WO2014065309A1 - Warm-up device for transmission - Google Patents

Warm-up device for transmission Download PDF

Info

Publication number
WO2014065309A1
WO2014065309A1 PCT/JP2013/078675 JP2013078675W WO2014065309A1 WO 2014065309 A1 WO2014065309 A1 WO 2014065309A1 JP 2013078675 W JP2013078675 W JP 2013078675W WO 2014065309 A1 WO2014065309 A1 WO 2014065309A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
warm
vehicle
oil
lubricating oil
Prior art date
Application number
PCT/JP2013/078675
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 細川
一哉 松岡
圭一 中尾
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2014065309A1 publication Critical patent/WO2014065309A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/107Infinitely variable gearings with endless flexible members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • B60W30/194Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine related to low temperature conditions, e.g. high viscosity of hydraulic fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0412Cooling or heating; Control of temperature
    • F16H57/0413Controlled cooling or heating of lubricant; Temperature control therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • F16H57/0487Friction gearings
    • F16H57/0489Friction gearings with endless flexible members, e.g. belt CVTs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1072Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a warm-up device for a transmission.
  • the problem to be solved by the present invention is to provide a warming-up device capable of reducing the friction of the transmission by increasing the temperature of the lubricating oil at the start of operation of the hybrid vehicle.
  • the present invention includes an oil temperature raising means for raising the temperature of lubricating oil in a transmission by driving a motor using power from a battery as a power source, and a control means for driving the temperature raising means before driving the vehicle.
  • the present invention increases the temperature of the lubricating oil in the transmission before the vehicle is driven, so that the temperature of the lubricating oil can be raised at the start of the operation, and as a result, the friction of the transmission can be reduced. it can.
  • FIG. 1 is a block diagram showing an overall configuration of a hybrid vehicle according to an embodiment of the present invention.
  • 2 is a graph showing characteristics of transmission input rotation speed with respect to vehicle speed in the vehicle of FIG. 1.
  • FIG. 2 is a graph for explaining a relationship of a traveling mode with respect to a vehicle speed and an accelerator opening degree in the vehicle of FIG.
  • It is a block diagram explaining the structure which concerns on the warming-up system of lubricating oil among the warming-up apparatuses of the hybrid vehicle of FIG.
  • It is a schematic diagram which shows an oil circuit among the warming-up apparatuses of the hybrid vehicle of FIG.
  • It is a flowchart which shows the control procedure of the integrated control unit of FIG.
  • FIG. 6 is a graph showing characteristics of a driving time of a motor with respect to oil temperature in a warming-up device according to another embodiment of the present invention. It is a flowchart which shows the control procedure of an integrated control unit in the warming-up apparatus which concerns on other embodiment of this invention. It is a block diagram of the warming-up apparatus which concerns on other embodiment of this invention. It is a graph for demonstrating the relative relationship of the cumulative energy consumption map stored in the memory of FIG. 10 is a graph for explaining a relative relationship of a warm-up energy map stored in a memory of FIG. 9. It is a graph for demonstrating the relative relationship of the cumulative energy consumption map stored in the memory of FIG.
  • FIG. 10 is a graph for explaining a relative relationship of a warm-up energy map stored in a memory of FIG. 9. It is a graph for demonstrating the map after correction
  • An FF plug-in hybrid vehicle (hereinafter also simply referred to as a vehicle) including a warm-up device according to an embodiment of the present invention is a vehicle that uses a plurality of power sources such as an internal combustion engine and a motor generator for driving the vehicle.
  • FIG. 1 is an overall system diagram showing an FF plug-in hybrid vehicle. The overall system configuration of the FF plug-in hybrid vehicle will be described below with reference to FIG.
  • the FF plug-in hybrid vehicle includes an engine 1, a first clutch 2, a motor 3 (motor generator), a second clutch 4, and a belt type continuously variable transmission (transmission) 5.
  • the high-voltage battery 6, the inverter 7, the mechanical oil pump 8, the charger 11, and the connector 12 are provided.
  • the wheel 9 is a front wheel (drive wheel), and the wheel 10 is a rear wheel.
  • Engine 1 is a gasoline engine or a diesel engine, and engine start control, engine stop control, throttle valve opening control, fuel cut control, and the like are performed based on an engine control command from engine controller 20.
  • the first clutch 2 is a clutch interposed between the engine 1 and the motor 3.
  • the first clutch hydraulic pressure generated by a hydraulic unit (not shown) based on a control command from the CVT controller 21 is controlled from engagement to release.
  • the motor 3 is, for example, a synchronous motor in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator. Based on a control command from the motor controller 22, it is driven by applying a three-phase alternating current generated by the inverter 7.
  • the motor 3 operates as an electric motor that rotates by receiving power supplied from the high-voltage battery 6 via the inverter 7 (power running). Further, when the rotor of the motor 3 receives rotational energy from the engine 1 and the left and right front wheels 9, 9, it functions as a generator that generates electromotive force at both ends of the stator coil, and the high voltage battery 6 is connected via the inverter 7. Charge (regeneration).
  • the second clutch 4 is a clutch interposed between the motor 3 and the left and right front wheels 9 and interposed between the motor shaft 3a and the transmission input shaft 4a. Similar to the first clutch 2, the second clutch 4 is controlled to be engaged / slip engaged / released by a second clutch hydraulic pressure generated by a hydraulic unit (not shown) based on a control command from the CVT controller 21.
  • the belt-type continuously variable transmission 5 is disposed, for example, at a downstream position of the second clutch 4 and includes a primary pulley 51 and a secondary pump 52, and a belt 53 connecting them (see FIG. 4), and the gear ratio is continuously variable. It has a continuously variable transmission function capable of continuously changing them.
  • This belt-type continuously variable transmission 5 is controlled by a primary hydraulic pressure and a secondary hydraulic pressure generated by a hydraulic unit (not shown) based on a control command from the CVT controller 21 to control a gear ratio that is a belt winding diameter ratio between two pulleys. Is done.
  • a differential output (not shown) is connected to the transmission output shaft of the belt-type continuously variable transmission 5, and left and right front wheels 9 are provided from the differential via left and right drive shafts, respectively.
  • FIG. 2 shows an example of a shift diagram of the belt type continuously variable transmission 5.
  • the abscissa represents the vehicle speed
  • the vehicle speed and the transmission input rotation speed are determined for each accelerator opening.
  • the left straight line is the lowest gear ratio
  • the right straight line is the highest gear ratio.
  • the gear ratio in the belt type continuously variable transmission 5 is determined by the accelerator opening, the vehicle speed, and the transmission input rotational speed between the two lines.
  • the battery 6 may be an assembled battery in which a plurality of lithium ion secondary batteries, nickel hydride secondary batteries, or the like are connected in series or in parallel.
  • the inverter 7 drives the motor 3 by converting the direct current from the high voltage battery 6 into a three-phase alternating current during power running based on a control command from the motor controller 22. Further, during regeneration, the three-phase alternating current from the motor 3 is converted into direct current, and the high voltage battery 6 is charged.
  • the mechanical oil pump 8 is a pump that is operated by the rotational driving force of the motor shaft 3a that is the output shaft of the motor 3, and for example, a gear pump or a vane pump is used.
  • the pump input gear is connected to the pump gear attached to the motor shaft 3a via the chain 8a. That is, the discharge flow rate of the mechanical oil pump 8 changes according to the rotation speed of the motor 3 (motor rotation speed Nm).
  • the hydraulic oil discharged from the mechanical oil pump 8 is supplied to a hydraulic unit (not shown), and necessary hydraulic pressure is generated to operate the first clutch 2, the second clutch 4, the belt type continuously variable transmission 5, and the like. .
  • the charger 11 is a charging device for charging the battery 6 and includes a conversion circuit that converts electric power supplied from the outside of the vehicle into electric power suitable for charging the battery 6.
  • the charger 11 is controlled by the battery controller 23.
  • the connector 12 is a charging port connected to an external power source (not shown) by being connected to a cable (not shown).
  • the connector 12 is connected to the battery 6 through the charger 11 by wiring.
  • the FF hybrid vehicle has an electric vehicle travel mode (hereinafter referred to as “EV mode”), a hybrid vehicle travel mode (hereinafter referred to as “HEV mode”), and a drive torque control mode as travel modes depending on driving modes. (Hereinafter referred to as “WSC mode”).
  • EV mode electric vehicle travel mode
  • HEV mode hybrid vehicle travel mode
  • WSC mode drive torque control mode as travel modes depending on driving modes.
  • EV mode is a mode in which the first clutch 2 is in an open state and the motor 3 is used as a drive source, and has a motor running mode and a regenerative running mode. This “EV mode” is selected when the driving force requirement is low and the battery SOC is secured.
  • the “HEV mode” is a mode in which the first clutch 2 is engaged and the engine 1 and the motor 3 are used as drive sources, and includes a motor assist travel mode, a power generation travel mode, and an engine travel mode.
  • the “HEV mode” is selected when the driving force requirement is high or when the battery SOC is insufficient.
  • the second clutch 4 is maintained in the slip engagement state by controlling the number of revolutions of the motor 3, and the clutch transmission torque that passes through the second clutch 4 is determined according to the vehicle state and the driver's operation. In this mode, the clutch torque capacity is controlled so as to achieve torque.
  • the “WSC mode” is selected in a travel region where the engine speed is lower than the idle speed, such as when the vehicle is stopped, started, or decelerated in the “HEV mode” selected state.
  • the control system of the FF hybrid vehicle includes an engine controller 20, a CVT controller 21, a motor controller 22, a battery controller 23, and an integrated controller 30.
  • the controllers 20, 21, 22, 23 and the integrated controller 30 are connected via a CAN communication line 24 that can exchange information with each other.
  • the engine controller 20 inputs the engine speed information from the engine speed sensor 27, the target engine torque command from the integrated controller 30, and other necessary information. Then, a command for controlling the engine operating point (Ne, Te) is output to the throttle valve actuator or the like of the engine 1.
  • the CVT controller 21 inputs information from the accelerator opening sensor 25, the vehicle speed sensor 26, other sensors 29, and the like.
  • the CVT controller 21 also receives information from the inhibitor switch 97 via the integrated control unit 30. Then, when traveling with the D range selected, a control command for retrieving a target input rotational speed (gear ratio) that is determined by searching the target input rotational speed determined by the accelerator opening APO and the vehicle speed VSP, Output to a hydraulic unit (not shown) provided in the belt type continuously variable transmission 5.
  • the CVT controller 21 performs clutch hydraulic pressure control of the first clutch 2 and the second clutch 4 in addition to the gear ratio control.
  • the motor controller 22 inputs the rotor rotational position information, the motor rotational speed sensor 28, the target MG torque command and the target MG rotational speed command from the integrated controller 30, and other necessary information. Then, a command for controlling the motor operating point (Nm, Tm) of the motor 3 is output to the inverter 7.
  • the battery controller 23 inputs information provided from a voltage and voltage sensor (not shown) provided in the battery 6.
  • the battery controller 23 manages the state of the battery 6 based on the detection value of the sensor.
  • a charging cable (not shown) is connected to the connector 12, the battery controller 23 controls the charger 11 to charge the battery 6. Thereby, the battery 6 can be charged by a power source outside the vehicle.
  • the integrated controller 30 is responsible for managing the energy consumption of the entire vehicle and running the vehicle with maximum efficiency.
  • the integrated controller 30 includes an accelerator opening sensor 25, a vehicle speed sensor 26, an engine speed sensor 27, a motor speed sensor 28, other sensors and switches (for example, hydraulic oil supplied to the belt-type continuously variable transmission 5).
  • the necessary information from the flow rate sensor 29 for detecting the amount) is input directly or via the CAN communication line 24.
  • the integrated controller 30 searches for the optimum driving mode according to the position where the operating point (APO, VSP) determined by the accelerator opening and the vehicle speed exists on the EV-HEV selection map shown in FIG. It has a mode selection part which selects a mode as a target run mode.
  • the mode selection unit switches the target travel mode from “EV mode” to “HEV mode”.
  • the mode selection unit switches the target travel mode from “HEV mode” to “EV mode”.
  • the mode selection unit changes the target driving mode from “HEV mode” to “WSC mode”.
  • the HEV ⁇ EV switching line and the EV ⁇ HEV switching line are set with a hysteresis amount as a line dividing the EV area and the HEV area.
  • the “EV mode” is selected, if the battery SOC falls below a predetermined value, the “HEV mode” is forcibly set as the target travel mode.
  • the engine start control process is passed and the mode is changed to the “HEV mode”.
  • the operating point APO, VSP
  • the general controller 30 has a circulation function for circulating the lubricating oil of the transmission 5 and the like.
  • the inhibitor switch 97 is a switch for detecting a shift position.
  • the timer 98 is a timer that sets a time for circulating the lubricating oil.
  • the receiver 99 is a receiving device that receives a signal from the outside of the hybrid vehicle transmitted using, for example, a mobile phone line.
  • FIG. 4 is a block diagram showing a warm-up system in the warm-up device.
  • the thick line arrow of FIG. 4 has shown the supply path
  • the warming-up system includes a motor 3, an oil pump 100, an oil pan 110, a heating wire (electric heater) 120, and an oil temperature sensor 130.
  • the oil pump 100 pumps the lubricating oil stored in the oil pan 1102 and supplies the lubricating oil to the motor 3, the first clutch 2 and the transmission 5.
  • the oil pump 100 is, for example, a mechanical oil pump, and the rotation shaft of the oil pump 100 is connected to the rotation shaft of the motor 3 via a shaft.
  • the rotating shaft of the motor 3 rotates with the clutches 2 and 4 released, the rotating shaft of the oil pump 100 rotates in conjunction with the rotation, and the oil pump 100 is driven.
  • the oil pump 100 is driven by rotating the motor 3 using the power of the battery 6 as a power source. Since the oil pump 100 does not use the engine 1 as a power source, the oil pump 100 can be driven by the electric power of the battery 6 even when the engine 1 is not started.
  • the oil pan 110 is a container for storing lubricating oil.
  • the heating wire 120 is a resistor that generates heat by the power of the battery 6.
  • the oil temperature sensor 130 is a sensor that detects the temperature of the lubricating oil. The detected temperature of the lubricating oil detected by the oil temperature sensor 130 is sent to the integrated control unit 30. The oil pump 100 and the heating wire 120 are controlled by the integrated controller 30.
  • FIG. 5 is a schematic diagram showing an oil circuit of the warm-up device.
  • a valve 141 is provided in the lubricating oil supply line between the oil pump 100 and the clutches 2, 4, and a valve 142 is provided in the supply line between the clutches 2, 4 and the motor 3. Is provided.
  • the valve 141 is a valve that adjusts the flow of lubricating oil to the clutches 2 and 4
  • the valve 142 is a valve that adjusts the flow of lubricating oil to the motor 3. Opening and closing of the valves 141 and 142 is controlled by the integrated controller 30.
  • the flow of lubricating oil to the primary pulley 51 and the secondary pulley 52 is adjusted by opening / closing control of the valves 141 and 142 and output control of the lubricating oil from the oil pump 100.
  • Lubricating oil supplied by the oil pump 100 is used as hydraulic oil for the motor 3, the first clutch 2, the second clutch 4, and the primary pulley 51, the secondary pulley 52, and the belt 53 that constitute the transmission 5. Also.
  • the temperature of the lubricating oil is raised by stirring (friction) by driving the oil pump 100.
  • FIG. The integrated controller 30 drives the warm-up system shown in FIG. 4 before the hybrid vehicle is operated in the following manner.
  • the integrated controller 30 uses the sensor information from the inhibitor switch 97 in order to determine whether or not the vehicle is in a driving state (hereinafter sometimes simply referred to as a driving state). Based on the sensor information of the inhibitor switch 97, the integrated controller 30 determines that the vehicle is not in a driving state when the position of the shift position is the parking position (shift range P). On the other hand, when the position of the shift position is a position other than the parking position (shift range P), the integrated controller 30 determines that the vehicle is in an operating state and does not perform warm-up by the warm-up device.
  • the state in which the vehicle is not being driven is a state before the main switch of the vehicle is turned on by a user or the like, and the driving force by the motor 3 is used for running the vehicle. It is not in a state.
  • the state where the vehicle is not being driven is a state where the engine 1 is not started.
  • the timer 98 is a timer for setting the driving start time of the warm-up system in FIG. For example, when the user sets the departure time by a touch panel operation on a display (not shown), the timer 98 starts driving the warm-up system by a predetermined time that is set in advance from the departure time. Set to time.
  • the predetermined time is a time required to complete the warm-up by the departure time, and is a time set in the design stage according to the thermal efficiency of the warm-up system.
  • the predetermined time may be set according to the external temperature of the vehicle.
  • the timer 98 transmits a signal indicating that the drive start time has been reached to the integrated controller 30.
  • the integrated controller 30 receives a signal from the timer 98, the integrated controller 30 enters a preparation stage for driving the warm-up system.
  • the warm-up device of this example can be driven by a remote operation by the user.
  • the user transmits a signal to the vehicle to drive the warm-up system by operating an external communication terminal such as a mobile phone that can communicate with the vehicle or a personal computer before driving the vehicle.
  • an external communication terminal such as a mobile phone that can communicate with the vehicle or a personal computer before driving the vehicle.
  • the receiver 99 transmits a signal indicating that the reception has been received to the integrated controller 30.
  • the integrated controller 30 enters a preparation stage for driving the warm-up system based on the signal from the receiver 99.
  • the integrated controller 30 warms up the warm-up system drive start time set by the timer or a signal to drive the drive system transmitted from the outside of the vehicle before the start of vehicle operation.
  • the preliminary stage for driving the machine system is entered.
  • the integrated controller 30 detects the temperature of the lubricating oil and the state of charge (SOC) of the battery 6 as a preparation stage for driving the warm-up system.
  • the temperature of the lubricating oil is detected by the oil temperature sensor 130.
  • the state of charge of the battery 6 is managed by the battery controller 23 based on the detection voltage of a voltage sensor (not shown).
  • the integrated controller 30 compares the detected temperature detected by the oil temperature sensor 130 with a preset temperature threshold value (T 1 ).
  • the temperature threshold (T 1 ) is a temperature threshold for determining whether or not to drive the warm-up system. When the temperature of the lubricating oil is high, the warm-up system may not be driven.
  • the integrated controller 30 determines that the warm-up system can be driven when the temperature detected by the oil temperature sensor 130 is lower than the temperature threshold value (T 1 ). On the other hand, when the temperature detected by the oil temperature sensor 130 is equal to or higher than the temperature threshold value (T 1 ), the integrated controller 30 cancels the preparatory stage for driving the warm-up system and does not drive the warm-up system.
  • the integrated controller 30 compares the SOC of the battery 6 with a preset SOC threshold.
  • the SOC threshold value indicates a lower limit value of the SOC of the battery 6 required when the warm-up system is driven by the motor 3. Since the vehicle travels by driving the motor 3 using the power of the battery 6 after warming up, the SOC threshold value is set so that the charging capacity of the battery 6 after warming up remains sufficiently.
  • the SOC threshold is set to, for example, the SOC when fully charged.
  • the integrated controller 30 determines that the warm-up system can be driven when the SOC of the battery 6 is higher than the SOC threshold. On the other hand, when the SOC of the battery 6 is equal to or lower than the SOC threshold, the integrated controller 30 cancels the preparatory stage for driving the warm-up system and does not drive the warm-up system.
  • the integrated controller 30 causes the motor 3 and the heating wire 120 to be connected. By driving, the oil temperature of the lubricating oil is raised and the lubricating oil is supplied to the transmission 5, the clutches 2, 4 and the motor 3.
  • the integrated controller 30 manages the lubricating oil by the oil temperature sensor 130 even during driving of the drive system, and compares the detected temperature of the oil temperature sensor 130 with the temperature threshold value (T 2 ).
  • the temperature threshold (T 2 ) is a threshold for determining the end of warm-up, and is set to an oil temperature at which the friction of the transmission becomes low at the start of operation.
  • the temperature threshold (T 2 ) may be set to the same temperature as the temperature threshold (T 1 ).
  • the integrated controller 30 When the temperature detected by the oil temperature sensor 130 is lower than the temperature threshold value (T 2 ), the integrated controller 30 continues to drive the warm-up system. On the other hand, when the temperature detected by the oil temperature sensor 130 reaches the temperature threshold value (T 2 ), the integrated controller 30 stops driving the motor 3 and the electric wire 120 to stop the warm-up system.
