WO2014065300A1 - Compound having acridan ring structure, and organic electroluminescence element - Google Patents

Compound having acridan ring structure, and organic electroluminescence element Download PDF

Info

Publication number
WO2014065300A1
WO2014065300A1 PCT/JP2013/078632 JP2013078632W WO2014065300A1 WO 2014065300 A1 WO2014065300 A1 WO 2014065300A1 JP 2013078632 W JP2013078632 W JP 2013078632W WO 2014065300 A1 WO2014065300 A1 WO 2014065300A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
carbon atoms
aromatic
atom
Prior art date
Application number
PCT/JP2013/078632
Other languages
French (fr)
Japanese (ja)
Inventor
紀昌 横山
大三 神田
秀一 林
Original Assignee
保土谷化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保土谷化学工業株式会社 filed Critical 保土谷化学工業株式会社
Priority to JP2014504093A priority Critical patent/JP5525665B1/en
Publication of WO2014065300A1 publication Critical patent/WO2014065300A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene

Definitions

  • the present invention relates to a compound suitable for an organic electroluminescence element which is a self-luminous element suitable for various display devices and the element, and more specifically, a compound having an acridan ring structure and an organic compound using the compound.
  • the present invention relates to an electroluminescence element.
  • organic electroluminescence element (hereinafter sometimes referred to as an organic EL element) is a self-luminous element, it is brighter and more visible than a liquid crystal element, and a clear display is possible. Therefore, active research has been conducted on organic EL elements.
  • an electroluminescent device in which various roles are further subdivided and an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are sequentially provided on a substrate. High efficiency and durability are achieved by such an element.
  • TADF thermally activated delayed fluorescence
  • the light emitting layer can also be prepared by doping a charge transporting compound generally called a host material with a phosphor or a phosphorescent material.
  • a charge transporting compound generally called a host material with a phosphor or a phosphorescent material.
  • the light injected from both electrodes is recombined in the light emitting layer to obtain light emission.
  • the probability of recombination of holes and electrons is improved by increasing the hole injection property and blocking the electron injected from the cathode, and further excitons generated in the light emitting layer.
  • the role of the hole transport material is important, and there is a demand for a hole transport material that has high hole injectability, high hole mobility, high electron blocking properties, and high durability against electrons. ing.
  • the heat resistance and amorphous nature of the material are important for the lifetime of the element.
  • thermal decomposition occurs even at a low temperature due to heat generated when the element is driven, and the material is deteriorated.
  • the thin film is crystallized even in a short time, and the element is deteriorated. For this reason, the material used is required to have high heat resistance and good amorphous properties.
  • Examples of hole transport materials that have been used in organic EL devices so far include N, N′-diphenyl-N, N′-di ( ⁇ -naphthyl) benzidine (hereinafter abbreviated as NPD) and various aromatic amines.
  • NPD N, N′-diphenyl-N, N′-di ( ⁇ -naphthyl) benzidine (hereinafter abbreviated as NPD) and various aromatic amines.
  • Derivatives are known (see Patent Document 1 and Patent Document 2).
  • NPD has a good hole transport capability, but its glass transition point (Tg), which is an index of heat resistance, is as low as 96 ° C., and device characteristics are deteriorated due to crystallization under high temperature conditions.
  • Tg glass transition point
  • the aromatic amine derivatives described in Patent Document 1 and Patent Document 2 there are compounds having an excellent mobility such as a hole mobility of 10 ⁇ 3 cm 2 / Vs or more.
  • JP-A-8-048656 Japanese Patent No. 3194657 WO2006 / 033563 publication WO2007 / 110228 publication WO 2010/147319
  • the object of the present invention is as a highly efficient and durable organic EL device material with excellent hole injection / transport performance, electron blocking ability, high stability in a thin film state, and heat resistance. It is to provide an organic compound having excellent characteristics. Another object of the present invention is to provide an organic EL device having high luminous efficiency and high durability using this compound.
  • the organic compound to be provided by the present invention should have, ( ⁇ ) good hole injection characteristics; ( ⁇ ) high hole mobility; ( ⁇ ) Excellent electron blocking ability, ( ⁇ ) that the thin film state is stable, ( ⁇ ) Excellent heat resistance, Can be mentioned.
  • the organic EL element to be provided by the present invention should have, ( ⁇ ) high luminous efficiency and power efficiency, ( ⁇ ) Low emission start voltage, ( ⁇ ) The practical drive voltage is low, Can be mentioned.
  • an aromatic tertiary amine structure has a high hole injection / transport capability, a predetermined acridan ring structure (benzothienoacridan ring structure or benzofloor). Focusing on the effects of the given acridan ring structure on the heat resistance and thin film stability, the compound having an acridan ring structure is designed and chemistry. Synthesized. Furthermore, various organic EL devices were prototyped using the compound, and the characteristics of the devices were earnestly evaluated. As a result, the present invention has been completed.
  • a compound having an acridan ring structure represented by the following general formula (1) is provided.
  • X represents an oxygen atom or a sulfur atom
  • R 1 to R 9 are hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, nitro group, alkyl group having 1 to 6 carbon atoms, carbon atom number 5 to 10 cycloalkyl groups, alkenyl groups having 2 to 6 carbon atoms, alkyloxy groups having 1 to 6 carbon atoms, cycloalkyloxy groups having 5 to 10 carbon atoms, aromatic hydrocarbon groups, aromatic heterocyclic groups A condensed polycyclic aromatic group or an aryloxy group, which may be bonded to each other through a single bond or a methylene group, an oxygen atom or a sulfur atom to form a ring;
  • R 10 and R 11 are each an alkyl group having 1 to 6 carbon atoms, 10 cycloalkyl groups, alkenyl groups having 2 to 6
  • A is an aromatic hydrocarbon, aromatic heterocyclic ring or condensed polycyclic aromatic 2 Represents a valent group or a single bond
  • a and Ar 2 are bonded to each other through a single bond or a methylene group, an oxygen atom or a sulfur atom. To form a ring.
  • R 12 represents an integer of 0 to 4
  • R 12 represents a deuterium atom, a fluorine atom, a chlorine atom, a cyano group
  • Nitro group alkyl group having 1 to 6 carbon atoms, 5 to carbon atoms 10 cycloalkyl groups, alkenyl groups having 2 to 6 carbon atoms, alkyloxy groups having 1 to 6 carbon atoms, and 5 to 1 carbon atoms 0 cycloalkyloxy group, aromatic hydrocarbon group, aromatic heterocyclic group, condensed polycyclic aromatic group or aryloxy group, or linking group, and when there are a plurality of R 12 , R 12 may form a ring with each other.
  • A is an aromatic hydrocarbon or a condensed polycyclic aromatic divalent group represented by the following general formula (2 ′).
  • r 12 and R 12 have the same meanings as described in the formula (2).
  • X, R 1 to R 11 , Ar 1 , Ar 3 and A are defined by the general formula (1)
  • Ar 4 represents Ar 2 described in the general formula (1) or (1-1).
  • (VI) A is a single bond.
  • the compound having the acridan ring structure is a constituent material of the organic layer.
  • the organic electroluminescent element characterized by being used as is provided.
  • the organic layer is a hole transport layer;
  • the organic layer is an electron blocking layer;
  • IX the organic layer is a hole injection layer;
  • the organic layer is a light emitting layer; Is preferred.
  • the compound having an acridan ring structure of the present invention is a novel compound, and a predetermined acridan ring structure (benzothienoacridan ring structure or benzoflourcridan ring structure) has an electron blocking property, and this predetermined Acridan ring structure has heat resistance and thin film stability. Therefore, the compound having an acridan ring structure of the present invention is (A) has excellent electron blocking ability, (B) It has excellent amorphous properties, and (C) the thin film state is stable.
  • the compound of the present invention has a high glass transition point (Tg) as an index of heat resistance, and specifically has a Tg of 100 ° C. or higher, particularly 140 ° C. or higher. Therefore, a thin film formed using the compound of the present invention is hardly crystallized even under high temperature conditions.
  • Tg glass transition point
  • the compound of the present invention can be used, for example, as a constituent material of a hole injection layer and / or a hole transport layer of an organic EL device.
  • the compound of the present invention has higher (a) hole injection properties than conventional materials, (B) High hole mobility, (C) The electron blocking property is high, and (d) since the stability to electrons is high, in the hole injection layer and / or hole transport layer obtained by using the compound of the present invention as a constituent material, Can confine excitons generated in, and the probability of recombination of holes and electrons is improved, high luminous efficiency can be obtained, driving voltage is lowered, and durability of the organic EL element is improved. The effect of doing is given.
  • the compound of this invention can be used also as a constituent material of the electron blocking layer of an organic EL element.
  • the compounds of the present invention (E) has excellent electron blocking ability, (F) Excellent hole transportability compared to conventional materials, and (g) Since the stability of the thin film state is high, the electron blocking layer obtained by using the compound of the present invention as a constituent material has high luminous efficiency. However, the driving voltage is lowered, the current resistance is improved, and the maximum light emission luminance of the organic EL element is improved.
  • the compound of this invention can be used also as a constituent material of the light emitting layer of an organic EL element.
  • the compounds of the present invention (H) Excellent hole transportability compared to conventional materials, and (i) Wide band gap, so the compound of the present invention is used as a host material for a light emitting layer, and a phosphor or phosphorescent material called a dopant is used.
  • the organic EL device of the present invention has a higher mobility of holes than conventional hole transport materials, an excellent electron blocking ability, an excellent amorphous property, and a stable thin film state. Since a compound having a structure is used, high efficiency and high durability are realized.
  • the compound having an acridan ring structure of the present invention is useful as a constituent material of a hole injection layer, a hole transport layer, an electron blocking layer or a light emitting layer of an organic EL device, and has an excellent electron blocking ability and is excellent. It has the ability to block electrons, has good amorphous properties, is stable in a thin film state, and has excellent heat resistance.
  • the organic EL device of the present invention has high luminous efficiency and high power efficiency, which can reduce the practical driving voltage of the device. The emission start voltage can be lowered and the durability can be improved.
  • the compound of the present invention is represented by the following general formula (1), and has a predetermined acridan ring structure and an aromatic tertiary amine structure.
  • R 1 , R 2 , R 3 and A are represented by the following general formula (1-1). A compound bonded at a certain position is preferred.
  • X represents an oxygen atom or a sulfur atom.
  • X is a sulfur atom
  • the compound of the present invention has a benzothienoacridan ring structure.
  • X is an oxygen atom
  • the compound of the present invention has a benzoflouridane ring structure.
  • R 1 to R 9 may be the same or different from each other, and are a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, nitro group, alkyl group having 1 to 6 carbon atoms, 10 cycloalkyl groups, alkenyl groups having 2 to 6 carbon atoms, alkyloxy groups having 1 to 6 carbon atoms, cycloalkyloxy groups having 5 to 10 carbon atoms, aromatic hydrocarbon groups, aromatic heterocyclic groups Represents a condensed polycyclic aromatic group or an aryloxy group. These groups may be bonded to each other via a single bond or an optionally substituted methylene group, oxygen atom or sulfur atom to form a ring.
  • Examples of the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms or the alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 9 include the following examples. . Methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, cyclopentyl group, cyclohexyl Group, 1-adamantyl group, 2-adamantyl group, vinyl group, allyl group, isopropenyl group, 2-butenyl group and the like.
  • the alkyl group having 1 to 6 carbon atoms and the alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 9 may be linear or branched
  • the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 9 may have a substituent.
  • the following examples can be given as examples of the substituent.
  • substituents further include the same examples as the above-described substituent.
  • substituents may be bonded to each other via a single bond or a methylene group, oxygen atom or sulfur atom which may have a substituent, to form a ring.
  • Examples of the alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms represented by R 1 to R 9 include the following examples. Methyloxy group, ethyloxy group, n-propyloxy group, isopropyloxy group, n-butyloxy group, tert-butyloxy group, n-pentyloxy group, n-hexyloxy group, cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, 1-adamantyloxy group, 2-adamantyloxy group and the like.
  • the alkyloxy group having 1 to 6 carbon atoms represented by R 1 to R 9 may be linear or branched.
  • the alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms represented by R 1 to R 9 may have a substituent.
  • the substituent may have an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 9.
  • R 1 to R 9 may further have a substituent.
  • the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 9 has The same examples can be given as good substituents.
  • the substituents exemplified above may be bonded to each other via a single bond or an optionally substituted methylene group, oxygen atom or sulfur atom to form a ring.
  • Examples of the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 1 to R 9 include the following. Phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthryl group, phenanthryl group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group, pyridyl group, furyl group, pyrrolyl group, thienyl Group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, indolyl group, carbazolyl group, benzoxazolyl group, benzothiazolyl group, quinoxalyl group, benzoimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group, carbolinyl Group etc.
  • the aromatic heterocyclic group represented by R 1 to R 9 is preferably a sulfur-containing aromatic heterocyclic group such as a thienyl group, a benzothienyl group, a benzothiazolyl group, or a dibenzothienyl group.
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 1 to R 9 may have a substituent.
  • the following examples can be given as examples of the substituent.
  • substituents further include the same examples as the above-described substituents of the aromatic hydrocarbon group represented by R 1 to R 9 . Further, the substituents may be bonded to each other via a single bond or a methylene group, oxygen atom or sulfur atom which may have a substituent, to form a ring.
  • Examples of the aryloxy group represented by R 1 to R 9 include the following examples. Phenyloxy group, biphenylyloxy group, terphenylyloxy group, naphthyloxy group, anthryloxy group, phenanthryloxy group, fluorenyloxy group, indenyloxy group, pyrenyloxy group, perylenyloxy group and the like.
  • the aryloxy group represented by R 1 to R 9 may have a substituent.
  • substituents include the same examples as the substituent which the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 1 to R 9 may have. These substituents may further have a substituent. Examples of the substituent further include the same examples as the substituent that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 1 to R 9 may have. .
  • the substituents may be bonded to each other through a single bond or a methylene group, oxygen atom or sulfur atom which may have a substituent to form a ring.
  • R 10 and R 11 may be the same or different from each other, and are an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or the number of carbon atoms
  • These groups may be bonded to each other via a single bond or an optionally substituted methylene group, oxygen atom or sulfur atom to form a ring.
  • the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms or the alkenyl group having 2 to 6 carbon atoms represented by R 10 and R 11 is represented by R 1 to R 9. Examples thereof are the same as the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, and the alkenyl group having 2 to 6 carbon atoms. As understood from the exemplified groups, the alkyl group having 1 to 6 carbon atoms or the alkenyl group having 2 to 6 carbon atoms represented by R 10 and R 11 may be linear or branched.
  • the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms represented by R 10 and R 11 may have a substituent.
  • the substituent may have an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 9.
  • R 1 to R 9 The same example as a substituent can be given.
  • These substituents may further have a substituent.
  • the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 9 has The same examples can be given as good substituents.
  • the substituents may be bonded to each other through a single bond or a methylene group, an oxygen atom or a sulfur atom which may have a substituent to form a ring.
  • Examples of the alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms represented by R 10 and R 11 include those having 1 to 6 carbon atoms represented by R 1 to R 9 .
  • the same examples as the alkyloxy group or the cycloalkyloxy group having 5 to 10 carbon atoms can be given.
  • the alkyloxy group having 1 to 6 carbon atoms may be linear or branched.
  • the alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms represented by R 10 and R 11 may have a substituent.
  • the substituent may have an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 9.
  • R 1 to R 9 The same example as a substituent can be given.
  • these substituents may further have a substituent.
  • the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 9 has The same examples can be given as good substituents.
  • the substituents exemplified above may be bonded to each other via a single bond or an optionally substituted methylene group, oxygen atom or sulfur atom to form a ring.
  • Examples of the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 10 and R 11 include aromatic hydrocarbon groups and aromatic heterocyclic groups represented by R 1 to R 9 Or the same example as a condensed polycyclic aromatic group can be mentioned.
  • the aromatic heterocyclic group represented by R 10 and R 11 is preferably a sulfur-containing aromatic heterocyclic group such as a thienyl group, a benzothienyl group, a benzothiazolyl group, or a dibenzothienyl group.
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 10 and R 11 may have a substituent.
  • substituents include the same examples as the substituent which the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 1 to R 9 may have. These substituents may further have a substituent. Examples of the substituent further include the same examples as the substituent that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 1 to R 9 may have. .
  • the substituents may be bonded to each other through a single bond or a methylene group, an oxygen atom or a sulfur atom which may have a substituent to form a ring.
  • Examples of the aryloxy group represented by R 10 and R 11 include the same examples as the aryloxy groups represented by R 1 to R 9 .
  • the aryloxy group represented by R 10 and R 11 may have a substituent.
  • substituents include the same examples as the substituent which the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 1 to R 9 may have. These substituents may further have a substituent. Examples of the substituent further include the same examples as the substituent that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 1 to R 9 may have. .
  • the substituents may be bonded to each other through a single bond or a methylene group, an oxygen atom or a sulfur atom which may have a substituent to form a ring.
  • Ar 1 , Ar 2 , and Ar 3 may be the same as or different from each other, and each represents an aromatic hydrocarbon group, an aromatic heterocyclic group, or a condensed polycyclic aromatic group.
  • the groups Ar 1 , Ar 2 , and Ar 3 may be bonded to each other through a single bond or a methylene group, oxygen atom, or sulfur atom that may have a substituent, for example, Ar 2 and Ar 3 may be bonded to each other through a single bond or a methylene group, an oxygen atom or a sulfur atom which may have a substituent to form a ring.
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 , Ar 2 , Ar 3 includes an aromatic hydrocarbon group represented by R 1 to R 9 , aromatic
  • aromatic heterocyclic group represented by Ar 1 , Ar 2 , Ar 3 a sulfur-containing aromatic heterocyclic group such as thienyl group, benzothienyl group, benzothiazolyl group, dibenzothienyl group; or furyl group, benzofuranyl group And oxygen-containing aromatic heterocycles such as benzoxazolyl group and dibenzofuranyl group are preferable.
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 , Ar 2 or Ar 3 may have a substituent.
  • the following examples can be given as examples of the substituent.
  • examples of the substituent further include the same examples as the substituents possessed by the aromatic hydrocarbon groups represented by Ar 1 , Ar 2 , and Ar 3 .
  • the substituents or substituents and Ar 1 , Ar 2 , Ar 3 are bonded to each other via a single bond or an optionally substituted methylene group, oxygen atom or sulfur atom to form a ring. May be.
  • Ar 1 is preferably an aromatic hydrocarbon group, a sulfur-containing aromatic heterocyclic group or a condensed polycyclic aromatic group, and in particular, a phenyl group, a biphenylyl group, a naphthyl group, a phenanthryl group, a fluorenyl group, a thienyl group, a benzothienyl group.
  • Group and dibenzothienyl group are preferable, and phenyl group, biphenylyl group, fluorenyl group, benzothienyl group and dibenzothienyl group are most preferable.
  • Ar 2 and Ar 3 are preferably an aromatic hydrocarbon group, an oxygen-containing aromatic heterocyclic group, a sulfur-containing aromatic heterocyclic group or a condensed polycyclic aromatic group, and in particular, a phenyl group, a biphenylyl group, a terphenylyl group, Naphtyl group, anthryl group, phenanthryl group, fluorenyl group, triphenylenyl group, furyl group, thienyl group, benzofuranyl group, benzothienyl group, dibenzofuranyl group, dibenzothienyl group are preferable, phenyl group, biphenylyl group, naphthyl group, phenanthryl group Fluorenyl group, triphenylenyl group, furyl group, thienyl group, benzofuranyl group, benzothienyl group, dibenzofuranyl group, dibenzothienyl group are most preferable.
  • A represents an aromatic hydrocarbon, an aromatic heterocyclic ring or a condensed polycyclic aromatic divalent group, or a single bond.
  • aromatic hydrocarbons, aromatic heterocycles and condensed polycyclic aromatics include the following. Benzene, biphenyl, terphenyl, tetrakisphenyl, styrene, naphthalene, anthracene, acenaphthalene, fluorene, phenanthrene, indane, pyrene, pyridine, pyrimidine, triazine, furan, pyrrole, thiophene, quinoline, isoquinoline, benzofuran, benzo Thiophene, indoline, carbazole, carboline, benzoxazole, benzothiazole, quinoxaline, benzimidazole, pyrazole, dibenzofuran, dibenzothiophene, Naphthyridine, phenanthroline
  • the divalent group represented by A can be formed by removing two hydrogen atoms from the aromatic hydrocarbon, aromatic heterocyclic ring or condensed polycyclic aromatic.
  • aromatic heterocycle sulfur-containing aromatic heterocycles such as thiophene, benzothiophene, benzothiazole, and dibenzothiophene; or oxygen-containing aromatic heterocycles such as furan, benzofuran, benzoxazole, and dibenzofuran; are preferable.
  • the aromatic hydrocarbon, aromatic heterocyclic ring or condensed polycyclic aromatic may have a substituent.
  • substituents include the same examples as the substituent that the aromatic hydrocarbon, aromatic heterocyclic ring or condensed polycyclic aromatic represented by Ar 1 , Ar 2 , Ar 3 may have. These substituents may further have a substituent. Further, examples of the substituent further include the same examples as the substituent that the aromatic hydrocarbon group, the aromatic heterocyclic group, or the condensed polycyclic aromatic group represented by Ar 1 , Ar 2 , and Ar 3 may have. be able to. Further, the substituents may be bonded to each other via a single bond or a methylene group, oxygen atom or sulfur atom which may have a substituent to form a ring.
  • A is preferably an aromatic hydrocarbon divalent group, a condensed polycyclic aromatic divalent group or a single bond, and particularly preferably a divalent group or a single bond derived from benzene.
  • the compound having an acridan ring structure of the present invention specifically includes the following general formula (1-3);
  • the bonding positions of R 1 to R 3 and Ar 3 Ar 2 N— are determined as represented by the following general formula (1-4).
  • the divalent group derived from benzene is represented by the following formula (2); Preferably, the following formula (2 ′); It is represented by
  • r 12 represents the number of the group R 12 described in detail later, and is an integer of 0 to 4.
  • the r 12 is 0, it means that the expression (2) and the benzene ring in the formula (2 ') is (hydrogen is present at the position of R 12) where R is not substituted with 12.
  • R 12 represents a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms.
  • the plurality of R 12 are bonded to each other via a single bond or an optionally substituted methylene group, oxygen atom or sulfur atom. To form a ring.
  • Examples of the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms represented by R 12 include carbon atoms represented by R 1 to R 9. Examples thereof are the same as those shown as the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms. As the substituent that these groups may have, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or a carbon number of 2 represented by the above R 1 to R 9 may be used.
  • alkenyl groups of ⁇ 6 Mention may be made of the same examples as indicated for the alkenyl groups of ⁇ 6. Preferred embodiments are also shown for the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 9 described above. Is the same.
  • Examples of the alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms represented by R 12 include an alkyloxy group having 1 to 6 carbon atoms represented by R 1 to R 9 Alternatively, the same examples as the cycloalkyloxy group having 5 to 10 carbon atoms can be given. As the substituents that these groups may have, the above-mentioned alkyloxy groups having 1 to 6 carbon atoms or cycloalkyloxy groups having 5 to 10 carbon atoms represented by R 1 to R 9 are shown. The same examples can be given. Preferred embodiments are also the same as those shown for the alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms represented by R 1 to R 9 above.
  • Examples of the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 12 include an aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic represented by R 1 to R 9.
  • the same example as what was shown as a ring aromatic group can be given.
  • Examples of the substituent that these groups may have are the same as those shown for the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 1 to R 9 above. Can be mentioned.
  • Preferred embodiments are also the same as those shown for the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 1 to R 9 above.
  • Examples of the aryloxy group represented by R 12 include the same examples as those shown as the aryloxy represented by R 1 to R 9 .
  • Examples of the substituent that these groups may have include the same examples as those shown for the aryloxy represented by the above R 1 to R 9 .
  • the preferred embodiments are also the same as those shown for the aryloxy represented by R 1 to R 9 above.
  • R 12 is a linking group
  • the benzene ring to which R 12 is bonded and Ar 2 are bonded to each other via a single bond or an optionally substituted methylene group, oxygen atom or sulfur atom.
  • a ring is formed, and preferably, as represented by the following general formula (1-2), a benzene ring to which R 12 is bonded and Ar 4 are bonded to each other through a single bond to form a ring. is doing.
  • Ar 4 represents a divalent group of Ar 2 . That is, examples of Ar 4 include divalent groups derived from the same groups as those shown for Ar 2 . Examples of the substituent that the group constituting Ar 4 may have include the same groups as those described above for Ar 2 . Further, even if the preferred aromatic heterocyclic group include the same as those indicated for the above Ar 2.
  • Ar 4 may be bonded to Ar 3 through a single bond, an optionally substituted methylene group, an oxygen atom or a sulfur atom to form a ring.
  • the compound having an acridan ring structure of the present invention is a novel compound and can be synthesized, for example, as follows.
  • a method for synthesizing a compound having a benzothienoacridan ring structure (where X is a sulfur atom) will be described.
  • methyl 2- (dibenzothiophen-2-yl) aminobenzoate is synthesized by reaction of methyl 2-aminobenzoate with 2-bromodibenzothiophene.
  • a benzothienoacridan derivative can be synthesized. Subsequently, bromination with N-bromosuccinimide or the like can be performed to synthesize a benzothienoacridan derivative in which the 11-position is brominated. At this time, when the bromination reagent and conditions are changed, bromo-substituted products having different substitution positions can be obtained. Further, the bromo-substituted product and various boronic acids or boronic acid esters ⁇ J. Org. Chem. , 60, 7508 (1995) ⁇ , for example, Suzuki coupling ⁇ Synth. Commun. , 11, 513 (1981) ⁇ , the compound having the benzothienoacridan ring structure of the present invention can be synthesized.
  • the compound having a benzofloricridan ring structure (where X is an oxygen atom) is the above-described method for synthesizing a compound having a benzothienoacridan ring structure of the present invention.
  • 2-bromodibenzofuran can be used instead of 2-bromodibenzothiophene, and then the same synthesis reaction can be performed.
  • the compound having an acridan ring structure of the present invention can also be synthesized by the following method. That is, the benzothienoacridan ring structure of the present invention has a cross coupling such as Buchwald-Hartwig reaction between a bromo-substituted benzothienoacridan derivative substituted with an aryl group at the 8-position and various diarylamines. It can synthesize
  • the compound having a benzoflouridan ring structure of the present invention is a compound such as the Buchwald-Hartwig reaction between the bromo-substituted benzoflouridan derivative substituted with an aryl group at the 8-position and various diarylamines. It can be synthesized by performing a cross-coupling reaction.
  • the resulting compound can be purified by column chromatography; adsorption purification using silica gel, activated carbon, activated clay, etc .; recrystallization or crystallization using a solvent; The resulting compound is identified by NMR analysis.
  • a glass transition point (Tg) and a work function are measured.
  • the glass transition point (Tg) is an index of the stability of the thin film state.
  • the work function is an index of hole transportability.
  • a glass transition point (Tg) is calculated
  • the work function is measured using an ionization potential measuring apparatus (PYS-202, manufactured by Sumitomo Heavy Industries, Ltd.) by forming a 100 nm thin film on the ITO substrate.
  • PYS-202 manufactured by Sumitomo Heavy Industries, Ltd.
  • Organic EL element provided with the organic layer formed using the compound having an acridan ring structure of the present invention described above has a layer structure shown in FIG. 9, for example.
  • a transparent anode 2 a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, an electron injection layer on a glass substrate 1 (a transparent substrate such as a transparent resin substrate may be used). 7 and a cathode 8 are provided.
  • the organic EL element to which the compound having an acridan ring structure of the present invention is applied is not limited to the above layer structure.
  • an electron blocking layer is provided between the hole transport layer 4 and the light emitting layer 5. (Not shown) can also be provided.
  • some organic layers in these multilayer structures may be omitted.
  • the hole injection layer 3 between the transparent anode 2 and the hole transport layer 4 and the electron injection layer 7 between the electron transport layer 6 and the cathode 8 are omitted, and the anode 2 and the positive electrode are formed on the substrate 1.
  • a simple configuration including the hole transport layer 4, the light emitting layer 5, the electron transport layer 6, and the cathode 8 may be employed.
  • the compound having an acridan ring structure of the present invention comprises an organic layer (for example, a hole injection layer 3, a hole transport layer 4, an electron blocking layer (not shown), or the like provided between the transparent anode 2 and the cathode 8. It is preferably used as a material for forming the light emitting layer 5).
  • an organic layer for example, a hole injection layer 3, a hole transport layer 4, an electron blocking layer (not shown), or the like provided between the transparent anode 2 and the cathode 8. It is preferably used as a material for forming the light emitting layer 5).
  • the transparent anode 2 may be formed of a known electrode material.
  • an electrode material having a large work function such as ITO or gold is formed on the substrate 1 (transparent substrate such as a glass substrate). It is formed by vapor deposition.
  • the hole injection layer 3 provided on the transparent anode 2 can be formed using the compound having an acridan ring structure of the present invention described above, or may be formed using a conventionally known material, for example, the following materials.
  • PEDOT
  • the hole transport layer 4 provided on the hole injection layer 3 can also be formed using the compound having an acridan ring structure of the present invention, and a conventionally known hole transport material is used. It can also be formed. Typical examples of such conventionally known hole transport materials are as follows.
  • Benzidine derivatives such as N, N′-diphenyl-N, N′-di (m-tolyl) benzidine (hereinafter abbreviated as TPD); N, N′-diphenyl-N, N′-di ( ⁇ -naphthyl) benzidine (hereinafter abbreviated as NPD); N, N, N ′, N′-tetrabiphenylylbenzidine; Amine derivatives such as 1,1-bis [4- (di-4-tolylamino) phenyl] cyclohexane (hereinafter abbreviated as TAPC); Various triphenylamine trimers and tetramers; The above-mentioned coating type polymer material that is also used for a hole injection layer;
  • the compounds used as such a hole transport material may be formed alone, but may be formed by mixing two or more kinds, and one or more of the above compounds may be used.
  • a multilayer film in which a plurality of layers are formed and these layers are laminated can be used as the hole transport layer 4.
  • the layer which served as the positive hole injection layer 3 and the positive hole transport layer 4 can also be set as the layer which served as the positive hole injection layer 3 and the positive hole transport layer 4, and such a positive hole injection / transport layer should be formed by coating using polymeric materials, such as PEDOT. Can do.
  • the hole transport layer 4 (the same applies to the hole injection layer 3), it is possible to use a material that is usually used for the layer and further P-doped with trisbromophenylamine hexachloroantimony.
  • the hole transport layer 4 (the same applies to the hole injection layer 3) can be formed using a polymer compound having a TPD basic skeleton.
  • an electron blocking layer (not shown) (which can be provided between the light emitting layer 5 and the hole transport layer 4) is formed using the compound having an acridan ring structure of the present invention having an electron blocking action.
  • a known electron blocking compound such as a carbazole derivative or a compound having a triphenylsilyl group and a triarylamine structure.
  • Specific examples of the compound having a carbazole derivative and a triarylamine structure are as follows.
  • TCTA 9,9-bis [4- (carbazol-9-yl) phenyl] fluorene; 1,3-bis (carbazol-9-yl) benzene (hereinafter abbreviated as mCP); 2,2-bis (4-carbazol-9-ylphenyl) adamantane (hereinafter abbreviated as Ad-Cz); (Compound having a triphenylsilyl group and a triarylamine structure) 9- [4- (carbazol-9-yl) phenyl] -9- [4- (triphenylsilyl) phenyl] -9H-fluorene;
  • the electron blocking layer can be formed using one or more of the compounds having the acridan ring structure of the present invention and the above-mentioned known materials.
  • a plurality of layers can be formed using one or more of these materials, and a multilayer film in which such layers are stacked can be used as an electron blocking layer.
  • the light emitting layer 5 of the organic EL element of the present invention can be formed using, for example, the following light emitting materials.
  • Metal complexes of quinolinol derivatives including Alq 3 Various metal complexes such as zinc, beryllium and aluminum; Anthracene derivatives; Bisstyrylbenzene derivatives; Pyrene derivatives; An oxazole derivative; Polyparaphenylene vinylene derivatives;
  • the light emitting layer 5 can also be comprised with a host material and a dopant material.
  • a host material in addition to the light emitting material described above, the compound having an acridan ring structure of the present invention can be used.
  • a thiazole derivative, a benzimidazole derivative, a polydialkylfluorene derivative, or the like can be used. You can also.
  • the dopant material quinacridone, coumarin, rubrene, perylene and their derivatives; benzopyran derivatives; rhodamine derivatives; aminostyryl derivatives;
  • the light-emitting layer 5 can also have a single-layer structure using one or more of various light-emitting materials, or a multilayer structure in which a plurality of layers are stacked.
  • the light emitting layer 5 can also be formed using a phosphorescent light emitting material as the light emitting material.
  • a phosphorescent material a phosphorescent material of a metal complex such as iridium or platinum can be used.
  • green phosphorescent emitters such as Ir (ppy) 3
  • blue phosphorescent emitters such as FIrpic and FIr6
  • red phosphorescent emitters such as Btp 2 Ir (acac)
  • the body is used by doping a hole-injecting / transporting host material or an electron-transporting host material.
  • Examples of the hole injecting / transporting host material include compounds having an acridan ring structure of the present invention, carbazoles such as 4,4′-di (N-carbazolyl) biphenyl (hereinafter abbreviated as CBP), TCTA, and mCP. Derivatives and the like can be used.
  • CBP 4,4′-di (N-carbazolyl) biphenyl
  • TCTA 4,4′-di (N-carbazolyl) biphenyl
  • mCP mCP.
  • an electron transporting host material p-bis (triphenylsilyl) benzene (hereinafter abbreviated as UGH2), 2,2 ′, 2 ′′-(1,3,5-phenylene) -tris (1- Phenyl-1H-benzimidazole) (hereinafter abbreviated as TPBI) and the like can be used. By using these, a high-performance organic EL element can be produced.
  • the doping of the phosphorescent light-emitting material into the host material is preferably performed by co-evaporation in the range of 1 to 30 weight percent with respect to the entire light-emitting layer in order to avoid concentration quenching.
  • a material that emits delayed fluorescence such as CDCB derivatives such as PIC-TRZ, CC2TA, PXZ-TRZ, 4CzIPN, etc.
  • CDCB derivatives such as PIC-TRZ, CC2TA, PXZ-TRZ, 4CzIPN, etc.
  • a hole blocking layer (not shown in FIG. 9) that can be provided between the light emitting layer 5 and the electron transport layer 6 can be formed using a compound having a known hole blocking action.
  • known compounds having such a hole blocking action include the following. Phenanthroline derivatives such as bathocuproine (hereinafter abbreviated as BCP); Metal complexes of quinolinol derivatives such as aluminum (III) bis ( 2-methyl-8-quinolinato) -4-phenylphenolate (hereinafter abbreviated as BAlq); Various rare earth complexes; Triazole derivatives Triazine derivatives Oxadiazole derivatives; These materials can also be used for forming the electron transport layer 6 described below, and the hole blocking layer and the electron transport layer 6 can be used in combination.
  • Such a hole blocking layer can also have a single layer or multilayer structure, and each layer is formed using one or more of the compounds having the hole blocking action described above.
  • the electron transport layer 6 is an electron transport compound known per se, for example, Metal complexes of quinolinol derivatives such as Alq 3 and BAlq; Various metal complexes such as zinc, beryllium and aluminum; Triazole derivatives; Triazine derivatives; Oxadiazole derivatives; Thiadiazole derivatives; Carbodiimide derivatives; Quinoxaline derivatives; Phenanthroline derivatives; Silole derivatives; Etc. are formed.
  • the electron transport layer 6 can also have a single layer or multilayer structure, and each layer is formed using one or more of the electron transport compounds described above.
  • the electron injection layer 7 is also known per se, for example, alkali metal salts such as lithium fluoride and cesium fluoride; alkaline earth metal salts such as magnesium fluoride; metal oxides such as aluminum oxide; Can be formed.
  • an electrode material having a low work function such as aluminum or an alloy having a lower work function such as a magnesium silver alloy, a magnesium indium alloy, or an aluminum magnesium alloy is used as the electrode material.
  • An organic EL device in which at least one of organic layers (for example, a hole injection layer 3, a hole transport layer 4, an electron blocking layer or a light emitting layer 5) is formed using the compound having an acridan ring structure of the present invention,
  • organic layers for example, a hole injection layer 3, a hole transport layer 4, an electron blocking layer or a light emitting layer 5
  • the luminous efficiency and power efficiency are high, the practical driving voltage is low, the light emission starting voltage is low, and it has extremely excellent durability.
  • Example 1 Synthesis of Compound 2> Synthesis of 13,13-dimethyl-8-phenyl-11- (9-phenyl-9H-carbazol-3-yl) -8,13-dihydrobenzothieno [3,2-a] acridine; The following compounds were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled for 1 hour.
  • Methyl 2-aminobenzoate 10.0g 8.6 g of 2-bromodibenzothiophene tert-Butoxy sodium 5.48g 100 ml of xylene
  • Tris (dibenzylideneacetone) dipalladium (0) 0.7g Tri-tert-butylphosphine in toluene (50%, w / v) 0.9g
  • the mixture was heated and stirred at 115 ° C. for 3 hours. After cooling to room temperature and adding water and toluene, the organic layer was collected by a liquid separation operation. The collected organic layer was dehydrated with anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a crude product.
  • the organic layer was dehydrated with anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a crude product.
  • the crude product was purified by column chromatograph (carrier: silica gel, eluent: toluene / n-hexane) to obtain 13,13-dimethyl-8-phenyl-8,13-dihydrobenzothieno [3,2-a] acridine. 17.9 g (yield 72%) of white powder was obtained.
  • the organic layer was dehydrated with anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a crude product.
  • the crude product was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane) and 13,13-dimethyl-8-phenyl-11- (9-phenyl-9H-carbazol-3-yl)- 10.8 g (yield 73%) of a white powder of 8,13-dihydrobenzothieno [3,2-a] acridine (Compound 2) was obtained.
  • Example 2 Synthesis of Compound 20> N- (9,9-dimethyl-9H-fluoren-2-yl) -N- (13,13-dimethyl-8-phenyl-8,13-dihydrobenzothieno [3,2-a] acridin-11-yl ) -Phenylamine synthesis; In the same manner as in Example 1, 11-bromo-13,13-dimethyl-8-phenyl-8,13-dihydrobenzothieno [3,2-a] acridine was synthesized.
  • Example 3 (Synthesis of Compound 27)> 8- (9,9-dimethyl-9H-fluoren-2-yl) -13,13-dimethyl-11- (9-phenyl-9H-carbazol-3-yl) -8,13-dihydrobenzothieno [3 2-a] synthesis of acridine; In the same manner as in Example 1, 11-bromo-8- (9,9-dimethyl-9H-fluoren-2-yl) -13,13-dimethyl-8,13-dihydrobenzothieno [3,2-a] Acridine was synthesized.
  • Example 4 Synthesis of Compound 4> Synthesis of 13,13-dimethyl-8-phenyl-11- (9-phenyl-9H-carbazol-3-yl) -8,13-dihydrobenzofuro [3,2-a] acridine; In the same manner as in Example 1, 11-bromo-13,13-dimethyl-8-phenyl-8,13-dihydrobenzofuro [3,2-a] acridine was synthesized.
  • Example 6 Synthesis of Compound 41> Synthesis of 13,13-dimethyl-8-phenyl-11- (9H-carbazol-9-yl) -8,13-dihydrobenzofuro [3,2-a] acridine; In the same manner as in Example 1, 11-bromo-13,13-dimethyl-8-phenyl-8,13-dihydrobenzofuro [3,2-a] acridine was synthesized.
  • the organic layer was dehydrated with anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a crude product.
  • the crude product was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane) and 13,13-dimethyl-8-phenyl-11- (9H-carbazol-9-yl) -8,13- 6.5 g (68% yield) of white powder of dihydrobenzofuro [3,2-a] acridine (Compound 41) was obtained.
  • Example 7 Synthesis of Compound 42> 13,13-Dimethyl-8-phenyl-11- (3,3-dimethyl-1-phenyl-1,3-dihydroindeno [2,1-b] carbazol-10-yl) -8,13-dihydrobenzo Synthesis of furo [3,2-a] acridine; In the same manner as in Example 1, 11-bromo-13,13-dimethyl-8-phenyl-8,13-dihydrobenzofuro [3,2-a] acridine was synthesized.
  • Example 8 (Synthesis of Compound 23)> 13,13-Dimethyl-8- (9,9-dimethyl-9H-fluoren-2-yl) -11- (9H-carbazol-9-yl) -8,13-dihydrobenzofuro [3,2-a] Synthesis of acridine; In the same manner as in Example 1, 11-bromo-13,13-dimethyl-8- (9,9-dimethyl-9H-fluoren-2-yl) -8,13-dihydrobenzofuro [3,2-a] Acridine was synthesized.
  • Example 9 (measurement of glass transition point)>
  • the glass transition point was determined by a high-sensitivity differential scanning calorimeter (manufactured by Bruker AXS, DSC3100SA). The results are as follows. Glass transition point Inventive Example 1 Compound 154 ° C. Inventive Example 2 Compound 146 ° C. Inventive Example 3 Compound 173 ° C. Inventive Example 4 Compound 149 ° C. Compound of Invention Example 5 141 ° C. Inventive Example 6 Compound 145 ° C. Compound of Example 7 of the present invention 201 ° C. Inventive Example 8 Compound 177 ° C. This shows that the compound of the present invention has a glass transition point of 100 ° C. or higher and exhibits a stable thin film state.
  • Example 10 Evaluation of work function
  • a deposited film with a film thickness of 100 nm was prepared on an ITO substrate, and the work function was measured with an ionization potential measuring device (PYS-202, manufactured by Sumitomo Heavy Industries, Ltd.). It was measured.
  • Example 1 5.38 eV Compound of Example 2 of the present invention 5.29 eV Compound of Example 3 of the present invention 5.37 eV Inventive Example 4 compound 5.52 eV Compound of Example 5 of the present invention 5.29 eV Inventive Example 6 Compound 5.61 eV Inventive Example 7 Compound 5.42 eV Inventive Example 8 Compound 5.54 eV From the above results, the compound of the present invention shows a suitable energy level as well as a work function of 5.54 eV of general hole transport materials such as NPD and TPD, and has a good hole transport capability. You can see that
  • Example 11 An organic EL device having the structure shown in FIG. 9 was prepared, which was provided with the hole transport layer 4 formed using the compound having the acridan ring structure obtained in Example 1 (Compound 2).
  • This organic EL element has a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, and an electron injection layer 7 on a glass substrate 1 on which an ITO electrode is previously formed as a transparent anode 2.
  • the cathode (aluminum electrode) 8 was deposited in this order.
  • the glass substrate 1 on which ITO having a thickness of 150 nm was formed was washed with an organic solvent, and then the surface was washed by oxygen plasma treatment. Then, this glass substrate 1 with ITO electrode was attached in a vacuum vapor deposition machine, and the inside of the vapor deposition machine was pressure-reduced to 0.001 Pa or less. Subsequently, a hole injection layer 3 having a thickness of 20 nm was formed so as to cover the transparent anode 2 using a compound 57 having the following structural formula.
  • the compound of Example 1 (Compound 2) was deposited to form a hole transport layer 4 having a thickness of 40 nm.
  • a compound 58 of the following structural formula and a compound 59 of the following structural formula are used, and binary deposition is performed at a deposition rate such that the deposition rate ratio is 58: 95:95.
  • the light emitting layer 5 having a thickness of 30 nm was formed.
  • Table 1 shows the measurement results of the light emission characteristics of the organic EL device produced as described above when a DC voltage was applied in the atmosphere at room temperature.
  • Example 12 An organic EL device was produced under the same conditions as in Example 11 except that the hole transport layer 4 was formed using the compound of Example 2 (Compound 20) instead of the compound of Example 1 (Compound 2). About the produced organic EL element, the light emission characteristic was measured like Example 11, and the result was shown in Table 1.
  • Example 13 An organic EL device was produced under the same conditions as in Example 11 except that the hole transport layer 4 was formed using the compound of Example 3 (Compound 27) instead of the compound of Example 1 (Compound 2). About the produced organic EL element, the light emission characteristic was measured like Example 11, and the result was shown in Table 1.
  • Example 14 An organic EL device was produced under the same conditions as in Example 11 except that the hole transport layer 4 was formed using the compound of Example 4 (Compound 4) instead of the compound of Example 1 (Compound 2). About the produced organic EL element, the light emission characteristic was measured like Example 11, and the result was shown in Table 1.
  • Example 15 An organic EL device was produced under the same conditions as in Example 11 except that the hole transport layer 4 was formed using the compound of Example 5 (Compound 25) instead of the compound of Example 1 (Compound 2). About the produced organic EL element, the light emission characteristic was measured like Example 11, and the result was shown in Table 1.
  • Example 16 An organic EL device was produced under the same conditions as in Example 11 except that the hole transport layer 4 was formed using the compound of Example 6 (Compound 41) instead of the compound of Example 1 (Compound 2). About the produced organic EL element, the light emission characteristic was measured like Example 11, and the result was shown in Table 1.
  • Example 17 An organic EL device was produced under the same conditions as in Example 11 except that the hole transport layer 4 was formed using the compound of Example 7 (Compound 42) instead of the compound of Example 1 (Compound 2). About the produced organic EL element, the light emission characteristic was measured like Example 11, and the result was shown in Table 1.
  • Example 18 An organic EL device was produced under the same conditions as in Example 11 except that the hole transport layer 4 was formed using the compound of Example 8 (Compound 23) instead of the compound of Example 1 (Compound 2). About the produced organic EL element, the light emission characteristic was measured like Example 11, and the result was shown in Table 1.
  • Example 1 For comparison, an organic EL device was produced under the same conditions as in Example 11 except that the hole transport layer 4 was formed using the compound 60 having the following structural formula instead of the compound of Example 1 (Compound 2). did. About the produced organic EL element, the light emission characteristic was measured like Example 11, and the result was shown in Table 1.
  • the driving voltage when a current density of 10 mA / cm 2 was passed was 5.17 V in the organic EL element of Comparative Example 1, whereas Examples 1 to 8 of the present invention were used.
  • the voltage was 4.70 to 5.05 V, that is, all of the voltages were lowered.
  • the power efficiency of the organic EL element of Comparative Example 1 is 5.49 lm / W
  • the organic EL element using the compounds of Examples 1 to 8 of the present invention is 5. It was 91 to 6.78 lm / W, and all were greatly improved.
  • the organic EL device using the compound having an acridan ring structure of the present invention is improved in power efficiency compared to the organic EL device using the compound 60, which is a known material, It was found that a decrease in practical driving voltage can be achieved.
  • the compound having an acridan ring structure of the present invention is excellent as a compound for an organic EL device because it has a high hole transport capability, an excellent electron blocking capability, an excellent amorphous property, and a stable thin film state.
  • an organic EL device using the compound, high luminous efficiency and power efficiency can be obtained, practical driving voltage can be lowered, and durability can be improved. For example, it has become possible to develop home appliances and lighting.

