WO2014067184A1 - Appareil basé sur un détecteur à quatre quadrants et pour mesurer un champ d'écoulement dans la cavité d'un laser à gaz pulsé - Google Patents

Appareil basé sur un détecteur à quatre quadrants et pour mesurer un champ d'écoulement dans la cavité d'un laser à gaz pulsé Download PDF

Info

Publication number
WO2014067184A1
WO2014067184A1 PCT/CN2012/084929 CN2012084929W WO2014067184A1 WO 2014067184 A1 WO2014067184 A1 WO 2014067184A1 CN 2012084929 W CN2012084929 W CN 2012084929W WO 2014067184 A1 WO2014067184 A1 WO 2014067184A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
detection
detection light
gas laser
flow field
Prior art date
Application number
PCT/CN2012/084929
Other languages
English (en)
Chinese (zh)
Inventor
徐勇跃
杨晨光
左都罗
王新兵
卢宏
陆培祥
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2014067184A1 publication Critical patent/WO2014067184A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex

Definitions

  • Pulse gas laser intracavity flow field measuring device based on four-quadrant detector [Technical Field]
  • the invention belongs to the technical field of optical measurement, and relates to a device for measuring fluctuation of a flow field, in particular to a device for measuring shock propagation characteristics in a flow field based on a four-quadrant photodetector, using quadrants of four-quadrant photodetectors
  • the output change realizes the measurement of the direction of propagation of the shock wave and its disturbance.
  • This method is especially suitable for the measurement of gas flow field disturbances in pulsed gas lasers.
  • Pulsed gas lasers with pulsed discharge pumping have been widely used in the industry for high repetition rate, high energy and low cost, such as integrated circuit lithography, laser medical treatment and industrial processing.
  • the pulsed gas laser since the instantaneous injection energy is large in a limited space, shock waves developed in different directions are generated, and these shock waves reciprocate back and forth in the laser cavity, and the density changes during the propagation process.
  • the uniformity of the excitation medium in the cavity is changed, so the disturbance magnitude of the shock wave characterizes the uniformity of the flow field.
  • the measurement of the shock characteristic parameters (including the magnitude and propagation direction of the shock wave) It is especially important.
  • This method uses a piezoelectric transducer to stress the flow field The fluctuation is converted into an electrical signal output, and the disturbance amount in the flow field can be monitored in real time.
  • This method belongs to a contact type measurement and needs to be mounted on the inner wall of the laser cavity. It cannot be moved freely. It is difficult to achieve precise positioning during measurement, and the method cannot judge the source and propagation characteristics of the disturbance.
  • Interferometry and schlieren are two commonly used non-contact measurement methods for observing the development of shock waves in pulsed gas lasers (V. Delaporte, B. Fontaine, B. Forestier, M. Sentis, J. P. Truong)
  • the optical system of the related law obtains the information of the change of the gas density caused by the shock wave in the flow field through the change of the interference fringes on the receiving screen, thereby judging the magnitude and the propagation direction of the shock disturbance.
  • the schlieren optical system can convert the density disturbance information caused by the shock into a change in the intensity of the receiving screen, and determine the position and direction of the shock by the change of the intensity. Both methods can intuitively obtain the situation in the flow field by receiving the change information of the light distribution on the screen, and determine the origin and development process of the shock wave.
  • both methods use time series method to capture the evolution of the flow field at different moments of different pulses, and the evolution process of the shock wave in the combined flow field can not obtain real-time signals; and the two system devices are compared. Complex and need more precision optical equipment, operation and data processing are more troublesome.
  • Wingate et al. used a single-point schlieren method to measure the shock intensity in the flow field after pulsed discharge of a pulsed gas laser. Wingate, JT Lee, AIAA Paper 81-1286 (1981). Wave disturbance, but this method cannot accurately detect the direction of shock wave propagation.
  • the object of the present invention is to provide a measuring device for shock waves in a flow field of a pulsed gas laser, which can easily and accurately measure the magnitude of the shock disturbance and the propagation direction in the flow field of the pulsed gas laser, and the subsequent processing of the signal is relatively simple. .
  • the invention provides a four-quadrant detector-based pulse gas laser intracavity flow field measuring device, which comprises a detecting light source, a detecting light receiving system and a signal processing system, characterized in that: the light beam emitted by the detecting light source and the light of the pulse gas laser are detected.
  • the axial direction is parallel;
  • the detecting light receiving system comprises a four-quadrant photodetector, wherein the photosensitive surface of the four-quadrant photodetector faces the detecting area and is perpendicular to the detecting beam for receiving the detecting laser beam emitted by the detecting light source; four-quadrant photoelectric detecting