  • the integrated controller 30 drives the motor 3 using the power of the battery 6 as a power source to drive the warm-up system before driving the vehicle.
  • the temperature of the lubricating oil of the transmission 5 is raised until
  • FIG. 6 is a flowchart showing a control procedure of warm-up control by the integrated controller 30.
  • step S1 the integrated controller 30 determines whether the shift position is the parking position based on the sensor information of the inhibitor switch 97. If the shift position is not the parking position, the control of this example is terminated.
  • the integrated controller 30 determines whether or not the current time has reached the warm-up start time set by the timer 98. If the current time has reached the warm-up start time, the process proceeds to step S4.
  • the integrated controller 30 determines whether the receiver 99 has received a signal to drive the warm-up system from the outside of the vehicle. . If the signal has not been received, the process returns to step S1. If the signal is received, the process proceeds to step S4.
  • step S4 the integrated controller 30 detects the temperature of the lubricating oil using the oil temperature sensor 130.
  • step S5 the integrated controller 30 compares the detected temperature of the oil temperature sensor 130 with the temperature threshold (T 1 ). When the detected temperature of the oil temperature sensor 130 is lower than the temperature threshold (T 1 ), the integrated controller 30 controls the battery controller 23 and uses the detected values of the voltage and current sensors (not shown) to The SOC is detected (step S6).
  • step S7 the integrated controller 30 compares the detected SOC with the SOC threshold value. If the detected SOC is higher than the SOC threshold value, the integrated controller 30 drives the motor 3 in step S8. Further, the integrated controller 30 drives the heating wire 120.
  • step S ⁇ b> 9 the integrated controller 30 detects the temperature of the lubricating oil using the oil temperature sensor 130.
  • step S10 the integrated controller 30 compares the temperature detected by the oil temperature sensor 130 with the temperature threshold value (T 2 ). When the temperature detected by the oil temperature sensor 130 is lower than the temperature threshold (T 2 ), the process returns to step S9, and the control process of steps S9 and S10 is repeated, thereby continuing the drive of the warm-up system and the temperature management of the lubricating oil. Is done.
  • the integrated controller 30 stops energization of the motor 3 and stops the motor 3 in step S11.
  • the integrated controller 30 also stops energizing the heating wire 120 and stops driving the heating wire 120. Thereby, the warm-up system is stopped and the control process of this example is terminated.
  • step S5 when the temperature detected by the oil temperature sensor 130 is equal to or higher than the temperature threshold value (T 1 ), the temperature of the lubricating oil is sufficiently high and it is not necessary to drive the warm-up system. Exit.
  • step S7 if the detected SOC is equal to or lower than the SOC threshold, the charging capacity of the battery 6 is insufficient and the warm-up system cannot be driven, and thus the control of this example is terminated. At this time, the user may be informed that the SOC of the battery 6 is insufficient and the temperature of the lubricating oil is not sufficiently high.
  • the integrated controller 30 may notify the terminal registered in advance by transmitting a signal, or may be displayed on the display of the vehicle.
  • this example includes a warm-up system that raises the temperature of the lubricating oil by driving the motor 3 of the oil pump 100 using the electric power of the battery 6 as a power source, and before starting the operation of the vehicle.
  • the warm-up system is driven.
  • the temperature of the lubricating oil of the transmission 40 can be increased immediately after the start of operation, and the friction of the transmission can be reduced.
  • the travel distance by the motor 3 of the hybrid vehicle can be extended.
  • the warm-up system is driven based on the drive start time set by the timer 98. Thereby, the warm-up system can be driven before the start of operation.
  • the drive system is driven based on the signal received by the receiver 99. Thereby, the user can operate the warm-up system from the outside of the vehicle before the start of driving.
  • the drive system when the SOC of the battery 6 is higher than the SOC threshold, the drive system is driven. Thereby, it is possible to control the battery 6 so that the charging capacity of the battery 6 is not insufficient at the start of operation by driving the warm-up system.
  • the drive system is driven only when the shift lever is at the parking position. Therefore, the safety
  • the warm-up device of this example is applied to a plug-in hybrid vehicle.
  • the plug-in hybrid vehicle includes a battery 6 that can be charged by an external power source, and a large-capacity storage battery is used for the battery 6. Therefore, the warm-up device of this example can be driven using the electric power of the battery 6 before the operation of the vehicle is started. Thereby, the temperature of the lubricating oil of the transmission 40 can be increased immediately after the start of operation, and the friction of the transmission can be reduced. As a result, the travel distance by the motor 3 of the hybrid vehicle can be extended.
  • the plug-in hybrid vehicle shown in FIG. 1 is a so-called FF hybrid vehicle in which the engine 1 is disposed on the front wheel side and the front wheels are used as drive wheels, but the warm-up device according to this example is an FR plug-in vehicle. It can also be applied to hybrid vehicles. This example can also be applied to a hybrid vehicle.
  • the heating of the lubricating oil by the heating wire 120 may be omitted. That is, when the oil pump 100 is driven, the temperature of the lubricating oil rises due to the heat generation action caused by the friction of the lubricating oil.
  • the warm-up system may be configured without providing the heating wire 120.
  • a heat exchanger using a water channel may be provided in the warm-up system.
  • a tank for stored water, a water pump, and a water channel for circulating the stored water are provided.
  • the water in a tank is warmed beforehand using the heat_generation
  • the water in the tank is circulated by a water pump to exchange heat between the lubricating oil having a low temperature and the water in the tank.
  • this example can raise the temperature of lubricating oil.
  • the warming-up system including the configurations of the oil pump 100 and the oil pan 110 described above corresponds to the “oil temperature raising means” of the present invention, and the battery controller 23 and the integrated controller 30 serve as the “control means” of the present invention.
  • the oil temperature sensor 130 is the “oil temperature detection means” of the present invention
  • the battery controller 23 is the “charge state detection means” of the present invention
  • the inhibitor switch 97 is the “shift” of the present invention. It corresponds to a “position sensor”.
  • Second Embodiment A hybrid vehicle including a warm-up device according to another embodiment of the present invention will be described.
  • part of the control of the warm-up device is different from the first embodiment described above. Since the configuration other than this is the same as that of the first embodiment described above, the description thereof is incorporated as appropriate.
  • the integrated controller 30 sets the driving time of the motor 3 according to the temperature of the lubricating oil.
  • the temperature of the lubricating oil is low at the time of driving the warm-up system, it takes time to raise the temperature of the lubricating oil to the temperature threshold value (T 2 ), so the driving time of the motor 3 becomes long.
  • the temperature of the lubricating oil is high, it takes less time to raise the temperature of the lubricating oil to the temperature threshold (T 2 ), and the driving time of the motor 3 is shortened.
  • FIG. 7 is a graph showing characteristics of the driving time of the motor 3 with respect to the oil temperature at the start of driving of the warm-up system. As shown in FIG. 7, the higher the oil temperature, the shorter the driving time of the motor 3.
  • the integrated controller 30 stores a table having the relationship shown in FIG. Then, the integrated controller 30 sets the driving time of the motor 3 by referring to the table with respect to the temperature detected by the oil temperature sensor 130. The integrated controller 30 uses a timer 98 to manage the elapsed time after driving the motor 3. When the elapsed drive time of the motor 3 reaches the set drive time, the integrated controller 30 stops the warm-up system by stopping the energization of the motor 3 and the heating wire 120.
  • FIG. 6 is a flowchart showing a control procedure of warm-up control by the integrated controller 30.
  • the control processes in steps S21 to S27 are the same as the control processes in steps S1 to S7 in FIG.
  • step S28 the integrated controller 30 sets the driving time of the motor 3 based on the detected temperature of the lubricating oil detected in step S24.
  • step S29 the integrated controller 30 drives the motor 3. Further, the integrated controller 30 drives the heating wire 120.
  • step S30 the integrated controller 30 compares the elapsed drive time of the motor 3 with the set drive time set in step S28. If the drive time of the motor 3 has not reached the set drive time, the control process of step S30 is performed again.
  • the integrated controller 30 stops energization of the motor 3 and stops the motor 3 in step S31.
  • the integrated controller 30 also stops energizing the heating wire 120 and stops driving the heating wire 120. Thereby, the warm-up system is stopped and the control process of this example is terminated.
  • the driving time of the motor 3 is set to a shorter time as the detected temperature of the lubricating oil is higher.
  • the operation time of the warm-up system can be set according to the temperature of the lubricating oil.
  • the temperature of the lubricating oil can be increased before the vehicle starts operating while efficiently using the charging capacity of the battery 6.
  • the warm-up device of this example further includes an outside air temperature sensor 150.
  • the outside air temperature sensor 150 is a sensor that detects an environmental temperature outside the vehicle. The temperature detected by the outside air temperature sensor 150 is output to the integrated controller 30.
  • the integrated controller 30 includes a warm-up control unit 31, a memory 32, and a navigation system 33.
  • the warm-up control unit 31 sets a target temperature based on the temperature of the oil temperature sensor 130, the temperature of the outside air temperature sensor 150, and the travel distance of the vehicle managed by the navigation system 33, and warms up before starting the operation. This is a control controller for driving the oil pump 100 of the system to raise the lubricating oil to the target temperature.
  • the memory 32 stores two types of maps for calculating the target temperature.
  • the navigation system 33 calculates the expected travel distance to the destination while managing the travel distance.
  • the navigation system 33 sets a destination based on a user input, and calculates a travel route to the destination with reference to map data. Then, the navigation 33 calculates the travel distance of the travel route as the predicted travel distance.
  • a map of cumulative energy consumption required for driving the mileage and the warm-up system (hereinafter referred to as cumulative energy consumption map), and FIG.
  • a map (hereinafter referred to as a warm-up energy map before operation) in which the required energy of the warm-up system required for increasing the temperature of the lubricating oil is associated with the increased temperature is recorded.
  • FIG. 10 is a graph for explaining the relative relationship shown in the cumulative energy consumption map, where the horizontal axis indicates the travel distance and the vertical axis indicates the cumulative energy consumption.
  • Each graph in FIG. 10 shows characteristics for each initial temperature of the lubricating oil at the start of operation.
  • the travel distance shown on the horizontal axis indicates the travel distance of the vehicle shown in FIG.
  • the cumulative energy consumption shown on the vertical axis indicates the cumulative value of energy required to drive the warm-up system shown in FIG. 4, and is consumed to drive the warm-up system out of the capacity consumed by the battery 6. Capacity.
  • the cumulative energy consumption increases as the travel distance increases. Further, the lower the temperature of the lubricating oil at the start of operation of the vehicle, the greater the cumulative energy consumption.
  • FIG. 11 is a graph for explaining the relative relationship shown in the warm-up energy map, where the horizontal axis indicates the warm-up energy and the vertical axis indicates the rising temperature.
  • the rising temperature is the range of the rising temperature from the temperature of the lubricating oil at the start of warming up to the temperature of the lubricating oil at the end of warming up.
  • Each graph of FIG. 11 shows characteristics according to the magnitude relationship between the temperature (T0) at the start of warm-up and the temperature (Ta) of the outside air.
  • the warm-up energy on the horizontal axis corresponds to the capacity consumed by the battery 6.
  • the power allocated to the warm-up energy is constant from the energy based on the power.
  • the lubricating oil at the start of warming up is the same temperature as the temperature (Ta) of the outside air
  • the lubricating oil is consumed by consuming energy (e0) for warming up.
  • the temperature (Ta) of the outside air is lower than the temperature (T0) of the lubricating oil at the start of warming up (Ta ⁇ T0)
  • the lubricating oil is consumed by consuming energy (e0) for warming up.
  • the rising temperature ( ⁇ T 2 ) is lower than the rising temperature ( ⁇ T 1 ). That is, since the outside air temperature when driving the warm-up system is low, the rising temperature is low even with the same warm-up energy (e0).
  • the warm-up control unit 31 acquires a detected value of the temperature of the lubricating oil by the oil temperature sensor 130 and acquires a detected value of the temperature of the outside air by the outside air temperature sensor 150 before starting the operation of the vehicle.
  • the expected travel distance from the current location of the vehicle to the destination is calculated.
  • the navigation system 33 calculates an expected travel distance from the current location of the vehicle to the destination.
  • the warm-up control unit 31 acquires information on the predicted travel distance from the navigation system 33.
  • the warm-up control unit 31 refers to the accumulated energy consumption map and extracts characteristics of the travel distance and accumulated energy corresponding to the acquired temperature of the lubricating oil.
  • the warm-up control unit 31 refers to the warm-up energy map while comparing the acquired outside air temperature and the lubricant temperature, and extracts the characteristics of the warm-up energy and the rising temperature corresponding to the comparison result.
  • the warm-up control unit 31 corrects the cumulative energy consumption map based on the relationship indicated by the characteristics of the extracted warm-up energy and the increased temperature. Then, the warm-up control unit 31 refers to the corrected cumulative energy consumption map, calculates the target temperature corresponding to the predicted travel distance, and drives the warm-up system with the calculated target temperature before driving the vehicle. Set to the target temperature of the lubricating oil.
  • the precondition for the lubricating oil is that the initial temperature is -10 degrees and the outside air temperature is -10 degrees.
  • 12 is a graph showing characteristics of the travel distance and cumulative energy consumption corresponding to the initial temperature in the cumulative energy consumption map of FIG. 10
  • FIG. 13 is the initial temperature of the warm-up energy map of FIG. It is a graph which shows the characteristic of warm-up energy and rising temperature corresponding to the case where the outside air temperature is equal.
  • FIG. 14 is a graph showing the characteristics of the map after correcting the cumulative energy consumption map of FIG.
  • the warm-up control unit 31 extracts the characteristic corresponding to the temperature increased by 10 degrees with respect to the initial temperature from the characteristics of the travel distance and the cumulative energy consumption shown in the cumulative energy consumption map.
  • characteristics of 0 degrees, 10 degrees, 20 degrees, 30 degrees, 40 degrees, and 50 degrees are extracted.
  • the warm-up control unit 31 corrects the plurality of extracted characteristics by sequentially adding warm-up energy e1, e2, e3, etc. while making the temperature correspond to the extracted cumulative energy of the plurality of characteristics. To do. This correction will be described using a graph.
  • the level of the cumulative energy consumption having the characteristics of 0 to 50 degrees increases by the energy (e1 to e6), respectively.
  • the cumulative energy consumption map is corrected. That is, the correction of the map indicates that when the travel distance is 0 km, the accumulated energy is added as much as the initial temperature increases due to warm-up before the start of vehicle operation.
  • the warm-up control unit 31 calculates the initial temperature of the characteristic graph corresponding to the expected travel distance as the target temperature of the warm-up system before the start of operation while referring to the corrected cumulative energy consumption map.
  • the warm-up control unit 31 determines that the warm-up before the start of operation is not required.
  • the cumulative energy consumption is the smallest at the initial temperature (0 ° C.).
  • the warm-up control unit 31 calculates the target temperature of the warm-up system as 0 ° C.
  • the warm-up control unit 31 calculates the target temperature of the warm-up system as 10 ° C.
  • the warm-up control unit 31 sets the target temperature calculated as described above to the target temperature for controlling the warm-up system before the start of operation, and then the target temperature set by the temperature of the lubricating oil at the start of operation.
  • the oil pump 100 is controlled so that
  • the warm-up control unit 31 suppresses the overall energy consumption required for warm-up by setting the target temperature so that the target temperature becomes higher as the expected travel distance is longer.
  • the vehicle will only travel about a few kilometers rather than warming up before starting operation and raising the temperature of the lubricating oil.
  • the overall energy consumption can be suppressed by pushing the warm-up until the start of operation.
  • the shorter the expected travel distance the lower the target temperature in order to suppress warm-up energy consumption.
  • the target temperature is increased as the predicted travel distance is longer.
  • the target temperature that is the optimum efficiency of energy is obtained by the calculation of the above map.
  • FIG. 15 is a flowchart showing a control procedure of the integrated controller 30.
  • step S41 the warm-up control unit 31 uses the oil temperature sensor 130 to detect the temperature of the lubricating oil.
  • the outside air temperature sensor 150 is used to detect the outside air temperature.
  • step S ⁇ b> 43 the warm-up control unit 31 acquires information on the expected travel distance managed by the navigation system 33.
  • the warm-up control unit 31 refers to the cumulative energy consumption map recorded in the memory 32, and extracts the characteristics of the travel distance and the cumulative energy consumption corresponding to the temperature of the lubricating oil.
  • the warm-up control unit 31 refers to the warm-up energy map recorded in the memory 32, and determines the warm-up energy and the rising temperature corresponding to the comparison result between the outside air temperature and the lubricating oil temperature. Extract the characteristics of.
  • step S46 the warm-up control unit 31 determines, based on the characteristics of the warm-up energy extracted in step S45 and the rising temperature, the travel distance and cumulative energy that are not extracted in step S44 in the cumulative energy map.
  • the accumulated energy consumption map is corrected by correcting the characteristics of.
  • step S47 the warm-up control unit 31 refers to the corrected cumulative energy consumption map, and calculates the temperature corresponding to the expected travel distance as the target temperature.
  • step 48 the warm-up control unit 31 sets the temperature calculated in step S47 as the target temperature, and controls the warm-up system.
  • the target temperature when the temperature of the lubricating oil is raised by driving the warm-up system is set according to the temperature of the lubricating oil, the temperature of the outside air, and the travel distance. Therefore, the time required for warm-up and the consumed capacity of the battery 6 can be suppressed while suppressing the consumption of energy for driving the warm-up system.
  • the relative relationship between the cumulative energy consumption required for warming up the transmission 5 and the travel distance until the vehicle arrives at the destination after the warming-up system is driven before the vehicle starts driving is calculated.
  • Cumulative consumption energy map (corresponding to the “first map” of the present invention) shown corresponding to the temperature (initial temperature) of the lubricating oil when starting the vehicle, and driving the warm-up system before starting the vehicle operation
  • a warm-up energy map (corresponding to the “second map” of the present invention) showing the relative relationship between the energy required for raising the target temperature and the target temperature in correspondence with the temperature of the outside air is stored in the memory 32. While saving, the target temperature is set with reference to the cumulative energy consumption map and the energy consumption map. This minimizes the energy required to drive the warm-up system from the time of driving the warm-up system before the start of operation until the destination is reached, depending on the temperature of the lubricating oil, the temperature of the outside air, and the travel distance. be able to.
  • the target temperature is set higher as the expected travel distance is longer. Therefore, the energy required for driving the warm-up system can be minimized in accordance with the expected travel distance.
  • the integrated controller 30 may acquire the travel distance of the vehicle, the temperature of the lubricating oil at the start of operation of the vehicle, and the consumed capacity of the battery 6, and update the cumulative energy consumption map.
  • the capacity consumed by the battery 6 is calculated based on a detection value of a sensor (not shown) connected to the battery 6. And since the capacity
  • the relative relationship between the accumulated energy consumption and the travel distance is shown every 10 degrees of the initial temperature, but it is not always necessary to make every 10 degrees, and the initial temperature is made continuous. Also good.
  • the warm-up control unit 31 and the memory 32 of the present invention correspond to “control means” of the present invention
  • the outside air temperature sensor 150 corresponds to “outside air temperature detection means” of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A warm-up device is provided to a hybrid vehicle having a battery (6), a motor (3), and a transmission (5), and the device warms up the transmission (5), wherein the warm-up device comprises an oil temperature increasing means for increasing the temperature of a lubrication oil of the transmission (5), and a control means for driving a temperature increasing means before the vehicle is operated, where both means use the drive force of the motor (3) which uses the power of the battery (6) as a power source.