Abstract

The present invention provides a compound having acridan ring structure represented by general formula (1), and an organic electroluminescence element having a pair of electrodes and at least one organic layer held therebetween, wherein said compound is used as a constituent material of the organic layer. This compound, as a material for use in this high-efficiency, high-durability organic electroluminescence element, has excellent hole injection and transport performance, has an electron blocking capability, high stability in a thin film state, and excellent heat resistance properties.

Description

アクリダン環構造を有する化合物および有機エレクトロルミネッセンス素子COMPOUND HAVING ACRYDAN RING STRUCTURE AND ORGANIC ELECTROLUMINESCENT DEVICE
 本発明は、各種の表示装置に好適な自発光素子である有機エレクトロルミネッセンス素子に適した化合物と該素子に関するものであリ、詳しくは、アクリダン環構造を有する化合物と、該化合物を用いた有機エレクトロルミネッセンス素子に関するものである。 The present invention relates to a compound suitable for an organic electroluminescence element which is a self-luminous element suitable for various display devices and the element, and more specifically, a compound having an acridan ring structure and an organic compound using the compound. The present invention relates to an electroluminescence element.
 有機エレクトロルミネッセンス素子(以下、有機EL素子と呼ぶことがある。)は自己発光性素子であるため、液晶素子にくらべて明るく視認性に優れ、鮮明な表示が可能である。そのため、有機EL素子について、活発な研究がなされてきた。 Since an organic electroluminescence element (hereinafter sometimes referred to as an organic EL element) is a self-luminous element, it is brighter and more visible than a liquid crystal element, and a clear display is possible. Therefore, active research has been conducted on organic EL elements.
 1987年にイーストマン・コダック社のC.W.Tangらは各種の役割を各材料に分担した積層構造素子を開発することにより、有機材料を用いた有機EL素子を実用的なものにした。彼らは、電子を輸送することのできる蛍光体、即ち、トリス(8-ヒドロキシキノリン)アルミニウム(以後、Alqと略称する)と、正孔を輸送することのできる芳香族アミン化合物とを積層し、両方の電荷を蛍光体の層の中に注入して発光させることにより、10V以下の電圧で1000cd/m以上の高輝度を得た(特許文献1および特許文献2参照)。 In 1987, Eastman Kodak's C.I. W. Tang et al. Have developed an organic EL element using an organic material by developing a stacked structure element in which various roles are assigned to each material. They laminate a phosphor capable of transporting electrons, namely tris (8-hydroxyquinoline) aluminum (hereinafter abbreviated as Alq 3 ) and an aromatic amine compound capable of transporting holes. By injecting both charges into the phosphor layer and emitting light, high luminance of 1000 cd / m 2 or more was obtained at a voltage of 10 V or less (see Patent Document 1 and Patent Document 2).
 現在まで、有機EL素子の実用化のために多くの改良がなされてきた。例えば、各種の役割をさらに細分化し、基板上に順次、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、陰極を設けた電界発光素子が知られており、このような素子によって高効率と耐久性が達成されている。 Until now, many improvements have been made for practical use of organic EL elements. For example, an electroluminescent device is known in which various roles are further subdivided and an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are sequentially provided on a substrate. High efficiency and durability are achieved by such an element.
 また発光効率のさらなる向上を目的として三重項励起子の利用が試みられ、燐光発光体の利用が検討されている。 Also, the use of triplet excitons has been attempted for the purpose of further improving the luminous efficiency, and the use of phosphorescent emitters has been studied.
 さらにまた、熱活性化遅延蛍光(TADF)による発光を利用する素子も開発され、熱活性化遅延蛍光材料を用いた素子によって5.3%の外部量子効率が実現されている。 Furthermore, an element using light emission by thermally activated delayed fluorescence (TADF) has been developed, and an external quantum efficiency of 5.3% is realized by the element using the thermally activated delayed fluorescence material.
 発光層は、一般的にホスト材料と称される電荷輸送性化合物に、蛍光体や燐光発光体をドープして作製することもできる。有機EL素子における各層を形成する有機材料の選択は、その素子の効率や耐久性など諸特性に大きな影響を与える。 The light emitting layer can also be prepared by doping a charge transporting compound generally called a host material with a phosphor or a phosphorescent material. The selection of an organic material for forming each layer in an organic EL element greatly affects various characteristics such as efficiency and durability of the element.
 有機EL素子においては、両電極から注入された電荷が発光層で再結合して発光が得られるが、正孔、電子の両電荷を如何に効率よく発光層に受け渡すかが重要である。例えば、正孔注入性を高め且つ陰極から注入された電子をブロックする電子阻止性を高めることによって、正孔と電子が再結合する確率を向上させ、さらには発光層内で生成した励起子を閉じ込めることによって、高発光効率を得ることができる。そのため、正孔輸送材料の果たす役割は重要であり、正孔注入性が高く、正孔の移動度が大きく、電子阻止性が高く、さらには電子に対する耐久性が高い正孔輸送材料が求められている。 In the organic EL element, the light injected from both electrodes is recombined in the light emitting layer to obtain light emission. However, it is important how efficiently both holes and electrons are transferred to the light emitting layer. For example, the probability of recombination of holes and electrons is improved by increasing the hole injection property and blocking the electron injected from the cathode, and further excitons generated in the light emitting layer. By confining, high luminous efficiency can be obtained. Therefore, the role of the hole transport material is important, and there is a demand for a hole transport material that has high hole injectability, high hole mobility, high electron blocking properties, and high durability against electrons. ing.
 また、素子の寿命に関しては材料の耐熱性やアモルファス性も重要である。耐熱性が低い材料では、素子駆動時に生じる熱により、低い温度でも熱分解が起こり、材料が劣化する。アモルファス性が低い材料では、短い時間でも薄膜の結晶化が起こり、素子が劣化してしまう。そのため使用する材料には耐熱性が高く、アモルファス性が良好な性質が求められる。 Also, the heat resistance and amorphous nature of the material are important for the lifetime of the element. In a material having low heat resistance, thermal decomposition occurs even at a low temperature due to heat generated when the element is driven, and the material is deteriorated. In the case of a material having low amorphous property, the thin film is crystallized even in a short time, and the element is deteriorated. For this reason, the material used is required to have high heat resistance and good amorphous properties.
 これまで有機EL素子に用いられてきた正孔輸送材料としては、N,N’-ジフェニル-N,N’-ジ(α-ナフチル)ベンジジン(以後、NPDと略称する)や種々の芳香族アミン誘導体が知られている(特許文献1および特許文献2参照)。NPDは良好な正孔輸送能力を持っているが、耐熱性の指標となるガラス転移点(Tg)が96℃と低く、高温条件下では結晶化による素子特性の低下が起こってしまう。また、特許文献1や特許文献2に記載の芳香族アミン誘導体の中には、正孔の移動度が10-3cm/Vs以上と優れた移動度を有する化合物があるが、電子阻止性が不十分であるため、電子の一部が発光層を通り抜けてしまい、発光効率の向上が期待できないなどの問題があった。従って、さらなる高効率化のため、より電子阻止性が高く、薄膜がより安定で耐熱性の高い材料が求められていた。 Examples of hole transport materials that have been used in organic EL devices so far include N, N′-diphenyl-N, N′-di (α-naphthyl) benzidine (hereinafter abbreviated as NPD) and various aromatic amines. Derivatives are known (see Patent Document 1 and Patent Document 2). NPD has a good hole transport capability, but its glass transition point (Tg), which is an index of heat resistance, is as low as 96 ° C., and device characteristics are deteriorated due to crystallization under high temperature conditions. Further, among the aromatic amine derivatives described in Patent Document 1 and Patent Document 2, there are compounds having an excellent mobility such as a hole mobility of 10 −3 cm 2 / Vs or more. Is insufficient, a part of electrons pass through the light emitting layer, and there is a problem that improvement in luminous efficiency cannot be expected. Therefore, in order to further increase the efficiency, there has been a demand for a material having higher electron blocking properties, a more stable thin film, and higher heat resistance.
 耐熱性や正孔注入性、電子阻止性などの特性を改良した化合物として、下記の式で表される置換アクリダン構造を有するアリールアミン化合物(化合物A~C)が提案されている。(特許文献3~5参照)。 As compounds having improved properties such as heat resistance, hole injection properties, and electron blocking properties, arylamine compounds (compounds A to C) having a substituted acridan structure represented by the following formula have been proposed. (See Patent Documents 3 to 5).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 しかしながら、これらの化合物を正孔注入層または正孔輸送層に用いた素子では、耐熱性や発光効率などの改良はされているものの、未だ十分とはいえず、また、低駆動電圧化や電流効率も十分とはいえず、アモルファス性にも問題があった。そのため、アモルファス性を高めつつ、さらなる低駆動電圧化や、さらなる高発光効率化を可能とする化合物が求められていた。 However, devices using these compounds in the hole injection layer or hole transport layer have been improved in heat resistance and light emission efficiency, but are still not sufficient. The efficiency was not sufficient, and there was a problem with amorphousness. Therefore, there has been a demand for a compound capable of further reducing the driving voltage and further increasing the light emission efficiency while enhancing the amorphous property.
特開平8-048656号公報JP-A-8-048656 特許第3194657号公報Japanese Patent No. 3194657 WO2006/033563号公報WO2006 / 033563 publication WO2007/110228号公報WO2007 / 110228 publication WO2010/147319号公報WO 2010/147319
 本発明の目的は、高効率、高耐久性の有機EL素子用の材料として、正孔の注入・輸送性能に優れ、電子阻止能力を有し、薄膜状態での安定性が高く、耐熱性に優れた特性を有する有機化合物を提供することである。
 本発明の他の目的は、この化合物を用いて、高発光効率、高耐久性の有機EL素子を提供することにある。
The object of the present invention is as a highly efficient and durable organic EL device material with excellent hole injection / transport performance, electron blocking ability, high stability in a thin film state, and heat resistance. It is to provide an organic compound having excellent characteristics.
Another object of the present invention is to provide an organic EL device having high luminous efficiency and high durability using this compound.
 本発明が提供しようとする有機化合物が具備すべき物理的な特性として、
(α)正孔の注入特性がよいこと、
(β)正孔の移動度が大きいこと、
(γ)電子阻止能力に優れること、
(δ)薄膜状態が安定であること、
(ε)耐熱性に優れていること、
を挙げることができる。また、本発明が提供しようとする有機EL素子が具備すべき物理的な特性としては、
(α)発光効率および電力効率が高いこと、
(β)発光開始電圧が低いこと、
(γ)実用駆動電圧が低いこと、
を挙げることができる。
As physical properties that the organic compound to be provided by the present invention should have,
(Α) good hole injection characteristics;
(Β) high hole mobility;
(Γ) Excellent electron blocking ability,
(Δ) that the thin film state is stable,
(Ε) Excellent heat resistance,
Can be mentioned. Moreover, as a physical characteristic that the organic EL element to be provided by the present invention should have,
(Α) high luminous efficiency and power efficiency,
(Β) Low emission start voltage,
(Γ) The practical drive voltage is low,
Can be mentioned.
 本発明者らは上記の目的を達成するために、芳香族三級アミン構造が高い正孔注入・輸送能力を有していること、所定のアクリダン環構造(ベンゾチエノアクリダン環構造またはベンゾフロアクリダン環構造)が電子阻止性を有していること、及びこの所定のアクリダン環構造が有する耐熱性と薄膜安定性への効果に着目して、アクリダン環構造を有する化合物を設計して化学合成した。更に、該化合物を用いて種々の有機EL素子を試作し、素子の特性評価を鋭意行った。その結果、本発明を完成するに至った。 In order to achieve the above object, the present inventors have confirmed that an aromatic tertiary amine structure has a high hole injection / transport capability, a predetermined acridan ring structure (benzothienoacridan ring structure or benzofloor). Focusing on the effects of the given acridan ring structure on the heat resistance and thin film stability, the compound having an acridan ring structure is designed and chemistry. Synthesized. Furthermore, various organic EL devices were prototyped using the compound, and the characteristics of the devices were earnestly evaluated. As a result, the present invention has been completed.
 本発明によれば、下記一般式(1)で表される、アクリダン環構造を有する化合物が提供される。
Figure JPOXMLDOC01-appb-C000009
  式中、
   Xは、酸素原子または硫黄原子を表し、
   R~Rは、水素原子、重水素原子、フッ素原子、塩素原子、シ
  アノ基、ニトロ基、炭素原子数1~6のアルキル基、炭素原子数5~
  10のシクロアルキル基、炭素原子数2~6のアルケニル基、炭素原
  子数1~6のアルキルオキシ基、炭素原子数5~10のシクロアルキ
  ルオキシ基、芳香族炭化水素基、芳香族複素環基、縮合多環芳香族基
  またはアリールオキシ基であって、単結合または、メチレン基、酸素
  原子もしくは硫黄原子を介して互いに結合して環を形成してもよく、
   R10、R11は、炭素原子数1~6のアルキル基、炭素原子数5~
  10のシクロアルキル基、炭素原子数2~6のアルケニル基、炭素原
  子数1~6のアルキルオキシ基、炭素原子数5~10のシクロアルキ
  ルオキシ基、芳香族炭化水素基、芳香族複素環基、縮合多環芳香族基
  またはアリールオキシ基であって、単結合または、メチレン基、酸素
  原子もしくは硫黄原子を介して互いに結合して環を形成してもよく、
   Ar、Ar、Arは、芳香族炭化水素基、芳香族複素環基また
  は縮合多環芳香族基を表し、ArとArは単結合または、メチレ
  ン基、酸素原子もしくは硫黄原子を介して互いに結合して環を形成し
  てもよく、
   Aは、芳香族炭化水素、芳香族複素環もしくは縮合多環芳香族の2
  価基、または単結合を表し、
   Aが芳香族炭化水素、芳香族複素環または縮合多環芳香族の2価基
  である場合、AとArは単結合または、メチレン基、酸素原子もし
  くは硫黄原子を介して互いに結合して環を形成してもよい。
According to the present invention, a compound having an acridan ring structure represented by the following general formula (1) is provided.
Figure JPOXMLDOC01-appb-C000009
Where
X represents an oxygen atom or a sulfur atom,
R 1 to R 9 are hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, nitro group, alkyl group having 1 to 6 carbon atoms, carbon atom number 5 to
10 cycloalkyl groups, alkenyl groups having 2 to 6 carbon atoms, alkyloxy groups having 1 to 6 carbon atoms, cycloalkyloxy groups having 5 to 10 carbon atoms, aromatic hydrocarbon groups, aromatic heterocyclic groups A condensed polycyclic aromatic group or an aryloxy group, which may be bonded to each other through a single bond or a methylene group, an oxygen atom or a sulfur atom to form a ring;
R 10 and R 11 are each an alkyl group having 1 to 6 carbon atoms,
10 cycloalkyl groups, alkenyl groups having 2 to 6 carbon atoms, alkyloxy groups having 1 to 6 carbon atoms, cycloalkyloxy groups having 5 to 10 carbon atoms, aromatic hydrocarbon groups, aromatic heterocyclic groups A condensed polycyclic aromatic group or an aryloxy group, which may be bonded to each other through a single bond or a methylene group, an oxygen atom or a sulfur atom to form a ring;
Ar 1 , Ar 2 and Ar 3 represent an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group, and Ar 2 and Ar 3 represent a single bond, a methyl group, an oxygen atom or sulfur. They may be joined together through atoms to form a ring,
A is an aromatic hydrocarbon, aromatic heterocyclic ring or condensed polycyclic aromatic 2
Represents a valent group or a single bond,
When A is an aromatic hydrocarbon, aromatic heterocycle or condensed polycyclic aromatic divalent group, A and Ar 2 are bonded to each other through a single bond or a methylene group, an oxygen atom or a sulfur atom. To form a ring.
 本発明の化合物においては、以下の態様が好適である。
(I)Aが結合しているベンゼン環に対して、R、R、R及びAが、
   下記一般式(1-1)で表される位置で結合していること。
Figure JPOXMLDOC01-appb-C000010
   式中、X、R~R11、Ar~Ar及びAは、前記一般式(1
   )に記載した通りである。
(II)Aが芳香族炭化水素または縮合多環芳香族の2価基であること。
(III)Aが、下記一般式(2)で表される芳香族炭化水素または縮合
     多環芳香族の2価基であること。
Figure JPOXMLDOC01-appb-C000011
     式中、
      r12は0~4の整数を表し、
      R12は、重水素原子、フッ素原子、塩素原子、シアノ基、
      ニトロ基、炭素原子数1~6のアルキル基、炭素原子数5~
      10のシクロアルキル基、炭素原子数2~6のアルケニル基
      、炭素原子数1~6のアルキルオキシ基、炭素原子数5~1
      0のシクロアルキルオキシ基、芳香族炭化水素基、芳香族複
      素環基、縮合多環芳香族基もしくはアリールオキシ基、また
      は連結基であって、R12が複数存在している場合、複数の
      R12は、互いに環を形成しても良い。
(IV)Aが、下記一般式(2´)で表される芳香族炭化水素または縮合
    多環芳香族の2価基であること。
Figure JPOXMLDOC01-appb-C000012
   式中、r12及びR12は、前記式(2)に記載した通りの意味であ
   る。
(V)下記一般式(1-2)で表されるように、r12=1であり、R12
   が連結基であり、R12の結合位置が決まっていること。
Figure JPOXMLDOC01-appb-C000013
    式中、
     X、R~R11、Ar、Ar及びAは、前記一般式(1)
     また(1-1)に記載した通りの意味であり、
     Arは、前記一般式(1)または(1-1)に記載したAr
     に属する基のうちの2価基を表し、
     ArとArは単結合または、メチレン基、酸素原子もしく
    は硫黄原子を介して互いに結合して環を形成してもよい。
(VI)Aが単結合であること。
In the compound of the present invention, the following embodiments are preferable.
(I) For the benzene ring to which A is bonded, R 1 , R 2 , R 3 and A are
Bonded at the position represented by the following general formula (1-1).
Figure JPOXMLDOC01-appb-C000010
In the formula, X, R 1 to R 11 , Ar 1 to Ar 3, and A represent the above general formula (1
).
(II) A is an aromatic hydrocarbon or a condensed polycyclic aromatic divalent group.
(III) A is an aromatic hydrocarbon or a condensed polycyclic aromatic divalent group represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000011
Where
r 12 represents an integer of 0 to 4,
R 12 represents a deuterium atom, a fluorine atom, a chlorine atom, a cyano group,
Nitro group, alkyl group having 1 to 6 carbon atoms, 5 to carbon atoms
10 cycloalkyl groups, alkenyl groups having 2 to 6 carbon atoms, alkyloxy groups having 1 to 6 carbon atoms, and 5 to 1 carbon atoms
0 cycloalkyloxy group, aromatic hydrocarbon group, aromatic heterocyclic group, condensed polycyclic aromatic group or aryloxy group, or linking group, and when there are a plurality of R 12 , R 12 may form a ring with each other.
(IV) A is an aromatic hydrocarbon or a condensed polycyclic aromatic divalent group represented by the following general formula (2 ′).
Figure JPOXMLDOC01-appb-C000012
In the formula, r 12 and R 12 have the same meanings as described in the formula (2).
(V) As represented by the following general formula (1-2), r 12 = 1 and R 12
Is a linking group, and the bonding position of R 12 is determined.
Figure JPOXMLDOC01-appb-C000013
Where
X, R 1 to R 11 , Ar 1 , Ar 3 and A are defined by the general formula (1)
Moreover, it has the same meaning as described in (1-1),
Ar 4 represents Ar 2 described in the general formula (1) or (1-1).
Represents a divalent group of groups belonging to
Ar 3 and Ar 4 may be bonded to each other through a single bond or a methylene group, an oxygen atom or a sulfur atom to form a ring.
(VI) A is a single bond.
 また、本発明によれば、一対の電極と該一対の電極の間に挟まれた少なくとも一層の有機層とを有する有機EL素子において、上記アクリダン環構造を有する化合物が、該有機層の構成材料として用いられていることを特徴とする有機エレクトロルミネッセンス素子が提供される。 According to the present invention, in the organic EL device having a pair of electrodes and at least one organic layer sandwiched between the pair of electrodes, the compound having the acridan ring structure is a constituent material of the organic layer. The organic electroluminescent element characterized by being used as is provided.
 本発明の有機エレクトロルミネッセンス素子においては、
(VII)前記有機層が正孔輸送層であること、
(VIII)前記有機層が電子阻止層であること、
(IX)前記有機層が正孔注入層であること、
(X)前記有機層が発光層であること、
が好適である。
In the organic electroluminescence device of the present invention,
(VII) the organic layer is a hole transport layer;
(VIII) the organic layer is an electron blocking layer;
(IX) the organic layer is a hole injection layer;
(X) the organic layer is a light emitting layer;
Is preferred.
 本発明のアクリダン環構造を有する化合物は新規な化合物であり、所定のアクリダン環構造(ベンゾチエノアクリダン環構造またはベンゾフロアクリダン環構造)が電子阻止性を有しており、且つこの所定のアクリダン環構造が耐熱性と薄膜安定性を有している。そのため、本発明のアクリダン環構造を有する化合物は、
  (A)優れた電子の阻止能力を有し、
  (B)優れたアモルファス性を有し、かつ
  (C)薄膜状態が安定である。
The compound having an acridan ring structure of the present invention is a novel compound, and a predetermined acridan ring structure (benzothienoacridan ring structure or benzoflourcridan ring structure) has an electron blocking property, and this predetermined Acridan ring structure has heat resistance and thin film stability. Therefore, the compound having an acridan ring structure of the present invention is
(A) has excellent electron blocking ability,
(B) It has excellent amorphous properties, and (C) the thin film state is stable.
 特に(C)薄膜状態に関し、本発明の化合物では、耐熱性の指標となるガラス転移点(Tg)が高く、具体的には100℃以上、特に140℃以上のTgを有している。従って、本発明の化合物を用いて形成される薄膜は、高温条件下でも結晶化されにくい。 Particularly regarding (C) the thin film state, the compound of the present invention has a high glass transition point (Tg) as an index of heat resistance, and specifically has a Tg of 100 ° C. or higher, particularly 140 ° C. or higher. Therefore, a thin film formed using the compound of the present invention is hardly crystallized even under high temperature conditions.
 本発明の化合物は、例えば、有機EL素子の正孔注入層および/または正孔輸送層の構成材料として使用することができる。本発明の化合物は、従来の材料に比べて
  (a)正孔の注入性が高く、
  (b)正孔の移動度が大きく、
  (c)電子阻止性が高く、しかも
  (d)電子に対する安定性が高い
ので、本発明の化合物を構成材料として用いることによって得られる正孔注入層および/または正孔輸送層では、発光層内で生成した励起子を閉じ込めることができ、さらに正孔と電子が再結合する確率が向上し、高発光効率を得ることができると共に、駆動電圧が低下して、有機EL素子の耐久性が向上するという作用が付与される。
The compound of the present invention can be used, for example, as a constituent material of a hole injection layer and / or a hole transport layer of an organic EL device. The compound of the present invention has higher (a) hole injection properties than conventional materials,
(B) High hole mobility,
(C) The electron blocking property is high, and (d) since the stability to electrons is high, in the hole injection layer and / or hole transport layer obtained by using the compound of the present invention as a constituent material, Can confine excitons generated in, and the probability of recombination of holes and electrons is improved, high luminous efficiency can be obtained, driving voltage is lowered, and durability of the organic EL element is improved. The effect of doing is given.
 また、本発明の化合物は、有機EL素子の電子阻止層の構成材料としても使用することができる。本発明の化合物は、
  (e)優れた電子の阻止能力を有しており、
  (f)従来の材料に比べて正孔輸送性に優れ、かつ
  (g)薄膜状態の安定性が高い
ので、本発明の化合物を構成材料として用いることにより得られる電子阻止層は、高い発光効率を有しながら、駆動電圧が低下し、電流耐性が改善されて、有機EL素子の最大発光輝度が向上するという作用を有する。
Moreover, the compound of this invention can be used also as a constituent material of the electron blocking layer of an organic EL element. The compounds of the present invention
(E) has excellent electron blocking ability,
(F) Excellent hole transportability compared to conventional materials, and (g) Since the stability of the thin film state is high, the electron blocking layer obtained by using the compound of the present invention as a constituent material has high luminous efficiency. However, the driving voltage is lowered, the current resistance is improved, and the maximum light emission luminance of the organic EL element is improved.
 さらに、本発明の化合物は、有機EL素子の発光層の構成材料としても使用することができる。本発明の化合物は、
  (h)従来の材料に比べて正孔輸送性に優れ、かつ
  (i)バンドギャップが広い
ので、本発明の化合物を発光層のホスト材料として用い、ドーパントと呼ばれている蛍光発光体や燐光発光体を担持させて発光層を得ることにより、駆動電圧が低下し、発光効率が改善された有機EL素子を実現できる。
Furthermore, the compound of this invention can be used also as a constituent material of the light emitting layer of an organic EL element. The compounds of the present invention
(H) Excellent hole transportability compared to conventional materials, and (i) Wide band gap, so the compound of the present invention is used as a host material for a light emitting layer, and a phosphor or phosphorescent material called a dopant is used. By obtaining a light emitting layer by supporting a light emitting body, an organic EL element with reduced driving voltage and improved light emission efficiency can be realized.
 本発明の有機EL素子は、従来の正孔輸送材料より正孔の移動度が大きく、優れた電子の阻止能力を有し、優れたアモルファス性を有し、かつ薄膜状態が安定な、アクリダン環構造を有する化合物を用いているため、高効率、高耐久性を実現させる。 The organic EL device of the present invention has a higher mobility of holes than conventional hole transport materials, an excellent electron blocking ability, an excellent amorphous property, and a stable thin film state. Since a compound having a structure is used, high efficiency and high durability are realized.
 以上より、本発明のアクリダン環構造を有する化合物は、有機EL素子の正孔注入層、正孔輸送層、電子阻止層あるいは発光層の構成材料として有用であり、電子阻止能力に優れ、優れた電子の阻止能力を有し、かつアモルファス性が良好であり、薄膜状態が安定で、耐熱性に優れている。本発明の有機EL素子は発光効率および電力効率が高く、このことにより素子の実用駆動電圧を低くさせることができる。発光開始電圧を低くさせ、耐久性を改良することができる。 As described above, the compound having an acridan ring structure of the present invention is useful as a constituent material of a hole injection layer, a hole transport layer, an electron blocking layer or a light emitting layer of an organic EL device, and has an excellent electron blocking ability and is excellent. It has the ability to block electrons, has good amorphous properties, is stable in a thin film state, and has excellent heat resistance. The organic EL device of the present invention has high luminous efficiency and high power efficiency, which can reduce the practical driving voltage of the device. The emission start voltage can be lowered and the durability can be improved.
実施例1の化合物(化合物2)のH―NMRチャート図。 1 H-NMR chart of the compound of Example 1 (Compound 2). 実施例2の化合物(化合物20)のH―NMRチャート図。 1 H-NMR chart of the compound of Example 2 (Compound 20). 実施例3の化合物(化合物27)のH―NMRチャート図。 1 H-NMR chart of the compound of Example 3 (Compound 27). 実施例4の化合物(化合物4)のH―NMRチャート図。 1 H-NMR chart of the compound of Example 4 (Compound 4). 実施例5の化合物(化合物25)のH―NMRチャート図。 1 H-NMR chart of the compound of Example 5 (Compound 25). 実施例6の化合物(化合物41)のH―NMRチャート図。 1 H-NMR chart of the compound of Example 6 (Compound 41). 実施例7の化合物(化合物42)のH―NMRチャート図。 1 H-NMR chart of the compound of Example 7 (Compound 42). 実施例8の化合物(化合物23)のH―NMRチャート図。 1 H-NMR chart of the compound of Example 8 (Compound 23). 実施例11~18、比較例1のEL素子構成を示した図。The figure which showed the EL element structure of Examples 11-18 and the comparative example 1. FIG.
 本発明の化合物は、下記一般式(1)で表されるものであり、所定のアクリダン環構造と、芳香族3級アミン構造を有している。
Figure JPOXMLDOC01-appb-C000014
 上記一般式(1)で表される本発明の化合物のうち、Aが結合しているベンゼン環において、R、R、R及びAが、下記一般式(1-1)で表される位置で結合している化合物が好適である。
Figure JPOXMLDOC01-appb-C000015
The compound of the present invention is represented by the following general formula (1), and has a predetermined acridan ring structure and an aromatic tertiary amine structure.
Figure JPOXMLDOC01-appb-C000014