  • the signal of the device is processed by the signal processing system to obtain the propagation characteristic parameters of the shock wave.
  • the probe light receiving system further includes a two-color mirror and a laser line filter, wherein the two-color mirror is at 45 degrees with the probe beam, and the filter and the four-quadrant photodetector face the probe beam.
  • the detecting light source, the dichroic mirror, the laser line filter and the four-quadrant photodetector are sequentially located on the same optical path.
  • the probe light receiving system further includes a two-color mirror, a laser line filter, and a beam splitter, wherein the split mirror surface and the two-color mirror surface are at an angle of 45 degrees with the probe beam, and the laser line filter
  • the slice is perpendicular to the probe beam, and the probe beam passes through the center of the spectroscopic surface and the dichroic mirror, respectively, and is reflected by the reflection surface of the laser to be tested, and then passes through the center of the dichroic mirror and the spectroscopic mirror and the center of the laser line filter, and finally by the four quadrants.
  • the detector receives.
  • the invention overcomes the shortcomings of the traditional measuring device system and the expensive equipment, and improves the precision and sensitivity of the measurement, and can obtain the disturbance magnitude and the propagation direction of the shock wave in the flow field in real time.
  • a large amount of energy is instantaneously injected into the flow field after each discharge excitation, and various shock waves are formed in the flow field.
  • These shock waves have a wavefront in a high-density region, which causes the probe beam to be generated.
  • the deflection occurs, and the change of each quadrant output obtained by the four-quadrant photodetector is used to process and display the spot shift information by the data acquisition circuit, and the offset of the spot center and the propagation characteristics of the shock wave exist.
  • the specific relationship is the magnitude of the disturbance and the direction of propagation.
  • the invention has the advantages of simple structure and convenient operation, and the four-quadrant photodetector greatly simplifies the experimental device, and determines the disturbance magnitude and propagation direction of the shock wave through the movement of the center of the four-quadrant photodetector spot, thereby improving the sensitivity of the detection;
  • the mirror separates the probe beam from the laser of the pulsed gas laser, and the laser oscillation simultaneously obtains real-time test results, avoiding the defect of high thermal deposition in the discharge region when no laser cavity is tested.
  • Figure 1 is a schematic structural view of the present invention
  • FIG. 3 is an example of a pulse gas laser applied to a rear mirror full-reverse;
  • FIG. 4 is a cross-sectional view of a four-quadrant photodetector used in the present invention.
  • FIG. 5 is a working flow chart of the present invention.
  • Figure 6 shows the experimental results simulated with Matlab software. [specific lung type]
  • the wave array composed of high-density regions corresponding to various shock waves formed by the pulsed gas laser propagates to the periphery, forming a density disturbance region during the propagation process; the light beam propagates in the non-uniform medium and is biased toward the region with high density.
  • Fold, the size of the deflection is proportional to the density gradient, and the deflection direction is the same as the normal direction of the shock wave front. Therefore, the size of the spot offset can be used to characterize the density disturbance caused by the shock, and the angle of the spot shift To determine the direction of the shock wave.
  • the four-quadrant photodetector can record the change of the offset of the center position of the detection spot with time in real time.
  • the magnitude and propagation direction of the shock wave in the flow field of the pulsed gas laser can be obtained by the magnitude and angle of the offset.
  • the measuring device for the shock wave in the pulse gas laser provided by the present invention mainly comprises a detecting light source 1, a dichroic mirror 2, a laser line filter 3, a four-quadrant photodetector 4, a data collecting circuit 5 and a computer. 6.
  • the two-color mirror 2, the laser line filter 3 and the four-quadrant photodetector 4 constitute a photoelectric receiving portion, and the data collecting circuit 5 passes the output signal in the four-quadrant photodetector 4 to the computer 6 for processing and display.
  • the size and direction of the wave are the two-color mirror 2, the laser line filter 3 and the four-quadrant photodetector 4 and the computer 6 for processing and display.
  • the direction in which the light source 1 emits the light beam is parallel to the direction of the optical axis generated by the pulsed gas laser.
  • the laser wavelength of the detecting light source 1 is selected so as to be transmitted through the rear mirror 11 and the output window of the pulsed gas laser 10. 12.
  • the transmitted beam does not affect the laser oscillation of the pulsed gas laser; the spot diameter and divergence angle of the beam should be small, ensuring that the spot diameter in the detection area is less than 1 mm, improving the detection accuracy; detecting light source 1 and four-quadrant photoelectricity
  • the detectors 4 can be controlled together by a two-dimensional translation stage to detect real-time shock surges at different locations in the pulsed gas laser flow field.
