WO2014067782A1 - Plaque bipolaire pour pile a combustible - Google Patents

Plaque bipolaire pour pile a combustible Download PDF

Info

Publication number
WO2014067782A1
WO2014067782A1 PCT/EP2013/071628 EP2013071628W WO2014067782A1 WO 2014067782 A1 WO2014067782 A1 WO 2014067782A1 EP 2013071628 W EP2013071628 W EP 2013071628W WO 2014067782 A1 WO2014067782 A1 WO 2014067782A1
Authority
WO
WIPO (PCT)
Prior art keywords
bipolar plate
notch
plate
bipolar
fuel cell
Prior art date
Application number
PCT/EP2013/071628
Other languages
English (en)
Inventor
David Olsommer
Original Assignee
Compagnie Generale Des Etablissements Michelin
Michelin Recherche Et Technique S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale Des Etablissements Michelin, Michelin Recherche Et Technique S.A. filed Critical Compagnie Generale Des Etablissements Michelin
Priority to CN201380056352.2A priority Critical patent/CN104813527B/zh
Priority to US14/438,369 priority patent/US9966613B2/en
Priority to EP13776832.1A priority patent/EP2915207A1/fr
Publication of WO2014067782A1 publication Critical patent/WO2014067782A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to the field of fuel cells, and in particular that of the bipolar plates used to form the stack of a fuel cell.
  • a fuel cell is composed of a stack of electrochemical cells comprising an anode and a cathode separated by an ion exchange membrane, the electrodes themselves being arranged between two bipolar plates.
  • Fuel cells are currently the subject of numerous studies as part of efforts to limit environmental pollution, in particular transport. Among the most studied currently probably include electrolytic generators with hydrogen fuel, using as the oxidizer air or pure oxygen.
  • a fuel cell comprises a stack of base cells, each comprising an anode, a cathode and an ion exchange membrane, acting as an electrolyte.
  • base cells each comprising an anode, a cathode and an ion exchange membrane, acting as an electrolyte.
  • bipolar plates which have several functions, including:
  • bipolar plate is generally made of two thin plates, secured by a means such as welding or gluing. Moreover, the bipolar plates, by their different functions, must be electrically conductive, while remaining insensitive in terms of corrosion, oxidizer and fuel.
  • a channel is provided on the entire face of the bipolar plates in contact with the membrane.
  • Each channel has an inlet through which the fuel or fuel enters, and an outlet through which the neutral gases, the water generated by the electrochemical reaction, and the residual moisture of the hydrogen are discharged.
  • the present invention aims to provide bipolar plates having arrangements for improving the cooling of fuel cells.
  • the present invention aims to provide bipolar plates having facilities for enhancing the supply of fuel and / or oxidant.
  • the invention relates to a bipolar plate constituting the first polar plate of a first base element of a fuel cell and the second polar plate of a second base element adjacent to the first base element of the same fuel cell, comprising two parallel plates, each plate having at least one fuel or oxidant distribution channel formed in the thickness of the polar plate, and the bipolar plate being characterized in that the distribution channels are formed of so that during stacking of the first and second base elements of the fuel cell, a circulation channel is formed between the two pole plates, and in that this distribution channel communicates with a supply port cooling fluid.
  • the distribution of the channels on one side of the bipolar plate is identical to the distribution of the channels on the second plate of the bipolar face, with the exception of an area in which the channels have an offset. .
  • the zone in which the channels have an offset is the area in which, during the assembly of the bipolar plate, the horizontal channels would coincide in the absence of the offset.
  • the offset has a value of 1 ⁇ 2 step up.
  • the offset of the channels is performed on the anode face of the bipolar plate.
  • the channel elements having an offset have attachment points.
  • Another aspect of the invention relates to a bipolar plate constituting the first polar plate of a first base element of a fuel cell and the second polar plate of a second base element adjacent to the first base element. of the same fuel cell, comprising two parallel plates, each plate having at least one fuel or oxidant distribution channel formed in the thickness of the polar plate, the bipolar plate further comprising a manifold for supplying fuel and / or oxidant, this manifold communicating with the interior of the bipolar plate through orifices.
  • the bipolar plate being characterized in that it comprises a notch in one of the parallel plates, so as to allow a gas in the manifold to join the distribution channel via the orifices and the notch.
  • the bipolar plate comprises a first sealing element, located on the outer face of the bipolar plate in which the notch is formed, between the collector and the notch, parallel to the notch.
  • the first sealing member is a seal made of a polymeric material.
  • the bipolar plate comprises, between the notch and the supply channels, a second sealing member for sealing between the gas inlet ports and a coolant present between the two parallel plates.
  • the second sealing member is made by a means included in the group comprising: a solder, a solder, a bonding.
  • the notch and / or the first sealing member, and / or the second sealing member extend over the entire length of the collector.
  • FIG. 1 shows a first face of a bipolar plate according to the invention
  • FIG. 2 shows a partial view, in a section CC, of the bipolar plate shown in FIG. 1:
  • FIG. 3 shows a second face of a bipolar plate according to the invention
  • FIGS. 4 and 5 show two sections, respectively along A-A and B-B, of the bipolar plate shown in FIG.
  • a bipolar plate comprises a central skeleton 1 consisting of two thin plates, parallel, secured by a method such as gluing or soldering. One side of this plate is intended to be leaned against an anode, in a fuel cell, and the other face is intended to be leaning against a cathode.
  • the term “face of the bipolar plate”, corresponds to the outer face of one of the thin plates
  • the “sides of the "bipolar plate” are the four sides of the rectangle forming the bipolar plate
  • the term “horizontal” will designate an element parallel to the short sides of the bipolar plate
  • the term “vertical” will designate an element parallel to the long sides of the bipolar plate
  • the term “top of the bipolar plate” refers to the edge of the plate through which the gases and coolant enter
  • the term “bottom of the bipolar plate” refers to the edge of the plate through which are evacuated the neutral gases and the coolant.
  • anodic bipolar face designates the face of the bipolar plate intended to be in contact with an anode during assembly of the fuel cell
  • cathodic bipolar face designates the face of the bipolar plate intended to to be in contact with a cathode during assembly of the fuel cell.
  • the thin plates are pierced with several holes at their periphery, to form fuel collectors 2, oxidant 3, and coolant 4.