Among the compounds of the present invention represented by the general formula (1), in the benzene ring to which A is bonded, R 1 , R 2 , R 3 and A are represented by the following general formula (1-1). A compound bonded at a certain position is preferred.
Figure JPOXMLDOC01-appb-C000015
<X>
 Xは、酸素原子または硫黄原子を表す。Xが硫黄原子のとき、本発明の化合物は、ベンゾチエノアクリダン環構造を有する。また、Xが酸素原子のとき、本発明の化合物は、ベンゾフロアクリダン環構造を有する。
<X>
X represents an oxygen atom or a sulfur atom. When X is a sulfur atom, the compound of the present invention has a benzothienoacridan ring structure. When X is an oxygen atom, the compound of the present invention has a benzoflouridane ring structure.
<R~R
 R~Rは、相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルキルオキシ基、炭素原子数5~10のシクロアルキルオキシ基、芳香族炭化水素基、芳香族複素環基、縮合多環芳香族基またはアリールオキシ基を表す。これらの基は、単結合または、置換基を有してよいメチレン基、酸素原子もしくは硫黄原子を介して互いに結合して環を形成してもよい。
<R 1 to R 9 >
R 1 to R 9 may be the same or different from each other, and are a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, nitro group, alkyl group having 1 to 6 carbon atoms, 10 cycloalkyl groups, alkenyl groups having 2 to 6 carbon atoms, alkyloxy groups having 1 to 6 carbon atoms, cycloalkyloxy groups having 5 to 10 carbon atoms, aromatic hydrocarbon groups, aromatic heterocyclic groups Represents a condensed polycyclic aromatic group or an aryloxy group. These groups may be bonded to each other via a single bond or an optionally substituted methylene group, oxygen atom or sulfur atom to form a ring.
 R~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基としては、以下の例を挙げることができる。
   メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチ
  ル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペ
  ンチル基、ネオペンチル基、n-ヘキシル基、シクロペンチル基、シ
  クロヘキシル基、1-アダマンチル基、2-アダマンチル基、ビニル
  基、アリル基、イソプロペニル基、2-ブテニル基など。
 上記の例示から理解される通り、R~Rで表される炭素原子数1~6のアルキル基や炭素原子数2~6のアルケニル基は、直鎖状でも分岐状でもよい。
Examples of the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms or the alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 9 include the following examples. .
Methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, cyclopentyl group, cyclohexyl Group, 1-adamantyl group, 2-adamantyl group, vinyl group, allyl group, isopropenyl group, 2-butenyl group and the like.
As understood from the above examples, the alkyl group having 1 to 6 carbon atoms and the alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 9 may be linear or branched.
 R~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基は置換基を有してもよい。置換基としては、以下の例を挙げることができる。
   重水素原子;
   シアノ基;
   ニトロ基;
   ハロゲン原子、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原
  子;
   炭素原子数1~6の直鎖状もしくは分岐状のアルキルオキシ基、例
  えばメチルオキシ基、エチルオキシ基、プロピルオキシ基;
   アルケニル基、例えばアリル基;
   アリールオキシ基、例えばフェニルオキシ基、トリルオキシ基;
   アリールアルキルオキシ基、例えばベンジルオキシ基、フェネチル
  オキシ基;
   芳香族炭化水素基または縮合多環芳香族基、例えばフェニル基、ビ
  フェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、
  フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペ
  リレニル基、フルオランテニル基、トリフェニレニル基;
   芳香族複素環基、例えばピリジル基、チエニル基、フリル基、ピロ
  リル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチ
  エニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、
  ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラ
  ゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル
  基;
 これらの置換基は、さらに置換基を有してもよい。更に有する置換基としては、上記の置換基と同じ例を挙げることができる。また、置換基同士が単結合または、置換基を有してもよいメチレン基、酸素原子もしくは硫黄原子を介して互いに結合して環を形成してもよい。
The alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 9 may have a substituent. The following examples can be given as examples of the substituent.
Deuterium atom;
A cyano group;
A nitro group;
Halogen atoms such as fluorine atoms, chlorine atoms, bromine atoms, iodine atoms;
A linear or branched alkyloxy group having 1 to 6 carbon atoms, such as a methyloxy group, an ethyloxy group, or a propyloxy group;
An alkenyl group, such as an allyl group;
An aryloxy group such as a phenyloxy group, a tolyloxy group;
Arylalkyloxy groups such as benzyloxy group, phenethyloxy group;
Aromatic hydrocarbon group or condensed polycyclic aromatic group such as phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthracenyl group,
Phenanthryl group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group;
Aromatic heterocyclic groups such as pyridyl, thienyl, furyl, pyrrolyl, quinolyl, isoquinolyl, benzofuranyl, benzothienyl, indolyl, carbazolyl, benzoxazolyl,
Benzothiazolyl group, quinoxalyl group, benzimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group, carbolinyl group;
These substituents may further have a substituent. Examples of the substituent further include the same examples as the above-described substituent. Further, the substituents may be bonded to each other via a single bond or a methylene group, oxygen atom or sulfur atom which may have a substituent, to form a ring.
 R~Rで表される炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基としては、以下の例を挙げることができる。
   メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプ
  ロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、
  n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロペンチルオキ
  シ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオ
  クチルオキシ基、1-アダマンチルオキシ基、2-アダマンチルオキ
  シ基など。
 上記の例示から理解される通り、R~Rで表される炭素原子数1~6のアルキルオキシ基は、直鎖状でも分岐状でもよい。
Examples of the alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms represented by R 1 to R 9 include the following examples.
Methyloxy group, ethyloxy group, n-propyloxy group, isopropyloxy group, n-butyloxy group, tert-butyloxy group,
n-pentyloxy group, n-hexyloxy group, cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, 1-adamantyloxy group, 2-adamantyloxy group and the like.
As understood from the above examples, the alkyloxy group having 1 to 6 carbon atoms represented by R 1 to R 9 may be linear or branched.
 R~Rで表される炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基は置換基を有してもよい。置換基としては、R~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基が有しても良い置換基と同じ例を挙げることができる。また、これらの置換基は、さらに置換基を有してもよい。更に有する置換基としても、R~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基が有しても良い置換基と同じ例を挙げることができる。上記で例示した置換基は、単結合または、置換基を有してもよいメチレン基、酸素原子もしくは硫黄原子を介して互いに結合して環を形成してもよい。 The alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms represented by R 1 to R 9 may have a substituent. The substituent may have an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 9. The same example as a substituent can be given. Moreover, these substituents may further have a substituent. Further, as the substituents, the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 9 has The same examples can be given as good substituents. The substituents exemplified above may be bonded to each other via a single bond or an optionally substituted methylene group, oxygen atom or sulfur atom to form a ring.
 R~Rで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、以下の例を挙げることができる。
   フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、ア
  ントリル基、フェナントリル基、フルオレニル基、インデニル基、ピ
  レニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基
  、ピリジル基、フリル基、ピロリル基、チエニル基、キノリル基、イ
  ソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基
  、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キ
  ノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラ
  ニル基、ジベンゾチエニル基、カルボリニル基など。
 R~Rで表される芳香族複素環基としては、チエニル基、ベンゾチエニル基、ベンゾチアゾリル基、ジベンゾチエニル基などの含硫黄芳香族複素環基が好ましい。
Examples of the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 1 to R 9 include the following.
Phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthryl group, phenanthryl group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group, pyridyl group, furyl group, pyrrolyl group, thienyl Group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, indolyl group, carbazolyl group, benzoxazolyl group, benzothiazolyl group, quinoxalyl group, benzoimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group, carbolinyl Group etc.
The aromatic heterocyclic group represented by R 1 to R 9 is preferably a sulfur-containing aromatic heterocyclic group such as a thienyl group, a benzothienyl group, a benzothiazolyl group, or a dibenzothienyl group.
 R~Rで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基は置換基を有してもよい。置換基としては、以下の例を挙げることができる。
   重水素原子;
   トリフルオロメチル基;
   シアノ基;
   ニトロ基;
   ハロゲン原子、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原
  子;
   炭素原子数1~6の直鎖状もしくは分岐状のアルキル基、例えばメ
  チル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基
  、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチ
  ル基、ネオペンチル基、n-ヘキシル基;
   炭素原子数1~6の直鎖状もしくは分岐状のアルキルオキシ基、例
  えばメチルオキシ基、エチルオキシ基、プロピルオキシ基;
   アルケニル基、例えばアリル基;
   アラルキル基、例えばベンジル基、ナフチルメチル基、フェネチル
  基;
   アリールオキシ基、例えばフェニルオキシ基、トリルオキシ基;
   アリールアルキルオキシ基、例えばベンジルオキシ基、フェネチル
  オキシ基;
   芳香族炭化水素基もしくは縮合多環芳香族基、例えばフェニル基、
  ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基
  、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、
  ペリレニル基、フルオランテニル基、トリフェニレニル基;
   芳香族複素環基、例えばピリジル基、チエニル基、フリル基、ピロ
  リル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチ
  エニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、
  ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラ
  ゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル
  基;
   アリールビニル基、例えばスチリル基、ナフチルビニル基;
   アシル基、例えばアセチル基、ベンゾイル基;
   ジアルキルアミノ基、例えばジメチルアミノ基、ジエチルアミノ基
  ;
   芳香族炭化水素基もしくは縮合多環芳香族基で置換されたジ置換
  アミノ基、例えばジフェニルアミノ基、ジナフチルアミノ基;
   ジアラルキルアミノ基、例えばジベンジルアミノ基、ジフェネチル
  アミノ基;
   芳香族複素環基で置換されたジ置換アミノ基、例えばジピリジルア
  ミノ基、ジチエニルアミノ基;
   ジアルケニルアミノ基、例えばジアリルアミノ基;
   アルキル基、芳香族炭化水素基、縮合多環芳香族基、アラルキル基
  、芳香族複素環基またはアルケニル基から選択される置換基で置換さ
  れたジ置換アミノ基;
 これらの置換基は、さらに置換基を有してもよい。更に有する置換基としては、R~Rで表される芳香族炭化水素基等が有する上記の置換基と同じ例を挙げることができる。また、置換基同士が単結合または、置換基を有してもよいメチレン基、酸素原子もしくは硫黄原子を介して互いに結合して環を形成してもよい。
The aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 1 to R 9 may have a substituent. The following examples can be given as examples of the substituent.
Deuterium atom;
A trifluoromethyl group;
A cyano group;
A nitro group;
Halogen atoms such as fluorine atoms, chlorine atoms, bromine atoms, iodine atoms;
Linear or branched alkyl group having 1 to 6 carbon atoms, such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group , Isopentyl group, neopentyl group, n-hexyl group;
A linear or branched alkyloxy group having 1 to 6 carbon atoms, such as a methyloxy group, an ethyloxy group, or a propyloxy group;
An alkenyl group, such as an allyl group;
An aralkyl group, such as a benzyl group, a naphthylmethyl group, a phenethyl group;
An aryloxy group such as a phenyloxy group, a tolyloxy group;
Arylalkyloxy groups such as benzyloxy group, phenethyloxy group;
An aromatic hydrocarbon group or a condensed polycyclic aromatic group such as a phenyl group,
Biphenylyl group, terphenylyl group, naphthyl group, anthracenyl group, phenanthryl group, fluorenyl group, indenyl group, pyrenyl group,
Perylenyl group, fluoranthenyl group, triphenylenyl group;
Aromatic heterocyclic groups such as pyridyl, thienyl, furyl, pyrrolyl, quinolyl, isoquinolyl, benzofuranyl, benzothienyl, indolyl, carbazolyl, benzoxazolyl,
Benzothiazolyl group, quinoxalyl group, benzimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group, carbolinyl group;
Aryl vinyl groups such as styryl groups, naphthyl vinyl groups;
An acyl group, such as an acetyl group, a benzoyl group;
A dialkylamino group, such as a dimethylamino group, a diethylamino group;
A disubstituted amino group substituted by an aromatic hydrocarbon group or a condensed polycyclic aromatic group, such as a diphenylamino group, a dinaphthylamino group;
Diaralkylamino group, such as dibenzylamino group, diphenethylamino group;
A disubstituted amino group substituted by an aromatic heterocyclic group, such as a dipyridylamino group, a dithienylamino group;
Dialkenylamino groups, such as diallylamino groups;
A disubstituted amino group substituted by a substituent selected from an alkyl group, an aromatic hydrocarbon group, a condensed polycyclic aromatic group, an aralkyl group, an aromatic heterocyclic group or an alkenyl group;
These substituents may further have a substituent. Examples of the substituent further include the same examples as the above-described substituents of the aromatic hydrocarbon group represented by R 1 to R 9 . Further, the substituents may be bonded to each other via a single bond or a methylene group, oxygen atom or sulfur atom which may have a substituent, to form a ring.
 R~Rで表されるアリールオキシ基としては、以下の例を挙げることができる。
   フェニルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ
  基、ナフチルオキシ基、アントリルオキシ基、フェナントリルオキシ
  基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基
  、ペリレニルオキシ基など。
Examples of the aryloxy group represented by R 1 to R 9 include the following examples.
Phenyloxy group, biphenylyloxy group, terphenylyloxy group, naphthyloxy group, anthryloxy group, phenanthryloxy group, fluorenyloxy group, indenyloxy group, pyrenyloxy group, perylenyloxy group and the like.
 R~Rで表されるアリールオキシ基は置換基を有してもよい。置換基としては、R~Rで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基と同じ例を挙げることができる。これらの置換基は、さらに置換基を有してもよい。更に有する置換基としても、R~Rで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有しても良い置換基と同じ例を挙げることができる。置換基同士が単結合または、置換基を有してもよいメチレン基、酸素原子もしくは硫黄原子を介して互いに結合して環を形成してもよい。 The aryloxy group represented by R 1 to R 9 may have a substituent. Examples of the substituent include the same examples as the substituent which the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 1 to R 9 may have. These substituents may further have a substituent. Examples of the substituent further include the same examples as the substituent that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 1 to R 9 may have. . The substituents may be bonded to each other through a single bond or a methylene group, oxygen atom or sulfur atom which may have a substituent to form a ring.
<R10、R11
 R10、R11は、相互に同一でも異なってもよく、炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルキルオキシ基、炭素原子数5~10のシクロアルキルオキシ基、芳香族炭化水素基、芳香族複素環基、縮合多環芳香族基またはアリールオキシ基を表す。これらの基は、単結合または、置換基を有してよいメチレン基、酸素原子もしくは硫黄原子を介して互いに結合して環を形成してもよい。
<R 10, R 11>
R 10 and R 11 may be the same or different from each other, and are an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or the number of carbon atoms An alkyloxy group having 1 to 6 carbon atoms, a cycloalkyloxy group having 5 to 10 carbon atoms, an aromatic hydrocarbon group, an aromatic heterocyclic group, a condensed polycyclic aromatic group, or an aryloxy group. These groups may be bonded to each other via a single bond or an optionally substituted methylene group, oxygen atom or sulfur atom to form a ring.
 R10、R11で表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基としては、R~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基と同じ例を挙げることができる。
 例示された基から理解される通り、R10、R11で表される炭素原子数1~6のアルキル基または炭素原子数2~6のアルケニル基は、直鎖状でも分岐状でもよい。
The alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms or the alkenyl group having 2 to 6 carbon atoms represented by R 10 and R 11 is represented by R 1 to R 9. Examples thereof are the same as the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, and the alkenyl group having 2 to 6 carbon atoms.
As understood from the exemplified groups, the alkyl group having 1 to 6 carbon atoms or the alkenyl group having 2 to 6 carbon atoms represented by R 10 and R 11 may be linear or branched.
 R10、R11で表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基は置換基を有してもよい。置換基としては、R~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基が有してもよい置換基と同じ例を挙げることができる。これらの置換基は、さらに置換基を有してもよい。更に有する置換基としても、R~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基が有しても良い置換基と同じ例を挙げることができる。置換基同士は、単結合または、置換基を有してもよいメチレン基、酸素原子もしくは硫黄原子を介して互いに結合して環を形成してもよい。 The alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms represented by R 10 and R 11 may have a substituent. The substituent may have an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 9. The same example as a substituent can be given. These substituents may further have a substituent. Further, as the substituents, the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 9 has The same examples can be given as good substituents. The substituents may be bonded to each other through a single bond or a methylene group, an oxygen atom or a sulfur atom which may have a substituent to form a ring.
 R10、R11で表される炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基としては、R~Rで表される炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基と同じ例を挙げることができる。
 例示された基から理解される通り、炭素原子数1~6のアルキルオキシ基は、直鎖状でも分岐状でもよい。
Examples of the alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms represented by R 10 and R 11 include those having 1 to 6 carbon atoms represented by R 1 to R 9 . The same examples as the alkyloxy group or the cycloalkyloxy group having 5 to 10 carbon atoms can be given.
As will be understood from the exemplified groups, the alkyloxy group having 1 to 6 carbon atoms may be linear or branched.
 R10、R11で表される炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基は置換基を有してもよい。置換基としては、R~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基が有しても良い置換基と同じ例を挙げることができる。また、これらの置換基は、さらに置換基を有してもよい。更に有する置換基としても、R~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基が有しても良い置換基と同じ例を挙げることができる。上記で例示した置換基は、単結合または、置換基を有してもよいメチレン基、酸素原子もしくは硫黄原子を介して互いに結合して環を形成してもよい。 The alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms represented by R 10 and R 11 may have a substituent. The substituent may have an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 9. The same example as a substituent can be given. Moreover, these substituents may further have a substituent. Further, as the substituents, the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 9 has The same examples can be given as good substituents. The substituents exemplified above may be bonded to each other via a single bond or an optionally substituted methylene group, oxygen atom or sulfur atom to form a ring.
 R10、R11で表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、R~Rで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基と同じ例を挙げることができる。
 R10、R11で表される芳香族複素環基としては、チエニル基、ベンゾチエニル基、ベンゾチアゾリル基、ジベンゾチエニル基などの含硫黄芳香族複素環基が好ましい。
Examples of the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 10 and R 11 include aromatic hydrocarbon groups and aromatic heterocyclic groups represented by R 1 to R 9 Or the same example as a condensed polycyclic aromatic group can be mentioned.
The aromatic heterocyclic group represented by R 10 and R 11 is preferably a sulfur-containing aromatic heterocyclic group such as a thienyl group, a benzothienyl group, a benzothiazolyl group, or a dibenzothienyl group.
 R10、R11で表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基は置換基を有してもよい。置換基としては、R~Rで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基と同じ例を挙げることができる。これらの置換基は、さらに置換基を有してもよい。更に有する置換基としても、R~Rで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基と同じ例を挙げることができる。置換基同士は、単結合または、置換基を有してもよいメチレン基、酸素原子もしくは硫黄原子を介して互いに結合して環を形成してもよい。 The aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 10 and R 11 may have a substituent. Examples of the substituent include the same examples as the substituent which the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 1 to R 9 may have. These substituents may further have a substituent. Examples of the substituent further include the same examples as the substituent that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 1 to R 9 may have. . The substituents may be bonded to each other through a single bond or a methylene group, an oxygen atom or a sulfur atom which may have a substituent to form a ring.
 R10、R11で表されるアリールオキシ基としては、R~Rで表されるアリールオキシ基と同じ例を挙げることができる。 Examples of the aryloxy group represented by R 10 and R 11 include the same examples as the aryloxy groups represented by R 1 to R 9 .
 R10、R11で表されるアリールオキシ基は置換基を有してもよい。置換基としては、R~Rで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基と同じ例を挙げることができる。これらの置換基は、さらに置換基を有してもよい。更に有する置換基としても、R~Rで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基と同じ例を挙げることができる。置換基同士は、単結合または、置換基を有してもよいメチレン基、酸素原子もしくは硫黄原子を介して互いに結合して環を形成してもよい。 The aryloxy group represented by R 10 and R 11 may have a substituent. Examples of the substituent include the same examples as the substituent which the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 1 to R 9 may have. These substituents may further have a substituent. Examples of the substituent further include the same examples as the substituent that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 1 to R 9 may have. . The substituents may be bonded to each other through a single bond or a methylene group, an oxygen atom or a sulfur atom which may have a substituent to form a ring.
<Ar、Ar、Ar
 Ar、Ar、Arは、相互に同一でも異なってもよく、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を表す。Ar、Ar、Arの基は、単結合または、置換基を有してもよいメチレン基、酸素原子もしくは硫黄原子を介して互いに結合して環を形成してもよく、例えば、ArとArは、単結合または、置換基を有してよいメチレン基、酸素原子若しくは硫黄原子を介して互いに結合して環を形成してもよい。
<Ar 1 , Ar 2 , Ar 3 >
Ar 1 , Ar 2 , and Ar 3 may be the same as or different from each other, and each represents an aromatic hydrocarbon group, an aromatic heterocyclic group, or a condensed polycyclic aromatic group. The groups Ar 1 , Ar 2 , and Ar 3 may be bonded to each other through a single bond or a methylene group, oxygen atom, or sulfur atom that may have a substituent, for example, Ar 2 and Ar 3 may be bonded to each other through a single bond or a methylene group, an oxygen atom or a sulfur atom which may have a substituent to form a ring.
 Ar、Ar、Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、R~Rで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基と同じ例を挙げることができる。
 Ar、Ar、Arで表される芳香族複素環基としては、チエニル基、ベンゾチエニル基、ベンゾチアゾリル基、ジベンゾチエニル基等の含硫黄芳香族複素環基;または、フリル基、ベンゾフラニル基、ベンゾオキサゾリル基、ジベンゾフラニル基などの含酸素芳香族複素環;が好ましい。
The aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 , Ar 2 , Ar 3 includes an aromatic hydrocarbon group represented by R 1 to R 9 , aromatic The same examples as the heterocyclic group or the condensed polycyclic aromatic group can be given.
As the aromatic heterocyclic group represented by Ar 1 , Ar 2 , Ar 3 , a sulfur-containing aromatic heterocyclic group such as thienyl group, benzothienyl group, benzothiazolyl group, dibenzothienyl group; or furyl group, benzofuranyl group And oxygen-containing aromatic heterocycles such as benzoxazolyl group and dibenzofuranyl group are preferable.
 Ar、Ar、Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基は置換基を有してもよい。置換基としては、以下の例を挙げることができる。
   重水素原子;
   シアノ基;
   ニトロ基;
   ハロゲン原子、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原
  子;
   炭素原子数1~6の直鎖状もしくは分岐状のアルキル基、例えばメ
  チル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基
  、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチ
  ル基、ネオペンチル基、n-ヘキシル基;
   炭素原子数1~6の直鎖状もしくは分岐状のアルキルオキシ基、例
  えばメチルオキシ基、エチルオキシ基、プロピルオキシ基;
   アルケニル基、例えばアリル基;
   アリールオキシ基、例えばフェニルオキシ基、トリルオキシ基;
   アリールアルキルオキシ基、例えばベンジルオキシ基、フェネチル
  オキシ基;
   芳香族炭化水素基もしくは縮合多環芳香族基、例えばフェニル基、
  ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基
  、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、
  ペリレニル基、フルオランテニル基、トリフェニレニル基など;
   芳香族複素環基、例えばピリジル基、チエニル基、フリル基、ピロ
  リル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチ
  エニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、
  ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラ
  ゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル
  基など;
   アリールビニル基、例えばスチリル基、ナフチルビニル基など;
   アシル基、例えばアセチル基、ベンゾイル基など;
 また、これらの置換基は、さらに置換基を有してもよい。更に有する置換基としても、Ar、Ar、Arで表される芳香族炭化水素基などが有する置換基と同じ例を挙げることができる。
 置換基同士または置換基とAr、Ar、Arとは、単結合または、置換基を有してもよいメチレン基、酸素原子もしくは硫黄原子を介して互いに結合して環を形成していてもよい。
The aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 , Ar 2 or Ar 3 may have a substituent. The following examples can be given as examples of the substituent.
Deuterium atom;
A cyano group;
A nitro group;
Halogen atoms such as fluorine atoms, chlorine atoms, bromine atoms, iodine atoms;
Linear or branched alkyl group having 1 to 6 carbon atoms, such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group , Isopentyl group, neopentyl group, n-hexyl group;
A linear or branched alkyloxy group having 1 to 6 carbon atoms, such as a methyloxy group, an ethyloxy group, or a propyloxy group;
An alkenyl group, such as an allyl group;
An aryloxy group such as a phenyloxy group, a tolyloxy group;
Arylalkyloxy groups such as benzyloxy group, phenethyloxy group;
An aromatic hydrocarbon group or a condensed polycyclic aromatic group such as a phenyl group,