  • the device can be replaced with the device shown in FIG. 3, wherein the beam splitter 23 functions to be semi-transverse to the probe beam;
  • the output window 22 enters, is reflected by the rear mirror 21, is still separated by the output window 22, passes through the dichroic mirror 2, and the beam splitter 23, and then passes through the laser line filter 3 to the four-quadrant photodetector 4.
  • the dichroic mirror 2 is at 45° to the optical axis of the pulsed gas laser, and the dichroic mirror 2 is a narrowband reflective filter.
  • the center wavelength of the reflection is the output wavelength of the laser, and the full width at half maximum (FWHM) of the reflection is less than lOnm;
  • the laser beam is reflected to enable other wavelengths of light to pass through, that is, the laser radiation of the pulsed gas laser is highly reflected, but the reflection of the light emitted by the detecting light source is low, which makes the measuring device not to pulse gas during the test.
  • the laser line filter 3 is a narrow-band transmission filter whose transmitted central wavelength is the wavelength emitted by the detecting light source.
  • the transmitted full-width half-peak width (FWHM) is less than 5 nm, that is, it can only filter the light emitted by the light source 1 and filter out other wavelengths of light; thereby further reducing the influence of other factors on the detector.
  • the four-quadrant photodetector 4 has four symmetrical photosensitive surfaces, as shown in FIG. Before the measurement, the position and angle of the four-quadrant photodetector 4 need to be fine-tuned so that the spot emitted by the detecting light source 1 is evenly distributed in four quadrants.
  • the four-quadrant photodetector 4 has a response frequency of several tens of megahertz and a shock perturbation period of a few microseconds, thus meeting the needs of real-time detection.
  • the filter in the optical path only passes the probe light, which prevents the laser of the pulsed gas laser from damaging the four-quadrant photodetector.
  • the data acquisition circuit 5 includes a preamplifier, an A/D conversion circuit, etc., which inputs the photoelectric signal to the computer 6 for processing and display, and obtains the spot center offset information; further obtains the beam deflection law caused by the shock wave propagation process.
  • the magnitude and direction of the wave disturbance, where the magnitude of the offset characterizes the intensity of the shock, and the angle of the offset determines the direction of propagation of the shock.
  • the moving detecting light source 1 is placed at the position to be detected, and the position of the four-quadrant photodetector 4 is adjusted accordingly, so that the spot emitted by the detecting light source 1 passes through the flow field of the pulsed gas laser, and is evenly distributed in four.
  • Four quadrants of the quadrant photodetector 4. After the pulsed gas laser is pulsed, a strong electromagnetic interference of several tens of nanoseconds is generated, which acts as a trigger signal for the four-quadrant photodetector 4.
  • Pulse excitation is accompanied by a large amount of energy deposition.
  • a lot of shock waves are generated. These shock waves diffuse and spread around, and when the light is detected, they are deflected and the center of the spot is moved.
  • the output of the four quadrants of quadrant photodetector 4 changes. Let the voltages generated in the one to four quadrants be Then the offset of the spot in the horizontal and vertical directions is:
  • k is a fixed parameter of the four-quadrant photodetection, reflecting the relationship between the amount of change in light intensity and the amount of movement of the spot position, which can be obtained by calibrating the detector.
  • Spot size and offset angle can be obtained by (1)
  • the probe beam When the shock wave is close to the probe beam, the probe beam is deflected toward the shock wave.
  • the direction of the offset is opposite to the normal direction of the wavefront.
  • the probe beam When the shock wave passes through the probe beam, the probe beam is also deflected toward the shock wave. The direction is the same as the normal direction of the wavefront. Therefore, when the shock wave passes through the probe beam, the deflection angle of the light remains constant. However, when the shock wave approaches and stays away, the deflection angle of the light will be different by 180°, and the direction of the shock wave propagation and the deflection angle of the light wave caused by the shock wave are far away. equal.
  • Figure 6 shows the real-time change information of the spot shift amount and the spot deflection angle caused by the Matlab software simulating the shock wave propagating in the 45° direction through the probe beam.
  • the magnitude of the shock disturbance is P( t)max.
  • the direction of the shock wave is the same as the angle at which the shock wave leaves the probe beam, that is, the same as the second half of the result of the angle deviation of the spot, and propagates in the direction of 45°. Since the four-quadrant photodetector 4 has a high detection frequency, it can reflect the evolution of the shock wave in the flow field in real time, and observe the magnitude and direction of the shock disturbance in the flow field.
  • the invention can well detect the shock wave in the laser cavity, can accurately determine the size and propagation direction of the shock wave, and has higher sensitivity, simple measuring device and simple method.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