  • the plates also have a set of channels 5, formed in their thickness, so to allow the circulation, on the surface, of fuel or oxidizer.
  • the thin plates have orifices 6 making it possible to communicate a collector with a gas circulation channel.
  • the present invention has a bipolar plate showing different channel patterns on each of the two faces of the bipolar plate.
  • the objective of the present invention is to provide a bipolar plate in which the distribution of the cooling fluid is homogeneous.
  • the present invention provides, in an advantageous embodiment, a pattern of channels allowing the cooling liquid to spread between the thin plates forming the bipolar plate.
  • a first face of the bipolar plate has a channel design as shown in Figure 1, formed of a rectangular spiral covering two-thirds of the plate, and ending on the third third of the plate, by a serpentine of parallel lines.
  • the second face of the bipolar plate has a channel design with horizontal elements of the rectangular spiral having on the part of these elements located in the top of the central third of the bipolar plate an upward shift, in the vertical direction.
  • This offset is, for example, of the order of a half-step.
  • the zone ZD1 in which the elements have an offset is the area in which, if two thin plates were assembled having the same pattern of channels, the horizontal elements of the channels would coincide.
  • the assembly of a bipolar plate formed of a thin plate having a channel design as shown in Figure 1, and a thin plate having a channel design as shown In Figure 3, allows to provide, at the inlet of the coolant, spaces such that the liquid can spread throughout the bipolar plate. These spaces appear in Figure 5, which shows a sectional view of the bipolar plate, the section being made at an offset. It can thus be seen that the coolant, penetrating between the bipolar plates through an orifice 7, does not encounter any obstacle on its way down the bipolar plate, which allows a homogeneous distribution of the coolant.
  • the offset is performed on the anodic face.
  • the channels formed in the thin plate forming the anodic face of the bipolar plate are intended for the transport of hydrogen.
  • hydrogen is a gas that is more fluid than oxygen, the offset made on the channel is little, or not, troublesome for the displacement of the hydrogen flow in the fuel cell.
  • a similar shift of the channels is present on the lower part of the bipolar plate, in a ZD2 zone.
  • This offset on the lower part is, for example, present on the same face of the bipolar plate as the offset present on the upper part of the bipolar plate. This shift made on the lower part facilitates the evacuation of the coolant having passed through the fuel cell.
  • the channel elements having an offset further comprise fixing points 8. These attachment points allow, as shown in FIG. 4, to stiffen the bipolar plate during assembly. two thin plates, and allow the channel formed between the two bipolar plates, and shown in Figure 5, not to be crushed during assembly.
  • the present invention improves the cooling of the fuel cell without affecting the efficiency, since the flow of hydrogen gas and oxygen necessary for the proper operation of the battery are not changed.
  • the invention also relates to a bipolar plate comprising a device for supplying gas to the fuel cell.
  • An exemplary embodiment of such a plate is shown in FIGS. 1 and 2.
  • the bipolar plate comprises a notch 10 formed in a face of the bipolar plate.
  • This notch 10 is located between a collector 4 allowing the gas supply of the fuel cell and the channels formed on the faces of the bipolar plate.
  • the gas located in the manifold 4 enters between the two thin plates through the orifices 12 and leaves P between the two plates by the notch 10, or supply bleed, so as to then circulate in the feed channels. 13 formed in the thickness of the thin plate in which is made the notch. This gas path is illustrated by the arrow referenced 14.
  • the bipolar plate also comprises a seal, for example of polymer material, located in the area indicated by the arrow 15.
  • a seal for example of polymer material
  • Such a seal is also positioned at the same place on the face of the bipolar plate intended for come into contact with the face shown in FIG. 1.
  • these two seals make it possible to achieve a seal so that the gas flowing in the channels of the first plate does not come into contact with the gas flowing over the next bipolar plate in the stack, these two gases being different in nature, to allow proper operation of the fuel cell.
  • the bearing surface of the seal 15 is raised relative to the other bearing areas of the seal where a gas passage is not necessary below the seal.
  • a seal 16 provides a seal between the two thin plates forming the bipolar plate, so that the gas along the path indicated by the arrow 14 does not come into contact with the coolant. circulating in the bipolar plate.
  • This seal is, for example, made by solder, by welding, by bonding or other sealing means.
  • the notch 10 and the two seals 15 and 16 extend over the entire length of the collector 4, it being understood that the term length must be understood as extending over the entire horizontal portion of the collector within the meaning of the present invention.
  • this device can be installed mutatis mutandis on both sides of the plate, it being understood that it is located on the anode face, at the hydrogen supply manifold, and on the cathodic face. at the oxygen supply manifold.
  • the device of the present invention including a notch and one or more seals, allows a gas supply of the fuel cell while effecting a seal between the two gases, for example hydrogen and oxygen, circulating in the fuel cell.
  • the device also makes it possible to provide a seal between the coolant and the gases.
  • the two aspects of the present invention namely the offset of the channels to allow correct cooling of the bipolar plate, and the use of a notch for the gas supply, can be used jointly or independently one of the other.
  • the channels referenced 13 in FIG. 2 form the set of channels referenced 5 in FIGS. 1 and 3.
  • the orifices referenced 6, 7 and 12 are orifices of the same nature.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne une plaque bipolaire constituant la première plaque polaire d'un premier élément de base d'une pile à combustible et la deuxième plaque polaire d'un deuxième élément de base adjacent au premier élément de base de la même pile à combustible, comprenant deux plaques parallèles, chaque plaque comportant au moins un canal de distribution de carburant ou de comburant ménagé dans l'épaisseur de la plaque polaire, la plaque bipolaire comprenant en outre un collecteur destiné à l'alimentation en carburant et/ou comburant, ce collecteur communiquant avec l'intérieur de la plaque bipolaire par des orifices. La plaque bipolaire est caractérisée en ce qu'elle comprend une entaille ménagée dans une des plaques parallèles, de manière à permettre à un gaz situé dans le collecteur de rejoindre le canal de distribution via les orifices et l'entaille.