Biphenylyl group, terphenylyl group, naphthyl group, anthracenyl group, phenanthryl group, fluorenyl group, indenyl group, pyrenyl group,
Perylenyl group, fluoranthenyl group, triphenylenyl group, etc .;
Aromatic heterocyclic groups such as pyridyl, thienyl, furyl, pyrrolyl, quinolyl, isoquinolyl, benzofuranyl, benzothienyl, indolyl, carbazolyl, benzoxazolyl,
Benzothiazolyl group, quinoxalyl group, benzimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group, carbolinyl group, etc .;
Aryl vinyl groups such as styryl groups, naphthyl vinyl groups, etc .;
An acyl group, such as an acetyl group, a benzoyl group;
Moreover, these substituents may further have a substituent. Further, examples of the substituent further include the same examples as the substituents possessed by the aromatic hydrocarbon groups represented by Ar 1 , Ar 2 , and Ar 3 .
The substituents or substituents and Ar 1 , Ar 2 , Ar 3 are bonded to each other via a single bond or an optionally substituted methylene group, oxygen atom or sulfur atom to form a ring. May be.
 Arとしては、芳香族炭化水素基、含硫黄芳香族複素環基または縮合多環芳香族基が好ましく、特に、フェニル基、ビフェニリル基、ナフチル基、フェナントリル基、フルオレニル基、チエニル基、ベンゾチエニル基、ジベンゾチエニル基が好ましく、フェニル基、ビフェニリル基、フルオレニル基、ベンゾチエニル基、ジベンゾチエニル基が最も好ましい。
 Ar、Arとしては、芳香族炭化水素基、含酸素芳香族複素環基、含硫黄芳香族複素環基または縮合多環芳香族基が好ましく、特に、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントリル基、フェナントリル基、フルオレニル基、トリフェニレニル基、フリル基、チエニル基、ベンゾフラニル基、ベンゾチエニル基、ジベンゾフラニル基、ジベンゾチエニル基が好ましく、フェニル基、ビフェニリル基、ナフチル基、フェナントリル基、フルオレニル基、トリフェニレニル基、フリル基、チエニル基、ベンゾフラニル基、ベンゾチエニル基、ジベンゾフラニル基、ジベンゾチエニル基が最も好ましい。
Ar 1 is preferably an aromatic hydrocarbon group, a sulfur-containing aromatic heterocyclic group or a condensed polycyclic aromatic group, and in particular, a phenyl group, a biphenylyl group, a naphthyl group, a phenanthryl group, a fluorenyl group, a thienyl group, a benzothienyl group. Group and dibenzothienyl group are preferable, and phenyl group, biphenylyl group, fluorenyl group, benzothienyl group and dibenzothienyl group are most preferable.
Ar 2 and Ar 3 are preferably an aromatic hydrocarbon group, an oxygen-containing aromatic heterocyclic group, a sulfur-containing aromatic heterocyclic group or a condensed polycyclic aromatic group, and in particular, a phenyl group, a biphenylyl group, a terphenylyl group, Naphtyl group, anthryl group, phenanthryl group, fluorenyl group, triphenylenyl group, furyl group, thienyl group, benzofuranyl group, benzothienyl group, dibenzofuranyl group, dibenzothienyl group are preferable, phenyl group, biphenylyl group, naphthyl group, phenanthryl group Fluorenyl group, triphenylenyl group, furyl group, thienyl group, benzofuranyl group, benzothienyl group, dibenzofuranyl group, dibenzothienyl group are most preferable.
<A>
 Aは、芳香族炭化水素、芳香族複素環もしくは縮合多環芳香族の2価基、または単結合を表す。かかる芳香族炭化水素、芳香族複素環および縮合多環芳香族としては、以下の例を挙げることができる。
   ベンゼン、ビフェニル、ターフェニル、テトラキスフェニル、スチ
  レン、ナフタレン、アントラセン、アセナフタレン、フルオレン、フ
  ェナントレン、インダン、ピレン、ピリジン、ピリミジン、トリアジ
  ン、フラン、ピロール、チオフェン、キノリン、イソキノリン、ベン
  ゾフラン、ベンゾチオフェン、インドリン、カルバゾール、カルボリ
  ン、ベンゾオキサゾール、ベンゾチアゾール、キノキサリン、ベンゾ
  イミダゾール、ピラゾール、ジベンゾフラン、ジベンゾチオフェン、
  ナフチリジン、フェナントロリン、アクリジニンなど。
 Aで表される2価基は、上記芳香族炭化水素、芳香族複素環または縮合多環芳香族から水素原子を2個取り除いてできる。
 芳香族複素環としては、チオフェン、ベンゾチオフェン、ベンゾチアゾール、ジベンゾチオフェンなどの含硫黄芳香族複素環;または、フラン、ベンゾフラン、ベンゾオキサゾール、ジベンゾフランなどの含酸素芳香族複素環;が好ましい。
<A>
A represents an aromatic hydrocarbon, an aromatic heterocyclic ring or a condensed polycyclic aromatic divalent group, or a single bond. Examples of such aromatic hydrocarbons, aromatic heterocycles and condensed polycyclic aromatics include the following.
Benzene, biphenyl, terphenyl, tetrakisphenyl, styrene, naphthalene, anthracene, acenaphthalene, fluorene, phenanthrene, indane, pyrene, pyridine, pyrimidine, triazine, furan, pyrrole, thiophene, quinoline, isoquinoline, benzofuran, benzo Thiophene, indoline, carbazole, carboline, benzoxazole, benzothiazole, quinoxaline, benzimidazole, pyrazole, dibenzofuran, dibenzothiophene,
Naphthyridine, phenanthroline, acridinine, etc.
The divalent group represented by A can be formed by removing two hydrogen atoms from the aromatic hydrocarbon, aromatic heterocyclic ring or condensed polycyclic aromatic.
As the aromatic heterocycle, sulfur-containing aromatic heterocycles such as thiophene, benzothiophene, benzothiazole, and dibenzothiophene; or oxygen-containing aromatic heterocycles such as furan, benzofuran, benzoxazole, and dibenzofuran; are preferable.
 芳香族炭化水素、芳香族複素環または縮合多環芳香族は置換基を有してもよい。置換基としては、Ar、Ar、Arで表される芳香族炭化水素、芳香族複素環または縮合多環芳香族が有してもよい置換基と同じ例を挙げることができる。
 これらの置換基は、さらに置換基を有してもよい。更に有する置換基としても、Ar、Ar、Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基と同じ例を挙げることができる。また、置換基同士は、単結合または、置換基を有してもよいメチレン基、酸素原子もしくは硫黄原子を介して互いに結合して環を形成してもよい。
The aromatic hydrocarbon, aromatic heterocyclic ring or condensed polycyclic aromatic may have a substituent. Examples of the substituent include the same examples as the substituent that the aromatic hydrocarbon, aromatic heterocyclic ring or condensed polycyclic aromatic represented by Ar 1 , Ar 2 , Ar 3 may have.
These substituents may further have a substituent. Further, examples of the substituent further include the same examples as the substituent that the aromatic hydrocarbon group, the aromatic heterocyclic group, or the condensed polycyclic aromatic group represented by Ar 1 , Ar 2 , and Ar 3 may have. be able to. Further, the substituents may be bonded to each other via a single bond or a methylene group, oxygen atom or sulfur atom which may have a substituent to form a ring.
 Aとしては、芳香族炭化水素の2価基、縮合多環芳香族の2価基または単結合が好ましく、特にベンゼンから誘導される2価基または単結合が好ましい。 A is preferably an aromatic hydrocarbon divalent group, a condensed polycyclic aromatic divalent group or a single bond, and particularly preferably a divalent group or a single bond derived from benzene.
 Aが単結合のとき、本発明のアクリダン環構造を有する化合物は、具体的には、下記一般式(1-3);
Figure JPOXMLDOC01-appb-C000016
で表され、好適には、下記一般式(1-4)で表されるように、R~RおよびArArN-の結合位置が決まっている。
Figure JPOXMLDOC01-appb-C000017
When A is a single bond, the compound having an acridan ring structure of the present invention specifically includes the following general formula (1-3);
Figure JPOXMLDOC01-appb-C000016
Preferably, the bonding positions of R 1 to R 3 and Ar 3 Ar 2 N— are determined as represented by the following general formula (1-4).
Figure JPOXMLDOC01-appb-C000017
 ベンゼンから誘導される2価基は、具体的には、下記式(2);
Figure JPOXMLDOC01-appb-C000018
で表され、好適には、下記式(2´);
Figure JPOXMLDOC01-appb-C000019
で表される。
Specifically, the divalent group derived from benzene is represented by the following formula (2);
Figure JPOXMLDOC01-appb-C000018
Preferably, the following formula (2 ′);
Figure JPOXMLDOC01-appb-C000019
It is represented by
 r12は、後で詳述する基R12の数を表し、0~4の整数である。r12が0とは、式(2)や式(2´)中のベンゼン環がR12で置換されていない(R12の位置に水素が存在する)ことを意味する。 r 12 represents the number of the group R 12 described in detail later, and is an integer of 0 to 4. The r 12 is 0, it means that the expression (2) and the benzene ring in the formula (2 ') is (hydrogen is present at the position of R 12) where R is not substituted with 12.
 R12は、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルキルオキシ基、炭素原子数5~10のシクロアルキルオキシ基、芳香族炭化水素基、芳香族複素環基、縮合多環芳香族基もしくはアリールオキシ基または連結基を表す。R12が複数個存在する場合(r12が2以上のとき)、複数のR12は、単結合または、置換基を有してもよいメチレン基、酸素原子もしくは硫黄原子を介して互いに結合して環を形成してもよい。 R 12 represents a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms. An alkyloxy group having 1 to 6 carbon atoms, a cycloalkyloxy group having 5 to 10 carbon atoms, an aromatic hydrocarbon group, an aromatic heterocyclic group, a condensed polycyclic aromatic group, an aryloxy group, or a linking group. To express. When a plurality of R 12 are present (when r 12 is 2 or more), the plurality of R 12 are bonded to each other via a single bond or an optionally substituted methylene group, oxygen atom or sulfur atom. To form a ring.
 R12で表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基としては、R~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基として示したものと同じ例を挙げることができる。これらの基が有してもよい置換基としても、上記のR~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基に関して示したものと同じ例を挙げることができる。また、好ましい態様も、上記のR~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基に関して示したものと同じである。 Examples of the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms represented by R 12 include carbon atoms represented by R 1 to R 9. Examples thereof are the same as those shown as the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms. As the substituent that these groups may have, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or a carbon number of 2 represented by the above R 1 to R 9 may be used. Mention may be made of the same examples as indicated for the alkenyl groups of ˜6. Preferred embodiments are also shown for the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 9 described above. Is the same.
 R12で表される炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基としては、R~Rで表される炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基と同じ例を挙げることができる。これらの基が有してもよい置換基としても、上記のR~Rで表される炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基に関して示したものと同じ例を挙げることができる。また、好ましい態様も、上記のR~Rで表される炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基に関して示したものと同じである。 Examples of the alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms represented by R 12 include an alkyloxy group having 1 to 6 carbon atoms represented by R 1 to R 9 Alternatively, the same examples as the cycloalkyloxy group having 5 to 10 carbon atoms can be given. As the substituents that these groups may have, the above-mentioned alkyloxy groups having 1 to 6 carbon atoms or cycloalkyloxy groups having 5 to 10 carbon atoms represented by R 1 to R 9 are shown. The same examples can be given. Preferred embodiments are also the same as those shown for the alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms represented by R 1 to R 9 above.
 R12で表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、R~Rで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基として示したものと同じ例を挙げることができる。これらの基が有してもよい置換基としても、上記のR~Rで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基に関して示したものと同じ例を挙げることができる。また、好ましい態様も、上記のR~Rで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基に関して示したものと同じである。 Examples of the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 12 include an aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic represented by R 1 to R 9. The same example as what was shown as a ring aromatic group can be given. Examples of the substituent that these groups may have are the same as those shown for the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 1 to R 9 above. Can be mentioned. Preferred embodiments are also the same as those shown for the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 1 to R 9 above.
 R12で表されるアリールオキシ基としては、R~Rで表されるアリールオキシとして示したものと同じ例を挙げることができる。これらの基が有してよい置換基としても、上記のR~Rで表されるアリールオキシに関して示したものと同じ例を挙げることができる。また、好ましい態様も、上記のR~Rで表されるアリールオキシに関して示したものと同じである。 Examples of the aryloxy group represented by R 12 include the same examples as those shown as the aryloxy represented by R 1 to R 9 . Examples of the substituent that these groups may have include the same examples as those shown for the aryloxy represented by the above R 1 to R 9 . The preferred embodiments are also the same as those shown for the aryloxy represented by R 1 to R 9 above.
 R12が連結基のとき、R12が結合しているベンゼン環とArとは、単結合または、置換基を有してもよいメチレン基、酸素原子もしくは硫黄原子を介して互いに結合して環を形成し、好適には、下記一般式(1-2)で表されるように、R12が結合しているベンゼン環とArとが単結合を介して互いに結合して環を形成している。
Figure JPOXMLDOC01-appb-C000020
When R 12 is a linking group, the benzene ring to which R 12 is bonded and Ar 2 are bonded to each other via a single bond or an optionally substituted methylene group, oxygen atom or sulfur atom. A ring is formed, and preferably, as represented by the following general formula (1-2), a benzene ring to which R 12 is bonded and Ar 4 are bonded to each other through a single bond to form a ring. is doing.
Figure JPOXMLDOC01-appb-C000020
 Arは、Arの2価基を表す。すなわち、Arとしては、Arに関して示したものと同様の基から誘導される2価基を挙げることができる。Arを構成する基が有してもよい置換基としても、上記のArに関して示したものと同様のものを挙げることができる。また、好ましい芳香族複素環基としても、上記のArに関して示したものと同様のものを挙げることができる。Arは、Arと単結合、置換基を有してもよいメチレン基、酸素原子もしくは硫黄原子を介して互いに結合して環を形成してもよい。 Ar 4 represents a divalent group of Ar 2 . That is, examples of Ar 4 include divalent groups derived from the same groups as those shown for Ar 2 . Examples of the substituent that the group constituting Ar 4 may have include the same groups as those described above for Ar 2 . Further, even if the preferred aromatic heterocyclic group include the same as those indicated for the above Ar 2. Ar 4 may be bonded to Ar 3 through a single bond, an optionally substituted methylene group, an oxygen atom or a sulfur atom to form a ring.
<製造方法>
 本発明のアクリダン環構造を有する化合物は新規な化合物であり、例えば、以下のように合成できる。
 本発明の化合物のうち、特に、ベンゾチエノアクリダン環構造を有する化合物(Xが硫黄原子のもの)を合成する方法について説明する。
 まず、2-アミノ安息香酸メチルと2-ブロモジベンゾチオフェンとの反応によって、2-(ジベンゾチオフェン-2-イル)アミノ安息香酸メチルを合成する。
 次に、得られた2-(ジベンゾチオフェン-2-イル)アミノ安息香酸メチルとメチルマグネシウムクロライドとを反応させることによって、2-{2-(ジベンゾチオフェン-2-イル)アミノ)フェニル}プロパン-2-オールを合成し、続いて環化反応を行うことによって、13,13-ジメチル-8,13-ジヒドロベンゾチエノ[3,2-a]アクリジンを合成する。
 この13,13-ジメチル-8,13-ジヒドロベンゾチエノ[3,2-a]アクリジンとアリールハライドとの縮合反応、例えばブッフバルト・ハートウィッグ反応を行うことによって、8位がアリール基で置換されたベンゾチエノアクリダン誘導体を合成することができる。
 続いて、N-ブロモコハク酸イミドなどによるブロモ化を行うことによって、11位がブロモ化されたベンゾチエノアクリダン誘導体を合成することができる。尚、このときブロモ化の試薬や条件を変更すると、置換位置の異なるブロモ置換体を得ることができる。
 さらに、このブロモ置換体と種々のボロン酸またはボロン酸エステル{J.Org.Chem.,60,7508(1995)参照}とのクロスカップリング反応、例えばSuzukiカップリング{Synth.Commun.,11,513(1981)参照}を行うことによって、本発明のベンゾチエノアクリダン環構造を有する化合物を合成することができる。
<Manufacturing method>
The compound having an acridan ring structure of the present invention is a novel compound and can be synthesized, for example, as follows.
Of the compounds of the present invention, a method for synthesizing a compound having a benzothienoacridan ring structure (where X is a sulfur atom) will be described.
First, methyl 2- (dibenzothiophen-2-yl) aminobenzoate is synthesized by reaction of methyl 2-aminobenzoate with 2-bromodibenzothiophene.
Next, the obtained methyl 2- (dibenzothiophen-2-yl) aminobenzoate and methylmagnesium chloride are reacted to give 2- {2- (dibenzothiophen-2-yl) amino) phenyl} propane- By synthesizing 2-ol followed by cyclization reaction, 13,13-dimethyl-8,13-dihydrobenzothieno [3,2-a] acridine is synthesized.
By performing a condensation reaction of this 13,13-dimethyl-8,13-dihydrobenzothieno [3,2-a] acridine and an aryl halide, for example, the Buchwald-Hartwig reaction, the 8-position was substituted with an aryl group. A benzothienoacridan derivative can be synthesized.
Subsequently, bromination with N-bromosuccinimide or the like can be performed to synthesize a benzothienoacridan derivative in which the 11-position is brominated. At this time, when the bromination reagent and conditions are changed, bromo-substituted products having different substitution positions can be obtained.
Further, the bromo-substituted product and various boronic acids or boronic acid esters {J. Org. Chem. , 60, 7508 (1995)}, for example, Suzuki coupling {Synth. Commun. , 11, 513 (1981)}, the compound having the benzothienoacridan ring structure of the present invention can be synthesized.
 一方、本発明の化合物のうち、ベンゾフロアクリダン環構造を有する化合物(Xが酸素原子のもの)は、上述の本発明のベンゾチエノアクリダン環構造を有する化合物の合成方法のうち、2-アミノ安息香酸メチルと2-ブロモジベンゾチオフェンとの反応において、2-ブロモジベンゾチオフェンの代わりに2-ブロモジベンゾフランを用い、その後は同様の合成反応を行うことによって合成することができる。 On the other hand, among the compounds of the present invention, the compound having a benzofloricridan ring structure (where X is an oxygen atom) is the above-described method for synthesizing a compound having a benzothienoacridan ring structure of the present invention. In the reaction between methyl aminobenzoate and 2-bromodibenzothiophene, 2-bromodibenzofuran can be used instead of 2-bromodibenzothiophene, and then the same synthesis reaction can be performed.
 また、本発明のアクリダン環構造を有する化合物は以下の方法によって合成することもできる。即ち、本発明のベンゾチエノアクリダン環構造は、前記した8位がアリール基で置換されたベンゾチエノアクリダン誘導体のブロモ置換体と種々のジアリールアミンとでブッフバルト・ハートウィッグ反応等のクロスカップリング反応を行うことによって、合成することができる。
 同じく、本発明のベンゾフロアクリダン環構造を有する化合物は、前記した8位がアリール基で置換されたベンゾフロアクリダン誘導体のブロモ置換体と種々のジアリールアミンとでブッフバルト・ハートウィッグ反応などのクロスカップリング反応を行うことによって、合成することができる。
The compound having an acridan ring structure of the present invention can also be synthesized by the following method. That is, the benzothienoacridan ring structure of the present invention has a cross coupling such as Buchwald-Hartwig reaction between a bromo-substituted benzothienoacridan derivative substituted with an aryl group at the 8-position and various diarylamines. It can synthesize | combine by performing reaction.
Similarly, the compound having a benzoflouridan ring structure of the present invention is a compound such as the Buchwald-Hartwig reaction between the bromo-substituted benzoflouridan derivative substituted with an aryl group at the 8-position and various diarylamines. It can be synthesized by performing a cross-coupling reaction.
 得られた化合物の精製はカラムクロマトグラフによる精製;シリカゲル、活性炭、活性白土などによる吸着精製;溶媒による再結晶や晶析法;などによって行うことができる。得られた化合物の同定は、NMR分析によって行なわれる。 The resulting compound can be purified by column chromatography; adsorption purification using silica gel, activated carbon, activated clay, etc .; recrystallization or crystallization using a solvent; The resulting compound is identified by NMR analysis.
 得られた化合物の物性値としては、ガラス転移点(Tg)と仕事関数を測定する。ガラス転移点(Tg)は薄膜状態の安定性の指標となるものである。仕事関数は正孔輸送性の指標となるものである。
 ガラス転移点(Tg)は、例えば粉体を用いて高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100SA)によって求められる。
As a physical property value of the obtained compound, a glass transition point (Tg) and a work function are measured. The glass transition point (Tg) is an index of the stability of the thin film state. The work function is an index of hole transportability.
A glass transition point (Tg) is calculated | required with a highly sensitive differential scanning calorimeter (The Bruker AXS make, DSC3100SA), for example using powder.
 仕事関数は、ITO基板の上に100nmの薄膜を作製して、イオン化ポテンシャル測定装置(住友重機械工業製、PYS-202型)を用いて測定される。 The work function is measured using an ionization potential measuring apparatus (PYS-202, manufactured by Sumitomo Heavy Industries, Ltd.) by forming a 100 nm thin film on the ITO substrate.
 上述した一般式(1)で表される本発明のアクリダン環構造を有する化合物の中で、好ましい化合物の具体例を以下に示す。尚、化合物1は、欠番である。 Specific examples of preferable compounds among the compounds having an acridan ring structure of the present invention represented by the general formula (1) described above are shown below. Compound 1 is a missing number.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
<有機EL素子>
 上述した本発明のアクリダン環構造を有する化合物を用いて形成される有機層を備えた有機EL素子は、例えば図9に示す層構造を有している。
<Organic EL device>
The organic EL element provided with the organic layer formed using the compound having an acridan ring structure of the present invention described above has a layer structure shown in FIG. 9, for example.
 即ち、ガラス基板1(透明樹脂基板など、透明基板であればよい)の上に、透明陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6、電子注入層7及び陰極8が設けられている。
 勿論、本発明のアクリダン環構造を有する化合物が適用される有機EL素子は、上記の層構造に限定されるものではなく、たとえば、正孔輸送層4と発光層5との間に電子阻止層(図示せず)を設けることもできる。また、これらの多層構造において有機層を何層か省略してもよい。即ち、透明陽極2と正孔輸送層4の間の正孔注入層3や、電子輸送層6と陰極8との間の電子注入層7を省略して、基板1上に、陽極2、正孔輸送層4、発光層5、電子輸送層6、陰極8を有するシンプルな構成とすることもできる。
That is, a transparent anode 2, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, an electron injection layer on a glass substrate 1 (a transparent substrate such as a transparent resin substrate may be used). 7 and a cathode 8 are provided.
Of course, the organic EL element to which the compound having an acridan ring structure of the present invention is applied is not limited to the above layer structure. For example, an electron blocking layer is provided between the hole transport layer 4 and the light emitting layer 5. (Not shown) can also be provided. In addition, some organic layers in these multilayer structures may be omitted. That is, the hole injection layer 3 between the transparent anode 2 and the hole transport layer 4 and the electron injection layer 7 between the electron transport layer 6 and the cathode 8 are omitted, and the anode 2 and the positive electrode are formed on the substrate 1. A simple configuration including the hole transport layer 4, the light emitting layer 5, the electron transport layer 6, and the cathode 8 may be employed.
 本発明のアクリダン環構造を有する化合物は、上記の透明陽極2と陰極8との間に設けられる有機層(例えば正孔注入層3、正孔輸送層4、図示されていない電子阻止層、あるいは発光層5)の形成材料として好適に使用される。 The compound having an acridan ring structure of the present invention comprises an organic layer (for example, a hole injection layer 3, a hole transport layer 4, an electron blocking layer (not shown), or the like provided between the transparent anode 2 and the cathode 8. It is preferably used as a material for forming the light emitting layer 5).
 上記の有機EL素子において、透明陽極2は、それ自体公知の電極材料で形成されてよく、例えばITOや金のような仕事関数の大きな電極材料を基板1(ガラス基板等の透明基板)上に蒸着することにより形成される。 In the above organic EL element, the transparent anode 2 may be formed of a known electrode material. For example, an electrode material having a large work function such as ITO or gold is formed on the substrate 1 (transparent substrate such as a glass substrate). It is formed by vapor deposition.
 また、透明陽極2上に設けられる正孔注入層3は、上述した本発明のアクリダン環構造を有する化合物を用いて形成できるほか、従来公知の材料、例えば以下の材料を用いて形成することもできる。
   銅フタロシアニンに代表されるポルフィリン化合物;
   スターバースト型のトリフェニルアミン誘導体;
   単結合或いはヘテロ原子を含まない2価基により、複数のトリフェ
  ニルアミン骨格が連結された構造を有するアリールアミン(例えばト
  リフェニルアミンの4量体など);
   ヘキサシアノアザトリフェニレンのようなアクセプター性の複素
  環化合物;
   塗布型の高分子材料、例えば、ポリ(3,4-エチレンジオキシチ
  オフェン)(以後、PEDOTと略称する)、ポリ(スチレンスルフォ
  ネート)(以後、PSSと略称する);
 上記の材料を用いての層(薄膜)形成は、蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって行うことができる。以下に述べる各種の層も同様に、蒸着やスピンコート、インクジェットなどにより成膜することができる。
Moreover, the hole injection layer 3 provided on the transparent anode 2 can be formed using the compound having an acridan ring structure of the present invention described above, or may be formed using a conventionally known material, for example, the following materials. it can.
Porphyrin compounds represented by copper phthalocyanine;
Starburst type triphenylamine derivatives;
An arylamine having a structure in which a plurality of triphenylamine skeletons are linked by a single bond or a divalent group not containing a hetero atom (for example, a tetramer of triphenylamine);
An acceptor heterocyclic compound such as hexacyanoazatriphenylene;
Coating type polymer material, for example, poly (3,4-ethylenedioxythiophene) (hereinafter abbreviated as PEDOT), poly (styrene sulfonate) (hereinafter abbreviated as PSS);
Formation of a layer (thin film) using the above materials can be performed by a known method such as a spin coating method or an ink jet method in addition to a vapor deposition method. Similarly, various layers described below can be formed by vapor deposition, spin coating, ink jetting, or the like.
 上記の正孔注入層3の上に設けられている正孔輸送層4も、本発明のアクリダン環構造を有する化合物を用いて形成することができ、また、従来公知の正孔輸送材料を用いて形成することもできる。このような従来公知の正孔輸送材料として代表的なものは、次の通りである。
 ベンジジン誘導体、例えば
  N,N’-ジフェニル-N,N’-ジ(m-トリル)ベンジジン
                  (以後、TPDと略称する);
  N,N’-ジフェニル-N,N’-ジ(α-ナフチル)ベンジジン
                  (以後、NPDと略称する);
  N,N,N’,N’-テトラビフェニリルベンジジン;
 アミン誘導体、例えば、
  1,1-ビス[4-(ジ-4-トリルアミノ)フェニル]シクロヘキ
  サン              (以後、TAPCと略称する);
 種々のトリフェニルアミン3量体および4量体;
 正孔の注入層用としても使用される上述の塗布型高分子材料;
The hole transport layer 4 provided on the hole injection layer 3 can also be formed using the compound having an acridan ring structure of the present invention, and a conventionally known hole transport material is used. It can also be formed. Typical examples of such conventionally known hole transport materials are as follows.
Benzidine derivatives such as N, N′-diphenyl-N, N′-di (m-tolyl) benzidine (hereinafter abbreviated as TPD);
N, N′-diphenyl-N, N′-di (α-naphthyl) benzidine (hereinafter abbreviated as NPD);
N, N, N ′, N′-tetrabiphenylylbenzidine;
Amine derivatives such as
1,1-bis [4- (di-4-tolylamino) phenyl] cyclohexane (hereinafter abbreviated as TAPC);
Various triphenylamine trimers and tetramers;
The above-mentioned coating type polymer material that is also used for a hole injection layer;