Description

変速機の暖機装置Gearbox warm-up device
 本発明は、変速機の暖機装置に関するものである。 The present invention relates to a warm-up device for a transmission.
 本出願は、2012年10月26日に出願された日本国特許出願の特願2012―236429に基づく優先権を主張するものであり、文献の参照による組み込みが認められる指定国については、上記の出願に記載された内容を参照により本出願に組み込み、本出願の記載の一部とする。 This application claims priority based on Japanese Patent Application No. 2012-236429 filed on Oct. 26, 2012. For designated countries that are allowed to be incorporated by reference, The contents described in the application are incorporated into the present application by reference and made a part of the description of the present application.
 オイル温度上昇モードが設定されたときには、エンジンを始動して変速機を潤滑する潤滑オイルを圧送する機械オイルポンプを駆動すると共に同じく潤滑オイルを圧送する電動オイルポンプを駆動し、変速機のブレーキを半係合として、変速機に隣接して配置されたモータをその出力効率を低下させて駆動する、ハイブリッド車両の駆動装置が知られている(特許文献1)。 When the oil temperature rise mode is set, the engine is started to drive the mechanical oil pump that pumps the lubricating oil that lubricates the transmission, and the electric oil pump that also pumps the lubricating oil to drive the transmission brake. As a half-engagement, a hybrid vehicle drive device that drives a motor disposed adjacent to a transmission with its output efficiency lowered is known (Patent Document 1).
特開2006-288141号公報JP 2006-288141 A
 しかしながら、潤滑オイルの油温を高めるためには、機械オイルポンプを駆動するのに必要な駆動回転数で運転させるよう、エンジンを始動させる必要があるため、例えば、ハイブリッド車両において、運転開始前にエンジンを始動していない場合には、運転開始時に潤滑オイルの油温を高くすることができず、変速機の摩擦が大きくなるという問題があった。 However, in order to increase the oil temperature of the lubricating oil, it is necessary to start the engine so that the engine oil pump is operated at the driving rotational speed necessary to drive the mechanical oil pump. When the engine is not started, there is a problem that the temperature of the lubricating oil cannot be increased at the start of operation and the friction of the transmission increases.
 本発明が解決しようとする課題は、ハイブリッド車両の運転開始時に潤滑油の油温を高い状態にし、変速機の摩擦を減らすことができる暖機装置を提供することである。 The problem to be solved by the present invention is to provide a warming-up device capable of reducing the friction of the transmission by increasing the temperature of the lubricating oil at the start of operation of the hybrid vehicle.
 本発明は、バッテリの電力を動力源としたモータの駆動により、変速機の潤滑油の温度を上昇させる油温上昇手段と、車両の運転の前に当該温度上昇手段を駆動させる制御手段とを備えることによって上記課題を解決する。 The present invention includes an oil temperature raising means for raising the temperature of lubricating oil in a transmission by driving a motor using power from a battery as a power source, and a control means for driving the temperature raising means before driving the vehicle. The above-mentioned problems are solved by providing.
 本発明は、車両の運転前から変速機の潤滑油の温度を上昇させるため、運転開始時には潤滑油の油温を高い状態にすることができ、その結果として、変速機の摩擦を減らすことができる。 The present invention increases the temperature of the lubricating oil in the transmission before the vehicle is driven, so that the temperature of the lubricating oil can be raised at the start of the operation, and as a result, the friction of the transmission can be reduced. it can.
本発明の一実施の形態に係るハイブリッド車両の全体構成を示すブロック図である。1 is a block diagram showing an overall configuration of a hybrid vehicle according to an embodiment of the present invention. 図1の車両において、車速に対する変速機入力回転数の特性を示すグラフである。2 is a graph showing characteristics of transmission input rotation speed with respect to vehicle speed in the vehicle of FIG. 1. 図1の車両において、車速及びアクセル開度に対する走行モードの関係を説明するためのグラフである。FIG. 2 is a graph for explaining a relationship of a traveling mode with respect to a vehicle speed and an accelerator opening degree in the vehicle of FIG. 図1のハイブリッド車両の暖機装置のうち、潤滑油の暖機システムに係る構成を説明するブロック図である。It is a block diagram explaining the structure which concerns on the warming-up system of lubricating oil among the warming-up apparatuses of the hybrid vehicle of FIG. 図1のハイブリッド車両の暖機装置のうち、オイル回路を示す概要図である。It is a schematic diagram which shows an oil circuit among the warming-up apparatuses of the hybrid vehicle of FIG. 図1の統合コントロールユニットの制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the integrated control unit of FIG. 本発明の他の実施形態に係る暖機装置において、オイル温度に対するモータの駆動時間の特性を示すグラフである。6 is a graph showing characteristics of a driving time of a motor with respect to oil temperature in a warming-up device according to another embodiment of the present invention. 本発明の他の実施形態に係る暖機装置において、統合コントロールユニットの制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of an integrated control unit in the warming-up apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る暖機装置のブロック図である。It is a block diagram of the warming-up apparatus which concerns on other embodiment of this invention. 図9のメモリに格納されている累積消費エネルギーマップの相対関係を説明するためのグラフである。It is a graph for demonstrating the relative relationship of the cumulative energy consumption map stored in the memory of FIG. 図9のメモリに格納されている暖機エネルギーマップの相対関係を説明するためのグラフである。10 is a graph for explaining a relative relationship of a warm-up energy map stored in a memory of FIG. 9. 図9のメモリに格納されている累積消費エネルギーマップの相対関係を説明するためのグラフである。It is a graph for demonstrating the relative relationship of the cumulative energy consumption map stored in the memory of FIG. 図9のメモリに格納されている暖機エネルギーマップの相対関係を説明するためのグラフである。10 is a graph for explaining a relative relationship of a warm-up energy map stored in a memory of FIG. 9. 図9のメモリに格納されている累積消費エネルギーマップの補正後のマップを説明するためのグラフである。It is a graph for demonstrating the map after correction | amendment of the cumulative energy consumption map stored in the memory of FIG. 図9の暖機制御部の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the warm-up control part of FIG.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
《第1実施形態》 << First Embodiment >>
 本発明の実施形態に係る暖機装置を含むFFプラグインハイブリッド車両(以下、単に車両とも称す。)は、内燃機関と電動発電機といった複数の動力源を車両の駆動に使用する車両である。図1は、FFプラグインハイブリッド車両を示す全体システム図である。以下、図1に基づいて、FFプラグインハイブリッド車両の全体システム構成を説明する。 An FF plug-in hybrid vehicle (hereinafter also simply referred to as a vehicle) including a warm-up device according to an embodiment of the present invention is a vehicle that uses a plurality of power sources such as an internal combustion engine and a motor generator for driving the vehicle. FIG. 1 is an overall system diagram showing an FF plug-in hybrid vehicle. The overall system configuration of the FF plug-in hybrid vehicle will be described below with reference to FIG.
 FFプラグインハイブリッド車両は、図1に示すように、エンジン1と、第1クラッチ2と、モータ3(モータジェネレータ)と、第2クラッチ4と、ベルト式無段変速機(変速機)5と、高電圧バッテリ6と、インバータ7と、機械式オイルポンプ8と、充電器11と、コネクタ12とを備える。なお、車輪9は、前輪(駆動輪)であり、車輪10は、後輪である。 As shown in FIG. 1, the FF plug-in hybrid vehicle includes an engine 1, a first clutch 2, a motor 3 (motor generator), a second clutch 4, and a belt type continuously variable transmission (transmission) 5. The high-voltage battery 6, the inverter 7, the mechanical oil pump 8, the charger 11, and the connector 12 are provided. The wheel 9 is a front wheel (drive wheel), and the wheel 10 is a rear wheel.
 エンジン1は、ガソリンエンジンやディーゼルエンジンであり、エンジンコントローラ20からのエンジン制御指令に基づいて、エンジン始動制御やエンジン停止制御やスロットルバルブのバルブ開度制御や燃料カット制御、等が行われる。 Engine 1 is a gasoline engine or a diesel engine, and engine start control, engine stop control, throttle valve opening control, fuel cut control, and the like are performed based on an engine control command from engine controller 20.
 第1クラッチ2は、エンジン1とモータ3の間に介装されたクラッチである。CVTコントローラ21からの制御指令に基づき図外の油圧ユニットにより作り出された第1クラッチ油圧により、締結から開放まで制御される。 The first clutch 2 is a clutch interposed between the engine 1 and the motor 3. The first clutch hydraulic pressure generated by a hydraulic unit (not shown) based on a control command from the CVT controller 21 is controlled from engagement to release.
 モータ3は、例えば、ロータに永久磁石を埋設しステータにステータコイルが巻き付けられた同期型モータである。モータコントローラ22からの制御指令に基づいて、インバータ7により作り出された三相交流を印加することにより駆動する。モータ3は、インバータ7を介して高電圧バッテリ6からの電力の供給を受けて回転駆動する電動機として動作する(力行)。また、モータ3のロータがエンジン1や左右前輪9,9から回転エネルギを受ける場合には、ステータコイルの両端に起電力を生じさせる発電機として機能し、インバータ7を介して高電圧バッテリ6を充電する(回生)。 The motor 3 is, for example, a synchronous motor in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator. Based on a control command from the motor controller 22, it is driven by applying a three-phase alternating current generated by the inverter 7. The motor 3 operates as an electric motor that rotates by receiving power supplied from the high-voltage battery 6 via the inverter 7 (power running). Further, when the rotor of the motor 3 receives rotational energy from the engine 1 and the left and right front wheels 9, 9, it functions as a generator that generates electromotive force at both ends of the stator coil, and the high voltage battery 6 is connected via the inverter 7. Charge (regeneration).
 第2クラッチ4は、モータ3と左右前輪9の間のうち、モータ軸3aと変速機入力軸4aの間に介装されたクラッチである。第2クラッチ4は、第1クラッチ2と同様に、CVTコントローラ21からの制御指令に基づき図外の油圧ユニットにより作り出された第2クラッチ油圧により、締結・スリップ締結・開放が制御される。 The second clutch 4 is a clutch interposed between the motor 3 and the left and right front wheels 9 and interposed between the motor shaft 3a and the transmission input shaft 4a. Similar to the first clutch 2, the second clutch 4 is controlled to be engaged / slip engaged / released by a second clutch hydraulic pressure generated by a hydraulic unit (not shown) based on a control command from the CVT controller 21.
 ベルト式無段変速機5は、例えば、第2クラッチ4の下流位置に配置され、プライマリープーリー51及びセカンダリープー52と、これらをつなぐベルト53を備え(図4を参照)、変速比を無段階に設定しつつそれらを連続的に変えることのできる無段変速機能を有する。このベルト式無段変速機5は、CVTコントローラ21からの制御指令に基づき図外の油圧ユニットにより作り出されたプライマリ油圧とセカンダリ油圧により、2つのプーリへのベルト巻き付け径比である変速比が制御される。ベルト式無段変速機5の変速機出力軸には、図外のディファレンシャルが連結され、ディファレンシャルから左右のドライブシャフトを介してそれぞれに左右前輪9が設けられている。 The belt-type continuously variable transmission 5 is disposed, for example, at a downstream position of the second clutch 4 and includes a primary pulley 51 and a secondary pump 52, and a belt 53 connecting them (see FIG. 4), and the gear ratio is continuously variable. It has a continuously variable transmission function capable of continuously changing them. This belt-type continuously variable transmission 5 is controlled by a primary hydraulic pressure and a secondary hydraulic pressure generated by a hydraulic unit (not shown) based on a control command from the CVT controller 21 to control a gear ratio that is a belt winding diameter ratio between two pulleys. Is done. A differential output (not shown) is connected to the transmission output shaft of the belt-type continuously variable transmission 5, and left and right front wheels 9 are provided from the differential via left and right drive shafts, respectively.
 なお、図2にベルト式無段変速機5の変速線図の一例を示す。この変速線図では、横軸に車速、縦軸に変速機入力回転数(=モータ回転数)をとり、アクセル開度ごとに車速と変速機入力回転数とが決まるようにしている。そして、右上がりの2本の直線のうち左側の直線は最もロー側の変速比であり、右側の直線は最もハイ側の変速比である。ベルト式無段変速機5における変速比は、この2本の線の間で、アクセル開度、車速、変速機入力回転数によって決まる。 FIG. 2 shows an example of a shift diagram of the belt type continuously variable transmission 5. In this shift diagram, the abscissa represents the vehicle speed, the ordinate represents the transmission input rotation speed (= motor rotation speed), and the vehicle speed and the transmission input rotation speed are determined for each accelerator opening. Of the two straight lines going up to the right, the left straight line is the lowest gear ratio, and the right straight line is the highest gear ratio. The gear ratio in the belt type continuously variable transmission 5 is determined by the accelerator opening, the vehicle speed, and the transmission input rotational speed between the two lines.
 バッテリ6は、複数のリチウムイオン二次電池やニッケル水素二次電池などを直列又は並列に接続した組電池を例示することができる。 The battery 6 may be an assembled battery in which a plurality of lithium ion secondary batteries, nickel hydride secondary batteries, or the like are connected in series or in parallel.
 インバータ7は、モータコントローラ22からの制御指令に基づいて、力行時、高電圧バッテリ6からの直流を三相交流に変換してモータ3を駆動する。また、回生時、モータ3からの三相交流を直流に変換し、高電圧バッテリ6へ充電する。 The inverter 7 drives the motor 3 by converting the direct current from the high voltage battery 6 into a three-phase alternating current during power running based on a control command from the motor controller 22. Further, during regeneration, the three-phase alternating current from the motor 3 is converted into direct current, and the high voltage battery 6 is charged.
 機械式オイルポンプ8は、前記モータ3の出力軸であるモータ軸3aの回転駆動力により作動するポンプであり、例えば、ギアポンプやベーンポンプ等が用いられる。ここでは、第2クラッチ4の上流位置において、モータ軸3aに取り付けられたポンプギアにチェーン8aを介してポンプ入力ギアが接続している。すなわち、この機械式オイルポンプ8の吐出流量は、モータ3の回転数(モータ回転数Nm)に応じて変化する。そして、機械式オイルポンプ8が吐出する作動油は、図外の油圧ユニットに供給され、必要油圧が作り出されて第1クラッチ2、第2クラッチ4、ベルト式無段変速機5等が動作する。 The mechanical oil pump 8 is a pump that is operated by the rotational driving force of the motor shaft 3a that is the output shaft of the motor 3, and for example, a gear pump or a vane pump is used. Here, at the upstream position of the second clutch 4, the pump input gear is connected to the pump gear attached to the motor shaft 3a via the chain 8a. That is, the discharge flow rate of the mechanical oil pump 8 changes according to the rotation speed of the motor 3 (motor rotation speed Nm). The hydraulic oil discharged from the mechanical oil pump 8 is supplied to a hydraulic unit (not shown), and necessary hydraulic pressure is generated to operate the first clutch 2, the second clutch 4, the belt type continuously variable transmission 5, and the like. .
 充電器11は、バッテリ6を充電するための充電装置であって、車両の外部から供給される電力を、バッテリ6の充電に適した電力に変換する変換回路等を有している。充電器11は、バッテリコントローラ23により制御される。 The charger 11 is a charging device for charging the battery 6 and includes a conversion circuit that converts electric power supplied from the outside of the vehicle into electric power suitable for charging the battery 6. The charger 11 is controlled by the battery controller 23.
 コネクタ12は、図示しないケーブルに接続されることで、外部電源(図示しない)に接続される充電ポートである。コネクタ12は、充電器11を介して、バッテリ6に配線で接続されている。 The connector 12 is a charging port connected to an external power source (not shown) by being connected to a cable (not shown). The connector 12 is connected to the battery 6 through the charger 11 by wiring.
 FFハイブリッド車両は、駆動形態の違いによる走行モードとして、電気自動車走行モード(以下、「EVモード」という。)と、ハイブリッド車走行モード(以下、「HEVモード」という。)と、駆動トルクコントロールモード(以下、「WSCモード」という。)と、を有する。 The FF hybrid vehicle has an electric vehicle travel mode (hereinafter referred to as “EV mode”), a hybrid vehicle travel mode (hereinafter referred to as “HEV mode”), and a drive torque control mode as travel modes depending on driving modes. (Hereinafter referred to as “WSC mode”).
 「EVモード」は、第1クラッチ2を開放状態とし、モータ3を駆動源として走行するモードであり、モータ走行モード・回生走行モードを有する。この「EVモード」は、駆動力要求が低く、バッテリSOCが確保されているときに選択される。 “EV mode” is a mode in which the first clutch 2 is in an open state and the motor 3 is used as a drive source, and has a motor running mode and a regenerative running mode. This “EV mode” is selected when the driving force requirement is low and the battery SOC is secured.
 「HEVモード」は、第1クラッチ2を締結状態とし、エンジン1とモータ3を駆動源として走行するモードであり、モータアシスト走行モード・発電走行モード・エンジン走行モードを有する。この「HEVモード」は、駆動力要求が高いとき、あるいは、バッテリSOCが不足するようなときに選択される。 The “HEV mode” is a mode in which the first clutch 2 is engaged and the engine 1 and the motor 3 are used as drive sources, and includes a motor assist travel mode, a power generation travel mode, and an engine travel mode. The “HEV mode” is selected when the driving force requirement is high or when the battery SOC is insufficient.
 「WSCモード」は、モータ3の回転数制御により、第2クラッチ4をスリップ締結状態に維持し、第2クラッチ4を経過するクラッチ伝達トルクが、車両状態や運転者操作に応じて決まる要求駆動トルクとなるようにクラッチトルク容量をコントロールしながら走行するモードである。この「WSCモード」は、「HEVモード」の選択状態での停車時・発進時・減速時等のように、エンジン回転数がアイドル回転数を下回るような走行領域において選択される。 In the “WSC mode”, the second clutch 4 is maintained in the slip engagement state by controlling the number of revolutions of the motor 3, and the clutch transmission torque that passes through the second clutch 4 is determined according to the vehicle state and the driver's operation. In this mode, the clutch torque capacity is controlled so as to achieve torque. The “WSC mode” is selected in a travel region where the engine speed is lower than the idle speed, such as when the vehicle is stopped, started, or decelerated in the “HEV mode” selected state.
 FFハイブリッド車両の制御系は、図1に示すように、エンジンコントローラ20と、CVTコントローラ21と、モータコントローラ22と、バッテリコントローラ23と、統合コントローラ30と、を有して構成されている。なお、各コントローラ20,21,22、23と統合コントローラ30とは、情報交換が互いに可能なCAN通信線24を介して接続されている。 As shown in FIG. 1, the control system of the FF hybrid vehicle includes an engine controller 20, a CVT controller 21, a motor controller 22, a battery controller 23, and an integrated controller 30. The controllers 20, 21, 22, 23 and the integrated controller 30 are connected via a CAN communication line 24 that can exchange information with each other.
 エンジンコントローラ20は、エンジン回転数センサ27からのエンジン回転数情報と、統合コントローラ30からの目標エンジントルク指令と、その他の必要情報を入力する。そして、エンジン動作点(Ne,Te)を制御する指令を、エンジン1のスロットルバルブアクチュエータ等へ出力する。 The engine controller 20 inputs the engine speed information from the engine speed sensor 27, the target engine torque command from the integrated controller 30, and other necessary information. Then, a command for controlling the engine operating point (Ne, Te) is output to the throttle valve actuator or the like of the engine 1.
 CVTコントローラ21は、アクセル開度センサ25と、車速センサ26と、他のセンサ類29等からの情報を入力する。また、CVTコントローラ21は、統合コントロールユニット30を介して、インヒビタスイッチ97からの情報も入力する。そして、Dレンジを選択しての走行時、アクセル開度APOと車速VSPにより決まる目標入力回転数を変速線図により検索し、検索された目標入力回転数(変速比)を得る制御指令を、ベルト式無段変速機5に設けられた図外の油圧ユニットに出力する。前記CVTコントローラ21は、この変速比制御に加え、第1クラッチ2と第2クラッチ4のクラッチ油圧制御を行う。 The CVT controller 21 inputs information from the accelerator opening sensor 25, the vehicle speed sensor 26, other sensors 29, and the like. The CVT controller 21 also receives information from the inhibitor switch 97 via the integrated control unit 30. Then, when traveling with the D range selected, a control command for retrieving a target input rotational speed (gear ratio) that is determined by searching the target input rotational speed determined by the accelerator opening APO and the vehicle speed VSP, Output to a hydraulic unit (not shown) provided in the belt type continuously variable transmission 5. The CVT controller 21 performs clutch hydraulic pressure control of the first clutch 2 and the second clutch 4 in addition to the gear ratio control.
 モータコントローラ22は、ロータ回転位置情報と、モータ回転数センサ28と、統合コントローラ30からの目標MGトルク指令および目標MG回転数指令と、他の必要情報を入力する。そして、モータ3のモータ動作点(Nm,Tm)を制御する指令をインバータ7へ出力する。 The motor controller 22 inputs the rotor rotational position information, the motor rotational speed sensor 28, the target MG torque command and the target MG rotational speed command from the integrated controller 30, and other necessary information. Then, a command for controlling the motor operating point (Nm, Tm) of the motor 3 is output to the inverter 7.
 バッテリコントローラ23は、バッテリ6に設けられた電圧、電圧センサ(図示しない)からの情報を入力する。バッテリコントローラ23は、センサの検出値に基づいてバッテリ6の状態を管理する。また、充電用のケーブル(図示しない)がコネクタ12に接続された場合には、バッテリコントローラ23は、充電器11を制御して、バッテリ6の充電を行う。これにより、バッテリ6は、車両外の電源により充電可能となる。 The battery controller 23 inputs information provided from a voltage and voltage sensor (not shown) provided in the battery 6. The battery controller 23 manages the state of the battery 6 based on the detection value of the sensor. When a charging cable (not shown) is connected to the connector 12, the battery controller 23 controls the charger 11 to charge the battery 6. Thereby, the battery 6 can be charged by a power source outside the vehicle.