Description

PLAQUE BIPOLAIRE POUR PILE A COMBUSTIBLE DOMAINE DE L'INVENTION
[0001] La présente invention concerne le domaine des piles à combustibles, et en particulier celui des plaques bipolaires utilisées pour former l'empilement d'une pile à combustibles. En effet, une pile à combustible est composée d'un empilement de cellules électrochimiques comprenant une anode et une cathode séparée par une membrane échangeuse d'ions, les électrodes étant elles-mêmes disposées entre deux plaques bipolaires.
[0002] Les piles à combustible font l'objet à l'heure actuelle de nombreuses études dans le cadre des efforts déployés pour limiter la pollution de l'environnement, dans les transports notamment. Parmi les plus étudiés actuellement figurent sans doute les générateurs électrolytiques à combustible hydrogène, utilisant comme comburant de l'air ou de l'oxygène pur.
ETAT DE LA TECHNIQUE
[0003] Ainsi que mentionné précédemment, une pile à combustible comporte un empilement de cellules de base, chacune comprenant une anode, une cathode et une membrane échangeuse d'ions, faisant office d'électrolyte. Lors du fonctionnement d'une pile à combustible, deux réactions électrochimiques simultanées se produisent : une oxydation du carburant à l'anode, et une réduction de comburant à la cathode. Ces deux réactions produisent des ions, positifs et négatifs, qui se combinent au niveau de la membrane et produisent de l'électricité sous la forme d'une différence de potentiels. Dans le cas d'une pile à combustible oxygène-hydrogène, ce sont les ions H+ et O- qui se combinent.
[0004] Ces réactions électrochimiques se produisent au niveau de chaque cellule de base, chacune de ces cellules étant séparée des cellules adjacentes par des plaques bipolaires, qui ont plusieurs fonctions, notamment :
- une première fonction d'alimentation en carburant et en comburant, et - une deuxième fonction échange thermique, permettant la réfrigération, ou refroidissement, de la pile.
[0005] Il est à noter qu'une plaque bipolaire est généralement constituée de deux plaques fines, solidarisées par un moyen tel que la soudure ou le collage. Par ailleurs, les plaques bipolaires, de par leurs différentes fonctions, doivent être conductrices de l'électricité, tout en restant insensible, en termes de corrosion, au comburant et au carburant.
[0006] Afin de remplir la première fonction, un canal est prévu sur toute la face des plaques bipolaires en contact avec la membrane. Chaque canal possède une entrée par laquelle pénètre le carburant ou le carburant, et une sortie par laquelle sont évacués les gaz neutres, l'eau générée par la réaction électrochimique, et l'humidité résiduelle de l'hydrogène de son côté.
[0007] Pour remplir la deuxième fonction, un liquide de refroidissement est généralement envoyé entre les deux plaques fines formant la plaque bipolaire. Toutefois, on a constaté que, dans le cas de plaques bipolaires classiques, ce refroidissement ne s'effectuait pas correctement, puisque le fluide de refroidissement ne circulait pas dans l'ensemble de la plaque bipolaire. [0008] On connaît de la demande EP 1 358 691 des plaques bipolaires comportant des plots, installés entre les deux plaques formant la plaque bipolaire, et permettant de garantir un espace suffisant entre les deux plaques, pour permettre la circulation du liquide de refroidissement. Toutefois, cette solution présente plusieurs inconvénients, notamment en termes de facilité de fabrication. Par ailleurs, on a constaté qu'elle n'offrait pas un refroidissement maximal puisque que la circulation du liquide de refroidissement n'était pas homogène sur l'ensemble de la plaque.
BREVE DESCRIPTION DE L'INVENTION [0009] Ainsi, la présente invention vise à proposer des plaques bipolaires présentant des aménagements permettant d'améliorer le refroidissement des piles à combustible. Dans un autre aspect, la présente invention vise à proposer des plaques bipolaires présentant des aménagements permettant de renforcer l'alimentation en carburant et/ou comburant. [0010] Ainsi, l'invention concerne une plaque bipolaire constituant la première plaque polaire d'un premier élément de base d'une pile à combustible et la deuxième plaque polaire d'un deuxième élément de base adjacent au premier élément de base de la même pile à combustible, comprenant deux plaques parallèles, chaque plaque comportant au moins un canal de distribution de carburant ou de comburant ménagé dans l'épaisseur de la plaque polaire, et la plaque bipolaire étant caractérisée en ce que les canaux de distribution sont ménagés de façon à ce que lors de l'empilement du premier et deuxième élément de base de la pile à combustible, un canal de circulation se forme entre les deux plaques polaires, et en ce que ce canal de distribution communique avec un orifice d'alimentation en fluide de refroidissement.
[0011] Dans une réalisation particulière, la distribution des canaux sur une face de la plaque bipolaire est identique à la distribution des canaux sur la seconde plaque de la face bipolaire, à l'exception d'une zone dans laquelle les canaux présentent un décalage.
[0012] Dans une réalisation particulière, la zone dans laquelle les canaux présentent un décalage est la zone dans laquelle, lors de l'assemblage de la plaque bipolaire, les canaux horizontaux coïncideraient en l'absence du décalage.
[0013] Dans une réalisation particulière, le décalage a une valeur de ½ pas vers le haut.
[0014] Dans une réalisation particulière, le décalage des canaux est effectué sur la face anodique de la plaque bipolaire.
[0015] Dans une réalisation particulière, les éléments de canaux présentant un décalage présentent des points de fixation.
[0016] Un autre aspect de l'invention concerne une plaque bipolaire constituant la première plaque polaire d'un premier élément de base d'une pile à combustible et la deuxième plaque polaire d'un deuxième élément de base adjacent au premier élément de base de la même pile à combustible, comprenant deux plaques parallèles, chaque plaque comportant au moins un canal de distribution de carburant ou de comburant ménagé dans l'épaisseur de la plaque polaire, la plaque bipolaire comprenant en outre un collecteur destiné à l'alimentation en carburant et/ou comburant, ce collecteur communiquant avec l'intérieur de la plaque bipolaire par des orifices. La plaque bipolaire étant caractérisée en ce qu'elle comprend une entaille ménagée dans une des plaques parallèles, de manière à permettre à un gaz situé dans le collecteur de rejoindre le canal de distribution via les orifices et l'entaille.
