WO2014068222A1 - Procédé de rechargement d'au moins un bras de carter intermédiaire d'une turbomachine - Google Patents

Procédé de rechargement d'au moins un bras de carter intermédiaire d'une turbomachine Download PDF

Info

Publication number
WO2014068222A1
WO2014068222A1 PCT/FR2013/052528 FR2013052528W WO2014068222A1 WO 2014068222 A1 WO2014068222 A1 WO 2014068222A1 FR 2013052528 W FR2013052528 W FR 2013052528W WO 2014068222 A1 WO2014068222 A1 WO 2014068222A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
electrode
during
reloading
leveled
Prior art date
Application number
PCT/FR2013/052528
Other languages
English (en)
Inventor
Damien Hebuterne
Jean-François CASTAGNE
Jérôme GUINOIS
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to GB1507621.9A priority Critical patent/GB2521580B/en
Priority to US14/440,427 priority patent/US20150251281A1/en
Publication of WO2014068222A1 publication Critical patent/WO2014068222A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/04Repairing fractures or cracked metal parts or products, e.g. castings
    • B23P6/045Repairing fractures or cracked metal parts or products, e.g. castings of turbine components, e.g. moving or stationary blades, rotors, etc.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0211Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track
    • B23K37/0235Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track the guide member forming part of a portal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/042Built-up welding on planar surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
    • B23K9/093Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits the frequency of the pulses produced being modulatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • B23P6/007Repairing turbine components, e.g. moving or stationary blades, rotors using only additive methods, e.g. build-up welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/80Repairing, retrofitting or upgrading methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment

Definitions

  • the present invention relates to a method of reloading at least one intermediate casing arm of a turbomachine, such as a turbojet or an airplane turboprop.
  • a turbomachine conventionally comprises, from upstream to downstream, a fan, a low-pressure compressor, an intermediate casing, a high-pressure compressor, a combustion chamber, a high-pressure turbine and a low-pressure turbine.
  • the air entering the turbomachine is divided into a primary flow that circulates inside the low and high pressure compressors, and a secondary flow that bypasses the compressor, the combustion chamber and the turbine.
  • the intermediate casing comprises an outer shell and an inner hub defining a portion of the vein in which the secondary flow flows.
  • the ferrule and the hub are connected by radial structural arms which are circumferentially spaced from each other on a regular basis. These arms have a high mechanical strength allowing, firstly, to transmit the forces between the ferrule and the hub and, secondly, to resist any projectiles likely to impact them.
  • the arms each have a shaped shape so as to fulfill a function of outgoing guide vane or OGV (Outlet Guide Vane), to straighten the secondary air flow to limit the gyration.
  • OGV Outlet Guide Vane
  • the defects due to machining generally appear at the radially outer ends of the arms, more particularly at the soles provided at these ends.
  • phenomena of shrinkage of material may cause dimensional non-conformities.
  • some soles may be leveled and then reloaded by deposition of material by TIG (Tungsten Inert Gas) welding process.
  • TIG Tungsten Inert Gas
  • the reloaded part is then machined so as to give it the geometry to be obtained while respecting the dimensional specifications of the arm.
  • the reloading operation is performed manually by an operator and lasts approximately 20 hours. It is generally necessary to make 9 to 10 successive layers of reloading in order to reach the desired thickness of material.
  • the TIG process is also relatively energetic and overall heating of the sole often causes unacceptable deformations.
  • the invention aims in particular to provide a simple, effective and economical solution to this problem.
  • a short-circuit transfer MIG welding process also called CMT (Cold Metal Transfer) process, in which a consumable electrode serves as filler metal
  • a synergy law comprising a priming cycle in which the intensity I of a current flowing through the electrode varies between a minimum value between 50 and 70 A and a maximum value between 130 and 140 A, followed by several pulse cycles in which the intensity I varies between a minimum value of between 70 and 100 A and a maximum value of between 280 and 320 A.
  • said arm is made of titanium alloy
  • the priming cycle comprises the following successive phases:
  • combustion phase during which the speed Vd is maintained at the threshold between 24 and 26 m / min, the intensity I being reduced to a threshold of between 90 and 1 10 A, sufficient to maintain the existence of an electric arc, and in which, at the end of this phase, the electrode touches again the flared end to recharge so as to generate a short circuit and extinguish the electric arc, if the electric arc has been maintained during the combustion phase,
  • the velocity Vd is brought to a stable value of between 2 and 7 m / min so that the electrode is consumed gradually and the intensity I varies cyclically between a minimum value of between 70 and 100 A and a maximum value of between 280 and 320 A.
  • the duration of the first withdrawal phase is between 0.5 and
  • the duration of the pulse phase and generation of an arc is between 1 and 3 ms, and / or
  • the duration of the combustion phase is between 0.5 and 4 ms, and / or
  • the duration of a pulse cycle is between 2 and 2.5 ms.
  • the electrode is displaced relative to the leveled end to be recharged at a constant speed, between 20 cm / min and 50 cm / min.
  • the number of pulse cycles is between 80 and 120.
  • the speed of advance of the electrode relative to the leveled end to be recharged is kept substantially constant and is between 10 and 120 cm / min.
  • Reloading using a CMT (Cold Metal Transfer) type process considerably reduces heating in the arm and therefore limits the lowering of the mechanical characteristics of the material and prevents deformations of the arm.
  • Such a reloading process makes it possible in particular to reduce the thermally affected zone or ZAT, which is the seat of metallurgical modifications of the base metal which can induce weaknesses, decreases in mechanical strength or ductility failures.
  • Such a method also makes it possible to reduce the number of successive recharging layers, so that the recharging time can be reduced significantly.
  • the implementation of the CMT process can be automated, using a numerically controlled machine.
  • the CMT process is notably known from the US document
  • the parameters of the CMT process are controlled so as to limit heating of the recharged zone.
  • the end of the arm can be equipped with at least one temperature sensor, such as a thermocouple.
  • thermocouple type sensor comprises at least one junction of two metals of different natures, subjected to different temperatures.
  • one of the metals is brought to the temperature of the end zone at which the thermocouple is mounted, the other metal being maintained at a reference temperature.
  • the thermocouple By Seebeck effect, the thermocouple generates a potential difference that depends on the temperature difference between the two metals.
  • Such a temperature sensor has the advantage of being used in a relatively large temperature range, and especially for high temperatures.
  • the temperature values thus measured are used to control the parameters of the CMT process, such as in particular the intensity of the current flowing through the electrode or the speed of advance of the electrode relative to the surface to be recharged, so as to to avoid a significant heating of the recharged area and degradation of the arm of the intermediate casing.
  • a bead of material is produced at least along the edges of the leveled surface of the end of the arm, and then the material on the rest of the leveled surface.
  • This characteristic makes it possible to better control the dimensions of the recharged zone.
  • the arm is mounted in an enclosure containing an inert gas.
  • the enclosure may comprise a removable plate comprising an opening for the passage of a welding tool, arranged opposite the end of the arm to be recharged.
  • the titanium alloy used for the arm may be TA6V, the filler metal used during the CMT welding being TA6V.
  • the method is performed automatically on a numerically controlled machine.
  • FIG. 1 is a schematic half-sectional view of an upstream part of a turbojet engine of the prior art
  • FIG. 2 is a perspective view of an end plate of an intermediate casing arm obtained after shaving of the soleplate and before reloading it in accordance with the method according to the invention
  • FIG. 3 is a view illustrating the mounting of the arm in a numerically controlled machine for the step of reloading the end of the arm
  • FIGS. 4 and 5 are views illustrating the mounting of the arm in an enclosure containing an inert gas
  • FIG. 6 represents the different steps implemented during the CMT welding process
  • FIG. 7 is a set of diagrams illustrating the different steps of the CMT welding process.
  • FIGS 8 and 9 are two views corresponding to Figure 2, illustrating an exemplary reloading strategy according to the invention.
  • FIG. 1 represents a turbomachine of the prior art comprising, from upstream to downstream, a fan 1, a separation nozzle 2, a low-pressure compressor 3, an intermediate casing 4, a high-pressure compressor 5, a combustion chamber combustion, a high pressure turbine and a low pressure turbine (not visible).
  • the flow of air F entering the turbomachine is divided into a primary flow F1 which circulates inside the compressors low and high pressure 3, 5, and a secondary flow F2 which bypasses the compressors 3, 5, the chamber of combustion and turbines.
  • the intermediate casing 4 comprises an outer shell 6 and an inner hub 7 delimiting a portion of the vein 8 in which flows the secondary flow F2.
  • the ferrule 6 and the hub 7 are connected by radial structural arms 9 which are circumferentially spaced apart from one another on a regular basis. These arms 9 have a high mechanical strength allowing, firstly, to transmit the forces between the shell 6 and the hub 7 and, secondly, to resist any projectiles likely to impact them.
