating substantially in the ON state, and is required to have a lower supply capacity than the water supply pump used in the conventional water supply control method.
  • the operation of the water supply pump 12 is controlled by the water supply control device 14 so that a part of the water demand in the time zone where the power demand is large is supplied in the time zone where the power demand is small, as shown in FIG. As shown in d), the water supply is carried out almost uniformly throughout the day (24 hours).
  • power consumption for operating the feed water pump 12 occurs on average regardless of the power demand peak time period, and the power consumption is smoothed.
  • the feed water pump 12 used in the feed water control system 1 can use a feed water pump having a lower capacity than the feed water pump used in the conventional feed water control method, the power consumption by the feed water pump 12 is reduced to the conventional feed water control method. It can be reduced from the power consumption of the feed water pump used in the above.
  • the water supply control system 1 can suppress the price cost required for the water supply pump 12.
  • the water supply control system 2 according to the second embodiment is placed from a water receiving tank while suppressing water supply in a peak power demand period based on prediction of water demand within a predetermined period.
  • the target flow rate is corrected according to the actual flow rate of the water supply pipe, and the water supply pump that changes speed is used to obtain the corrected target flow rate from the water receiving tank to the elevated water tank. It is characterized by controlling the operation.
  • FIG. 7 is a block diagram showing the configuration of the water supply control system according to the second embodiment.
  • the same components as those in the water supply control system 1 shown in FIG.
  • the water supply control system 2 includes a variable speed water supply pump 22 instead of the fixed speed water supply pump 12 shown in FIG.
  • the variable speed water supply pump 22 is a pump that operates by electric power and has a mechanism capable of changing the amount of water supply by changing the number of rotations of a motor with an inverter (not shown).
  • Connected to the feed water pump 22 are a PID control device 21 that controls the rotation speed of the feed water pump 22 and a rotation speed sensor 221 that detects the rotation speed of the feed water pump 22 and notifies the PID control device 21.
  • the PID control device 21 controls the water supply pump 22 according to a predetermined PID control algorithm based on the target rotation speed output from the water supply control device 24 and the rotation speed of the water supply pump 22 notified from the rotation speed sensor 221. And the rotational speed of the feed water pump 22 is maintained at the target value.
  • the flow sensor 222 is a sensor that detects the flow rate of water passing through the water supply pipe 163 and notifies the water supply control device 24 of the detected flow rate.
  • the elevated water tank 23 is provided with a water level sensor 231 that detects the water level 232 in addition to the water level sensors 131 and 132.
  • the water level 232 is a correction determination water level necessary for the water supply control device 24 to determine whether or not to correct the target flow rate.
  • the water level sensor 231 detects the water level 232, the water level sensor 231 notifies the water supply control device 24 of the water level detection. The correction of the target flow rate will be described later with reference to FIG.
  • the water supply control device 24 includes a pump start / stop determination unit 141 and a pump start / stop execution unit 142 similar to the water supply control device 14 of FIG.
  • a demand prediction unit 241, a target flow rate calculation unit 242, a target rotation number calculation unit 243, and a storage device 244 are provided.
  • the water supply control device 24 has the same hardware configuration as the water supply control device 14 shown in FIG. 2, and includes a pump start / stop determination unit 141, a pump start / stop execution unit 142, a water demand prediction unit 241, and a target flow rate calculation unit 242.
  • the target rotational speed calculation unit 243 is realized by the CPU calling and executing a program stored in the ROM.
  • the storage device 244 corresponds to a ROM.
  • the storage device 244 stores calendar information indicating date / time and day of the week information, and water demand history information that summarizes the water demand for 24 hours in units of months and days of the week.
  • the storage device 244 may be a storage device (for example, a database) externally connected to the water supply control system 24.
  • the water demand history information stored in the storage device 244 is created by accumulating the flow value detected by the flow sensor 222. More specifically, the CPU performs a calculation process on the flow rate value detected by the flow rate sensor 222 by executing a predetermined program, and the average value of the 24-hour flow rate calculated for each month or day of the week is used as the water demand history.
  • the information is stored in the storage device 244 as information. Further, the water demand history information may be created based on information obtained by acquiring water consumption at the consumer.
  • the water demand prediction unit 241 executes the control program at a predetermined time of the day (for example, 0:00), identifies the current date and day of the week by referring to the calendar information stored in the storage device 244, and responds to it. By referring to the water demand history information of the month or day of the week, the total of water demand for the next 24 hours (daily water demand forecast amount), which is limited to the current month or day of the week, is predicted.
  • the maximum flow rate QH and the minimum flow rate QL are examples of values that define the fluctuation range of the water supply amount by the water supply pump 22, and the switching times T ⁇ b> 1 and T ⁇ b> 2 are examples of the water supply amount switching time by the water supply pump 22.
  • the minimum flow rate QL may be 0, and the switching times T1 and T2 are limited to, for example, near the power peak, and may be set to 13:00 and 14:00, respectively.
  • the switching times T1 and T2 are set so that the time zone (T1 to T2) for which the minimum flow rate QL is set overlaps with the power demand peak time zone where the power demand is large. Further, the maximum flow rate QH, the minimum flow rate QL, and the switching times T1 and T2 are such that the amount of water supplied in 24 hours by the target flow rate 271 matches the daily water demand prediction amount predicted by the water demand prediction unit 241. It can be set arbitrarily by the user under conditions.
  • the target rotation speed calculation unit 243 determines the target rotation speed of the water supply pump 22 so that the actual flow rate of the water flowing through the water supply pipe 163 matches the target flow rate calculated by the target flow rate calculation unit 242.
  • FIG. 9 is a flowchart showing a processing procedure for determining the target rotational speed. The series of processes shown in FIG. 9 is repeatedly executed at a predetermined cycle (for example, a 5-minute cycle). With reference to FIG. 9, the process which determines the target rotation speed of the water supply pump 22 is demonstrated.
  • the target rotational speed calculation unit 243 acquires the target flow rate calculated by the target flow rate calculation unit 242 and the latest flow rate (measured flow rate) detected by the flow rate sensor 222 for water passing through the water supply pipe 163 (step S201).
  • the target flow rate 271 shown in FIG. 8 is acquired using the maximum flow rate QH, the minimum flow rate QL, and the switching times T1 and T2 as parameters.
  • the target rotation speed calculation unit 243 determines whether or not the current water level in the elevated water tank 23 is lower than the correction determination water level (step S202).
  • the determination in step S202 is determined based on whether or not the water level detection of the water level 232 is notified from the target rotation speed calculation unit 243 and the water level sensor 231.
  • the process proceeds to step S204.
  • the target rotation speed calculation unit 243 determines in step S201.
  • the minimum flow rate QL of the acquired target flow rate 271 is corrected (step S203).
  • the minimum flow rate correction value QLnew which is the correction value of the minimum flow rate QL, is given by It is calculated as follows.
  • the correction coefficient is a constant larger than 1.
  • the minimum flow rate correction value QLnew for example, when there is not enough water in the elevated water tank 23 at time 0, the water level may be lower than the corrected determination water level, and it is necessary to quickly restore the water level. In some cases, this is done to correct the target flow rate 271 upward.
  • the target rotational speed calculation unit 243 performs the process of step S204 by replacing the minimum flow rate QL with the minimum flow rate correction value QLnew.
  • the target rotation speed calculation unit 243 corrects the actual flow rate of the water flowing through the water supply pipe 163 so that it matches the target flow rate 271 or when the minimum flow rate QL is replaced with the minimum flow rate correction value QLnew.
  • the target rotational speed is determined in accordance with the PID control logic that controls the operation of the PID control device 21 so as to match the target flow rate. For example, if the target flow rate at time t is QT (t) and the actual flow rate is Qm (t), the target rotational speed N (t) is obtained by proportional integral control based on the deviation e (t) as It is calculated as follows.
  • Kp is a proportional gain
  • Ki is an integral gain, both of which are constants.
  • the target rotation speed calculation unit 243 causes the PID control device 21 to control the fluctuation of the rotation speed of the feed water pump 22 according to the target rotation speed N (t) calculated by the equation (5).
  • the water supply control device 24 By periodically repeating the processes of steps S201 to S204 as described above, the water supply control device 24 always activates the water supply pump 22 to match the target flow rate 271 (or the corrected target flow rate). The actual flow rate is supplied to the elevated water tank 24.
  • FIG. 10 is a graph for explaining an execution result example of water supply control according to the second embodiment.
  • FIGS. 10A to 10D are graphs corresponding to FIGS. 5A to 5D, respectively, for explaining the execution result examples in the first embodiment.
  • the change of the demand amount 281 shown to Fig.10 (a) is the same as the change of the demand amount 181 of Fig.5 (a).
  • the execution results shown in FIGS. 10 (a) to 10 (d) are obtained by using a water tank of the same size as the high water tank 13 shown in FIG. The result when the start / stop control of the feed water pump 24 as described in FIG. 4 is not performed by the pump start / stop execution unit 142 is shown.
  • the water supply pump 22 is always in the activated (ON) state, but as shown in FIG. 10 (d), the target rotational speed N (determined by the water supply control device 24). Since the rotation speed of the water supply pump 22 varies according to t), the amount of water supply 284 supplied to the elevated water tank 23 varies. The maximum value of the water supply amount 284 matches the maximum flow rate QH, and the minimum value of the water supply amount 284 matches the minimum flow rate QL or the minimum flow rate correction value QLnew. And as shown in FIG.10 (b), in the high water tank 23, the water level 282 sufficient to meet the demand amount 281 was maintained through 24 hours.
  • the target rotational speed N (t) is set so that the rotational speed can be suppressed in the power demand peak time zone based on the setting of the target flow rate 271 and the power demand peak time zone. Therefore, the target rotational speed N (t) is set to a high rotational speed in the power demand peak time zone and the time zone before the water demand peak time zone.
  • the water level 282 of the elevated water tank 23 exceeds the stop water level of the water level 133 at a time (for example, around 8:00) before the water demand peak time zone, and the water demand peak Since the amount of water supply decreases during the time, the water level gradually decreases.
  • the water supply control device 24 supplies water by the pump start / stop determination unit 141 and the pump start / stop execution unit 142 in addition to the process control by the water demand prediction unit 241, the target flow rate calculation unit 242, and the target rotation number calculation unit 243.
  • the target rotational speed calculation unit 243 corrects the target flow rate according to the actual flow rate flowing through the water supply pipe 163, and the target rotational speed calculation unit 244 sets the corrected target flow rate.
  • both of the water supply pumps 12 and 22 are almost always or Since it always starts, in the situation where the total demand demanded is the same, the feed pump 22 that is a variable speed pump needs to have higher performance (performance that can be operated at a higher rotation speed) than the feed pump 12 that is a fixed speed pump. .
  • the price of the feed water pump is higher for high performance, and the variable speed pump is higher than the fixed speed pump for similar performance. Therefore, the feed water pump 22 of the feed water control system 2 is the same as that of the feed water control system 1. The price cost is higher than that of the feed water pump 12.
  • the water supply control system 3 by 3rd Embodiment is the water supply control amount from a water supply company to a water receiving tank in addition to the water supply control from a water receiving tank to an elevated water tank by the water supply control system 1
  • the water supply control is performed while suppressing the water supply during peak hours of power demand, and the water level of the water receiving tank is kept almost constant. It is a feature.
  • FIG. 11 is a block diagram showing a configuration of a water supply control system according to the third embodiment.
  • the water supply control system 3 includes a water receiving tank 31 instead of the water receiving tank 11, a valve 32 in the middle of the water supply pipe 161, and a valve control device 33 that instructs the operation of the valve 32 in FIG. It differs from the water supply control system 1 shown.
  • the water receiving tank 31 is provided with a water level sensor 311 for detecting the water level 313 in the water receiving tank 31 and a water level sensor 312 for detecting the water level 314 so as to detect different water levels.
  • the water level 313 is a valve closing determination water level necessary for determining whether or not the valve 32 is to be closed, and is set at a level of 95% of the capacity of the water receiving tank 31, for example.
  • the water level 314 is a valve open determination water level necessary for determining whether or not to open the valve 32.
  • the water level 314 is a level slightly lower than the water level 313 and is set to a level of 93% of the capacity of the water receiving tank 31, for example.
  • the water level sensors 311 and 312 notify the valve control device 33 when the corresponding water levels 313 and 314 are detected.
  • the valve 32 is provided in the water supply pipe 161 that connects the drain pipe on the water company side and the water receiving tank 31, and operates according to an instruction from the valve control device 33, thereby passing through the water supply pipe 161 to the water receiving tank 31. It is a device having a mechanism for changing the amount of water flowing.
  • the valve 32 shown in FIG. 11 operates to receive an instruction from the valve control device 33 and control the operation of the valve 32 according to the instruction received by the control unit (not shown). 32 is not limited to this, and it is only necessary to have a valve mechanism capable of adjusting the amount of water that is generally used.
  • FIG. 12 is a flowchart showing a processing procedure for determining opening and closing of the valve. The series of processes shown in FIG. 12 is repeatedly executed periodically (for example, at a cycle of 5 minutes).
  • the valve control open / close determination unit 331 determines whether or not the current water level in the water receiving tank 31 is equal to or higher than the valve close determination water level (water level 313) (step S301).
  • the determination in step S301 is determined by whether or not the valve control opening / closing determination unit 331 is notified of water level detection from the water level sensor 311.
  • valve control opening / closing determination unit 331 sets “0” to the valve opening flag (step S302), and enters a standby state until the next series of processing is started.
  • the valve open flag is a flag for controlling the operation of the valve 32, and is set to a value of “0” or “1”, for example.
  • the valve open flag is stored in the RAM of the valve control device 33, for example.
  • step S301 When the current water level is lower than the valve closing determination water level in step S301 (NO in step S301), that is, when the water level detection is not notified from the water level sensor 313, the valve control open / close determination unit 331 presents the current water level in the water receiving tank 31. It is determined whether the water level is less than the valve open determination water level (water level 314) (step S303). The determination in step S303 is determined based on whether or not the valve opening / closing determination unit 331 is notified of water level detection from the water level sensor 312.
  • the valve opening / closing execution unit 332 refers to the valve opening flag every predetermined cycle, and when the value of the valve opening flag is “1”, transmits a signal instructing the opening operation of the valve 32 to the valve 32.
  • the value of the valve opening flag is “0”, a signal instructing the closing operation of the valve 32 is transmitted to the valve 32.
  • the pump start / stop determination unit 141 changes the value of the pump start flag
  • the pump start / stop execution unit 142 may immediately receive the changed value and perform the above-described processing.
  • the valve 32 (more specifically, a dedicated control unit provided in the valve 32) receives a signal instructing an opening operation or a closing operation, the valve 32 opens and closes according to the received signal.
  • the valve control device 33 controls the opening and closing of the valve 32 based on the water level of the water receiving tank 31 by periodically repeating the processes of steps S301 to S304 as described above, and allows the water supply pipe 161 to flow. Control.
  • water supply control is realized such that the water level in the water receiving tank 31 is maintained between the water level 313 and the water level 314.
  • the control which supplies the water stored in the water-receiving tank 31 to the high water tank 13 is performed by the water supply control apparatus 14 similarly to the water supply control system 1 by 1st Embodiment.
  • the water supply by the water supply pump 12 is carried out from the time zone when electric power demand is large. Shift to other time zones to achieve smooth water consumption while realizing stable water supply to consumers. Therefore, according to the water supply control system 3, since the water supply flow rate from a water supply company can be shifted from the time zone when the power demand is large, the power consumption generated by the water supply by the water supply company can be reduced from the time zone when the power demand is large. It can be shifted and can contribute to the peak cut of power consumption by water utilities.
  • water supply control systems 1 to 3 according to the first to third embodiments described above, the case where water is supplied to the consumers of the building 15 as an example of a large-volume consumer has been described, but the present invention is not limited to this. Instead, water may be supplied to consumers other than buildings such as condominiums and factories.
  • the present invention is not limited to this.
  • a high water tank that uses gravity energy to supply water to the consumer of the building 15 via the water supply pipe 164, it may be arranged at a position higher than the consumer of the building 15.
  • the elevated water tanks 13 and 23 are water supplied from a water company through water supply pipes (water supply pipes 161 to 163).
  • the water receiving tanks 11 and 31 are provided via water supply pipes (water supply pipes 161 and 162) between the water utility and the first water tank (for example, the elevated water tank 13).
  • It is an example of a second water tank that is provided so as to be connected and temporarily stores water supplied from the water utility to the first water tank via water supply pipes (water supply pipes 161 to 163).
  • 14 and 24 are an example of a feed water pump control unit that controls the operation of the feed water pump.
  • the daily maximum water demand Qmax and the daily water demand forecast amount are examples of a first water demand forecast amount indicating the total amount of water demand in a predetermined period, and in particular, the daily maximum water demand Qmax. Is equivalent to a second predicted water demand that indicates the total amount of maximum water demand assumed in a predetermined period, and the predicted daily water demand predicted by the water demand prediction unit 241 is the current month or This corresponds to the third predicted water demand in a predetermined period limited by the day of the week.
  • the water level sensor 131 is a first water level sensor that detects a first water level (water level 133), and the water level sensor 132 is a second water level that is lower than the first water level (water level 134).
  • the water level sensor 231 is a water level sensor 231, a water level sensor 231 is a third water level sensor that detects a third water level (water level 232) that is a criterion for determining whether or not to correct the amount of water supplied by the feed pump, and a water level sensor 311 is
  • the water level sensor 312 is a fifth water level sensor that detects a fifth water level (water level 314) that is slightly lower than the fourth water level, as a fourth water level sensor that detects the fourth water level (water level 313). It corresponds to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Domestic Plumbing Installations (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

[Problem] To reduce power consumption by a feed water pump in a time zone when electric power demand is large. [Solution] A feed water control system (1) is provided with: a first water tank (an elevated water tank (13)); a feed water pump (12) for delivering water supplied from a water utility company to the first water tank; and a feed water pump control unit (a feed water control device (14)) for controlling the operation of the feed water pump (12). In this feed water control system (1), the feed water pump control unit predicts a first water demand prediction amount indicating the total amount of water demand in a predetermined period on the basis of data indicating past water demand, and controls the operation of the feed water pump (12) such that the total amount of water to be delivered to the first water tank in the predetermined period matches the first water demand prediction amount, and such that part of water demand in a time zone when electric power demand is large is supplied in a time zone when electric power demand is small, and the feed water pump (12) operates in accordance with the control of the feed water pump control unit, and delivers a water amount corresponding to the first water demand prediction amount to the first water tank in the predetermined period.