[0017] Dans une réalisation particulière la plaque bipolaire comporte un premier élément d'étanchéité, situé sur la face extérieure de la plaque bipolaire dans laquelle est ménagée l'entaille, entre le collecteur et l'entaille, parallèlement à l'entaille.
[0018] Dans une réalisation particulière, le premier élément d'étanchéité est un joint réalisé en un matériau polymère.
[0019] Dans une réalisation particulière, la plaque bipolaire comporte, entre l'entaille et les canaux d'alimentation, un deuxième élément d'étanchéité permettant de réaliser une étanchéité entre les orifices d'entrée du gaz et un liquide de refroidissement présent entre les deux plaques parallèles. [0020] Dans une réalisation particulière, le deuxième élément d'étanchéité est réalisé par un moyen compris dans le groupe comprenant : une soudure, une brasure, un collage.
[0021] Dans une réalisation particulière, l'entaille et/ou le premier élément d'étanchéité, et/ou le second élément d'étanchéité s'étendent sur toute la longueur du collecteur.
BREVE DESCRIPTION DES FIGURES
[0022] D'autres objectifs et avantages de l'invention apparaîtront clairement dans la description qui va suivre d'un mode de réalisation préféré mais non limitatif, illustré par les figures suivantes dans lesquelles :
• la figure 1 montre une première face d'une plaque bipolaire selon l'invention, • la figure 2 montre une vue partielle, selon une coupe C-C, de la plaque bipolaire montrée en figure 1 :
• la figure 3 montre une seconde face d'une plaque bipolaire selon l'invention,
• les figures 4 et 5 montrent deux coupes, respectivement selon A-A et B-B, de la plaque bipolaire montrée en figure 3.
DESCRIPTION DU MEILLEUR MODE DE REALISATION DE L'INVENTION
[0023] Une plaque bipolaire comprend un squelette central 1 constitué de deux plaques minces, parallèles, solidarisées par un procédé tel que le collage ou la soudure. Une face de cette plaque est destinée à être adossée à une anode, dans une pile à combustible, et l'autre face est destinée à être adossée à une cathode.
[0024] Par la suite, nous utiliserons différents termes, qui doivent être compris dans leur définition ci-après : le terme de « face de la plaque bipolaire », correspond à la face externe d'une des plaques minces, les « côtés de la plaque bipolaire » sont les quatre côtés du rectangle formant la plaque bipolaire, le terme « horizontal » désignera un élément parallèle aux petits côtés de la plaque bipolaire, et le terme « vertical » désignera un élément parallèle aux grands côtés de la plaque bipolaire, le terme de « haut de la plaque bipolaire » désigne le bord de la plaque par lequel entrent les gaz et le liquide de refroidissement, le terme de « bas de la plaque bipolaire » désigne le bord de la plaque par lequel sont évacués les gaz neutres et le liquide de refroidissement. - le terme de « face bipolaire anodique » désigne la face de la plaque bipolaire destinée à être au contact avec une anode lors du montage de la pile à combustible, et le terme de « face bipolaire cathodique » désigne la face de la plaque bipolaire destinée à être au contact avec une cathode lors du montage de la pile à combustible. [0025] Les plaques minces sont percées de plusieurs trous à leur périphérie, afin de former des collecteurs de carburant 2, comburant 3, et de liquide de refroidissement 4. Les plaques comportent également un ensemble de canaux 5, ménagés dans leur épaisseur, afin de permettre la circulation, en surface, de carburant ou de comburant. Par ailleurs, les plaques minces comportent des orifices 6 permettant de faire communiquer un collecteur avec un canal de circulation de gaz.
[0026] La présente invention présente une plaque bipolaire montrant des dessins de canaux différents sur chacune des deux faces de la plaque bipolaire. En effet l'objectif de la présente invention est de proposer une plaque bipolaire dans lequel la répartition du fluide de refroidissement est homogène. A cet effet, la présente invention propose, dans une réalisation avantageuse, un dessin de canaux permettant au liquide de refroidissement de se répandre entre les plaques fines formant la plaque bipolaire.
[0027] Dans une réalisation avantageuse, une première face de la plaque bipolaire présente un dessin de canaux tels que montré sur la figure 1 , formé d'une spirale rectangulaire couvrant les deux tiers de la plaque, et se terminant, sur le troisième tiers de la plaque, par un serpentin de lignes parallèles.
[0028] Dans une réalisation avantageuse montrée à la figure 3, la seconde face de la plaque bipolaire présente un dessin de canal avec des éléments horizontaux de la spirale rectangulaire présentant, sur la partie de ces éléments situés dans le haut du tiers central de la plaque bipolaire un décalage vers le haut, dans le sens vertical. Ce décalage est, par exemple, de l'ordre d'un demi-pas.
[0029] De manière plus précise, la zone ZD1 dans laquelle les éléments présentent un décalage est la zone dans laquelle, si on assemblait deux plaques minces présentant le même dessin de canaux, les éléments horizontaux des canaux coïncideraient. [0030] Ainsi, dans la présente invention, l'assemblage d'une plaque bipolaire formé d'une plaque mince présentant un dessin de canal tel que montré en figure 1, et d'une plaque mince présentant un dessin de canal tel que montré en figure 3, permet de ménager, au niveau de l'entrée du liquide de refroidissement, des espaces tels que le liquide peut se répandre dans l'ensemble de la plaque bipolaire. Ces espaces apparaissent sur la figure 5, qui montre une vue en coupe de la plaque bipolaire, la coupe étant effectuée au niveau d'un décalage. On peut ainsi constater que le liquide de refroidissement, pénétrant entre les plaques bipolaires par un orifice 7, ne rencontre pas d'obstacle sur son parcours vers le bas de la plaque bipolaire, ce qui permet une répartition homogène du liquide de refroidissement.
[0031] Comme indiqué précédemment, les dessins des canaux sont différents sur chacune des deux faces de la plaque bipolaire. Ainsi, le décalage des canaux tel qu'explicité au paragraphe précédemment peut être effectué sur la face bipolaire anodique ou cathodique.
[0032] Toutefois, dans une réalisation préférentielle, le décalage est effectué sur la face anodique. En effet, les canaux ménagés dans la plaque fine formant la face anodique de la plaque bipolaire sont destinés au transport de l'hydrogène. Or, l'hydrogène étant un gaz plus fluide que l'oxygène, le décalage effectué sur le canal est peu, ou pas gênant pour le déplacement du flux d'hydrogène dans la pile à combustible.
[0033] Par ailleurs, dans une autre réalisation préférentielle, un décalage similaire des canaux est présent sur la partie basse de la plaque bipolaire, dans une zone ZD2. Ce décalage sur la partie basse est, par exemple, présent sur la même face de la plaque bipolaire que le décalage présent sur la partie haute de la plaque bipolaire. Ce décalage effectué sur la partie basse permet de faciliter l'évacuation du liquide de refroidissement ayant traversé la pile à combustible.
[0034] Dans une autre réalisation préférentielle, les éléments de canaux présentant un décalage comprennent, en outre, des points de fixation 8. Ces points de fixation permettent, ainsi que montré en figure 4, de rigidifier la plaque bipolaire lors de l'assemblage des deux plaques minces, et de permettre au canal ménagé entre les deux plaques bipolaires, et montré en figure 5, de ne pas être écrasé lors de l'assemblage.
[0035] Ainsi, la présente invention permet d'améliorer le refroidissement de la pile à combustible sans toutefois en affecter le rendement, puisque les flux de gaz hydrogène et oxygène nécessaires au bon fonctionnement de la pile ne sont pas modifiés. [0036] Dans un autre aspect l'invention concerne également une plaque bipolaire comprenant un dispositif permettant l'alimentation en gaz de la pile à combustible. Un exemple de réalisation d'une telle plaque est montré en figures 1 et 2.
[0037] Dans une réalisation, la plaque bipolaire comprend une entaille 10 ménagée dans une face de la plaque bipolaire. Cette entaille 10 est située entre un collecteur 4 permettant l'alimentation en gaz de la pile à combustible et les canaux ménagés sur les faces de la plaque bipolaire. Ainsi, le gaz situé dans le collecteur 4 pénètre entre les deux plaques fines par les orifices 12 et ressort de P entre-deux plaques par l'entaille 10, ou saignée d'alimentation, de manière à circuler ensuite dans les canaux d'alimentation 13 ménagés dans l'épaisseur de la plaque fine dans laquelle est pratiquée l'entaille. Ce trajet du gaz est illustré par la flèche référencée 14.
[0038] Dans une réalisation avantageuse, la plaque bipolaire comporte également un joint, par exemple en matériau polymère, situé dans la zone indiquée par la flèche 15. Un tel joint est également positionné au même endroit sur la face de la plaque bipolaire destinée à venir au contact de la face montrée en figure 1. Ainsi, lors de l'empilement, ces deux joints permettent de réaliser une étanchéité afin que le gaz circulant dans les canaux de la première plaque ne rentre pas en contact avec le gaz circulant sur la plaque bipolaire suivante dans l'empilement, ces deux gaz étant par nature différents, afin de permettre un fonctionnement correct de la pile à combustible. Afin de permettre le passage du gaz illustré par la flèche 14 au-dessous de la surface d'appui du joint 15, la surface d'appui du joint 15 est surélevée par rapport aux autres zones d'appui du joint où un passage du gaz n'est pas nécessaire en dessous du joint.
[0039] Par ailleurs, un joint 16 permet de réaliser une étanchéité entre les deux plaques fines formant la plaque bipolaire, de façon à ce que le gaz suivant le trajet indiqué par la flèche 14 n'entre pas en contact avec le liquide de refroidissement circulant dans la plaque bipolaire. [0040] Ce joint est, par exemple, réalisé par brasure, par soudure, par collage ou tout autre moyen de liaison étanche.
[0041] Dans une réalisation préférentielle, l'entaille 10 et les deux joints 15 et 16 s'étendent sur toute la longueur du collecteur 4, étant entendu que le terme longueur doit être compris comme s 'étendant sur toute la partie horizontale du collecteur, au sens de la présente invention. [0042] De manière avantageuse, ce dispositif peut être installé mutatis mutandis sur les deux faces de la plaque, étant entendu qu'il se situe, sur la face anodique, au niveau du collecteur d'alimentation en hydrogène, et sur la face cathodique, au niveau du collecteur d'alimentation en oxygène.
[0043] Ainsi, le dispositif de la présente invention, comprenant notamment une entaille et un ou plusieurs joints d' étanchéité, permet une alimentation en gaz de la pile à combustible tout en réalisant une étanchéité entre les deux gaz, par exemple hydrogène et oxygène, circulant dans la pile à combustible. Le dispositif permet également de réaliser une étanchéité entre le liquide de refroidissement et les gaz.
[0044] Les deux aspects de la présente invention, à savoir le décalage des canaux pour permettre un refroidissement correct de la plaque bipolaire, et l'utilisation d'une entaille pour l'alimentation en gaz, peuvent être utilisés conjointement ou de manière indépendante l'un de l'autre.
[0045] On notera que des éléments similaires ont été référencés sur les figures avec des références distinctes, ceci afin de clarifier le propos. Ainsi, les canaux référencés 13 en figure 2 forment l'ensemble de canaux référencé 5 en figures 1 et 3. En outre, les orifices référencés 6, 7 et 12 sont des orifices de même nature.
[0046] L'invention n'est bien entendu pas limitée aux exemples décrits et représentés et diverses modifications peuvent y être apportées sans sortir de son cadre défini par les revendications annexées.

Claims

REVENDICATIONS
1. Plaque bipolaire constituant la première plaque polaire d'un premier élément de base d'une pile à combustible et la deuxième plaque polaire d'un deuxième élément de base adjacent au premier élément de base de la même pile à combustible, comprenant deux plaques parallèles, chaque plaque comportant au moins un canal de distribution de carburant ou de comburant ménagé dans l'épaisseur de la plaque polaire, la plaque bipolaire comprenant en outre un collecteur destiné à l'alimentation en carburant et/ou comburant, ce collecteur communiquant avec l'intérieur de la plaque bipolaire par des orifices, la plaque bipolaire étant caractérisée en ce qu'elle comprend une entaille ménagée dans une des plaques parallèles, de manière à permettre à un gaz situé dans le collecteur de rejoindre le canal de distribution via les orifices et l'entaille.
2. Plaque bipolaire selon la revendication 1, caractérisée en ce qu'elle comporte un premier élément d'étanchéité, situé sur la face extérieure de la plaque bipolaire dans laquelle est ménagée l'entaille, entre le collecteur et l'entaille, parallèlement à l'entaille.
3. Plaque bipolaire selon la revendication 2, caractérisée en ce que le premier élément d'étanchéité est un joint réalisé en un matériau polymère, la surface d'appui dudit joint étant surélevée par rapport aux zones où l'alimentation en gaz n'est pas nécessaire.
4. Plaque bipolaire selon l'une des revendications précédentes, caractérisée en ce qu'elle comporte, entre l'entaille et les canaux d'alimentation, un deuxième élément d'étanchéité permettant de réaliser une étanchéité entre les orifices d'entrée du gaz et un liquide de refroidissement présent entre les deux plaques parallèles.
5. Plaque bipolaire selon la revendication 4, caractérisée en ce que le deuxième élément d'étanchéité est réalisé par un moyen compris dans le groupe comprenant : une soudure, une brasure, un collage.
6. Plaque bipolaire selon l'une des revendications 1 à 5, caractérisée en ce que l'entaille et/ou le premier élément d'étanchéité, et/ou le second élément d'étanchéité s'étendent sur toute la longueur du collecteur.
PCT/EP2013/071628 2012-10-30 2013-10-16 Plaque bipolaire pour pile a combustible WO2014067782A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380056352.2A CN104813527B (zh) 2012-10-30 2013-10-16 用于燃料电池的双极板
US14/438,369 US9966613B2 (en) 2012-10-30 2013-10-16 Bipolar plate for a fuel cell
EP13776832.1A EP2915207A1 (fr) 2012-10-30 2013-10-16 Plaque bipolaire pour pile a combustible

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1260340A FR2997562B1 (fr) 2012-10-30 2012-10-30 Plaque bipolaire pour pile a combustible
FR1260340 2012-10-30

Publications (1)

Publication Number Publication Date
WO2014067782A1 true WO2014067782A1 (fr) 2014-05-08

Family

ID=47624324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/071628 WO2014067782A1 (fr) 2012-10-30 2013-10-16 Plaque bipolaire pour pile a combustible

Country Status (5)

Country Link
US (1) US9966613B2 (fr)
EP (1) EP2915207A1 (fr)
CN (1) CN104813527B (fr)
FR (1) FR2997562B1 (fr)
WO (1) WO2014067782A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10868313B2 (en) 2015-08-14 2020-12-15 Reinz-Dichtungs-Gmbh Separator plate for an electrochemical system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2997561B1 (fr) 2012-10-30 2017-01-13 Michelin & Cie Plaque bipolaire pour pile a combustible
DE102016121954A1 (de) * 2016-11-15 2018-05-17 Audi Ag Bipolarplatte, Brennstoffzellenstapel und ein Kraftfahrzeug
DE102016224466A1 (de) 2016-12-08 2018-06-14 Siemens Aktiengesellschaft Elektrolysezelle oder Elektrodenplatte mit einer Gasdiffusionselektrode und Verfahren zu deren Betrieb
CN108630959B (zh) * 2017-03-24 2021-02-19 世钟工业株式会社 通道流路公用化式燃料电池分离板、燃料电池分离板组装体及燃料电池堆
USD924137S1 (en) * 2017-09-08 2021-07-06 Soyo Oishi Electrode plate
FR3074970B1 (fr) 2017-12-13 2019-12-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Reacteur electrochimique a membrane echangeuse de protons a haute temperature adapte pour stockage basse temperature
US10756357B2 (en) * 2018-01-09 2020-08-25 Guosheng Zhang Bipolar plate with coolant flow channel
CN108695524A (zh) * 2018-07-03 2018-10-23 武汉轻工大学 质子交换膜燃料电池双极板
CN110112434A (zh) * 2019-05-16 2019-08-09 张国胜 双极板及包含该双极板的燃料电池电堆和发电系统
CN110289429B (zh) * 2019-06-21 2020-09-25 山东大学 一种柔性质子交换膜燃料电池极板及其制备方法
CN110890567B (zh) * 2019-12-02 2021-06-18 武汉轻工大学 风冷质子交换膜燃料电池石墨双极板及其燃料电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020081477A1 (en) * 2000-12-26 2002-06-27 Mclean Gerard F. Corrugated flow field plate assembly for a fuel cell
EP1358691A1 (fr) 2001-01-26 2003-11-05 Helion Plaque bipolaire legere pour pile a combustible et son procede de fabrication
US20040209150A1 (en) * 2003-04-18 2004-10-21 Rock Jeffrey A. Stamped fuel cell bipolar plate
US20050100775A1 (en) * 2003-11-07 2005-05-12 Rock Jeffrey A. One piece bipolar plate with spring seals
DE102006056468A1 (de) * 2005-11-28 2007-07-05 Behr Gmbh & Co. Kg Bipolarplatte, insbesondere für einen Brennstoffzellenstapel eines Fahrzeugs
US20090325036A1 (en) * 2005-11-30 2009-12-31 Daimler Ag Bipolar Plate and Fuel Cell Unit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482419B1 (ko) 1999-11-08 2005-04-14 마쯔시다덴기산교 가부시키가이샤 고분자 전해질형 연료전지
US7029784B2 (en) 2002-05-30 2006-04-18 Plug Power Inc. Nested fuel cell field plate
CA2503402A1 (fr) * 2002-11-18 2004-06-03 Gencell Corporation Plaque bipolaire avec anode a deux passages
EP1791201A1 (fr) * 2005-11-28 2007-05-30 Behr GmbH & Co. KG Plaque bipolaire
JP5042507B2 (ja) 2006-02-21 2012-10-03 本田技研工業株式会社 燃料電池
FR2911218B1 (fr) 2007-01-09 2009-03-06 Conception Dev Michelin S A Plaque de distribution metal-graphite souple pour une pile a combustible.
DE112009004263B4 (de) 2009-01-22 2021-11-18 Toyota Jidosha Kabushiki Kaisha Brennstoffzellenseparator und Brennstoffzelle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020081477A1 (en) * 2000-12-26 2002-06-27 Mclean Gerard F. Corrugated flow field plate assembly for a fuel cell
EP1358691A1 (fr) 2001-01-26 2003-11-05 Helion Plaque bipolaire legere pour pile a combustible et son procede de fabrication
US20040209150A1 (en) * 2003-04-18 2004-10-21 Rock Jeffrey A. Stamped fuel cell bipolar plate
US20050100775A1 (en) * 2003-11-07 2005-05-12 Rock Jeffrey A. One piece bipolar plate with spring seals
DE102006056468A1 (de) * 2005-11-28 2007-07-05 Behr Gmbh & Co. Kg Bipolarplatte, insbesondere für einen Brennstoffzellenstapel eines Fahrzeugs
US20090325036A1 (en) * 2005-11-30 2009-12-31 Daimler Ag Bipolar Plate and Fuel Cell Unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10868313B2 (en) 2015-08-14 2020-12-15 Reinz-Dichtungs-Gmbh Separator plate for an electrochemical system

Also Published As

Publication number Publication date
CN104813527A (zh) 2015-07-29
US9966613B2 (en) 2018-05-08
FR2997562B1 (fr) 2017-01-13
FR2997562A1 (fr) 2014-05-02
CN104813527B (zh) 2018-08-10
EP2915207A1 (fr) 2015-09-09
US20150280254A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
EP2915207A1 (fr) Plaque bipolaire pour pile a combustible
EP3183379B1 (fr) Procédé d'électrolyse ou de co-électrolyse à haute température, procédé de production d'électricité par pile à combustible sofc, interconnecteurs, réacteurs et procédés de fonctionnement associés
EP3516718B1 (fr) Procédés de co-électrolyse de l'eau et du co2 (soec) ou de production d'électricité à haute température (sofc) favorisant ou non les réactions catalytiques au sein de l'électrode h2
EP3322839B1 (fr) Procedes d' (de co) electrolyse de l'eau ou de production d'electricite a haute temperature a echangeurs integres en tant qu'etages d'un empilement de reacteur ou d'une pile a combustible
EP1900054B1 (fr) Plaque bipolaire de pile à combustible à fonction étanchéité intégrée et cellule de pile à combustible comportant de telles plaques
WO2014067781A1 (fr) Plaque bipolaire pour pile a combustible
CA3063286A1 (fr) Reacteur d'electrolyse ou de co-electrolyse de l'eau (soec) ou pile a combustible (sofc) a fonctionnement sous pression et a systeme de serrage adapte a un tel fonctionnement
EP1528614B1 (fr) Structure pour pile à combustible
EP1358691B1 (fr) Procede de fabrication de plaques bipolaires legeres pour piles a combustible
EP3195392A1 (fr) Plaque de guidage d'ecoulement d'un fluide pour reacteur electrochimique et ensemble comportant cette plaque
EP3809504A1 (fr) Plaque bipolaire de pile a combustible
CA2994642C (fr) Procedes d' (de co-) electrolyse de l'eau (soec) ou de production d'electricite a haute temperature a faibles gradients thermiques au sein respectivement d'un reacteur ou d'une pile a combustible (sofc)
EP2729983B1 (fr) Bride d'alimentation et de serrage pour un module de pile à combustible, et système de pile à combustible associé
WO2020128322A1 (fr) Plaque bipolaire pour pile a combustible
FR3091044A1 (fr) Plaque bipolaire pour pile a combustible
EP1508929A1 (fr) Plaque bipolaire pour pile à combustible et pile à combustible équipée d'une telle plaque
CA3217370A1 (fr) Procede de realisation d'un empilement a oxydes solides de type soec/sofc et empilement associe
CA3230063A1 (fr) Interconnecteur pour empilement de cellules a oxydes solides de type soec/sofc comportant des elements en relief differents
FR2816448A1 (fr) Plaque bipolaire a deux plaques metalliques et structures gaufrees pour pile a combustible
FR2897721A3 (fr) Plaque bipolaire pour pile a combustible
FR2846798A1 (fr) Plaque bipolaire a deux plaques metalliques embouties pour pile a combustible
LU87801A1 (fr) Empilement de piles a combustible a collecteurs entierement internes
EP1873854A2 (fr) Structure de cellule elementaire pour pile à combustion equipée de moyens d etancheité
FR2957364A1 (fr) Dispositif formant interconnecteur electrique et fluidique pour reacteur d'electrolyse de l'eau a haute temperature

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13776832

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14438369

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013776832

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013776832

Country of ref document: EP