 このような正孔輸送材料として用いられる化合物は、それぞれ単独で成膜してもよいが、2種以上混合して成膜することもできるし、また、上記化合物の1種または複数種を用いて複数の層を形成し、このような層が積層された多層膜を正孔輸送層4とすることもできる。 The compounds used as such a hole transport material may be formed alone, but may be formed by mixing two or more kinds, and one or more of the above compounds may be used. A multilayer film in which a plurality of layers are formed and these layers are laminated can be used as the hole transport layer 4.
 また、正孔注入層3と正孔輸送層4とを兼ねた層とすることもでき、このような正孔注入・輸送層は、PEDOTなどの高分子材料を用いてのコーティングにより形成することができる。 Moreover, it can also be set as the layer which served as the positive hole injection layer 3 and the positive hole transport layer 4, and such a positive hole injection / transport layer should be formed by coating using polymeric materials, such as PEDOT. Can do.
 また、正孔輸送層4(正孔注入層3も同様)において、該層に通常使用される材料に対し、さらにトリスブロモフェニルアミンヘキサクロルアンチモンなどをPドーピングしたものを使用することができる。また、TPDの基本骨格を有する高分子化合物などを用いて正孔輸送層4(正孔注入層3も同様)を形成することもできる。 Further, in the hole transport layer 4 (the same applies to the hole injection layer 3), it is possible to use a material that is usually used for the layer and further P-doped with trisbromophenylamine hexachloroantimony. Alternatively, the hole transport layer 4 (the same applies to the hole injection layer 3) can be formed using a polymer compound having a TPD basic skeleton.
 さらに、図示されていない電子阻止層(発光層5と正孔輸送層4との間に設けることができる)は、電子阻止作用を有する本発明のアクリダン環構造を有する化合物を用いて形成することができるが、公知の電子阻止性化合物、例えば、カルバゾール誘導体や、トリフェニルシリル基を有し且つトリアリールアミン構造を有する化合物などを用いて形成することもできる。カルバゾール誘導体及びトリアリールアミン構造を有する化合物の具体例は、以下の通りである。
(カルバゾール誘導体)
  4,4’,4’’-トリ(N-カルバゾリル)トリフェニルアミン
                  (以後、TCTAと略称する);
  9,9-ビス[4-(カルバゾール-9-イル)フェニル]フルオレ
 ン;
  1,3-ビス(カルバゾール-9-イル)ベンゼン
                   (以後、mCPと略称する);
  2,2-ビス(4-カルバゾール-9-イルフェニル)アダマンタン
                 (以後、Ad-Czと略称する);
(トリフェニルシリル基とトリアリールアミン構造を有する化合物)
  9-[4-(カルバゾール-9-イル)フェニル]-9-[4-(ト
 リフェニルシリル)フェニル]-9H-フルオレン;
Further, an electron blocking layer (not shown) (which can be provided between the light emitting layer 5 and the hole transport layer 4) is formed using the compound having an acridan ring structure of the present invention having an electron blocking action. However, it can also be formed using a known electron blocking compound such as a carbazole derivative or a compound having a triphenylsilyl group and a triarylamine structure. Specific examples of the compound having a carbazole derivative and a triarylamine structure are as follows.
(Carbazole derivative)
4,4 ′, 4 ″ -tri (N-carbazolyl) triphenylamine (hereinafter abbreviated as TCTA);
9,9-bis [4- (carbazol-9-yl) phenyl] fluorene;
1,3-bis (carbazol-9-yl) benzene (hereinafter abbreviated as mCP);
2,2-bis (4-carbazol-9-ylphenyl) adamantane (hereinafter abbreviated as Ad-Cz);
(Compound having a triphenylsilyl group and a triarylamine structure)
9- [4- (carbazol-9-yl) phenyl] -9- [4- (triphenylsilyl) phenyl] -9H-fluorene;
 電子阻止層は、本発明のアクリダン環構造を有する化合物や上記のような公知の材料を1種単独あるいは2種以上を用いて形成されうる。また、これらの材料の1種あるいは複数種を用いて複数の層を形成し、このような層が積層された多層膜を電子阻止層とすることもできる。 The electron blocking layer can be formed using one or more of the compounds having the acridan ring structure of the present invention and the above-mentioned known materials. A plurality of layers can be formed using one or more of these materials, and a multilayer film in which such layers are stacked can be used as an electron blocking layer.
 本発明の有機EL素子の発光層5は、例えば以下の発光材料を用いて形成することができる。
   Alqをはじめとするキノリノール誘導体の金属錯体;
   亜鉛やベリリウム、アルミニウム等の各種の金属錯体;
   アントラセン誘導体;
   ビススチリルベンゼン誘導体;
   ピレン誘導体;
   オキサゾール誘導体;
   ポリパラフェニレンビニレン誘導体;
The light emitting layer 5 of the organic EL element of the present invention can be formed using, for example, the following light emitting materials.
Metal complexes of quinolinol derivatives including Alq 3 ;
Various metal complexes such as zinc, beryllium and aluminum;
Anthracene derivatives;
Bisstyrylbenzene derivatives;
Pyrene derivatives;
An oxazole derivative;
Polyparaphenylene vinylene derivatives;
 また、発光層5をホスト材料とドーパント材料とで構成することもできる。
 ホスト材料としては、上記の発光材料に加え、本発明のアクリダン環構造を有する化合物を用いることもできるし、前記発光材料に加え、チアゾール誘導体、ベンズイミダゾール誘導体、ポリジアルキルフルオレン誘導体などを用いることがもできる。
 ドーパント材料としては、キナクリドン、クマリン、ルブレン、ペリレンおよびそれらの誘導体;ベンゾピラン誘導体;ローダミン誘導体;アミノスチリル誘導体;などを用いることができる。
Moreover, the light emitting layer 5 can also be comprised with a host material and a dopant material.
As the host material, in addition to the light emitting material described above, the compound having an acridan ring structure of the present invention can be used. In addition to the light emitting material, a thiazole derivative, a benzimidazole derivative, a polydialkylfluorene derivative, or the like can be used. You can also.
As the dopant material, quinacridone, coumarin, rubrene, perylene and their derivatives; benzopyran derivatives; rhodamine derivatives; aminostyryl derivatives;
 発光層5も、各種発光材料の1種或いは2種以上を用いた単層構成とすることもできるし、複数の層を積層した多層構造とすることもできる。 The light-emitting layer 5 can also have a single-layer structure using one or more of various light-emitting materials, or a multilayer structure in which a plurality of layers are stacked.
 さらに、発光材料として燐光発光材料を使用して発光層5を形成することもできる。
 燐光発光材料としては、イリジウムや白金などの金属錯体の燐光発光体を使用することができる。例えば、Ir(ppy)などの緑色の燐光発光体、FIrpic、FIr6などの青色の燐光発光体、BtpIr(acac)などの赤色の燐光発光体などを用いることができ、これらの燐光発光体は、正孔注入・輸送性のホスト材料や電子輸送性のホスト材料にドープして使用される。
Furthermore, the light emitting layer 5 can also be formed using a phosphorescent light emitting material as the light emitting material.
As the phosphorescent material, a phosphorescent material of a metal complex such as iridium or platinum can be used. For example, green phosphorescent emitters such as Ir (ppy) 3 , blue phosphorescent emitters such as FIrpic and FIr6, red phosphorescent emitters such as Btp 2 Ir (acac), and the like can be used. The body is used by doping a hole-injecting / transporting host material or an electron-transporting host material.
 正孔注入・輸送性のホスト材料としては、本発明のアクリダン環構造を有する化合物や、4,4’-ジ(N-カルバゾリル)ビフェニル(以後、CBPと略称する)やTCTA、mCPなどのカルバゾール誘導体などを用いることができる。
 電子輸送性のホスト材料としては、p-ビス(トリフェニルシリル)ベンゼン(以後、UGH2と略称する)や2,2’,2’’-(1,3,5-フェニレン)-トリス(1-フェニル-1H-ベンズイミダゾール)(以後、TPBIと略称する)などを用いることができる。これらを用いることで、高性能の有機EL素子を作製することができる。
Examples of the hole injecting / transporting host material include compounds having an acridan ring structure of the present invention, carbazoles such as 4,4′-di (N-carbazolyl) biphenyl (hereinafter abbreviated as CBP), TCTA, and mCP. Derivatives and the like can be used.
As an electron transporting host material, p-bis (triphenylsilyl) benzene (hereinafter abbreviated as UGH2), 2,2 ′, 2 ″-(1,3,5-phenylene) -tris (1- Phenyl-1H-benzimidazole) (hereinafter abbreviated as TPBI) and the like can be used. By using these, a high-performance organic EL element can be produced.
 尚、燐光性の発光材料のホスト材料へのドープは、濃度消光を避けるため、発光層全体に対して1~30重量パーセントの範囲で、共蒸着によって行うことが好ましい。 Note that the doping of the phosphorescent light-emitting material into the host material is preferably performed by co-evaporation in the range of 1 to 30 weight percent with respect to the entire light-emitting layer in order to avoid concentration quenching.
 また、発光材料としてPIC-TRZ、CC2TA、PXZ-TRZ、4CzIPNなどのCDCB誘導体などの遅延蛍光を放射する材料を使用することも可能である{Appl.Phys.Let.,98,083302(2011)参照}。 Further, it is also possible to use a material that emits delayed fluorescence, such as CDCB derivatives such as PIC-TRZ, CC2TA, PXZ-TRZ, 4CzIPN, etc. as a light emitting material {Appl. Phys. Let. , 98,083302 (2011)}.
 発光層5と電子輸送層6との間に設けることができる正孔阻止層(図9において図示せず)は、それ自体公知の正孔阻止作用を有する化合物を用いて形成することができる。このような正孔阻止作用を有する公知化合物の例としては、以下を挙げることができる。
   フェナントロリン誘導体、例えばバソクプロイン(以後、BCPと
  略称する);
   キノリノール誘導体の金属錯体、例えばアルミニウム(III)ビス(
  2-メチル-8-キノリナート)-4-フェニルフェノレート(以後
  、BAlqと略称する);
   各種の希土類錯体;
   トリアゾール誘導体
   トリアジン誘導体
   オキサジアゾール誘導体;
 これらの材料は、以下に述べる電子輸送層6の形成にも使用することができ、更に、この正孔阻止層と電子輸送層6とを兼用させることもできる。
A hole blocking layer (not shown in FIG. 9) that can be provided between the light emitting layer 5 and the electron transport layer 6 can be formed using a compound having a known hole blocking action. Examples of known compounds having such a hole blocking action include the following.
Phenanthroline derivatives such as bathocuproine (hereinafter abbreviated as BCP);
Metal complexes of quinolinol derivatives such as aluminum (III) bis (
2-methyl-8-quinolinato) -4-phenylphenolate (hereinafter abbreviated as BAlq);
Various rare earth complexes;
Triazole derivatives Triazine derivatives Oxadiazole derivatives;
These materials can also be used for forming the electron transport layer 6 described below, and the hole blocking layer and the electron transport layer 6 can be used in combination.
 このような正孔阻止層も、単層或いは多層の積層構造とすることができ、各層は、上述した正孔阻止作用を有する化合物の1種或いは2種以上を用いて成膜される。 Such a hole blocking layer can also have a single layer or multilayer structure, and each layer is formed using one or more of the compounds having the hole blocking action described above.
 電子輸送層6は、それ自体公知の電子輸送性の化合物、例えば、
   Alq、BAlqなどのキノリノール誘導体の金属錯体;
   亜鉛やベリリウム、アルミニウムなどの各種金属錯体;
   トリアゾール誘導体;
   トリアジン誘導体;
   オキサジアゾール誘導体;
   チアジアゾール誘導体;
   カルボジイミド誘導体;
   キノキサリン誘導体;
   フェナントロリン誘導体;
   シロール誘導体;
などを用いて形成される。
 この電子輸送層6も、単層或いは多層の積層構造とすることができ、各層は、上述した電子輸送性化合物の1種或いは2種以上を用いて成膜される。
The electron transport layer 6 is an electron transport compound known per se, for example,
Metal complexes of quinolinol derivatives such as Alq 3 and BAlq;
Various metal complexes such as zinc, beryllium and aluminum;
Triazole derivatives;
Triazine derivatives;
Oxadiazole derivatives;
Thiadiazole derivatives;
Carbodiimide derivatives;
Quinoxaline derivatives;
Phenanthroline derivatives;
Silole derivatives;
Etc. are formed.
The electron transport layer 6 can also have a single layer or multilayer structure, and each layer is formed using one or more of the electron transport compounds described above.
 さらに、電子注入層7も、それ自体公知のもの、例えば、フッ化リチウム、フッ化セシウムなどのアルカリ金属塩;フッ化マグネシウムなどのアルカリ土類金属塩;酸化アルミニウムなどの金属酸化物;などを用いて形成することができる。 Further, the electron injection layer 7 is also known per se, for example, alkali metal salts such as lithium fluoride and cesium fluoride; alkaline earth metal salts such as magnesium fluoride; metal oxides such as aluminum oxide; Can be formed.
 有機EL素子の陰極8については、アルミニウムのような仕事関数の低い電極材料や、マグネシウム銀合金、マグネシウムインジウム合金、アルミニウムマグネシウム合金のような、より仕事関数の低い合金が電極材料として用いられる。 For the cathode 8 of the organic EL element, an electrode material having a low work function such as aluminum or an alloy having a lower work function such as a magnesium silver alloy, a magnesium indium alloy, or an aluminum magnesium alloy is used as the electrode material.
 本発明のアクリダン環構造を有する化合物を用いて有機層の少なくとも1つ(例えば正孔注入層3、正孔輸送層4、電子阻止層あるいは発光層5)が形成されている有機EL素子は、発光効率および電力効率が高く、実用駆動電圧が低く、発光開始電圧も低く、極めて優れた耐久性を有している。 An organic EL device in which at least one of organic layers (for example, a hole injection layer 3, a hole transport layer 4, an electron blocking layer or a light emitting layer 5) is formed using the compound having an acridan ring structure of the present invention, The luminous efficiency and power efficiency are high, the practical driving voltage is low, the light emission starting voltage is low, and it has extremely excellent durability.
 以下、本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the following examples.
<実施例1(化合物2の合成)>
13,13-ジメチル-8-フェニル-11-(9-フェニル-9H-カルバゾール-3-イル)-8,13-ジヒドロベンゾチエノ[3,2-a]アクリジンの合成;
Figure JPOXMLDOC01-appb-C000076
 以下の化合物を窒素置換した反応容器に加え、1時間窒素ガスを通気した。
   2-アミノ安息香酸メチル     10.0g
   2-ブロモジベンゾチオフェン   8.6g
   tert-ブトキシナトリウム   5.48g
   キシレン             100ml
 次いで、
   トリス(ジベンジリデンアセトン)ジパラジウム(0)
                    0.7g
   トリ-tert-ブチルホスフィンのトルエン溶液(50%、w/
  v)                0.9g
を加えて加熱し、115℃で3時間撹拌した。室温まで冷却し、水、トルエンを加えた後、分液操作によって有機層を採取した。
 採取した有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。
 得られた粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)によって精製し、2-{(ジベンゾチオフェン-2-イル)アミノ}安息香酸メチルの黄色粉体5.1g(収率40%)を得た。
<Example 1 (Synthesis of Compound 2)>
Synthesis of 13,13-dimethyl-8-phenyl-11- (9-phenyl-9H-carbazol-3-yl) -8,13-dihydrobenzothieno [3,2-a] acridine;
Figure JPOXMLDOC01-appb-C000076
The following compounds were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled for 1 hour.
Methyl 2-aminobenzoate 10.0g
8.6 g of 2-bromodibenzothiophene
tert-Butoxy sodium 5.48g
100 ml of xylene
Then
Tris (dibenzylideneacetone) dipalladium (0)
0.7g
Tri-tert-butylphosphine in toluene (50%, w /
v) 0.9g
The mixture was heated and stirred at 115 ° C. for 3 hours. After cooling to room temperature and adding water and toluene, the organic layer was collected by a liquid separation operation.
The collected organic layer was dehydrated with anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a crude product.
The obtained crude product was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane), and 5.1 g of yellow powder of methyl 2-{(dibenzothiophen-2-yl) amino} benzoate. (Yield 40%) was obtained.
   2-{(ジベンゾチオフェン-2-イル)アミノ}安息香酸メチル
                    5.0g
   THF              50ml
を窒素置換した反応容器に加え、メチルマグネシウムクロライドのTHF溶液(3mol/L)18mlを滴下した。室温で1時間撹拌した後、20%塩化アンモニウム水溶液50mlを加え、トルエンによる抽出を行うことによって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって、2-[2-{(ジベンゾチオフェン-2-イル)アミノ}フェニル]プロパン-2-オールの薄黄色オイル5.0g(収率100%)を得た。
2-{(Dibenzothiophen-2-yl) amino} methyl benzoate 5.0 g
THF 50ml
Was added to a reaction vessel purged with nitrogen, and 18 ml of a THF solution (3 mol / L) of methylmagnesium chloride was added dropwise. After stirring at room temperature for 1 hour, 50 ml of 20% aqueous ammonium chloride solution was added, and extraction with toluene was performed to collect the organic layer. The organic layer was dehydrated with anhydrous magnesium sulfate and concentrated under reduced pressure to give 5.0 g of a pale yellow oil of 2- [2-{(dibenzothiophen-2-yl) amino} phenyl] propan-2-ol ( Yield 100%).
   2-[2-{(ジベンゾチオフェン-2-イル)アミノ}フェニル
  ]プロパン-2-オール       5.0g
   りん酸              10ml
を窒素置換した反応容器に加え、室温で1時間撹拌した。トルエン50ml、水50mlを加え、撹拌した後、析出物をろ過によって採取し、13,13-ジメチル-8,13-ジヒドロベンゾチエノ[3,2-a]アクリジンの薄黄色紛体2.3g(収率49%)を得た。
2- [2-{(Dibenzothiophen-2-yl) amino} phenyl] propan-2-ol 5.0 g
Phosphoric acid 10ml
Was added to a reaction vessel purged with nitrogen and stirred at room temperature for 1 hour. After adding 50 ml of toluene and 50 ml of water and stirring, the precipitate was collected by filtration, and 2.3 g of a pale yellow powder of 13,13-dimethyl-8,13-dihydrobenzothieno [3,2-a] acridine (contracted). 49%).
   13,13-ジメチル-8,13-ジヒドロベンゾチエノ[3,2
  -a]アクリジン          20.0g
   ヨードベンゼン          13.6g
   tert-ブトキシナトリウム   9.1g
   キシレン             200ml
を窒素置換した反応容器に加え、1時間窒素ガスを通気した。
   トリス(ジベンジリデンアセトン)ジパラジウム(0)
                    1.2g
   トリ-tert-ブチルホスフィンの50%(w/v)トルエン溶
  液                 1.5g
を加えて加熱し、115℃で1時間撹拌した。室温まで冷却し、水200mlを加えた後、トルエンによる抽出を行うことによって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)によって精製し、13,13-ジメチル-8-フェニル-8,13-ジヒドロベンゾチエノ[3,2-a]アクリジンの白色粉体17.9g(収率72%)を得た。
13,13-dimethyl-8,13-dihydrobenzothieno [3,2
-A] Acridine 20.0 g
13.6 g of iodobenzene
tert-butoxy sodium 9.1 g
200 ml of xylene
Was added to the reaction vessel purged with nitrogen, and nitrogen gas was passed through for 1 hour.
Tris (dibenzylideneacetone) dipalladium (0)
1.2g
1.5 g of 50% (w / v) toluene solution of tri-tert-butylphosphine
The mixture was heated and stirred at 115 ° C. for 1 hour. After cooling to room temperature and adding 200 ml of water, the organic layer was collected by extraction with toluene. The organic layer was dehydrated with anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was purified by column chromatograph (carrier: silica gel, eluent: toluene / n-hexane) to obtain 13,13-dimethyl-8-phenyl-8,13-dihydrobenzothieno [3,2-a] acridine. 17.9 g (yield 72%) of white powder was obtained.
   13,13-ジメチル-8-フェニル-8,13-ジヒドロベンゾ
  チエノ[3,2-a]アクリジン   17.9g
   N,N-ジメチルホルムアミド   540ml
   N-ブロモコハク酸イミド     8.1g
を窒素置換した反応容器に加え、冷却しながら15℃で4時間撹拌した。水へ注加した後、析出物をろ過によって採取した。析出物にメタノールを加え、撹拌した後、ろ過によって11-ブロモ-13,13-ジメチル-8-フェニル-8,13-ジヒドロベンゾチエノ[3,2-a]アクリジンの白色紛体21.0g(収率98%)を得た。
13,13-Dimethyl-8-phenyl-8,13-dihydrobenzothieno [3,2-a] acridine 17.9 g
N, N-dimethylformamide 540 ml
8.1 g N-bromosuccinimide
Was added to a reaction vessel purged with nitrogen and stirred at 15 ° C. for 4 hours while cooling. After pouring into water, the precipitate was collected by filtration. Methanol was added to the precipitate, and the mixture was stirred and then filtered to give 21.0 g (yield) of white powder of 11-bromo-13,13-dimethyl-8-phenyl-8,13-dihydrobenzothieno [3,2-a] acridine. 98%) was obtained.
   11-ブロモ-13,13-ジメチル-8-フェニル-8,13-
  ジヒドロベンゾチエノ[3,2-a]アクリジン
                    11.0g
   9-フェニル-9H-カルバゾール-3-イルボロン酸
                    7.0g
   2M炭酸カリウム水溶液      35ml
   トルエン             88ml
   エタノール            22ml
を窒素置換した反応容器に加え、1時間窒素ガスを通気した。テトラキス(トリフェニルホスフィン)パラジウム0.8gを加えて加熱し、72℃で3時間撹拌した。室温まで冷却し、水、トルエンを加えた後、分液操作によって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)によって精製し、13,13-ジメチル-8-フェニル-11-(9-フェニル-9H-カルバゾール-3-イル)-8,13-ジヒドロベンゾチエノ[3,2-a]アクリジン(化合物2)の白色粉体10.8g(収率73%)を得た。
11-bromo-13,13-dimethyl-8-phenyl-8,13-
Dihydrobenzothieno [3,2-a] acridine 11.0g
7.0 g of 9-phenyl-9H-carbazol-3-ylboronic acid
2M aqueous potassium carbonate solution 35ml
Toluene 88ml
Ethanol 22ml
Was added to the reaction vessel purged with nitrogen, and nitrogen gas was passed through for 1 hour. Tetrakis (triphenylphosphine) palladium 0.8g was added and heated, and it stirred at 72 degreeC for 3 hours. After cooling to room temperature and adding water and toluene, the organic layer was collected by a liquid separation operation. The organic layer was dehydrated with anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane) and 13,13-dimethyl-8-phenyl-11- (9-phenyl-9H-carbazol-3-yl)- 10.8 g (yield 73%) of a white powder of 8,13-dihydrobenzothieno [3,2-a] acridine (Compound 2) was obtained.
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図1に示した。 The structure of the obtained white powder was identified using NMR. The results of 1 H-NMR measurement are shown in FIG.
 H-NMR(THF-d)で以下の32個の水素シグナルを検出した。
   δ(ppm)=8.69(1H)
          8.43(1H)
          8.26(1H)
          7.96(1H)
          7.95(1H)
          7.65-7.80(7H)
          7.45-7.65(10H)
          7.25-7.35(2H)
          6.54(1H)
          6.23(1H)
          2.43(6H)
The following 32 hydrogen signals were detected by 1 H-NMR (THF-d 8 ).
δ (ppm) = 8.69 (1H)
8.43 (1H)
8.26 (1H)
7.96 (1H)
7.95 (1H)
7.65-7.80 (7H)
7.45-7.65 (10H)
7.25-7.35 (2H)
6.54 (1H)
6.23 (1H)
2.43 (6H)
<実施例2(化合物20の合成)>
N-(9,9-ジメチル-9H-フルオレン-2-イル)-N-(13,13-ジメチル-8-フェニル-8,13-ジヒドロベンゾチエノ[3,2-a]アクリジン-11-イル)-フェニルアミンの合成;
Figure JPOXMLDOC01-appb-C000077
 実施例1と同様にして、11-ブロモ-13,13-ジメチル-8-フェニル-8,13-ジヒドロベンゾチエノ[3,2-a]アクリジンを合成した。
 次に、
   11-ブロモ-13,13-ジメチル-8-フェニル-8,13-
  ジヒドロベンゾチエノ[3,2-a]アクリジン
                    10.0g
   N-(9,9-ジメチル-9H-フルオレン-2-イル)-フェニ
  ルアミン              6.4g
   tert-ブトキシナトリウム   3.1g
   キシレン             100ml
を窒素置換した反応容器に加え、1時間窒素ガスを通気した。
   トリス(ジベンジリデンアセトン)ジパラジウム(0)
                    0.4g
   トリ-tert-ブチルホスフィンのトルエン溶液(50%、w/
  v)                0.5g
を加えて加熱し、115℃で1時間撹拌した。室温まで冷却し、水、トルエンを加えた後、分液操作によって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)によって精製し、N-(9,9-ジメチル-9H-フルオレン-2-イル)-N-(13,13-ジメチル-8-フェニル-8,13-ジヒドロベンゾチエノ[3,2-a]アクリジン-11-イル)-フェニルアミン(化合物20)の白色粉体12.8g(収率89%)を得た。
<Example 2 (Synthesis of Compound 20)>
N- (9,9-dimethyl-9H-fluoren-2-yl) -N- (13,13-dimethyl-8-phenyl-8,13-dihydrobenzothieno [3,2-a] acridin-11-yl ) -Phenylamine synthesis;
Figure JPOXMLDOC01-appb-C000077
In the same manner as in Example 1, 11-bromo-13,13-dimethyl-8-phenyl-8,13-dihydrobenzothieno [3,2-a] acridine was synthesized.
next,
11-bromo-13,13-dimethyl-8-phenyl-8,13-
Dihydrobenzothieno [3,2-a] acridine 10.0 g
N- (9,9-dimethyl-9H-fluoren-2-yl) -phenylamine 6.4 g
tert-Butoxy sodium 3.1 g
100 ml of xylene
Was added to the reaction vessel purged with nitrogen, and nitrogen gas was passed through for 1 hour.
Tris (dibenzylideneacetone) dipalladium (0)
0.4g
Tri-tert-butylphosphine in toluene (50%, w /
v) 0.5g
The mixture was heated and stirred at 115 ° C. for 1 hour. After cooling to room temperature and adding water and toluene, the organic layer was collected by a liquid separation operation. The organic layer was dehydrated with anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane) and N- (9,9-dimethyl-9H-fluoren-2-yl) -N- (13,13-dimethyl). 12.8 g (yield 89%) of a white powder of -8-phenyl-8,13-dihydrobenzothieno [3,2-a] acridin-11-yl) -phenylamine (Compound 20) was obtained.
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図2に示した。 The structure of the obtained white powder was identified using NMR. The results of 1 H-NMR measurement are shown in FIG.
 H-NMR(THF-d)で以下の38個の水素シグナルを検出した。
   δ(ppm)=8.51(1H)
          7.91(1H)
          7.60-7.75(4H)
          7.56(1H)
          7.40-7.50(6H)
          7.20-7.48(6H)
          7.10-7.20(2H)
          7.06(1H)
          6.96(1H)
          6.71(1H)
          6.51(1H)
          6.09(1H)
          2.20(6H)
          1.43(6H)
The following 38 hydrogen signals were detected by 1 H-NMR (THF-d 8 ).
δ (ppm) = 8.51 (1H)
7.91 (1H)
7.60-7.75 (4H)
7.56 (1H)
7.40-7.50 (6H)
7.20-7.48 (6H)
7.10-7.20 (2H)
7.06 (1H)
6.96 (1H)
6.71 (1H)
6.51 (1H)
6.09 (1H)
2.20 (6H)
1.43 (6H)
<実施例3(化合物27の合成)>
8-(9,9-ジメチル-9H-フルオレン-2-イル)-13,13-ジメチル-11-(9-フェニル-9H-カルバゾール-3-イル)-8,13-ジヒドロベンゾチエノ[3,2-a]アクリジンの合成;
Figure JPOXMLDOC01-appb-C000078
 実施例1と同様にして、11-ブロモ-8-(9,9-ジメチル-9H-フルオレン-2-イル)-13,13-ジメチル-8,13-ジヒドロベンゾチエノ[3,2-a]アクリジンを合成した。
 次に、
   11-ブロモ-8-(9,9-ジメチル-9H-フルオレン-2-
  イル)-13,13-ジメチル-8,13-ジヒドロベンゾチエノ[
  3,2-a]アクリジン       3.0g
   9-フェニル-9H-カルバゾール-3-イルボロン酸
                    1.2g
   2M炭酸カリウム水溶液      8ml
   トルエン             24ml
   エタノール            6ml
を窒素置換した反応容器に加え、1時間窒素ガスを通気した。テトラキス(トリフェニルホスフィン)パラジウム0.2gを加えて加熱し、72℃で18時間撹拌した。室温まで冷却し、水、トルエンを加えた後、分液操作によって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)によって精製し、8-(9,9-ジメチル-9H-フルオレン-2-イル)-13,13-ジメチル-11-(9-フェニル-9H-カルバゾール-3-イル)-8,13-ジヒドロベンゾチエノ[3,2-a]アクリジン(化合物27)の白色粉体2.8g(収率72%)を得た。
<Example 3 (Synthesis of Compound 27)>
8- (9,9-dimethyl-9H-fluoren-2-yl) -13,13-dimethyl-11- (9-phenyl-9H-carbazol-3-yl) -8,13-dihydrobenzothieno [3 2-a] synthesis of acridine;
Figure JPOXMLDOC01-appb-C000078
In the same manner as in Example 1, 11-bromo-8- (9,9-dimethyl-9H-fluoren-2-yl) -13,13-dimethyl-8,13-dihydrobenzothieno [3,2-a] Acridine was synthesized.
next,
11-Bromo-8- (9,9-dimethyl-9H-fluorene-2-
Yl) -13,13-dimethyl-8,13-dihydrobenzothieno [
3,2-a] acridine 3.0 g
1.2 g of 9-phenyl-9H-carbazol-3-ylboronic acid
2M aqueous potassium carbonate solution 8ml
Toluene 24ml
Ethanol 6ml
Was added to the reaction vessel purged with nitrogen, and nitrogen gas was passed through for 1 hour. Tetrakis (triphenylphosphine) palladium (0.2 g) was added and heated, and stirred at 72 ° C. for 18 hours. After cooling to room temperature and adding water and toluene, the organic layer was collected by a liquid separation operation. The organic layer was dehydrated with anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane), and 8- (9,9-dimethyl-9H-fluoren-2-yl) -13,13-dimethyl-11- As a result, 2.8 g (yield 72%) of white powder of (9-phenyl-9H-carbazol-3-yl) -8,13-dihydrobenzothieno [3,2-a] acridine (Compound 27) was obtained.
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図3に示した。 The structure of the obtained white powder was identified using NMR. The results of 1 H-NMR measurement are shown in FIG.
 H-NMR(THF-d)で以下の40個の水素シグナルを検出した。
   δ(ppm)=8.70(1H)
          8.44(1H)
          8.26(1H)
          8.13(1H)
          7.90-8.00(3H)
          7.63-7.75(5H)
          7.38-7.63(12H)
          7.25-7.38(2H)
          6.66(1H)
          6.50(1H)
          2.45(6H)
          1.60(6H)
The following 40 hydrogen signals were detected by 1 H-NMR (THF-d 8 ).
δ (ppm) = 8.70 (1H)
8.44 (1H)
8.26 (1H)
8.13 (1H)
7.90-8.00 (3H)
7.63-7.75 (5H)
7.38-7.63 (12H)
7.25-7.38 (2H)
6.66 (1H)
6.50 (1H)
2.45 (6H)
1.60 (6H)
<実施例4(化合物4の合成)>
13,13-ジメチル-8-フェニル-11-(9-フェニル-9H-カルバゾール-3-イル)-8,13-ジヒドロベンゾフロ[3,2-a]アクリジンの合成;
Figure JPOXMLDOC01-appb-C000079
 実施例1と同様にして、11-ブロモ-13,13-ジメチル-8-フェニル-8,13-ジヒドロベンゾフロ[3,2-a]アクリジンを合成した。
次に、
   11-ブロモ-13,13-ジメチル-8-フェニル-8,13-
  ジヒドロベンゾフロ[3,2-a]アクリジン
                    10.0g
   9-フェニル-9H-カルバゾール-3-イルボロン酸
                    6.6g
   2M炭酸カリウム水溶液      33ml
   トルエン             80ml
   エタノール            20ml