 統合コントローラ30は、車両全体の消費エネルギを管理し、最高効率で車両を走らせるための機能を担うものである。この統合コントローラ30には、アクセル開度センサ25、車速センサ26、エンジン回転数センサ27、モータ回転数センサ28、他のセンサ・スイッチ類(例えばベルト式無段変速機5に供給される作動油量を検出する流量センサ等)29からの必要情報が直接、あるいは、CAN通信線24を介して入力される。また、統合コントローラ30には、アクセル開度と車速により決まる運転点(APO,VSP)が、図3に示すEV-HEV選択マップ上で存在する位置により最適な走行モードを検索し、検索した走行モードを目標走行モードとして選択するモード選択部を有する。 The integrated controller 30 is responsible for managing the energy consumption of the entire vehicle and running the vehicle with maximum efficiency. The integrated controller 30 includes an accelerator opening sensor 25, a vehicle speed sensor 26, an engine speed sensor 27, a motor speed sensor 28, other sensors and switches (for example, hydraulic oil supplied to the belt-type continuously variable transmission 5). The necessary information from the flow rate sensor 29 for detecting the amount) is input directly or via the CAN communication line 24. Further, the integrated controller 30 searches for the optimum driving mode according to the position where the operating point (APO, VSP) determined by the accelerator opening and the vehicle speed exists on the EV-HEV selection map shown in FIG. It has a mode selection part which selects a mode as a target run mode.
 なお、EV-HEV選択マップには、EV⇒HEV切替線(=エンジン始動線)と、HEV⇒EV切替線(=エンジン停止線)と、HEV⇒WSC切替線と、が設定されている。前記EV⇒HEV切替線をEV領域に存在する運転点(APO,VSP)が横切ると、モード選択部では目標走行モードを「EVモード」から「HEVモード」へと切り替える。また、前記HEV⇒EV切替線をHEV領域に存在する運転点(APO,VSP)が横切ると、モード選択部では目標走行モードを「HEVモード」から「EVモード」へと切り替える。 In the EV-HEV selection map, EV → HEV switching line (= engine start line), HEV → EV switching line (= engine stop line), and HEV → WSC switching line are set. When the operating point (APO, VSP) existing in the EV region crosses the EV⇒HEV switching line, the mode selection unit switches the target travel mode from “EV mode” to “HEV mode”. When the operating point (APO, VSP) existing in the HEV region crosses the HEV → EV switching line, the mode selection unit switches the target travel mode from “HEV mode” to “EV mode”.
 さらに、「HEVモード」の選択時に運転点(APO,VSP)が前記HEV⇒WSC切替線を横切ってWSC領域に入ると、モード選択部では目標走行モードを「HEVモード」から「WSCモード」へと切り替える。ここで、前記HEV⇒EV切替線と前記EV⇒HEV切替線は、EV領域とHEV領域を分ける線としてヒステリシス量を持たせて設定されている。前記HEV⇒WSC切替線は、ベルト式無段変速機5が所定の低変速比領域のときに、エンジン1がアイドル回転数を維持する第1設定車速VSP1に沿って設定されている。但し、「EVモード」の選択中、バッテリSOCが所定値以下になると、強制的に「HEVモード」を目標走行モードとする。 Further, when the driving point (APO, VSP) enters the WSC area across the HEV → WSC switching line when the “HEV mode” is selected, the mode selection unit changes the target driving mode from “HEV mode” to “WSC mode”. And switch. Here, the HEV → EV switching line and the EV → HEV switching line are set with a hysteresis amount as a line dividing the EV area and the HEV area. The HEV => WSC switching line is set along the first set vehicle speed VSP1 at which the engine 1 maintains the idling speed when the belt-type continuously variable transmission 5 is in a predetermined low gear ratio region. However, while the “EV mode” is selected, if the battery SOC falls below a predetermined value, the “HEV mode” is forcibly set as the target travel mode.
 そして、この統合コントローラ30では、「EVモード」の選択中、モード選択部において「HEVモード」を目標走行モードとして選択すると、エンジン始動制御処理を経過して「HEVモード」に遷移する。このエンジン始動制御処理は、「EVモード」の選択状態で、運転点(APO,VSP)が、図3に示すEV-HEV切替線(=エンジン始動線)を横切り、エンジン始動要求が出力されることで開始する。 In the integrated controller 30, when the “HEV mode” is selected as the target travel mode in the mode selection unit while the “EV mode” is selected, the engine start control process is passed and the mode is changed to the “HEV mode”. In this engine start control process, the operating point (APO, VSP) crosses the EV-HEV switching line (= engine start line) shown in FIG. 3 in the selected state of “EV mode”, and an engine start request is output. Start with that.
 また、総合コントローラ30は、後述するように、変速機5等の潤滑油を循環させる循環機能を有している。インヒビタスイッチ97は、シフトポジションを検出するスイッチである。タイマー98は、潤滑油を循環させるための時間を設定するタイマーである。受信器99は、例えば携帯電話回線を利用して送信された、ハイブリッド車両の外部からの信号を、受信する受信装置である。 Further, as will be described later, the general controller 30 has a circulation function for circulating the lubricating oil of the transmission 5 and the like. The inhibitor switch 97 is a switch for detecting a shift position. The timer 98 is a timer that sets a time for circulating the lubricating oil. The receiver 99 is a receiving device that receives a signal from the outside of the hybrid vehicle transmitted using, for example, a mobile phone line.
 次に、図4を用いて、ハイブリッド車両に設けられる暖機装置のうち、潤滑油の暖機システムに係る構成を説明する。図4は、暖機装置における暖機システムを示すブロック図である。なお、図4の太線の矢印は潤滑油の供給経路を示している。 Next, with reference to FIG. 4, the configuration related to the lubricant warm-up system among the warm-up devices provided in the hybrid vehicle will be described. FIG. 4 is a block diagram showing a warm-up system in the warm-up device. In addition, the thick line arrow of FIG. 4 has shown the supply path | route of lubricating oil.
 暖機装置に係る暖機システムは、モータ3と、オイルポンプ100と、オイルパン110と、電熱線(電気ヒータ)120と、油温センサ130とを備えている。オイルポンプ100は、オイルパン1102に貯蔵されている潤滑油を圧送して、モータ3、第1クラッチ2及び変速機5に対して、潤滑油を供給する。オイルポンプ100は例えば機械式オイルポンプであって、オイルポンプ100の回転軸はモータ3の回転軸にシャフトを介して連結されている。クラッチ2、4が解放された状態で、モータ3の回転軸が回転すると、その回転に連動して、オイルポンプ100の回転軸が回転し、オイルポンプ100が駆動する。これにより、バッテリ6の電力を動力源としてモータ3が回転することで、オイルポンプ100が駆動される。そして、オイルポンプ100は、エンジン1を動力源としないため、エンジン1を始動させていない状態でも、バッテリ6の電力により駆動することができる。 The warming-up system according to the warming-up device includes a motor 3, an oil pump 100, an oil pan 110, a heating wire (electric heater) 120, and an oil temperature sensor 130. The oil pump 100 pumps the lubricating oil stored in the oil pan 1102 and supplies the lubricating oil to the motor 3, the first clutch 2 and the transmission 5. The oil pump 100 is, for example, a mechanical oil pump, and the rotation shaft of the oil pump 100 is connected to the rotation shaft of the motor 3 via a shaft. When the rotating shaft of the motor 3 rotates with the clutches 2 and 4 released, the rotating shaft of the oil pump 100 rotates in conjunction with the rotation, and the oil pump 100 is driven. Thereby, the oil pump 100 is driven by rotating the motor 3 using the power of the battery 6 as a power source. Since the oil pump 100 does not use the engine 1 as a power source, the oil pump 100 can be driven by the electric power of the battery 6 even when the engine 1 is not started.
 オイルパン110は潤滑油を溜める容器である。電熱線120は、バッテリ6の電力で発熱する抵抗器である。油温センサ130は潤滑油の温度を検出するセンサである。油温センサ130で検出された潤滑油の検出温度は統合コントロールユニット30に送られる。また、オイルポンプ100及び電熱線120は、統合コントローラ30により制御される。 The oil pan 110 is a container for storing lubricating oil. The heating wire 120 is a resistor that generates heat by the power of the battery 6. The oil temperature sensor 130 is a sensor that detects the temperature of the lubricating oil. The detected temperature of the lubricating oil detected by the oil temperature sensor 130 is sent to the integrated control unit 30. The oil pump 100 and the heating wire 120 are controlled by the integrated controller 30.
 次に、図5を用いて、ハイブリッド車両に設けられる暖機装置のオイル回路を説明する。図5は暖機装置のオイル回路を示す概要図である。 Next, the oil circuit of the warm-up device provided in the hybrid vehicle will be described with reference to FIG. FIG. 5 is a schematic diagram showing an oil circuit of the warm-up device.
 図5に示すように、オイルポンプ100と、クラッチ2、4との間の潤滑油の供給ラインにはバルブ141が設けられ、クラッチ2、4とモータ3との間の供給ラインにはバルブ142が設けられている。バルブ141はクラッチ2、4へ潤滑油の流れを調整する弁であり、バルブ142はモータ3への潤滑油の流れを調整する弁である。バルブ141、142の開閉は、統合コントローラ30により制御される。またプライマリープーリ51及びセカンダリープーリ52への潤滑油の流れは、バルブ141、142の開閉制御と、オイルポンプ100からの潤滑油の出力制御により調整される。 As shown in FIG. 5, a valve 141 is provided in the lubricating oil supply line between the oil pump 100 and the clutches 2, 4, and a valve 142 is provided in the supply line between the clutches 2, 4 and the motor 3. Is provided. The valve 141 is a valve that adjusts the flow of lubricating oil to the clutches 2 and 4, and the valve 142 is a valve that adjusts the flow of lubricating oil to the motor 3. Opening and closing of the valves 141 and 142 is controlled by the integrated controller 30. The flow of lubricating oil to the primary pulley 51 and the secondary pulley 52 is adjusted by opening / closing control of the valves 141 and 142 and output control of the lubricating oil from the oil pump 100.
 オイルポンプ100により供給された潤滑油は、モータ3、第1クラッチ2、第2クラッチ4、及び、変速機5を構成するプライマリープーリ51、セカンダリープーリ52、ベルト53の作動油として使用される。また。潤滑油の温度は、オイルポンプ100を駆動させることで、撹拌(フリクション)によって上昇する。 Lubricating oil supplied by the oil pump 100 is used as hydraulic oil for the motor 3, the first clutch 2, the second clutch 4, and the primary pulley 51, the secondary pulley 52, and the belt 53 that constitute the transmission 5. Also. The temperature of the lubricating oil is raised by stirring (friction) by driving the oil pump 100.
 次に、図1、図4及び図5を用いて暖機装置の制御について説明する。統合コントローラ30は、以下の要領で、ハイブリッド車両の運転の前に、図4に示す暖機システムを駆動させる。 Next, the control of the warm-up device will be described with reference to FIGS. 1, 4 and 5. FIG. The integrated controller 30 drives the warm-up system shown in FIG. 4 before the hybrid vehicle is operated in the following manner.
 統合コントローラ30は、車両の状態が運転されている状態(以下、単に運転状態と表記する場合がある)であるか否かを判定するために、インヒビタスイッチ97からセンサ情報を用いる。統合コントローラ30は、インヒビタスイッチ97のセンサ情報により、シフトポジションの位置がパーキングポジション(シフトレンジP)である場合に、車両が運転状態ではないと判定する。一方、シフトポジションの位置がパーキングポジション(シフトレンジP)以外の位置である場合には、統合コントローラ30は、車両が運転状態であると判定して、暖機装置による暖機を行わない。なお、車両が運転されていない状態(又は、運転状態ではない)とは、ユーザ等により車両のメインスイッチをオンにする前の状態であり、モータ3による駆動力を車両の走行のために用いていない状態である。加えて、車両が運転されていない状態は、エンジン1が始動していない状態でもある。 The integrated controller 30 uses the sensor information from the inhibitor switch 97 in order to determine whether or not the vehicle is in a driving state (hereinafter sometimes simply referred to as a driving state). Based on the sensor information of the inhibitor switch 97, the integrated controller 30 determines that the vehicle is not in a driving state when the position of the shift position is the parking position (shift range P). On the other hand, when the position of the shift position is a position other than the parking position (shift range P), the integrated controller 30 determines that the vehicle is in an operating state and does not perform warm-up by the warm-up device. The state in which the vehicle is not being driven (or not being in a driving state) is a state before the main switch of the vehicle is turned on by a user or the like, and the driving force by the motor 3 is used for running the vehicle. It is not in a state. In addition, the state where the vehicle is not being driven is a state where the engine 1 is not started.
 タイマー98は、図4の暖機システムの駆動の開始時刻を設定するためのタイマーである。例えば、ディスプレイ(図示しない)のタッチパネル操作により、ユーザが出発時刻を設定した場合には、タイマー98は当該出発時刻から予め設定されていた所定の時間だけ前の時刻を、暖機システムの駆動開始時刻に設定する。 The timer 98 is a timer for setting the driving start time of the warm-up system in FIG. For example, when the user sets the departure time by a touch panel operation on a display (not shown), the timer 98 starts driving the warm-up system by a predetermined time that is set in advance from the departure time. Set to time.
 なお、所定の時間は、出発時刻までに暖機を完了させるために必要となる時間であり、暖機システムの熱効率に応じて設計段階で設定される時間である。また、当該所定の時間は、車両の外部温度に応じて設定してもよい。 Note that the predetermined time is a time required to complete the warm-up by the departure time, and is a time set in the design stage according to the thermal efficiency of the warm-up system. The predetermined time may be set according to the external temperature of the vehicle.
 そして、タイマー98は、現在の時刻が設定された駆動開始時刻に達した場合には、駆動開始時刻に達した旨の信号を統合コントローラ30に送信する。そして、統合コントローラ30はタイマー98からの信号を受信すると、暖機システムを駆動させるための準備段階に入る。 When the current time reaches the set drive start time, the timer 98 transmits a signal indicating that the drive start time has been reached to the integrated controller 30. When the integrated controller 30 receives a signal from the timer 98, the integrated controller 30 enters a preparation stage for driving the warm-up system.
 また本例の暖機装置は、ユーザによる遠隔操作により駆動させることも可能である。ユーザは、車両と通信可能な携帯電話等の外部通信端末やパーソナルコンピュータなどを車両の運転前に操作することで、暖機システムを駆動させる旨の信号を車両に送信する。受信器99は、ユーザの操作に基づき、暖機システムを駆動させる旨の信号を受信すると、統合コントローラ30に受信した旨の信号を送信する。そして、統合コントローラ30は、受信器99からの信号に基づいて、暖機システムを駆動させるための準備段階に入る。 Also, the warm-up device of this example can be driven by a remote operation by the user. The user transmits a signal to the vehicle to drive the warm-up system by operating an external communication terminal such as a mobile phone that can communicate with the vehicle or a personal computer before driving the vehicle. When receiving a signal indicating that the warm-up system is to be driven based on a user operation, the receiver 99 transmits a signal indicating that the reception has been received to the integrated controller 30. Then, the integrated controller 30 enters a preparation stage for driving the warm-up system based on the signal from the receiver 99.
 これにより、統合コントローラ30は、車両の運転開始前に、タイマーにより設定された暖機システムの駆動開始時刻、又は、車両の外部から送信される駆動システムを駆動させる旨の信号に基づいて、暖機システムを駆動させるための準備段階に入る。 As a result, the integrated controller 30 warms up the warm-up system drive start time set by the timer or a signal to drive the drive system transmitted from the outside of the vehicle before the start of vehicle operation. The preliminary stage for driving the machine system is entered.
 統合コントローラ30は、暖機システムを駆動させる準備段階として、潤滑油の温度とバッテリ6の充電状態(SOC)を検出する。潤滑油の温度は、油温センサ130により検出される。バッテリ6の充電状態は、電圧センサ(図示しない)の検出電圧に基づきバッテリコントローラ23で管理されている。 The integrated controller 30 detects the temperature of the lubricating oil and the state of charge (SOC) of the battery 6 as a preparation stage for driving the warm-up system. The temperature of the lubricating oil is detected by the oil temperature sensor 130. The state of charge of the battery 6 is managed by the battery controller 23 based on the detection voltage of a voltage sensor (not shown).
 統合コントローラ30は、油温センサ130により検出された検出温度と、予め設定されている温度閾値(T)とを比較する。温度閾値(T)は、暖機システムを駆動させるか否かを判定するための温度の閾値である。潤滑油の温度が高い場合には、暖機システムを駆動させなくてもよい。統合コントローラ30は、油温センサ130の検出温度が温度閾値(T)より低い場合に、暖機システムを駆動可能と判定する。一方、統合コントローラ30は、油温センサ130の検出温度が温度閾値(T)以上である場合には、暖機システムの駆動のための準備段階を解除して、暖機システムを駆動しない。 The integrated controller 30 compares the detected temperature detected by the oil temperature sensor 130 with a preset temperature threshold value (T 1 ). The temperature threshold (T 1 ) is a temperature threshold for determining whether or not to drive the warm-up system. When the temperature of the lubricating oil is high, the warm-up system may not be driven. The integrated controller 30 determines that the warm-up system can be driven when the temperature detected by the oil temperature sensor 130 is lower than the temperature threshold value (T 1 ). On the other hand, when the temperature detected by the oil temperature sensor 130 is equal to or higher than the temperature threshold value (T 1 ), the integrated controller 30 cancels the preparatory stage for driving the warm-up system and does not drive the warm-up system.
 また、統合コントローラ30は、バッテリ6のSOCと、予め設定されているSOC閾値とを比較する。SOC閾値は、暖機システムをモータ3で駆動させる際に必要なバッテリ6のSOCの下限値を示す。暖機後には、バッテリ6の電力を利用してモータ3の駆動により車両が走行するため、SOC閾値は、暖機後のバッテリ6の充電容量が十分に残るように設定されている。SOC閾値は、例えば満充電時のSOCに設定される。 Also, the integrated controller 30 compares the SOC of the battery 6 with a preset SOC threshold. The SOC threshold value indicates a lower limit value of the SOC of the battery 6 required when the warm-up system is driven by the motor 3. Since the vehicle travels by driving the motor 3 using the power of the battery 6 after warming up, the SOC threshold value is set so that the charging capacity of the battery 6 after warming up remains sufficiently. The SOC threshold is set to, for example, the SOC when fully charged.
 統合コントローラ30は、バッテリ6のSOCがSOC閾値より高い場合に、暖機システムを駆動可能と判定する。一方、統合コントローラ30は、バッテリ6のSOCがSOC閾値以下である場合には、暖機システムの駆動のための準備段階を解除して、暖機システムを駆動しない。 The integrated controller 30 determines that the warm-up system can be driven when the SOC of the battery 6 is higher than the SOC threshold. On the other hand, when the SOC of the battery 6 is equal to or lower than the SOC threshold, the integrated controller 30 cancels the preparatory stage for driving the warm-up system and does not drive the warm-up system.
 そして、暖機システムの準備段階において、潤滑油の油温が温度閾値(T)より低く、バッテリ6のSOCがSOC閾値より高い場合には、統合コントローラ30は、モータ3及び電熱線120を駆動させることで、潤滑油の油温を上昇させて、変速機5、クラッチ2、4及びモータ3に潤滑油を供給する。 When the temperature of the lubricating oil is lower than the temperature threshold (T 1 ) and the SOC of the battery 6 is higher than the SOC threshold in the warm-up system preparation stage, the integrated controller 30 causes the motor 3 and the heating wire 120 to be connected. By driving, the oil temperature of the lubricating oil is raised and the lubricating oil is supplied to the transmission 5, the clutches 2, 4 and the motor 3.
 統合コントローラ30は、駆動システムの駆動中も、油温センサ130により潤滑油を管理しており、油温センサ130の検出温度と温度閾値(T)とを比較する。温度閾値(T)は、暖機の終了を判断するための閾値であって、運転開始時に、変速機の摩擦が低くなる油温に設定される。なお、温度閾値(T)は、温度閾値(T)と同じ温度に設定してもよい。 The integrated controller 30 manages the lubricating oil by the oil temperature sensor 130 even during driving of the drive system, and compares the detected temperature of the oil temperature sensor 130 with the temperature threshold value (T 2 ). The temperature threshold (T 2 ) is a threshold for determining the end of warm-up, and is set to an oil temperature at which the friction of the transmission becomes low at the start of operation. The temperature threshold (T 2 ) may be set to the same temperature as the temperature threshold (T 1 ).
 統合コントローラ30は、油温センサ130の検出温度が温度閾値(T)より低い場合には、暖機システムの駆動を継続させる。一方、油温センサ130の検出温度が温度閾値(T)に達した場合には、統合コントローラ30は、モータ3及び電線線120の駆動を停止して、暖機システムを停止させる。 When the temperature detected by the oil temperature sensor 130 is lower than the temperature threshold value (T 2 ), the integrated controller 30 continues to drive the warm-up system. On the other hand, when the temperature detected by the oil temperature sensor 130 reaches the temperature threshold value (T 2 ), the integrated controller 30 stops driving the motor 3 and the electric wire 120 to stop the warm-up system.
 これにより、統合コントローラ30は、バッテリ6の電力を動力源としてモータ3を駆動して、車両の運転前に暖機システムを駆動させることで、車両の運転開示時には、変速機の摩擦の少ない温度まで変速機5の潤滑油の温度を上昇させる。 As a result, the integrated controller 30 drives the motor 3 using the power of the battery 6 as a power source to drive the warm-up system before driving the vehicle. The temperature of the lubricating oil of the transmission 5 is raised until
 次に、図6を用いて、本例の統合コントローラ30の制御のうち、暖機システムを用いた暖機制御の制御フローを説明する。図6は、統合コントローラ30による暖機制御の制御手順を示すフローチャートである。 Next, the control flow of the warm-up control using the warm-up system in the control of the integrated controller 30 of this example will be described with reference to FIG. FIG. 6 is a flowchart showing a control procedure of warm-up control by the integrated controller 30.
 ステップS1にて、統合コントローラ30は、インヒビタスイッチ97のセンサ情報により、シフトポジションがパーキングポジションであるか否かを判定する。シフトポジションがパーキングポジションではない場合には、本例の制御を終了する。 In step S1, the integrated controller 30 determines whether the shift position is the parking position based on the sensor information of the inhibitor switch 97. If the shift position is not the parking position, the control of this example is terminated.
 一方、シフトポジションがパーキングポジションである場合には、統合コントローラ30は、現在の時刻がタイマー98により設定された暖機開始時刻に達したか否かを判定する。現在の時間が暖機開始時刻に達した場合には、ステップS4に遷る。 On the other hand, when the shift position is the parking position, the integrated controller 30 determines whether or not the current time has reached the warm-up start time set by the timer 98. If the current time has reached the warm-up start time, the process proceeds to step S4.
 一方、現在の時間が暖機開始時刻に達していない場合には、統合コントローラ30は、受信器99により、車両の外部から暖機システムを駆動させる旨の信号を受信したか否かを判定する。当該信号を受信していない場合には、ステップS1に戻る。当該信号を受信した場合には、ステップS4に遷る。 On the other hand, if the current time has not reached the warm-up start time, the integrated controller 30 determines whether the receiver 99 has received a signal to drive the warm-up system from the outside of the vehicle. . If the signal has not been received, the process returns to step S1. If the signal is received, the process proceeds to step S4.