Description

給水制御システム及び給水制御方法Water supply control system and water supply control method
 本発明は、給水制御システム及び給水制御方法に関し、ビルや工場等の大口需要家が有する高置水槽への給水を制御する給水制御システム及び給水制御方法に適用して好適なものである。 The present invention relates to a water supply control system and a water supply control method, and is suitable for application to a water supply control system and a water supply control method for controlling water supply to an elevated water tank possessed by a large-volume consumer such as a building or factory.
 ビル、マンション、工場等では上水や中水の需要が大量に発生するが、このような大口需要家に大量の水を供給するために、受水槽と高置水槽とが設けられることが多い。受水槽には、水道事業者から供給される水が一時的に貯留され、大口需要家の屋上等に配置された高置水槽には、受水槽に貯留した水が給水ポンプによって運び上げられる。そして、高置水槽に貯留された水が、重力を利用して需要者に供給される。 In buildings, condominiums, factories, etc., there is a large demand for water and middle water, but in order to supply a large amount of water to such large consumers, a receiving tank and an elevated water tank are often provided. . The water supplied from the water company is temporarily stored in the water receiving tank, and the water stored in the water receiving tank is carried by the water supply pump to the elevated water tank placed on the roof of a large-volume consumer. And the water stored by the elevated water tank is supplied to a consumer using gravity.
 例えば特許文献1には、災害時に高置水槽に貯留された水が低減することを防止する給水ポンプ制御装置が記載されている。特許文献1に記載された給水ポンプ制御装置では、水位を検出するセンサが高置水槽に設けられ、高置水槽の水位が所定の下限水位以下になったことを検出すると、ポンプを起動して高置水槽に給水し、所定の上限水位を超えると給水を停止する制御を行うことにより、高置水槽の水位が上限水位と下限水位との間に収まるように、高置水槽への給水量を制御し、需要に対して水の供給が停止しないようにしている。 For example, Patent Document 1 describes a water supply pump control device that prevents water stored in an elevated water tank from being reduced during a disaster. In the feed water pump control device described in Patent Document 1, a sensor for detecting the water level is provided in the elevated water tank, and when it is detected that the water level of the elevated water tank is below a predetermined lower limit water level, the pump is activated. Supply water to the elevated water tank so that the water level of the elevated water tank falls between the upper limit water level and the lower limit water level by controlling the water supply to stop when the specified upper limit water level is exceeded. Is controlled so that the supply of water does not stop against the demand.
特開2011-163298号公報JP 2011-163298 A
 ところで、一般に、大口需要家の水需要は、昼間の時間帯(例えば10時から18時)に大きく、それ以外の時間帯には小さい傾向がある。従って、水需要が大きい時間帯には、高置水槽の貯留水量が不足がちになるので、水需要が小さい時間帯に比べて給水ポンプの起動回数(又は起動時間)が多くなり、給水ポンプの起動及び動作による電力消費が多くなる。そして、水需要が大きい時間帯は電力需要が大きい時間と重なる傾向があるので、電力需要の大きい時間帯に給水ポンプによる電力消費が大きくなり、節電に寄与できないという問題がある。 By the way, in general, the water demand of large consumers tends to be large during daytime hours (for example, from 10:00 to 18:00) and small during other time periods. Therefore, since the amount of stored water in the elevated water tank tends to be insufficient during periods of high water demand, the number of times the water pump is started (or startup time) is increased compared to the period of low water demand. Power consumption due to startup and operation increases. And since there is a tendency that the time when the water demand is high overlaps with the time when the power demand is high, there is a problem that the power consumption by the feed water pump increases during the time when the power demand is high and cannot contribute to power saving.
 しかし、特許文献1に記載された給水ポンプ制御装置は、災害発生時にて漏水発生を検知して迅速に給水ポンプを適切に制御するものであり、上述したような電力需要の大きい時間帯における給水ポンプによる電力消費を抑制することはできない。また、特許文献1に記載された給水ポンプ制御装置は、固定速の給水ポンプを用いて高置水槽への水供給を行っているが、急激な水需要の増加に応えられるだけの高性能な給水ポンプの性能が求められるという問題もある。 However, the water supply pump control device described in Patent Document 1 detects the occurrence of water leakage at the time of a disaster and appropriately controls the water supply pump promptly. The power consumption by the pump cannot be suppressed. Moreover, although the water supply pump control apparatus described in Patent Document 1 supplies water to the elevated water tank using a fixed speed water supply pump, it has a high performance that can respond to a sudden increase in water demand. There is also a problem that the performance of the feed water pump is required.
 本発明は以上の点を考慮してなされたもので、電力需要の大きい時間帯の給水ポンプによる電力消費を抑制可能な給水制御システム及び給水制御方法を提案しようとするものである。 The present invention has been made in consideration of the above points, and intends to propose a water supply control system and a water supply control method capable of suppressing power consumption by a water supply pump in a time zone where power demand is large.
 かかる課題を解決するため本発明においては、給水管を介して水道事業者から供給される水を貯留する第1の水槽と、前記水道事業者から供給される水を前記第1の水槽に送る給水ポンプと、前記給水ポンプの動作を制御する給水ポンプ制御部と、を備え、前記給水ポンプ制御部は、過去の水需要を示すデータに基づいて所定の期間における水需要の総量を示す第1の水需要予測量を予測し、前記所定の期間に前記第1の水槽に送水される水量の総量が前記第1の水需要予測量に一致するように、かつ、電力需要の大きい時間帯における水需要の一部を電力需要の小さい時間帯に供給するように、前記給水ポンプの動作を制御し、前記給水ポンプは、前記給水ポンプ制御部の制御に従って動作して、前記第1の水需要予測量に相当する水量を前記所定の期間で前記第1の水槽に送水する給水制御システムが提供される。 In order to solve such a problem, in the present invention, a first water tank that stores water supplied from a water company through a water supply pipe and water supplied from the water company are sent to the first water tank. A water supply pump; and a water supply pump control unit that controls an operation of the water supply pump, wherein the water supply pump control unit indicates a first amount of water demand in a predetermined period based on data indicating past water demand. The predicted amount of water demand in the predetermined time period so that the total amount of water sent to the first tank matches the first predicted amount of water demand and in a time period when the power demand is large. The operation of the water supply pump is controlled so that a part of the water demand is supplied in a time zone when the power demand is small, and the water supply pump operates according to the control of the water supply pump control unit, and the first water demand The amount of water corresponding to the predicted amount Water supply control system for water in the first water tank at the predetermined period is provided.
 また、かかる課題を解決するため本発明においては、水道事業者から供給される水を需要家に給水する給水制御システムによる給水制御方法において、前記給水制御システムは、給水管を介して前記水道事業者から供給される水を貯留する第1の水槽と、前記水道事業者から供給される水を前記第1の水槽に送る給水ポンプと、前記給水ポンプの動作を制御する給水ポンプ制御部と、を有し、前記給水ポンプ制御部が、過去の水需要を示すデータに基づいて所定の期間における水需要の総量を示す第1の水需要予測量を予測する水需要予測ステップと、前記給水ポンプ制御部が、前記所定の期間に前記第1の水槽に送水される水量の総量が前記水需要予測ステップで予測された第1の水需要予測量に一致するように、かつ、電力需要の大きい時間帯における水需要の一部を電力需要の小さい時間帯に供給するように、前記給水ポンプの動作を制御するポンプ制御ステップと、前記給水ポンプが、前記ポンプ制御ステップによる制御に従って作動して、前記第1の水需要予測量に相当する水量を前記所定の期間で前記第1の水槽に送水する送水ステップと、を備える給水制御方法が提供される。 Moreover, in order to solve such a problem, in the present invention, in the water supply control method by a water supply control system for supplying water supplied from a water supplier to a consumer, the water supply control system is configured to supply the water supply business via a water supply pipe. A first water tank that stores water supplied from a person, a water supply pump that sends water supplied from the water utility to the first water tank, a water supply pump control unit that controls the operation of the water supply pump, A water demand prediction step for predicting a first water demand prediction amount indicating a total amount of water demand in a predetermined period based on data indicating past water demand, and the water supply pump The control unit is configured so that the total amount of water to be fed to the first water tank during the predetermined period matches the first water demand prediction amount predicted in the water demand prediction step, and the power demand is large. A pump control step for controlling the operation of the water supply pump so as to supply a part of the water demand in the time zone in a time zone with a small power demand, and the water supply pump is operated according to the control by the pump control step, There is provided a water supply control method comprising: a water supply step of supplying a water amount corresponding to the first water demand prediction amount to the first water tank during the predetermined period.
 本発明によれば、電力需要の大きい時間帯の給水ポンプによる電力消費を抑制することができる。 According to the present invention, it is possible to suppress power consumption by the water supply pump during a time period when power demand is large.
第1の実施の形態による給水制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the water supply control system by 1st Embodiment. 図1に示す給水制御装置のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the water supply control apparatus shown in FIG. 給水ポンプの能力の設定方法を説明するための図である。It is a figure for demonstrating the setting method of the capability of a feed water pump. 給水ポンプの起動又は停止を判定する処理手続を示すフローチャートである。It is a flowchart which shows the process procedure which determines starting or a stop of a water supply pump. 第1の実施の形態による給水制御の実行結果例を説明するグラフである。It is a graph explaining the example of an execution result of water supply control by a 1st embodiment. 従来の給水制御の実行結果例を説明するグラフである。It is a graph explaining the example of an execution result of conventional water supply control. 第2の実施の形態による給水制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the water supply control system by 2nd Embodiment. 目標流量の算出結果の一例を示すグラフである。It is a graph which shows an example of the calculation result of target flow. 目標回転数を決定する処理手続を示すフローチャートである。It is a flowchart which shows the process procedure which determines a target rotation speed. 第2の実施の形態による給水制御の実行結果例を説明するグラフである。It is a graph explaining the example of an execution result of water supply control by a 2nd embodiment. 第3の実施の形態による給水制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the water supply control system by 3rd Embodiment. バルブの開閉を判定する処理手続を示すフローチャートである。It is a flowchart which shows the process sequence which determines opening and closing of a valve | bulb.
(1)第1の実施の形態
 第1の実施の形態による給水制御システム1は、所定の期間内の水需要の予測に基づいて、従来より性能の低い固定速の給水ポンプによって受水槽から高置水槽に安定した給水を行い、かつ、電力需要ピーク時間帯における給水ポンプの動作を抑える給水制御を行うことを特徴としている。
(1) 1st Embodiment The water supply control system 1 by 1st Embodiment is high from a water receiving tank by the fixed speed water supply pump whose performance is lower than before based on the prediction of the water demand in a predetermined period. It is characterized by performing stable water supply to the water tank and performing water supply control that suppresses the operation of the water supply pump during the power demand peak time period.
(1-1)本実施の形態による給水制御システムの構成
 図1は、第1の実施の形態による給水制御システムの構成を示すブロック図である。図1に示す給水制御システム1は、大口需要家の一例であるビル15に対する給水を制御する給水制御システムであって、受水槽11、給水ポンプ12、高置水槽13、及び給水制御装置14を備えている。また、受水槽11には、水道事業者から水が供給される側に給水管161が接続され、給水ポンプ12との間に給水管162が接続されている。また、給水ポンプ12と高置水槽13との間は、給水管163で接続され、高置水槽13は、ビル15の需要者に水を配送するために設けられた給水管164に接続されている。これらの給水管161~164は、通流可能な管状のパイプであって、材質は特に限定されない。
(1-1) Configuration of Water Supply Control System According to the Present Embodiment FIG. 1 is a block diagram showing the configuration of the water supply control system according to the first embodiment. A water supply control system 1 shown in FIG. 1 is a water supply control system that controls water supply to a building 15 that is an example of a large-volume consumer, and includes a water receiving tank 11, a water supply pump 12, an elevated water tank 13, and a water supply control device 14. I have. In addition, a water supply pipe 161 is connected to the water receiving tank 11 on the side to which water is supplied from a water supplier, and a water supply pipe 162 is connected to the water supply pump 12. Further, the water supply pump 12 and the elevated water tank 13 are connected by a water supply pipe 163, and the elevated water tank 13 is connected to a water supply pipe 164 provided for delivering water to consumers of the building 15. Yes. These water supply pipes 161 to 164 are tubular pipes that can flow, and the material is not particularly limited.
 受水槽11は、ビル15の近傍に配置される水槽であり、給水管161を経由して水道事業者から供給される水を一時的に貯留する。また、受水槽11は、給水管162を介して給水ポンプ12に接続される。 The water receiving tank 11 is a water tank arranged in the vicinity of the building 15, and temporarily stores water supplied from the water company through the water supply pipe 161. The water receiving tank 11 is connected to the water supply pump 12 via the water supply pipe 162.
 給水ポンプ12は、電力によってモータを固定の回転数で動作させることにより、一定の水量を送水する機構を有するポンプであり、給水管163を介して高置水槽13に接続される。給水ポンプ12は、給水制御装置14から入力される指示に従って作動し、受水槽11に貯留されている水を給水管162及び給水管163を経由して高置水槽13に引き揚げて送水する。なお、給水ポンプ12は、高置水槽13に貯留される水が枯渇しないように、大口需要家のビル15が需要する水量を高置水槽13に確実に給水できる給水能力が求められる。このような給水ポンプ12に求められる給水能力を決定する方法については、図3を参照しながら後述する。 The water supply pump 12 is a pump having a mechanism for supplying a constant amount of water by operating a motor at a fixed rotational speed by electric power, and is connected to the elevated water tank 13 through a water supply pipe 163. The water supply pump 12 operates in accordance with an instruction input from the water supply control device 14, and draws water stored in the water receiving tank 11 to the elevated water tank 13 through the water supply pipe 162 and the water supply pipe 163 and sends the water. In addition, the water supply pump 12 is required to have a water supply capacity capable of reliably supplying the high water tank 13 with the amount of water demanded by the building 15 of the large-volume consumer so that the water stored in the high water tank 13 is not depleted. A method for determining the water supply capacity required for the water supply pump 12 will be described later with reference to FIG.
 高置水槽13は、ビル15の屋上に配置される水槽であり、給水ポンプ12によって受水槽12から給水される水を貯留する。高置水槽13は、受水槽11の設置位置よりも高い位置に設置される。高置水槽13に貯留された水は、重力エネルギーを利用し、給水管164を経由してビル15の需要者に供給される。また、高置水槽13には、高置水槽13に貯留された水の水位を検出する水位センサ131,132が、それぞれ異なる水位を検出するように設けられている。 The elevated water tank 13 is a water tank disposed on the roof of the building 15 and stores water supplied from the water receiving tank 12 by the water supply pump 12. The elevated water tank 13 is installed at a position higher than the installation position of the water receiving tank 11. The water stored in the elevated water tank 13 is supplied to consumers of the building 15 through the water supply pipe 164 using gravity energy. The elevated water tank 13 is provided with water level sensors 131 and 132 for detecting the water level of the water stored in the elevated water tank 13 so as to detect different water levels.
 水位センサ131は、高置水槽13の満杯に近い水位133の検出を行う位置に設けられている。水位133は、給水制御装置14が高置水槽13に対する給水を停止すべきか否かを判定するために必要な停止水位であり、例えば、高置水槽13の容量の95%の水準とする。水位センサ132は、水位133よりも下方の水位134の検出を行う位置に設けられている。水位132は、給水制御装置14が高置水槽13に対する給水を開始すべきか否かを判定するために必要な起動水位であり、例えば、高置水槽13の容量の90%の水準とする。水位センサ131,132は、それぞれに対応する水位133,134を検出すると給水制御装置14に水位検出を通知する。 The water level sensor 131 is provided at a position for detecting the water level 133 that is almost full of the elevated water tank 13. The water level 133 is a stop water level necessary for the water supply control device 14 to determine whether or not to stop water supply to the high water tank 13, and is, for example, a level of 95% of the capacity of the high water tank 13. The water level sensor 132 is provided at a position where the water level 134 below the water level 133 is detected. The water level 132 is an activation water level necessary for the water supply control device 14 to determine whether or not to start water supply to the high water tank 13 and is, for example, a level of 90% of the capacity of the high water tank 13. When the water level sensors 131 and 132 detect the corresponding water levels 133 and 134, they notify the water supply control device 14 of the water level detection.
 給水制御装置14は、給水ポンプ12の動作を制御する装置であって、組み込みコンピュータ又はパーソナルコンピュータで実現される。図2は、図1に示す給水制御装置のハードウェア構成を示すブロック図である。図2に示すように、給水制御装置14は、各部の動作を制御するCPU(Central Processing Unit)143、制御プログラムが格納されたROM(Read Only Memory)144、センサ情報や制御に必要な情報を記憶するRAM(Random Access Memory)145、計時機能を有するタイマ146、及び入出力インタフェース(I/F)147がバス148を介して接続されて構成される。 The water supply control device 14 is a device that controls the operation of the water supply pump 12, and is realized by an embedded computer or a personal computer. FIG. 2 is a block diagram illustrating a hardware configuration of the water supply control device illustrated in FIG. 1. As shown in FIG. 2, the water supply control device 14 includes a CPU (Central Processing Unit) 143 that controls the operation of each unit, a ROM (Read Only Memory) 144 that stores a control program, sensor information and information necessary for control. A RAM (Random Access Memory) 145 to be stored, a timer 146 having a timekeeping function, and an input / output interface (I / F) 147 are connected via a bus 148.
 図1に示すように、給水制御装置14は、水需要予測部140、ポンプ起動停止判断部141、及びポンプ起動停止実行部142を有する。水需要予測部140は、過去の水需要データに基づいて、所定の期間に想定される最大の水需要(例えば、後述する最大水需要Qmax)を算出する。ポンプ起動停止判定部141及びポンプ起動停止実行部142は、ROM144に格納された制御プログラムをCPU143が実行することによって実現される機能的要素であり、ポンプ起動停止判定部141が水位センサ131,132による検出結果に基づいて給水ポンプ12の起動(ON)又は停止(OFF)を判定し、ポンプ起動停止実行部142が、ポンプ起動停止判定部141の判定結果に従って給水ポンプ12に起動又は停止の動作を指示する信号を出力する。 1, the water supply control device 14 includes a water demand prediction unit 140, a pump start / stop determination unit 141, and a pump start / stop execution unit 142. The water demand prediction unit 140 calculates the maximum water demand (for example, maximum water demand Qmax described later) assumed in a predetermined period based on the past water demand data. The pump start / stop determination unit 141 and the pump start / stop execution unit 142 are functional elements realized by the CPU 143 executing the control program stored in the ROM 144, and the pump start / stop determination unit 141 includes the water level sensors 131 and 132. On the basis of the detection result, the start (ON) or stop (OFF) of the feed water pump 12 is determined, and the pump start / stop execution unit 142 starts or stops the feed water pump 12 according to the determination result of the pump start / stop determination unit 141. A signal indicating that is output.