La présente invention concerne un appareil basé sur un détecteur à quatre quadrants et pour mesurer un champ d'écoulement dans une cavité d'un laser à gaz pulsé qui comprend une source de lumière de détection (1), un système de réception de lumière de détection, et un système de traitement de signal. Le faisceau lumineux émis par la source de lumière de détection (1) est parallèle à la direction de l'axe optique du laser à gaz pulsé. Le système de réception de lumière de détection comprend un détecteur photoélectrique à quatre quadrants (4) ; dont un côté photosensible fait face à une zone de détection, est perpendiculaire au faisceau de lumière de détection, et est utilisé pour recevoir un faisceau laser de détection ; après qu'un signal du détecteur photoélectrique à quatre quadrants (4) ait été traité par le système de traitement de signal, les paramètres caractéristiques de la propagation de l'onde de choc sont obtenus. Le dispositif de mesure est d'une structure simple, et est facile à utiliser. L'appareil de mesure simplifie l'appareil d'essai au moyen du détecteur photoélectrique à quatre quadrants (4), et détermine la perturbation et la direction de propagation de l'onde de choc en fonction du déplacement du centre du point lumineux du détecteur photoélectrique à quatre quadrants, ce qui améliore la sensibilité de détection ; parallèlement, il sépare le faisceau de lumière de détection du faisceau laser du laser à gaz pulsé à l'aide d'un miroir dichroïque (2), et obtient le résultat d'essai en temps réel au cours de l'oscillation laser, permettant ainsi de surmonter le défaut de dépôt thermique élevé dans le test de la zone de décharge sans utiliser le résonateur laser.
PCT/CN2012/084929 2012-10-30 2012-11-21 Appareil basé sur un détecteur à quatre quadrants et pour mesurer un champ d'écoulement dans la cavité d'un laser à gaz pulsé WO2014067184A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210423106.3A CN102980739B (zh) 2012-10-30 2012-10-30 基于四象限探测器的脉冲气体激光器腔内流场测量装置
CN201210423106.3 2012-10-30