 ステップS4にて、統合コントローラ30は、油温センサ130を用いて、潤滑油の温度を検出する。ステップS5にて、統合コントローラ30は、油温センサ130の検出温度と温度閾値(T)とを比較する。油温センサ130の検出温度が温度閾値(T)より低い場合には、統合コントローラ30は、バッテリコントローラ23を制御し、電圧、電流センサ(図示しない)の検出値を用いて、バッテリ6のSOCを検出する(ステップS6)。 In step S4, the integrated controller 30 detects the temperature of the lubricating oil using the oil temperature sensor 130. In step S5, the integrated controller 30 compares the detected temperature of the oil temperature sensor 130 with the temperature threshold (T 1 ). When the detected temperature of the oil temperature sensor 130 is lower than the temperature threshold (T 1 ), the integrated controller 30 controls the battery controller 23 and uses the detected values of the voltage and current sensors (not shown) to The SOC is detected (step S6).
 ステップS7にて、統合コントローラ30は、検出されたSOCと、SOC閾値とを比較する。検出SOCがSOC閾値より高い場合には、ステップS8にて、統合コントローラ30は、モータ3を駆動させる。また、統合コントローラ30は電熱線120を駆動させる。 In step S7, the integrated controller 30 compares the detected SOC with the SOC threshold value. If the detected SOC is higher than the SOC threshold value, the integrated controller 30 drives the motor 3 in step S8. Further, the integrated controller 30 drives the heating wire 120.
 ステップS9にて、統合コントローラ30は油温センサ130を用いて、潤滑油の温度を検出する。ステップS10にて、統合コントローラ30は、油温センサ130の検出温度と温度閾値(T)とを比較する。油温センサ130の検出温度が温度閾値(T)より低い場合には、ステップS9に戻り、ステップS9及びS10の制御処理を繰り返すことで、暖機システムの駆動及び潤滑油の温度管理が継続される。 In step S <b> 9, the integrated controller 30 detects the temperature of the lubricating oil using the oil temperature sensor 130. In step S10, the integrated controller 30 compares the temperature detected by the oil temperature sensor 130 with the temperature threshold value (T 2 ). When the temperature detected by the oil temperature sensor 130 is lower than the temperature threshold (T 2 ), the process returns to step S9, and the control process of steps S9 and S10 is repeated, thereby continuing the drive of the warm-up system and the temperature management of the lubricating oil. Is done.
 一方、油温センサ130の検出温度が温度閾値(T)以上である場合には、ステップS11にて、統合コントローラ30はモータ3の通電を止めて、モータ3を停止させる。また、統合コントローラ30は、電熱線120への通電も中止して、電熱線120の駆動も停止させる。これにより、暖機システムが停止されて、本例の制御処理を終了する。 On the other hand, if the detected temperature of the oil temperature sensor 130 is equal to or higher than the temperature threshold (T 2 ), the integrated controller 30 stops energization of the motor 3 and stops the motor 3 in step S11. The integrated controller 30 also stops energizing the heating wire 120 and stops driving the heating wire 120. Thereby, the warm-up system is stopped and the control process of this example is terminated.
 ステップS5に戻り、油温センサ130の検出温度が温度閾値(T)以上である場合には、潤滑油の温度は十分に高く、暖機システムを駆動させる必要がないため、本例の制御を終了する。また、ステップS7に戻り、検出SOCがSOC閾値以下である場合には、バッテリ6の充電容量が不足して、暖機システムを駆動させることができないため、本例の制御を終了する。この際に、バッテリ6のSOCが不足し、潤滑油の温度が十分に高くなっていないことを、ユーザに報知してよい。ユーザへの報知については、予め登録した端末に対して、統合コントローラ30が信号を送信することで報知してもよく、あるいは、車両のディスプレイに表示させてもよい。 Returning to step S5, when the temperature detected by the oil temperature sensor 130 is equal to or higher than the temperature threshold value (T 1 ), the temperature of the lubricating oil is sufficiently high and it is not necessary to drive the warm-up system. Exit. Returning to step S7, if the detected SOC is equal to or lower than the SOC threshold, the charging capacity of the battery 6 is insufficient and the warm-up system cannot be driven, and thus the control of this example is terminated. At this time, the user may be informed that the SOC of the battery 6 is insufficient and the temperature of the lubricating oil is not sufficiently high. As for notification to the user, the integrated controller 30 may notify the terminal registered in advance by transmitting a signal, or may be displayed on the display of the vehicle.
 上記のように、本例は、バッテリ6の電力を動力源として、オイルポンプ100のモータ3を駆動させることで、潤滑油の温度を上昇させる暖機システムを備えて、車両の運転開始前に当該暖機システムを駆動させている。これにより、運転開始直後から、変速機40の潤滑油の温度を高くすることができ、変速機の摩擦を減らすことができる。その結果として、ハイブリッド車両のモータ3による走行距離を伸ばすことができる。 As described above, this example includes a warm-up system that raises the temperature of the lubricating oil by driving the motor 3 of the oil pump 100 using the electric power of the battery 6 as a power source, and before starting the operation of the vehicle. The warm-up system is driven. Thereby, the temperature of the lubricating oil of the transmission 40 can be increased immediately after the start of operation, and the friction of the transmission can be reduced. As a result, the travel distance by the motor 3 of the hybrid vehicle can be extended.
 また、本例は、タイマー98で設定された駆動開始時刻に基づいて、暖機システムを駆動させている。これにより、運転開始前に暖機システムを駆動させることができる。 In this example, the warm-up system is driven based on the drive start time set by the timer 98. Thereby, the warm-up system can be driven before the start of operation.
 また、本例は、受信器99で受信した信号に基づいて、駆動システムを駆動させている。これにより、ユーザは車両の外部から、運転開始前に暖機システムを操作することができる。 In this example, the drive system is driven based on the signal received by the receiver 99. Thereby, the user can operate the warm-up system from the outside of the vehicle before the start of driving.
 また、本例は、バッテリ6のSOCがSOC閾値より高い場合に、駆動システムを駆動させる。これにより、暖機システムを駆動させて、バッテリ6の充電容量が運転開始時に不足することがないよう制御することができる。 In this example, when the SOC of the battery 6 is higher than the SOC threshold, the drive system is driven. Thereby, it is possible to control the battery 6 so that the charging capacity of the battery 6 is not insufficient at the start of operation by driving the warm-up system.
 また、本例は、シフトレバーの位置がパーキングポジションである場合に限り、駆動システムを駆動させる。これにより、運転開始前に暖機システムを駆動する際の安全性を高めることができる。 In this example, the drive system is driven only when the shift lever is at the parking position. Thereby, the safety | security at the time of driving a warming-up system before a driving | operation start can be improved.
 また、本例の暖機装置は、プラグインハイブリッド車両に適用される。プラグインハイブリッド車両は、外部電源により充電可能なバッテリ6を備えており、当該バッテリ6には大容量の蓄電池が用いられる。そのため、車両の運転開始前に、バッテリ6の電力を利用して、本例の暖機装置を駆動することができる。これにより、運転開始直後から、変速機40の潤滑油の温度を高くすることができ、変速機の摩擦を減らすことができる。その結果として、ハイブリッド車両のモータ3による走行距離を伸ばすことができる。 Also, the warm-up device of this example is applied to a plug-in hybrid vehicle. The plug-in hybrid vehicle includes a battery 6 that can be charged by an external power source, and a large-capacity storage battery is used for the battery 6. Therefore, the warm-up device of this example can be driven using the electric power of the battery 6 before the operation of the vehicle is started. Thereby, the temperature of the lubricating oil of the transmission 40 can be increased immediately after the start of operation, and the friction of the transmission can be reduced. As a result, the travel distance by the motor 3 of the hybrid vehicle can be extended.
 なお本例において、図1に示したプラグインハイブリッド車両は、エンジン1を前輪側に配置し前輪を駆動輪とした、いわゆるFFハイブリッド車両であるが、本例に係る暖機装置はFRプラグインハイブリッド車両にも適用可能である。また、本例はハイブリッド車両にも適用可能である。 In this example, the plug-in hybrid vehicle shown in FIG. 1 is a so-called FF hybrid vehicle in which the engine 1 is disposed on the front wheel side and the front wheels are used as drive wheels, but the warm-up device according to this example is an FR plug-in vehicle. It can also be applied to hybrid vehicles. This example can also be applied to a hybrid vehicle.
 また、本例は電熱線120による潤滑油の加熱を省略してもよい。すなわち、オイルポンプ100を駆動させると、潤滑油のフリクションによる発熱作用によって、潤滑油の温度は上昇するため、本例では、電熱線120を設けることなく、暖機システムを構成してもよい。 In this example, the heating of the lubricating oil by the heating wire 120 may be omitted. That is, when the oil pump 100 is driven, the temperature of the lubricating oil rises due to the heat generation action caused by the friction of the lubricating oil. In this example, the warm-up system may be configured without providing the heating wire 120.
 また、本例では、オイルポンプ100に加えて、水路を用いた熱交換器を暖機システムに設けてよい。例えば、貯留水用のタンク、ウォータポンプ及び当該貯留水の循環用の水路を設ける。そして、タンク内の水を、車両運転時のエンジンからの発熱等を利用して、予め暖めておく。そして、車両の運転開始前に、タンク内の水を、ウォータポンプにより循環させて、温度の低い潤滑油とタンク内の水との間で熱交換をさせる。これにより、本例は、潤滑油の温度を上昇させることができる。また、当該タンク内に、電熱線120を設けてもよい。 In this example, in addition to the oil pump 100, a heat exchanger using a water channel may be provided in the warm-up system. For example, a tank for stored water, a water pump, and a water channel for circulating the stored water are provided. And the water in a tank is warmed beforehand using the heat_generation | fever etc. from an engine at the time of vehicle driving. Then, before starting the operation of the vehicle, the water in the tank is circulated by a water pump to exchange heat between the lubricating oil having a low temperature and the water in the tank. Thereby, this example can raise the temperature of lubricating oil. Moreover, you may provide the heating wire 120 in the said tank.
 上記のオイルポンプ100及びオイルパン110の構成を含む暖機システムが本発明の「油温上昇手段」に相当し、バッテリコントローラ23及び統合コントローラ30が本発明の「制御手段」に、受信器99が本発明の「受信手段」に、油温センサ130が本発明の「油温検出手段」に、バッテリコントローラ23が本発明の「充電状態検出手段」に、インヒビタスイッチ97が本発明の「シフトポジションセンサ」に相当する。 The warming-up system including the configurations of the oil pump 100 and the oil pan 110 described above corresponds to the “oil temperature raising means” of the present invention, and the battery controller 23 and the integrated controller 30 serve as the “control means” of the present invention. Are the "reception means" of the present invention, the oil temperature sensor 130 is the "oil temperature detection means" of the present invention, the battery controller 23 is the "charge state detection means" of the present invention, and the inhibitor switch 97 is the "shift" of the present invention. It corresponds to a “position sensor”.
《第2実施形態》
 本発明の他の実施形態に係る暖機装置を含むハイブリッド車両について説明する。本例では上述した第1実施形態に対して、暖機装置の制御の一部が異なる。これ以外の構成は上述した第1実施形態と同じであるため、その記載を適宜、援用する。
<< Second Embodiment >>
A hybrid vehicle including a warm-up device according to another embodiment of the present invention will be described. In this example, part of the control of the warm-up device is different from the first embodiment described above. Since the configuration other than this is the same as that of the first embodiment described above, the description thereof is incorporated as appropriate.
 本例において、統合コントローラ30は、潤滑油の温度に応じて、モータ3の駆動時間を設定する。暖機システムの駆動時において、潤滑油の温度が低い場合には、潤滑油の温度を温度閾値(T)まで上昇させるために、時間がかかるため、モータ3の駆動時間は長くなる。一方、潤滑油の温度が高い場合には、潤滑油の温度を温度閾値(T)まで上昇させるために、時間がかからず、モータ3の駆動時間は短くなる。 In this example, the integrated controller 30 sets the driving time of the motor 3 according to the temperature of the lubricating oil. When the temperature of the lubricating oil is low at the time of driving the warm-up system, it takes time to raise the temperature of the lubricating oil to the temperature threshold value (T 2 ), so the driving time of the motor 3 becomes long. On the other hand, when the temperature of the lubricating oil is high, it takes less time to raise the temperature of the lubricating oil to the temperature threshold (T 2 ), and the driving time of the motor 3 is shortened.
 すなわち、暖機システムの駆動開始時における潤滑油の温度(オイル温度)と、モータ3の駆動時間との間には、図7に示す関係が成立する。図7は、暖機システムの駆動開始時のオイル温度に対するモータ3の駆動時間の特性を示すグラフである。図7に示すように、オイル温度が高いほど、モータ3の駆動時間は短くなる。 That is, the relationship shown in FIG. 7 is established between the temperature of the lubricating oil (oil temperature) at the start of driving of the warm-up system and the driving time of the motor 3. FIG. 7 is a graph showing characteristics of the driving time of the motor 3 with respect to the oil temperature at the start of driving of the warm-up system. As shown in FIG. 7, the higher the oil temperature, the shorter the driving time of the motor 3.
 統合コントローラ30には、図5に示す関係をもったテーブルが予め格納されている。そして、統合コントローラ30は、油温センサ130の検出温度に対して、当該テーブルを参照することで、モータ3の駆動時間を設定する。統合コントローラ30は、タイマー98を用いて、モータ3の駆動後の経過時間を管理している。そして、統合コントローラ30は、モータ3の経過駆動時間が設定駆動時間に達すると、モータ3及び電熱線120への通電を停止させることで、暖機システムを停止させる。 The integrated controller 30 stores a table having the relationship shown in FIG. Then, the integrated controller 30 sets the driving time of the motor 3 by referring to the table with respect to the temperature detected by the oil temperature sensor 130. The integrated controller 30 uses a timer 98 to manage the elapsed time after driving the motor 3. When the elapsed drive time of the motor 3 reaches the set drive time, the integrated controller 30 stops the warm-up system by stopping the energization of the motor 3 and the heating wire 120.
 次に、図7を用いて、本例の統合コントローラ30の制御のうち、暖機システムを用いた暖機制御の制御フローを説明する。図6は、統合コントローラ30による暖機制御の制御手順を示すフローチャートである。なお、図7に示す制御処理のうち、ステップS21~ステップS27の制御処理は、図6のステップS1~S7の制御処理と同様であるため説明を省略する。 Next, the control flow of the warm-up control using the warm-up system in the control of the integrated controller 30 of this example will be described with reference to FIG. FIG. 6 is a flowchart showing a control procedure of warm-up control by the integrated controller 30. Of the control processes shown in FIG. 7, the control processes in steps S21 to S27 are the same as the control processes in steps S1 to S7 in FIG.
 ステップS28にて、統合コントローラ30は、ステップS24で検出した潤滑油の検出温度に基づいて、モータ3の駆動時間を設定する。ステップS29にて、統合コントローラ30はモータ3を駆動させる。また、統合コントローラ30は電熱線120を駆動させる。 In step S28, the integrated controller 30 sets the driving time of the motor 3 based on the detected temperature of the lubricating oil detected in step S24. In step S29, the integrated controller 30 drives the motor 3. Further, the integrated controller 30 drives the heating wire 120.
 ステップS30にて、統合コントローラ30は、モータ3の経過駆動時間と、ステップS28で設定された設定駆動時間とを比較する。モータ3の駆動時間が設定駆動時間に達していない場合には、再びステップS30の制御処理を行う。 In step S30, the integrated controller 30 compares the elapsed drive time of the motor 3 with the set drive time set in step S28. If the drive time of the motor 3 has not reached the set drive time, the control process of step S30 is performed again.
 モータ3の駆動時間が設定駆動時間に達した場合には、ステップS31にて、統合コントローラ30はモータ3の通電を止めて、モータ3を停止させる。また、統合コントローラ30は、電熱線120への通電も中止して、電熱線120の駆動も停止させる。これにより、暖機システムが停止されて、本例の制御処理を終了する。 When the driving time of the motor 3 reaches the set driving time, the integrated controller 30 stops energization of the motor 3 and stops the motor 3 in step S31. The integrated controller 30 also stops energizing the heating wire 120 and stops driving the heating wire 120. Thereby, the warm-up system is stopped and the control process of this example is terminated.
 上記のように、本例は、潤滑油の検出温度が高いほど、モータ3の駆動時間を短い時間に設定する。これにより、潤滑油の温度に応じて、暖機システムの作動時間を設定することができる。その結果として、バッテリ6の充電容量を効率よく利用しつつ、車両の運転開始前に、潤滑油の温度を高めることができる。 As described above, in this example, the driving time of the motor 3 is set to a shorter time as the detected temperature of the lubricating oil is higher. Thereby, the operation time of the warm-up system can be set according to the temperature of the lubricating oil. As a result, the temperature of the lubricating oil can be increased before the vehicle starts operating while efficiently using the charging capacity of the battery 6.
《第3実施形態》
 本発明の他の実施形態に係る暖機装置を含むハイブリッド車両について説明する。本例では上述した第1実施形態に対して、外気温センサ150を設ける点、及び、暖機装置の制御の一部が異なる。これ以外の構成は上述した第1実施形態と同じであるため、その記載を適宜、援用する。
<< Third Embodiment >>
A hybrid vehicle including a warm-up device according to another embodiment of the present invention will be described. In this example, the point which provides the outside temperature sensor 150 and a part of control of a warming-up apparatus differ with respect to 1st Embodiment mentioned above. Since the configuration other than this is the same as that of the first embodiment described above, the description thereof is incorporated as appropriate.
 図9に示すように、本例の暖機装置は、外気温センサ150をさらに備えている。外気温センサ150は、車両の外部の環境温度を検出するセンサである。外気温センサ150の検出温度は、統合コントローラ30に出力される。 As shown in FIG. 9, the warm-up device of this example further includes an outside air temperature sensor 150. The outside air temperature sensor 150 is a sensor that detects an environmental temperature outside the vehicle. The temperature detected by the outside air temperature sensor 150 is output to the integrated controller 30.
 統合コントローラ30は、暖機制御部31と、メモリ32と、ナビゲーションシステム33とを有している。暖機制御部31は、油温センサ130の温度、外気温センサ150の温度、及びナビゲーションシステム33で管理されている車両の走行距離に基づいて、目標温度を設定し、運転開始前に暖機システムのオイルポンプ100を駆動させて、潤滑油を目標温度まで上昇させるための制御コントローラである。メモリ32には、目標温度を算出するために、2種類のマップが記憶されている。 The integrated controller 30 includes a warm-up control unit 31, a memory 32, and a navigation system 33. The warm-up control unit 31 sets a target temperature based on the temperature of the oil temperature sensor 130, the temperature of the outside air temperature sensor 150, and the travel distance of the vehicle managed by the navigation system 33, and warms up before starting the operation. This is a control controller for driving the oil pump 100 of the system to raise the lubricating oil to the target temperature. The memory 32 stores two types of maps for calculating the target temperature.
 ナビゲーションシステム33は、走行距離を管理しつつ、目的地までの予想走行距離を算出する。ナビゲーションシステム33は、ユーザの入力に基づき目的地を設定し、地図データを参照して、目的地までの走行ルートを算出する。そして、ナビゲーション33は、走行ルートの走行距離を予想走行距離として算出する。 The navigation system 33 calculates the expected travel distance to the destination while managing the travel distance. The navigation system 33 sets a destination based on a user input, and calculates a travel route to the destination with reference to map data. Then, the navigation 33 calculates the travel distance of the travel route as the predicted travel distance.
 次に、統合コントローラ30の制御について説明する。 Next, control of the integrated controller 30 will be described.
 メモリ32には、2種類のマップとして、図10に示すように走行距離と暖機システムの駆動に必要な累積消費エネルギーのマップ(以下、累積消費エネルギーマップと称す。)と、図11に示すように、潤滑油の温度上昇ために必要な暖機システムの必要エネルギーを上昇温度に対応させたマップ(以下、運転前の暖機エネルギーマップと称す。)が記録されている。 In the memory 32, as two types of maps, as shown in FIG. 10, a map of cumulative energy consumption required for driving the mileage and the warm-up system (hereinafter referred to as cumulative energy consumption map), and FIG. Thus, a map (hereinafter referred to as a warm-up energy map before operation) in which the required energy of the warm-up system required for increasing the temperature of the lubricating oil is associated with the increased temperature is recorded.
 図10は、累積消費エネルギーマップで示される相対関係を説明するためのグラフであって、横軸に走行距離を縦軸に累積消費エネルギーを示す。図10の各グラフは、運転開始時の潤滑油の初期温度毎の特性を示す。また、横軸に示す走行距離は、図1に示す車両の走行距離を示している。縦軸に示す累積消費エネルギーは、図4に示す暖機システムを駆動させるために必要なエネルギーの累積値示しており、バッテリ6で消費される容量のうち、暖機システムを駆動させるために消費された容量である。 FIG. 10 is a graph for explaining the relative relationship shown in the cumulative energy consumption map, where the horizontal axis indicates the travel distance and the vertical axis indicates the cumulative energy consumption. Each graph in FIG. 10 shows characteristics for each initial temperature of the lubricating oil at the start of operation. Moreover, the travel distance shown on the horizontal axis indicates the travel distance of the vehicle shown in FIG. The cumulative energy consumption shown on the vertical axis indicates the cumulative value of energy required to drive the warm-up system shown in FIG. 4, and is consumed to drive the warm-up system out of the capacity consumed by the battery 6. Capacity.
 図10に示すように、走行距離が長くなるほど、累積消費エネルギーは大きくなる。また、車両の運転開始時の潤滑油の温度が低いほど、累積消費エネルギーは大きくなる。 As shown in FIG. 10, the cumulative energy consumption increases as the travel distance increases. Further, the lower the temperature of the lubricating oil at the start of operation of the vehicle, the greater the cumulative energy consumption.
 図11は、暖機エネルギーマップで示される相対関係を説明するためのグラフであって、横軸に暖機エネルギーを縦軸に上昇温度を示す。上昇温度は、暖機開始時の潤滑油の温度から暖機終了時の潤滑油の温度までの、上昇する温度の幅である。そして、図11の各グラフは、暖機開始時の温度(T0)と外気の温度(Ta)との大小関係に応じた特性を示す。また、横軸の暖機エネルギーは、バッテリ6で消費される容量に相当する。なお、図11において、運転開始前の暖機を、車両外の充電施設の電力を用いて行う場合には、当該電力に基づくエネルギーから、暖機エネルギーに配分される仕事率を一定とする。 FIG. 11 is a graph for explaining the relative relationship shown in the warm-up energy map, where the horizontal axis indicates the warm-up energy and the vertical axis indicates the rising temperature. The rising temperature is the range of the rising temperature from the temperature of the lubricating oil at the start of warming up to the temperature of the lubricating oil at the end of warming up. Each graph of FIG. 11 shows characteristics according to the magnitude relationship between the temperature (T0) at the start of warm-up and the temperature (Ta) of the outside air. The warm-up energy on the horizontal axis corresponds to the capacity consumed by the battery 6. In FIG. 11, when the warm-up before the start of operation is performed using the power of the charging facility outside the vehicle, the power allocated to the warm-up energy is constant from the energy based on the power.