(1-2)給水ポンプに求められる給水能力の決定方法
 給水ポンプ12には、大口需要家のビル15が需要する水量を高置水槽13に確実に給水できるだけの給水能力が求められる。ただし、ビル15が需要する水量は季節又は時間によって異なるので、給水ポンプ12には、所定の期間における最大の水需要(例えば最大水需要Qmaxに相当)に応えられる給水能力が求められる。1つの解決手段として、十分に高性能な給水ポンプを使用することも考えられるが、一般に高性能になるほど給水ポンプの価格が上昇する。従って、価格コストを抑えながらも必要な給水能力を有する給水ポンプの給水能力を設定することが好ましく、以下では、水需要予測部140によって算出される所定の期間における最大の水需要に応じて、給水ポンプ12に求められる給水能力を決定する方法について説明する。
(1-2) Method for Determining the Water Supply Capacity Required for the Water Supply Pump The water supply pump 12 is required to have a water supply capacity capable of reliably supplying the high water tank 13 with the amount of water required by the building 15 of the large-volume consumer. However, since the amount of water demanded by the building 15 varies depending on the season or time, the water supply pump 12 is required to have a water supply capacity that can respond to the maximum water demand (for example, corresponding to the maximum water demand Qmax) in a predetermined period. As one solution, it is conceivable to use a sufficiently high-performance feedwater pump, but generally the higher the performance, the higher the price of the feedwater pump. Therefore, it is preferable to set the water supply capacity of the water supply pump having the necessary water supply capacity while suppressing the price cost, and in the following, according to the maximum water demand in a predetermined period calculated by the water demand prediction unit 140, A method for determining the water supply capacity required for the water supply pump 12 will be described.
 まず、水需要予測部140は、過去の所定期間(例えば1年間)のビル15における水需要の総計を、例えば水道事業者が定期的に検針した検針データに基づいて算出する。2カ月おきの検針データを用いる場合には、例えば連続する6個(すなわち1年分)の検針データを取得する。次に、水需要予測部140は、取得した6個の検診データから、最大の検針値(Q1)を算出する。そして、水需要予測部140は、Q1を2カ月の供給日数(例えば61日)で割って、1日当たりの最大需要Q2を算出する。さらに、水需要予測部140は、Q2に安全係数k(kは1以上で1近傍の定数とし、例えば「1.1」)を掛けることによって、1日の最大水需要Qmaxを算出する。安全係数kは、実際の水需要の変動に対応する安全幅を確保するための係数である。そして、1日の最大水需要Qmaxは、次式
Figure JPOXMLDOC01-appb-M000001
により算出される。
First, the water demand prediction unit 140 calculates the total water demand in the building 15 in a past predetermined period (for example, one year) based on, for example, meter reading data periodically measured by a water utility. When using meter reading data every two months, for example, six consecutive meter reading data (that is, one year) are acquired. Next, the water demand prediction unit 140 calculates the maximum meter reading value (Q1) from the acquired six pieces of examination data. Then, the water demand prediction unit 140 calculates the maximum demand Q2 per day by dividing Q1 by the number of supply days (for example, 61 days) for two months. Further, the water demand prediction unit 140 calculates the daily maximum water demand Qmax by multiplying Q2 by a safety factor k (k is a constant greater than or equal to 1 and is, for example, “1.1”). The safety coefficient k is a coefficient for ensuring a safety width corresponding to actual fluctuations in water demand. And the maximum daily water demand Qmax is
Figure JPOXMLDOC01-appb-M000001
Is calculated by
 図3は、給水ポンプの能力の設定方法を説明するための図である。図3(a)には、流量Q[m/h]及び揚程H[m]によって示される性能曲線171及び抵抗曲線172が表されている。性能曲線171は、給水ポンプの性能特性を示し、汲み上げる揚程が増加するほど、汲み上げることができる流量は減少する。また、抵抗曲線172は、受水槽11から給水管162,163を経由して高置水槽13に給水する場合に発生する、圧力損失及び重力等による抵抗を示す。例えば受水槽11と高置水槽13との高低差をa[m]とし、給水管162,163の管路抵抗係数をbとすると、抵抗Rは、次式
Figure JPOXMLDOC01-appb-M000002
のように流量Qの2次関数の近似式によって近似値が算出される。
FIG. 3 is a diagram for explaining a method of setting the capacity of the feed water pump. FIG. 3A shows a performance curve 171 and a resistance curve 172 indicated by a flow rate Q [m 3 / h] and a head H [m]. The performance curve 171 shows the performance characteristics of the feed pump, and the flow rate that can be pumped decreases as the pumping head increases. A resistance curve 172 indicates resistance due to pressure loss, gravity, and the like that occur when water is supplied from the water receiving tank 11 to the elevated water tank 13 via the water supply pipes 162 and 163. For example, when the height difference between the water receiving tank 11 and the elevated water tank 13 is a [m] and the pipe resistance coefficient of the water supply pipes 162 and 163 is b, the resistance R is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000002
Thus, the approximate value is calculated by the approximate expression of the quadratic function of the flow rate Q.
 図3(b)には、給水ポンプによって供給される水の供給効率を示す効率曲線173が示されている。効率曲線173は、性能曲線171及び抵抗曲線172に基づいて決定され、流量Qに対応する効率ηを示す。 FIG. 3 (b) shows an efficiency curve 173 indicating the supply efficiency of water supplied by the water supply pump. The efficiency curve 173 is determined based on the performance curve 171 and the resistance curve 172, and indicates the efficiency η corresponding to the flow rate Q.
 そして、効率曲線173の頂点付近をQmaxとして、図3(a)に示したポンプ性能を満たすような給水ポンプが選定される。このようにして選定される給水ポンプ12は、1日の最大水需要Qmax又はQmax近傍の水量を供給できる供給能力を有し、給水ポンプ12の起動時には効率よく流量Qmaxの給水を実現することができる。なお、本実施形態では、1日の最大水需要であるQmaxを使用して説明しているが、他の所定期間(例えば12時間)の最大水需要をQmaxとして算出して使用してもよい。 Then, a feed water pump that satisfies the pump performance shown in FIG. 3A is selected with the vicinity of the apex of the efficiency curve 173 as Qmax. The water supply pump 12 selected in this way has a supply capacity capable of supplying the daily maximum water demand Qmax or the amount of water in the vicinity of Qmax, and can efficiently supply water at the flow rate Qmax when the water supply pump 12 is started. it can. In the present embodiment, Qmax, which is the daily maximum water demand, has been described. However, the maximum water demand for another predetermined period (for example, 12 hours) may be calculated and used as Qmax. .
 このような給水ポンプ12は、水需要予測部140によって算出される最大水需要Qmaxに基づいて供給性能が決定されるので、給水ポンプ12を常時作動させたとしても、高置水槽13に供給される水量は所定期間の最大水需要Qmaxを大幅に超えるものではない。従って、本実施の形態においては、給水ポンプ12は、OFF状態である割合が少なくほぼON状態で作動する。 Since the supply performance of such a water supply pump 12 is determined based on the maximum water demand Qmax calculated by the water demand prediction unit 140, even if the water supply pump 12 is always operated, the water supply pump 12 is supplied to the elevated water tank 13. The amount of water that does not significantly exceed the maximum water demand Qmax for a predetermined period. Therefore, in the present embodiment, the feed water pump 12 operates in an almost ON state with a small proportion of the OFF state.
 なお、水需要予測部140が最大水需要Qmaxを算出するためのプログラムは、例えばROM144に格納され、CPU143によって当該プログラムが実行される。また、水需要予測部140による各処理の実行に必要となるデータ(例えば検針データや給水ポンプごとの性能曲線を示すデータ)等は、ROM144に格納される。 Note that a program for the water demand prediction unit 140 to calculate the maximum water demand Qmax is stored in the ROM 144, for example, and is executed by the CPU 143. Further, data necessary for execution of each process by the water demand prediction unit 140 (for example, meter reading data and data indicating a performance curve for each water supply pump) and the like are stored in the ROM 144.
(1-3)給水制御装置による給水ポンプの起動/停止制御
 次に、給水制御装置14が、上述のように選定された給水ポンプ12を起動/停止する制御について説明する。図4は、給水ポンプの起動又は停止を判定する処理手続を示すフローチャートである。なお、図4に示す一連の処理は、定期的に繰り返し実行される。
(1-3) Start / Stop Control of Water Supply Pump by Water Supply Control Device Next, control for the water supply control device 14 to start / stop the water supply pump 12 selected as described above will be described. FIG. 4 is a flowchart showing a processing procedure for determining whether the feed water pump is started or stopped. Note that the series of processes shown in FIG. 4 is periodically and repeatedly executed.
 まず、ポンプ起動停止判定部141は、高置水槽13における現在の水位が停止水位(水位133)以上であるか判定する(ステップS101)。ステップS101の判定は、ポンプ起動停止判定部141が、水位センサ131から水位検出を通知されるか否かによって判定される。 First, the pump start / stop determination unit 141 determines whether the current water level in the elevated water tank 13 is equal to or higher than the stop water level (water level 133) (step S101). The determination in step S <b> 101 is determined based on whether or not the pump start / stop determination unit 141 is notified of water level detection from the water level sensor 131.
 ステップS101で現在の水位が停止水位以上である場合(ステップS101のYES)、すなわち、水位センサ131から水位検出が通知された場合には、高置水槽13に水が十分に貯留されていて給水ポンプ12の作動を許可するべきではない状況であるので、ポンプ起動停止判定部141は、ポンプ起動フラグに「0」を設定し(ステップS102)、次回の一連の処理が開始されるまで待機状態となる。ポンプ起動フラグは、給水ポンプ12の動作を制御するためのフラグであって、例えば「0」又は「1」の値が設定される。ポンプ起動フラグは、例えば図2に示すRAM145に記憶される。 When the current water level is equal to or higher than the stop water level in step S101 (YES in step S101), that is, when the water level detection is notified from the water level sensor 131, water is sufficiently stored in the elevated water tank 13 and water is supplied. Since the operation of the pump 12 should not be permitted, the pump start / stop determination unit 141 sets “0” to the pump start flag (step S102), and waits until the next series of processing is started. It becomes. The pump activation flag is a flag for controlling the operation of the feed water pump 12, and is set to a value of “0” or “1”, for example. The pump activation flag is stored in, for example, the RAM 145 shown in FIG.
 ステップS101で現在の水位が停止水位未満である場合(ステップS101のNO)、すなわち、水位センサ131から水位検出が通知されない場合には、ポンプ起動停止判定部141は、高置水槽13における現在の水位が起動水位(水位134)未満であるか判定する(ステップS103)。ステップS103の判定は、ポンプ起動停止判定部141が、水位センサ132から水位検出を通知されるか否かによって判定される。 When the current water level is lower than the stop water level in step S101 (NO in step S101), that is, when the water level detection is not notified from the water level sensor 131, the pump start / stop determination unit 141 determines the current level in the elevated water tank 13. It is determined whether the water level is lower than the activation water level (water level 134) (step S103). The determination in step S <b> 103 is determined based on whether or not the pump start / stop determination unit 141 is notified of water level detection from the water level sensor 132.
 ステップS103で現在の水位が起動水位未満である場合(ステップS103のYES)、すなわち、水位センサ132から水位検出が通知されない場合には、高置水槽13に水が十分に貯留されておらず給水ポンプ12を作動させるべき状況であるので、ポンプ起動停止判定部141は、ポンプ起動フラグに「1」を設定し(ステップS104)、次回の一連の処理が開始されるまで待機状態となる。 If the current water level is lower than the starting water level in step S103 (YES in step S103), that is, if water level detection is not notified from the water level sensor 132, water is not sufficiently stored in the elevated water tank 13 and water is supplied. Since the pump 12 is to be operated, the pump start / stop determination unit 141 sets “1” to the pump start flag (step S104), and enters a standby state until the next series of processes is started.
 ステップS103で現在の水位が起動水位以上である場合(ステップS103のNO)、すなわち、水位センサ132から水位検出が通知された場合には、高置水槽13には給水を必要としない程度に十分な水が貯留されている状況であるので、ポンプ起動停止判定部141は特段の処理を行わず、次回の一連の処理が開始されるまで待機状態となる。 When the current water level is equal to or higher than the starting water level in step S103 (NO in step S103), that is, when the water level detection is notified from the water level sensor 132, it is sufficient that the elevated water tank 13 does not require water supply. Since the water is stored, the pump activation / deactivation determination unit 141 does not perform any special processing and is in a standby state until the next series of processing is started.
 そして、ポンプ起動停止実行部142は、ポンプ起動フラグを所定の周期ごとに参照し、ポンプ起動フラグの値が「1」の場合には、給水ポンプ12の起動を指示する起動信号を給水ポンプ12に送信し、ポンプ起動フラグの値が「0」の場合には、給水ポンプ12の停止を指示する停止信号を給水ポンプ12に送信する。なお、ポンプ起動停止実行部142は、ポンプ起動停止判定部141がポンプ起動フラグの値を変更した場合に、即座にその変更後の値を受け取って上述の処理を行ってもよい。給水ポンプ12は、起動信号又は停止信号を受信すると、受信した信号に従ってポンプの起動又は停止を行う。 Then, the pump start / stop execution unit 142 refers to the pump start flag every predetermined cycle, and when the value of the pump start flag is “1”, the pump start / stop execution unit 142 sends a start signal for instructing the start of the feed pump 12 When the value of the pump activation flag is “0”, a stop signal for instructing stop of the feed water pump 12 is sent to the feed water pump 12. Note that when the pump start / stop determination unit 141 changes the value of the pump start flag, the pump start / stop execution unit 142 may immediately receive the changed value and perform the above-described processing. When receiving the start signal or the stop signal, the feed water pump 12 starts or stops the pump according to the received signal.
 上述のようなステップS101~S104の処理を定期的に繰り返して実行することによって、ポンプ起動停止判定部141は、高置水槽13内の水位に基づいて、給水ポンプ12の起動又は停止を判定し、ポンプ起動停止実行部142は、ポンプ起動停止判定部141による判定に応じて、給水ポンプ12の起動又は停止を実行させる。その結果、給水制御装置14は、高置水槽13内の水位を水位133と水位134との間に維持するように給水制御を実現する。 By periodically repeating the processes of steps S101 to S104 as described above, the pump start / stop determination unit 141 determines whether the feed water pump 12 is started or stopped based on the water level in the elevated water tank 13. The pump start / stop execution unit 142 causes the feed water pump 12 to start or stop according to the determination by the pump start / stop determination unit 141. As a result, the water supply control device 14 realizes water supply control so as to maintain the water level in the elevated water tank 13 between the water level 133 and the water level 134.
 ただし、実際には、給水ポンプ12は前述したようにほぼON状態で作動し、その作動途中で高置水槽13内の水位が上昇しすぎたり下降しすぎたりした場合に、図4に示した処理によって給水ポンプ12の動作が制御される。 However, in actuality, the water supply pump 12 operates in an almost ON state as described above, and the water level in the elevated water tank 13 rises or falls too much during the operation, as shown in FIG. The operation of the feed water pump 12 is controlled by the processing.
(1-4)本実施の形態による実施結果
 以下では、上述してきたような給水制御システム1による給水制御の実行結果について説明する。図5は、第1の実施の形態による給水制御の実行結果例を説明するグラフである。
(1-4) Implementation Results According to this Embodiment Hereinafter, execution results of water supply control by the water supply control system 1 as described above will be described. FIG. 5 is a graph for explaining an execution result example of the water supply control according to the first embodiment.
 図5(a)は、時間経過に伴う需要量の変化を示している。図5(a)に示す需要量181は、例えば10時から18時までの間に需要量が高いことを示している。図5(b)は、時間経過に伴う高置水槽13の水位の変化を示している。図5(b)に示す水位182は、図5(a)の需要量181及び図5(d)の給水量184によって変化する。図5(b)に示す水位133は、図1の水位センサ131が検出する水位である。図5(c)は、給水ポンプ12のON/OFFの状態変化を示している。図5(c)のポンプ状態183は、給水制御装置14からの指示に従ってON/OFFが切り替えられる。図5(d)は、給水ポンプ12の動作によって高置水槽13に供給される給水量の変化を示している。図5(d)の給水量184は、ポンプ状態183がONのときには、給水ポンプ12に設定された供給能力に応じた給水が行われ、ポンプ状態183がOFFのときには、給水が行われなかったことを示している。 Fig. 5 (a) shows the change in demand with time. The demand amount 181 shown in FIG. 5A indicates that the demand amount is high, for example, from 10:00 to 18:00. FIG.5 (b) has shown the change of the water level of the high water tank 13 with progress of time. The water level 182 shown in FIG. 5 (b) varies depending on the demand amount 181 in FIG. 5 (a) and the water supply amount 184 in FIG. 5 (d). A water level 133 shown in FIG. 5B is a water level detected by the water level sensor 131 of FIG. FIG. 5C shows a change in the ON / OFF state of the water supply pump 12. The pump state 183 in FIG. 5C is switched ON / OFF according to an instruction from the water supply control device 14. FIG. 5D shows the change in the amount of water supplied to the elevated water tank 13 by the operation of the water supply pump 12. In the water supply amount 184 in FIG. 5D, when the pump state 183 is ON, water supply is performed according to the supply capacity set in the water supply pump 12, and when the pump state 183 is OFF, water supply is not performed. It is shown that.
 図5(a)~(d)からは、ポンプ状態183が1日(24時間)を通じてほぼ一定にONを示し、需要量181の変化にかかわらず、高置水槽13の水位182が「0」になることなく、かつ、水位133を超えない状態で維持されたことが読み取れる。 5 (a) to 5 (d), the pump state 183 is substantially constant throughout the day (24 hours), and the water level 182 of the elevated water tank 13 is “0” regardless of the change in the demand 181. It can be read that the water level 133 was not exceeded.
 ここで、従来の給水制御方法による給水制御結果との比較を行う。図6は、従来の給水制御の実行結果例を説明するグラフである。図6(a)~(d)は、従来の給水制御の実行結果例に関して図5(a)~(d)にそれぞれ対応するグラフである。なお、図6(a)に示す需要量981の変化は、図5(a)の需要量181の変化と同じであり、高置水槽のサイズや給水管の径等も、給水制御システム1におけるそれらと同じであるとする。 Here, comparison with the water supply control result by the conventional water supply control method is performed. FIG. 6 is a graph for explaining an execution result example of the conventional water supply control. 6 (a) to 6 (d) are graphs corresponding to FIGS. 5 (a) to 5 (d), respectively, regarding an example of execution results of conventional water supply control. In addition, the change of the demand amount 981 shown to Fig.6 (a) is the same as the change of the demand amount 181 of Fig.5 (a), and the size of a high water tank, the diameter of a water supply pipe, etc. are also in the water supply control system 1. Suppose they are the same.
 図6(d)に示す第1の給水量987は、図5(d)における給水量184の最大値を示している。図6(d)で給水量984が第1の給水量987を超えているように、図6で説明する従来の給水制御方法では、給水ポンプ12よりも給水量の多い固定速の給水ポンプを用いた。また、図6(b)に示すように、高置水槽に上限水位985及び下限水位986を設定し、高置水槽の水位が下限水位986まで下降した場合に給水ポンプを起動させ、高置水槽の水位が上限水位985まで上昇した場合に給水ポンプを停止させる給水制御を行った。 The first water supply amount 987 shown in FIG. 6 (d) indicates the maximum value of the water supply amount 184 in FIG. 5 (d). In the conventional water supply control method described with reference to FIG. 6, the fixed-speed water supply pump having a larger water supply amount than the water supply pump 12 is used so that the water supply amount 984 exceeds the first water supply amount 987 in FIG. Using. Moreover, as shown in FIG.6 (b), when the upper limit water level 985 and the lower limit water level 986 are set to a high water tank, when the water level of a high water tank falls to the minimum water level 986, a water supply pump is started, Water supply control was performed to stop the water supply pump when the water level increased to the upper limit water level 985.