Publications (1)

Publication Number Publication Date
WO2014067184A1 true WO2014067184A1 (fr) 2014-05-08

Family

ID=47854963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084929 WO2014067184A1 (fr) 2012-10-30 2012-11-21 Appareil basé sur un détecteur à quatre quadrants et pour mesurer un champ d'écoulement dans la cavité d'un laser à gaz pulsé

Country Status (2)

Country Link
CN (1) CN102980739B (fr)
WO (1) WO2014067184A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111579489A (zh) * 2020-07-01 2020-08-25 四川物科光学精密机械有限公司 一种谐振腔式高灵敏度纹影仪及其成像方法
CN111804913A (zh) * 2020-06-15 2020-10-23 上海航天设备制造总厂有限公司 成型与检测一体化的3d打印设备
CN113295629A (zh) * 2021-04-08 2021-08-24 西安电子科技大学 一种光谱吸收率分布获取方法及系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3321628B1 (fr) * 2016-11-10 2020-01-01 Klingelnberg AG Dispositif de mesure de coordonnées doté d'un capteur optique et procédé correspondant
CN111439371B (zh) * 2020-04-22 2022-02-18 厦门大学 一种基于激光等离子体的高超声速飞行器减阻方法
CN113514152A (zh) * 2021-06-18 2021-10-19 中国人民解放军国防科技大学 一种可鉴别信号来向的微弱光信号检测系统
CN114577692B (zh) * 2022-04-21 2023-03-24 亿慧云智能科技(深圳)股份有限公司 一种智能负离子浓度检测装置及检测方法
CN116256107B (zh) * 2023-05-16 2023-07-21 中北大学 一种基于四象限光电探测器的动静平衡检测装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2752375A1 (de) * 1977-11-24 1979-06-07 Messerschmitt Boelkow Blohm Einrichtung zur messung kleiner winkelaenderungen
US4663750A (en) * 1983-10-19 1987-05-05 Pioneer Electronic Corporation Focus error detection device for an optical recording/playing back system
JP2000009590A (ja) * 1998-06-29 2000-01-14 Sumitomo Heavy Ind Ltd レーザ発振器のリアルタイム画像モニタリングシステム及びリアルタイム画像モニタリング方法
DE102004018529A1 (de) * 2004-04-14 2005-11-03 Enotec Gmbh, Prozess- Und Umweltmesstechnik Lasermeßsystem
CN101158590A (zh) * 2007-11-13 2008-04-09 长春理工大学 全数字化的四象限探测器检测激光光束偏转角的装置及方法
CN101285666A (zh) * 2008-05-29 2008-10-15 重庆大学 基于四象限光电探测器的激光打靶器
CN101806717A (zh) * 2010-04-21 2010-08-18 中国科学院上海光学精密机械研究所 激光束非线性传输特性的测量装置
CN102323445A (zh) * 2011-06-14 2012-01-18 华中科技大学 一种测量重频激光器腔内循环气体流动速度的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1187588C (zh) * 1998-08-26 2005-02-02 中国科学院光电技术研究所 空间三维流场实时测量系统
JP2005140528A (ja) * 2003-11-04 2005-06-02 Toshiba Corp 流体計測装置
CN1844873B (zh) * 2006-05-22 2010-09-22 中国科学院光电技术研究所 基于h-s波前传感器的超声速流场探测系统及其探测方法
CN101464206B (zh) * 2009-01-20 2010-08-11 西安交通大学 横流中湍流气液掺混流场测试装置
CN101782435B (zh) * 2010-03-11 2011-04-06 中国科学院上海光学精密机械研究所 激光参数综合测试系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2752375A1 (de) * 1977-11-24 1979-06-07 Messerschmitt Boelkow Blohm Einrichtung zur messung kleiner winkelaenderungen
US4663750A (en) * 1983-10-19 1987-05-05 Pioneer Electronic Corporation Focus error detection device for an optical recording/playing back system
JP2000009590A (ja) * 1998-06-29 2000-01-14 Sumitomo Heavy Ind Ltd レーザ発振器のリアルタイム画像モニタリングシステム及びリアルタイム画像モニタリング方法
DE102004018529A1 (de) * 2004-04-14 2005-11-03 Enotec Gmbh, Prozess- Und Umweltmesstechnik Lasermeßsystem
CN101158590A (zh) * 2007-11-13 2008-04-09 长春理工大学 全数字化的四象限探测器检测激光光束偏转角的装置及方法
CN101285666A (zh) * 2008-05-29 2008-10-15 重庆大学 基于四象限光电探测器的激光打靶器
CN101806717A (zh) * 2010-04-21 2010-08-18 中国科学院上海光学精密机械研究所 激光束非线性传输特性的测量装置
CN102323445A (zh) * 2011-06-14 2012-01-18 华中科技大学 一种测量重频激光器腔内循环气体流动速度的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DU, YANYI ET AL.: "Simulation of phase disturbance in", COIL. HIGH POWER LASER AND PARTICLE BEAMS., vol. 18, no. 6, June 2006 (2006-06-01), pages 903 - 907 *
HUANG, ZHONGLUN: "Error Detection Based on He-Ne Laser Beam Drift. SCIENCE-ENGINEERING (B)", CHINESE SELECTED DOCTORAL DISSERTATIONS AND MASTER'S THESES FULL-TEXT DATABASES (MASTER), 2006, pages 1 - 59 *
KOSUGI, S.: "Measurement of Gas Temperature Profile in Discharge Region of Excimer Laser with Laser Schlieren Method.", JPN. J. APPL. PHYS., vol. 32, November 1993 (1993-11-01), pages 4980 - 4986 *
ZHAO, XIN ET AL.: "Atmospheric turbulence effect on detecting spot of four-quadrant detector.", INFRARED AND LASER ENGINEERING., vol. 39, no. 6, December 2010 (2010-12-01), pages 1147 - 1151 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111804913A (zh) * 2020-06-15 2020-10-23 上海航天设备制造总厂有限公司 成型与检测一体化的3d打印设备
CN111579489A (zh) * 2020-07-01 2020-08-25 四川物科光学精密机械有限公司 一种谐振腔式高灵敏度纹影仪及其成像方法
CN113295629A (zh) * 2021-04-08 2021-08-24 西安电子科技大学 一种光谱吸收率分布获取方法及系统

Also Published As

Publication number Publication date
CN102980739B (zh) 2015-05-20
CN102980739A (zh) 2013-03-20

Similar Documents

Publication Publication Date Title
WO2014067184A1 (fr) Appareil basé sur un détecteur à quatre quadrants et pour mesurer un champ d'écoulement dans la cavité d'un laser à gaz pulsé
CN103616164B (zh) 一种基于脉冲激光光源的反射率/透过率综合测量方法
US20120154815A1 (en) Apparatus and method for measuring reflectance of optical laser components
CN107132029B (zh) 一种同时测量高反射/高透射光学元件的反射率、透过率、散射损耗和吸收损耗的方法
CN104864817B (zh) 基于太赫兹时域光谱技术的塑料薄膜厚度检测装置及方法
CN109883337A (zh) 基于太赫兹光谱技术的热障涂层厚度测量系统和测量方法
CN102183486B (zh) 一种基于光频梳的气体折射率测量仪及其测量方法
US10323925B2 (en) Compact portable double differential fiber optic Sagnac interferometer
CN105928605B (zh) 一种检测水中声场信息的方法、装置及水下声传感器
CN107655599A (zh) 一种光学元件微小应力的测量方法
CN105181590B (zh) 一种基于飞秒激光的探测超快现象的共光路干涉装置
Petelin et al. Localized measurement of a sub-nanosecond shockwave pressure rise time
CN102252828A (zh) 一种监测高反射光学元件在激光辐照下反射率实时变化的方法
CN110763766B (zh) 一种涡轮叶片表面微缺陷的激光超声锁相检测系统及方法
CN102636337A (zh) 一种测量光纤色散的方法
JP4439363B2 (ja) レーザ超音波を利用したオンライン結晶粒径測定装置及び測定方法
JP4793681B2 (ja) 光波形測定装置とその測定方法,および複素屈折率測定装置とその測定方法
CN107687935A (zh) 一种高反射腔镜透过率的标定方法
CN113820051B (zh) 材料的互补干涉应力测量装置
CN108107020A (zh) 一种材料非线性折射率系数的测量装置及测量方法
CN110412614A (zh) 气溶胶测量方法及装置
KR100733539B1 (ko) 레이저를 이용한 고온 측정 대상물의 초음파 측정장치 및방법
RU160760U1 (ru) Устройство измерения коэффициента поглощения света в зеркалах кольцевого резонатора
CN113465719B (zh) 一种同时测量流体音速与折射率的方法及装置
CN109406454A (zh) 一种改进的z扫描装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887775

Country of ref document: EP

Kind code of ref document: A1