 例えば、暖機開始時の潤滑油の温度(T0)が外気の温度(Ta)と同じ温度である場合には、暖機のために、エネルギー(e0)を消費することで、潤滑油は、温度(ΔT)分、上昇する。また、外気の温度(Ta)が暖機開始時の潤滑油の温度(T0)より低い場合(Ta<T0)には、暖機のために、エネルギー(e0)を消費することで、潤滑油は、温度(ΔT)分、上昇する。このとき、上昇温度(ΔT)は上昇温度(ΔT)よりも低い。すなわち、暖機システムを駆動する際の外気温度が低いため、同じ暖機エネルギー(e0)であっても、上昇温度が低くなる。 For example, when the temperature (T0) of the lubricating oil at the start of warming up is the same temperature as the temperature (Ta) of the outside air, the lubricating oil is consumed by consuming energy (e0) for warming up. Increase by temperature (ΔT 1 ). When the temperature (Ta) of the outside air is lower than the temperature (T0) of the lubricating oil at the start of warming up (Ta <T0), the lubricating oil is consumed by consuming energy (e0) for warming up. Increases by a temperature (ΔT 2 ). At this time, the rising temperature (ΔT 2 ) is lower than the rising temperature (ΔT 1 ). That is, since the outside air temperature when driving the warm-up system is low, the rising temperature is low even with the same warm-up energy (e0).
 暖機制御部31は、車両の運転開始前に、油温センサ130により潤滑油の温度の検出値を取得し、外気温センサ150により外気の温度の検出値を取得する。 The warm-up control unit 31 acquires a detected value of the temperature of the lubricating oil by the oil temperature sensor 130 and acquires a detected value of the temperature of the outside air by the outside air temperature sensor 150 before starting the operation of the vehicle.
 ユーザの操作に基づき目的地が予め設定されている場合には、車両の現在地から目的地までの予想される走行距離を算出する。また、過去の走行履歴等により目的地が予測されている場合には、ナビゲーションシステム33は、車両の現在地から目的地までの予想される走行距離を算出する。暖機制御部31は、ナビゲーションシステム33から予想走行距離の情報を取得する。 If the destination is set in advance based on the user's operation, the expected travel distance from the current location of the vehicle to the destination is calculated. In addition, when the destination is predicted based on the past travel history or the like, the navigation system 33 calculates an expected travel distance from the current location of the vehicle to the destination. The warm-up control unit 31 acquires information on the predicted travel distance from the navigation system 33.
 暖機制御部31は、累積消費エネルギーマップを参照し、取得した潤滑油の温度に対応する、走行距離と累積消費エネルギーとの特性を抽出する。暖機制御部31は、取得した外気の温度と潤滑油の温度とを比較しつつ、暖機エネルギーマップを参照し、比較結果に対応する、暖機エネルギーと上昇温度との特性を抽出する。 The warm-up control unit 31 refers to the accumulated energy consumption map and extracts characteristics of the travel distance and accumulated energy corresponding to the acquired temperature of the lubricating oil. The warm-up control unit 31 refers to the warm-up energy map while comparing the acquired outside air temperature and the lubricant temperature, and extracts the characteristics of the warm-up energy and the rising temperature corresponding to the comparison result.
 また、暖機制御部31は、抽出した暖機エネルギーと上昇温度との特性により示される関係に基づき、累積消費エネルギーマップを補正する。そして、暖機制御部31は、補正された累積消費エネルギーマップを参照して、予想走行距離に対応する目標温度を算出しつつ、算出した目標温度を、車両の運転前に暖機システムを駆動させる際の、潤滑油の目標温度に設定する。 Also, the warm-up control unit 31 corrects the cumulative energy consumption map based on the relationship indicated by the characteristics of the extracted warm-up energy and the increased temperature. Then, the warm-up control unit 31 refers to the corrected cumulative energy consumption map, calculates the target temperature corresponding to the predicted travel distance, and drives the warm-up system with the calculated target temperature before driving the vehicle. Set to the target temperature of the lubricating oil.
 以下、図12~図14を用いて、具体例を挙げつつ、目標温度の算出方法を説明する。潤滑油の前提条件は、初期温度を-10度とし、外気温は-10度とする。図12は、図10の累積消費エネルギーマップのうち、初期温度に対応する、走行距離と累積消費エネルギーとの特性を示すグラフであり、図13は図11の暖機エネルギーマップのうち、初期温度と外気温とが等しい場合に対応する、暖機エネルギーと上昇温度との特性を示すグラフである。図14は、図12の累積消費エネルギーマップを補正した後のマップの特性を示すグラフである。 Hereinafter, a method for calculating the target temperature will be described with reference to FIGS. 12 to 14 with specific examples. The precondition for the lubricating oil is that the initial temperature is -10 degrees and the outside air temperature is -10 degrees. 12 is a graph showing characteristics of the travel distance and cumulative energy consumption corresponding to the initial temperature in the cumulative energy consumption map of FIG. 10, and FIG. 13 is the initial temperature of the warm-up energy map of FIG. It is a graph which shows the characteristic of warm-up energy and rising temperature corresponding to the case where the outside air temperature is equal. FIG. 14 is a graph showing the characteristics of the map after correcting the cumulative energy consumption map of FIG.
 まず、暖機制御部31は、図10に示す累積消費エネルギーマップより、初期温度(-10度)に対応する走行距離と累積消費エネルギーとの特性を抽出する。また、暖機制御部31は、図11に示す暖機エネルギーマップより、初期温度と外気温が等しい場合(T0=Ta)に対応する暖機エネルギーと上昇温度との特性を抽出する(図12を参照)。次に、暖機制御部31は、抽出した暖機エネルギーと上昇温度との特性上で、上昇温度を10度、20度、30度のように10度ずつ上昇させる場合に、それぞれの上昇温度と対応する暖機エネルギー、e1、e2、e3を順に算出する(図13を参照)。 First, the warm-up control unit 31 extracts characteristics of the travel distance and the cumulative energy consumption corresponding to the initial temperature (−10 degrees) from the cumulative energy consumption map shown in FIG. Further, the warm-up control unit 31 extracts characteristics of the warm-up energy and the rising temperature corresponding to the case where the initial temperature and the outside air temperature are equal (T0 = Ta) from the warm-up energy map shown in FIG. 11 (FIG. 12). See). Next, when the warm-up control unit 31 increases the rising temperature by 10 degrees, such as 10 degrees, 20 degrees, and 30 degrees, on the characteristics of the extracted warm-up energy and the rising temperature, And corresponding warm-up energy, e1, e2, e3 are calculated in order (see FIG. 13).
 次に、暖機制御部31は、累積消費エネルギーマップで示される走行距離と累積消費エネルギーとの特性のうち、初期温度に対して10度ずつ上昇させた温度と対応する特性を抽出する。図10に示す累積消費エネルギーマップでは、0度、10度、20度、30度、40度、及び50度の特性が抽出される。そして暖機制御部31は、抽出した複数の特性の累積エネルギーに対して、温度を対応させつつ暖機エネルギーe1、e2、e3等を、順に加算することで、抽出した複数の特性をそれぞれ補正する。この補正について、グラフを用いて説明すると、図10に示す累積消費エネルギーマップのうち、0~50度の特性の累積消費エネルギーのレベルが、エネルギー(e1~e6)分、それぞれ上昇し、図14に示すように、累積消費エネルギーマップが補正される。すなわち、マップの補正は、走行距離が0kmのときには、車両の運転開始前の暖機により、初期温度が上昇する分、累積エネルギーが加算されることを表している。 Next, the warm-up control unit 31 extracts the characteristic corresponding to the temperature increased by 10 degrees with respect to the initial temperature from the characteristics of the travel distance and the cumulative energy consumption shown in the cumulative energy consumption map. In the cumulative energy consumption map shown in FIG. 10, characteristics of 0 degrees, 10 degrees, 20 degrees, 30 degrees, 40 degrees, and 50 degrees are extracted. Then, the warm-up control unit 31 corrects the plurality of extracted characteristics by sequentially adding warm-up energy e1, e2, e3, etc. while making the temperature correspond to the extracted cumulative energy of the plurality of characteristics. To do. This correction will be described using a graph. In the cumulative energy consumption map shown in FIG. 10, the level of the cumulative energy consumption having the characteristics of 0 to 50 degrees increases by the energy (e1 to e6), respectively. As shown, the cumulative energy consumption map is corrected. That is, the correction of the map indicates that when the travel distance is 0 km, the accumulated energy is added as much as the initial temperature increases due to warm-up before the start of vehicle operation.
 そして、暖機制御部31は、補正後の累積消費エネルギーマップを参照しつつ、予想走行距離に対応する特性のグラフの初期温度を、運転開始前の暖機システムの目標温度として、算出する。 The warm-up control unit 31 calculates the initial temperature of the characteristic graph corresponding to the expected travel distance as the target temperature of the warm-up system before the start of operation while referring to the corrected cumulative energy consumption map.
 図14に示すように、予想走行距離がL1未満である場合には、累積消費エネルギーは、初期温度(-10度)の場合に、最も小さくなる。そのため、暖機制御部31は、運転開始前の暖機を必要としないと判定する。また、予想走行距離がL1以上でL2未満である場合には、累積消費エネルギーは、初期温度(0℃)の場合に、最も小さくなる。すなわち、車両の運転開始前に暖機システムを駆動させて、車両の運転時に、潤滑油の温度と0℃の状態とすることによって、暖機を開始してから目的地までに到着するまでの、暖機に必要な消費エネルギーが最も小さくなる。そのため、暖機制御部31は、暖機システムの目標温度を0℃として算出する。 As shown in FIG. 14, when the estimated travel distance is less than L1, the cumulative energy consumption is the smallest at the initial temperature (−10 degrees). For this reason, the warm-up control unit 31 determines that the warm-up before the start of operation is not required. In addition, when the predicted travel distance is greater than or equal to L1 and less than L2, the cumulative energy consumption is the smallest at the initial temperature (0 ° C.). In other words, by driving the warm-up system before starting the operation of the vehicle and setting the temperature of the lubricating oil to 0 ° C. during the operation of the vehicle, the warm-up is started and the vehicle arrives at the destination. The energy consumption required for warming up is the smallest. Therefore, the warm-up control unit 31 calculates the target temperature of the warm-up system as 0 ° C.
 また、予想走行距離がL2以上でL3未満である場合には、累積消費エネルギーは、初期温度(10℃)の場合に、最も小さくなる。そのため、暖機制御部31は、暖機システムの目標温度を10℃として算出する。 In addition, when the predicted travel distance is greater than or equal to L2 and less than L3, the cumulative energy consumption is the smallest at the initial temperature (10 ° C.). Therefore, the warm-up control unit 31 calculates the target temperature of the warm-up system as 10 ° C.
 暖機制御部31は、上記のように算出した目標温度を、運転開始前の暖機システムを制御する際の目標温度に設定した上で、運転開始時に、潤滑油の温度が設定した目標温度になるように、オイルポンプ100を制御する。 The warm-up control unit 31 sets the target temperature calculated as described above to the target temperature for controlling the warm-up system before the start of operation, and then the target temperature set by the temperature of the lubricating oil at the start of operation. The oil pump 100 is controlled so that
 これにより、暖機制御部31は、予想走行距離が長いほど、目標温度が高くなるように、目標温度を設定することで、暖機に要する全体の消費エネルギーを抑制している。 Thereby, the warm-up control unit 31 suppresses the overall energy consumption required for warm-up by setting the target temperature so that the target temperature becomes higher as the expected travel distance is longer.
 例えば、予想走行距離がL1未満などの数km先を目的地に設定している場合には、運転開始前に暖機を行い潤滑油の温度を高めるよりも、数km程度しか走行しないことを鑑みて、多少、潤滑油のフリクションが大きくなったとしても、運転開始までの暖機を押させた方が、結果として、全体の消費エネルギーを抑えることができる。そのため、本例は、予想走行距離が短いほど、暖機の消費エネルギーを抑制するために、目標温度を低くする。 For example, if the expected travel distance is set to a few km ahead such as less than L1, the vehicle will only travel about a few kilometers rather than warming up before starting operation and raising the temperature of the lubricating oil. In view of this, even if the friction of the lubricant is somewhat increased, the overall energy consumption can be suppressed by pushing the warm-up until the start of operation. For this reason, in this example, the shorter the expected travel distance, the lower the target temperature in order to suppress warm-up energy consumption.
 一方、予想走行距離が長い場合には、走行中、潤滑油のフリクションによるエネルギーへの影響が大きくなるため、運転開始前に、予想走行距離に応じたエネルギーを消費して、暖機を行った方が、全体の消費エネルギーを抑えることができる。そのため、本例は、予想走行距離が長いほど、目標温度を高くする。 On the other hand, when the expected mileage is long, the impact on the energy due to the friction of the lubricating oil increases during running. Therefore, before starting the operation, the energy corresponding to the expected mileage was consumed and warmed up. However, the overall energy consumption can be reduced. Therefore, in this example, the target temperature is increased as the predicted travel distance is longer.
 すなわち、本例では、エネルギーの最適効率となる目標温度を、上記のマップの演算により、求めている。 That is, in this example, the target temperature that is the optimum efficiency of energy is obtained by the calculation of the above map.
 次に、図15を用いて、暖機制御部31の制御フローについて説明する。図15は、統合コントローラ30の制御手順を示すフローチャートである。 Next, the control flow of the warm-up control unit 31 will be described with reference to FIG. FIG. 15 is a flowchart showing a control procedure of the integrated controller 30.
 ステップS41にて、暖機制御部31は、油温センサ130を用いて、潤滑油の温度を検出する。ステップS42にて、外気温センサ150を用いて、外気の温度を検出する。ステップS43にて、暖機制御部31は、ナビゲーションシステム33で管理されている予想走行距離の情報を取得する。 In step S41, the warm-up control unit 31 uses the oil temperature sensor 130 to detect the temperature of the lubricating oil. In step S42, the outside air temperature sensor 150 is used to detect the outside air temperature. In step S <b> 43, the warm-up control unit 31 acquires information on the expected travel distance managed by the navigation system 33.
 ステップS44にて、暖機制御部31は、メモリ32に記録されている累積消費エネルギーマップを参照し、潤滑油の温度に対応する走行距離と累積消費エネルギーとの特性を抽出する。ステップS45にて、暖機制御部31は、メモリ32に記録されている暖機エネルギーマップを参照し、外気の温度と潤滑油の温度との比較結果に対応する、暖機エネルギーと上昇温度との特性を抽出する。 In step S44, the warm-up control unit 31 refers to the cumulative energy consumption map recorded in the memory 32, and extracts the characteristics of the travel distance and the cumulative energy consumption corresponding to the temperature of the lubricating oil. In step S45, the warm-up control unit 31 refers to the warm-up energy map recorded in the memory 32, and determines the warm-up energy and the rising temperature corresponding to the comparison result between the outside air temperature and the lubricating oil temperature. Extract the characteristics of.
 ステップS46にて、暖機制御部31は、ステップS45で抽出した暖機エネルギーと上昇温度との特性に基づき、累積消費エネルギーマップのうち、ステップS44で抽出されていない走行距離と累積消費エネルギーとの特性を補正することで、累積消費エネルギーマップを補正する。 In step S46, the warm-up control unit 31 determines, based on the characteristics of the warm-up energy extracted in step S45 and the rising temperature, the travel distance and cumulative energy that are not extracted in step S44 in the cumulative energy map. The accumulated energy consumption map is corrected by correcting the characteristics of.
 ステップS47にて、暖機制御部31は、補正後の累積消費エネルギーマップを参照し、予想走行距離に対応する温度を、目標温度として算出する。ステップ48にて、暖機制御部31は、ステップS47で算出した温度を、目標温度に設定し、暖機システムを制御する。 In step S47, the warm-up control unit 31 refers to the corrected cumulative energy consumption map, and calculates the temperature corresponding to the expected travel distance as the target temperature. In step 48, the warm-up control unit 31 sets the temperature calculated in step S47 as the target temperature, and controls the warm-up system.
 上記のように、本例は、潤滑油の温度、外気の温度、及び走行距離に応じて、暖機システムを駆動させて潤滑油の温度を上昇する際の目標温度を設定する。これにより、暖機システムを駆動させるためのエネルギーの消費量を抑制しつつ、暖機に要する時間とバッテリ6の消費容量を抑えることができる。 As described above, in this example, the target temperature when the temperature of the lubricating oil is raised by driving the warm-up system is set according to the temperature of the lubricating oil, the temperature of the outside air, and the travel distance. Thereby, the time required for warm-up and the consumed capacity of the battery 6 can be suppressed while suppressing the consumption of energy for driving the warm-up system.
 また本例は、車両の運転開始前に暖機システムを駆動させてから、目的地に到着するまで変速機5の暖機に必要な累積消費エネルギーと走行距離との相対関係を、車両の走行を開始する際の潤滑油の温度(初期温度)に対応させて示した累積消費エネルギーマップ(本発明の「第1マップ」に相当)と、車両の運転開始前に暖機システムを駆動させて目標温度まで上昇させるために必要なエネルギーと目標温度との相対関係を、外気の温度に対応させて示した暖機エネルギーマップ(本発明の「第2マップ」に相当する)とをメモリ32に保存しつつ、累積消費エネルギーマップ及び消費エネルギーマップを参照して、目標温度を設定する。これにより、潤滑油の温度、外気の温度、及び走行距離に応じて、運転開始前の暖機システムの駆動時から目的地に到着するまでに、暖機システムの駆動に要するエネルギーを最小にすることができる。 Further, in this example, the relative relationship between the cumulative energy consumption required for warming up the transmission 5 and the travel distance until the vehicle arrives at the destination after the warming-up system is driven before the vehicle starts driving is calculated. Cumulative consumption energy map (corresponding to the “first map” of the present invention) shown corresponding to the temperature (initial temperature) of the lubricating oil when starting the vehicle, and driving the warm-up system before starting the vehicle operation A warm-up energy map (corresponding to the “second map” of the present invention) showing the relative relationship between the energy required for raising the target temperature and the target temperature in correspondence with the temperature of the outside air is stored in the memory 32. While saving, the target temperature is set with reference to the cumulative energy consumption map and the energy consumption map. This minimizes the energy required to drive the warm-up system from the time of driving the warm-up system before the start of operation until the destination is reached, depending on the temperature of the lubricating oil, the temperature of the outside air, and the travel distance. be able to.
 また本例は、予想走行距離が長いほど、目標温度を高く設定する。これにより、予想走行距離に応じて、暖機システムの駆動に要するエネルギーを最小にすることができる。 In this example, the target temperature is set higher as the expected travel distance is longer. Thereby, the energy required for driving the warm-up system can be minimized in accordance with the expected travel distance.
 なお、統合コントローラ30は、車両の走行距離、車両の運転開始時の潤滑油の温度、及びバッテリ6の消費される容量を取得し、累積消費エネルギーマップを更新してもよい。バッテリ6の消費される容量は、バッテリ6に接続されたセンサ(図示しない)の検出値に基づき算出される。そして、バッテリ6で消費される容量のうち、暖機システムで消費される容量は、車両の運転の状態に応じて予め決まっているため、演算により、累積消費エネルギーを算出することができる。 Note that the integrated controller 30 may acquire the travel distance of the vehicle, the temperature of the lubricating oil at the start of operation of the vehicle, and the consumed capacity of the battery 6, and update the cumulative energy consumption map. The capacity consumed by the battery 6 is calculated based on a detection value of a sensor (not shown) connected to the battery 6. And since the capacity | capacitance consumed by a warming-up system among the capacity | capacitance consumed with the battery 6 is decided beforehand according to the driving | running state of a vehicle, accumulated energy can be calculated by calculation.
 また、図10に示すマップでは、累積消費エネルギーと走行距離との相対関係を、初期温度の10度毎に示したが、必ずしも10度毎にする必要はなく、初期温度に連続性をもたせてもよい。 Further, in the map shown in FIG. 10, the relative relationship between the accumulated energy consumption and the travel distance is shown every 10 degrees of the initial temperature, but it is not always necessary to make every 10 degrees, and the initial temperature is made continuous. Also good.
 なお、本発明の暖機制御部31及びメモリ32が本発明の「制御手段」に相当し、外気温センサ150が本発明の「外気温検出手段」に相当する。 The warm-up control unit 31 and the memory 32 of the present invention correspond to “control means” of the present invention, and the outside air temperature sensor 150 corresponds to “outside air temperature detection means” of the present invention.
1…エンジン
2…第1クラッチ
3…モータ
 3a…モータ軸
4…第2クラッチ
 4a…変速機入力軸
5…変速機
 51…プライマリープーリ
 52…セカンダリープーリ
 53…ベルト
6…バッテリ
7…インバータ
8…オイルポンプ
9、10…車輪
11…充電器
12…コネクタ
20…エンジンコントローラ
21…CVTコントローラ
22…モーターコントローラ
23…バッテリコントローラ
24…CAN通信線
25…アクセル開度センサ
26…車速センサ
27…エンジン回転数センサ
28…モータ回転数センサ
30…統合コントローラ
 97…インヒビタスイッチ
 98…タイマー
 99…受信器
 100…オイルポンプ
 110…オイルパン
 120…電熱線
 130…油温センサ
 141、142…バルブ
DESCRIPTION OF SYMBOLS 1 ... Engine 2 ... 1st clutch 3 ... Motor 3a ... Motor shaft 4 ... 2nd clutch 4a ... Transmission input shaft 5 ... Transmission 51 ... Primary pulley 52 ... Secondary pulley 53 ... Belt 6 ... Battery 7 ... Inverter 8 ... Oil Pump 9, 10 ... Wheel 11 ... Charger 12 ... Connector 20 ... Engine controller 21 ... CVT controller 22 ... Motor controller 23 ... Battery controller 24 ... CAN communication line 25 ... Accelerator opening sensor 26 ... Vehicle speed sensor 27 ... Engine speed sensor 28 ... Motor speed sensor 30 ... Integrated controller 97 ... Inhibitor switch 98 ... Timer 99 ... Receiver 100 ... Oil pump 110 ... Oil pan 120 ... Heating wire 130 ... Oil temperature sensor 141, 142 ... Valve