 このような従来の給水制御方法によれば、高置水槽の水位は図6(b)に示すように「0」になることなく上限水位985を超えない状態で維持されたが、図6(c)に示すように、需要量981の変化に応じて、水需要の大きい時間帯(例えば10時から18時)に給水ポンプの起動が集中して行われ、急激な給水が行われることが読み取れる。また、図5(b)と比較すると、図6(b)では水位982の変化が激しいことも分かる。 According to such a conventional water supply control method, the water level of the elevated water tank is maintained at a state where it does not exceed the upper limit water level 985 without becoming “0” as shown in FIG. As shown in c), in response to a change in the demand amount 981, the start of the water supply pump is concentrated and performed suddenly in a time zone where the water demand is large (for example, from 10:00 to 18:00). I can read. Further, as compared with FIG. 5B, it can also be seen that the change in the water level 982 is severe in FIG. 6B.
 ところで、水需要が時間によって変化するように、電力需要も時間によって変化する。一般的には、水需要及び電力需要は昼間の時間帯に需要が大きくなることが多く、水需要の大きい時間帯(水需要ピーク時間帯)と電力需要が大きい時間帯(電力需要ピーク時間帯)とが近い時間になりやすい。そして、従来の給水制御方法では、図6に示したように水需要の変化に応じて給水ポンプが作動するので、給水ポンプが作動する時間帯が電力需要ピーク時間帯に重なる傾向がある。その結果、給水ポンプを動作させるための電力消費が電力需要ピーク時間帯に発生してしまう。 By the way, just like water demand changes with time, power demand also changes with time. In general, the demand for water and power demand often increases during the daytime, and the time when the water demand is high (water demand peak time) and the time when the power demand is large (power demand peak time) ) And is close to time. And in the conventional water supply control method, as shown in FIG. 6, since a water supply pump operate | moves according to the change of water demand, there exists a tendency for the time slot | zone when a water supply pump operates to overlap with an electric power demand peak time slot | zone. As a result, power consumption for operating the water supply pump occurs during a power demand peak time period.
 一方、本実施の形態の給水制御システム1では、前述したように所定の最大水需要Qmaxに基づいて決定される供給性能を有する給水ポンプ12が選定される。このような給水ポンプ12は、ほぼON状態で作動して所定期間の最大水需要Qmaxを超える程度の水量を供給できればよく、従来の給水制御方法で用いられる給水ポンプよりも低い供給能力が求められる。そして、給水ポンプ12は、電力需要の大きい時間帯における水需要の一部を電力需要の小さい時間帯に供給するように、給水制御装置14によって給水ポンプ12の動作が制御されて、図5(d)に示すように1日(24時間)を通じてほぼ一定に作動して水供給を行う。その結果、給水ポンプ12を作動させるための電力消費は、電力需要ピーク時間帯に関係なく平均して発生し、電力消費量が平滑化される。 On the other hand, in the water supply control system 1 of the present embodiment, as described above, the water supply pump 12 having the supply performance determined based on the predetermined maximum water demand Qmax is selected. Such a water supply pump 12 only needs to be able to supply an amount of water exceeding the maximum water demand Qmax for a predetermined period by operating substantially in the ON state, and is required to have a lower supply capacity than the water supply pump used in the conventional water supply control method. . Then, the operation of the water supply pump 12 is controlled by the water supply control device 14 so that a part of the water demand in the time zone where the power demand is large is supplied in the time zone where the power demand is small, as shown in FIG. As shown in d), the water supply is carried out almost uniformly throughout the day (24 hours). As a result, power consumption for operating the feed water pump 12 occurs on average regardless of the power demand peak time period, and the power consumption is smoothed.
(1-5)本実施の形態による効果
 このような給水制御システム1によれば、給水ポンプ12による給水を電力需要が大きい時間帯から他の時間帯にシフトさせ、需要家への安定した水供給を実現しながらも平滑な電力消費を実現することにより、電力需要の大きい時間帯に給水ポンプ12の作動による電力消費を抑制することができるので、電力消費のピークカットに寄与することができる。また、電力消費のピークを低く抑えることによって、最大電力消費量に基づいて基本料金が決定される場合の電気料金を削減させる効果も期待できる。
(1-5) Effects of this Embodiment According to such a water supply control system 1, the water supply by the water supply pump 12 is shifted from a time zone when the power demand is large to another time zone, so that stable water is supplied to consumers. By realizing smooth power consumption while realizing supply, it is possible to suppress power consumption due to the operation of the water supply pump 12 during a time period when power demand is large, which can contribute to a peak cut in power consumption. . In addition, by suppressing the peak of power consumption to a low level, it is possible to expect an effect of reducing the electricity charge when the basic charge is determined based on the maximum power consumption.
 また、このような給水制御システム1では、給水ポンプ12はほぼON状態で作動して所定期間の最大水需要Qmaxを超える程度の水量を供給できればよく、従来の給水制御方法で用いられる給水ポンプよりも低い供給能力しか求められない。一般に、給水ポンプの供給能力は、給水ポンプにおけるモータの回転数に比例し、モータの回転数を上げるためにはより大きな消費電力を要する。すなわち、給水ポンプの供給能力と電力消費量は比例する。従って、給水制御システム1で用いられる給水ポンプ12は、従来の給水制御方法で用いられる給水ポンプよりも低い能力の給水ポンプを使用できることから、給水ポンプ12による電力消費量を、従来の給水制御方法で用いられる給水ポンプの電力消費量より軽減させることができる。また一般に、給水ポンプの価格は、供給能力に比例して上昇することから、給水制御システム1では、給水ポンプ12に要する価格コストを抑えることができる。 Moreover, in such a water supply control system 1, the water supply pump 12 should just operate | move in an ON state, and can supply the water quantity of the grade over the maximum water demand Qmax of a predetermined period, and it is from the water supply pump used with the conventional water supply control method. However, only a low supply capacity is required. In general, the supply capacity of the water supply pump is proportional to the number of rotations of the motor in the water supply pump, and higher power consumption is required to increase the number of rotations of the motor. That is, the supply capacity of the feed water pump is proportional to the power consumption. Therefore, since the feed water pump 12 used in the feed water control system 1 can use a feed water pump having a lower capacity than the feed water pump used in the conventional feed water control method, the power consumption by the feed water pump 12 is reduced to the conventional feed water control method. It can be reduced from the power consumption of the feed water pump used in the above. In general, since the price of the water supply pump increases in proportion to the supply capacity, the water supply control system 1 can suppress the price cost required for the water supply pump 12.
 また、このような給水制御システム1では、従来の給水制御と比較した場合に、ほぼ一定に給水ポンプ12が作動するので、従来の給水制御のように需要家の水需要に応じて急激な給水が行われることがなく、急激な給水のために給水ポンプ12の電力消費量が急増することを防ぐことができる。 Moreover, in such a water supply control system 1, since the water supply pump 12 operates substantially constant as compared with the conventional water supply control, the rapid water supply according to the water demand of the consumer as in the conventional water supply control. Thus, it is possible to prevent the power consumption of the water supply pump 12 from rapidly increasing due to rapid water supply.
(2)第2の実施の形態
 第2の実施の形態による給水制御システム2は、所定の期間内の水需要の予測に基づいて、電力需要ピーク時間帯における給水を抑えながら受水槽から高置水槽に安定した給水を行うだけでなく、給水管の実流量に応じて目標流量の補正を行い、受水槽から高置水槽に供給する水流量を補正した目標流量とするために変速の給水ポンプの動作を制御することを特徴としている。
(2) Second Embodiment The water supply control system 2 according to the second embodiment is placed from a water receiving tank while suppressing water supply in a peak power demand period based on prediction of water demand within a predetermined period. In addition to stable water supply to the water tank, the target flow rate is corrected according to the actual flow rate of the water supply pipe, and the water supply pump that changes speed is used to obtain the corrected target flow rate from the water receiving tank to the elevated water tank. It is characterized by controlling the operation.
(2-1)本実施の形態による給水制御システムの構成
 図7は、第2の実施の形態による給水制御システムの構成を示すブロック図である。図7に示す給水制御システム2のうち、図1に示した給水制御システム1と同じ構成については、同じ番号を付して説明を省略する。
(2-1) Configuration of Water Supply Control System According to this Embodiment FIG. 7 is a block diagram showing the configuration of the water supply control system according to the second embodiment. Of the water supply control system 2 shown in FIG. 7, the same components as those in the water supply control system 1 shown in FIG.
 給水制御システム2は、図1で示した固定速の給水ポンプ12の代わりに、変速の給水ポンプ22を備えている。変速の給水ポンプ22は、電力によって作動し、インバータ(図示せず)でモータの回転数を変動させることによって送水量を変更可能な機構を有するポンプである。給水ポンプ22には、給水ポンプ22の回転数を制御するPID制御装置21と、給水ポンプ22の回転数を検出してPID制御装置21に通知する回転数センサ221とが接続されている。PID制御装置21は、給水制御装置24から出力される目標回転数と回転数センサ221から通知される給水ポンプ22の回転数とに基づいて、所定のPID制御アルゴリズムによって給水ポンプ22への制御信号を決定し、給水ポンプ22の回転数を目標値に保つ。 The water supply control system 2 includes a variable speed water supply pump 22 instead of the fixed speed water supply pump 12 shown in FIG. The variable speed water supply pump 22 is a pump that operates by electric power and has a mechanism capable of changing the amount of water supply by changing the number of rotations of a motor with an inverter (not shown). Connected to the feed water pump 22 are a PID control device 21 that controls the rotation speed of the feed water pump 22 and a rotation speed sensor 221 that detects the rotation speed of the feed water pump 22 and notifies the PID control device 21. The PID control device 21 controls the water supply pump 22 according to a predetermined PID control algorithm based on the target rotation speed output from the water supply control device 24 and the rotation speed of the water supply pump 22 notified from the rotation speed sensor 221. And the rotational speed of the feed water pump 22 is maintained at the target value.
 流量センサ222は、給水管163を通る水の流量を検出するセンサであって、検出した流量を給水制御装置24に通知する。高置水槽23には、水位センサ131,132の他に、水位232を検出する水位センサ231が設けられている。水位232は、給水制御装置24が目標流量の補正を行うか否かを判定するために必要な修正判定水位である。水位センサ231は、水位232を検出すると給水制御装置24に水位検出を通知する。目標流量の補正については図9を参照しながら後述する。 The flow sensor 222 is a sensor that detects the flow rate of water passing through the water supply pipe 163 and notifies the water supply control device 24 of the detected flow rate. The elevated water tank 23 is provided with a water level sensor 231 that detects the water level 232 in addition to the water level sensors 131 and 132. The water level 232 is a correction determination water level necessary for the water supply control device 24 to determine whether or not to correct the target flow rate. When the water level sensor 231 detects the water level 232, the water level sensor 231 notifies the water supply control device 24 of the water level detection. The correction of the target flow rate will be described later with reference to FIG.
(2-2)本実施の形態の給水制御装置による給水制御
 給水制御装置24は、図1の給水制御装置14と同様のポンプ起動停止判定部141及びポンプ起動停止実行部142に加えて、水需要予測部241、目標流量計算部242、目標回転数計算部243、及び記憶装置244を備える。給水制御装置24は、図2に示した給水制御装置14と同様のハードウェア構成を有し、ポンプ起動停止判定部141及びポンプ起動停止実行部142、水需要予測部241、目標流量計算部242、及び目標回転数計算部243は、CPUがROMに格納されたプログラムを呼び出して実行することによって実現される。また、記憶装置244はROMに相当する。
(2-2) Water Supply Control by the Water Supply Control Device of the Present Embodiment The water supply control device 24 includes a pump start / stop determination unit 141 and a pump start / stop execution unit 142 similar to the water supply control device 14 of FIG. A demand prediction unit 241, a target flow rate calculation unit 242, a target rotation number calculation unit 243, and a storage device 244 are provided. The water supply control device 24 has the same hardware configuration as the water supply control device 14 shown in FIG. 2, and includes a pump start / stop determination unit 141, a pump start / stop execution unit 142, a water demand prediction unit 241, and a target flow rate calculation unit 242. The target rotational speed calculation unit 243 is realized by the CPU calling and executing a program stored in the ROM. The storage device 244 corresponds to a ROM.
 記憶装置244は、日時及び曜日情報を示すカレンダ情報、及び、月や曜日等を単位として24時間の水需要量をまとめた水需要履歴情報を格納する。なお、記憶装置244は、給水制御システム24に外部接続される記憶装置(例えばデータベース)であってもよい。記憶装置244に格納される水需要履歴情報は、流量センサ222によって検出された流量値が蓄積されて作成される。より具体的には、CPUが所定のプログラムを実行することによって流量センサ222によって検出された流量値に対する演算処理を行い、月や曜日ごとに算出した24時間の流量の平均値を、水需要履歴情報として記憶装置244に格納する。また、水需要履歴情報は、需要家における水消費量を取得して得られる情報に基づいて作成されてもよい。 The storage device 244 stores calendar information indicating date / time and day of the week information, and water demand history information that summarizes the water demand for 24 hours in units of months and days of the week. Note that the storage device 244 may be a storage device (for example, a database) externally connected to the water supply control system 24. The water demand history information stored in the storage device 244 is created by accumulating the flow value detected by the flow sensor 222. More specifically, the CPU performs a calculation process on the flow rate value detected by the flow rate sensor 222 by executing a predetermined program, and the average value of the 24-hour flow rate calculated for each month or day of the week is used as the water demand history. The information is stored in the storage device 244 as information. Further, the water demand history information may be created based on information obtained by acquiring water consumption at the consumer.
 水需要予測部241は、1日の所定の時刻(例えば0時)に制御プログラムが実行され、記憶装置244に格納されているカレンダ情報を参照して現在の日時及び曜日を特定し、対応する月や曜日の水需要履歴情報を参照して、現在の月又は曜日で限定した、以後24時間における水需要量の合計(1日の水需要予測量)を予測する。 The water demand prediction unit 241 executes the control program at a predetermined time of the day (for example, 0:00), identifies the current date and day of the week by referring to the calendar information stored in the storage device 244, and responds to it. By referring to the water demand history information of the month or day of the week, the total of water demand for the next 24 hours (daily water demand forecast amount), which is limited to the current month or day of the week, is predicted.
 目標流量計算部242は、水需要予測部241によって予測された1日の水需要予測量に基づいて、以後24時間の各時刻で高置水槽23に供給する目標流量を算出する。図8は、目標流量の算出結果の一例を示すグラフである。図8に示す目標流量271は、最大の流量を示す最大流量QHと最小の流量を示す最小流量QLとの2値で与えられ、最大流量QHと最小流量QLとの切り替え時刻T1,T2が9時と21時に設定されている。なお、最大流量QH及び最小流量QLは、給水ポンプ22による送水量の変動域を規定する値の一例であり、切り替え時刻T1,T2は、給水ポンプ22による送水量の切り替え時刻の一例である。最小流量QLは0でもよく、切り替え時刻T1,T2は、例えば電力ピーク付近に限定し、それぞれ13時,14時というように設定してもよい。 The target flow rate calculation unit 242 calculates a target flow rate to be supplied to the elevated water tank 23 at each time of 24 hours thereafter, based on the daily water demand prediction amount predicted by the water demand prediction unit 241. FIG. 8 is a graph showing an example of the calculation result of the target flow rate. The target flow rate 271 shown in FIG. 8 is given as a binary value of a maximum flow rate QH indicating the maximum flow rate and a minimum flow rate QL indicating the minimum flow rate, and the switching times T1 and T2 between the maximum flow rate QH and the minimum flow rate QL are 9. It is set at the hour and 21:00. The maximum flow rate QH and the minimum flow rate QL are examples of values that define the fluctuation range of the water supply amount by the water supply pump 22, and the switching times T <b> 1 and T <b> 2 are examples of the water supply amount switching time by the water supply pump 22. The minimum flow rate QL may be 0, and the switching times T1 and T2 are limited to, for example, near the power peak, and may be set to 13:00 and 14:00, respectively.
 切り替え時間T1,T2は、最小流量QLとする時間帯(T1~T2)が電力需要の大きい電力需要ピーク時間帯に多く重なるように設定される。また、最大流量QH、最小流量QL、及び切り替え時刻T1,T2は、目標流量271によって24時間で供給される水量が水需要予測部241によって予測された1日の水需要予測量に一致するという条件下で、ユーザが任意に設定できる。 The switching times T1 and T2 are set so that the time zone (T1 to T2) for which the minimum flow rate QL is set overlaps with the power demand peak time zone where the power demand is large. Further, the maximum flow rate QH, the minimum flow rate QL, and the switching times T1 and T2 are such that the amount of water supplied in 24 hours by the target flow rate 271 matches the daily water demand prediction amount predicted by the water demand prediction unit 241. It can be set arbitrarily by the user under conditions.
 このような場合に図8を例とすれば、1日の水需要予測量は、次式
Figure JPOXMLDOC01-appb-M000003
のような関係式を満たす。なお、目標流量271は、24時間常に給水されるように決定される。
Taking FIG. 8 as an example in such a case, the daily water demand forecast amount is given by
Figure JPOXMLDOC01-appb-M000003
The relational expression like The target flow rate 271 is determined so that water is always supplied for 24 hours.
 目標回転数計算部243は、給水管163を流れる水の実流量が目標流量計算部242によって算出された目標流量に一致するように給水ポンプ22の目標回転数を決定する。図9は、目標回転数を決定する処理手続を示すフローチャートである。図9に示す一連の処理は、所定の周期(例えば5分周期)で繰り返し実行される。図9を参照して給水ポンプ22の目標回転数を決定する処理を説明する。 The target rotation speed calculation unit 243 determines the target rotation speed of the water supply pump 22 so that the actual flow rate of the water flowing through the water supply pipe 163 matches the target flow rate calculated by the target flow rate calculation unit 242. FIG. 9 is a flowchart showing a processing procedure for determining the target rotational speed. The series of processes shown in FIG. 9 is repeatedly executed at a predetermined cycle (for example, a 5-minute cycle). With reference to FIG. 9, the process which determines the target rotation speed of the water supply pump 22 is demonstrated.
 まず、目標回転数計算部243が、目標流量計算部242によって算出された目標流量と、給水管163を通る水について流量センサ222が検出した最新の流量(計測流量)とを取得する(ステップS201)。ここでは、例えば図8に示した目標流量271が、最大流量QH、最小流量QL、及び切り替え時刻T1,T2をパラメータとして取得されるとする。 First, the target rotational speed calculation unit 243 acquires the target flow rate calculated by the target flow rate calculation unit 242 and the latest flow rate (measured flow rate) detected by the flow rate sensor 222 for water passing through the water supply pipe 163 (step S201). ). Here, for example, the target flow rate 271 shown in FIG. 8 is acquired using the maximum flow rate QH, the minimum flow rate QL, and the switching times T1 and T2 as parameters.
 次に、目標回転数計算部243は、高置水槽23における現在の水位が修正判定水位を下回っていないか判定する(ステップS202)。ステップS202の判定は、目標回転数計算部243、水位センサ231から水位232の水位検出を通知されるか否かによって判定される。ステップS202で現在の水位が修正判定水位以上である場合(ステップS202のNO)、すなわち、水位センサ231から水位232の水位検出が通知された場合には、ステップS204の処理に移行する。 Next, the target rotation speed calculation unit 243 determines whether or not the current water level in the elevated water tank 23 is lower than the correction determination water level (step S202). The determination in step S202 is determined based on whether or not the water level detection of the water level 232 is notified from the target rotation speed calculation unit 243 and the water level sensor 231. When the current water level is equal to or higher than the correction determination water level in step S202 (NO in step S202), that is, when the water level detection of the water level 232 is notified from the water level sensor 231, the process proceeds to step S204.
 ステップS202で現在の水位が修正判定水位未満である場合(ステップS202のYES)、すなわち、水位センサ231から水位232の水位検出が通知されない場合には、目標回転数計算部243は、ステップS201で取得した目標流量271の最小流量QLを補正する(ステップS203)。最小流量QLの補正値である最小流量補正値QLnewは、次式
Figure JPOXMLDOC01-appb-M000004
のように算出される。ここで、補正係数は1より大きい定数である。ステップS203における最小流量補正値QLnewの算出は、例えば時刻0の時点で高置水槽23に十分な水量がない場合に水位が修正判定水位を下回る場合があり、速やかに水位の回復を行う必要があるような場合に、目標流量271を上方修正するために行われる。目標回転数計算部243は、最小流量QLを最小流量補正値QLnewに置き換えて、ステップS204の処理を行う。
When the current water level is lower than the corrected determination water level in step S202 (YES in step S202), that is, when the water level detection of the water level 232 is not notified from the water level sensor 231, the target rotation speed calculation unit 243 determines in step S201. The minimum flow rate QL of the acquired target flow rate 271 is corrected (step S203). The minimum flow rate correction value QLnew, which is the correction value of the minimum flow rate QL, is given by
Figure JPOXMLDOC01-appb-M000004
It is calculated as follows. Here, the correction coefficient is a constant larger than 1. In the calculation of the minimum flow rate correction value QLnew in step S203, for example, when there is not enough water in the elevated water tank 23 at time 0, the water level may be lower than the corrected determination water level, and it is necessary to quickly restore the water level. In some cases, this is done to correct the target flow rate 271 upward. The target rotational speed calculation unit 243 performs the process of step S204 by replacing the minimum flow rate QL with the minimum flow rate correction value QLnew.
 ステップS204では、目標回転数計算部243は、給水管163を流れる水の実流量が目標流量271に一致するように、又は、最小流量QLを最小流量補正値QLnewに置き換えた場合には補正後の目標流量に一致するように、PID制御装置21の動作を制御するPID制御ロジックに従って目標回転数を決定する。例えば、時刻tにおける目標流量をQT(t)、実流量をQm(t)とすると、目標回転数N(t)は、偏差e(t)に基づく比例積分制御により、次式
Figure JPOXMLDOC01-appb-M000005
のように算出される。ここで、Kpは比例ゲイン、Kiは積分ゲインであり、共に定数である。そして、目標回転数計算部243は、PID制御装置21に、式(5)で算出した目標回転数N(t)に従って給水ポンプ22の回転数を変動制御させる。
In step S204, the target rotation speed calculation unit 243 corrects the actual flow rate of the water flowing through the water supply pipe 163 so that it matches the target flow rate 271 or when the minimum flow rate QL is replaced with the minimum flow rate correction value QLnew. The target rotational speed is determined in accordance with the PID control logic that controls the operation of the PID control device 21 so as to match the target flow rate. For example, if the target flow rate at time t is QT (t) and the actual flow rate is Qm (t), the target rotational speed N (t) is obtained by proportional integral control based on the deviation e (t) as
Figure JPOXMLDOC01-appb-M000005
It is calculated as follows. Here, Kp is a proportional gain, and Ki is an integral gain, both of which are constants. Then, the target rotation speed calculation unit 243 causes the PID control device 21 to control the fluctuation of the rotation speed of the feed water pump 22 according to the target rotation speed N (t) calculated by the equation (5).
 上述のようなステップS201~S204の処理を定期的に繰り返して実行することによって、給水制御装置24は、常に給水ポンプ22を起動させて、目標流量271(又は補正後の目標流量)に一致する実流量を高置水槽24に供給する。 By periodically repeating the processes of steps S201 to S204 as described above, the water supply control device 24 always activates the water supply pump 22 to match the target flow rate 271 (or the corrected target flow rate). The actual flow rate is supplied to the elevated water tank 24.
(2-3)本実施の形態による実施結果
 以下では、上述してきたような給水制御システム1による給水制御の実行結果について説明する。図10は、第2の実施の形態による給水制御の実行結果例を説明するグラフである。図10(a)~(d)は、第1の実施の形態における実行結果例を説明した図5(a)~(d)にそれぞれ対応するグラフである。また、図10(a)に示す需要量281の変化は、図5(a)の需要量181の変化と同じである。なお、図10(a)~(d)に示す実行結果は、高置水槽23に図1に示す高置水槽13と同じサイズの水槽を用い、給水制御装置24のポンプ起動停止判定部141及びポンプ起動停止実行部142によって、図4で説明したような給水ポンプ24の起動/停止制御が行われない場合の結果を示している。
(2-3) Implementation Results According to the Present Embodiment Hereinafter, execution results of water supply control by the water supply control system 1 as described above will be described. FIG. 10 is a graph for explaining an execution result example of water supply control according to the second embodiment. FIGS. 10A to 10D are graphs corresponding to FIGS. 5A to 5D, respectively, for explaining the execution result examples in the first embodiment. Moreover, the change of the demand amount 281 shown to Fig.10 (a) is the same as the change of the demand amount 181 of Fig.5 (a). The execution results shown in FIGS. 10 (a) to 10 (d) are obtained by using a water tank of the same size as the high water tank 13 shown in FIG. The result when the start / stop control of the feed water pump 24 as described in FIG. 4 is not performed by the pump start / stop execution unit 142 is shown.
 このとき、図10(c)に示すように、給水ポンプ22は常に起動(ON)状態にあるが、図10(d)に示すように、給水制御装置24で決定される目標回転数N(t)に従って給水ポンプ22の回転数が変動するために、高置水槽23に供給される給水量284が変動する。給水量284の最大値は最大流量QHに一致し、給水量284の最小値は最小流量QL又は最小流量補正値QLnewに一致する。そして、図10(b)に示すように、高置水槽23では、24時間を通じて需要量281に応えられるだけの水位282が維持された。 At this time, as shown in FIG. 10 (c), the water supply pump 22 is always in the activated (ON) state, but as shown in FIG. 10 (d), the target rotational speed N (determined by the water supply control device 24). Since the rotation speed of the water supply pump 22 varies according to t), the amount of water supply 284 supplied to the elevated water tank 23 varies. The maximum value of the water supply amount 284 matches the maximum flow rate QH, and the minimum value of the water supply amount 284 matches the minimum flow rate QL or the minimum flow rate correction value QLnew. And as shown in FIG.10 (b), in the high water tank 23, the water level 282 sufficient to meet the demand amount 281 was maintained through 24 hours.
 ところで、本実施の形態による給水制御システム2では、目標回転数N(t)は目標流量271の設定に基づいて電力需要ピーク時間帯に回転数が抑えられるように設定され、電力需要ピーク時間帯と水需要ピーク時間帯とが重なりやすい傾向にあることから、目標回転数N(t)は電力需要ピーク時間帯及び水需要ピーク時間帯の前の時間帯に高い回転数に設定される。その結果、図10(b)に示すように、高置水槽23の水位282は、水需要ピーク時間帯になる前の時刻(例えば8時付近)で水位133の停止水位を超え、水需要ピーク時間帯には給水量が少なくなることから、水位が次第に減少する。 By the way, in the water supply control system 2 according to the present embodiment, the target rotational speed N (t) is set so that the rotational speed can be suppressed in the power demand peak time zone based on the setting of the target flow rate 271 and the power demand peak time zone. Therefore, the target rotational speed N (t) is set to a high rotational speed in the power demand peak time zone and the time zone before the water demand peak time zone. As a result, as shown in FIG. 10B, the water level 282 of the elevated water tank 23 exceeds the stop water level of the water level 133 at a time (for example, around 8:00) before the water demand peak time zone, and the water demand peak Since the amount of water supply decreases during the time, the water level gradually decreases.
 すなわち、給水制御システム2では、ポンプ起動停止判定部141及びポンプ起動停止実行部142による給水ポンプ22の起動/停止制御が行われない場合には、給水制御システム1による給水制御の場合に比べて、高置水槽23における水位282の最大値が大きくなる。このような状況に対応するためには、例えば高置水槽13よりも容量の大きい高置水槽23を使用すればよい。また例えば、給水制御装置24が、水需要予測部241、目標流量計算部242、及び目標回転数計算部243による処理制御に加えて、ポンプ起動停止判定部141及びポンプ起動停止実行部142による給水ポンプ22の起動/停止制御を実行することによって、高置水槽23の水位が停止水位を超えた場合に給水ポンプ22を停止し、起動水位を下回った場合に給水ポンプ22を起動するようにして、水位の調整を行うようにしてもよい。またさらに、上記2つの対応を併せて実行するようにしてもよい。 That is, in the water supply control system 2, when the start / stop control of the water supply pump 22 by the pump start / stop determination unit 141 and the pump start / stop execution unit 142 is not performed, compared to the case of the water supply control by the water supply control system 1. The maximum value of the water level 282 in the elevated water tank 23 is increased. In order to cope with such a situation, for example, a high water tank 23 having a larger capacity than the high water tank 13 may be used. Further, for example, the water supply control device 24 supplies water by the pump start / stop determination unit 141 and the pump start / stop execution unit 142 in addition to the process control by the water demand prediction unit 241, the target flow rate calculation unit 242, and the target rotation number calculation unit 243. By executing the start / stop control of the pump 22, the feed water pump 22 is stopped when the water level of the elevated water tank 23 exceeds the stop water level, and the feed water pump 22 is started when the water level falls below the start water level. The water level may be adjusted. Furthermore, the above two correspondences may be executed together.
(2-4)本実施の形態による効果
 このような給水制御システム2によれば、図10(d)を図5(d)と比較した場合に、水需要及び電力需要の大きい時間帯に高置水槽23に供給する給水量が第1の実施の形態による給水制御の場合よりも少なくできるので、電力需要ピーク時間帯の給水ポンプ22による電力消費量を、第1の実施の形態による給水制御の場合よりもさらに低減させることができ、電力消費のピークカットに、より一層寄与することができる。そして、電力消費のピークをより低く抑えることによって、電気料金をより安く抑える効果も期待できる。
(2-4) Effects of this Embodiment According to the water supply control system 2 as described above, when FIG. 10 (d) is compared with FIG. Since the amount of water supplied to the water tank 23 can be smaller than in the case of the water supply control according to the first embodiment, the amount of power consumed by the water supply pump 22 during the power demand peak time period is set to the water supply control according to the first embodiment. This can be further reduced than in the case of, and can further contribute to the peak cut of power consumption. And, by suppressing the peak of power consumption to a lower level, it is possible to expect the effect of reducing the electricity bill more cheaply.
 また、このような給水制御システム2によれば、目標回転数計算部243が給水管163を流れる実流量に応じて目標流量の補正を行い、目標回転数計算部244が補正後の目標流量に一致するように給水ポンプ22の回転数を算出することによって、予測した目標流量と実流量との間に差分が生じた場合に、実流量に合せて柔軟な対応を行うことができる。 Further, according to the water supply control system 2 as described above, the target rotational speed calculation unit 243 corrects the target flow rate according to the actual flow rate flowing through the water supply pipe 163, and the target rotational speed calculation unit 244 sets the corrected target flow rate. By calculating the rotation speed of the water supply pump 22 so as to coincide with each other, when a difference occurs between the predicted target flow rate and the actual flow rate, it is possible to flexibly cope with the actual flow rate.
 なお、本実施の形態による給水制御システム2を第1の実施の形態による給水制御システム1と比較すると、給水制御システム1,2のいずれの場合も、給水ポンプ12,22の双方がほぼ常時又は常時起動するので、求められる総需要量が同じ状況では、変速ポンプである給水ポンプ22は、固定速ポンプの給水ポンプ12よりも高性能(高回転数で作動可能な性能)である必要がある。そして一般に、給水ポンプの価格は、高性能である方が高く、同程度の性能でも固定速ポンプよりも変速ポンプの方が高いので、給水制御システム2の給水ポンプ22は、給水制御システム1の給水ポンプ12よりも価格コストが高くなる。また、高置水槽23についても、高置水槽13より大きい容量が要求されるので設備コストが上昇する。しかし一方で、本実施の形態による効果として上述したように、給水制御システム2は、変速の給水ポンプ22を用いることによって、電力消費のピークカットにより一層寄与し、電気料金の低減も期待することができる。すなわち、第1及び第2の実施の形態による給水制御システム1,2において、システムの設備コストと電力消費のピークカットへの寄与(及び電気料金の低減)とがトレードオフの関係にあり、システムの設備コストと電力消費のピークカットへの寄与(及び電気料金の低減)とのバランスを、ユーザの希望に応じて決定することができる。 When the water supply control system 2 according to the present embodiment is compared with the water supply control system 1 according to the first embodiment, both of the water supply pumps 12 and 22 are almost always or Since it always starts, in the situation where the total demand demanded is the same, the feed pump 22 that is a variable speed pump needs to have higher performance (performance that can be operated at a higher rotation speed) than the feed pump 12 that is a fixed speed pump. . In general, the price of the feed water pump is higher for high performance, and the variable speed pump is higher than the fixed speed pump for similar performance. Therefore, the feed water pump 22 of the feed water control system 2 is the same as that of the feed water control system 1. The price cost is higher than that of the feed water pump 12. Moreover, since the capacity | capacitance larger than the high water tank 13 is requested | required also about the high water tank 23, an installation cost rises. However, on the other hand, as described above as the effect of the present embodiment, the water supply control system 2 can further contribute to the peak cut of power consumption by using the variable speed water supply pump 22, and expect to reduce the electricity bill. Can do. That is, in the water supply control systems 1 and 2 according to the first and second embodiments, there is a trade-off relationship between the system equipment cost and the contribution to the peak cut of power consumption (and the reduction of electricity charges). The balance between the equipment cost and the contribution to the peak cut of power consumption (and the reduction of electricity charges) can be determined according to the user's wishes.
(3)第3の実施の形態
 第3の実施の形態による給水制御システム3は、給水制御システム1による受水槽から高置水槽への給水制御に加え、水道事業者から受水槽への給水量を調整するバルブを追加し、受水槽の水位に基づいてバルブの動作を制御することによって、電力需要ピーク時間帯における給水を抑えながら給水制御を行い、受水槽の水位をほぼ一定に保つことを特徴としている。
(3) 3rd Embodiment The water supply control system 3 by 3rd Embodiment is the water supply control amount from a water supply company to a water receiving tank in addition to the water supply control from a water receiving tank to an elevated water tank by the water supply control system 1 By controlling the operation of the valve based on the water level of the water receiving tank, the water supply control is performed while suppressing the water supply during peak hours of power demand, and the water level of the water receiving tank is kept almost constant. It is a feature.
(3-1)本実施の形態による給水制御システムの構成
 図11は、第3の実施の形態による給水制御システムの構成を示すブロック図である。図11に示す給水制御システム3は、図1に示した給水制御システム1と同じ構成については、同じ番号を付して説明を省略する。給水制御システム3は、受水槽11の代わりに受水槽31を備え、給水管161の途中にバルブ32を備え、バルブ32の動作を指示するバルブ制御装置33を備えている点が、図1に示した給水制御システム1とは異なる。
(3-1) Configuration of Water Supply Control System According to this Embodiment FIG. 11 is a block diagram showing a configuration of a water supply control system according to the third embodiment. In the water supply control system 3 shown in FIG. 11, the same components as those in the water supply control system 1 shown in FIG. The water supply control system 3 includes a water receiving tank 31 instead of the water receiving tank 11, a valve 32 in the middle of the water supply pipe 161, and a valve control device 33 that instructs the operation of the valve 32 in FIG. It differs from the water supply control system 1 shown.
 受水槽31には、受水槽31内の水位313を検出する水位センサ311と、水位314を検出する水位センサ312とが、それぞれ異なる水位を検出するように設けられている。 The water receiving tank 31 is provided with a water level sensor 311 for detecting the water level 313 in the water receiving tank 31 and a water level sensor 312 for detecting the water level 314 so as to detect different water levels.
 ここで、水位313は、バルブ32を閉状態にするか否かを判定するために必要なバルブ閉判定水位であり、例えば受水槽31の容量の95%の水準とする。水位314は、バルブ32を開状態にするか否かを判定するために必要なバルブ開判定水位である。水位314は、水位313よりもわずかに低い水位であり例えば受水槽31の容量の93%の水準とする。水位センサ311,312は、対応する水位313,314を検出するとバルブ制御装置33に通知する。 Here, the water level 313 is a valve closing determination water level necessary for determining whether or not the valve 32 is to be closed, and is set at a level of 95% of the capacity of the water receiving tank 31, for example. The water level 314 is a valve open determination water level necessary for determining whether or not to open the valve 32. The water level 314 is a level slightly lower than the water level 313 and is set to a level of 93% of the capacity of the water receiving tank 31, for example. The water level sensors 311 and 312 notify the valve control device 33 when the corresponding water levels 313 and 314 are detected.
 バルブ32は、水道事業者側の排水管と受水槽31との間を接続する給水管161に設けられ、バルブ制御装置33からの指示に従って作動することによって、給水管161通って受水槽31に通流する水量を変更する機構を有した装置である。図11に示すバルブ32では、バルブ制御装置33からの指示を専用の制御部(図示せず)受信し、当該制御部が受信した指示に従ってバルブ32の作動を制御するように動作するが、バルブ32はこれに限定されるものではなく、一般的に用いられる水量調整が可能なバルブ機構を有していればよい。 The valve 32 is provided in the water supply pipe 161 that connects the drain pipe on the water company side and the water receiving tank 31, and operates according to an instruction from the valve control device 33, thereby passing through the water supply pipe 161 to the water receiving tank 31. It is a device having a mechanism for changing the amount of water flowing. The valve 32 shown in FIG. 11 operates to receive an instruction from the valve control device 33 and control the operation of the valve 32 according to the instruction received by the control unit (not shown). 32 is not limited to this, and it is only necessary to have a valve mechanism capable of adjusting the amount of water that is generally used.
 バルブ制御装置33は、バルブ32の動作を決定するための装置であって、組み込みコンピュータ又はパーソナルコンピュータで実現される。バルブ制御装置33のハードウェア構成は、図2に示した給水制御装置14の構成と同様であり、説明を省略する。バルブ制御装置33は、バルブ32の開閉を判定するバルブ制御開閉判定部331と、バルブ制御開閉判定部331による判定結果に応じてバルブ32の開閉の実行を指示するバルブ開閉実行部332とを備えている。バルブ制御開閉判定部331及びバルブ開閉実行部332は、例えば、バルブ制御装置33のRAM(図示せず)に格納された制御プログラムをCPU(図示せず)が読み出して実行することによって実現される。 The valve control device 33 is a device for determining the operation of the valve 32, and is realized by an embedded computer or a personal computer. The hardware configuration of the valve control device 33 is the same as the configuration of the water supply control device 14 shown in FIG. The valve control device 33 includes a valve control opening / closing determination unit 331 that determines opening / closing of the valve 32, and a valve opening / closing execution unit 332 that instructs execution of opening / closing of the valve 32 according to a determination result by the valve control opening / closing determination unit 331. ing. The valve control opening / closing determination unit 331 and the valve opening / closing execution unit 332 are realized, for example, by a CPU (not shown) reading and executing a control program stored in a RAM (not shown) of the valve control device 33. .
(3-2)バルブ制御装置によるバルブの開閉制御
 次に、バルブ制御装置33が、開閉動作を指示してバルブ32を開閉させる制御について説明する。図12は、バルブの開閉を判定する処理手続を示すフローチャートである。図12に示す一連の処理は、定期的(例えば5分周期)に繰り返し実行される。
(3-2) Valve Open / Close Control by Valve Control Device Next, control for the valve control device 33 to open / close the valve 32 by instructing an open / close operation will be described. FIG. 12 is a flowchart showing a processing procedure for determining opening and closing of the valve. The series of processes shown in FIG. 12 is repeatedly executed periodically (for example, at a cycle of 5 minutes).
 まず、バルブ制御開閉判定部331は、受水槽31における現在の水位がバルブ閉判定水位(水位313)以上であるか判定する(ステップS301)。ステップS301の判定は、バルブ制御開閉判定部331が、水位センサ311から水位検出を通知されるか否かによって判定される。 First, the valve control open / close determination unit 331 determines whether or not the current water level in the water receiving tank 31 is equal to or higher than the valve close determination water level (water level 313) (step S301). The determination in step S301 is determined by whether or not the valve control opening / closing determination unit 331 is notified of water level detection from the water level sensor 311.
 ステップS301で現在の水位がバルブ閉判定水位以上である場合(ステップS301のYES)、すなわち、水位センサ313から水位検出が通知された場合には、受水槽31に水が十分に貯留されていてバルブ32を開く必要がない状況であるので、バルブ制御開閉判定部331は、バルブ開フラグに「0」を設定し(ステップS302)、次回の一連の処理が開始されるまで待機状態となる、バルブ開フラグは、バルブ32の動作を制御するためのフラグであって、例えば「0」又は「1」の値が設定される。バルブ開フラグは、例えばバルブ制御装置33のRAMに記憶される。 When the current water level is equal to or higher than the valve closing determination water level in step S301 (YES in step S301), that is, when the water level detection is notified from the water level sensor 313, water is sufficiently stored in the water receiving tank 31. Since it is not necessary to open the valve 32, the valve control opening / closing determination unit 331 sets “0” to the valve opening flag (step S302), and enters a standby state until the next series of processing is started. The valve open flag is a flag for controlling the operation of the valve 32, and is set to a value of “0” or “1”, for example. The valve open flag is stored in the RAM of the valve control device 33, for example.
 ステップS301で現在の水位がバルブ閉判定水位未満である場合(ステップS301のNO)、すなわち、水位センサ313から水位検出が通知されない場合には、バルブ制御開閉判定部331は、受水槽31における現在の水位がバルブ開判定水位(水位314)未満であるか判定する(ステップS303)。ステップS303の判定は、バルブ開閉判定部331が、水位センサ312から水位検出を通知されるか否かによって判定される。 When the current water level is lower than the valve closing determination water level in step S301 (NO in step S301), that is, when the water level detection is not notified from the water level sensor 313, the valve control open / close determination unit 331 presents the current water level in the water receiving tank 31. It is determined whether the water level is less than the valve open determination water level (water level 314) (step S303). The determination in step S303 is determined based on whether or not the valve opening / closing determination unit 331 is notified of water level detection from the water level sensor 312.
 ステップS303で現在の水位がバルブ閉判定水位未満である場合(ステップS303のYES)、すなわち、水位センサ312からの水位検出が通知されない場合には、受水槽31に水が十分に貯留されておらずバルブ32を作動させるべき状況であるので、バルブ開閉判定部331は、バルブ開フラグに「1」を設定し(ステップS304)、次回の一連の処理が開始されるまで待機状態となる。 If the current water level is lower than the valve closing determination water level in step S303 (YES in step S303), that is, if water level detection from the water level sensor 312 is not notified, water is not sufficiently stored in the water receiving tank 31. Since the valve 32 should be operated, the valve opening / closing determination unit 331 sets “1” in the valve opening flag (step S304), and enters a standby state until the next series of processes is started.
 ステップS303で現在の水位がバルブ閉判定水位以上である場合(ステップS303のNO)、すなわち、水位センサ312から水位検出が通知された場合には、受水槽31には十分な水が貯留されている状況であるので、バルブ開閉判定部331は特段の処理を行わず、次回の一連の処理が開始されるまで待機状態となる。 When the current water level is equal to or higher than the valve closing determination water level in step S303 (NO in step S303), that is, when water level detection is notified from the water level sensor 312, sufficient water is stored in the water receiving tank 31. Therefore, the valve opening / closing determination unit 331 does not perform any special processing and is in a standby state until the next series of processing is started.
 そして、バルブ開閉実行部332は、バルブ開フラグを所定の周期ごとに参照し、バルブ開フラグの値が「1」の場合には、バルブ32の開動作を指示する信号をバルブ32に送信し、バルブ開フラグの値が「0」の場合には、バルブ32の閉動作を指示する信号をバルブ32に送信する。なお、ポンプ起動停止実行部142は、ポンプ起動停止判定部141がポンプ起動フラグの値を変更した場合に、即座にその変更後の値を受け取って上述の処理を行ってもよい。バルブ32(より具体的にはバルブ32に備えられた専用の制御部)は、開動作又は閉動作を指示する信号を受信すると、受信した信号に従ってバルブ32を開閉する。 Then, the valve opening / closing execution unit 332 refers to the valve opening flag every predetermined cycle, and when the value of the valve opening flag is “1”, transmits a signal instructing the opening operation of the valve 32 to the valve 32. When the value of the valve opening flag is “0”, a signal instructing the closing operation of the valve 32 is transmitted to the valve 32. Note that when the pump start / stop determination unit 141 changes the value of the pump start flag, the pump start / stop execution unit 142 may immediately receive the changed value and perform the above-described processing. When the valve 32 (more specifically, a dedicated control unit provided in the valve 32) receives a signal instructing an opening operation or a closing operation, the valve 32 opens and closes according to the received signal.
 上述のようなステップS301~S304の処理を定期的に繰り返して実行することによって、バルブ制御装置33は、受水槽31の水位に基づいてバルブ32の開閉を制御し、給水管161の通流を制御する。その結果、受水槽31内の水位が水位313と水位314との間で維持されるような給水制御が実現される。ここで、水位313及び水位314はほぼ同位に設定されるので、実際には、受水槽31の水位はほぼ一定に保たれることになる。また、受水槽31に貯留された水を高置水槽13に供給する制御は、給水制御装置14によって、第1の実施の形態による給水制御システム1と同様に行われる。 The valve control device 33 controls the opening and closing of the valve 32 based on the water level of the water receiving tank 31 by periodically repeating the processes of steps S301 to S304 as described above, and allows the water supply pipe 161 to flow. Control. As a result, water supply control is realized such that the water level in the water receiving tank 31 is maintained between the water level 313 and the water level 314. Here, since the water level 313 and the water level 314 are set to be approximately the same, the water level of the water receiving tank 31 is actually kept substantially constant. Moreover, the control which supplies the water stored in the water-receiving tank 31 to the high water tank 13 is performed by the water supply control apparatus 14 similarly to the water supply control system 1 by 1st Embodiment.
(3-3)本実施の形態による効果
 このような給水制御システム3によれば、受水槽31の水位がほぼ一定に保たれることから、受水槽31から高置水槽13への給水量に応じて、当該給水量分を即座に補う形で受水槽31には水道事業者から給水管161を通じて水が供給される。すなわち、水道事業者から供給される水量は高置水槽13への給水量に等しくなり、水道事業者から受水槽31への給水タイミングも、受水槽31から高置水槽13への給水タイミングとほぼ同じになる。そして、受水槽31から高置水槽13への給水制御は、第1の実施の形態による給水制御システム1と同様の制御が行われることから、給水ポンプ12による給水を電力需要が大きい時間帯から他の時間帯にシフトさせ、需要家への安定した水供給を実現しながらも平滑な電力消費を実現する。従って、給水制御システム3によれば、水道事業者からの給水流量を、電力需要が大きい時間帯からシフトできるので、水道事業者による配水に伴って発生する電力消費を電力需要が大きい時間帯からシフトさせることができ、水道事業者による電力消費のピークカットに寄与することができる。
(3-3) Effects of this Embodiment According to the water supply control system 3 as described above, the water level of the water receiving tank 31 is kept substantially constant, so that the amount of water supplied from the water receiving tank 31 to the elevated water tank 13 is reduced. Accordingly, water is supplied to the water receiving tank 31 from the water supply company through the water supply pipe 161 so as to immediately compensate the water supply amount. That is, the amount of water supplied from the water supplier is equal to the amount of water supplied to the elevated water tank 13, and the water supply timing from the water supplier to the water receiving tank 31 is almost the same as the water supply timing from the water receiving tank 31 to the elevated water tank 13. Be the same. And since the control similar to the water supply control system 1 by 1st Embodiment is performed for the water supply control from the water-receiving tank 31 to the elevated water tank 13, the water supply by the water supply pump 12 is carried out from the time zone when electric power demand is large. Shift to other time zones to achieve smooth water consumption while realizing stable water supply to consumers. Therefore, according to the water supply control system 3, since the water supply flow rate from a water supply company can be shifted from the time zone when the power demand is large, the power consumption generated by the water supply by the water supply company can be reduced from the time zone when the power demand is large. It can be shifted and can contribute to the peak cut of power consumption by water utilities.
 さらに、このような給水制御システム3によれば、電力需要が大きい時間帯から他の時間帯にシフトさせて給水ポンプ12による給水を行う給水計画が策定され、水道事業者から受水槽31に供給される水量は、策定された給水計画と同期することになる。従って、給水制御装置14が、このように策定された給水計画を水道事業者に通知するようにすれば、水道事業者は、給水計画に基づいて配水池から給水管161に供給する水量を事前に調整することができるようになるので、水道事業者による配水に伴う電力消費をさらに計画的に削減する効果が期待できる。 Furthermore, according to such a water supply control system 3, a water supply plan for supplying water by the water supply pump 12 by shifting from a time zone when power demand is large to another time zone is formulated and supplied to the water receiving tank 31 from the water company. The amount of water produced will be synchronized with the formulated water supply plan. Accordingly, if the water supply control device 14 notifies the water supply plan of the water supply plan formulated in this way, the water supply business operator determines in advance the amount of water supplied from the distribution reservoir to the water supply pipe 161 based on the water supply plan. Therefore, it is possible to expect the effect of systematically reducing the power consumption associated with the water distribution by the water utility.
 また、このような給水制御システム3によれば、受水槽31の水位をほぼ一定に保つことができるので、受水槽31から高置水槽13への給水を安定して実現できるという効果が期待できる。 Moreover, according to such a water supply control system 3, since the water level of the water receiving tank 31 can be kept substantially constant, the effect that water supply from the water receiving tank 31 to the elevated water tank 13 can be realized stably can be expected. .
(4)他の実施の形態
 なお、上述の第3の実施の形態による給水制御システム3では、受水槽31に貯留された水の制御について第1の実施の形態の給水制御システム1と同様の構成を有する場合について述べたが、本発明はこれに限らず、例えば第2の実施の形態の給水制御システム2と同様の構成を有するように構成されてもよい。このような場合には、固定速の給水ポンプ13を変速の給水ポンプ22とし、高置水槽13を高置水槽23とする等して構成を変更し、給水制御装置14の代わりに給水制御装置24によって高置水槽23への給水制御を行うようにすればよい。このような給水制御システムでは、受水槽から高置水槽への給水と水道事業者から受水槽への給水との双方で、電力消費のピークカットにより一層寄与する効果が期待できる。
(4) Other Embodiments In the water supply control system 3 according to the above-described third embodiment, the control of water stored in the water receiving tank 31 is the same as that of the water supply control system 1 of the first embodiment. Although the case where it has a structure was described, this invention is not restricted to this, For example, you may be comprised so that it may have the structure similar to the water supply control system 2 of 2nd Embodiment. In such a case, the configuration is changed such that the fixed-speed water supply pump 13 is a variable speed water supply pump 22 and the high water tank 13 is a high water tank 23, and the water supply control device is used instead of the water supply control device 14. The water supply control to the elevated water tank 23 may be performed by 24. In such a water supply control system, it can be expected that the water supply from the water receiving tank to the elevated water tank and the water supply from the water company to the water receiving tank will further contribute to the peak cut of power consumption.
 また、上述の第1~第3の実施の形態による給水制御システム1~3では、大口需要家の一例としてビル15の需要家に水を供給する場合について述べたが、本発明はこれに限らず、マンションや工場等、ビル以外の需要家に対して水を供給するようにされてもよい。 Further, in the water supply control systems 1 to 3 according to the first to third embodiments described above, the case where water is supplied to the consumers of the building 15 as an example of a large-volume consumer has been described, but the present invention is not limited to this. Instead, water may be supplied to consumers other than buildings such as condominiums and factories.
 また、上述の第1~第3の実施の形態による給水制御システム1~3では、高置水槽13,23がビル15の屋上に配置される場合について述べたが、本発明はこれに限らず、例えば重力エネルギーを利用して給水管164を経由してビル15の需要者に給水するような高置水槽の場合には、ビル15の需要者よりも高い位置に配置されればよい。またさらに、給水管164に水に加圧可能なポンプ等が設けられて、位置関係に関係なく高置水槽から需要者まで給水可能な構成である場合には、高置水槽13の配置場所は特に限定されず、ビル15の需要家に供給する水を所定量確保できる容量を有する水槽が需要家の施設に配置されればよい。 In the water supply control systems 1 to 3 according to the first to third embodiments described above, the case where the elevated water tanks 13 and 23 are arranged on the roof of the building 15 has been described, but the present invention is not limited to this. For example, in the case of a high water tank that uses gravity energy to supply water to the consumer of the building 15 via the water supply pipe 164, it may be arranged at a position higher than the consumer of the building 15. Furthermore, when the water supply pipe 164 is provided with a pump that can pressurize the water and is configured to supply water from the high water tank to the consumer regardless of the positional relationship, the arrangement place of the high water tank 13 is It does not specifically limit, The water tank which has a capacity | capacitance which can ensure the predetermined amount of water supplied to the consumer of the building 15 should just be arrange | positioned in a customer's facility.
 また、上述の第1~第3の実施の形態による給水制御システムでは、高置水槽13,23に給水される水を一時的に貯留するための受水槽13,23を備える場合について述べたが、本発明はこれに限らず、例えば、受水槽13,23を備えずに、水道事業者から供給される水を給水ポンプ12,22で増圧して直接高置水槽12,23に送水するように構成されてもよい。このような構成の場合には、受水槽を備えない給水形態を採用している給水制御システムに対しても、本発明を適用することが可能になる。 In the water supply control system according to the first to third embodiments described above, the case where the water receiving tanks 13 and 23 for temporarily storing the water supplied to the elevated water tanks 13 and 23 is described. The present invention is not limited to this. For example, the water supply tanks 13 and 23 are not provided, and the water supplied from the water service company is pressurized by the water supply pumps 12 and 22 and directly supplied to the elevated water tanks 12 and 23. May be configured. In the case of such a configuration, the present invention can be applied to a water supply control system that employs a water supply configuration that does not include a water receiving tank.
 また、上述の第1~第3の実施の形態による給水制御システム1~3において、高置水槽13,23は、給水管(給水管161~163)を介して水道事業者から供給される水を貯留する第1の水槽の一例であり、受水槽11,31は、水道事業者と第1の水槽(例えば高置水槽13)との間に給水管(給水管161,162)を介して接続するように設けられ、給水管(給水管161~163)を介して水道事業者から第1の水槽に供給される水を一時的に貯留する第2の水槽の一例であり、給水制御装置14,24は、給水ポンプの動作を制御する給水ポンプ制御部の一例である。また、1日の最大水需要Qmax及び1日の水需要予測量は、所定の期間における水需要の総量を示す第1の水需要予測量の一例であり、特に、1日の最大水需要Qmaxは、所定の期間に想定される最大の水需要の総量を示す第2の水需要予測量に相当し、水需要予測部241によって予測される1日の水需要予測量は、現在の月又は曜日で限定した所定の期間における第3の水需要予測量に相当する。また、水位センサ131は、第1の水位(水位133)を検出する第1の水位センサに、水位センサ132は、第1の水位よりも低位の第2の水位(水位134)を検出する第2の水位センサに、水位センサ231は、給水ポンプによる送水量の補正を行うか否かの判定基準となる第3の水位(水位232)を検出する第3の水位センサに、水位センサ311は、第4の水位(水位313)を検出する第4の水位センサに、水位センサ312は、第4の水位よりもわずかに低位な第5の水位(水位314)を検出する第5の水位センサに相当する。 Further, in the water supply control systems 1 to 3 according to the first to third embodiments described above, the elevated water tanks 13 and 23 are water supplied from a water company through water supply pipes (water supply pipes 161 to 163). The water receiving tanks 11 and 31 are provided via water supply pipes (water supply pipes 161 and 162) between the water utility and the first water tank (for example, the elevated water tank 13). It is an example of a second water tank that is provided so as to be connected and temporarily stores water supplied from the water utility to the first water tank via water supply pipes (water supply pipes 161 to 163). 14 and 24 are an example of a feed water pump control unit that controls the operation of the feed water pump. The daily maximum water demand Qmax and the daily water demand forecast amount are examples of a first water demand forecast amount indicating the total amount of water demand in a predetermined period, and in particular, the daily maximum water demand Qmax. Is equivalent to a second predicted water demand that indicates the total amount of maximum water demand assumed in a predetermined period, and the predicted daily water demand predicted by the water demand prediction unit 241 is the current month or This corresponds to the third predicted water demand in a predetermined period limited by the day of the week. The water level sensor 131 is a first water level sensor that detects a first water level (water level 133), and the water level sensor 132 is a second water level that is lower than the first water level (water level 134). The water level sensor 231 is a water level sensor 231, a water level sensor 231 is a third water level sensor that detects a third water level (water level 232) that is a criterion for determining whether or not to correct the amount of water supplied by the feed pump, and a water level sensor 311 is The water level sensor 312 is a fifth water level sensor that detects a fifth water level (water level 314) that is slightly lower than the fourth water level, as a fourth water level sensor that detects the fourth water level (water level 313). It corresponds to.
 1,2,3 給水制御システム
 11,31 受水槽
 12,22 給水ポンプ
 13,23 高置水槽
 14,24 給水制御装置
 21  PID制御装置
 32  バルブ
 33  バルブ制御装置
 140,241 水需要予測部
 141 ポンプ起動停止判定部
 142 ポンプ起動停止実行部
 221 回転数センサ
 222 流量センサ
 242 目標流量計算部
 243 目標回転数計算部
 131,132,231,311,312 水位センサ
 161~164 給水管
 
1, 2, 3 Water supply control system 11, 31 Water receiving tank 12, 22 Water supply pump 13, 23 High water tank 14, 24 Water supply control device 21 PID control device 32 Valve 33 Valve control device 140, 241 Water demand prediction unit 141 Pump activation Stop determination unit 142 Pump start / stop execution unit 221 Rotational speed sensor 222 Flow rate sensor 242 Target flow rate calculation unit 243 Target rotational speed calculation unit 131, 132, 231, 311, 312 Water level sensor 161-164 Water supply pipe

Claims (15)

  1.  給水管を介して水道事業者から供給される水を貯留する第1の水槽と、
     前記水道事業者から供給される水を前記第1の水槽に送る給水ポンプと、
     前記給水ポンプの動作を制御する給水ポンプ制御部と、
     を備え、
     前記給水ポンプ制御部は、過去の水需要を示すデータに基づいて所定の期間における水需要の総量を示す第1の水需要予測量を予測し、前記所定の期間に前記第1の水槽に送水される水量の総量が前記第1の水需要予測量に一致するように、かつ、電力需要の大きい時間帯における水需要の一部を電力需要の小さい時間帯に供給するように、前記給水ポンプの動作を制御し、
     前記給水ポンプは、前記給水ポンプ制御部の制御に従って動作して、前記第1の水需要予測量に相当する水量を前記所定の期間で前記第1の水槽に送水する
     ことを特徴とする給水制御システム。
    A first water tank for storing water supplied from a water utility through a water supply pipe;
    A water supply pump for sending water supplied from the water supplier to the first water tank;
    A feed water pump controller for controlling the operation of the feed water pump;
    With
    The water supply pump control unit predicts a first water demand prediction amount indicating a total amount of water demand in a predetermined period based on data indicating past water demand, and supplies water to the first water tank in the predetermined period. The feed water pump so that the total amount of water to be supplied matches the first predicted water demand, and a part of the water demand in a time zone with a large power demand is supplied in a time zone with a small power demand. Control the operation of
    The water supply pump operates according to the control of the water supply pump control unit, and supplies water corresponding to the first water demand prediction amount to the first water tank in the predetermined period. system.
  2.  前記給水ポンプは、固定の回転数で一定の水量を送水する機構を有し、
     前記給水ポンプ制御部は、所定の期間に想定される最大の水需要の総量を示す第2の水需要予測量を算出して前記第1の水需要予測量とする
     ことを特徴とする請求項1記載の給水制御システム。
    The water supply pump has a mechanism for supplying a constant amount of water at a fixed rotational speed,
    The said water supply pump control part calculates the 2nd water demand predicted amount which shows the total amount of the largest water demand assumed in a predetermined period, and makes it the said 1st water demand predicted amount. The water supply control system according to 1.
  3.  前記第1の水槽は、第1の水位を検出する第1の水位センサと、前記第1の水位よりも低位の第2の水位を検出する第2の水位センサとを有し、
     前記給水ポンプ制御部は、前記第1の水位センサからの水位検出を通知された場合に前記給水ポンプによる送水を停止するよう指示し、前記第2の水位センサからの水位検出を通知された場合に前記給水ポンプによる送水を開始するように指示する
     ことを特徴とする請求項1記載の給水制御システム。
    The first water tank has a first water level sensor that detects a first water level, and a second water level sensor that detects a second water level lower than the first water level,
    When the water supply pump control unit is instructed to stop water supply by the water supply pump when notified of water level detection from the first water level sensor, and when notified of water level detection from the second water level sensor The water supply control system according to claim 1, wherein an instruction is given to start water supply by the water supply pump.
  4.  前記給水ポンプは、回転数の変動によって送水量を変更可能な機構を有し、
     前記給水ポンプ制御部は、現在の月又は曜日で限定した所定の期間における第3の水需要予測量を算出して前記第1の水需要予測量とし、前記算出した第3の水需要予測量に基づいて、前記給水ポンプによって送水される単位時間ごとの目標流量を算出し、前記算出した単位時間ごとの目標流量に応じて前記給水ポンプの目標回転数を決定し、
     前記給水ポンプは、前記給水ポンプ制御部で決定された目標回転数に従って作動して、前記第1の水槽に送水する
     ことを特徴とする請求項1記載の給水制御システム。
    The water supply pump has a mechanism capable of changing the amount of water supplied by fluctuations in the number of rotations,
    The water supply pump control unit calculates a third water demand prediction amount for a predetermined period limited by the current month or day of the week, and sets the first water demand prediction amount as the first water demand prediction amount. Based on the above, the target flow rate per unit time sent by the feed water pump is calculated, the target rotation speed of the feed water pump is determined according to the calculated target flow rate per unit time,
    The water supply control system according to claim 1, wherein the water supply pump operates according to a target rotation speed determined by the water supply pump control unit and supplies water to the first water tank.
  5.  前記給水ポンプ制御部は、前記給水ポンプによる送水量が、電力需要の大きい時間帯よりも電力需要の小さい時間帯で多くなるように、前記単位時間ごとの目標流量を決定する
     ことを特徴とする請求項4記載の給水制御システム。
    The water supply pump control unit determines the target flow rate for each unit time so that the amount of water supplied by the water supply pump increases in a time zone in which the power demand is smaller than in a time zone in which the power demand is large. The water supply control system according to claim 4.
  6.  前記給水ポンプ制御部は、前記第3の水需要予測量、ユーザに設定される前記給水ポンプによる送水量の変動域、及び、ユーザに設定される前記給水ポンプによる送水量の切り替え時刻に基づいて、前記単位時間ごとの目標流量を算出する
     ことを特徴とする請求項4記載の給水制御システム。
    The water supply pump control unit is based on the third water demand prediction amount, a fluctuation range of the water supply amount by the water pump set by the user, and a water supply amount switching time by the water pump set by the user. The water supply control system according to claim 4, wherein a target flow rate for each unit time is calculated.
  7.  前記給水ポンプの実流量を検出する流量センサと、
     前記第1の水槽に設けられ、給水ポンプによる送水量の補正を行うか否かの判定基準となる第3の水位を検出する第3の水位センサと、
     をさらに備え、
     前記給水ポンプ制御部は、前記第3の水位センサからの水位検出が通知されない場合に、前記流量センサから通知される実流量を用いて前記目標回転数を補正し、補正後の目標回転数で前記補正ポンプを作動させる
     ことを特徴とする請求項4記載の給水制御システム。
    A flow rate sensor for detecting an actual flow rate of the water supply pump;
    A third water level sensor that is provided in the first water tank and detects a third water level serving as a criterion for determining whether or not to correct the amount of water supplied by the water supply pump;
    Further comprising
    When the water level detection from the third water level sensor is not notified, the water supply pump control unit corrects the target rotational speed using the actual flow rate notified from the flow rate sensor, and uses the corrected target rotational speed. The water supply control system according to claim 4, wherein the correction pump is operated.
  8.  前記水道事業者と前記第1の水槽との間に前記給水管を介して接続するように設けられ、前記給水管を介して前記水道事業者から前記第1の水槽に供給される水を一時的に貯留する第2の水槽と、
     前記第2の水槽と前記水道事業者との間の前記給水管に設けられ、前記水道事業者から前記第2の水槽に供給される水の水量を変更可能な機構を有するバルブと、
     前記第2の水槽に設けられ、第4の水位を検出する第4の水位センサ及び前記第4の水位よりもわずかに低位な第5の水位を検出する第5の水位センサと、
     前記第4の水位センサ及び前記第5の水位センサによる水位検出の通知に基づいて前記バルブの動作を制御するバルブ制御部と、
     をさらに備え、
     前記バルブ制御部は、前記第4の水位センサから水位検出を通知された場合に前記第2の水槽への水の供給を停止するように前記バルブの動作を制御し、前記第5の水位センサから水位検出を通知された場合に前記第2の水槽への水の供給を開始するように前記バルブの動作を制御する
     ことを特徴とする請求項1記載の給水制御システム。
    It is provided so that it may connect between the said water supply company and the said 1st water tank via the said water supply pipe, and the water supplied to the said 1st water tank from the said water supply company via the said water supply pipe is temporarily A second water tank to be stored automatically,
    A valve provided in the water supply pipe between the second water tank and the water company, and having a mechanism capable of changing the amount of water supplied from the water company to the second water tank;
    A fourth water level sensor provided in the second water tank for detecting a fourth water level, and a fifth water level sensor for detecting a fifth water level slightly lower than the fourth water level;
    A valve control unit for controlling the operation of the valve based on a notification of water level detection by the fourth water level sensor and the fifth water level sensor;
    Further comprising
    The valve control unit controls the operation of the valve so as to stop the supply of water to the second water tank when the water level detection is notified from the fourth water level sensor, and the fifth water level sensor 2. The water supply control system according to claim 1, wherein the operation of the valve is controlled so as to start the supply of water to the second water tank when a water level detection is notified from.
  9.  前記第1の水槽は、需要家の水需要に応じて、第3の給水管を介して該第1の水槽に貯留した水を前記需要家に供給し、
     前記第1の水槽は、前記第2の水槽及び前記需要家よりも高位に配置される
     ことを特徴とする請求項1記載の給水制御システム。
    The first water tank supplies water stored in the first water tank to the consumer via a third water supply pipe according to the water demand of the consumer,
    The water supply control system according to claim 1, wherein the first water tank is disposed higher than the second water tank and the customer.
  10.  水道事業者から供給される水を需要家に給水する給水制御システムによる給水制御方法において、
     前記給水制御システムは、
     給水管を介して前記水道事業者から供給される水を貯留する第1の水槽と、
     前記水道事業者から供給される水を前記第1の水槽に送る給水ポンプと、
     前記給水ポンプの動作を制御する給水ポンプ制御部と、を有し、
     前記給水ポンプ制御部が、過去の水需要を示すデータに基づいて所定の期間における水需要の総量を示す第1の水需要予測量を予測する水需要予測ステップと、
     前記給水ポンプ制御部が、前記所定の期間に前記第1の水槽に送水される水量の総量が前記水需要予測ステップで予測された第1の水需要予測量に一致するように、かつ、電力需要の大きい時間帯における水需要の一部を電力需要の小さい時間帯に供給するように、前記給水ポンプの動作を制御するポンプ制御ステップと、
     前記給水ポンプが、前記ポンプ制御ステップによる制御に従って作動して、前記第1の水需要予測量に相当する水量を前記所定の期間で前記第1の水槽に送水する送水ステップと、
     を備えることを特徴とする給水制御方法。
    In a water supply control method by a water supply control system that supplies water supplied from a water utility to consumers,
    The water supply control system includes:
    A first water tank for storing water supplied from the water utility through a water supply pipe;
    A water supply pump for sending water supplied from the water supplier to the first water tank;
    A feed water pump control unit for controlling the operation of the feed water pump,
    The water supply pump control unit predicts a first water demand prediction amount indicating a total amount of water demand in a predetermined period based on data indicating past water demand; and
    The water supply pump control unit is configured so that the total amount of water sent to the first water tank in the predetermined period matches the first water demand prediction amount predicted in the water demand prediction step, and A pump control step for controlling the operation of the water supply pump so as to supply a part of the water demand in a time zone of high demand to a time zone of low power demand;
    A water supply step in which the water supply pump is operated according to the control by the pump control step, and the amount of water corresponding to the first predicted water demand is supplied to the first water tank in the predetermined period;
    A water supply control method comprising:
  11.  前記給水ポンプは、固定の回転数で一定の水量を送水する機構を有し、
     前記水需要予測ステップで、前記給水ポンプ制御部が、所定の期間に想定される最大の水需要の総量を示す第2の水需要予測量を算出して前記第1の水需要予測量とする
     ことを特徴とする請求項10記載の給水制御方法。
    The water supply pump has a mechanism for supplying a constant amount of water at a fixed rotational speed,
    In the water demand prediction step, the water supply pump control unit calculates a second water demand prediction amount indicating the total amount of the maximum water demand assumed in a predetermined period and sets it as the first water demand prediction amount. The water supply control method according to claim 10.
  12.  前記給水制御システムは、前記第1の水槽に設けられ、第1の水位を検出する第1の水位センサと、前記第1の水位よりも低位の第2の水位を検出する第2の水位センサとをさらに有し、
     前記給水ポンプ制御部が、前記第1の水位センサからの水位検出を通知された場合に前記給水ポンプによる送水を停止するよう指示し、前記第2の水位センサからの水位検出を通知された場合に前記給水ポンプによる送水を開始するように指示するポンプ起動/停止ステップをさらに備える
     ことを特徴とする請求項10記載の給水制御方法。
    The water supply control system is provided in the first water tank and detects a first water level, and a second water level sensor detects a second water level lower than the first water level. And
    When the water supply pump control unit is instructed to stop water supply by the water supply pump when notified of water level detection from the first water level sensor, and is notified of water level detection from the second water level sensor The water supply control method according to claim 10, further comprising a pump start / stop step for instructing to start water supply by the water supply pump.
  13.  前記給水ポンプは、回転数の変動によって送水量を変更可能な機構を有し、
     前記水需要予測ステップで、前記給水ポンプ制御部が、現在の月又は曜日で限定した所定の期間における第3の水需要予測量を算出して前記第1の水需要予測量とし、
     前記ポンプ制御ステップで、前記給水ポンプ制御部が、前記算出した第3の水需要予測量に基づいて、前記給水ポンプによって送水される単位時間ごとの目標流量を算出し、前記算出した単位時間ごとの目標流量に応じて前記給水ポンプの目標回転数を決定し、
     前記送水ステップで、前記給水ポンプが、前記ポンプ制御ステップで決定された目標回転数に従って作動して、前記第1の水槽に送水する
     ことを特徴とする請求項10記載の給水制御方法。
    The water supply pump has a mechanism capable of changing the amount of water supplied by fluctuations in the number of rotations,
    In the water demand prediction step, the water supply pump control unit calculates a third water demand prediction amount in a predetermined period limited by the current month or day of the week, and sets it as the first water demand prediction amount,
    In the pump control step, the water supply pump control unit calculates a target flow rate for each unit time supplied by the water supply pump based on the calculated third water demand prediction amount, and for each calculated unit time. The target rotation speed of the feed water pump is determined according to the target flow rate of
    The water supply control method according to claim 10, wherein in the water supply step, the water supply pump operates according to the target rotational speed determined in the pump control step and supplies water to the first water tank.
  14.  前記給水制御システムは、前記給水ポンプの実流量を検出する流量センサと、前記第1の水槽に設けられ、給水ポンプによる送水量の補正を行うか否かの判定基準となる第3の水位を検出する第3の水位センサとをさらに有し、
     前記給水ポンプ制御部が、前記第3の水位センサからの水位検出が通知されない場合に、前記流量センサから通知される実流量を用いて前記目標回転数を補正し、補正後の目標回転数で前記補正ポンプを作動させる目標回転数補正ステップをさらに備える
     ことを特徴とする請求項13記載の給水制御方法。
    The water supply control system includes a flow rate sensor that detects an actual flow rate of the water supply pump, and a third water level that is provided in the first water tank and serves as a criterion for determining whether or not to correct the amount of water supplied by the water supply pump. A third water level sensor to detect,
    When the water supply pump control unit is not notified of the water level detection from the third water level sensor, the target rotation speed is corrected using the actual flow rate notified from the flow sensor, and the corrected target rotation speed is used. The water supply control method according to claim 13, further comprising a target rotational speed correction step of operating the correction pump.
  15.  前記給水制御システムは、
     前記水道事業者と前記第1の水槽との間に前記給水管を介して接続するように設けられ、前記給水管を介して前記水道事業者から前記第1の水槽に供給される水を一時的に貯留する第2の水槽と、
     前記第2の水槽と前記水道事業者との間の前記給水管に設けられ、前記水道事業者から前記第2の水槽に供給される水の水量を変更可能な機構を有するバルブと、
     前記第2の水槽に設けられ、第4の水位を検出する第4の水位センサ及び前記第4の水位よりもわずかに低位な第5の水位を検出する第5の水位センサと、
     前記第4の水位センサ及び前記第5の水位センサによる水位検出の通知に基づいて前記バルブの動作を制御するバルブ制御部と、をさらに有し、
     前記バルブ制御部が、前記第4の水位センサから水位検出を通知された場合に前記第2の水槽への水の供給を停止するように前記バルブの動作を制御し、前記第5の水位センサから水位検出を通知された場合に前記第2の水槽への水の供給を開始するように前記バルブの動作を制御するバルブ制御ステップをさらに備える
     ことを特徴とする請求項10記載の給水制御方法。
    The water supply control system includes:
    It is provided so that it may connect between the said water supply company and the said 1st water tank via the said water supply pipe, and the water supplied to the said 1st water tank from the said water supply company via the said water supply pipe is temporarily A second water tank to be stored automatically,
    A valve provided in the water supply pipe between the second water tank and the water company, and having a mechanism capable of changing the amount of water supplied from the water company to the second water tank;
    A fourth water level sensor provided in the second water tank for detecting a fourth water level, and a fifth water level sensor for detecting a fifth water level slightly lower than the fourth water level;
    A valve control unit for controlling the operation of the valve based on notification of water level detection by the fourth water level sensor and the fifth water level sensor,
    The valve control unit controls the operation of the valve so as to stop the supply of water to the second water tank when the water level detection is notified from the fourth water level sensor, and the fifth water level sensor The water supply control method according to claim 10, further comprising a valve control step of controlling the operation of the valve so as to start the supply of water to the second water tank when notified of detection of a water level from the water tank. .
PCT/JP2012/078236 2012-10-31 2012-10-31 Feed water control system and feed water control method WO2014068728A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014544143A JPWO2014068728A1 (en) 2012-10-31 2012-10-31 Water supply control system and water supply control method
PCT/JP2012/078236 WO2014068728A1 (en) 2012-10-31 2012-10-31 Feed water control system and feed water control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/078236 WO2014068728A1 (en) 2012-10-31 2012-10-31 Feed water control system and feed water control method