を窒素置換した反応容器に加え、1時間窒素ガスを通気した。テトラキス(トリフェニルホスフィン)パラジウム0.8gを加えて加熱し、72℃で3時間撹拌した。室温まで冷却し、水、トルエンを加えた後、分液操作によって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)によって精製し、13,13-ジメチル-8-フェニル-11-(9-フェニル-9H-カルバゾール-3-イル)-8,13-ジヒドロベンゾフロ[3,2-a]アクリジン(化合物4)の白色粉体11.3g(収率84%)を得た。
<Example 4 (Synthesis of Compound 4)>
Synthesis of 13,13-dimethyl-8-phenyl-11- (9-phenyl-9H-carbazol-3-yl) -8,13-dihydrobenzofuro [3,2-a] acridine;
Figure JPOXMLDOC01-appb-C000079
In the same manner as in Example 1, 11-bromo-13,13-dimethyl-8-phenyl-8,13-dihydrobenzofuro [3,2-a] acridine was synthesized.
next,
11-bromo-13,13-dimethyl-8-phenyl-8,13-
Dihydrobenzofuro [3,2-a] acridine 10.0 g
6.6 g of 9-phenyl-9H-carbazol-3-ylboronic acid
2M aqueous potassium carbonate solution 33ml
Toluene 80ml
Ethanol 20ml
Was added to the reaction vessel purged with nitrogen, and nitrogen gas was passed through for 1 hour. Tetrakis (triphenylphosphine) palladium 0.8g was added and heated, and it stirred at 72 degreeC for 3 hours. After cooling to room temperature and adding water and toluene, the organic layer was collected by a liquid separation operation. The organic layer was dehydrated with anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane) and 13,13-dimethyl-8-phenyl-11- (9-phenyl-9H-carbazol-3-yl)- There was obtained 11.3 g (yield 84%) of white powder of 8,13-dihydrobenzofuro [3,2-a] acridine (compound 4).
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図4に示した。 The structure of the obtained white powder was identified using NMR. The results of 1 H-NMR measurement are shown in FIG.
 H-NMR(THF-d)で以下の32個の水素シグナルを検出した。
   δ(ppm)=8.42(1H)
          8.38(1H)
          8.26(1H)
          7.93(1H)
          7.20-7.80(20H)
          6.48(1H)
          6.23(1H)
          2.32(6H)
The following 32 hydrogen signals were detected by 1 H-NMR (THF-d 8 ).
δ (ppm) = 8.42 (1H)
8.38 (1H)
8.26 (1H)
7.93 (1H)
7.20-7.80 (20H)
6.48 (1H)
6.23 (1H)
2.32 (6H)
<実施例5(化合物25の合成)>
N-(9,9-ジメチル-9H-フルオレン-2-イル)-N-(13,13-ジメチル-8-フェニル-8,13-ジヒドロベンゾフロ[3,2-a]アクリジン-11-イル)-フェニルアミンの合成;
Figure JPOXMLDOC01-appb-C000080
 実施例1と同様にして、11-ブロモ-13,13-ジメチル-8-フェニル-8,13-ジヒドロベンゾフロ[3,2-a]アクリジンを合成した。
   11-ブロモ-13,13-ジメチル-8-フェニル-8,13-
  ジヒドロベンゾフロ[3,2-a]アクリジン
                    10.0g
   N-(9,9-ジメチル-9H-フルオレン-2-イル)-フェニ
  ルアミン              6.6g
   tert-ブトキシナトリウム   3.2g
   キシレン             100ml
を窒素置換した反応容器に加え、1時間窒素ガスを通気した。
   トリス(ジベンジリデンアセトン)ジパラジウム(0)
                     0.4g
   トリ-tert-ブチルホスフィンのトルエン溶液(50%、w/
  v)                 0.5g
を加えて加熱し、115℃で1時間撹拌した。室温まで冷却し、水、トルエンを加えた後、分液操作によって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)によって精製し、N-(9,9-ジメチル-9H-フルオレン-2-イル)-N-(13,13-ジメチル-8-フェニル-8,13-ジヒドロベンゾフロ[3,2-a]アクリジン-11-イル)-フェニルアミン(化合物25)の白色粉体9.5g(収率66%)を得た。
<Example 5 (Synthesis of Compound 25)>
N- (9,9-dimethyl-9H-fluoren-2-yl) -N- (13,13-dimethyl-8-phenyl-8,13-dihydrobenzofuro [3,2-a] acridin-11-yl ) -Phenylamine synthesis;
Figure JPOXMLDOC01-appb-C000080
In the same manner as in Example 1, 11-bromo-13,13-dimethyl-8-phenyl-8,13-dihydrobenzofuro [3,2-a] acridine was synthesized.
11-bromo-13,13-dimethyl-8-phenyl-8,13-
Dihydrobenzofuro [3,2-a] acridine 10.0 g
N- (9,9-dimethyl-9H-fluoren-2-yl) -phenylamine 6.6 g
tert-Butoxy sodium 3.2g
100 ml of xylene
Was added to the reaction vessel purged with nitrogen, and nitrogen gas was passed through for 1 hour.
Tris (dibenzylideneacetone) dipalladium (0)
0.4g
Tri-tert-butylphosphine in toluene (50%, w /
v) 0.5g
The mixture was heated and stirred at 115 ° C. for 1 hour. After cooling to room temperature and adding water and toluene, the organic layer was collected by a liquid separation operation. The organic layer was dehydrated with anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane) and N- (9,9-dimethyl-9H-fluoren-2-yl) -N- (13,13-dimethyl). 9.5 g (yield 66%) of white powder of -8-phenyl-8,13-dihydrobenzofuro [3,2-a] acridin-11-yl) -phenylamine (Compound 25) was obtained.
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図5に示した。 The structure of the obtained white powder was identified using NMR. The results of 1 H-NMR measurement are shown in FIG.
 H-NMR(THF-d)で以下の38個の水素シグナルを検出した。
   δ(ppm)=8.21(1H)
          6.90-7.75(22H)
          6.71(1H)
          6.43(1H)
          6.09(1H)
          2.10(6H)
          1.43(6H)
The following 38 hydrogen signals were detected by 1 H-NMR (THF-d 8 ).
δ (ppm) = 8.21 (1H)
6.90-7.75 (22H)
6.71 (1H)
6.43 (1H)
6.09 (1H)
2.10 (6H)
1.43 (6H)
<実施例6(化合物41の合成)>
13,13-ジメチル-8-フェニル-11-(9H-カルバゾール-9-イル)-8,13-ジヒドロベンゾフロ[3,2-a]アクリジンの合成;
Figure JPOXMLDOC01-appb-C000081
 実施例1と同様にして、11-ブロモ-13,13-ジメチル-8-フェニル-8,13-ジヒドロベンゾフロ[3,2-a]アクリジンを合成した。
   11-ブロモ-13,13-ジメチル-8-フェニル-8,13-
  ジヒドロベンゾフロ[3,2-a]アクリジン
                     8.0g
   9H-カルバゾール         3.1g
   tert-ブトキシナトリウム    2.5g
   キシレン              80ml
を窒素置換した反応容器に加え、1時間窒素ガスを通気した。
   トリス(ジベンジリデンアセトン)ジパラジウム(0)
                     0.3g
   トリ-tert-ブチルホスフィンのトルエン溶液(50%、w/
  v)                 0.4g
を加えて加熱し、115℃で1時間撹拌した。室温まで冷却し、水、トルエンを加えた後、分液操作によって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)によって精製し、13,13-ジメチル-8-フェニル-11-(9H-カルバゾール-9-イル)-8,13-ジヒドロベンゾフロ[3,2-a]アクリジン(化合物41)の白色粉体6.5g(収率68%)を得た。
<Example 6 (Synthesis of Compound 41)>
Synthesis of 13,13-dimethyl-8-phenyl-11- (9H-carbazol-9-yl) -8,13-dihydrobenzofuro [3,2-a] acridine;
Figure JPOXMLDOC01-appb-C000081
In the same manner as in Example 1, 11-bromo-13,13-dimethyl-8-phenyl-8,13-dihydrobenzofuro [3,2-a] acridine was synthesized.
11-bromo-13,13-dimethyl-8-phenyl-8,13-
Dihydrobenzofuro [3,2-a] acridine 8.0g
9H-carbazole 3.1 g
tert-Butoxy sodium 2.5g
80 ml of xylene
Was added to the reaction vessel purged with nitrogen, and nitrogen gas was passed through for 1 hour.
Tris (dibenzylideneacetone) dipalladium (0)
0.3g
Tri-tert-butylphosphine in toluene (50%, w /
v) 0.4g
The mixture was heated and stirred at 115 ° C. for 1 hour. After cooling to room temperature and adding water and toluene, the organic layer was collected by a liquid separation operation. The organic layer was dehydrated with anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane) and 13,13-dimethyl-8-phenyl-11- (9H-carbazol-9-yl) -8,13- 6.5 g (68% yield) of white powder of dihydrobenzofuro [3,2-a] acridine (Compound 41) was obtained.
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図6に示した。 The structure of the obtained white powder was identified using NMR. The results of 1 H-NMR measurement are shown in FIG.
 H-NMR(THF-d)で以下の28個の水素シグナルを検出した。
   δ(ppm)=8.29(1H)
          8.18(2H)
          7.10-7.80(17H)
          6.52(1H)
          6.38(1H)
          2.28(6H)
The following 28 hydrogen signals were detected by 1 H-NMR (THF-d 8 ).
δ (ppm) = 8.29 (1H)
8.18 (2H)
7.10-7.80 (17H)
6.52 (1H)
6.38 (1H)
2.28 (6H)
<実施例7(化合物42の合成)>
13,13-ジメチル-8-フェニル-11-(3,3-ジメチル-1-フェニル-1,3-ジヒドロインデノ[2,1-b]カルバゾール-10-イル)-8,13-ジヒドロベンゾフロ[3,2-a]アクリジンの合成;
Figure JPOXMLDOC01-appb-C000082
 実施例1と同様にして、11-ブロモ-13,13-ジメチル-8-フェニル-8,13-ジヒドロベンゾフロ[3,2-a]アクリジンを合成した。
   11-ブロモ-13,13-ジメチル-8-フェニル-8,13-
  ジヒドロベンゾフロ[3,2-a]アクリジン
                     7.0g
   3,3-ジメチル-1-フェニル-1,3-ジヒドロインデノ[2
  ,1-b]カルバゾール-10-イルボロン酸
                     7.5g
   2M炭酸カリウム水溶液       23ml
   トルエン              60ml
   エタノール             15ml
を窒素置換した反応容器に加え、1時間窒素ガスを通気した。テトラキス(トリフェニルホスフィン)パラジウム0.5gを加えて加熱し、72℃で5時間撹拌した。室温まで冷却し、水、トルエンを加えた後、分液操作によって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)によって精製し、13,13-ジメチル-8-フェニル-11-(3,3-ジメチル-1-フェニル-1,3-ジヒドロインデノ[2,1-b]カルバゾール-10-イル)-8,13-ジヒドロベンゾフロ[3,2-a]アクリジン(化合物42)の白色粉体8.7g(収率77%)を得た。
<Example 7 (Synthesis of Compound 42)>
13,13-Dimethyl-8-phenyl-11- (3,3-dimethyl-1-phenyl-1,3-dihydroindeno [2,1-b] carbazol-10-yl) -8,13-dihydrobenzo Synthesis of furo [3,2-a] acridine;
Figure JPOXMLDOC01-appb-C000082
In the same manner as in Example 1, 11-bromo-13,13-dimethyl-8-phenyl-8,13-dihydrobenzofuro [3,2-a] acridine was synthesized.
11-bromo-13,13-dimethyl-8-phenyl-8,13-
Dihydrobenzofuro [3,2-a] acridine 7.0 g
3,3-dimethyl-1-phenyl-1,3-dihydroindeno [2
, 1-b] carbazol-10-ylboronic acid 7.5 g
2M aqueous potassium carbonate solution 23ml
Toluene 60ml
Ethanol 15ml
Was added to the reaction vessel purged with nitrogen, and nitrogen gas was passed through for 1 hour. Tetrakis (triphenylphosphine) palladium (0.5 g) was added and heated, followed by stirring at 72 ° C. for 5 hours. After cooling to room temperature and adding water and toluene, the organic layer was collected by a liquid separation operation. The organic layer was dehydrated with anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane) and 13,13-dimethyl-8-phenyl-11- (3,3-dimethyl-1-phenyl-1,3 -Dihydroindeno [2,1-b] carbazol-10-yl) -8,13-dihydrobenzofuro [3,2-a] acridine (compound 42) white powder 8.7 g (yield 77%) Got.
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図7に示した。 The structure of the obtained white powder was identified using NMR. The results of 1 H-NMR measurement are shown in FIG.
 H-NMR(THF-d)で以下の40個の水素シグナルを検出した。
   δ(ppm)=8.64(1H)
          8.51(1H)
          8.38(1H)
          7.98(1H)
          7.92(1H)
          7.20-7.80(21H)
          6.49(1H)
          6.24(1H)
          2.35(6H)
          1.50(6H)
The following 40 hydrogen signals were detected by 1 H-NMR (THF-d 8 ).
δ (ppm) = 8.64 (1H)
8.51 (1H)
8.38 (1H)
7.98 (1H)
7.92 (1H)
7.20-7.80 (21H)
6.49 (1H)
6.24 (1H)
2.35 (6H)
1.50 (6H)
<実施例8(化合物23の合成)>
13,13-ジメチル-8-(9,9-ジメチル-9H-フルオレン-2-イル)-11-(9H-カルバゾール-9-イル)-8,13-ジヒドロベンゾフロ[3,2-a]アクリジンの合成;
Figure JPOXMLDOC01-appb-C000083
 実施例1と同様にして、11-ブロモ-13,13-ジメチル-8-(9,9-ジメチル-9H-フルオレン-2-イル)-8,13-ジヒドロベンゾフロ[3,2-a]アクリジンを合成した。
   11-ブロモ-13,13-ジメチル-8-(9,9-ジメチル-
  9H-フルオレン-2-イル)-8,13-ジヒドロベンゾフロ[3
  ,2-a]アクリジン         10.0g
   9H-カルバゾール         3.1g
   tert-ブトキシナトリウム    2.5g
   キシレン              80ml
を窒素置換した反応容器に加え、1時間窒素ガスを通気した。
   トリス(ジベンジリデンアセトン)ジパラジウム(0)
                     0.3g
   トリ-tert-ブチルホスフィンのトルエン溶液(50%、w/
  v)                 0.4g
を加えて加熱し、115℃で1時間撹拌した。室温まで冷却し、水、トルエンを加えた後、分液操作によって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)によって精製し、13,13-ジメチル-8-(9,9-ジメチル-9H-フルオレン-2-イル)-11-(9H-カルバゾール-9-イル)-8,13-ジヒドロベンゾフロ[3,2-a]アクリジン(化合物23)の白色粉体11.5g(収率54%)を得た。
<Example 8 (Synthesis of Compound 23)>
13,13-Dimethyl-8- (9,9-dimethyl-9H-fluoren-2-yl) -11- (9H-carbazol-9-yl) -8,13-dihydrobenzofuro [3,2-a] Synthesis of acridine;
Figure JPOXMLDOC01-appb-C000083
In the same manner as in Example 1, 11-bromo-13,13-dimethyl-8- (9,9-dimethyl-9H-fluoren-2-yl) -8,13-dihydrobenzofuro [3,2-a] Acridine was synthesized.
11-bromo-13,13-dimethyl-8- (9,9-dimethyl-
9H-Fluoren-2-yl) -8,13-dihydrobenzofuro [3
, 2-a] Acridine 10.0 g
9H-carbazole 3.1g
tert-Butoxy sodium 2.5g
80 ml of xylene
Was added to the reaction vessel purged with nitrogen, and nitrogen gas was passed through for 1 hour.
Tris (dibenzylideneacetone) dipalladium (0)
0.3g
Tri-tert-butylphosphine in toluene (50%, w /
v) 0.4g
The mixture was heated and stirred at 115 ° C. for 1 hour. After cooling to room temperature and adding water and toluene, the organic layer was collected by a liquid separation operation. The organic layer was dehydrated with anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane) and 13,13-dimethyl-8- (9,9-dimethyl-9H-fluoren-2-yl) -11- 11.5 g (yield 54%) of white powder of (9H-carbazol-9-yl) -8,13-dihydrobenzofuro [3,2-a] acridine (Compound 23) was obtained.
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図8に示した。 The structure of the obtained white powder was identified using NMR. The results of 1 H-NMR measurement are shown in FIG.
 H-NMR(THF-d)で以下の36個の水素シグナルを検出した。
   δ(ppm)=8.61(1H)
          8.12-8.20(3H)
          7.88-8.00(2H)
          7.77(1H)
          7.66(1H)
          7.35-7.60(11H)
          7.24(2H)
          7.16(1H)
          6.68(1H)
          6.50(1H)
          2.37(6H)
          1.60(6H)
The following 36 hydrogen signals were detected by 1 H-NMR (THF-d 8 ).
δ (ppm) = 8.61 (1H)
8.12-8.20 (3H)
7.88-8.00 (2H)
7.77 (1H)
7.66 (1H)
7.35-7.60 (11H)
7.24 (2H)
7.16 (1H)
6.68 (1H)
6.50 (1H)
2.37 (6H)
1.60 (6H)
<実施例9(ガラス転移点の測定)>
 実施例1~8で得られたアクリダン環構造を有する化合物について、高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100SA)によってガラス転移点を求めた。結果は以下の通りである。
                     ガラス転移点 
  本発明実施例1の化合物         154℃
  本発明実施例2の化合物         146℃
  本発明実施例3の化合物         173℃
  本発明実施例4の化合物         149℃
  本発明実施例5の化合物         141℃
  本発明実施例6の化合物         145℃
  本発明実施例7の化合物         201℃
  本発明実施例8の化合物         177℃
 このことから、本発明の化合物は100℃以上のガラス転移点を有しており、安定な薄膜状態を示すことがわかる。
<Example 9 (measurement of glass transition point)>
For the compounds having an acridan ring structure obtained in Examples 1 to 8, the glass transition point was determined by a high-sensitivity differential scanning calorimeter (manufactured by Bruker AXS, DSC3100SA). The results are as follows.
Glass transition point
Inventive Example 1 Compound 154 ° C.
Inventive Example 2 Compound 146 ° C.
Inventive Example 3 Compound 173 ° C.
Inventive Example 4 Compound 149 ° C.
Compound of Invention Example 5 141 ° C.
Inventive Example 6 Compound 145 ° C.
Compound of Example 7 of the present invention 201 ° C.
Inventive Example 8 Compound 177 ° C.
This shows that the compound of the present invention has a glass transition point of 100 ° C. or higher and exhibits a stable thin film state.
<実施例10(仕事関数の評価)>
 実施例1~8で得られた化合物を用いて、ITO基板の上に膜厚100nmの蒸着膜を作製して、イオン化ポテンシャル測定装置(住友重機械工業製、PYS-202型)で仕事関数を測定した。
                   仕事関数
  本発明実施例1の化合物     5.38eV
  本発明実施例2の化合物     5.29eV
  本発明実施例3の化合物     5.37eV
  本発明実施例4の化合物     5.52eV
  本発明実施例5の化合物     5.29eV
  本発明実施例6の化合物     5.61eV
  本発明実施例7の化合物     5.42eV
  本発明実施例8の化合物     5.54eV
 上記の結果から、本発明の化合物はNPD、TPDなどの一般的な正孔輸送材料がもつ仕事関数5.54eVと同様に、好適なエネルギー準位を示しており、良好な正孔輸送能力を有していることが分かる。
<Example 10 (Evaluation of work function)>
Using the compounds obtained in Examples 1 to 8, a deposited film with a film thickness of 100 nm was prepared on an ITO substrate, and the work function was measured with an ionization potential measuring device (PYS-202, manufactured by Sumitomo Heavy Industries, Ltd.). It was measured.
Work Function Compound of Invention Example 1 5.38 eV
Compound of Example 2 of the present invention 5.29 eV
Compound of Example 3 of the present invention 5.37 eV
Inventive Example 4 compound 5.52 eV
Compound of Example 5 of the present invention 5.29 eV
Inventive Example 6 Compound 5.61 eV
Inventive Example 7 Compound 5.42 eV
Inventive Example 8 Compound 5.54 eV
From the above results, the compound of the present invention shows a suitable energy level as well as a work function of 5.54 eV of general hole transport materials such as NPD and TPD, and has a good hole transport capability. You can see that
(有機EL素子の特性評価)
<実施例11>
 実施例1で得られたアクリダン環構造を有する化合物(化合物2)を用いて形成された正孔輸送層4を備えた、図9に示す構造の有機EL素子を作製した。この有機EL素子は、ガラス基板1上に透明陽極2としてITO電極をあらかじめ形成したものの上に、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6、電子注入層7、陰極(アルミニウム電極)8の順に蒸着して作製した。
(Characteristic evaluation of organic EL elements)
<Example 11>
An organic EL device having the structure shown in FIG. 9 was prepared, which was provided with the hole transport layer 4 formed using the compound having the acridan ring structure obtained in Example 1 (Compound 2). This organic EL element has a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, and an electron injection layer 7 on a glass substrate 1 on which an ITO electrode is previously formed as a transparent anode 2. The cathode (aluminum electrode) 8 was deposited in this order.
 具体的には、膜厚150nmのITOを成膜したガラス基板1を有機溶媒で洗浄した後に、酸素プラズマ処理にて表面を洗浄した。その後、このITO電極付きガラス基板1を真空蒸着機内に取り付け、0.001Pa以下まで蒸着機内を減圧した。続いて、下記構造式の化合物57を用いて、透明陽極2を覆うように膜厚20nmの正孔注入層3を形成した。
Figure JPOXMLDOC01-appb-C000084
Specifically, the glass substrate 1 on which ITO having a thickness of 150 nm was formed was washed with an organic solvent, and then the surface was washed by oxygen plasma treatment. Then, this glass substrate 1 with ITO electrode was attached in a vacuum vapor deposition machine, and the inside of the vapor deposition machine was pressure-reduced to 0.001 Pa or less. Subsequently, a hole injection layer 3 having a thickness of 20 nm was formed so as to cover the transparent anode 2 using a compound 57 having the following structural formula.
Figure JPOXMLDOC01-appb-C000084
 この正孔注入層3の上に、実施例1の化合物(化合物2)を蒸着して膜厚40nmの正孔輸送層4を形成した。
 この正孔輸送層4の上に、下記構造式の化合物58と下記構造式の化合物59とを使用し、蒸着速度比が化合物58:化合物59=5:95となる蒸着速度で二元蒸着を行い、膜厚30nmの発光層5を形成した。
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
On the hole injection layer 3, the compound of Example 1 (Compound 2) was deposited to form a hole transport layer 4 having a thickness of 40 nm.
On this hole transport layer 4, a compound 58 of the following structural formula and a compound 59 of the following structural formula are used, and binary deposition is performed at a deposition rate such that the deposition rate ratio is 58: 95:95. The light emitting layer 5 having a thickness of 30 nm was formed.
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
 Alqを用いて、この発光層5の上に、膜厚30nmの電子輸送層6を形成した。
 この電子輸送層6の上に、フッ化リチウムを用いて、膜厚0.5nmの電子注入層7を形成した。
 最後に、アルミニウムを膜厚150nmとなるように蒸着して陰極8を形成した。
Using Alq 3, on the light-emitting layer 5, thereby forming an electron-transporting layer 6 having a thickness of 30 nm.
On the electron transport layer 6, an electron injection layer 7 having a thickness of 0.5 nm was formed using lithium fluoride.
Finally, aluminum was deposited to a thickness of 150 nm to form the cathode 8.
 上記のようにして作製した有機EL素子について、大気中、常温で直流電圧を印加したときの発光特性の測定結果を表1に示した。 Table 1 shows the measurement results of the light emission characteristics of the organic EL device produced as described above when a DC voltage was applied in the atmosphere at room temperature.
<実施例12>
 実施例1の化合物(化合物2)に代えて実施例2の化合物(化合物20)を用いて正孔輸送層4を形成した以外は、実施例11と同様の条件で有機EL素子を作製した。作製した有機EL素子について、実施例11と同様にして発光特性の測定を行い、結果を表1に示した。
<Example 12>
An organic EL device was produced under the same conditions as in Example 11 except that the hole transport layer 4 was formed using the compound of Example 2 (Compound 20) instead of the compound of Example 1 (Compound 2). About the produced organic EL element, the light emission characteristic was measured like Example 11, and the result was shown in Table 1.
<実施例13>
 実施例1の化合物(化合物2)に代えて実施例3の化合物(化合物27)を用いて正孔輸送層4を形成した以外は、実施例11と同様の条件で有機EL素子を作製した。作製した有機EL素子について、実施例11と同様にして発光特性の測定を行い、結果を表1に示した。
<Example 13>
An organic EL device was produced under the same conditions as in Example 11 except that the hole transport layer 4 was formed using the compound of Example 3 (Compound 27) instead of the compound of Example 1 (Compound 2). About the produced organic EL element, the light emission characteristic was measured like Example 11, and the result was shown in Table 1.
<実施例14>
 実施例1の化合物(化合物2)に代えて実施例4の化合物(化合物4)を用いて正孔輸送層4を形成した以外は、実施例11と同様の条件で有機EL素子を作製した。作製した有機EL素子について、実施例11と同様にして発光特性の測定を行い、結果を表1に示した。
<Example 14>
An organic EL device was produced under the same conditions as in Example 11 except that the hole transport layer 4 was formed using the compound of Example 4 (Compound 4) instead of the compound of Example 1 (Compound 2). About the produced organic EL element, the light emission characteristic was measured like Example 11, and the result was shown in Table 1.
<実施例15>
 実施例1の化合物(化合物2)に代えて実施例5の化合物(化合物25)を用いて正孔輸送層4を形成した以外は、実施例11と同様の条件で有機EL素子を作製した。作製した有機EL素子について、実施例11と同様にして発光特性の測定を行い、結果を表1に示した。
<Example 15>
An organic EL device was produced under the same conditions as in Example 11 except that the hole transport layer 4 was formed using the compound of Example 5 (Compound 25) instead of the compound of Example 1 (Compound 2). About the produced organic EL element, the light emission characteristic was measured like Example 11, and the result was shown in Table 1.
<実施例16>
 実施例1の化合物(化合物2)に代えて実施例6の化合物(化合物41)を用いて正孔輸送層4を形成した以外は、実施例11と同様の条件で有機EL素子を作製した。作製した有機EL素子について、実施例11と同様にして発光特性の測定を行い、結果を表1に示した。
<Example 16>
An organic EL device was produced under the same conditions as in Example 11 except that the hole transport layer 4 was formed using the compound of Example 6 (Compound 41) instead of the compound of Example 1 (Compound 2). About the produced organic EL element, the light emission characteristic was measured like Example 11, and the result was shown in Table 1.
<実施例17>
 実施例1の化合物(化合物2)に代えて実施例7の化合物(化合物42)を用いて正孔輸送層4を形成した以外は、実施例11と同様の条件で有機EL素子を作製した。作製した有機EL素子について、実施例11と同様にして発光特性の測定を行い、結果を表1に示した。
<Example 17>
An organic EL device was produced under the same conditions as in Example 11 except that the hole transport layer 4 was formed using the compound of Example 7 (Compound 42) instead of the compound of Example 1 (Compound 2). About the produced organic EL element, the light emission characteristic was measured like Example 11, and the result was shown in Table 1.
<実施例18>
 実施例1の化合物(化合物2)に代えて実施例8の化合物(化合物23)を用いて正孔輸送層4を形成した以外は、実施例11と同様の条件で有機EL素子を作製した。作製した有機EL素子について、実施例11と同様にして発光特性の測定を行い、結果を表1に示した。
<Example 18>
An organic EL device was produced under the same conditions as in Example 11 except that the hole transport layer 4 was formed using the compound of Example 8 (Compound 23) instead of the compound of Example 1 (Compound 2). About the produced organic EL element, the light emission characteristic was measured like Example 11, and the result was shown in Table 1.
<比較例1>
 比較のために、実施例1の化合物(化合物2)に代えて下記構造式の化合物60を用いて正孔輸送層4を形成した以外は、実施例11と同様の条件で有機EL素子を作製した。作製した有機EL素子について、実施例11と同様にして発光特性の測定を行い、結果を表1に示した。
Figure JPOXMLDOC01-appb-C000087
<Comparative Example 1>
For comparison, an organic EL device was produced under the same conditions as in Example 11 except that the hole transport layer 4 was formed using the compound 60 having the following structural formula instead of the compound of Example 1 (Compound 2). did. About the produced organic EL element, the light emission characteristic was measured like Example 11, and the result was shown in Table 1.
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000088
 表1に示す様に、電流密度10mA/cmの電流を流したときの駆動電圧は、比較例1の有機EL素子では5.17Vであるのに対して、本発明の実施例1~8の化合物を用いた有機EL素子では、4.70~5.05Vであり、即ち、いずれも低電圧化した。また、電力効率に関しても、比較例1の有機EL素子の電力効率は5.49lm/Wであるのに対して、本発明の実施例1~8の化合物を用いた有機EL素子では、5.91~6.78lm/Wであり、いずれも大きく向上した。 As shown in Table 1, the driving voltage when a current density of 10 mA / cm 2 was passed was 5.17 V in the organic EL element of Comparative Example 1, whereas Examples 1 to 8 of the present invention were used. In the organic EL device using this compound, the voltage was 4.70 to 5.05 V, that is, all of the voltages were lowered. Regarding the power efficiency, the power efficiency of the organic EL element of Comparative Example 1 is 5.49 lm / W, whereas the organic EL element using the compounds of Examples 1 to 8 of the present invention is 5. It was 91 to 6.78 lm / W, and all were greatly improved.
 以上の結果から明らかなように、本発明のアクリダン環構造を有する化合物を用いた有機EL素子は、公知材料である化合物60を用いた有機EL素子と比較しても、電力効率の向上や、実用駆動電圧の低下を達成できることがわかった。 As is clear from the above results, the organic EL device using the compound having an acridan ring structure of the present invention is improved in power efficiency compared to the organic EL device using the compound 60, which is a known material, It was found that a decrease in practical driving voltage can be achieved.
 本発明のアクリダン環構造を有する化合物は、正孔輸送能力が高く、電子阻止能力に優れており、アモルファス性に優れ、薄膜状態が安定であるため、有機EL素子用の化合物として優れている。該化合物を用いて有機EL素子を作製することにより、高い発光効率および電力効率を得ることができると共に、実用駆動電圧を低下させることができ、耐久性を改善させることができる。例えば、家庭電化製品や照明の用途への展開が可能となった。 The compound having an acridan ring structure of the present invention is excellent as a compound for an organic EL device because it has a high hole transport capability, an excellent electron blocking capability, an excellent amorphous property, and a stable thin film state. By producing an organic EL device using the compound, high luminous efficiency and power efficiency can be obtained, practical driving voltage can be lowered, and durability can be improved. For example, it has become possible to develop home appliances and lighting.
1 ガラス基板
2 透明陽極
3 正孔注入層
4 正孔輸送層
5 発光層
6 電子輸送層
7 電子注入層
8 陰極
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Transparent anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Electron transport layer 7 Electron injection layer 8 Cathode

Claims (12)

  1.  下記一般式(1)で表される、アクリダン環構造を有する化合物。
    Figure JPOXMLDOC01-appb-C000001
      式中、
       Xは酸素原子または硫黄原子を表し、
       R~Rは、水素原子、重水素原子、フッ素原子、塩素原子
      、シアノ基、ニトロ基、炭素原子数1~6のアルキル基、炭素原
      子数5~10のシクロアルキル基、炭素原子数2~6のアルケニ
      ル基、炭素原子数1~6のアルキルオキシ基、炭素原子数5~1
      0のシクロアルキルオキシ基、芳香族炭化水素基、芳香族複素環
      基、縮合多環芳香族基またはアリールオキシ基であって、単結合
      または、メチレン基、酸素原子もしくは硫黄原子を介して互いに
      結合して環を形成してもよく、
       R10、R11は、炭素原子数1~6のアルキル基、炭素原子
      数5~10のシクロアルキル基、炭素原子数2~6のアルケニル
      基、炭素原子数1~6のアルキルオキシ基、炭素原子数5~10
      のシクロアルキルオキシ基、芳香族炭化水素基、芳香族複素環基
      、縮合多環芳香族基またはアリールオキシ基であって、単結合ま
      たは、メチレン基、酸素原子もしくは硫黄原子を介して互いに結
      合して環を形成してもよく、
       Ar、Ar、Arは、芳香族炭化水素基、芳香族複素環
      基または縮合多環芳香族基を表し、ArとArは単結合また
      は、メチレン基、酸素原子若しくは硫黄原子を介して互いに結合
      して環を形成してもよく、
       Aは、芳香族炭化水素、芳香族複素環若しくは縮合多環芳香族
      の2価基、または単結合を表し、
       Aが芳香族炭化水素、芳香族複素環または縮合多環芳香族の2
      価基である場合、AとArは単結合または、メチレン基、酸素
      原子もしくは硫黄原子を介して互いに結合して環を形成してもよ
      い。
    A compound having an acridan ring structure represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    Where
    X represents an oxygen atom or a sulfur atom,
    R 1 to R 9 are a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, nitro group, alkyl group having 1 to 6 carbon atoms, cycloalkyl group having 5 to 10 carbon atoms, carbon atom Alkenyl group having 2 to 6 carbon atoms, alkyloxy group having 1 to 6 carbon atoms, and 5 to 1 carbon atoms
    0 cycloalkyloxy group, aromatic hydrocarbon group, aromatic heterocyclic group, condensed polycyclic aromatic group or aryloxy group, which are bonded to each other through a single bond or a methylene group, oxygen atom or sulfur atom To form a ring,
    R 10 and R 11 are an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkyloxy group having 1 to 6 carbon atoms, carbon 5-10 atoms
    A cycloalkyloxy group, an aromatic hydrocarbon group, an aromatic heterocyclic group, a condensed polycyclic aromatic group or an aryloxy group, which are bonded to each other through a single bond or a methylene group, an oxygen atom or a sulfur atom. They may combine to form a ring,
    Ar 1 , Ar 2 and Ar 3 represent an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group, and Ar 2 and Ar 3 represent a single bond, a methylene group, an oxygen atom or a sulfur atom. May be bonded to each other via a ring to form a ring,
    A represents an aromatic hydrocarbon, an aromatic heterocycle or a condensed polycyclic aromatic divalent group, or a single bond;
    A is an aromatic hydrocarbon, aromatic heterocycle or condensed polycyclic aromatic 2
    In the case of a valent group, A and Ar 2 may be bonded to each other through a single bond or a methylene group, an oxygen atom or a sulfur atom to form a ring.
  2.  Aが結合しているベンゼン環に対して、R、R、R及びAが、下記一般式(1-1)で表される位置で結合している、請求項1記載のアクリダン環構造を有する化合物。
    Figure JPOXMLDOC01-appb-C000002
      式中、
       X、R~R11、Ar、Ar、Ar及びAは、前記一
      般式(1)に記載した通りの意味である。
    The acridan ring according to claim 1, wherein R 1 , R 2 , R 3 and A are bonded to the benzene ring to which A is bonded at the position represented by the following general formula (1-1). A compound having a structure.
    Figure JPOXMLDOC01-appb-C000002
    Where
    X, R 1 to R 11 , Ar 1 , Ar 2 , Ar 3 and A have the same meanings as described in the general formula (1).
  3.  Aが芳香族炭化水素または縮合多環芳香族の2価基である、請求項1または2に記載のアクリダン環構造を有する化合物。 The compound having an acridan ring structure according to claim 1 or 2, wherein A is an aromatic hydrocarbon or a condensed polycyclic aromatic divalent group.
  4.  Aが、下記一般式(2)で表される芳香族炭化水素又は縮合多環芳香族の2価基である、請求項3記載のアクリダン環構造を有する化合物。
    Figure JPOXMLDOC01-appb-C000003
      式中、
       r12は、0~4の整数を表し、
       R12は、重水素原子、フッ素原子、塩素原子、シアノ基、ニ
      トロ基、炭素原子数1~6のアルキル基、炭素原子数5~10の
      シクロアルキル基、炭素原子数2~6のアルケニル基、炭素原子
      数1~6のアルキルオキシ基、炭素原子数5~10のシクロアル
      キルオキシ基、芳香族炭化水素基、芳香族複素環基、縮合多環芳
      香族基もしくはアリールオキシ基または連結基であって、
       R12が複数存在している場合は、複数のR12は、互いに結
      合して環を形成しても良い。
    The compound having an acridan ring structure according to claim 3, wherein A is an aromatic hydrocarbon or a condensed polycyclic aromatic divalent group represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000003
    Where
    r 12 represents an integer of 0 to 4,
    R 12 represents a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an alkenyl having 2 to 6 carbon atoms. Groups, alkyloxy groups having 1 to 6 carbon atoms, cycloalkyloxy groups having 5 to 10 carbon atoms, aromatic hydrocarbon groups, aromatic heterocyclic groups, condensed polycyclic aromatic groups or aryloxy groups, or linking groups Because
    When a plurality of R 12 are present, the plurality of R 12 may be bonded to each other to form a ring.
  5.  Aが、下記一般式(2´)で表される芳香族炭化水素又は縮合多環芳香族の2価基である、請求項4記載のアクリダン環構造を有する化合物。
    Figure JPOXMLDOC01-appb-C000004
      式中、
       r12及びR12は前記式(2)に記載した通りの意味である。
    The compound having an acridan ring structure according to claim 4, wherein A is an aromatic hydrocarbon or a condensed polycyclic aromatic divalent group represented by the following general formula (2 ').
    Figure JPOXMLDOC01-appb-C000004
    Where
    r 12 and R 12 have the same meaning as described in the formula (2).
  6.  下記一般式(1-2)で表される請求項5記載のアクリダン環構造を有する化合物。
    Figure JPOXMLDOC01-appb-C000005
      式中、
       X、R~R11、Ar、Ar及びAは、前記一般式(1
      )または(1-1)に記載した通りの意味であり、
       Arは、前記一般式(1)または(1-1)に記載した
      Arに属する基の2価基を表し、
       ArとArは単結合または、メチレン基、酸素原子もしく
      は硫黄原子を介して互いに結合して環を形成してもよい。
    The compound having an acridan ring structure according to claim 5 represented by the following general formula (1-2):
    Figure JPOXMLDOC01-appb-C000005
    Where
    X, R 1 to R 11 , Ar 1 , Ar 3 and A are each represented by the general formula (1
    ) Or (1-1) as described above,
    Ar 4 represents a divalent group of the group belonging to Ar 2 described in the general formula (1) or (1-1),
    Ar 3 and Ar 4 may be bonded to each other through a single bond or a methylene group, an oxygen atom or a sulfur atom to form a ring.
  7.  Aが単結合である、請求項1または2記載のアクリダン環構造を有する化合物。 The compound having an acridan ring structure according to claim 1 or 2, wherein A is a single bond.
  8.  一対の電極と該一対の電極の間に挟まれた少なくとも一層の有機層とを有する有機エレクトロルミネッセンス素子において、請求項1記載のアクリダン環構造を有する化合物が、該有機層の構成材料として用いられていることを特徴とする有機エレクトロルミネッセンス素子。 In the organic electroluminescence device having a pair of electrodes and at least one organic layer sandwiched between the pair of electrodes, the compound having an acridan ring structure according to claim 1 is used as a constituent material of the organic layer. An organic electroluminescence device characterized by comprising:
  9.  前記有機層が正孔輸送層である請求項8記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 8, wherein the organic layer is a hole transport layer.
  10.  前記有機層が電子阻止層である請求項8記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 8, wherein the organic layer is an electron blocking layer.
  11.  前記有機層が正孔注入層である請求項8記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 8, wherein the organic layer is a hole injection layer.
  12.  前記有機層が発光層である請求項8記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 8, wherein the organic layer is a light emitting layer.
PCT/JP2013/078632 2012-10-23 2013-10-22 Compound having acridan ring structure, and organic electroluminescence element WO2014065300A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014504093A JP5525665B1 (en) 2012-10-23 2013-10-22 COMPOUND HAVING ACRYDAN RING STRUCTURE AND ORGANIC ELECTROLUMINESCENT DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-233439 2012-10-23
JP2012233439 2012-10-23

Publications (1)

Publication Number Publication Date
WO2014065300A1 true WO2014065300A1 (en) 2014-05-01

Family

ID=50544678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078632 WO2014065300A1 (en) 2012-10-23 2013-10-22 Compound having acridan ring structure, and organic electroluminescence element

Country Status (3)

Country Link
JP (1) JP5525665B1 (en)
TW (1) TW201431861A (en)
WO (1) WO2014065300A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6808329B2 (en) * 2016-02-25 2021-01-06 株式会社ジャパンディスプレイ Materials for organic electroluminescence display devices and organic electroluminescence display devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147319A2 (en) * 2009-06-19 2010-12-23 주식회사 두산 Acridine derivative and an organic electroluminescent element comprising the same
WO2011093609A1 (en) * 2010-01-28 2011-08-04 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011155169A1 (en) * 2010-06-07 2011-12-15 保土谷化学工業株式会社 Compounds with acridan ring structures and organic electroluminescence elements
JP2012507590A (en) * 2008-10-30 2012-03-29 グレイセル・ディスプレイ・インコーポレーテッド Novel organic light emitting compound and organic light emitting device including the same
JP2012116784A (en) * 2010-11-30 2012-06-21 Idemitsu Kosan Co Ltd Condensed polycyclic compound, material for organic electroluminescent element and organic electroluminescent element using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507590A (en) * 2008-10-30 2012-03-29 グレイセル・ディスプレイ・インコーポレーテッド Novel organic light emitting compound and organic light emitting device including the same
WO2010147319A2 (en) * 2009-06-19 2010-12-23 주식회사 두산 Acridine derivative and an organic electroluminescent element comprising the same
WO2011093609A1 (en) * 2010-01-28 2011-08-04 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011155169A1 (en) * 2010-06-07 2011-12-15 保土谷化学工業株式会社 Compounds with acridan ring structures and organic electroluminescence elements
JP2012116784A (en) * 2010-11-30 2012-06-21 Idemitsu Kosan Co Ltd Condensed polycyclic compound, material for organic electroluminescent element and organic electroluminescent element using the same

Also Published As

Publication number Publication date
JPWO2014065300A1 (en) 2016-09-08
JP5525665B1 (en) 2014-06-18
TW201431861A (en) 2014-08-16

Similar Documents

Publication Publication Date Title
JP6374905B2 (en) Compound having indenocarbazole ring structure and organic electroluminescence device
JP6294878B2 (en) Indenoindole derivatives and organic electroluminescence devices
WO2013157367A1 (en) Novel triphenylene derivative, and organic electroluminescent element in which said derivative is used
JP6223201B2 (en) Compound having indenoacridan ring structure and organic electroluminescence device
JP6735743B2 (en) Arylamine compound and organic electroluminescence device
JP6158703B2 (en) COMPOUND HAVING ACRYDAN RING STRUCTURE AND ORGANIC ELECTROLUMINESCENT DEVICE
WO2017138569A1 (en) Organic electroluminescent element
JP6251675B2 (en) COMPOUND HAVING ACRYDAN RING STRUCTURE AND ORGANIC ELECTROLUMINESCENT DEVICE
JP2011178742A (en) Compound having phenoxazine ring structure or phenothiazine ring structure and organic electroluminescent element
WO2016017594A1 (en) Organic electroluminescent element
WO2013061805A1 (en) New triphenylene derivative and organic electroluminescent element using said derivative
WO2014038417A1 (en) Novel benzothienoindole derivative and organic electroluminescent element in which novel benzothienoindole derivative is used
JP6389459B2 (en) Dicarbazole derivative and organic electroluminescence device
WO2014042006A1 (en) Novel thieno-indole derivative and organic electroluminescent element using said derivative
JP6370225B2 (en) Compound having indenoacridan ring structure and organic electroluminescence device
JP5525665B1 (en) COMPOUND HAVING ACRYDAN RING STRUCTURE AND ORGANIC ELECTROLUMINESCENT DEVICE
WO2014083785A1 (en) Compound having phenanthroacridan ring structure and organic electroluminescence element
JP2014224100A (en) Compound having benzothienoacridan ring structure or benzofuroacridan ring structure, and organic electroluminescence element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014504093

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849619

Country of ref document: EP

Kind code of ref document: A1