Claims (11)

  1. バッテリ、モータ及び変速機を備えたハイブリッド車両に設けられ、前記変速機の暖機を行う暖機装置において、
     前記バッテリの電力を動力源とした前記モータの駆動により、前記変速機の潤滑油の温度を上昇させる油温上昇手段と、
     前記車両の運転の前に前記温度上昇手段を駆動させる制御手段とを備える
    ことを特徴とする暖機装置。
    In a warming-up device that is provided in a hybrid vehicle including a battery, a motor, and a transmission, and that warms up the transmission,
    Oil temperature raising means for raising the temperature of the lubricating oil of the transmission by driving the motor using the power of the battery as a power source;
    A warming-up apparatus comprising: control means for driving the temperature raising means before driving the vehicle.
  2.  前記暖機の開始時刻を設定するタイマーをさらに備え、
    前記制御手段は、
     前記タイマーで設定された前記開始時刻に基づいて、前記油温上昇手段を駆動させる
    ことを特徴とする請求項1記載の暖機装置。
    A timer for setting a start time of the warm-up;
    The control means includes
    The warm-up apparatus according to claim 1, wherein the oil temperature raising means is driven based on the start time set by the timer.
  3.  前記ハイブリッド車両の外部から、前記油温上昇手段を駆動させる旨の信号を受信する受信手段をさらに備え、
    前記制御手段は、
     前記受信手段で受信された信号に基づいて、前記油温上昇手段を駆動させることを特徴とする請求項1又は2記載の暖機装置。
    Receiving means for receiving a signal to drive the oil temperature raising means from the outside of the hybrid vehicle;
    The control means includes
    The warming-up apparatus according to claim 1 or 2, wherein the oil temperature raising means is driven based on a signal received by the receiving means.
  4.  前記潤滑油の温度を検出する油温検出手段をさらに備え、
    前記制御手段は、
     前記油温検出手段により検出された検出温度が高いほど、前記油温上昇手段の駆動時間を短い時間に設定する
    ことを特徴とする請求項1~3のいずれか一項に記載の暖機装置。
    Oil temperature detecting means for detecting the temperature of the lubricating oil,
    The control means includes
    The warming-up device according to any one of claims 1 to 3, wherein the driving time of the oil temperature raising means is set to a shorter time as the detected temperature detected by the oil temperature detecting means is higher. .
  5.  前記バッテリの充電状態を検出する充電状態検出手段をさらに備え、
    前記制御手段は、
     前記充電状態検出手段により検出された充電状態が、所定の充電状態より高い場合に、前記油温上昇手段を駆動させる
    ことを特徴とする請求項1~4のいずれか一項に記載の暖機装置。
    A charge state detecting means for detecting a charge state of the battery;
    The control means includes
    The warm-up according to any one of claims 1 to 4, wherein when the state of charge detected by the state of charge detecting means is higher than a predetermined state of charge, the oil temperature raising means is driven. apparatus.
  6.  前記ハイブリッド車両に設けられたシフトレバーの位置を検出するシフトポジションセンサをさらに備え、
    前記制御手段は、
     前記シフトポジションセンサにより検出された前記シフトレバーの位置がパーキングポジションである場合に限り、前記油温上昇手段を駆動させる
    ことを特徴とする請求項1~5のいずれか一項に記載の暖機装置。
    A shift position sensor for detecting a position of a shift lever provided in the hybrid vehicle;
    The control means includes
    6. The warm-up according to claim 1, wherein the oil temperature raising means is driven only when the position of the shift lever detected by the shift position sensor is a parking position. apparatus.
  7. 前記バッテリの電力で駆動し、前記潤滑油の温度を上昇させる電熱線をさらに備え、
    前記制御手段は、前記車両の運転の前に前記電熱線を駆動させる
    ことを特徴とする請求項1~6のいずれか一項に記載の暖機装置。
    Driven by the power of the battery, further comprising a heating wire to raise the temperature of the lubricating oil,
    The warm-up device according to any one of claims 1 to 6, wherein the control means drives the heating wire before driving the vehicle.
  8.  前記潤滑油の温度を検出する油温検出手段と、
     前記車両の外気の温度を検出する外気温検出手段と、
     前記車両の目的地までの予想走行距離を算出する走行距離管理手段とを備え、
    前記制御手段は、
     前記潤滑油の温度、前記外気の温度、及び前記予想走行距離に応じて、前記車両の運転の前に前記温度上昇手段を駆動させて前記潤滑油の温度を上昇する際の目標温度を設定する
    ことを特徴とする請求項1~7のいずれか一項に記載の暖機装置。
    Oil temperature detecting means for detecting the temperature of the lubricating oil;
    An outside air temperature detecting means for detecting the temperature of the outside air of the vehicle;
    Mileage management means for calculating an expected mileage to the destination of the vehicle,
    The control means includes
    In accordance with the temperature of the lubricating oil, the temperature of the outside air, and the predicted travel distance, a target temperature when the temperature of the lubricating oil is raised is set by driving the temperature raising means before driving the vehicle. The warming-up device according to any one of claims 1 to 7, wherein
  9. 前記制御手段は、
     前記車両の運転開始前に前記温度上昇手段を駆動させてから、前記目的地に到着するまで前記変速機の暖機に必要な累積消費エネルギーと、前記予想走行距離との相対関係を、前記車両の走行を開始する際の前記潤滑油の温度に対応させて示した第1マップと、
     前記車両の運転開始前に前記温度上昇手段を駆動させて前記目標温度まで上昇させるために必要なエネルギーと前記目標温度との相対関係を、前記外気の温度に対応させて示した第2マップとを有し、
     前記第1マップ及び前記第2マップを参照して、前記目標温度を設定する
    ことを特徴とする請求項8記載の暖機装置。
    The control means includes
    The relative relationship between the cumulative travel energy required for warming up the transmission until the arrival at the destination after the temperature raising means is driven before the vehicle starts operating, and the predicted travel distance is expressed as follows. A first map shown corresponding to the temperature of the lubricating oil when starting the running,
    A second map showing the relative relationship between the target temperature and the energy required to drive the temperature raising means to drive up to the target temperature before starting operation of the vehicle, corresponding to the temperature of the outside air; Have
    The warm-up device according to claim 8, wherein the target temperature is set with reference to the first map and the second map.
  10. 前記制御手段は、
     前記予想走行距離が長いほど、高い前記目標温度を設定する
    ことを特徴とする請求項8又は9に記載の暖機装置。
    The control means includes
    The warming-up apparatus according to claim 8 or 9, wherein the target temperature is set higher as the predicted travel distance is longer.
  11. 前記暖機装置は、外部電源により充電可能な前記バッテリを備えたプラグインハイブリッド車両に設けられている
    ことを特徴とする請求項1~10のいずれか一項に記載の暖機装置。
    The warm-up device according to any one of claims 1 to 10, wherein the warm-up device is provided in a plug-in hybrid vehicle including the battery that can be charged by an external power source.
PCT/JP2013/078675 2012-10-26 2013-10-23 Warm-up device for transmission WO2014065309A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-236429 2012-10-26
JP2012236429 2012-10-26