  • the arms 9 each have a profiled shape so as to fulfill a function of outgoing guide vane or OGV (Outlet Guide Vane), aimed at straightening the secondary air flow F2 to limit the gyration .
  • OGV Outlet Guide Vane
  • the invention proposes a method consisting of sharpening the soles 1 1 of the arms 9 not compliant (defects in the sole 1 1, non-conforming dimensions, ...), to reload the sole 1 1 leveled by adding of filler metal using a short-circuit transfer MIG welding process, also called CMT (Cold Metal Transfer) process, and then machining the refilled portion of the arm 9 so as to give it the geometry to get.
  • a short-circuit transfer MIG welding process also called CMT (Cold Metal Transfer) process
  • the shaving step is not necessarily necessary. Reloading the flange 1 1 leveled allows to recreate a healthy sole, free of defects, and / or compensate for shrinkage phenomena by adding an additional thickness of material.
  • the arm 9 is mounted in a box 13 for confining an inert gas, such as ARCAL 32 comprising 80% argon and 20% helium ( Figures 4 and 5).
  • an inert gas such as ARCAL 32 comprising 80% argon and 20% helium
  • the box 13 has a side wall 13a surrounding the arm 9, closed by a removable plate 14 having a central opening 15 (Figure 5) for the passage of a head 16 carrying a consumable electrode 17 ( Figures 3 and 6) serving as metal contributed.
  • the electrode 17 is for example made of TA6V.
  • the lateral wall 13a comprises ball bearings 18 on which the plate 14 is positioned. These bearings 18 thus make it possible to facilitate the displacement of the plate 14.
  • the edges of the plate 14 comprise flanges 19 facing downwards intended to guide the sliding of the removable plate 14 relative to the side wall 13a.
  • the removable wall 14 is also equipped with a connection 20 for an inert gas supply line (FIG. 5).
  • the casing 13 and the arm 9 are fixedly mounted on a support plate 21 of a numerically controlled machine 22, comprising the head 16, the electrode 17 and control means 23 for the movement and operation thereof.
  • the numerically controlled machine 22 also has an interface 24 allowing in particular the adjustment of the parameters of the CMT process by an operator.
  • the consumable electrode 17 (for example in the form of a wire) is cyclically movable relative to the head 16.
  • an electric arc 25 is first generated between the electrode 17 and the surface 26 of the part to be recharged 1 1 (phase (a)), with the aid of a pulsed current source, so as to cause the local melting of a zone of the part 1 1.
  • the electrode 17 is directed towards the surface 26 of the part 1 1 until immersing the end of the electrode 17 in the melt.
  • the electric arc 25 is off and the welding current is reduced (phase (b)).
  • the electrode 17 is then moved away from the part 1 1, the recoil movement of the electrode 17 during the short-circuit phase facilitating the detachment of a drop 27 of filler metal.
  • the short-circuit current is maintained at a low value.
  • the movement of the electrode 17 is reversed, so as to start a new cycle.
  • the electrode 17 is moved relative to the surface 26 of the part to be recharged 1 1, in such a way the drops 27 of successive filler metal form a bead of filler material after cooling.
  • FIG. 7 This figure comprises several diagrams representing the evolution of the displacement velocity Vd of the electrode (also called the velocity wire feed), the intensity I of the current flowing through the electrode and the potential difference U applied between the electrode and the part to be recharged, as a function of time t.
  • This law comprises a priming cycle 28, followed by several pulse cycles 29.
  • the priming cycle 28 comprises the following successive phases:
  • a first phase 30 for withdrawing the electrode 17 and for generating a short circuit the electrode 17 is remote from the surface to be recharged 26 at a maximum speed Vd of between -1 and -3 m / min, the negative value indicating a distance from the electrode 17 and the surface to be recharged 26, as opposed to a positive value which indicates an approximation of the electrode 17 and said surface 26.
  • the intensity I is kept at a reduced threshold , between 50 and 70 A and the voltage U is substantially zero since the electrode 17 touches the surface 26 of the part 1 1 (short circuit).
  • This phase 30 has a duration of between 0.5 and 4 ms.
  • phase 31 of pulse and generation of an arc the withdrawal movement of the electrode 17 ends then the electrode 17 is brought closer to the surface 26 to be recharged, until the speed Vd reaches a maximum threshold between 24 and 26 m / min.
  • intensity I increases to a threshold between 130 and 140 A, with the effect of generating an electric arc 25.
  • This phase has a duration of between 1 and 3 ms.
  • combustion phase the speed Vd is maintained at the threshold between 24 and 26 m / min, the intensity I being reduced to a threshold of between 90 and 1 10 A, sufficient to maintain the existence of a
  • the electrode 17 again touches the surface 26 of the part 1 1 to be recharged so as to generate a short circuit and extinguish the electric arc 25 (if the electric arc has was maintained during the combustion phase).
  • This phase has a duration of between 0.5 and 4 ms.
  • the electrode 17 is remote from the surface to be recharged 26 at a maximum speed Vd of between -1 and -3 m / s, intensity I is maintained at a reduced threshold, between 50 and 70 A and the voltage U is substantially zero since the electrode 17 touches the surface 26 of the part 1 1 (short circuit).
  • the electrode 17 is displaced relative to the surface to be recharged 26 at a constant speed, between 20 cm / min and 50 cm / min.
  • the priming cycle 28 detailed above is followed by several pulse cycles 29 during which the speed Vd is brought to a stable value of between 2 and 7 m / min (the electrode 17 is consumed gradually) and the I intensity varies cyclically between a minimum value between 70 and 100 A and a maximum value between 280 and 320 A.
  • the duration of a cycle 29 is between 2 and 2.5 ms (a frequency between 400 and 500 Hz) and the number of pulse cycles 29 is for example between 80 and 120.
  • the speed of advance of the head 16 (and therefore also of the electrode 17) with respect to the surface 26 of the part 1 1 is preferably kept substantially constant and is between 10 and 120 cm / min.
  • Figures 8 and 9 illustrate a reloading strategy according to an exemplary embodiment of the invention.
  • This strategy consists in producing a bead of material 34 along the edges of the surface to be refilled 26 of the sole 1 1 and, possibly, along the edges of the openings 35 of the sole 1 1 (FIG. 8), then to be deposited later. of the material 36 on the remainder of the leveled surface 26, making successive and adjacent cords (Figure 9).
  • the cords of material thus obtained may have a width of between 5 and 10 mm and a thickness of between 3 and 5 mm.
  • the reloading time of a sole 1 1 is of the order of 3 hours, that is to say much less than the reloading time required in the prior art (about 20 hours ).
  • the trajectories of the head 16 are adapted so as to obtain a slight overlap of the cords in order to avoid a lack of material and / or the appearance of porosities between the cords.
  • the parameters used make it possible to avoid or limit the projections of material, to reduce as much as possible the zones affected thermally (ZAT), to avoid the phenomena of burns or sinkholes at the beginning and at the end of the cord, and to avoid geometric deformations of the sole 1 1 (minimization of thermal stresses within the material).
  • ZAT zones affected thermally
  • pause times between the different passes and / or the different layers of material 36, between 60 and 600 seconds allow sufficient cooling of the cords and / or filler metal layers to avoid the appearance of geometric deformations of the sole 1 1.
  • thermocouples In order to further control the quality of the recharging performed, temperature sensors 37 in the form of thermocouples are set locally in the most critical areas (ie in the hottest areas), which are the lobes 12 of the sole 1 1.
  • thermocouples 37 are mounted under the sole 1 1 at these lobes 12, as can be seen in FIGS. 4, 5, 8 and 9.
  • thermocouples 37 return information on the temperatures of the zones concerned of the sole 1 1, this information then being used to adapt the various parameters of the CMT process accordingly.
  • a heating of the temperature detected in a zone 12 will require, for example, a reduction in the intensity of the current flowing through the electrode 17, a longer pause time between two passes, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Arc Welding In General (AREA)

Abstract

L'invention concerne un procédé de rechargement d'au moins un bras (9) de carter intermédiaire (4) d'une turbomachine, telle qu'un turboréacteur ou un turbopropulseur d'avion, comportant les étapes consistant à: -araser au moins une extrémité (11) du bras (9) à recharger, -recharger l'extrémité arasée (11) du bras (9) par ajout de métal d'apport (34) à l'aide d'un procédé de soudage MIG à transfert par court- circuit, également appelé procédé CMT (Cold Metal Transfer), -usiner la partie rechargée (11) du bras (9) de façon à lui conférer la géométrie à obtenir.

Description

Procédé de rechargement d'au moins un bras de carter intermédiaire d'une turbomachine
La présente invention concerne un procédé de rechargement d'au moins un bras de carter intermédiaire d'une turbomachine, telle qu'un turboréacteur ou un turbopropulseur d'avion.
Une turbomachine comporte classiquement, d'amont en aval, une soufflante, un compresseur basse-pression, un carter intermédiaire, un compresseur haute pression, une chambre de combustion, une turbine haute pression et une turbine basse pression. L'air entrant dans la turbomachine se divise en un flux primaire qui circule à l'intérieur des compresseurs basse et haute pression, et en un flux secondaire qui contourne le compresseur, la chambre de combustion et la turbine.
Le carter intermédiaire comporte une virole externe et un moyeu interne délimitant une partie de la veine dans laquelle s'écoule le flux secondaire. La virole et le moyeu sont reliés par des bras structuraux radiaux qui sont espacés circonférentiellement les uns des autres, de façon régulière. Ces bras présentent une résistance mécanique élevée permettant, d'une part, de transmettre les efforts entre la virole et le moyeu et, d'autre part, de résister à d'éventuels projectiles susceptibles de les impacter.
De plus, les bras présentent chacun une forme profilée de manière à remplir une fonction d'aubage directeur de sortie ou d'OGV (Outlet Guide Vane), visant à redresser le flux d'air secondaire afin d'en limiter la giration.
Lors de la réalisation du carter intermédiaire, il peut arriver que des défauts soient générés sur les bras lors d'un usinage, notamment lors d'un endommagement de l'outil de coupe servant à l'usinage.
Les défauts dus à un usinage apparaissent généralement au niveau des extrémités radialement externes des bras, plus particulièrement au niveau de semelles ménagées à ces extrémités. En outre, lors du soudage des bras sur le carter, des phénomènes de rétraction de matière peuvent engendrer des non- conformités dimensionnelles.
Afin de remédier à de tels défauts, certaines semelles peuvent être arasées puis rechargées par dépôt de matière par procédé de soudage TIG (Tungsten Inert Gas). La partie rechargée est ensuite usinée de façon à lui conférer la géométrie à obtenir tout en respectant les spécifications dimensionnelles du bras.
L'opération de rechargement est réalisée manuellement par un opérateur et dure environ 20 heures. Il est généralement nécessaire de réaliser 9 à 10 couches de rechargement successives afin d'atteindre l'épaisseur de matière désirée. Le procédé TIG est par ailleurs relativement énergétique et échauffement global de la semelle provoque fréquemment des déformations rédhibitoires.
L'invention a notamment pour but d'apporter une solution simple, efficace et économique à ce problème.
A cet effet, elle propose un procédé de rechargement d'au moins un bras de carter intermédiaire d'une turbomachine, telle qu'un turboréacteur ou un turbopropulseur d'avion, caractérisé en ce qu'il comporte les étapes consistant à :
- araser au moins une extrémité du bras à recharger,
- recharger l'extrémité arasée du bras par ajout de métal d'apport à l'aide d'un procédé de soudage MIG à transfert par court-circuit, également appelé procédé CMT (Cold Métal Transfer), lors duquel une électrode consommable sert de métal d'apport,
- usiner la partie rechargée du bras de façon à lui conférer la géométrie à obtenir,
et en ce que, lors du rechargement à l'aide du procédé CMT, on utilise une loi de synergie comportant un cycle d'amorçage lors duquel l'intensité I d'un courant circulant au travers de l'électrode varie entre une valeur minimale comprise entre 50 et 70 A et une valeur maximale comprise entre 130 et 140 A, suivi de plusieurs cycles d'impulsions lors desquels l'intensité I varie entre une valeur minimale comprise entre 70 et 100 A et une valeur maximale comprise entre 280 et 320 A.
Avantageusement, ledit bras est réalisé en alliage de titane, et le cycle d'amorçage comporte les phases successives suivantes :
- une première phase de retrait d'une électrode et de génération d'un court-circuit, lors de laquelle l'électrode est éloignée de l'extrémité arasée à recharger à une vitesse Vd maximale comprise entre -1 et -3 m/min, la valeur négative indiquant un éloignement de l'électrode et de l'extrémité arasée à recharger, l'intensité I étant maintenue à un seuil réduit, compris entre 50 et 70 A et la tension U étant sensiblement nulle,
- une phase d'impulsion et de génération d'un arc lors de laquelle le mouvement de retrait de l'électrode se termine puis l'électrode est rapprochée de l'extrémité arasée à recharger, jusqu'à ce que la vitesse Vd atteigne un seuil maximal compris entre 24 et 26 m/min, et lors de laquelle l'intensité I augmente jusqu'à un seuil compris entre 130 et 140 A, avec pour effet de générer un arc électrique,
- une phase dite de combustion lors de laquelle la vitesse Vd est maintenue au seuil compris entre 24 et 26 m/min, l'intensité I étant réduite à un seuil compris entre 90 et 1 10 A, suffisant pour maintenir l'existence d'un arc électrique, et lors de laquelle, à la fin de cette phase, l'électrode touche à nouveau l'extrémité arasée à recharger de manière à générer un court-circuit et éteindre l'arc électrique, si l'arc électrique a été maintenu durant la phase de combustion,
- une seconde phase de retrait de l'électrode et de génération d'un court-circuit lors de laquelle l'électrode est éloignée de l'extrémité arasée à recharger à une vitesse maximale Vd comprise entre -1 et -3 m/s, l'intensité I étant maintenue à un seuil réduit, compris entre 50 et 70 A et la tension U étant sensiblement nulle,
et, lors des cycles d'impulsions, la vitesse Vd est amenée à une valeur stable comprise entre 2 et 7 m/min de sorte que l'électrode soit consommée progressivement et l'intensité I varie de façon cyclique entre une valeur minimale, comprise entre 70 et 100 A et une valeur maximale, comprise entre 280 et 320 A.
De plus, selon une autre caractéristique de l'invention :
- la durée de la première phase de retrait est comprise entre 0,5 et
4 ms, et/ou
- la durée de la phase d'impulsion et de génération d'un arc est comprise entre 1 et 3 ms, et/ou
- la durée de la phase de combustion est comprise entre 0,5 et 4 ms, et/ou
- la durée d'un cycle d'impulsions est comprise entre entre 2 et 2,5 ms.
Avantageusement, lors du cycle d'amorçage, l'électrode est déplacée par rapport à l'extrémité arasée à recharger à vitesse constante, comprise entre 20 cm/min et 50 cm/min.
Préférentiellement, le nombre de cycles d'impulsions est compris entre 80 et 120.
Selon une autre caractéristique de l'invention, lors des cycles d'impulsions, la vitesse d'avance de l'électrode par rapport à l'extrémité arasée à recharger est maintenue sensiblement constante et est comprise entre 10 et 120 cm/min.
A l'issue du rechargement de l'extrémité arasée du bras, on peut également effectuer un traitement thermique local dudit bras.
Le rechargement à l'aide d'un procédé de type CMT (Cold Métal Transfer) permet de réduire considérablement les échauffements dans le bras et donc de limiter l'abaissement des caractéristiques mécaniques du matériau et d'éviter les déformations du bras.
Un tel procédé de rechargement permet en particulier de réduire la zone affectée thermiquement ou ZAT, qui est la siège de modifications métallurgiques du métal de base qui peuvent induire des fragilités, des baisses de résistance mécanique ou encore des manques de ductilité. Un tel procédé permet également de réduire le nombre de couches de rechargement successives, de sorte que le temps de rechargement peut être réduit de façon significative. Enfin, la mise en œuvre du procédé CMT peut être automatisée, à l'aide d'une machine à commande numérique.
De plus, un tel procédé est parfaitement adapté aux alliages de titane, en particulier aux alliages de type TA6V, et à la géométrie de la semelle à recharger et du bras dont l'extrémité libre supporte ladite semelle, car il utilise une loi adaptée développée en ce sens, dans le cadre de l'invention.
Le procédé CMT est notamment connu du document US
8 124 913.
Avantageusement, lors de l'étape de rechargement de l'extrémité arasée du bras, on contrôle les paramètres du procédé CMT de façon à limiter échauffement de la zone rechargée. Pour cela, l'extrémité du bras peut être équipée d'au moins un capteur de température, tels qu'un thermocouple.
On rappelle qu'un capteur de type thermocouple comporte au moins une jonction de deux métaux de natures différentes, soumis à des températures différentes. Dans le cas de l'invention, l'un des métaux est porté à la température de la zone d'extrémité au niveau de laquelle est monté le thermocouple, l'autre métal étant maintenu à une température de référence. Par effet Seebeck, le thermocouple génère une différence de potentiel qui dépend de la différence de température entre les deux métaux. Un tel capteur de température a l'avantage de pouvoir être utilisé dans une plage de températures relativement importante, et notamment pour des températures élevées.
Les valeurs de température ainsi mesurées sont utilisées afin de contrôler les paramètres du procédé CMT, tels notamment que l'intensité du courant parcourant l'électrode ou encore la vitesse d'avance de l'électrode par rapport à la surface à recharger, de manière à éviter un échauffement important de la zone rechargée et la dégradation du bras du carter intermédiaire.
Selon une forme de réalisation de l'invention, lors de l'étape de rechargement, on réalise tout d'abord un cordon de matière au moins le long des bords de la surface arasée de l'extrémité du bras, puis on dépose ensuite de la matière sur le reste de la surface arasée.
Cette caractéristique permet notamment de mieux maîtriser les dimensions de la zone rechargée.
De préférence, lors de l'étape de rechargement, le bras est monté dans une enceinte contenant un gaz inerte.
L'enceinte peut comporter une plaque amovible comprenant une ouverture pour le passage d'un outil de soudage, disposée en regard de l'extrémité du bras à recharger.
En outre, l'alliage de titane utilisé pour le bras peut être du TA6V, le métal d'apport utilisé lors du soudage CMT étant du TA6V.
De préférence, le procédé est exécuté de façon automatique sur une machine à commande numérique.
L'invention sera mieux comprise et d'autres détails, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante faite à titre d'exemple non limitatif en référence aux dessins annexés dans lesquels :
- la figure 1 est une demi-vue schématique en coupe d'une partie amont d'un turboréacteur de l'art antérieur,
- la figure 2 est une vue en perspective d'une semelle d'extrémité d'un bras de carter intermédiaire, obtenue après arasage de la semelle et avant rechargement de celle-ci conformément au procédé selon l'invention,
- la figure 3 est une vue illustrant le montage du bras dans une machine à commande numérique en vue de l'étape de rechargement de l'extrémité du bras,
- les figures 4 et 5 sont des vues illustrant le montage du bras dans une enceinte contenant un gaz inerte, - la figure 6 représente les différentes étapes mises en œuvre lors du procédé de soudage CMT,
- la figure 7 est un ensemble de diagrammes illustrant les différentes étapes du procédé de soudage CMT.
- les figures 8 et 9 sont deux vues correspondant à la figure 2, illustrant un exemple de stratégie de rechargement selon l'invention.
La figure 1 représente une turbomachine de l'art antérieur comportant, d'amont en aval, une soufflante 1 , un bec de séparation 2, un compresseur basse-pression 3, un carter intermédiaire 4, un compresseur haute pression 5, une chambre de combustion, une turbine haute pression et une turbine basse pression (non visibles). Le flux d'air F entrant dans la turbomachine se divise en un flux primaire F1 qui circule à l'intérieur des compresseurs basse et haute pression 3, 5, et en un flux secondaire F2 qui contourne les compresseurs 3, 5, la chambre de combustion et les turbines.
Le carter intermédiaire 4 comporte une virole externe 6 et un moyeu interne 7 délimitant une partie de la veine 8 dans laquelle s'écoule le flux secondaire F2. La virole 6 et le moyeu 7 sont reliés par des bras structuraux radiaux 9 qui sont espacés circonférentiellement les uns des autres, de façon régulière. Ces bras 9 présentent une résistance mécanique élevée permettant, d'une part, de transmettre les efforts entre la virole 6 et le moyeu 7 et, d'autre part, de résister à d'éventuels projectiles susceptibles de les impacter.
De plus, les bras 9 ont chacun une forme profilée de manière à remplir une fonction d'aubage directeur de sortie ou d'OGV (Outlet Guide Vane), visant à redresser le flux d'air secondaire F2 afin d'en limiter la giration.
Comme indiqué précédemment, lors de la réalisation du carter intermédiaire 4, il peut arriver que des défauts soient générés sur les bras 9 lors d'un usinage (par exemple lors d'un endommagement de l'outil de coupe servant à l'usinage). Les défauts dus à un usinage apparaissent généralement au niveau des extrémités radialement externes 10 des bras 9, plus particulièrement au niveau de semelles 1 1 formant ces extrémités 10. Comme cela est mieux visible à la figure 2, une telle semelle 1 1 comporte plusieurs lobes 12 au niveau de son bord périphérique.
En outre, lors du soudage des bras 9 sur le moyeu 7, des phénomènes de rétraction de matière peuvent engendrer des non- conformités dimensionnelles.
Afin de remédier à cela, l'invention propose un procédé consistant à araser les semelles 1 1 des bras 9 non conformes (défauts dans la semelle 1 1 , dimensions non conformes, ...), à recharger la semelle 1 1 arasée par ajout de métal d'apport à l'aide d'un procédé de soudage MIG à transfert par court-circuit, également appelé procédé CMT (Cold Métal Transfer), puis à usiner la partie rechargée du bras 9 de façon à lui conférer la géométrie à obtenir.
On notera que l'étape d'arasage n'est pas forcément nécessaire. Le rechargement de la semelle 1 1 arasée permet de recréer une semelle saine, exempte de défauts, et/ou de compenser les phénomènes de rétraction par ajout d'une épaisseur de matière supplémentaire.
Le principe du procédé CMT est connu notamment du document
US 8 124 913 et les paramètres de ce procédé ont, selon l'invention, été adaptés afin de pouvoir recharger efficacement ce type de semelle 1 1 .
Afin d'effectuer l'étape de rechargement de la semelle 1 1 , le bras 9 est monté dans un caisson 13 servant à confiner un gaz inerte, tel que de l'ARCAL 32 comportant 80% d'argon et 20% d'hélium (figures 4 et 5).
Le caisson 13 comporte une paroi latérale 13a entourant le bras 9, refermée par une plaque amovible 14 comportant une ouverture centrale 15 (figure 5) servant au passage d'une tête 16 portant une électrode consommable 17 (figures 3 et 6) servant de métal d'apport. L'électrode 17 est par exemple réalisée en TA6V. La paroi latérale 13a comporte des paliers à billes 18 sur lesquels est positionnée la plaque 14. Ces paliers 18 permettent ainsi de faciliter le déplacement de la plaque 14. Les bords de la plaque 14 comportent des rebords 19 tournés vers le bas et destinés à guider le coulissement de la plaque amovible 14 par rapport à la paroi latérale 13a. La paroi amovible 14 est également équipée d'un raccord 20 pour une conduite d'arrivée du gaz inerte (figure 5).
Le caisson 13 et le bras 9 sont montés fixement sur une plaque support 21 d'une machine à commande numérique 22, comportant la tête 16, l'électrode 17 et des moyens de commande 23 du déplacement et du fonctionnement de celle-ci. La machine à commande numérique 22 comporte également une interface 24 permettant notamment le réglage des paramètres du procédé CMT par un opérateur.
Le principe du procédé CMT va maintenant être décrit en référence aux figures 6 et 7.
Dans ce procédé, l'électrode consommable 17 (se présentant par exemple sous la forme d'un fil) est mobile de façon cyclique par rapport à la tête 16. Lors d'un cycle, un arc électrique 25 est tout d'abord généré entre l'électrode 17 et la surface 26 de la pièce à recharger 1 1 (phase (a)), à l'aide d'une source de courant puisé, de façon à provoquer la fusion locale d'une zone de la pièce 1 1 . Pendant cette phase, l'électrode 17 est dirigée vers la surface 26 de la pièce 1 1 jusqu'à immerger l'extrémité de l'électrode 17 dans le bain en fusion. A cet instant, l'arc électrique 25 est éteint et le courant de soudage est réduit (phase (b)). L'électrode 17 est ensuite éloignée de la pièce 1 1 , 1e mouvement de recul de l'électrode 17 pendant la phase de court-circuit facilitant le détachement d'une goutte 27 de métal d'apport. Durant cette phase référencée (c) à la figure 6, le courant de court-circuit est maintenu à une faible valeur. Ensuite, lors d'une phase référencée (d) à la figure 6, le mouvement de l'électrode 17 est inversé, de façon à pouvoir débuter un nouveau cycle. Parallèlement, l'électrode 17 est déplacée par rapport à la surface 26 de la pièce à recharger 1 1 , de manière à ce que les gouttes 27 de métal d'apport successives forment un cordon de matière d'apport après refroidissement.
Un tel procédé fonctionne à l'aide d'une loi de synergie qui pilote l'apport d'énergie. Une telle loi est représentée à l'aide d'un diagramme à la figure 7.
Aucune loi de l'art antérieur n'est parfaitement adaptée aux alliages de titane, en particulier aux alliages de type TA6V, et à la géométrie de la semelle à recharger. Une loi a donc été développée en ce sens, dans le cadre de l'invention, et est représentée schématiquement à la figure 7. Cette figure comporte plusieurs diagrammes représentant l'évolution de la vitesse de déplacement Vd de l'électrode (également appelée vitesse de dévidage du fil), de l'intensité I du courant circulant au travers de l'électrode et de la différence de potentiel U appliquée entre l'électrode et la pièce à recharger, en fonction du temps t.
Cette loi comporte un cycle d'amorçage 28, suivi de plusieurs cycles d'impulsion 29.
Le cycle d'amorçage 28 comporte les phases successives suivantes :
- une première phase 30 de retrait de l'électrode 17 et de génération d'un court-circuit : l'électrode 17 est éloignée de la surface à recharger 26 à une vitesse Vd maximale comprise entre -1 et -3 m/min, la valeur négative indiquant un éloignement de l'électrode 17 et de la surface à recharger 26, par opposition à une valeur positive qui indique un rapprochement de l'électrode 17 et de ladite surface 26. L'intensité I est maintenue à un seuil réduit, compris entre 50 et 70 A et la tension U est sensiblement nulle puisque l'électrode 17 touche la surface 26 de la pièce 1 1 (court-circuit). Cette phase 30 a une durée comprise entre 0.5 et 4 ms.
- une phase 31 d'impulsion et de génération d'un arc : le mouvement de retrait de l'électrode 17 se termine puis l'électrode 17 est rapprochée de la surface 26 à recharger, jusqu'à ce que la vitesse Vd atteigne un seuil maximal compris entre 24 et 26 m/min. Parallèlement, l'intensité I augmente jusqu'à un seuil compris entre 130 et 140 A, avec pour effet de générer un arc électrique 25. Cette phase a une durée comprise entre 1 et 3 ms.
- une phase 32 dite de combustion : la vitesse Vd est maintenue au seuil compris entre 24 et 26 m/min, l'intensité I étant réduite à un seuil compris entre 90 et 1 10 A, suffisant pour maintenir l'existence d'un arc électrique 25. A la fin de cette phase, l'électrode 17 touche à nouveau la surface 26 de la pièce 1 1 à recharger de manière à générer un court-circuit et éteindre l'arc électrique 25 (si l'arc électrique a été maintenu durant la phase de combustion). Cette phase a une durée comprise entre 0.5 et 4 ms.
- une seconde phase 33 de retrait de l'électrode et de génération d'un court-circuit : l'électrode 17 est éloignée de la surface à recharger 26 à une vitesse maximale Vd comprise entre -1 et -3 m/s, l'intensité I est maintenue à un seuil réduit, compris entre 50 et 70 A et la tension U est sensiblement nulle puisque l'électrode 17 touche la surface 26 de la pièce 1 1 (court-circuit).
Lors du cycle d'amorçage, l'électrode 17 est déplacée par rapport à la surface à recharger 26 à vitesse constante, comprise entre 20 cm/min et 50 cm/min.
Le cycle d'amorçage 28 détaillé ci-dessus, est suivi de plusieurs cycles d'impulsions 29 lors desquels la vitesse Vd est amenée à une valeur stable comprise entre 2 et 7 m/min (l'électrode 17 est consommée progressivement) et l'intensité I varie de façon cyclique entre une valeur minimale, comprise entre 70 et 100 A et une valeur maximale, comprise entre 280 et 320 A. La durée d'un cycle 29 est comprise entre 2 et 2,5 ms (soit une fréquence d'impulsions comprise entre 400 et 500 Hz) et le nombre de cycles d'impulsions 29 est par exemple compris entre 80 et 120. Lors de cette période, la vitesse d'avance de la tête 16 (et donc également de l'électrode 17) par rapport à la surface 26 de la pièce 1 1 est de préférence maintenue sensiblement constante et est comprise entre 10 et 120 cm/min.
A l'issue du rechargement, il est possible d'effectuer un traitement thermique local de la pièce.
Les figures 8 et 9 illustrent une stratégie de rechargement conformément à un exemple de réalisation de l'invention. Cette stratégie consiste à réaliser un cordon de matière 34 le long des bords de la surface à recharger 26 de la semelle 1 1 et, éventuellement, le long des bords des ouvertures 35 de la semelle 1 1 (figure 8), puis à déposer ensuite de la matière 36 sur le reste de la surface arasée 26, en réalisant des cordons successifs et adjacents (figure 9). Les cordons de matière ainsi obtenus peuvent avoir une largeur comprise entre 5 et 10 mm, et une épaisseur comprise entre 3 et 5 mm.
Bien qu'une seule couche de matière 36 soit généralement suffisante pour les applications visées, plusieurs couches de matières peuvent être déposées successivement, en fonction de l'épaisseur de matière nécessaire pour effectuer le rechargement souhaité.
Grâce au procédé selon l'invention, le temps de rechargement d'une semelle 1 1 est de l'ordre de 3 heures, c'est-à-dire bien inférieur au temps de rechargement nécessaire dans l'art antérieur (environ 20 heures).
Les trajectoires de la tête 16 sont adaptées de façon à obtenir un léger recouvrement des cordons afin d'éviter un manque de matière et/ou l'apparition de porosités entre les cordons.
Durant ces différentes phases, les paramètres utilisés permettent d'éviter ou de limiter les projections de matière, de réduire au maximum les zones affectées thermiquement (ZAT), d'éviter les phénomènes de brûlures ou de retassures en début et en fin de cordon, et d'éviter des déformations géométriques de la semelle 1 1 (minimisation des contraintes thermiques au sein du matériau). En particulier, des temps de pause entre les différentes passes et/ou les différentes couches de matière 36, compris entre 60 et 600 secondes, permettent un refroidissement suffisant des cordons et/ou des couches de métal d'apport pour éviter l'apparition de déformations géométriques de la semelle 1 1 .
Afin de mieux contrôler encore la qualité du rechargement réalisé, des capteurs de température 37 se présentant sous la forme de thermocouples sont fixés localement dans les zones les plus critiques, (c'est-à-dire dans les zones les plus chaudes), que sont les lobes 12 de la semelle 1 1 .
Les thermocouples 37 sont montés sous la semelle 1 1 , au niveau de ces lobes 12, comme cela visible aux figures 4, 5, 8 et 9.
Comme indiqué précédemment, ces thermocouples 37 renvoient des informations sur les températures des zones concernées de la semelle 1 1 , ces informations étant ensuite utilisées pour adapter en conséquence les différents paramètres du procédé CMT.
Un échauffement de la température détecté dans une zone 12 nécessitera par exemple une réduction de l'intensité du courant traversant l'électrode 17, un temps de pause plus long entre deux passes, etc ..

Claims

REVENDICATIONS
1 . Procédé de rechargement d'au moins un bras (9) de carter intermédiaire (4) d'une turbomachine, telle qu'un turboréacteur ou un turbopropulseur d'avion, caractérisé en ce qu'il comporte les étapes consistant à :
- araser au moins une extrémité (1 1 ) du bras (9) à recharger,
- recharger l'extrémité arasée (1 1 ) du bras (9) par ajout de métal d'apport (34, 36) à l'aide d'un procédé de soudage MIG à transfert par court-circuit, également appelé procédé CMT (Cold Métal Transfer), lors duquel une électrode consommable (17) sert de métal d'apport,
- usiner la partie rechargée (1 1 , 36) du bras (9) de façon à lui conférer la géométrie à obtenir,
et en ce que, lors du rechargement à l'aide du procédé CMT, on utilise une loi de synergie comportant un cycle d'amorçage (28) lors duquel l'intensité I d'un courant circulant au travers de l'électrode varie entre une valeur minimale comprise entre 50 et 70 A et une valeur maximale comprise entre 130 et 140 A, suivi de plusieurs cycles d'impulsions (29) lors desquels l'intensité I varie entre une valeur minimale comprise entre 70 et 100 A et une valeur maximale comprise entre 280 et 320 A.
2. Procédé de rechargement selon la revendication 1 , caractérisé en ce que ledit bras (9) est réalisé en alliage de titane,
et en ce que le cycle d'amorçage (28) comporte les phases successives suivantes :
- une première phase (30) de retrait d'une électrode (17) et de génération d'un court-circuit, lors de laquelle l'électrode (17) est éloignée de l'extrémité arasée (1 1 ) à recharger à une vitesse Vd maximale comprise entre -1 et -3 m/min, la valeur négative indiquant un éloignement de l'électrode (17) et de l'extrémité arasée (1 1 ) à recharger, l'intensité I étant maintenue à un seuil réduit, compris entre 50 et 70 A et la tension U étant sensiblement nulle, - une phase (31 ) d'impulsion et de génération d'un arc lors de laquelle le mouvement de retrait de l'électrode (17) se termine puis l'électrode (17) est rapprochée de l'extrémité arasée (1 1 ) à recharger, jusqu'à ce que la vitesse Vd atteigne un seuil maximal compris entre 24 et 26 m/min, et lors de laquelle l'intensité I augmente jusqu'à un seuil compris entre 130 et 140 A, avec pour effet de générer un arc électrique (25),
- une phase (32) dite de combustion lors de laquelle la vitesse Vd est maintenue au seuil compris entre 24 et 26 m/min, l'intensité I étant réduite à un seuil compris entre 90 et 1 10 A, suffisant pour maintenir l'existence d'un arc électrique (25), et lors de laquelle, à la fin de cette phase, l'électrode (17) touche à nouveau l'extrémité arasée (1 1 ) à recharger de manière à générer un court-circuit et éteindre l'arc électrique (25), si l'arc électrique a été maintenu durant la phase de combustion,
- une seconde phase (33) de retrait de l'électrode et de génération d'un court-circuit lors de laquelle l'électrode (17) est éloignée de l'extrémité arasée (1 1 ) à recharger à une vitesse maximale Vd comprise entre -1 et -3 m/s, l'intensité I étant maintenue à un seuil réduit, compris entre 50 et 70 A et la tension U étant sensiblement nulle,
et en ce que, lors des cycles d'impulsions (29), la vitesse Vd est amenée à une valeur stable comprise entre 2 et 7 m/min de sorte que l'électrode (17) soit consommée progressivement et l'intensité I varie de façon cyclique entre une valeur minimale, comprise entre 70 et 100 A et une valeur maximale, comprise entre 280 et 320 A.
3. Procédé de rechargement selon la revendication 2, caractérisé en ce que :
- la durée de la première phase (30) de retrait est comprise entre 0,5 et 4 ms, et/ou
- la durée de la phase (31 ) d'impulsion et de génération d'un arc est comprise entre 1 et 3 ms, et/ou
- la durée de la phase (32) de combustion est comprise entre 0,5 et 4 ms, et/ou - la durée d'un cycle d'impulsions (29) est comprise entre entre 2 et 2,5 ms.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que, lors du cycle d'amorçage, l'électrode (17) est déplacée par rapport à l'extrémité arasée (1 1 ) à recharger à vitesse constante, comprise entre 20 cm/min et 50 cm/min.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le nombre de cycles d'impulsions (29) est compris entre 80 et 120.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que lors des cycles d'impulsions (29), la vitesse d'avance de l'électrode
(17) par rapport à l'extrémité arasée (1 1 ) à recharger est maintenue sensiblement constante et est comprise entre 10 et 120 cm/min.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que, à l'issue du rechargement de l'extrémité arasée (1 1 ) du bras (9), on effectue un traitement thermique local dudit bras (9).
8. Procédé de rechargement selon la revendication 1 , caractérisé en ce que, lors de l'étape de rechargement de l'extrémité arasée (1 1 , 26) du bras (9), on contrôle les paramètres du procédé CMT de façon à limiter échauffement de la zone rechargée (1 1 ).
9. Procédé selon la revendication 8, caractérisée en ce que l'extrémité (12) du bras (1 1 ) est équipée d'au moins un capteur de température, tel qu'un thermocouple (37).
10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que, lors de l'étape de rechargement, on réalise tout d'abord un cordon de matière (34) au moins le long des bords de la surface arasée (26) de l'extrémité (1 1 ) du bras (9), puis on dépose ensuite de la matière (36) sur le reste de la surface arasée (26).
1 1 . Procédé selon l'une des revendications 1 à 10, caractérisée en ce que, lors de l'étape de rechargement, le bras (9) est monté dans une enceinte (13) contenant un gaz inerte.
12. Procédé selon la revendication 1 1 , caractérisé en ce que l'enceinte (13) comporte une plaque amovible (14) comprenant une ouverture (15) pour le passage d'un outil de soudage (16, 17), disposée en regard de l'extrémité (1 1 ) du bras (9) à recharger
13. Procédé selon l'une des revendications 1 à 12, caractérisé en ce que l'alliage de titane utilisé pour le bras (9) est du TA6V, le métal d'apport utilisé lors du soudage CMT étant TA6V.
14. Procédé selon l'une des revendications 1 à 13, caractérisé en ce qu'il est exécuté de façon automatique sur une machine à commande numérique (22).
PCT/FR2013/052528 2012-11-05 2013-10-22 Procédé de rechargement d'au moins un bras de carter intermédiaire d'une turbomachine WO2014068222A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1507621.9A GB2521580B (en) 2012-11-05 2013-10-22 Method for resurfacing at least one arm of an intermediate casing of a turbomachine
US14/440,427 US20150251281A1 (en) 2012-11-05 2013-10-22 Method for resurfacing at least one arm of an intermediate casing of a turbomachine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1260489 2012-11-05
FR1260489A FR2997646B1 (fr) 2012-11-05 2012-11-05 Procede de rechargement d'au moins un bras de carter intermediaire d'une turbomachine

Publications (1)

Publication Number Publication Date
WO2014068222A1 true WO2014068222A1 (fr) 2014-05-08

Family

ID=47666298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/052528 WO2014068222A1 (fr) 2012-11-05 2013-10-22 Procédé de rechargement d'au moins un bras de carter intermédiaire d'une turbomachine

Country Status (4)

Country Link
US (1) US20150251281A1 (fr)
FR (1) FR2997646B1 (fr)
GB (1) GB2521580B (fr)
WO (1) WO2014068222A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104476096A (zh) * 2014-10-27 2015-04-01 沈阳黎明航空发动机(集团)有限责任公司 一种中介机匣的吊环修复方法
FR3051840A1 (fr) * 2016-05-31 2017-12-01 Snecma Carter intermediaire de turbomachine, equipee d'une piece d'etancheite a interface bras/virole
CN109590668A (zh) * 2019-01-07 2019-04-09 浙江翰德圣智能再制造技术有限公司 一种汽轮机缸体密封面修复工艺

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2961555A4 (fr) * 2013-02-28 2016-10-12 United Technologies Corp Système et procédé de soudage à chaleur faible
US10213878B2 (en) * 2015-01-23 2019-02-26 GM Global Technology Operations LLC Arc welding/brazing process for low-heat input copper joining
BE1024605B1 (fr) * 2016-09-27 2018-04-26 Safran Aero Boosters S.A. Carter avec bras aspirant pour turbomachine axiale
CN106312461B (zh) * 2016-10-11 2019-04-26 中国兵器科学研究院宁波分院 大型复杂铝合金结构件的制备方法
US10892671B2 (en) * 2017-07-25 2021-01-12 GM Global Technology Operations LLC Electrically conductive copper components and joining processes therefor
CN109807438A (zh) * 2017-11-21 2019-05-28 上海梅山钢铁股份有限公司 一种用于热水器搪瓷钢内胆环缝焊接的方法
JP7198557B2 (ja) * 2019-03-20 2023-01-04 株式会社ダイヘン アーク溶接方法
CN110340495B (zh) * 2019-08-01 2021-07-13 中国航发成都发动机有限公司 一种用于薄壁机匣焊接热处理的一体化工装夹具及其装配方法
CN110919135B (zh) * 2019-12-03 2021-07-13 哈尔滨电机厂有限责任公司 一种曲面轴瓦表面巴氏合金复合焊接制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0496181A1 (fr) * 1991-01-21 1992-07-29 Gebrüder Sulzer Aktiengesellschaft Méthode de fabrication de pièces métalliques par un appareil de soudage, et appareil pour la mise en oeuvre
US20060065651A1 (en) * 2004-09-29 2006-03-30 General Electric Company Portable plenum laser forming
EP2113330A1 (fr) * 2008-05-02 2009-11-04 United Technologies Corporation Structures de support interne réparées pour carters de moteur à turbine à gaz et leur procédé de réparation
EP2116691A2 (fr) * 2008-05-05 2009-11-11 United Technologies Corporation Procédé de réparation d'un composant d'une turbine à gaz
WO2009144301A1 (fr) * 2008-05-30 2009-12-03 Snecma Construction d'une partie d'une piece metallique par le procede mig avec courant et fil pulses
FR2959434A1 (fr) * 2010-04-30 2011-11-04 Snecma Procede de reparation d'un carter de retention de turbomachine
US8124913B2 (en) * 2003-10-23 2012-02-28 Fronius International Gmbh Method for controlling and/or adjusting a welding process and welding device for carrying out a welding process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6326585B1 (en) * 1998-07-14 2001-12-04 General Electric Company Apparatus for laser twist weld of compressor blisks airfoils
FR2882533B1 (fr) * 2005-02-25 2007-07-06 Snecma Moteurs Sa Procede de reparation de disque aubage monobloc, eprouvette de debut et de fin campagne
AT501995B1 (de) * 2005-05-24 2009-07-15 Fronius Int Gmbh Kalt-metall-transfer-schweissverfahren sowie schweissanlage
US9050677B2 (en) * 2009-08-28 2015-06-09 Panasonic Intellectual Property Management Co., Ltd. Arc welding method and arc welding apparatus
US20130326877A1 (en) * 2012-06-08 2013-12-12 United Technologies Corporation Method of working an airfoil using elevated temperature cmt welding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0496181A1 (fr) * 1991-01-21 1992-07-29 Gebrüder Sulzer Aktiengesellschaft Méthode de fabrication de pièces métalliques par un appareil de soudage, et appareil pour la mise en oeuvre
US8124913B2 (en) * 2003-10-23 2012-02-28 Fronius International Gmbh Method for controlling and/or adjusting a welding process and welding device for carrying out a welding process
US20060065651A1 (en) * 2004-09-29 2006-03-30 General Electric Company Portable plenum laser forming
EP2113330A1 (fr) * 2008-05-02 2009-11-04 United Technologies Corporation Structures de support interne réparées pour carters de moteur à turbine à gaz et leur procédé de réparation
EP2116691A2 (fr) * 2008-05-05 2009-11-11 United Technologies Corporation Procédé de réparation d'un composant d'une turbine à gaz
WO2009144301A1 (fr) * 2008-05-30 2009-12-03 Snecma Construction d'une partie d'une piece metallique par le procede mig avec courant et fil pulses
FR2959434A1 (fr) * 2010-04-30 2011-11-04 Snecma Procede de reparation d'un carter de retention de turbomachine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104476096A (zh) * 2014-10-27 2015-04-01 沈阳黎明航空发动机(集团)有限责任公司 一种中介机匣的吊环修复方法
CN104476096B (zh) * 2014-10-27 2016-08-24 沈阳黎明航空发动机(集团)有限责任公司 一种中介机匣的吊环修复方法
FR3051840A1 (fr) * 2016-05-31 2017-12-01 Snecma Carter intermediaire de turbomachine, equipee d'une piece d'etancheite a interface bras/virole
WO2017207890A1 (fr) * 2016-05-31 2017-12-07 Safran Aircraft Engines Carter intermédiaire de turbomachine, équipée d'une pièce d'étanchéité à l'interface bras/virole
CN109219688A (zh) * 2016-05-31 2019-01-15 赛峰航空器发动机 在臂/护罩界面处设有密封部件的涡轮发动机的中间壳体
US10801369B2 (en) 2016-05-31 2020-10-13 Safran Aircraft Engines Intermediate casing of a turbine engine, provided with a sealing part at the arm/shroud interface
CN109219688B (zh) * 2016-05-31 2021-09-10 赛峰航空器发动机 在臂/护罩界面处设有密封部件的涡轮发动机的中间壳体
CN109590668A (zh) * 2019-01-07 2019-04-09 浙江翰德圣智能再制造技术有限公司 一种汽轮机缸体密封面修复工艺

Also Published As

Publication number Publication date
GB201507621D0 (en) 2015-06-17
FR2997646B1 (fr) 2015-03-27
US20150251281A1 (en) 2015-09-10
GB2521580B (en) 2018-09-19
FR2997646A1 (fr) 2014-05-09
GB2521580A (en) 2015-06-24

Similar Documents

Publication Publication Date Title
WO2014068222A1 (fr) Procédé de rechargement d'au moins un bras de carter intermédiaire d'une turbomachine
CA2567888C (fr) Procede de realisation d'une lechette de labyrinthe d'etancheite, piece thermomecanique et turbomachine comprenant une telle lechette
EP1695789B1 (fr) Procédé de réparation de disque aubagé monobloc, éprouvette de début et de fin campagne
EP1785214B1 (fr) Procédé de réalisation d' un rebord situé à l' extrémité libre d' une aube, aube obtenue par ce procédé et turbomachine équipée de cette aube
EP1686239B1 (fr) Procédé de réparation d'une surface de frottement d'une aube à calage variable de turbomachine
CA2567881C (fr) Piece thermomecanique de turbomachine de revolution autour d'un axe longitudinal, comprenant une lechette annulaire, et son procede de fabrication
CA2850163C (fr) Procede de soudage et de rechargement de pieces metalliques en aluminium par un procede mig avec courant et fil d'apport pulses
EP3313597B1 (fr) Procede de fabrication d'une aube comportant une baignoire integrant un muret
FR2962357A1 (fr) Procede de reparation ou de rechargement d'au moins une piece metallique
FR2978070A1 (fr) Procede de reparation d'une piece de turbomachine
EP1961513A1 (fr) Procédé de rechargement d'une pièce en alliage d'aluminium
FR2897550A1 (fr) Procede pour reparer une piece metallique au moyen d'un outil de rechargement
EP3969213A1 (fr) Procédé de fabrication additive pour une pièce métallique
FR2906172A1 (fr) Procede de retouche locale par brasage induction
FR2923741A1 (fr) Procede de reparation d'une piece thermomecanique par un faisceau de haute energie
FR3037972A1 (fr) Procede simplifiant le noyau utilise pour la fabrication d'une aube de turbomachine
FR3046739A1 (fr) Procede de rechargement ou de fabrication d'une piece metallique
EP0241621B1 (fr) Procédé et dispositif pour la fabrication d'une chaîne métallique de bijouterie
FR3054462A1 (fr) Procede d'atomisation de gouttes metalliques en vue de l'obtention d'une poudre metallique
EP3152343B1 (fr) Procede de maintenance d'element de carter de boitier d'accessoires de turbomachine
WO2020128334A1 (fr) Dispositif de fabrication
FR2984783A1 (fr) Dispositif de rechargement d'une piece en alliage metallique
FR3013360A1 (fr) Procede integre de frittage pour microfissuration et tenue a l'erosion des barrieres thermiques
FR3067559A1 (fr) Procede de coupage plasma et torche pour la mise en oeuvre de ce procede
FR2962675A1 (fr) Dispositif et procede associe de reparation d'une piece metallique comportant au moins un defaut

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13795825

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14440427

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1507621

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20131022

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1507621.9

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 13795825

Country of ref document: EP

Kind code of ref document: A1