Publications (1)

Publication Number Publication Date
WO2014068728A1 true WO2014068728A1 (en) 2014-05-08

Family

ID=50626695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078236 WO2014068728A1 (en) 2012-10-31 2012-10-31 Feed water control system and feed water control method

Country Status (2)

Country Link
JP (1) JPWO2014068728A1 (en)
WO (1) WO2014068728A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021016748A (en) * 2019-07-24 2021-02-15 株式会社荏原製作所 Auxiliary pressurizing pump device and control panel
CN112906962A (en) * 2021-02-19 2021-06-04 中国商用飞机有限责任公司 Method and system for controlling the pre-water supply of civil aircraft
CN113628061A (en) * 2020-05-06 2021-11-09 重庆昕晟环保科技有限公司 Water supply method for variable-volume water tank based on actual residual water volume
CN114127372A (en) * 2020-05-28 2022-03-01 松下知识产权经营株式会社 Sanitary cleaning device
CN115387991A (en) * 2022-09-02 2022-11-25 南阳大阳节能技术有限公司 Water pump energy-saving control system and control method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58112108A (en) * 1981-12-26 1983-07-04 Toshiba Corp Operating method of water supply pump

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3800713B2 (en) * 1996-09-12 2006-07-26 株式会社明電舎 Water distribution facility control equipment
JP4029834B2 (en) * 2003-12-25 2008-01-09 ダイキン工業株式会社 Supply device
JP2006161791A (en) * 2004-12-10 2006-06-22 Ebara Corp Water level control device for plumbing tank
JP2009197701A (en) * 2008-02-22 2009-09-03 Dainippon Printing Co Ltd Facility operation monitor control device, program and recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58112108A (en) * 1981-12-26 1983-07-04 Toshiba Corp Operating method of water supply pump

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021016748A (en) * 2019-07-24 2021-02-15 株式会社荏原製作所 Auxiliary pressurizing pump device and control panel
JP7370754B2 (en) 2019-07-24 2023-10-30 株式会社荏原製作所 Auxiliary pressure pump device and control panel
CN113628061A (en) * 2020-05-06 2021-11-09 重庆昕晟环保科技有限公司 Water supply method for variable-volume water tank based on actual residual water volume
CN113628061B (en) * 2020-05-06 2023-06-30 重庆昕晟环保科技有限公司 Water supply method for volume-variable water tank based on actual reserve water volume
CN114127372A (en) * 2020-05-28 2022-03-01 松下知识产权经营株式会社 Sanitary cleaning device
CN114127372B (en) * 2020-05-28 2024-03-15 松下知识产权经营株式会社 Sanitary cleaning device
CN112906962A (en) * 2021-02-19 2021-06-04 中国商用飞机有限责任公司 Method and system for controlling the pre-water supply of civil aircraft
CN115387991A (en) * 2022-09-02 2022-11-25 南阳大阳节能技术有限公司 Water pump energy-saving control system and control method thereof

Also Published As

Publication number Publication date
JPWO2014068728A1 (en) 2016-09-08

Similar Documents

Publication Publication Date Title
WO2014068728A1 (en) Feed water control system and feed water control method
EP3382298B1 (en) Water heater control system
JP5927569B2 (en) Heat pump operating method and heat pump system
JP2010204833A (en) Energy management system and method
JP5957690B2 (en) Water heater
CN108649564B (en) Rapid frequency response standby optimization configuration method considering safety margin
CA2885102A1 (en) Improving generator efficiency with an ancillary services network
US11041476B2 (en) Hydroelectric power generation system
JP2015112014A (en) Power control unit, power control system, and power control method
JP6266303B2 (en) Power generation system using storage battery and renewable energy and its operation method
JP5254500B1 (en) Distributed power generation system and control method of distributed power generation system
US20060089752A1 (en) Method of and system for reducing utility costs associated with machine operation
JP5934041B2 (en) Power system, apparatus and method
JP5851259B2 (en) Water distribution operation control device
JP5948217B2 (en) Fuel cell operation control method and operation control system in an apartment house
US9870015B2 (en) Energy control device and energy control system equipped with the energy control device
JP2009133559A (en) Operation control device of storage water heater
US20190121308A1 (en) Method for ascertaining an optimum strategy
JP2014202032A (en) Water supply control system and water supply control method
JP4592221B2 (en) Pump unit control device
JP6684625B2 (en) Power supply system
JP2008096053A (en) Operation method of storage type hot water supply system and storage type hot water supply system
JP6513498B2 (en) Hot water supply system
US20230341150A1 (en) Reheat scheduling for water heaters
JP2010032212A (en) Control device for storage type water heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544143

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887450

Country of ref document: EP

Kind code of ref document: A1