Publications (1)

Publication Number Publication Date
WO2014065309A1 true WO2014065309A1 (en) 2014-05-01

Family

ID=50544685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078675 WO2014065309A1 (en) 2012-10-26 2013-10-23 Warm-up device for transmission

Country Status (1)

Country Link
WO (1) WO2014065309A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016207912A1 (en) * 2016-05-09 2017-11-09 Audi Ag Method for operating a motor vehicle and motor vehicle
US10124652B2 (en) 2015-02-04 2018-11-13 Toyota Jidosha Kabushiki Kaisha Vehicular heat management system
JP2019111956A (en) * 2017-12-25 2019-07-11 株式会社Subaru Oil temperature increase device
DE102018206287A1 (en) * 2018-04-24 2019-10-24 Zf Friedrichshafen Ag Method for operating a motor vehicle drive train
CN112856512A (en) * 2021-01-11 2021-05-28 宁波方太厨具有限公司 Movement mechanism and range hood with same
DE102017127617B4 (en) 2016-11-28 2023-06-01 GM Global Technology Operations LLC Dry sump system warm-up strategy

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH094431A (en) * 1995-06-21 1997-01-07 Honda Motor Co Ltd Lubricating oil heating device for electric vehicle
JP2005076768A (en) * 2003-09-01 2005-03-24 Toyota Motor Corp Control device for automatic transmission
JP2007118822A (en) * 2005-10-28 2007-05-17 Fujitsu Ten Ltd Start control unit
JP2007216764A (en) * 2006-02-15 2007-08-30 Toyota Motor Corp Hybrid car
JP2009202771A (en) * 2008-02-28 2009-09-10 Toyota Motor Corp Vehicle and control method thereof, and drive unit and control method thereof
JP2010242549A (en) * 2009-04-02 2010-10-28 Toyota Motor Corp Warming-up device and plug-in hybrid vehicle
JP2010285149A (en) * 2010-07-23 2010-12-24 Equos Research Co Ltd Electric drive control device
WO2012053116A1 (en) * 2010-10-22 2012-04-26 トヨタ自動車株式会社 Control device for vehicle drive apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH094431A (en) * 1995-06-21 1997-01-07 Honda Motor Co Ltd Lubricating oil heating device for electric vehicle
JP2005076768A (en) * 2003-09-01 2005-03-24 Toyota Motor Corp Control device for automatic transmission
JP2007118822A (en) * 2005-10-28 2007-05-17 Fujitsu Ten Ltd Start control unit
JP2007216764A (en) * 2006-02-15 2007-08-30 Toyota Motor Corp Hybrid car
JP2009202771A (en) * 2008-02-28 2009-09-10 Toyota Motor Corp Vehicle and control method thereof, and drive unit and control method thereof
JP2010242549A (en) * 2009-04-02 2010-10-28 Toyota Motor Corp Warming-up device and plug-in hybrid vehicle
JP2010285149A (en) * 2010-07-23 2010-12-24 Equos Research Co Ltd Electric drive control device
WO2012053116A1 (en) * 2010-10-22 2012-04-26 トヨタ自動車株式会社 Control device for vehicle drive apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10124652B2 (en) 2015-02-04 2018-11-13 Toyota Jidosha Kabushiki Kaisha Vehicular heat management system
DE102016207912A1 (en) * 2016-05-09 2017-11-09 Audi Ag Method for operating a motor vehicle and motor vehicle
US11231101B2 (en) 2016-05-09 2022-01-25 Audi Ag Method for operating a motor vehicle, and motor vehicle
DE102017127617B4 (en) 2016-11-28 2023-06-01 GM Global Technology Operations LLC Dry sump system warm-up strategy
JP2019111956A (en) * 2017-12-25 2019-07-11 株式会社Subaru Oil temperature increase device
JP7050482B2 (en) 2017-12-25 2022-04-08 株式会社Subaru Oil temperature riser
DE102018206287A1 (en) * 2018-04-24 2019-10-24 Zf Friedrichshafen Ag Method for operating a motor vehicle drive train
CN112856512A (en) * 2021-01-11 2021-05-28 宁波方太厨具有限公司 Movement mechanism and range hood with same

Similar Documents

Publication Publication Date Title
JP5360306B2 (en) Control device for hybrid vehicle
US9580068B2 (en) Hybrid vehicle drive control system
EP3006291B1 (en) Control device for a plug-in hybrid vehicle
EP3006292B1 (en) Control device for plug-in hybrid vehicle
JP5716779B2 (en) Hybrid car
KR101466460B1 (en) Engine start control device for a hybrid vehicle
WO2014065309A1 (en) Warm-up device for transmission
CN105818809B (en) Hybrid vehicle and downshift strategy in hybrid vehicle
JP5966691B2 (en) Vehicle control system, server, and vehicle control device
EP2808213B1 (en) Hybrid vehicle management system, hybrid vehicle control apparatus, and hybrid vehicle control method
US8983703B2 (en) Device for controlling hybrid vehicle
US20100292047A1 (en) Hybrid vehicle drive control apparatus
CN102039891A (en) Control apparatus for hybrid vehicle
US9663098B2 (en) Control system for a plug-in hybrid vehicle
EP3053796B1 (en) Hybrid vehicle control device
JP6331749B2 (en) Control device for hybrid vehicle
MX2014002567A (en) Hybrid vehicle control apparatus.
JP2013159214A (en) Controller for hybrid vehicle
JP2008189102A (en) Control apparatus for hybrid vehicle
WO2015198381A1 (en) Control device for hybrid vehicle
JP2010000833A (en) Control device for hybrid vehicle
JP5212001B2 (en) Control device and control method for hybrid vehicle
WO2013154094A1 (en) Control device for hybrid vehicle, management system for hybrid vehicle, and management method for hybrid vehicle
JP6089601B2 (en) Auxiliary machine control device
JP2014101051A (en) Hybrid vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP