WO2014038417A1 - Novel benzothienoindole derivative and organic electroluminescent element in which novel benzothienoindole derivative is used - Google Patents

Novel benzothienoindole derivative and organic electroluminescent element in which novel benzothienoindole derivative is used Download PDF

Info

Publication number
WO2014038417A1
WO2014038417A1 PCT/JP2013/072677 JP2013072677W WO2014038417A1 WO 2014038417 A1 WO2014038417 A1 WO 2014038417A1 JP 2013072677 W JP2013072677 W JP 2013072677W WO 2014038417 A1 WO2014038417 A1 WO 2014038417A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
benzothienoindole
derivative
compound
organic
Prior art date
Application number
PCT/JP2013/072677
Other languages
French (fr)
Japanese (ja)
Inventor
長岡 誠
幸喜 加瀬
重 草野
Original Assignee
保土谷化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保土谷化学工業株式会社 filed Critical 保土谷化学工業株式会社
Priority to JP2014504513A priority Critical patent/JPWO2014038417A1/en
Publication of WO2014038417A1 publication Critical patent/WO2014038417A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene

Definitions

  • the present invention relates to a compound (benzothienoindole derivative) suitable for an organic electroluminescence element which is a self-luminous element suitable for various display devices, and an organic electroluminescence element provided with an organic layer containing the compound.
  • organic electroluminescence elements (hereinafter sometimes referred to as organic EL elements) are self-luminous elements, they are brighter and more visible than liquid crystal elements, and can be clearly displayed. I came.
  • This laminated structure element is formed by laminating a phosphor capable of transporting electrons and an aromatic amine compound capable of transporting holes, and is 1000 cd / m 2 at a voltage of 10 V or less. The above high brightness can be obtained.
  • an element having a structure in which various roles are further subdivided and an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are sequentially provided on a substrate is known.
  • Such an element achieves high efficiency and durability.
  • the light emitting layer can also be prepared by doping a charge transporting compound generally called a host material with a phosphor or a phosphorescent light emitter.
  • a charge transporting compound generally called a host material with a phosphor or a phosphorescent light emitter.
  • an organic EL element charges injected from both electrodes recombine in the light emitting layer to emit light, but it is important to efficiently transfer both holes and electrons to the light emitting layer. For example, the probability of recombination of holes and electrons is improved by increasing the hole injection property and blocking the electron injected from the cathode, and further excitons generated in the light emitting layer. By confining, high luminous efficiency can be obtained. Therefore, the role of the hole transport material is important, and there is a demand for a hole transport material that has high hole injectability, high hole mobility, high electron blocking properties, and high durability against electrons. ing.
  • the heat resistance and amorphous nature of the material are important for the lifetime of the element.
  • thermal decomposition occurs even at a low temperature due to heat generated when the element is driven, and the material is deteriorated.
  • the thin film is crystallized even in a short time, and the element is deteriorated. For this reason, the material used is required to have high heat resistance and good amorphous properties.
  • Examples of hole transport materials that have been used in organic EL devices so far include N, N′-diphenyl-N, N′-di ( ⁇ -naphthyl) benzidine (hereinafter abbreviated as NPD) and various aromatic amines.
  • NPD has a good hole transport capability, but its glass transition point (Tg), which is an index of heat resistance, is as low as 96 ° C., and device characteristics are deteriorated due to crystallization under high temperature conditions.
  • Tg glass transition point
  • the aromatic amine derivatives described in Patent Document 1 and Patent Document 2 there are those having excellent mobility such as hole mobility of 10 ⁇ 3 cm 2 / Vs or more. Insufficiency, part of the electrons pass through the light-emitting layer, and no improvement in light emission efficiency can be expected. For higher efficiency, the electron blocking property is higher, and the thin film is more stable and heat resistant. A material with high properties was demanded.
  • Patent Documents 3 and 4 describe arylamine compound A having a substituted thienoindole structure represented by the following formula and aryl having a substituted carbazole structure.
  • Amine compound B has been proposed.
  • JP-A-8-48656 Japanese Patent No. 3194657 JP 2010-205815 A WO2008 / 62636
  • the object of the present invention can be suitably used as a material for producing a high-efficiency, high-durability organic electroluminescence device, has excellent hole injection / transport performance, and has an electronic device capability.
  • it is to provide a novel organic compound having high stability in a thin film state and further excellent in heat resistance.
  • Another object of the present invention is to provide an organic electroluminescence device comprising an organic layer containing the above organic compound.
  • the present inventors have shown that the aromatic tertiary amine structure has a high hole injection / transport capability, the benzothienoindole ring structure has an electron blocking property, and such a partial structure. Paying attention to the good heat resistance and thin film stability of, we designed and chemically synthesized various compounds with benzothienoindole ring structure, and prototyped various organic electroluminescence devices using the compounds, As a result of diligent evaluation of device characteristics, it was confirmed that high efficiency and excellent durability were obtained, and the present invention was completed.
  • a benzothienoindole derivative represented by the following general formula (1) is provided.
  • Ar 1 to Ar 3 each represents an aromatic hydrocarbon group or an aromatic heterocyclic group
  • Ar 2 and Ar 3 may be bonded to each other via a single bond, a methylene group which may have a substituent, an oxygen atom or a sulfur atom to form a ring
  • R 1 to R 7 are a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, nitro group, alkyl group having 1 to 6 carbon atoms, or 5 to 10 carbon atoms.
  • Cycloalkyl group alkenyl group having 2 to 6 carbon atoms, 1 carbon atom
  • a single bond, a methylene group which may have a substituent, an oxygen atom or a sulfur atom may be bonded to each other to form a ring
  • a 1 represents a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group or a single bond
  • a 1 represents a divalent aromatic hydrocarbon group or a divalent aromatic heterocyclic group.
  • a 1 and Ar 3 may be bonded to each other via a single bond, a methylene group which may have a substituent, an oxygen atom or a sulfur atom to form a ring.
  • At least one layer of the organic layer includes the triphenylene derivative, and an organic electroluminescence device is provided.
  • the organic EL device of the present invention has, for example, a hole transport layer, an electron blocking layer, a hole injection layer, or a light emitting layer as the organic layer containing the benzothienoindole derivative.
  • the benzothienoindole derivative of the present invention represented by the general formula (1) described above is a novel compound, and has a structure in which an aromatic tertiary amino group (disubstituted aromatic amino group) is introduced into the benzothienoindole ring. In relation to such a structure, it has the following characteristics.
  • D) The thin film state is stable (exhibiting excellent amorphous properties).
  • E Excellent heat resistance.
  • the benzothienoindole derivative of the present invention is useful as a hole transporting substance used in an organic EL device, and since the thin film state is stable, it is used as an organic layer particularly provided in the organic EL device, The following characteristics can be imparted to the organic EL element.
  • F High luminous efficiency and power efficiency.
  • G The light emission start voltage is low.
  • H The practical drive voltage is low.
  • I The device life is long (high durability is shown).
  • an organic EL device in which a hole injection layer and / or a hole transport layer is formed using the benzothienoindole derivative of the present invention has a high hole injection / transfer rate, a high electron blocking property, Since the stability to electrons is high, excitons generated in the light-emitting layer can be confined, and the probability of recombination of holes and electrons is improved, and high luminous efficiency is exhibited. Further, the driving voltage is lowered, and the durability can be improved.
  • the organic EL device having an electron blocking layer formed using the benzothienoindole derivative of the present invention is driven while having high luminous efficiency due to excellent electron blocking ability and excellent hole transportability.
  • the voltage is low, the current resistance is improved, and the maximum light emission luminance is improved.
  • the benzothienoindole derivative of the present invention has excellent hole transportability and a wide band gap compared to conventional materials, it can be used as a host material for the light emitting layer, For example, by supporting a fluorescent light-emitting body or phosphorescent light-emitting body called a dopant and using it as a light-emitting layer, the driving voltage of the organic EL element can be lowered and the light emission efficiency can be improved.
  • the benzothienoindole derivative of the present invention is extremely useful as a constituent material for the hole injection layer, hole transport layer, electron blocking layer, or light emitting layer of the organic EL device, and the light emission efficiency and power of the organic EL device.
  • Efficiency can be improved, practical drive voltage can be lowered, and durability can be increased.
  • FIG. 1 is a 1 H-NMR chart of the compound of Example 1 (Compound 7).
  • FIG. 2 is a 1 H-NMR chart of the compound of Example 2 (Compound 9).
  • FIG. 2 is a 1 H-NMR chart of the compound of Example 3 (Compound 36).
  • FIG. 3 is a 1 H-NMR chart of the compound of Example 4 (Compound 8).
  • FIG. 3 is a 1 H-NMR chart of the compound of Example 5 (Compound 15).
  • FIG. 2 is a 1 H-NMR chart of the compound of Example 6 (Compound 79).
  • FIG. 3 is a 1 H-NMR chart of the compound of Example 7 (Compound 80).
  • FIG. 2 is a 1 H-NMR chart of the compound of Example 8 (Compound 6).
  • FIG. 2 is a 1 H-NMR chart of the compound of Example 9 (Compound 81).
  • FIG. 2 is a 1 H-NMR chart of the compound of Example 10 (Compound 73).
  • FIG. The figure which shows an example of the structural formula of an organic EL element.
  • the benzothienoindole derivative of the present invention is represented by the following general formula (1), and a group having an aromatic tertiary amino structure (NAr 2 Ar 3 ) is introduced into the benzothienoindole ring.
  • Ar 1 bonded to the nitrogen atom of the benzothienoindole ring represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • Such an aromatic hydrocarbon group or aromatic heterocyclic group may have a monocyclic structure or a condensed polycyclic structure.
  • aromatic groups aromatic hydrocarbon groups and aromatic heterocyclic groups
  • aromatic groups include phenyl, biphenylyl, terphenylyl, naphthyl, anthryl, phenanthryl, fluorenyl, indenyl, pyrenyl.
  • perylenyl group fluoranthenyl group, triphenylenyl group, pyridyl group, furyl group, pyrrolyl group, thienyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, indolyl group, carbazolyl group, benzoxazolyl group, Examples thereof include a benzothiazolyl group, a quinoxalyl group, a benzimidazolyl group, a pyrazolyl group, a dibenzofuranyl group, a dibenzothienyl group, and a carbolinyl group.
  • Nyl group and dibenzothienyl group are preferable, and phenyl group, biphenylyl group, fluorenyl group, benzothienyl group, carbazolyl group, and dibenzothienyl group are more preferable.
  • said aromatic group may have a substituent.
  • substituents include deuterium atom, cyano group, nitro group; halogen atom such as fluorine atom, chlorine atom, bromine atom, iodine atom; methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl.
  • a straight-chain or branched alkyl group having 1 to 6 carbon atoms such as a group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group; methyloxy group, ethyloxy group
  • a linear or branched alkyloxy group having 1 to 6 carbon atoms such as propyloxy group; an alkenyl group such as an allyl group; an aryloxy group such as a phenyloxy group or a tolyloxy group; a benzyloxy group or a phenethyloxy group
  • Arylalkyloxy groups such as phenyl group, biphenylyl group, terphenylyl group, naphthyl group, ant Aromatic hydrocarbon groups such as senyl group, phenanthryl group, fluorenyl group, indenyl group, pyreny
  • the substituents Ar 2 and Ar 3 possessed by the amino group introduced into the benzothienoindole ring are also aromatic hydrocarbon groups as in the above-described substituent Ar 1. Or represents an aromatic heterocyclic group. Specific examples and suitable examples thereof are also the same as those mentioned for the group Ar 1 .
  • Ar 2 and Ar 3 may be bonded to each other via a single bond, a methylene group which may have a substituent such as a methyl group, an oxygen atom or a sulfur atom to form a ring ( For example, compounds 45, 46, 54 to 56, 63, 64 described later) and these groups are preferably independent of each other.
  • Ar 3 may be bonded to A 1 described later to form a ring. This structure will be described later.
  • groups R 1 to R 7 bonded to the benzene ring in the basic skeleton of the benzothienoindole ring are each a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, Groups, alkyl groups having 1 to 6 carbon atoms, cycloalkyl groups having 5 to 10 carbon atoms, alkenyl groups having 2 to 6 carbon atoms, alkyloxy groups having 1 to 6 carbon atoms, and 5 to 10 carbon atoms.
  • alkyl group, cycloalkyl group, alkenyl group, alkyloxy group, and cycloalkyloxy group in the above R 1 to R 7 include the following.
  • other than the cycloalkyl group and the cycloalkyloxy group may be linear or branched.
  • a cycloalkyl group A cyclopentyl group, a cyclohexyl group, a 1-adamantyl group, a 2-adamantyl group and the like.
  • An alkenyl group Vinyl group, allyl group, isopropenyl group, 2-butenyl group and the like.
  • An alkyloxy group Methyloxy group, ethyloxy group, n-propyloxy group, isopropyloxy group, n-butyloxy group, tert-butyloxy group, n-pentyloxy group, n-hexyloxy group and the like.
  • a cycloalkyloxy group A cyclopentyloxy group, a cyclohexyloxy group, a cycloheptyloxy group, a cyclooctyloxy group, a 1-adamantyloxy group, a 2-adamantyloxy group, and the like.
  • the alkyl group, cycloalkyl group, alkenyl group, alkyloxy group and cycloalkyloxy group described above may further have a substituent.
  • the substituent is the same as the substituent which the aromatic group represented by Ar 1 may have (except for the alkyl group, arylvinyl group and acyl group).
  • the aromatic hydrocarbon group and aromatic heterocyclic group in R 1 to R 7 are the same as those exemplified for Ar 1 described above.
  • the aromatic hydrocarbon group is preferably a phenyl group, biphenylyl group, fluorenyl group or the like
  • the aromatic heterocyclic group is a sulfur-containing aromatic heterocyclic ring such as a thienyl group, a benzothienyl group, a benzothiazolyl group, or a dibenzothienyl group. Groups are preferred.
  • the aromatic hydrocarbon group and aromatic heterocyclic group represented by R 1 to R 7 may further have a substituent.
  • substituents include the same substituents that Ar 1 may have.
  • the aryloxy group includes a phenyloxy group, a biphenylyloxy group, a terphenylyloxy group, a naphthyloxy group, an anthryloxy group, a phenanthryloxy group, a fluorenyloxy group, Indenyloxy group, pyrenyloxy group, perylenyloxy group and the like can be mentioned.
  • These aryloxy groups may also have a substituent, and examples of the substituent include the same substituents that Ar 1 may have.
  • R 1 to R 4 or R 5 to R 7 are bonded to each other through a single bond, a methylene group which may have a substituent, an oxygen atom or a sulfur atom.
  • a ring may be formed, but these groups are preferably independent of each other without being bonded to each other.
  • a 1 bonded to the indole ring represents a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group or a single bond.
  • the divalent aromatic hydrocarbon group and the divalent aromatic heterocyclic group mean a divalent group formed by removing two hydrogen atoms from an aromatic hydrocarbon ring and an aromatic heterocyclic ring. Specific examples of such a divalent aromatic hydrocarbon group and a divalent aromatic heterocyclic group include the following.
  • a divalent aromatic hydrocarbon group Phenylene group, biphenylene group, terphenylene group, tetrakisphenylene group, naphthylene group, anthrylene group, phenanthrylene group, fluorenylene group, phenanthrolylene group, indenylene group, pyrenylene group, peryleneylene group, fluoranthenylene group, trifluorone group Nilenylene group and the like.
  • a divalent aromatic heterocyclic group Pyridinylene group, pyrimidinylene group, quinolylene group, isoquinolylene group, indoleylene group, carbazolylene group, quinoxalylylene group, benzimidazolylene group, pyrazolylene group, naphthyridinylene group, phenanthrolinylene group, acridinylene group, benzothienylene group, benzothienylene group, benzothienylene group , Dibenzothienylene group and the like.
  • the divalent aromatic hydrocarbon group and divalent aromatic heterocyclic group represented by A 1 may further have a substituent.
  • substituents include the same substituents that the group Ar 1 may have.
  • a 1 is a single bond or a phenylene group, biphenylene group, terphenylene group, naphthylene group, anthrylene group, phenanthrylene group, fluorenylene group, carbazolylene group, thienylene group, benzothienylene group, dibenzothienylene group.
  • a phenylene group, a biphenylene group, and a fluorenylene group are preferable.
  • the divalent aromatic group (aromatic hydrocarbon group or aromatic heterocyclic group) in A 1 may have a substituent such as a single bond or a methyl group. It can also be bonded to the aforementioned group Ar 3 through a good methylene group, oxygen atom or sulfur atom to form a ring (for example, compounds 36, 38 to 42, 47 to 53, 58, 62 to be described later). 65, 67, 68, 72-78).
  • a 1 described above is preferably bonded to the 3-position carbon atom of the benzothienoindole ring, and the benzothienoindole derivative having such a structure is represented by the following general formula (1a).
  • Ar 1 to Ar 3 , R 1 to R 7 and A 1 are as described in the general formula (1).
  • the compound represented by the following general formula (2) is particularly excellent in heat resistance and excellent in thin film stability. It has properties.
  • Ar 1 , Ar 2 and R 1 to R 7 are each represented by the general formula (1)
  • a 2 is a divalent aromatic hydrocarbon group in the general formula (1) or 2
  • R 8 to R 11 are each a hydrogen atom or A described in the general formula (1)
  • r 3 represents a substituent that may be present
  • R 12 to R 14 represent a hydrogen atom or a substituent that the above divalent aromatic hydrocarbon group or divalent aromatic heterocyclic group may have
  • R 8 to R 11 or R 12 to R 14 are preferably independent from each other, but are bonded to each other via a single bond, an optionally substituted methylene group, an oxygen atom or a sulfur atom.
  • a 2 bridge group which is a part of A 1 include a single bond, a phenylene group, a biphenylene group, a naphthylene group, a phenanthrylene group, a fluorenylene group, a carbazolylene group, Examples thereof include a thienylene group, a benzothienylene group, and a dibenzothienylene group, and a phenylene group is particularly preferable.
  • the group Ar 3 in the general formula (1) is a benzothienyl group, and the thiophene ring in the benzothienyl group is bonded via a single bond.
  • Te has bound molecular structure to the benzene ring is part of a group a 1, when viewed as a whole molecule, having a symmetrical structure in which two benzothienopyridine indole rings are linked by a bridge ⁇ a 2 Yes. That is, although it seems to be due to such a symmetrical structure, such a compound has an advantage that it is excellent in heat resistance and stable in a thin film state.
  • the bridging group A 2 is preferably bonded to the 3 and 3 ′ carbon atoms of the benzothienoindole ring as in the general formula (1a) described above. It is preferable to have a structure represented by the following general formula (2a).
  • Ar 1 , Ar 2 , R 1 to R 14 and A 2 are as described in the general formula (2). That is, such compounds (for example, compounds 73 and 74 described later) have high molecular symmetry, and as shown in Example 10 described later, the glass transition point is not measured, and extremely high heat resistance is obtained. Show.
  • the benzothienoindole derivative of the present invention is a novel compound and can be synthesized, for example, as follows.
  • benzothienoindole in which the 10th position of benzothienoindole is substituted with an aryl group is used as a starting material, and brominated by reacting with bromine, N-bromosuccinimide, etc. Is synthesized.
  • boronic acid or boronic acid ester synthesized by the reaction of bromo-substituted triarylamine with pinacolborane or bis (pinacolato) diboron (see, for example, J. Org.
  • benzothienoindole substituted at the 10-position with an aryl group is further brominated to introduce a bromo group at a position other than the 3-position, and a cross-coupling reaction similar to the above is performed, whereby the bridging group A 1 It is possible to synthesize benzothienoindole derivatives having different bonding positions.
  • these compounds can be purified by column chromatography, adsorption purification using silica gel, activated carbon, activated clay, etc., recrystallization using a solvent, crystallization methods, and the like.
  • the compound can be identified by NMR analysis.
  • the above-described benzothienoindole derivative of the present invention has a glass transition point (Tg) and a melting point higher than those of conventionally known hole transport materials, can form a thin film excellent in heat resistance, and stably maintains the thin film state. can do.
  • the electron blocking ability is high. For example, when a deposited layer having a film thickness of 100 nm is formed using the benzothienoindole derivative of the present invention and the work function is measured, a very high value is shown.
  • the organic EL element provided with the organic layer formed using the benzothienoindole derivative of the present invention described above has, for example, the structure shown in FIG. That is, a transparent anode 2, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, an electron injection layer on a glass substrate 1 (a transparent substrate such as a transparent resin substrate may be used). 7 and a cathode 8 are provided.
  • the organic EL element to which the benzothienoindole derivative of the present invention is applied is not limited to the above layer structure, and an electron blocking layer or a light emitting layer is provided between the hole transport layer 4 and the light emitting layer 5.
  • a hole blocking layer or the like can be provided between 5 and the electron transport layer 6. Further, a simple layer structure in which the electron injection layer 7 and the hole injection layer 3 are omitted can be obtained. For example, in the above multilayer structure, some layers can be omitted.
  • the substrate 1 may have a simple layer structure in which the anode 2, the hole transport layer 3, the light emitting layer 5, the electron transport layer 6, and the cathode 8 are provided.
  • the benzothienoindole derivative of the present invention is an organic layer (for example, a hole injection layer 3, a hole transport layer 4, an electron blocking layer (not shown) or a light emitting layer) provided between the anode 2 and the cathode 8. It is preferably used as a material for forming the layer 5).
  • the transparent anode 2 may be formed of a known electrode material, and an electrode material having a large work function such as ITO or gold is formed on the substrate 1 (transparent substrate such as a glass substrate). It is formed by vapor deposition.
  • the hole injection layer 3 provided on the transparent anode 2 can be formed using the above-described benzothienoindole derivative of the present invention, or a conventionally known material such as the following material. You can also. Porphyrin compounds represented by copper phthalocyanine; Starburst type triphenylamine derivatives; Materials such as various triphenylamine tetramers; Acceptor heterocyclic compounds such as hexacyanoazatriphenylene; Coating type polymer materials such as poly (3,4-ethylenedioxythiophene) (PEDOT), poly (styrene sulfonate) (PSS) and the like.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PSS poly (styrene sulfonate)
  • the layer (thin film) using the above materials can be formed by a known method such as a spin coating method or an ink jet method in addition to the vapor deposition method.
  • the hole transport layer 4 provided on the hole injection layer 3 can also be formed using the above-described benzothienoindole derivative of the present invention, and the conventionally known hole transport as described below. It can also be formed using a material.
  • Benzidine derivatives such as N, N′-diphenyl-N, N′-di (m-tolyl) benzidine (hereinafter abbreviated as TPD); N, N′-diphenyl-N, N′-di ( ⁇ -naphthyl) benzidine (hereinafter abbreviated as NPD); N, N, N ′, N′-tetrabiphenylylbenzidine; Amine-based derivative 1,1-bis [4- (di-4-tolylamino) phenyl] cyclohexane (hereinafter abbreviated as TAPC); Various triphenylamine trimers and tetramers; The above-mentioned coating type polymer material that is also used as
  • Such a compound for the hole transport layer may be formed by itself, but may be formed by mixing two or more kinds.
  • a multilayer film in which a plurality of layers are formed using one or more of the above-described compounds and such layers are stacked can be used as a hole transport layer.
  • a positive hole injection / transport layer can be formed by coating using polymeric materials, such as PEDOT. it can.
  • the hole transport layer 4 (the same applies to the hole injection layer 3), it is possible to use a material which is usually used for the layer and further P-doped with trisbromophenylamine hexachloroantimony or the like. Further, the hole transport layer 4 (or the hole injection layer 3) can be formed using a polymer compound having a TPD basic skeleton.
  • an electron blocking layer (not shown) (which can be provided between the light emitting layer 5 and the hole transport layer 3) can be formed using the benzothienoindole derivative of the present invention having an electron blocking action.
  • it can also be formed using a known electron blocking compound such as a carbazole derivative or a compound having a triphenylsilyl group and a triarylamine structure.
  • a known electron blocking compound such as a carbazole derivative or a compound having a triphenylsilyl group and a triarylamine structure.
  • Specific examples of the compound having a carbazole derivative and a triarylamine structure are as follows.
  • TCTA 9,9-bis [4- (carbazol-9-yl) phenyl] Fluorene
  • mCP 1,3-bis (carbazol-9-yl) benzene
  • Ad-Cz 2,2-bis (4-carbazol-9-ylphenyl) adamantane
  • the electron blocking layer is formed by using one or more of the benzothienoindole compounds of the present invention and the known hole transport materials as described above, and one or more of these hole transport materials.
  • a plurality of layers can be formed using seeds, and a multilayer film in which such layers are stacked can be used as an electron blocking layer.
  • the light-emitting layer 5 of the organic EL element in addition to metal complexes of quinolinol derivatives such as Alq 3 , various metal complexes such as zinc, beryllium, and aluminum, anthracene derivatives, bisstyrylbenzene derivatives, pyrene derivatives, oxazole derivatives, poly A light-emitting material such as a paraphenylene vinylene derivative can be used.
  • the light emitting layer 5 can also be comprised with a host material and a dopant material.
  • a host material in this case, in addition to the above luminescent material, a thiazole derivative, a benzimidazole derivative, a polydialkylfluorene derivative, or the like can be used in addition to the benzothienoindole derivative of the present invention.
  • the dopant material quinacridone, coumarin, rubrene, perylene and derivatives thereof, benzopyran derivatives, rhodamine derivatives, aminostyryl derivatives, and the like can be used.
  • Such a light-emitting layer 5 can also have a single-layer configuration using one or more of the light-emitting materials, or a multilayer structure in which a plurality of layers are stacked.
  • the light emitting layer 5 can also be formed using a phosphorescent light emitting material as the light emitting material.
  • a phosphorescent material a phosphorescent material of a metal complex such as iridium or platinum can be used.
  • green phosphorescent emitters such as Ir (ppy) 3
  • blue phosphorescent emitters such as FIrpic and FIr6
  • red phosphorescent emitters such as Btp 2 Ir (acac)
  • the material is used by doping into a hole injecting / transporting host material or an electron transporting host material.
  • Examples of the hole injection / transport host material include benzothienoindole derivatives of the present invention, carbazole derivatives such as 4,4′-di (N-carbazolyl) biphenyl (hereinafter abbreviated as CBP), TCTA, and mCP. Can be used.
  • CBP 4,4′-di (N-carbazolyl) biphenyl
  • TCTA 4,4′-di (N-carbazolyl) biphenyl
  • mCP mCP.
  • UGH2 p-bis (triphenylsilyl) benzene
  • TPBI 1-phenyl-1H-benzimidazole
  • the host material with a phosphorescent light emitting material by co-evaporation in the range of 1 to 30 weight percent with respect to the entire light emitting layer in order to avoid concentration quenching.
  • Non-Patent Document 1 a material that emits delayed fluorescence such as a CDCB derivative disclosed in Non-Patent Document 1 (for example, PIC-TRZ, CC2TA, PXZ-TRZ, 4CzIPN, etc.) can be used.
  • the hole blocking layer (not shown in FIG. 3) that can be provided between the light emitting layer 5 and the electron transport layer 6 can be formed using a compound having a known hole blocking action.
  • known compounds having such hole blocking action include phenanthroline derivatives such as bathocuproin (hereinafter abbreviated as BCP), aluminum (III) bis (2-methyl-8-quinolinato) -4-phenylphenol
  • BCP bathocuproin
  • BAlq metal complexes of quinolinol derivatives
  • various rare earth complexes, triazole derivatives, triazine derivatives, oxadiazole derivatives, and the like can be given.
  • These materials can also be used for forming the electron transport layer 6 described below, and the hole blocking layer and the electron transport layer 6 can be used in combination.
  • Such a hole blocking layer can also have a single layer or multilayer structure, and each layer is formed using one or more of the compounds having the hole blocking action described above.
  • the electron transport layer 6 is an electron transport compound known per se, for example, metal complexes of quinolinol derivatives including Alq 3 and BAlq, various metal complexes, triazole derivatives, triazine derivatives, oxadiazole derivatives, thiadiazole Derivatives, carbodiimide derivatives, quinoxaline derivatives, phenanthroline derivatives, silole derivatives and the like are used.
  • the electron transport layer 6 can also have a single layer or multilayer structure, and each layer is formed using one or more of the electron transport compounds described above.
  • the electron injection layer 7 is also known per se, for example, an alkali metal salt such as lithium fluoride or cesium fluoride, an alkaline earth metal salt such as magnesium fluoride, or a metal oxide such as aluminum oxide. Can be formed.
  • an alkali metal salt such as lithium fluoride or cesium fluoride
  • an alkaline earth metal salt such as magnesium fluoride
  • a metal oxide such as aluminum oxide.
  • an electrode material having a low work function such as aluminum, or an alloy having a lower work function such as a magnesium silver alloy, a magnesium indium alloy, or an aluminum magnesium alloy is used as the electrode material.
  • An organic EL device in which at least one of organic layers (for example, a hole injection layer 3, a hole transport layer 4, an electron blocking layer, or a light emitting layer 5) is formed using the benzothienoindole derivative of the present invention has a luminous efficiency.
  • the power efficiency is high, the practical driving voltage is low, the light emission starting voltage is low, and the durability is extremely excellent.
  • the crude product is purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane), and then dispersed and washed twice with ethyl acetate, whereby bis (biphenyl-4-yl)- ⁇ 4 5.3 g of a pale yellow powder of-(10-phenyl-10H-benzo [4,5] thieno [3,2-b] indol-3-yl) phenyl ⁇ amine (compound 7) (yield 72.1% )
  • Example 11 (Measurement of glass transition temperature)
  • the glass transition point was determined by a high-sensitivity differential scanning calorimeter (manufactured by Bruker AXS, DSC3100S). The results were as follows. Glass transition point Compound of Example 1 133.5 ° C. Compound of Example 2 144.6 ° C Compound of Example 3 117.7 ° C Compound of Example 4 129.5 ° C Compound of Example 5 131.9 ° C Compound of Example 6 135.3 ° C Compound of Example 7 151.1 ° C Compound of Example 8 116.3 ° C Compound of Example 9 130.0 ° C Compound of Example 10 Not observed
  • the benzothienoindole compound of the present invention has a glass transition point of 100 ° C. or higher or was not observed. This result shows that the state of the deposited film formed using the benzothienoindole compound of the present invention is stable.
  • Example 12 Using the benzothienoindole derivatives obtained in Examples 1 to 10, a deposited film with a film thickness of 100 nm was prepared on an ITO substrate, and an ionization potential measuring device (PYS-202 type, manufactured by Sumitomo Heavy Industries, Ltd.). ) To measure the work function. Work function Compound of Example 1 5.57 eV Compound of Example 2 5.54 eV Compound of Example 3 5.57 eV Compound of Example 4 5.63 eV Compound of Example 5 5.58 eV Compound of Example 6 5.66 eV Compound of Example 7 5.56 eV Compound of Example 8 5.68 eV Compound of Example 9 5.64 eV NPD 5.54eV
  • the benzothienoindole derivative of the present invention shows a suitable energy level as compared with the work function of 5.5 eV which is possessed by general hole transport materials such as NPD and TPD, It turns out that it has a hole transport capability.
  • Example 13 (Characteristic evaluation of organic EL elements) An organic EL device having the structure shown in FIG. 11 was prepared, comprising a hole transport layer formed using the benzothienoindole derivative (Compound 7) obtained in Example 1.
  • the glass substrate 1 on which ITO having a thickness of 150 nm was formed was washed with an organic solvent, and then the surface was washed by oxygen plasma treatment. Then, this glass substrate with an ITO electrode was mounted in a vacuum vapor deposition machine and the pressure was reduced to 0.001 Pa or less. Subsequently, a hole injection layer 3 having a thickness of 20 nm was formed so as to cover the transparent electrode 2 using a compound 82 having the following structural formula.
  • the benzothienoindole derivative (compound 7) obtained in Example 1 was deposited to form a hole transport layer 4 having a thickness of 40 nm.
  • a compound 83 and a compound 84 having the following structural formula are used, and binary deposition is performed at a deposition rate at which a deposition rate ratio is 83:95:95.
  • a 30 nm light emitting layer 5 was formed.
  • an electron transport layer 6 having a film thickness of 30 nm was formed on the light emitting layer 5 using Alq 3 . Further, lithium fluoride was used to form an electron injection layer 7 having a thickness of 0.5 nm on the electron transport layer 6. Finally, aluminum was vapor-deposited to a thickness of 150 nm to form the cathode 8 to obtain an organic EL device having the structure shown in FIG.
  • Table 1 summarizes the measurement results of the issuance characteristics of the organic EL devices produced as described above when a DC voltage was applied in the atmosphere at room temperature.
  • Example 14 Except that the 40 nm-thick hole transport layer 4 was formed using the compound (Compound 9) of Example 2 instead of the benzothienoindole derivative (Compound 7) of Example 1, it was exactly the same as Example 13. Thus, an organic EL element was produced. The obtained organic EL device was measured for light emission characteristics in the same manner as in Example 13, and the results are shown in Table 1.
  • Example 15 Except for forming the 40 nm-thick hole transport layer 4 by using the compound of Example 3 (Compound 36) instead of the benzothienoindole derivative (Compound 7) of Example 1, it was exactly the same as Example 13. Thus, an organic EL element was produced. The obtained organic EL device was measured for light emission characteristics in the same manner as in Example 13, and the results are shown in Table 1.
  • Example 16 Except that the 40-nm-thick hole transport layer 4 was formed using the compound of Example 4 (Compound 8) instead of the benzothienoindole derivative (Compound 7) of Example 1, it was exactly the same as Example 13. Thus, an organic EL element was produced. The obtained organic EL device was measured for light emission characteristics in the same manner as in Example 13, and the results are shown in Table 1.
  • Example 17 Except for using the compound (Compound 15) of Example 5 instead of the benzothienoindole derivative (Compound 7) of Example 1, the hole transport layer 4 having a thickness of 40 nm was formed to be exactly the same as Example 13. Thus, an organic EL element was produced. The obtained organic EL device was measured for light emission characteristics in the same manner as in Example 13, and the results are shown in Table 1.
  • Example 18 Except that the 40-nm-thick hole transport layer 4 was formed using the compound of Example 6 (Compound 79) instead of the benzothienoindole derivative (Compound 7) of Example 1, it was exactly the same as Example 13. Thus, an organic EL element was produced. The obtained organic EL device was measured for light emission characteristics in the same manner as in Example 13, and the results are shown in Table 1.
  • Example 19 Except for using the compound (Compound 80) of Example 7 instead of the benzothienoindole derivative (Compound 7) of Example 1, the hole transport layer 4 having a thickness of 40 nm was formed, and exactly the same as Example 13. Thus, an organic EL element was produced. The obtained organic EL device was measured for light emission characteristics in the same manner as in Example 13, and the results are shown in Table 1.
  • Example 20 Except that the 40-nm-thick hole transport layer 4 was formed using the compound of Example 8 (Compound 6) instead of the benzothienoindole derivative (Compound 7) of Example 1, it was exactly the same as Example 13. Thus, an organic EL element was produced. The obtained organic EL device was measured for light emission characteristics in the same manner as in Example 13, and the results are shown in Table 1.
  • Example 21 Except that the 40-nm-thick hole transport layer 4 was formed using the compound of Example 9 (Compound 81) instead of the benzothienoindole derivative (Compound 7) of Example 1, it was exactly the same as Example 13. Thus, an organic EL element was produced. The obtained organic EL device was measured for light emission characteristics in the same manner as in Example 13, and the results are shown in Table 1.
  • the driving voltage when a current density of 10 mA / cm 2 was passed was 5.62 V for an organic EL element using Compound B and 4.87 V for an organic EL element using Compound 85.
  • the voltage was decreased from 4.63 to 4.80 V.
  • the compounds of Examples 1 to 9 of the present invention were used for 5.06 lm / W of the organic EL device using Compound B and 5.06 lm / W of the organic EL device using Compound 85.
  • the conventional organic EL device was improved from 5.16 to 5.57 lm / W.
  • the organic EL device using the benzothienoindole derivative of the present invention is improved in power efficiency as compared with the organic EL device using the known compound B or compound 85, It was found that a decrease in practical driving voltage can be achieved.
  • Organic EL device Compound Luminescence start voltage [V] Example 13 Compound 7 2.7 Example 14 Compound 9 2.7 Example 15 Compound 36 2.7 Example 16 Compound 8 2.7 Example 17 Compound 15 2.8 Example 18 Compound 79 2.8 Example 19 Compound 80 2.7 Example 20 Compound 6 2.7 Example 21 Compound 81 2.7 Comparative Example 1 Compound B 2.9 Comparative Example 2 Compound 85 2.8
  • each of the organic EL devices using the benzothienoindole derivatives (compounds of Examples 1 to 9) of the present invention as compared with the organic EL devices using the conventionally known compounds B and 85, respectively.
  • the benzothienoindole derivative of the present invention is excellent as a compound for an organic EL device because it has a high hole transport ability, an excellent electron blocking ability, and a stable thin film state.
  • an organic EL device using the compound, high luminous efficiency and power efficiency can be obtained, practical driving voltage can be lowered, and durability can be improved. For example, it has become possible to develop home appliances and lighting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

This benzothienoindole derivative is represented by general formula (1). This compound has a benzothienoindole ring structure, and has the following characteristics (A)-(E) due to the benzothienoindole ring structure. (A) the hole injection characteristics are good; (B) the hole mobility is high; (C) the electron blocking ability is excellent; (D) the thin film state is stable; and (E) the heat resistance is excellent. This benzothienoindole derivative is useful as a hole transport material that is used in organic EL elements.

Description

新規なベンゾチエノインドール誘導体および該誘導体が使用されている有機エレクトロルミネッセンス素子Novel benzothienoindole derivative and organic electroluminescence device using the derivative
 本発明は、各種の表示装置に好適な自発光素子である有機エレクトロルミネッセンス素子に適した化合物(ベンゾチエノインドール誘導体)及び該化合物を含む有機層を備えた有機エレクトロルミネッセンス素子に関するものである。 The present invention relates to a compound (benzothienoindole derivative) suitable for an organic electroluminescence element which is a self-luminous element suitable for various display devices, and an organic electroluminescence element provided with an organic layer containing the compound.
 有機エレクトロルミネッセンス素子(以下、有機EL素子と呼ぶことがある)は自己発光性素子であるため、液晶素子にくらべて明るく視認性に優れ、鮮明な表示が可能であるため、活発な研究がなされてきた。 Since organic electroluminescence elements (hereinafter sometimes referred to as organic EL elements) are self-luminous elements, they are brighter and more visible than liquid crystal elements, and can be clearly displayed. I came.
 1987年にイーストマン・コダック社のC.W.Tangらは各種の役割を各材料に分担した積層構造素子を開発することにより有機材料を用いた有機EL素子を実用的なものにした。この積層構造素子は、電子を輸送することのできる蛍光体と正孔を輸送することのできる芳香族アミン化合物とを積層することにより構成されるものであり、10V以下の電圧で1000cd/m以上の高輝度を得ることができる。 In 1987, Eastman Kodak's C.I. W. Tang et al. Have made a practical organic EL device using an organic material by developing a laminated structure device in which various roles are assigned to each material. This laminated structure element is formed by laminating a phosphor capable of transporting electrons and an aromatic amine compound capable of transporting holes, and is 1000 cd / m 2 at a voltage of 10 V or less. The above high brightness can be obtained.
 現在まで、有機EL素子の実用化のために多くの改良がなされている。例えば、各種の役割をさらに細分化して、基板上に順次に、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、陰極を設けた構造の素子が知られておりこのような素子によって高効率と耐久性が達成されている。 Up to now, many improvements have been made for practical use of organic EL elements. For example, an element having a structure in which various roles are further subdivided and an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are sequentially provided on a substrate is known. Such an element achieves high efficiency and durability.
 また、発光効率の更なる向上を目的として三重項励起子の利用が試みられ、燐光発光体の利用が検討されている。
 そして、熱活性化遅延蛍光(TADF)による発光を利用する素子も開発されている。2011年に九州大学の安達らは、熱活性化遅延蛍光材料を用いた素子によって5.3%の外部量子効率を実現させた(例えば、非特許文献1参照)。
In addition, the use of triplet excitons has been attempted for the purpose of further improving the luminous efficiency, and the use of phosphorescent emitters has been studied.
An element utilizing light emission by thermally activated delayed fluorescence (TADF) has also been developed. In 2011, Adachi et al. Of Kyushu University realized an external quantum efficiency of 5.3% with a device using a thermally activated delayed fluorescent material (see, for example, Non-Patent Document 1).
 発光層は、一般的にホスト材料と称される電荷輸送性の化合物に、蛍光体や燐光発光体をドープして作製することもできる。有機EL素子における有機材料の選択は、その素子の効率や耐久性など諸特性に大きな影響を与える。 The light emitting layer can also be prepared by doping a charge transporting compound generally called a host material with a phosphor or a phosphorescent light emitter. The selection of the organic material in the organic EL element greatly affects various characteristics such as efficiency and durability of the element.
 有機EL素子においては、両電極から注入された電荷が発光層で再結合して発光するが、正孔、電子の両電荷を如何に効率良く発光層に受け渡すかが重要である。例えば、正孔注入性を高め且つ陰極から注入された電子をブロックする電子阻止性を高めることによって、正孔と電子が再結合する確率を向上させ、更には発光層内で生成した励起子を閉じ込めることによって、高発光効率を得ることができる。そのため、正孔輸送材料の果たす役割は重要であり、正孔注入性が高く、正孔の移動度が大きく、電子阻止性が高く、さらには電子に対する耐久性が高い正孔輸送材料が求められている。 In an organic EL element, charges injected from both electrodes recombine in the light emitting layer to emit light, but it is important to efficiently transfer both holes and electrons to the light emitting layer. For example, the probability of recombination of holes and electrons is improved by increasing the hole injection property and blocking the electron injected from the cathode, and further excitons generated in the light emitting layer. By confining, high luminous efficiency can be obtained. Therefore, the role of the hole transport material is important, and there is a demand for a hole transport material that has high hole injectability, high hole mobility, high electron blocking properties, and high durability against electrons. ing.
 また、素子の寿命に関しては材料の耐熱性やアモルファス性も重要である。耐熱性が低い材料では、素子駆動時に生じる熱により、低い温度でも熱分解が起こり、材料が劣化する。アモルファス性が低い材料では、短い時間でも薄膜の結晶化が起こり、素子が劣化してしまう。そのため使用する材料には耐熱性が高く、アモルファス性が良好な性質が求められる。 Also, the heat resistance and amorphous nature of the material are important for the lifetime of the element. In a material having low heat resistance, thermal decomposition occurs even at a low temperature due to heat generated when the element is driven, and the material is deteriorated. In the case of a material having low amorphous property, the thin film is crystallized even in a short time, and the element is deteriorated. For this reason, the material used is required to have high heat resistance and good amorphous properties.
 これまで有機EL素子に用いられてきた正孔輸送材料としては、N,N’-ジフェニル-N,N’-ジ(α-ナフチル)ベンジジン(以後、NPDと略称する)や種々の芳香族アミン誘導体が知られていた(例えば、特許文献1および特許文献2参照)。
 NPDは良好な正孔輸送能力を持っているが、耐熱性の指標となるガラス転移点(Tg)が96℃と低く、高温条件下では結晶化による素子特性の低下が起こってしまう。
 また、前記特許文献1や特許文献2に記載の芳香族アミン誘導体の中には、正孔の移動度が10-3cm/Vs以上と優れた移動度を有するものがあるが、電子阻止性が不十分であるため、電子の一部が発光層を通り抜けてしまい、発光効率の向上が期待できないなど、更なる高効率化のため、より電子阻止性が高く、薄膜がより安定で耐熱性の高い材料が求められていた。
Examples of hole transport materials that have been used in organic EL devices so far include N, N′-diphenyl-N, N′-di (α-naphthyl) benzidine (hereinafter abbreviated as NPD) and various aromatic amines. Derivatives were known (see, for example, Patent Document 1 and Patent Document 2).
NPD has a good hole transport capability, but its glass transition point (Tg), which is an index of heat resistance, is as low as 96 ° C., and device characteristics are deteriorated due to crystallization under high temperature conditions.
In addition, among the aromatic amine derivatives described in Patent Document 1 and Patent Document 2, there are those having excellent mobility such as hole mobility of 10 −3 cm 2 / Vs or more. Insufficiency, part of the electrons pass through the light-emitting layer, and no improvement in light emission efficiency can be expected. For higher efficiency, the electron blocking property is higher, and the thin film is more stable and heat resistant. A material with high properties was demanded.
 耐熱性や正孔注入性、電子阻止性などの特性を改良した化合物として、特許文献3及び4では、下記の式で表される置換チエノインドール構造のアリールアミン化合物Aや置換カルバゾール構造を有するアリールアミン化合物Bが提案されている。 As compounds having improved properties such as heat resistance, hole injection properties, and electron blocking properties, Patent Documents 3 and 4 describe arylamine compound A having a substituted thienoindole structure represented by the following formula and aryl having a substituted carbazole structure. Amine compound B has been proposed.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 しかしながら、これらの化合物を正孔注入層または正孔輸送層に用いた素子では、耐熱性や発光効率などの改良はされているものの、未だ十分とはいえず、また、低駆動電圧化や電流効率も十分とはいえず、アモルファス性にも問題があった。そのため、アモルファス性を高めつつ、さらなる低駆動電圧化や、さらなる高発光効率化が求められていた。 However, devices using these compounds in the hole injection layer or hole transport layer have been improved in heat resistance and light emission efficiency, but are still not sufficient. The efficiency was not sufficient, and there was a problem with amorphousness. For this reason, there has been a demand for further lower drive voltage and higher light emission efficiency while enhancing amorphousness.
特開平8-48656号公報JP-A-8-48656 特許第3194657号公報Japanese Patent No. 3194657 特開2010-205815号公報JP 2010-205815 A WO2008/62636号公報WO2008 / 62636
 従って、本発明の目的は、高効率、高耐久性の有機エレクトロルミネッセンス素子を作製するための材料として好適に使用することができ、正孔の注入・輸送性能に優れ、電子素子能力を有しているばかりか、薄膜状態での安定性が高く、さらには耐熱性にも優れた新規有機化合物を提供することにある。
 本発明の他の目的は、上記の有機化合物を含む有機層を備えた有機エレクトロルミネッセンス素子を提供することにある。
Therefore, the object of the present invention can be suitably used as a material for producing a high-efficiency, high-durability organic electroluminescence device, has excellent hole injection / transport performance, and has an electronic device capability. In addition, it is to provide a novel organic compound having high stability in a thin film state and further excellent in heat resistance.
Another object of the present invention is to provide an organic electroluminescence device comprising an organic layer containing the above organic compound.
 本発明者らは、芳香族三級アミン構造が高い正孔注入・輸送能力を有していること、ベンゾチエノインドール環構造が電子阻止性を有していること、さらにはこのような部分構造が有する耐熱性や薄膜安定性が良好であることに着目し、ベンゾチエノインドール環構造を有する種々の化合物を設計して化学合成し、該化合物を用いて種々の有機エレクトロルミネッセンス素子を試作し、素子の特性評価を鋭意行った結果、高い効率及び優れた耐久性が得られることを確認し、本発明を完成するに至った。 The present inventors have shown that the aromatic tertiary amine structure has a high hole injection / transport capability, the benzothienoindole ring structure has an electron blocking property, and such a partial structure. Paying attention to the good heat resistance and thin film stability of, we designed and chemically synthesized various compounds with benzothienoindole ring structure, and prototyped various organic electroluminescence devices using the compounds, As a result of diligent evaluation of device characteristics, it was confirmed that high efficiency and excellent durability were obtained, and the present invention was completed.
 本発明によれば、下記一般式(1)で表されるベンゾチエノインドール誘導体が提供される。
Figure JPOXMLDOC01-appb-C000007
  式中、
   Ar~Arは、芳香族炭化水素基又は芳香族複素環基を表し、
  ArとArとは、単結合、置換基を有してもよいメチレン基、酸素
  原子または硫黄原子を介して互いに結合して環を形成してもよく、
   R~Rは、水素原子、重水素原子、フッ素原子、塩素原子、シア
  ノ基、ニトロ基、炭素原子数1~6のアルキル基、炭素原子数5~10
  のシクロアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1
  ~6のアルキルオキシ基、炭素原子数5~10のシクロアルキルオキシ
  基、芳香族炭化水素基、芳香族複素環基またはアリールオキシ基であっ
  て、R~R或いはR~Rは、単結合、置換基を有してもよいメチ
  レン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよく、
   Aは、2価の芳香族炭化水素基、2価の芳香族複素環基または単結
  合を表し、Aが、2価の芳香族炭化水素基又は2価の芳香族複素環基
  である場合には、Aと前記Arとは、単結合、置換基を有してもよ
  いメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形
  成してもよい。
According to the present invention, a benzothienoindole derivative represented by the following general formula (1) is provided.
Figure JPOXMLDOC01-appb-C000007
Where
Ar 1 to Ar 3 each represents an aromatic hydrocarbon group or an aromatic heterocyclic group,
Ar 2 and Ar 3 may be bonded to each other via a single bond, a methylene group which may have a substituent, an oxygen atom or a sulfur atom to form a ring,
R 1 to R 7 are a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, nitro group, alkyl group having 1 to 6 carbon atoms, or 5 to 10 carbon atoms.
Cycloalkyl group, alkenyl group having 2 to 6 carbon atoms, 1 carbon atom
An alkyloxy group having 6 to 6 carbon atoms, a cycloalkyloxy group having 5 to 10 carbon atoms, an aromatic hydrocarbon group, an aromatic heterocyclic group or an aryloxy group, wherein R 1 to R 4 or R 5 to R 7 are , A single bond, a methylene group which may have a substituent, an oxygen atom or a sulfur atom may be bonded to each other to form a ring,
A 1 represents a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group or a single bond, and A 1 represents a divalent aromatic hydrocarbon group or a divalent aromatic heterocyclic group. In some cases, A 1 and Ar 3 may be bonded to each other via a single bond, a methylene group which may have a substituent, an oxygen atom or a sulfur atom to form a ring.
 本発明によれば、また、一対の電極とその間に挟まれた少なくとも一層の有機層を有する有機エレクトロルミネッセンス素子において、
 前記有機層の少なくとも一つの層は、前記トリフェニレン誘導体を含んでいることを特徴とする有機エレクトロルミネッセンス素子が提供される。
According to the present invention, in the organic electroluminescence device having a pair of electrodes and at least one organic layer sandwiched therebetween,
At least one layer of the organic layer includes the triphenylene derivative, and an organic electroluminescence device is provided.
 本発明の有機EL素子は、前記ベンゾチエノインドール誘導体を含んでいる有機層として、例えば、正孔輸送層、電子阻止層、正孔注入層或いは発光層を有する。 The organic EL device of the present invention has, for example, a hole transport layer, an electron blocking layer, a hole injection layer, or a light emitting layer as the organic layer containing the benzothienoindole derivative.
 前述した一般式(1)で表される本発明のベンゾチエノインドール誘導体は、新規化合物であり、ベンゾチエノインドール環に芳香族第三級アミノ基(ジ置換芳香族アミノ基)が導入された構造を有しており、このような構造に関連して、次のような特性を有している。
 (A)正孔の注入特性が良いこと。
 (B)正孔の移動度が大きいこと。
 (C)電子阻止能力に優れること。
 (D)薄膜状態が安定であること(優れたアモルファス性を示すこと)。
 (E)耐熱性に優れていること。
The benzothienoindole derivative of the present invention represented by the general formula (1) described above is a novel compound, and has a structure in which an aromatic tertiary amino group (disubstituted aromatic amino group) is introduced into the benzothienoindole ring. In relation to such a structure, it has the following characteristics.
(A) Good hole injection characteristics.
(B) The mobility of holes is large.
(C) Excellent electron blocking ability.
(D) The thin film state is stable (exhibiting excellent amorphous properties).
(E) Excellent heat resistance.
 従って、本発明のベンゾチエノインドール誘導体は、有機EL素子に使用される正孔輸送性物質として有用であり、薄膜状態が安定であることから、特に有機EL素子に設けられる有機層として利用され、有機EL素子に次のような特性を付与することができる。
 (F)発光効率や電力効率が高いこと。
 (G)発光開始電圧が低いこと。
 (H)実用駆動電圧が低いこと。
 (I)素子寿命が長いこと(高い耐久性を示す)。
Therefore, the benzothienoindole derivative of the present invention is useful as a hole transporting substance used in an organic EL device, and since the thin film state is stable, it is used as an organic layer particularly provided in the organic EL device, The following characteristics can be imparted to the organic EL element.
(F) High luminous efficiency and power efficiency.
(G) The light emission start voltage is low.
(H) The practical drive voltage is low.
(I) The device life is long (high durability is shown).
 例えば、本発明のベンゾチエノインドール誘導体を用いて正孔注入層および/または正孔輸送層が形成されている有機EL素子は、正孔の注入・移動速度が速く、電子阻止性が高く、しかも電子に対する安定性が高いことから、発光層内で生成した励起子を閉じ込めることができ、さらに正孔と電子とが再結合する確率を向上させ、高発光効率を示す。また、駆動電圧が低下して、耐久性の向上も実現できる。 For example, an organic EL device in which a hole injection layer and / or a hole transport layer is formed using the benzothienoindole derivative of the present invention has a high hole injection / transfer rate, a high electron blocking property, Since the stability to electrons is high, excitons generated in the light-emitting layer can be confined, and the probability of recombination of holes and electrons is improved, and high luminous efficiency is exhibited. Further, the driving voltage is lowered, and the durability can be improved.
 また、本発明のベンゾチエノインドール誘導体を用いて形成された電子阻止層を有する有機EL素子では、優れた電子の阻止能力と優れた正孔輸送性とにより、高い発光効率を有しながら、駆動電圧が低く、電流耐性が改善されており、最大発光輝度が向上している。 The organic EL device having an electron blocking layer formed using the benzothienoindole derivative of the present invention is driven while having high luminous efficiency due to excellent electron blocking ability and excellent hole transportability. The voltage is low, the current resistance is improved, and the maximum light emission luminance is improved.
 さらに、本発明のベンゾチエノインドール誘導体は、従来の材料に比べて正孔輸送性に優れ、かつバンドギャップの広いという特性も有していることから、発光層のホスト材料として用いることができ、例えば、ドーパントと呼ばれている蛍光発光体や燐光発光体を担持させて、発光層として用いることにより、有機EL素子の駆動電圧を低下せしめ、発光効率を改善することができる。 Furthermore, since the benzothienoindole derivative of the present invention has excellent hole transportability and a wide band gap compared to conventional materials, it can be used as a host material for the light emitting layer, For example, by supporting a fluorescent light-emitting body or phosphorescent light-emitting body called a dopant and using it as a light-emitting layer, the driving voltage of the organic EL element can be lowered and the light emission efficiency can be improved.
 このように、本発明のベンゾチエノインドール誘導体は、有機EL素子の正孔注入層、正孔輸送層、電子阻止層或いは発光層の構成材料として極めて有用であり、有機EL素子の発光効率および電力効率を向上させ、実用駆動電圧を低くさせ、耐久性を高めることができる。 Thus, the benzothienoindole derivative of the present invention is extremely useful as a constituent material for the hole injection layer, hole transport layer, electron blocking layer, or light emitting layer of the organic EL device, and the light emission efficiency and power of the organic EL device. Efficiency can be improved, practical drive voltage can be lowered, and durability can be increased.
実施例1の化合物(化合物7)のH-NMRチャート図である。1 is a 1 H-NMR chart of the compound of Example 1 (Compound 7). FIG. 実施例2の化合物(化合物9)のH-NMRチャート図である。2 is a 1 H-NMR chart of the compound of Example 2 (Compound 9). FIG. 実施例3の化合物(化合物36)のH-NMRチャート図である。2 is a 1 H-NMR chart of the compound of Example 3 (Compound 36). FIG. 実施例4の化合物(化合物8)のH-NMRチャート図である。FIG. 3 is a 1 H-NMR chart of the compound of Example 4 (Compound 8). 実施例5の化合物(化合物15)のH-NMRチャート図である。FIG. 3 is a 1 H-NMR chart of the compound of Example 5 (Compound 15). 実施例6の化合物(化合物79)のH-NMRチャート図である。FIG. 2 is a 1 H-NMR chart of the compound of Example 6 (Compound 79). 実施例7の化合物(化合物80)のH-NMRチャート図である。FIG. 3 is a 1 H-NMR chart of the compound of Example 7 (Compound 80). 実施例8の化合物(化合物6)のH-NMRチャート図である。FIG. 2 is a 1 H-NMR chart of the compound of Example 8 (Compound 6). 実施例9の化合物(化合物81)のH-NMRチャート図である。2 is a 1 H-NMR chart of the compound of Example 9 (Compound 81). FIG. 実施例10の化合物(化合物73)のH-NMRチャート図である。2 is a 1 H-NMR chart of the compound of Example 10 (Compound 73). FIG. 有機EL素子の構造式の一例を示す図。The figure which shows an example of the structural formula of an organic EL element.
 本発明のベンゾチエノインドール誘導体は、下記一般式(1)で表されるものであり、ベンゾチエノインドール環に芳香族第三級アミノ構造(NArAr)を有する基が導入されている
Figure JPOXMLDOC01-appb-C000008
The benzothienoindole derivative of the present invention is represented by the following general formula (1), and a group having an aromatic tertiary amino structure (NAr 2 Ar 3 ) is introduced into the benzothienoindole ring.
Figure JPOXMLDOC01-appb-C000008
<基Ar~Ar
 上記の一般式(1)において、ベンゾチエノインドール環の窒素原子に結合しているArは、芳香族炭化水素基又は芳香族複素環基を表す。かかる芳香族炭化水素基又は芳香族複素環基は、単環構造を有するものであってもよいし、縮合多環構造を有するものであってもよい。
 上記のような芳香族基(芳香族炭化水素基及び芳香族複素環基)の例としては、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントリル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、ピリジル基、フリル基、ピロリル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基およびカルボリニル基などを挙げることができる。
<Group Ar 1 to Ar 3 >
In the above general formula (1), Ar 1 bonded to the nitrogen atom of the benzothienoindole ring represents an aromatic hydrocarbon group or an aromatic heterocyclic group. Such an aromatic hydrocarbon group or aromatic heterocyclic group may have a monocyclic structure or a condensed polycyclic structure.
Examples of such aromatic groups (aromatic hydrocarbon groups and aromatic heterocyclic groups) include phenyl, biphenylyl, terphenylyl, naphthyl, anthryl, phenanthryl, fluorenyl, indenyl, pyrenyl. Group, perylenyl group, fluoranthenyl group, triphenylenyl group, pyridyl group, furyl group, pyrrolyl group, thienyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, indolyl group, carbazolyl group, benzoxazolyl group, Examples thereof include a benzothiazolyl group, a quinoxalyl group, a benzimidazolyl group, a pyrazolyl group, a dibenzofuranyl group, a dibenzothienyl group, and a carbolinyl group.
 これらの中では、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントリル基、フェナントリル基、フルオレニル基、ピレニル基、ペリレニル基、トリフェニレニル基、チエニル基、ベンゾフラニル基、ベンゾチエニル基、カルバゾリル基、ジベンゾフラニル基、ジベンゾチエニル基が好ましく、フェニル基、ビフェニリル基、フルオレニル基、ベンゾチエニル基、カルバゾリル基、ジベンゾチエニル基がより好適である。 Among these, phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthryl group, phenanthryl group, fluorenyl group, pyrenyl group, perylenyl group, triphenylenyl group, thienyl group, benzofuranyl group, benzothienyl group, carbazolyl group, dibenzofuran group. Nyl group and dibenzothienyl group are preferable, and phenyl group, biphenylyl group, fluorenyl group, benzothienyl group, carbazolyl group, and dibenzothienyl group are more preferable.
 また、上記の芳香族基は置換基を有してもよい。これらの置換基としては、重水素原子、シアノ基、ニトロ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基などの炭素原子数1~6の直鎖状もしくは分岐状のアルキル基;メチルオキシ基、エチルオキシ基、プロピルオキシ基などの炭素原子数1~6の直鎖状もしくは分岐状のアルキルオキシ基;アリル基などのアルケニル基;フェニルオキシ基、トリルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルキルオキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基;ピリジル基、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基などの芳香族複素環基;スチリル基、ナフチルビニル基などのアリールビニル基;アセチル基、ベンゾイル基などのアシル基;などを挙げることができる。
 また、これらの置換基は、さらに、上記で例示した置換基を有していてもよい。
Moreover, said aromatic group may have a substituent. These substituents include deuterium atom, cyano group, nitro group; halogen atom such as fluorine atom, chlorine atom, bromine atom, iodine atom; methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl. A straight-chain or branched alkyl group having 1 to 6 carbon atoms such as a group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group; methyloxy group, ethyloxy group A linear or branched alkyloxy group having 1 to 6 carbon atoms such as propyloxy group; an alkenyl group such as an allyl group; an aryloxy group such as a phenyloxy group or a tolyloxy group; a benzyloxy group or a phenethyloxy group Arylalkyloxy groups such as phenyl group, biphenylyl group, terphenylyl group, naphthyl group, ant Aromatic hydrocarbon groups such as senyl group, phenanthryl group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group; pyridyl group, thienyl group, furyl group, pyrrolyl group, quinolyl group, isoquinolyl group , Aromatic heterocyclic groups such as benzofuranyl group, benzothienyl group, indolyl group, carbazolyl group, benzoxazolyl group, benzothiazolyl group, quinoxalyl group, benzoimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group, carbolinyl group Aryl vinyl groups such as styryl group and naphthyl vinyl group; acyl groups such as acetyl group and benzoyl group;
Further, these substituents may further have the substituents exemplified above.
 また、上記の一般式(1)において、ベンゾチエノインドール環に導入されているアミノ基が有している置換基Ar及びArも、上記の置換基Arと同様、芳香族炭化水素基又は芳香族複素環基を表す。その具体例や好適な例も、上記の基Arに関して挙げたものと同じである。
 さらに、ArとArとは、単結合、メチル基などの置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよいが(例えば、後述する化合物45、46、54~56,63、64参照)、これらの基は、基本的には、互いに独立していることが好ましい。
In the above general formula (1), the substituents Ar 2 and Ar 3 possessed by the amino group introduced into the benzothienoindole ring are also aromatic hydrocarbon groups as in the above-described substituent Ar 1. Or represents an aromatic heterocyclic group. Specific examples and suitable examples thereof are also the same as those mentioned for the group Ar 1 .
Ar 2 and Ar 3 may be bonded to each other via a single bond, a methylene group which may have a substituent such as a methyl group, an oxygen atom or a sulfur atom to form a ring ( For example, compounds 45, 46, 54 to 56, 63, 64 described later) and these groups are preferably independent of each other.
 尚、Arは、後述するAと結合して環を形成していてもよい。この構造については後述する。 Ar 3 may be bonded to A 1 described later to form a ring. This structure will be described later.
<基R~R
 一般式(1)において、ベンゾチエノインドール環の基本骨格中のベンゼン環に結合している基R~Rは、それぞれ、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素原子数1ないし6のアルキル基、炭素原子数5~10のシクロアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルキルオキシ基、炭素原子数5~10のシクロアルキルオキシ基、芳香族炭化水素基、芳香族複素環基またはアリールオキシ基を表す。
<Groups R 1 to R 7 >
In the general formula (1), groups R 1 to R 7 bonded to the benzene ring in the basic skeleton of the benzothienoindole ring are each a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, Groups, alkyl groups having 1 to 6 carbon atoms, cycloalkyl groups having 5 to 10 carbon atoms, alkenyl groups having 2 to 6 carbon atoms, alkyloxy groups having 1 to 6 carbon atoms, and 5 to 10 carbon atoms. A cycloalkyloxy group, an aromatic hydrocarbon group, an aromatic heterocyclic group or an aryloxy group.
 上記のR~Rにおいて、アルキル基、シクロアルキル基、アルケニル基、アルキルオキシ基、シクロアルキルオキシ基の具体例として、以下のようなものが挙げられる。尚、シクロアルキル基及びシクロアルキルオキシ基以外は直鎖状であっても分岐状であってもよい。
アルキル基;
  メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基
 、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基
 、ネオペンチル基、n-ヘキシル基等。
シクロアルキル基;
  シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダ
 マンチル基等。
アルケニル基;
  ビニル基、アリル基、イソプロペニル基、2-ブテニル基等。
アルキルオキシ基;
  メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピ
 ルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペン
 チルオキシ基、n-ヘキシルオキシ基等。
シクロアルキルオキシ基;
  シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオ
 キシ基、シクロオクチルオキシ基、1-アダマンチルオキシ基、2-アダ
 マンチルオキシ基等。
Specific examples of the alkyl group, cycloalkyl group, alkenyl group, alkyloxy group, and cycloalkyloxy group in the above R 1 to R 7 include the following. In addition, other than the cycloalkyl group and the cycloalkyloxy group may be linear or branched.
An alkyl group;
Methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group and the like.
A cycloalkyl group;
A cyclopentyl group, a cyclohexyl group, a 1-adamantyl group, a 2-adamantyl group and the like.
An alkenyl group;
Vinyl group, allyl group, isopropenyl group, 2-butenyl group and the like.
An alkyloxy group;
Methyloxy group, ethyloxy group, n-propyloxy group, isopropyloxy group, n-butyloxy group, tert-butyloxy group, n-pentyloxy group, n-hexyloxy group and the like.
A cycloalkyloxy group;
A cyclopentyloxy group, a cyclohexyloxy group, a cycloheptyloxy group, a cyclooctyloxy group, a 1-adamantyloxy group, a 2-adamantyloxy group, and the like.
 上述したアルキル基、シクロアルキル基、アルケニル基、アルキルオキシ基及びシクロアルキルオキシ基も、更に置換基を有してよい。その置換基は、上記のArで表す芳香族基が有していてもよい置換基と同じである(但し、アルキル基、アリールビニル基及びアシル基は除く)。 The alkyl group, cycloalkyl group, alkenyl group, alkyloxy group and cycloalkyloxy group described above may further have a substituent. The substituent is the same as the substituent which the aromatic group represented by Ar 1 may have (except for the alkyl group, arylvinyl group and acyl group).
 上記R~Rにおける芳香族炭化水素基や芳香族複素環基も、前述したArで例示したものと同様である。特に芳香族炭化水素基としては、フェニル基、ビフェニリル基、フルオレニル基等が好ましく、芳香族複素環基としては、チエニル基、ベンゾチエニル基、ベンゾチアゾリル基、ジベンゾチエニル基などの含硫黄芳香族複素環基が好ましい。 The aromatic hydrocarbon group and aromatic heterocyclic group in R 1 to R 7 are the same as those exemplified for Ar 1 described above. In particular, the aromatic hydrocarbon group is preferably a phenyl group, biphenylyl group, fluorenyl group or the like, and the aromatic heterocyclic group is a sulfur-containing aromatic heterocyclic ring such as a thienyl group, a benzothienyl group, a benzothiazolyl group, or a dibenzothienyl group. Groups are preferred.
 上記R~Rで表される芳香族炭化水素基及び芳香族複素環基は、更に置換基を有していてもよい。その置換基としては、上記のArが有してもよい置換基と同じものを挙げることができる。 The aromatic hydrocarbon group and aromatic heterocyclic group represented by R 1 to R 7 may further have a substituent. Examples of the substituent include the same substituents that Ar 1 may have.
 上記R~Rにおいて、アリールオキシ基としては、フェニルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントリルオキシ基、フェナントリルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基などをあげることができる。
 これらのアリールオキシ基も置換基を有してもよく、その置換基としては、上記のArが有してもよい置換基と同じものを挙げることができる。
In the above R 1 to R 7 , the aryloxy group includes a phenyloxy group, a biphenylyloxy group, a terphenylyloxy group, a naphthyloxy group, an anthryloxy group, a phenanthryloxy group, a fluorenyloxy group, Indenyloxy group, pyrenyloxy group, perylenyloxy group and the like can be mentioned.
These aryloxy groups may also have a substituent, and examples of the substituent include the same substituents that Ar 1 may have.
 また、上述したR~Rにおいて、R~R或いはR~Rは、単結合、置換基を有してもよいメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよいが、これらの基は、互いに結合することなく、互いに独立していることが好ましい。 In R 1 to R 7 described above, R 1 to R 4 or R 5 to R 7 are bonded to each other through a single bond, a methylene group which may have a substituent, an oxygen atom or a sulfur atom. A ring may be formed, but these groups are preferably independent of each other without being bonded to each other.
<A
 前記一般式(1)において、インドール環に結合しているAは、2価の芳香族炭化水素基、2価の芳香族複素環基または単結合を表す。
 2価の芳香族炭化水素基及び2価の芳香族複素環基とは、芳香族炭化水素環及び芳香族複素環から水素原子を2個取り除いてできる2価基を意味する。
 このような2価の芳香族炭化水素基及び2価の芳香族複素環基の具体例として、以下のものを挙げることができる。
2価の芳香族炭化水素基;
  フェニレン基、ビフェニレン基、ターフェニレン基、テトラキスフェニ
 レン基、ナフチレン基、アントリレン基、フェナントリレン基、フルオレ
 ニレン基、フェナントロリレン基、インデニレン基、ピレニレン基、ペリ
 レニレン基、フルオランテニレン基、トリフェニレニレン基等。
2価の芳香族複素環基;
  ピリジニレン基、ピリミジニレン基、キノリレン基、イソキノリレン基
 、インドリレン基、カルバゾリレン基、キノキサリレン基、ベンゾイミダ
 ゾリレン基、ピラゾリレン基、ナフチリジニレン基、フェナントロリニレ
 ン基、アクリジニレン基、チエニレン基、ベンゾチエニレン基、ベンゾチ
 アゾリレン基、ジベンゾチエニレン基等。
<A 1>
In the general formula (1), A 1 bonded to the indole ring represents a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group or a single bond.
The divalent aromatic hydrocarbon group and the divalent aromatic heterocyclic group mean a divalent group formed by removing two hydrogen atoms from an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
Specific examples of such a divalent aromatic hydrocarbon group and a divalent aromatic heterocyclic group include the following.
A divalent aromatic hydrocarbon group;
Phenylene group, biphenylene group, terphenylene group, tetrakisphenylene group, naphthylene group, anthrylene group, phenanthrylene group, fluorenylene group, phenanthrolylene group, indenylene group, pyrenylene group, peryleneylene group, fluoranthenylene group, trifluorone group Nilenylene group and the like.
A divalent aromatic heterocyclic group;
Pyridinylene group, pyrimidinylene group, quinolylene group, isoquinolylene group, indoleylene group, carbazolylene group, quinoxalylylene group, benzimidazolylene group, pyrazolylene group, naphthyridinylene group, phenanthrolinylene group, acridinylene group, benzothienylene group, benzothienylene group, benzothienylene group , Dibenzothienylene group and the like.
 上記Aで表される2価の芳香族炭化水素基及び2価の芳香族複素環基は、更に置換基を有していてもよい。このような置換基としては、上記の基Arが有してもよい置換基と同じものを挙げることができる。 The divalent aromatic hydrocarbon group and divalent aromatic heterocyclic group represented by A 1 may further have a substituent. Examples of such a substituent include the same substituents that the group Ar 1 may have.
 本発明において、上記のAとしては、単結合、またはフェニレン基、ビフェニレン基、ターフェニレン基、ナフチレン基、アントリレン基、フェナントリレン基、フルオレニレン基、カルバゾリレン基、チエニレン基、ベンゾチエニレン基、ジベンゾチエニレン基が好ましく、特に、フェニレン基、ビフェニレン基、フルオレニレン基が好ましい。 In the present invention, A 1 is a single bond or a phenylene group, biphenylene group, terphenylene group, naphthylene group, anthrylene group, phenanthrylene group, fluorenylene group, carbazolylene group, thienylene group, benzothienylene group, dibenzothienylene group. In particular, a phenylene group, a biphenylene group, and a fluorenylene group are preferable.
 さらに、上記の一般式(1)において、Aにおける2価の芳香族基(芳香族炭化水素基或いは芳香族複素環基)は、単結合、メチル基等の置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して、前述した基Arと互いに結合して環を形成することもできる(例えば、後述する化合物36、38~42、47~53、58,62~65、67,68,72~78参照)。 Furthermore, in the above general formula (1), the divalent aromatic group (aromatic hydrocarbon group or aromatic heterocyclic group) in A 1 may have a substituent such as a single bond or a methyl group. It can also be bonded to the aforementioned group Ar 3 through a good methylene group, oxygen atom or sulfur atom to form a ring (for example, compounds 36, 38 to 42, 47 to 53, 58, 62 to be described later). 65, 67, 68, 72-78).
 上述したAは、ベンゾチエノインドール環の3位の炭素原子に結合していることが好ましく、このような構造のベンゾチエノインドール誘導体は、下記一般式(1a)で表される。
Figure JPOXMLDOC01-appb-C000009
  式中、Ar~Ar、R~R及びAは、前記一般式(1)に記
   載した通りである。
A 1 described above is preferably bonded to the 3-position carbon atom of the benzothienoindole ring, and the benzothienoindole derivative having such a structure is represented by the following general formula (1a).
Figure JPOXMLDOC01-appb-C000009
In the formula, Ar 1 to Ar 3 , R 1 to R 7 and A 1 are as described in the general formula (1).
 上述した一般式(1)で表される本発明のベンゾチエノインドール誘導体において、特に下記一般式(2)で表される化合物は、特に耐熱性が良好であり、薄膜安定性に優れているという性質を有している。
Figure JPOXMLDOC01-appb-C000010
  式中、Ar、Ar及びR~Rは、それぞれ、前記一般式(1)
   で記載したとおりであり、
     Aは、一般式(1)における2価の芳香族炭化水素基或いは2
   価の芳香族複素環基の一部であり(即ち、Aの一部を示す)、
     R~R11は、水素原子或いは前記一般式(1)で記載したA
   rが有していてよい置換基を示し、
     R12~R14は、水素原子或いは上記の2価の芳香族炭化水素
   基或いは2価の芳香族複素環基が有していてよい置換基を示し、
   R~R11或いはR12~R14は、互いに独立していることが好
   ましいが、単結合、置換基を有してもよいメチレン基、酸素原子また
   は硫黄原子を介して互いに結合して環を形成してもよい。
 上記一般式(2)において、Aの一部であるA(橋絡基)の具体例しては、単結合、フェニレン基、ビフェニレン基、ナフチレン基、フェナントリレン基、フルオレニレン基、カルバゾリレン基、チエニレン基、ベンゾチエニレン基、ジベンゾチエニレン基を例示することができ、特にフェニレン基がより好ましい。
In the benzothienoindole derivative of the present invention represented by the above general formula (1), the compound represented by the following general formula (2) is particularly excellent in heat resistance and excellent in thin film stability. It has properties.
Figure JPOXMLDOC01-appb-C000010
In the formula, Ar 1 , Ar 2 and R 1 to R 7 are each represented by the general formula (1)
As described in
A 2 is a divalent aromatic hydrocarbon group in the general formula (1) or 2
A part of a valent aromatic heterocyclic group (that is, a part of A 1 ),
R 8 to R 11 are each a hydrogen atom or A described in the general formula (1)
r 3 represents a substituent that may be present;
R 12 to R 14 represent a hydrogen atom or a substituent that the above divalent aromatic hydrocarbon group or divalent aromatic heterocyclic group may have,
R 8 to R 11 or R 12 to R 14 are preferably independent from each other, but are bonded to each other via a single bond, an optionally substituted methylene group, an oxygen atom or a sulfur atom. To form a ring.
In the above general formula (2), specific examples of A 2 (bridge group) which is a part of A 1 include a single bond, a phenylene group, a biphenylene group, a naphthylene group, a phenanthrylene group, a fluorenylene group, a carbazolylene group, Examples thereof include a thienylene group, a benzothienylene group, and a dibenzothienylene group, and a phenylene group is particularly preferable.
 即ち、上記一般式(2)で表されるベンゾチエノインドール誘導体は、前述した一般式(1)の基Arがベンゾチエニル基であり、このベンゾチエニル基中のチオフェン環が、単結合を介して、基Aの一部であるベンゼン環に結合した分子構造を有しており、分子全体としてみると、2つのベンゾチエノインドール環が橋絡基Aにより結合した対称構造を有している。即ち、このような対称構造のためと思われるが、かかる化合物は耐熱性に優れ、薄膜状態が安定であるという利点を有している。 That is, in the benzothienoindole derivative represented by the general formula (2), the group Ar 3 in the general formula (1) is a benzothienyl group, and the thiophene ring in the benzothienyl group is bonded via a single bond. Te has bound molecular structure to the benzene ring is part of a group a 1, when viewed as a whole molecule, having a symmetrical structure in which two benzothienopyridine indole rings are linked by a bridge絡基a 2 Yes. That is, although it seems to be due to such a symmetrical structure, such a compound has an advantage that it is excellent in heat resistance and stable in a thin film state.
 上記の一般式(2)において、橋絡基Aは、前述した一般式(1a)と同様、ベンゾチエノインドール環の3位及び3’位の炭素原子に結合していることが好ましく、例えば下記一般式(2a)で表される構造を有していることが好適である。
Figure JPOXMLDOC01-appb-C000011
  式中、Ar、Ar、R~R14及びAは、其々、前記一般式
   (2)で記載した通りである。
 即ち、このような化合物(例えば後述する化合物73,74)は、分子の対称性が高く、後述する実施例10に示されているように、ガラス転移点が計測されず、極めて高い耐熱性を示す。
In the above general formula (2), the bridging group A 2 is preferably bonded to the 3 and 3 ′ carbon atoms of the benzothienoindole ring as in the general formula (1a) described above. It is preferable to have a structure represented by the following general formula (2a).
Figure JPOXMLDOC01-appb-C000011
In the formula, Ar 1 , Ar 2 , R 1 to R 14 and A 2 are as described in the general formula (2).
That is, such compounds (for example, compounds 73 and 74 described later) have high molecular symmetry, and as shown in Example 10 described later, the glass transition point is not measured, and extremely high heat resistance is obtained. Show.
<ベンゾチエノインドール誘導体の合成>
 本発明のベンゾチエノインドール誘導体は新規な化合物であり、例えば、以下のように合成することができる。
 まず、ベンゾチエノインドールの10位がアリール基で置換されたベンゾチエノインドールを出発原料として使用し、これに、臭素やN-ブロモスクシンイミドなどを反応させてブロモ化を行い、3位のブロモ置換体を合成する。
 さらに、トリアリールアミンのブロモ置換体とピナコールボランやビス(ピナコラート)ジボロンなどとの反応で合成されるボロン酸またはボロン酸エステル(例えば、J.Org.Chem.,60,7508(1995)参照)を用意する。このボロン酸またはボロン酸エステルと、上記のベンゾチエノインドールのブロモ置換体とを、Suzukiカップリングなどのクロスカップリング反応(例えば、Chem.Rev.,95,2457(1995)参照)せしめることにより、目的とするベンゾチエノインドール誘導体を合成することができる。
 また、10位がアリール基で置換されたベンゾチエノインドールをさらにブロモ化して、3位以外の位置にブロモ基を導入し、上記と同様のクロスカップリング反応を行うことによって、橋絡基Aの結合位置が異なるベンゾチエノインドール誘導体を合成することができる。
<Synthesis of benzothienoindole derivatives>
The benzothienoindole derivative of the present invention is a novel compound and can be synthesized, for example, as follows.
First, benzothienoindole in which the 10th position of benzothienoindole is substituted with an aryl group is used as a starting material, and brominated by reacting with bromine, N-bromosuccinimide, etc. Is synthesized.
Furthermore, boronic acid or boronic acid ester synthesized by the reaction of bromo-substituted triarylamine with pinacolborane or bis (pinacolato) diboron (see, for example, J. Org. Chem., 60, 7508 (1995)) Prepare. By subjecting this boronic acid or boronic ester to a bromo-substituted benzothienoindole as described above, a cross-coupling reaction such as Suzuki coupling (see, for example, Chem. Rev., 95, 2457 (1995)) The desired benzothienoindole derivative can be synthesized.
Further, the benzothienoindole substituted at the 10-position with an aryl group is further brominated to introduce a bromo group at a position other than the 3-position, and a cross-coupling reaction similar to the above is performed, whereby the bridging group A 1 It is possible to synthesize benzothienoindole derivatives having different bonding positions.
 尚、これらの化合物の精製は、カラムクロマトグラフによる精製、シリカゲル、活性炭、活性白土などによる吸着精製、溶媒による再結晶や晶析法などによって行うことができる。化合物の同定は、NMR分析によって行うことができる。 Note that these compounds can be purified by column chromatography, adsorption purification using silica gel, activated carbon, activated clay, etc., recrystallization using a solvent, crystallization methods, and the like. The compound can be identified by NMR analysis.
<ベンゾチエノインドール誘導体の好適例>
 一般式(1)で表されるベンゾチエノインドール誘導体の中で、好ましい化合物の具体例を以下に示すが、本発明は、これらの化合物に限定されるものではない。
 尚、以下の例において、化合物1~4は欠番である。
<Preferred examples of benzothienoindole derivatives>
Specific examples of preferable compounds among the benzothienoindole derivatives represented by the general formula (1) are shown below, but the present invention is not limited to these compounds.
In the following examples, compounds 1 to 4 are missing numbers.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
 上述した本発明のベンゾチエノインドール誘導体は、従来公知の正孔輸送材料に比べガラス転移点(Tg)や融点が高く、耐熱性に優れた薄膜を形成することができ、薄膜状態を安定に保持することができる。また、電子の阻止能力が高く、例えば、本発明のベンゾチエノインドール誘導体を用いて膜厚100nmの蒸着層を形成し、仕事関数を測定すると、極めて高い値を示す。 The above-described benzothienoindole derivative of the present invention has a glass transition point (Tg) and a melting point higher than those of conventionally known hole transport materials, can form a thin film excellent in heat resistance, and stably maintains the thin film state. can do. In addition, the electron blocking ability is high. For example, when a deposited layer having a film thickness of 100 nm is formed using the benzothienoindole derivative of the present invention and the work function is measured, a very high value is shown.
<有機EL素子>
 上述した本発明のベンゾチエノインドール誘導体を用いて形成される有機層を備えた有機EL素子は、例えば図11に示す構造を有している。
 即ち、ガラス基板1(透明樹脂基板など、透明基板であればよい)の上に、透明陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6、電子注入層7及び陰極8が設けられている。
 勿論、本発明のベンゾチエノインドール誘導体が適用される有機EL素子は、上記の層構造に限定されるものではなく、正孔輸送層4と発光層5との間に電子阻止層や、発光層5と電子輸送層6との間に正孔阻止層などを設けることができる。また、電子注入層7や正孔注入層3などを省略したシンプルな層構造とすることができる。例えば、上記の多層構造において、いくつかの層を省略することもできる。例えば基板1状に、陽極2、正孔輸送層3、発光層5、電子輸送層6及び陰極8を設けたシンプルな層構造とすることもできる。
<Organic EL device>
The organic EL element provided with the organic layer formed using the benzothienoindole derivative of the present invention described above has, for example, the structure shown in FIG.
That is, a transparent anode 2, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, an electron injection layer on a glass substrate 1 (a transparent substrate such as a transparent resin substrate may be used). 7 and a cathode 8 are provided.
Of course, the organic EL element to which the benzothienoindole derivative of the present invention is applied is not limited to the above layer structure, and an electron blocking layer or a light emitting layer is provided between the hole transport layer 4 and the light emitting layer 5. A hole blocking layer or the like can be provided between 5 and the electron transport layer 6. Further, a simple layer structure in which the electron injection layer 7 and the hole injection layer 3 are omitted can be obtained. For example, in the above multilayer structure, some layers can be omitted. For example, the substrate 1 may have a simple layer structure in which the anode 2, the hole transport layer 3, the light emitting layer 5, the electron transport layer 6, and the cathode 8 are provided.
 即ち、本発明のベンゾチエノインドール誘導体は、上記の陽極2と陰極8との間に設けられる有機層(例えば正孔注入層3、正孔輸送層4、図示されていない電子阻止層、或いは発光層5)の形成材料として好適に使用される。 That is, the benzothienoindole derivative of the present invention is an organic layer (for example, a hole injection layer 3, a hole transport layer 4, an electron blocking layer (not shown) or a light emitting layer) provided between the anode 2 and the cathode 8. It is preferably used as a material for forming the layer 5).
 上記の有機EL素子において、透明陽極2は、それ自体公知の電極材料で形成されていてよく、ITOや金のような仕事関数の大きな電極材料を基板1(ガラス基板等の透明基板)上に蒸着することにより形成される。 In the above organic EL element, the transparent anode 2 may be formed of a known electrode material, and an electrode material having a large work function such as ITO or gold is formed on the substrate 1 (transparent substrate such as a glass substrate). It is formed by vapor deposition.
 また、透明陽極2上に設けられている正孔注入層3としては、上述した本発明のベンゾチエノインドール誘導体を用いて形成できるほか、従来公知の材料、例えば以下の材料を用いて形成することもできる。
  銅フタロシアニンに代表されるポルフィリン化合物;
  スターバースト型のトリフェニルアミン誘導体;
  種々のトリフェニルアミン4量体などの材料;
  ヘキサシアノアザトリフェニレンのようなアクセプター性の複素環化合
 物;
  塗布型の高分子材料、例えばポリ(3,4-エチレンジオキシチオフェ
 ン)(PEDOT)、ポリ(スチレンスルフォネート)(PSS)等。
Further, the hole injection layer 3 provided on the transparent anode 2 can be formed using the above-described benzothienoindole derivative of the present invention, or a conventionally known material such as the following material. You can also.
Porphyrin compounds represented by copper phthalocyanine;
Starburst type triphenylamine derivatives;
Materials such as various triphenylamine tetramers;
Acceptor heterocyclic compounds such as hexacyanoazatriphenylene;
Coating type polymer materials such as poly (3,4-ethylenedioxythiophene) (PEDOT), poly (styrene sulfonate) (PSS) and the like.
 上記の材料を用いての層(薄膜)の形成は、蒸着法の他、スピンコート法やインクジェット法などの公知の方法などにより成膜することができる。 The layer (thin film) using the above materials can be formed by a known method such as a spin coating method or an ink jet method in addition to the vapor deposition method.
 上記の正孔注入層3の上に設けられている正孔輸送層4も、前述した本発明のベンゾチエノインドール誘導体を用いて形成することができるし、以下のような従来公知の正孔輸送材料を用いて形成することもできる。
ベンジジン誘導体、例えば、
 N,N’-ジフェニル-N,N’-ジ(m-トリル)ベンジジン
                   (以下、TPDと略す);
 N,N’-ジフェニル-N,N’-ジ(α-ナフチル)ベンジジン
                   (以下、NPDと略す);
 N,N,N’,N’-テトラビフェニリルベンジジン;
アミン系誘導体
 1,1-ビス[4-(ジ-4-トリルアミノ)フェニル]シクロヘキサン
                   (以下、TAPCと略す);
 種々のトリフェニルアミン3量体および4量体;
 正孔注入層様としても使用される上記の塗布型高分子材料;
The hole transport layer 4 provided on the hole injection layer 3 can also be formed using the above-described benzothienoindole derivative of the present invention, and the conventionally known hole transport as described below. It can also be formed using a material.
Benzidine derivatives such as
N, N′-diphenyl-N, N′-di (m-tolyl) benzidine (hereinafter abbreviated as TPD);
N, N′-diphenyl-N, N′-di (α-naphthyl) benzidine (hereinafter abbreviated as NPD);
N, N, N ′, N′-tetrabiphenylylbenzidine;
Amine-based derivative 1,1-bis [4- (di-4-tolylamino) phenyl] cyclohexane (hereinafter abbreviated as TAPC);
Various triphenylamine trimers and tetramers;
The above-mentioned coating type polymer material that is also used as a hole injection layer;
 このような正孔輸送層の化合物は、それぞれ単独で成膜してもよいが、2種以上混合して成膜することもできる。また、上記化合物の1種または複数種を用いて複数の層を形成し、このような層が積層された多層膜を正孔輸送層とすることもできる。 Such a compound for the hole transport layer may be formed by itself, but may be formed by mixing two or more kinds. In addition, a multilayer film in which a plurality of layers are formed using one or more of the above-described compounds and such layers are stacked can be used as a hole transport layer.
 また、正孔注入層3と正孔輸送層4とを兼ねた層とすることもでき、このような正孔注入・輸送層は、PEDOTなどの高分子材料を用いてコーティングにより形成することができる。 Moreover, it can also be set as the layer which served as the positive hole injection layer 3 and the positive hole transport layer 4, and such a positive hole injection / transport layer can be formed by coating using polymeric materials, such as PEDOT. it can.
 尚、正孔輸送層4(正孔注入層3も同様)において、該層に通常使用される材料に対し、さらにトリスブロモフェニルアミンヘキサクロルアンチモンなどをPドーピングしたものを使用することができる。また、TPD基本骨格を有する高分子化合物などを用いて正孔輸送層4(或いは正孔注入層3)を形成することができる。 In addition, in the hole transport layer 4 (the same applies to the hole injection layer 3), it is possible to use a material which is usually used for the layer and further P-doped with trisbromophenylamine hexachloroantimony or the like. Further, the hole transport layer 4 (or the hole injection layer 3) can be formed using a polymer compound having a TPD basic skeleton.
 さらに、図示されていない電子阻止層(発光層5と正孔輸送層3との間に設けることができる)は、電子阻止作用を有する本発明のベンゾチエノインドール誘導体を用いて形成することができるが、公知の電子阻止性化合物、例えば、カルバゾール誘導体や、トリフェニルシリル基を有し且つトリアリールアミン構造を有する化合物などを用いて形成することもできる。カルバゾール誘導体及びトリアリールアミン構造を有する化合物の具体例は、以下の通りである。
<カルバゾール誘導体>
 4,4’,4’’-トリ(N-カルバゾリル)トリフェニルアミン
                (以下、TCTAと略す);
 9,9-ビス[4-(カルバゾール-9-イル)フェニル]
                      フルオレン;
 1,3-ビス(カルバゾール-9-イル)ベンゼン
                (以下、mCPと略す);
 2,2-ビス(4-カルバゾール-9-イルフェニル)アダマンタン
                (以下、Ad-Czと略す);
<トリアリールアミン構造を有する化合物>
 9-[4-(カルバゾール-9-イル)フェニル]-9-[4-(トリフェニルシリル)フェニル]-9H-フルオレン;
Furthermore, an electron blocking layer (not shown) (which can be provided between the light emitting layer 5 and the hole transport layer 3) can be formed using the benzothienoindole derivative of the present invention having an electron blocking action. However, it can also be formed using a known electron blocking compound such as a carbazole derivative or a compound having a triphenylsilyl group and a triarylamine structure. Specific examples of the compound having a carbazole derivative and a triarylamine structure are as follows.
<Carbazole derivative>
4,4 ′, 4 ″ -tri (N-carbazolyl) triphenylamine (hereinafter abbreviated as TCTA);
9,9-bis [4- (carbazol-9-yl) phenyl]
Fluorene;
1,3-bis (carbazol-9-yl) benzene (hereinafter abbreviated as mCP);
2,2-bis (4-carbazol-9-ylphenyl) adamantane (hereinafter abbreviated as Ad-Cz);
<Compound having a triarylamine structure>
9- [4- (carbazol-9-yl) phenyl] -9- [4- (triphenylsilyl) phenyl] -9H-fluorene;
 電子阻止層は、本発明のベンゾチエノインドール化合物や上記のような公知の正孔輸送材料を1種単独或いは2種以上を用いて形成されるが、これらの正孔輸送材料の1種または複数種を用いて複数の層を形成し、このような層が積層された多層膜を電子阻止層とすることもできる。 The electron blocking layer is formed by using one or more of the benzothienoindole compounds of the present invention and the known hole transport materials as described above, and one or more of these hole transport materials. A plurality of layers can be formed using seeds, and a multilayer film in which such layers are stacked can be used as an electron blocking layer.
 有機EL素子の発光層5として、Alqをはじめとするキノリノール誘導体の金属錯体の他、亜鉛やベリリウム、アルミニウムなどの各種の金属錯体、アントラセン誘導体、ビススチリルベンゼン誘導体、ピレン誘導体、オキサゾール誘導体、ポリパラフェニレンビニレン誘導体などの発光材料を用いて形成することができる。 As the light-emitting layer 5 of the organic EL element, in addition to metal complexes of quinolinol derivatives such as Alq 3 , various metal complexes such as zinc, beryllium, and aluminum, anthracene derivatives, bisstyrylbenzene derivatives, pyrene derivatives, oxazole derivatives, poly A light-emitting material such as a paraphenylene vinylene derivative can be used.
 また、発光層5をホスト材料とドーパント材料とで構成することもできる。
 この場合のホスト材料として、本発明のベンゾチエノインドール誘導体の他、上記の発光材料に加え、チアゾール誘導体、ベンズイミダゾール誘導体、ポリジアルキルフルオレン誘導体などを使用するができる。
 ドーパント材料としては、キナクリドン、クマリン、ルブレン、ペリレンおよびそれらの誘導体、ベンゾピラン誘導体、ローダミン誘導体、アミノスチリル誘導体などを用いることができる。
Moreover, the light emitting layer 5 can also be comprised with a host material and a dopant material.
As a host material in this case, in addition to the above luminescent material, a thiazole derivative, a benzimidazole derivative, a polydialkylfluorene derivative, or the like can be used in addition to the benzothienoindole derivative of the present invention.
As the dopant material, quinacridone, coumarin, rubrene, perylene and derivatives thereof, benzopyran derivatives, rhodamine derivatives, aminostyryl derivatives, and the like can be used.
 このような発光層5も、各発光材料の1種或いは2種以上を用いた単層構成とすることもできるし、複数の層を積層した多層構造とすることもできる。 Such a light-emitting layer 5 can also have a single-layer configuration using one or more of the light-emitting materials, or a multilayer structure in which a plurality of layers are stacked.
 さらに、発光材料として燐光発光材料を使用して発光層5を形成することもできる。
 燐光発光材料としては、イリジウムや白金などの金属錯体の燐光発光体を使用することができる。例えば、Ir(ppy)などの緑色の燐光発光体、FIrpic、FIr6などの青色の燐光発光体、BtpIr(acac)などの赤色の燐光発光体などを用いることができ、これらの燐光発光材料は、正孔注入・輸送性のホスト材料や電子輸送性のホスト材料にドープして使用される。
Furthermore, the light emitting layer 5 can also be formed using a phosphorescent light emitting material as the light emitting material.
As the phosphorescent material, a phosphorescent material of a metal complex such as iridium or platinum can be used. For example, green phosphorescent emitters such as Ir (ppy) 3 , blue phosphorescent emitters such as FIrpic and FIr6, red phosphorescent emitters such as Btp 2 Ir (acac), and the like can be used. The material is used by doping into a hole injecting / transporting host material or an electron transporting host material.
 正孔注入・輸送性のホスト材料としては、本発明のベンゾチエノインドール誘導体や、4,4’-ジ(N-カルバゾリル)ビフェニル(以後、CBPと略称する)やTCTA、mCPなどのカルバゾール誘導体などを用いることができる。
 また、電子輸送性のホスト材料としては、p-ビス(トリフェニルシリル)ベンゼン(以後、UGH2と略称する)や2,2’,2’’-(1,3,5-フェニレン)-トリス(1-フェニル-1H-ベンズイミダゾール)(以後、TPBIと略称する)などを用いることができる。
Examples of the hole injection / transport host material include benzothienoindole derivatives of the present invention, carbazole derivatives such as 4,4′-di (N-carbazolyl) biphenyl (hereinafter abbreviated as CBP), TCTA, and mCP. Can be used.
As an electron transporting host material, p-bis (triphenylsilyl) benzene (hereinafter abbreviated as UGH2), 2,2 ′, 2 ″-(1,3,5-phenylene) -tris ( 1-phenyl-1H-benzimidazole) (hereinafter abbreviated as TPBI) and the like can be used.
 尚、燐光性の発光材料のホスト材料へのドープは濃度消光を避けるため、発光層全体に対して1~30重量パーセントの範囲で、共蒸着によってドープすることが好ましい。 In addition, it is preferable to dope the host material with a phosphorescent light emitting material by co-evaporation in the range of 1 to 30 weight percent with respect to the entire light emitting layer in order to avoid concentration quenching.
 また、発光材料として、非特許文献1に開示されているCDCB誘導体(例えばPIC-TRZ、CC2TA、PXZ-TRZ、4CzIPN等)などの遅延蛍光を放射する材料を使用することも可能である。 Further, as the light emitting material, a material that emits delayed fluorescence such as a CDCB derivative disclosed in Non-Patent Document 1 (for example, PIC-TRZ, CC2TA, PXZ-TRZ, 4CzIPN, etc.) can be used.
 発光層5と電子輸送層6との間に設けることができる正孔阻止層(図3において図示せず)は、それ自体公知の正孔阻止作用を有する化合物を用いて形成することができる。
 このような正孔阻止作用を有する公知化合物の例としては、バソクプロイン(以後、BCPと略称する)などのフェナントロリン誘導体や、アルミニウム(III)ビス(2-メチル-8-キノリナート)-4-フェニルフェノレート(以後、BAlqと略称する)などのキノリノール誘導体の金属錯体の他、各種希土類錯体、トリアゾール誘導体、トリアジン誘導体、オキサジアゾール誘導体などを挙げることができる。
 これらの材料は、以下に述べる電子輸送層6の形成にも使用することができ、さらには、この正孔阻止層と電子輸送層6とを兼用させることもできる。
The hole blocking layer (not shown in FIG. 3) that can be provided between the light emitting layer 5 and the electron transport layer 6 can be formed using a compound having a known hole blocking action.
Examples of known compounds having such hole blocking action include phenanthroline derivatives such as bathocuproin (hereinafter abbreviated as BCP), aluminum (III) bis (2-methyl-8-quinolinato) -4-phenylphenol In addition to metal complexes of quinolinol derivatives such as rate (hereinafter abbreviated as BAlq), various rare earth complexes, triazole derivatives, triazine derivatives, oxadiazole derivatives, and the like can be given.
These materials can also be used for forming the electron transport layer 6 described below, and the hole blocking layer and the electron transport layer 6 can be used in combination.
 このような正孔阻止層も、単層或いは多層の積層構造とすることができ、各層は、上述した正孔阻止作用を有する化合物の1種或いは2種以上を用いて成膜される。 Such a hole blocking layer can also have a single layer or multilayer structure, and each layer is formed using one or more of the compounds having the hole blocking action described above.
 電子輸送層6は、それ自体公知の電子輸送性の化合物、例えば、Alq、BAlqをはじめとするキノリノール誘導体の金属錯体のほか、各種金属錯体、トリアゾール誘導体、トリアジン誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、カルボジイミド誘導体、キノキサリン誘導体、フェナントロリン誘導体、シロール誘導体などを用いて形成される。
 この電子輸送層6も、単層或いは多層の積層構造とすることができ、各層は、上述した電子輸送性化合物の1種或いは2種以上を用いて成膜される。
The electron transport layer 6 is an electron transport compound known per se, for example, metal complexes of quinolinol derivatives including Alq 3 and BAlq, various metal complexes, triazole derivatives, triazine derivatives, oxadiazole derivatives, thiadiazole Derivatives, carbodiimide derivatives, quinoxaline derivatives, phenanthroline derivatives, silole derivatives and the like are used.
The electron transport layer 6 can also have a single layer or multilayer structure, and each layer is formed using one or more of the electron transport compounds described above.
 さらに、電子注入層7も、それ自体公知のもの、例えば、フッ化リチウム、フッ化セシウムなどのアルカリ金属塩、フッ化マグネシウムなどのアルカリ土類金属塩、酸化アルミニウムなどの金属酸化物などを用いて形成することができる。 Furthermore, the electron injection layer 7 is also known per se, for example, an alkali metal salt such as lithium fluoride or cesium fluoride, an alkaline earth metal salt such as magnesium fluoride, or a metal oxide such as aluminum oxide. Can be formed.
 有機EL素子の陰極8としては、アルミニウムのような仕事関数の低い電極材料や、マグネシウム銀合金、マグネシウムインジウム合金、アルミニウムマグネシウム合金のような、より仕事関数の低い合金が電極材料として用いられる。 As the cathode 8 of the organic EL element, an electrode material having a low work function such as aluminum, or an alloy having a lower work function such as a magnesium silver alloy, a magnesium indium alloy, or an aluminum magnesium alloy is used as the electrode material.
 本発明のベンゾチエノインドール誘導体を用いて有機層の少なくとも一つ(例えば正孔注入層3、正孔輸送層4、電子阻止層あるいは発光層5)が形成されている有機EL素子は、発光効率および電力効率が高く、実用駆動電圧が低く、発光開始電圧も低く、極めて優れた耐久性を有している。 An organic EL device in which at least one of organic layers (for example, a hole injection layer 3, a hole transport layer 4, an electron blocking layer, or a light emitting layer 5) is formed using the benzothienoindole derivative of the present invention has a luminous efficiency. In addition, the power efficiency is high, the practical driving voltage is low, the light emission starting voltage is low, and the durability is extremely excellent.
 以下、本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the following examples.
<実施例1>
ビス(ビフェニル-4-イル)-{4-(10-フェニル-10H-ベンゾ[4,5]チエノ[3,2-b]インドール-3-イル)フェニル}アミンの合成;
(化合物7の合成)
Figure JPOXMLDOC01-appb-C000089
<Example 1>
Synthesis of bis (biphenyl-4-yl)-{4- (10-phenyl-10H-benzo [4,5] thieno [3,2-b] indol-3-yl) phenyl} amine;
(Synthesis of Compound 7)
Figure JPOXMLDOC01-appb-C000089
   3-ブロモ-10-フェニル-10H-ベンゾ[4,5]チエノ[3
  ,2-b]インドール 4.0g、
   ビス(ビフェニル-4-イル)-{4-(4,4,5,5-テトラ
  メチル-[1,3,2]ジオキサボラン-2-イル)フェニル}アミ
  ン 7.2g、
   トルエン/エタノール(4/1、v/v)の混合溶媒 150ml、
   2M炭酸カリウム水溶液30ml
を窒素置換した反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。
 次いで、テトラキス(トリフェニルホスフィン)パラジウム0.4gを加えて加熱し、70℃で5.5時間攪拌した。室温まで冷却した後、分液操作によって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。
 粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)によって精製した後、酢酸エチルを用いた分散洗浄を2回繰り返すことによって、ビス(ビフェニル-4-イル)-{4-(10-フェニル-10H-ベンゾ[4,5]チエノ[3,2-b]インドール-3-イル)フェニル}アミン(化合物7)の淡黄色粉体5.3g(収率72.1%)を得た。
3-Bromo-10-phenyl-10H-benzo [4,5] thieno [3
, 2-b] indole 4.0 g,
7.2 g of bis (biphenyl-4-yl)-{4- (4,4,5,5-tetramethyl- [1,3,2] dioxaboran-2-yl) phenyl} amine,
150 ml of a mixed solvent of toluene / ethanol (4/1, v / v),
30 ml of 2M potassium carbonate aqueous solution
Was added to a reaction vessel purged with nitrogen, and nitrogen gas was aerated for 30 minutes while irradiating ultrasonic waves.
Next, 0.4 g of tetrakis (triphenylphosphine) palladium was added and heated, followed by stirring at 70 ° C. for 5.5 hours. After cooling to room temperature, the organic layer was collected by a liquid separation operation. The organic layer was dehydrated with anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a crude product.
The crude product is purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane), and then dispersed and washed twice with ethyl acetate, whereby bis (biphenyl-4-yl)-{4 5.3 g of a pale yellow powder of-(10-phenyl-10H-benzo [4,5] thieno [3,2-b] indol-3-yl) phenyl} amine (compound 7) (yield 72.1% )
 得られた淡黄色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図1に示した。 The structure of the obtained pale yellow powder was identified using NMR. The results of 1 H-NMR measurement are shown in FIG.
 H-NMR(THF-d)で以下の34個の水素のシグナルを検出した。
   δ(ppm)=7.92(1H)
          7.86(1H)
          7.71-7.67(4H)
          7.62-7.53(13H)
          7.38(4H)
          7.30-7.24(4H)
          7.21-7.17(7H)
The following 34 hydrogen signals were detected by 1 H-NMR (THF-d 8 ).
δ (ppm) = 7.92 (1H)
7.86 (1H)
7.71-7.67 (4H)
7.62-7.53 (13H)
7.38 (4H)
7.30-7.24 (4H)
7.21-7.17 (7H)
<実施例2>
(ビフェニル-4-イル)-(9,9-ジメチル-9H-フルオレン-2-イル)-{4-(10-フェニル-10H-ベンゾ[4,5]チエノ[3,2-b]インドール-3-イル)フェニル}アミンの合成;
(化合物9の合成)
Figure JPOXMLDOC01-appb-C000090
<Example 2>
(Biphenyl-4-yl)-(9,9-dimethyl-9H-fluoren-2-yl)-{4- (10-phenyl-10H-benzo [4,5] thieno [3,2-b] indole- Synthesis of 3-yl) phenyl} amine;
(Synthesis of Compound 9)
Figure JPOXMLDOC01-appb-C000090
   3-ブロモ-10-フェニル-10H-ベンゾ[4,5]チエノ[3
  ,2-b]インドール 4.0g、
   (ビフェニル-4-イル)-(9,9-ジメチル-9H-フルオレン
  -2-イル)-{4-(4,4,5,5-テトラメチル-[1,3,2
  ]ジオキサボラン-2-イル)フェニル}アミン 7.2g、
   トルエン/エタノール(4/1、v/v)の混合溶媒 150ml、
   2M炭酸カリウム水溶液30ml、
を窒素置換した反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。
 次いで、テトラキス(トリフェニルホスフィン)パラジウム0.4gを加えて加熱し、70℃で4時間攪拌した。室温まで冷却した後、分液操作によって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。
 粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)によって精製した後、トルエン/メタノールの混合溶媒を用いた晶析精製を2回繰り返すことによって、(ビフェニル-4-イル)-(9,9-ジメチル-9H-フルオレン-2-イル)-{4-(10-フェニル-10H-ベンゾ[4,5]チエノ[3,2-b]インドール-3-イル)フェニル}アミン(化合物9)の淡黄色粉体6.6g(収率85.7%)を得た。
3-Bromo-10-phenyl-10H-benzo [4,5] thieno [3
, 2-b] indole 4.0 g,
(Biphenyl-4-yl)-(9,9-dimethyl-9H-fluoren-2-yl)-{4- (4,4,5,5-tetramethyl- [1,3,2
] Dioxaboran-2-yl) phenyl} amine 7.2 g,
150 ml of a mixed solvent of toluene / ethanol (4/1, v / v),
30 ml of 2M potassium carbonate aqueous solution,
Was added to a reaction vessel purged with nitrogen, and nitrogen gas was aerated for 30 minutes while irradiating ultrasonic waves.
Next, 0.4 g of tetrakis (triphenylphosphine) palladium was added and heated, followed by stirring at 70 ° C. for 4 hours. After cooling to room temperature, the organic layer was collected by a liquid separation operation. The organic layer was dehydrated with anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a crude product.
The crude product was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane), and then crystallization purification using a mixed solvent of toluene / methanol was repeated twice to obtain (biphenyl-4-yl). )-(9,9-dimethyl-9H-fluoren-2-yl)-{4- (10-phenyl-10H-benzo [4,5] thieno [3,2-b] indol-3-yl) phenyl} 6.6 g (yield 85.7%) of a pale yellow powder of amine (Compound 9) was obtained.
 得られた淡黄色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図2に示した。 The structure of the obtained pale yellow powder was identified using NMR. The results of 1 H-NMR measurement are shown in FIG.
 H-NMR(THF-d)で以下の38個の水素のシグナルを検出した。
   δ(ppm)=7.93(1H)
          7.86(1H)
          7.70-7.65(6H)
          7.62-7.55(9H)
          7.41(1H)
          7.38(2H)
          7.35(1H)
          7.30-7.18(10H)
          7.08(1H)、1.42(6H)
The following 38 hydrogen signals were detected by 1 H-NMR (THF-d 8 ).
δ (ppm) = 7.93 (1H)
7.86 (1H)
7.70-7.65 (6H)
7.62-7.55 (9H)
7.41 (1H)
7.38 (2H)
7.35 (1H)
7.30-7.18 (10H)
7.08 (1H), 1.42 (6H)
<実施例3>
10-フェニル-3-(9-フェニル-9H-カルバゾール-3-イル)-10H-ベンゾ[4,5]チエノ[3,2-b]インドールの合成;
(化合物36の合成)
Figure JPOXMLDOC01-appb-C000091
<Example 3>
Synthesis of 10-phenyl-3- (9-phenyl-9H-carbazol-3-yl) -10H-benzo [4,5] thieno [3,2-b] indole;
(Synthesis of Compound 36)
Figure JPOXMLDOC01-appb-C000091
   3-ブロモ-10-フェニル-10H-ベンゾ[4,5]チエノ[3
  ,2-b]インドール 4.0g、
   9-フェニル-3-(4,4,5,5-テトラメチル-[1,3
  ,2]ジオキサボラン-2-イル)-9H-カルバゾール 4.7g、
   トルエン/エタノール(4/1、v/v)の混合溶媒 75ml、
   2M炭酸カリウム水溶液 15ml、
を窒素置換した反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。
 次いで、テトラキス(トリフェニルホスフィン)パラジウム0.4gを加えて加熱し、70℃で9時間攪拌した。室温まで冷却した後、分液操作によって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。
 粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/シクロヘキサン)によって精製した後、n-ブタノールを用いた再結晶による精製を2回繰り返すことによって、10-フェニル-3-(9-フェニル-9H-カルバゾール-3-イル)-10H-ベンゾ[4,5]チエノ[3,2-b]インドール(化合物36)の淡黄色粉体4.6g(収率80.4%)を得た。
3-Bromo-10-phenyl-10H-benzo [4,5] thieno [3
, 2-b] indole 4.0 g,
9-phenyl-3- (4,4,5,5-tetramethyl- [1,3
, 2] dioxaboran-2-yl) -9H-carbazole 4.7 g,
75 ml of a mixed solvent of toluene / ethanol (4/1, v / v),
15 ml of 2M aqueous potassium carbonate solution,
Was added to a reaction vessel purged with nitrogen, and nitrogen gas was aerated for 30 minutes while irradiating ultrasonic waves.
Next, 0.4 g of tetrakis (triphenylphosphine) palladium was added and heated, followed by stirring at 70 ° C. for 9 hours. After cooling to room temperature, the organic layer was collected by a liquid separation operation. The organic layer was dehydrated with anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a crude product.
The crude product was purified by column chromatography (carrier: silica gel, eluent: toluene / cyclohexane), and then purified by recrystallization using n-butanol twice to obtain 10-phenyl-3- (9-phenyl). 4.6 g (yield 80.4%) of a pale yellow powder of -9H-carbazol-3-yl) -10H-benzo [4,5] thieno [3,2-b] indole (Compound 36) was obtained. .
 得られた黄色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図3に示した。 The structure of the obtained yellow powder was identified using NMR. The results of 1 H-NMR measurement are shown in FIG.
 H-NMR(THF-d)で以下の24個の水素のシグナルを検出した。
   δ(ppm)=8.44(1H)
          8.21(1H)
          7.93(1H)
          7.90(1H)
          7.75-7.67(7H)
          7.66-7.59(5H)
          7.48(1H)
          7.43(1H)
          7.39(1H)
          7.36(1H)
          7.29(2H)
          7.23(1H)
          7.20(1H)
The following 24 hydrogen signals were detected by 1 H-NMR (THF-d 8 ).
δ (ppm) = 8.44 (1H)
8.21 (1H)
7.93 (1H)
7.90 (1H)
7.75-7.67 (7H)
7.66-7.59 (5H)
7.48 (1H)
7.43 (1H)
7.39 (1H)
7.36 (1H)
7.29 (2H)
7.23 (1H)
7.20 (1H)
<実施例4>
(9,9-ジメチル-9H-フルオレン-2-イル)-{4-(10-フェニル-10H-ベンゾ[4,5]チエノ[3,2-b]インドール-3-イル)フェニル}-フェニルアミンの合成;
(化合物8の合成)
Figure JPOXMLDOC01-appb-C000092
<Example 4>
(9,9-dimethyl-9H-fluoren-2-yl)-{4- (10-phenyl-10H-benzo [4,5] thieno [3,2-b] indol-3-yl) phenyl} -phenyl Synthesis of amines;
(Synthesis of Compound 8)
Figure JPOXMLDOC01-appb-C000092
   3-ブロモ-10-フェニル-10H-ベンゾ[4,5]チエノ[3
  ,2-b]インドール 9.0g、
   (9,9-ジメチル-9H-フルオレン-2-イル)-[4-(4
  ,4,5,5-テトラメチル-[1,3,2]ジオキサボラン-2-
  イル)フェニル]-フェニルアミン 12.7g、
   1,4-ジオキサン 160ml、
   2M炭酸カリウム水溶液 40ml、
を窒素置換した反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。
 次いで、テトラキス(トリフェニルホスフィン)パラジウム0.3gを加えて加熱し、84℃で4.5時間攪拌した。室温まで冷却した後、分液操作によって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。
 粗製物をトルエンに加熱溶解し、シリカゲルを用いた吸着精製を行った後、メタノールを用いた分散洗浄、続いて、トルエン/メタノールの混合溶媒を用いた晶析精製を2回繰り返し、さらに、メタノールを用いた分散洗浄を行うことによって、(9,9-ジメチル-9H-フルオレン-2-イル)-{4-(10-フェニル-10H-ベンゾ[4,5]チエノ[3,2-b]インドール-3-イル)フェニル}-フェニルアミン(化合物8)の淡黄白色粉体9.1g(収率57.9%)を得た。
3-Bromo-10-phenyl-10H-benzo [4,5] thieno [3
, 2-b] indole 9.0 g,
(9,9-Dimethyl-9H-fluoren-2-yl)-[4- (4
, 4,5,5-tetramethyl- [1,3,2] dioxaborane-2-
Yl) phenyl] -phenylamine 12.7 g,
160 ml of 1,4-dioxane,
40 ml of 2M potassium carbonate aqueous solution,
Was added to a reaction vessel purged with nitrogen, and nitrogen gas was aerated for 30 minutes while irradiating ultrasonic waves.
Next, 0.3 g of tetrakis (triphenylphosphine) palladium was added and heated, followed by stirring at 84 ° C. for 4.5 hours. After cooling to room temperature, the organic layer was collected by a liquid separation operation. The organic layer was dehydrated with anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a crude product.
The crude product was dissolved in toluene by heating and purified by adsorption using silica gel, followed by dispersion washing using methanol, followed by crystallization purification using a mixed solvent of toluene / methanol twice, and methanol. (9,9-dimethyl-9H-fluoren-2-yl)-{4- (10-phenyl-10H-benzo [4,5] thieno [3,2-b] A pale yellowish white powder of 9.1 g (yield 57.9%) of indol-3-yl) phenyl} -phenylamine (Compound 8) was obtained.
 得られた淡黄白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図4に示した。 The structure of the obtained pale yellowish white powder was identified using NMR. The results of 1 H-NMR measurement are shown in FIG.
 H-NMR(THF-d)で以下の34個の水素のシグナルを検出した。
   δ(ppm)=7.93(1H)
          7.86(1H)
          7.68(5H)
          7.63(2H)
          7.55(4H)
          7.40(1H)
          7.29-7.21(8H)
          7.13(4H)
          7.02(2H)
          1.40(6H)
The following 34 hydrogen signals were detected by 1 H-NMR (THF-d 8 ).
δ (ppm) = 7.93 (1H)
7.86 (1H)
7.68 (5H)
7.63 (2H)
7.55 (4H)
7.40 (1H)
7.29-7.21 (8H)
7.13 (4H)
7.02 (2H)
1.40 (6H)
<実施例5>
(ビフェニル-4-イル)-(4-tert-ブチルフェニル)-{4-(10-フェニル-10H-ベンゾ[4,5]チエノ[3,2-b]インドール-3-イル)フェニル}アミンの合成;
(化合物15の合成)
Figure JPOXMLDOC01-appb-C000093
<Example 5>
(Biphenyl-4-yl)-(4-tert-butylphenyl)-{4- (10-phenyl-10H-benzo [4,5] thieno [3,2-b] indol-3-yl) phenyl} amine Synthesis of
(Synthesis of Compound 15)
Figure JPOXMLDOC01-appb-C000093
   3-ブロモ-10-フェニル-10H-ベンゾ[4,5]チエノ[3
  ,2-b]インドール 5.0g、
   (ビフェニル-4-イル)-(4-tert-ブチルフェニル)-{
  4-(4,4,5-トリメチル-[1,3,2]ジオキサボラン-2-
  イル)フェニル}アミン 7.3g、
   1,4-ジオキサン 160ml、
   2M炭酸カリウム水溶液 40ml、
を窒素置換した反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。
 次いで、テトラキス(トリフェニルホスフィン)パラジウム0.5gを加えて加熱し、85℃で4時間攪拌した。室温まで冷却した後、分液操作によって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。
 粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)によって精製した後、酢酸エチル/n-ヘキサンの混合溶媒を用いた晶析精製、トルエン/メタノールの混合溶媒を用いた晶析精製を行なうことによって、(ビフェニル-4-イル)-(4-tert-ブチルフェニル)-{4-(10-フェニル-10H-ベンゾ[4,5]チエノ[3,2-b]インドール-3-イル)フェニル}アミン(化合物15)の淡黄白色粉体5.7g(収率64%)を得た。
3-Bromo-10-phenyl-10H-benzo [4,5] thieno [3
, 2-b] indole 5.0 g,
(Biphenyl-4-yl)-(4-tert-butylphenyl)-{
4- (4,4,5-trimethyl- [1,3,2] dioxaborane-2-
Yl) phenyl} amine 7.3 g,
160 ml of 1,4-dioxane,
40 ml of 2M potassium carbonate aqueous solution,
Was added to a reaction vessel purged with nitrogen, and nitrogen gas was aerated for 30 minutes while irradiating ultrasonic waves.
Next, 0.5 g of tetrakis (triphenylphosphine) palladium was added and heated, followed by stirring at 85 ° C. for 4 hours. After cooling to room temperature, the organic layer was collected by a liquid separation operation. The organic layer was dehydrated with anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a crude product.
The crude product was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane), followed by crystallization purification using a mixed solvent of ethyl acetate / n-hexane, and a mixed solvent of toluene / methanol. By performing crystallization purification, (biphenyl-4-yl)-(4-tert-butylphenyl)-{4- (10-phenyl-10H-benzo [4,5] thieno [3,2-b] indole 5.7 g (64% yield) of pale yellowish white powder of -3-yl) phenyl} amine (Compound 15) was obtained.
 得られた淡黄白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図5に示した。 The structure of the obtained pale yellowish white powder was identified using NMR. The results of 1 H-NMR measurement are shown in FIG.
 H-NMR(THF-d)で以下の38個の水素のシグナルを検出した。
   δ(ppm)=7.93(1H)
          7.86(1H)
          7.70(4H)
          7.59(3H)
          7.52(6H)
          7.38(2H)
          7.34(2H)
          7.27(3H)
          7.20(1H)
          7.13(4H)
          7.08(2H)
          1.33(9H)
The following 38 hydrogen signals were detected by 1 H-NMR (THF-d 8 ).
δ (ppm) = 7.93 (1H)
7.86 (1H)
7.70 (4H)
7.59 (3H)
7.52 (6H)
7.38 (2H)
7.34 (2H)
7.27 (3H)
7.20 (1H)
7.13 (4H)
7.08 (2H)
1.33 (9H)
<実施例6>
[4-{10-(9,9-ジメチル-9H-フルオレン-2-イル)-10H-ベンゾ[4,5]チエノ[3,2-b]インドール-3-イル}フェニル]-ジフェニルアミンの合成;
(化合物79の合成)
Figure JPOXMLDOC01-appb-C000094
<Example 6>
Synthesis of [4- {10- (9,9-dimethyl-9H-fluoren-2-yl) -10H-benzo [4,5] thieno [3,2-b] indol-3-yl} phenyl] -diphenylamine ;
(Synthesis of Compound 79)
Figure JPOXMLDOC01-appb-C000094
   3-ブロモ-10-(9,9-ジメチル-9H-フルオレン-2-イ
  ル)-10H-ベンゾ[4,5]チエノ[3,2-b]インドール
                          9.0g、
   {4-(4,4,5,5-テトラメチル-[1,3,2]ジオキサボ
  ラン-2-イル)フェニル}-ジフェニルアミン 6.5g、
   1,4-ジオキサン 110ml、
   2M炭酸カリウム水溶液 27ml、
を窒素置換した反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。
 次いで、テトラキス(トリフェニルホスフィン)パラジウム0.5gを加えて加熱し、81℃で5時間攪拌した。室温まで冷却し、析出する粗製物をろ過によって採取した後、トルエンに加熱溶解し、シリカゲルを用いた吸着精製を行った。
 続いて、メタノールを用いた分散洗浄を行った後、トルエン/メタノールの混合溶媒を用いた晶析精製を2回繰り返すことによって、[4-{10-(9,9-ジメチル-9H-フルオレン-2-イル)-10H-ベンゾ[4,5]チエノ[3,2-b]インドール-3-イル}フェニル]-ジフェニルアミン(化合物79)の淡灰白色粉体6.8g(収率56.7%)を得た。
3-bromo-10- (9,9-dimethyl-9H-fluoren-2-yl) -10H-benzo [4,5] thieno [3,2-b] indole 9.0 g,
{4- (4,4,5,5-tetramethyl- [1,3,2] dioxaboran-2-yl) phenyl} -diphenylamine 6.5 g,
110 ml of 1,4-dioxane,
27 ml of 2M potassium carbonate aqueous solution,
Was added to a reaction vessel purged with nitrogen, and nitrogen gas was aerated for 30 minutes while irradiating ultrasonic waves.
Next, 0.5 g of tetrakis (triphenylphosphine) palladium was added and heated, followed by stirring at 81 ° C. for 5 hours. After cooling to room temperature and collecting the precipitated crude product by filtration, it was dissolved by heating in toluene and subjected to adsorption purification using silica gel.
Subsequently, after carrying out dispersion washing using methanol, crystallization purification using a mixed solvent of toluene / methanol is repeated twice, whereby [4- {10- (9,9-dimethyl-9H-fluorene- 6.8 g (yield 56.7%) of a light gray white powder of 2-yl) -10H-benzo [4,5] thieno [3,2-b] indol-3-yl} phenyl] -diphenylamine (Compound 79) )
 得られた淡灰白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図6に示した。 The structure of the obtained light gray white powder was identified using NMR. The results of 1 H-NMR measurement are shown in FIG.
 H-NMR(THF-d)で以下の34個の水素のシグナルを検出した。
   δ(ppm)=8.10(1H)
          7.96(1H)
          7.92-7.87(2H)
          7.83(1H)
          7.73(1H)
          7.67(1H)
          7.57(4H)
          7.39(3H)
          7.30(1H)
          7.27-7.19(5H)
          7.14-7.06(6H)
          6.99(2H)
          1.59(6H)
The following 34 hydrogen signals were detected by 1 H-NMR (THF-d 8 ).
δ (ppm) = 8.10 (1H)
7.96 (1H)
7.92-7.87 (2H)
7.83 (1H)
7.73 (1H)
7.67 (1H)
7.57 (4H)
7.39 (3H)
7.30 (1H)
7.27-7.19 (5H)
7.14-7.06 (6H)
6.99 (2H)
1.59 (6H)
<実施例7>
(9,9-ジメチル-9H-フルオレン-2-イル)-[4-{10-(9,9-ジメチル-9H-フルオレン-2-イル)-10H-ベンゾ[4,5]チエノ[3,2-b]インドール-3-イル}フェニル]-フェニルアミンの合成;
(化合物80の合成)
Figure JPOXMLDOC01-appb-C000095
<Example 7>
(9,9-dimethyl-9H-fluoren-2-yl)-[4- {10- (9,9-dimethyl-9H-fluoren-2-yl) -10H-benzo [4,5] thieno [3 Synthesis of 2-b] indol-3-yl} phenyl] -phenylamine;
(Synthesis of Compound 80)
Figure JPOXMLDOC01-appb-C000095
   3-ブロモ-10-(9,9-ジメチル-9H-フルオレン-2-イ
  ル)-10H-ベンゾ[4,5]チエノ[3,2-b]インドール
                          6.9g、
   (9,9-ジメチル-9H-フルオレン-2-イル)-[4-(4,
  4,5,5-テトラメチル-[1,3,2]ジオキサボラン-2-イル
  )フェニル]-フェニルアミン 8.8g、
   1,4-ジオキサン 84ml、
   2M炭酸カリウム水溶液 21ml、
を窒素置換した反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。
 次いで、テトラキス(トリフェニルホスフィン)パラジウム0.2gを加えて加熱し、85℃で4時間攪拌した。室温まで冷却した後、分液操作によって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。
 粗製物をトルエンに加熱溶解し、シリカゲルを用いた吸着精製を行った後、メタノールを用いた分散洗浄、酢酸エチル/n-ヘキサンの混合溶媒を用いた晶析精製、さらにトルエン/メタノールの混合溶媒を用いた晶析精製を行うことによって、(9,9-ジメチル-9H-フルオレン-2-イル)-[4-{10-(9,9-ジメチル-9H-フルオレン-2-イル)-10H-ベンゾ[4,5]チエノ[3,2-b]インドール-3-イル}フェニル]-フェニルアミン(化合物80)の白色粉体7.0g(収率64.8%)を得た。
6.9 g of 3-bromo-10- (9,9-dimethyl-9H-fluoren-2-yl) -10H-benzo [4,5] thieno [3,2-b] indole,
(9,9-Dimethyl-9H-fluoren-2-yl)-[4- (4
8.8 g of 4,5,5-tetramethyl- [1,3,2] dioxaboran-2-yl) phenyl] -phenylamine,
84 ml of 1,4-dioxane,
21 ml of 2M potassium carbonate aqueous solution,
Was added to a reaction vessel purged with nitrogen, and nitrogen gas was aerated for 30 minutes while irradiating ultrasonic waves.
Next, 0.2 g of tetrakis (triphenylphosphine) palladium was added and heated, followed by stirring at 85 ° C. for 4 hours. After cooling to room temperature, the organic layer was collected by a liquid separation operation. The organic layer was dehydrated with anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a crude product.
The crude product is dissolved in toluene by heating and subjected to adsorption purification using silica gel, followed by dispersion washing using methanol, crystallization purification using a mixed solvent of ethyl acetate / n-hexane, and a mixed solvent of toluene / methanol. (9,9-dimethyl-9H-fluoren-2-yl)-[4- {10- (9,9-dimethyl-9H-fluoren-2-yl) -10H -7.0 g (yield 64.8%) of white powder of -benzo [4,5] thieno [3,2-b] indol-3-yl} phenyl] -phenylamine (compound 80) was obtained.
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図7に示した。 The structure of the obtained white powder was identified using NMR. The results of 1 H-NMR measurement are shown in FIG.
 H-NMR(THF-d)で以下の42個の水素のシグナルを検出した。
   δ(ppm)=8.08(1H)
          7.94(1H)
          7.88(1H)
          7.71(1H)
          7.67(1H)
          7.65(1H)
          7.61(1H)
          7.58-7.54(4H)
          7.40-7.35(4H)
          7.29-7.11(11H)
          7.02-6.97(2H)
          1.57(6H)
          1.39(6H)
The following 42 hydrogen signals were detected by 1 H-NMR (THF-d 8 ).
δ (ppm) = 8.08 (1H)
7.94 (1H)
7.88 (1H)
7.71 (1H)
7.67 (1H)
7.65 (1H)
7.61 (1H)
7.58-7.54 (4H)
7.40-7.35 (4H)
7.29-7.11 (11H)
7.02-6.97 (2H)
1.57 (6H)
1.39 (6H)
<実施例8>
(ビフェニル-4-イル)-{4-(10-フェニル-10H-ベンゾ[4,5]チエノ[3,2-b]インドール-3-イル)フェニル}-フェニルアミンの合成;
(化合物6の合成)
Figure JPOXMLDOC01-appb-C000096
<Example 8>
Synthesis of (biphenyl-4-yl)-{4- (10-phenyl-10H-benzo [4,5] thieno [3,2-b] indol-3-yl) phenyl} -phenylamine;
(Synthesis of Compound 6)
Figure JPOXMLDOC01-appb-C000096
   3-ブロモ-10-フェニル-10H-ベンゾ[4,5]チエノ[3
  ,2-b]インドール 7.0g、
   (ビフェニル-4-イル)-{4-(4,4,5,5-テトラメチル
  -[1,3,2]ジオキサボラン-2-イル)フェニル}-フェニルア
  ミン 9.1g、
   トルエン/エタノール(4/1、v/v)の混合溶媒 105ml、
   2M炭酸カリウム水溶液 21ml、
を窒素置換した反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。
 次いで、テトラキス(トリフェニルホスフィン)パラジウム0.6gを加えて加熱し、70℃で13時間攪拌した。室温まで冷却した後、分液操作によって有機層を採取した。減圧下で濃縮することによって粗製物を得た。
 粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)によって精製した後、トルエン/n-ヘキサンの混合溶媒を用いた晶析精製を行うことによって、(ビフェニル-4-イル)-{4-(10-フェニル-10H-ベンゾ[4,5]チエノ[3,2-b]インドール-3-イル)フェニル}-フェニルアミン((化合物6)の白色粉体6.4g(収率55.9%)を得た。
3-Bromo-10-phenyl-10H-benzo [4,5] thieno [3
, 2-b] indole 7.0 g,
(Biphenyl-4-yl)-{4- (4,4,5,5-tetramethyl- [1,3,2] dioxaboran-2-yl) phenyl} -phenylamine 9.1 g,
105 ml of a mixed solvent of toluene / ethanol (4/1, v / v),
21 ml of 2M potassium carbonate aqueous solution,
Was added to a reaction vessel purged with nitrogen, and nitrogen gas was aerated for 30 minutes while irradiating ultrasonic waves.
Next, 0.6 g of tetrakis (triphenylphosphine) palladium was added and heated, followed by stirring at 70 ° C. for 13 hours. After cooling to room temperature, the organic layer was collected by a liquid separation operation. A crude product was obtained by concentration under reduced pressure.
The crude product was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane) and then purified by crystallization using a mixed solvent of toluene / n-hexane to give (biphenyl-4-yl). )-{4- (10-phenyl-10H-benzo [4,5] thieno [3,2-b] indol-3-yl) phenyl} -phenylamine ((Compound 6), 6.4 g of white powder ( Yield 55.9%).
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図8に示した。 The structure of the obtained white powder was identified using NMR. The results of 1 H-NMR measurement are shown in FIG.
 H-NMR(CDCl)で以下の30個の水素のシグナルを検出した。
   δ(ppm)=7.91-7.86(2H)
          7.68-7.42(15H)
          7.32-7.14(12H)
          7.06-7.02(1H)
The following 30 hydrogen signals were detected by 1 H-NMR (CDCl 3 ).
δ (ppm) = 7.91-7.86 (2H)
7.68-7.42 (15H)
7.32-7.14 (12H)
7.06-7.02 (1H)
<実施例9>
{7-(10-フェニル-10H-ベンゾ[4,5]チエノ[3,2-b]インドール-3-イル)-9,9-ジメチルフルオレニル-2-イル}-ジフェニルアミンの合成;
(化合物81の合成)
Figure JPOXMLDOC01-appb-C000097
<Example 9>
Synthesis of {7- (10-phenyl-10H-benzo [4,5] thieno [3,2-b] indol-3-yl) -9,9-dimethylfluorenyl-2-yl} -diphenylamine;
(Synthesis of Compound 81)
Figure JPOXMLDOC01-appb-C000097
   3-ブロモ-10-フェニル-10H-ベンゾ[4,5]チエノ[3
  ,2-b]インドール 10.0g、
   {7-(4,4,5,5-テトラメチル-[1,3,2]ジオキサボ
  ラン-2-イル)-9,9-ジメチルフルオレニル-2-イル}-ジフ
  ェニルアミン 14.2g、
   THF/エタノール(7/2、v/v)の混合溶媒 90ml、
   2M炭酸カリウム水溶液 40ml、
   テトラキス(トリフェニルホスフィン)パラジウム 0.9g、
を窒素置換した反応容器に加えて加熱し、75℃で20時間攪拌した。室温まで冷却した後、分液操作によって有機層を採取し、減圧下で濃縮することによって粗製物を得た。
 粗製物をジクロロメタン/メタノールの混合溶媒を用いた晶析精製を行った後、トルエンに加熱溶解し、不溶物をろ過によって除いた後に濃縮した。メタノールから結晶化し、トルエンを用いた再結晶を2回繰り返すことによって、{7-(10-フェニル-10H-ベンゾ[4,5]チエノ[3,2-b]インドール-3-イル)-9,9-ジメチルフルオレニル-2-イル}-ジフェニルアミン(化合物81)の灰白色粉体8.2g(収率46.8%)を得た。
3-Bromo-10-phenyl-10H-benzo [4,5] thieno [3
, 2-b] indole 10.0 g,
{7- (4,4,5,5-tetramethyl- [1,3,2] dioxaboran-2-yl) -9,9-dimethylfluorenyl-2-yl} -diphenylamine 14.2 g,
90 ml of a mixed solvent of THF / ethanol (7/2, v / v),
40 ml of 2M potassium carbonate aqueous solution,
0.9 g of tetrakis (triphenylphosphine) palladium,
Was added to a reaction vessel purged with nitrogen, heated, and stirred at 75 ° C. for 20 hours. After cooling to room temperature, the organic layer was collected by a liquid separation operation, and concentrated under reduced pressure to obtain a crude product.
The crude product was purified by crystallization using a mixed solvent of dichloromethane / methanol, then dissolved in toluene by heating, and the insoluble material was removed by filtration, followed by concentration. {7- (10-phenyl-10H-benzo [4,5] thieno [3,2-b] indol-3-yl) -9 by crystallization from methanol and recrystallization with toluene twice. , 9-dimethylfluorenyl-2-yl} -diphenylamine (Compound 81) (8.2 g, yield 46.8%) was obtained.
 得られた灰白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図9に示した。 The structure of the resulting off-white powder was identified using NMR. The results of 1 H-NMR measurement are shown in FIG.
 H-NMR(CDCl)で以下の34個の水素のシグナルを検出した。
   δ(ppm)=7.92-7.87(2H)
          7.72-7.52(11H)
          7.34-7.11(12H)
          7.07-6.98(3H)
          1.45(6H)
The following 34 hydrogen signals were detected by 1 H-NMR (CDCl 3 ).
δ (ppm) = 7.92-7.87 (2H)
7.72-7.52 (11H)
7.34-7.11 (12H)
7.07-6.98 (3H)
1.45 (6H)
<実施例10>
1,4-ビス(10-フェニル-10H-ベンゾ[4,5]チエノ[3,2-b]インドール-3-イル)ベンゼンの合成;
(化合物73の合成)
Figure JPOXMLDOC01-appb-C000098
<Example 10>
Synthesis of 1,4-bis (10-phenyl-10H-benzo [4,5] thieno [3,2-b] indol-3-yl) benzene;
(Synthesis of Compound 73)
Figure JPOXMLDOC01-appb-C000098
   3-ブロモ-10-フェニル-10H-ベンゾ[4,5]チエノ[3
  ,2-b]インドール 40.0g、
   ビスピナコラートジボロン 32.2g、
   酢酸カリウム 20.8g、
   トルエン 400ml、
   1,1-ビス{(ジフェニルホスフィノ)フェロセン}パラジウム
  (II)ジクロライド-ジクロロメタン付加体 2.6g、
を窒素置換した反応容器に加えて加熱し、75℃で20時間攪拌した。室温まで冷却し、不溶物をろ過によって除いた後、分液操作によって有機層を採取した後に、濃縮することによって粗製物を得た。
 粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:ジクロロメタン/n-ヘプタン)によって精製した後、ヘプタンを用いた結晶化によって、3-(4,4,5,5-テトラメチル-[1,3,2]ジオキサボラン-2-イル)-10-フェニル-10H-ベンゾ[4,5]チエノ[3,2-b]インドール33.6gを得た。
3-Bromo-10-phenyl-10H-benzo [4,5] thieno [3
, 2-b] indole 40.0 g,
Bispinacolate diboron 32.2g,
20.8 g of potassium acetate,
400 ml of toluene,
1,1-bis {(diphenylphosphino) ferrocene} palladium (II) dichloride-dichloromethane adduct 2.6 g,
Was added to a reaction vessel purged with nitrogen, heated, and stirred at 75 ° C. for 20 hours. After cooling to room temperature and removing insolubles by filtration, the organic layer was collected by a liquid separation operation and then concentrated to obtain a crude product.
The crude product was purified by column chromatography (carrier: silica gel, eluent: dichloromethane / n-heptane) and then crystallized with heptane to give 3- (4,4,5,5-tetramethyl- [1, 33.6 g of 3,2] dioxaboran-2-yl) -10-phenyl-10H-benzo [4,5] thieno [3,2-b] indole was obtained.
   得られた3-(4,4,5,5-テトラメチル-[1,3,2]ジオ
  キサボラン-2-イル)-10-フェニル-10H-ベンゾ[4,5]
  チエノ[3,2-b]インドール 14.2g、
   1,4-ジブロモベンゼン 10g、
   THF/エタノール(7/2、v/v)の混合溶媒 108ml、
   2M炭酸カリウム水溶液 38ml、
   テトラキス(トリフェニルホスフィン)パラジウム 0.9g、
を窒素雰置換した反応容器に加えて加熱し、75℃で9時間攪拌した。室温まで冷却した後、メタノールを加え、析出物をろ過によって採取した。析出物を1,2-ジクロロベンゼンに加熱溶解し、不溶物をろ過によって除去した後、濃縮することによって粗製物を得た。
 粗製物をTHF/アセトンの混合溶媒を用いた再結晶を2回繰り返した後、さらにトルエンを用いた再結晶を2回繰り返すことによって、1,4-ビス(10-フェニル-10H-ベンゾ[4,5]チエノ[3,2-b]インドール-3-イル)ベンゼン(化合物73)の灰白色粉体13.2g(収率76.8%)を得た。
The resulting 3- (4,4,5,5-tetramethyl- [1,3,2] dioxabolan-2-yl) -10-phenyl-10H-benzo [4,5]
Thieno [3,2-b] indole 14.2 g,
1,4-dibromobenzene 10 g,
108 ml of a mixed solvent of THF / ethanol (7/2, v / v),
38 ml of 2M aqueous potassium carbonate solution,
0.9 g of tetrakis (triphenylphosphine) palladium,
Was added to a reaction vessel purged with nitrogen and heated, and stirred at 75 ° C. for 9 hours. After cooling to room temperature, methanol was added and the precipitate was collected by filtration. The precipitate was dissolved by heating in 1,2-dichlorobenzene, the insoluble matter was removed by filtration, and then concentrated to obtain a crude product.
The crude product was recrystallized twice using a mixed solvent of THF / acetone, and then further recrystallized twice using toluene, whereby 1,4-bis (10-phenyl-10H-benzo [4 , 5] thieno [3,2-b] indol-3-yl) benzene (Compound 73), 13.2 g (yield 76.8%) of an off-white powder.
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図10に示した。 The structure of the obtained white powder was identified using NMR. The results of 1 H-NMR measurement are shown in FIG.
 H-NMR(CDCl)で以下の28個の水素のシグナルを検出した。
   δ(ppm)=7.94-7.87(4H)
          7.68-7.53(17H)
          7.34-7.17(7H)
The following 28 hydrogen signals were detected by 1 H-NMR (CDCl 3 ).
δ (ppm) = 7.94-7.87 (4H)
7.68-7.53 (17H)
7.34-7.17 (7H)
<実施例11>
(ガラス転移温度の測定)
 実施例1~10で得られたベンゾチエノインドール誘導体について、高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100S)によってガラス転移点を求めた。
 その結果は以下の通りであった。
                    ガラス転移点 
    実施例1の化合物        133.5℃
    実施例2の化合物        144.6℃
    実施例3の化合物        117.7℃
    実施例4の化合物        129.5℃
    実施例5の化合物        131.9℃
    実施例6の化合物        135.3℃
    実施例7の化合物        151.1℃
    実施例8の化合物        116.3℃
    実施例9の化合物        130.0℃
    実施例10の化合物        観測されず
<Example 11>
(Measurement of glass transition temperature)
For the benzothienoindole derivatives obtained in Examples 1 to 10, the glass transition point was determined by a high-sensitivity differential scanning calorimeter (manufactured by Bruker AXS, DSC3100S).
The results were as follows.
Glass transition point
Compound of Example 1 133.5 ° C.
Compound of Example 2 144.6 ° C
Compound of Example 3 117.7 ° C
Compound of Example 4 129.5 ° C
Compound of Example 5 131.9 ° C
Compound of Example 6 135.3 ° C
Compound of Example 7 151.1 ° C
Compound of Example 8 116.3 ° C
Compound of Example 9 130.0 ° C
Compound of Example 10 Not observed
 上記のガラス転移温度測定の結果によれば、本発明のベンゾチエノインドール化合物は、100℃以上のガラス転移点を有しているか、もしくは観測されなかった。この結果は、本発明のベンゾチエノインドール化合物を用いて形成された蒸着膜は、その状態が安定であることを示す。 According to the above glass transition temperature measurement results, the benzothienoindole compound of the present invention has a glass transition point of 100 ° C. or higher or was not observed. This result shows that the state of the deposited film formed using the benzothienoindole compound of the present invention is stable.
<実施例12>
 実施例1~10で得られたベンゾチエノインドール誘導体を用いて、ITO基板の上に膜厚100nmの蒸着膜を作製して、イオン化ポテンシャル測定装置(住友重機械工業株式会社製、PYS-202型)で仕事関数を測定した。
                   仕事関数
     実施例1の化合物     5.57eV
     実施例2の化合物     5.54eV
     実施例3の化合物     5.57eV
     実施例4の化合物     5.63eV
     実施例5の化合物     5.58eV
     実施例6の化合物     5.66eV
     実施例7の化合物     5.56eV
     実施例8の化合物     5.68eV
     実施例9の化合物     5.64eV
     NPD          5.54eV
<Example 12>
Using the benzothienoindole derivatives obtained in Examples 1 to 10, a deposited film with a film thickness of 100 nm was prepared on an ITO substrate, and an ionization potential measuring device (PYS-202 type, manufactured by Sumitomo Heavy Industries, Ltd.). ) To measure the work function.
Work function Compound of Example 1 5.57 eV
Compound of Example 2 5.54 eV
Compound of Example 3 5.57 eV
Compound of Example 4 5.63 eV
Compound of Example 5 5.58 eV
Compound of Example 6 5.66 eV
Compound of Example 7 5.56 eV
Compound of Example 8 5.68 eV
Compound of Example 9 5.64 eV
NPD 5.54eV
 上記の結果から、本発明のベンゾチエノインドール誘導体は、NPD、TPDなどの一般的な正孔輸送材料がもつ仕事関数5.5eVと比較して、好適なエネルギー準位を示しており、良好な正孔輸送能力を有していることが分かる。 From the above results, the benzothienoindole derivative of the present invention shows a suitable energy level as compared with the work function of 5.5 eV which is possessed by general hole transport materials such as NPD and TPD, It turns out that it has a hole transport capability.
<実施例13>
(有機EL素子の特性評価)
 実施例1で得られたベンゾチエノインドール誘導体(化合物7)を用いて形成された正孔輸送層を備え、図11に示す構造の有機EL素子を作製した。
<Example 13>
(Characteristic evaluation of organic EL elements)
An organic EL device having the structure shown in FIG. 11 was prepared, comprising a hole transport layer formed using the benzothienoindole derivative (Compound 7) obtained in Example 1.
 具体的には、膜厚150nmのITOを成膜したガラス基板1を有機溶媒で洗浄した後に、酸素プラズマ処理にて表面を洗浄した。その後、このITO電極付きガラス基板を真空蒸着機内に取り付け0.001Pa以下まで減圧した。続いて、下記構造式の化合物82を用いて、透明電極2を覆うように膜厚20nmの正孔注入層3を形成した。
Figure JPOXMLDOC01-appb-C000099
Specifically, the glass substrate 1 on which ITO having a thickness of 150 nm was formed was washed with an organic solvent, and then the surface was washed by oxygen plasma treatment. Then, this glass substrate with an ITO electrode was mounted in a vacuum vapor deposition machine and the pressure was reduced to 0.001 Pa or less. Subsequently, a hole injection layer 3 having a thickness of 20 nm was formed so as to cover the transparent electrode 2 using a compound 82 having the following structural formula.
Figure JPOXMLDOC01-appb-C000099
 このようにして形成された正孔注入層3の上に、実施例1で得られたベンゾチエノインドール誘導体(化合物7)を蒸着して膜厚40nmの正孔輸送層4を形成した。
 この正孔輸送層4の上に、下記構造式の化合物83と化合物84とを使用し、蒸着速度比が化合物83:化合物84=5:95となる蒸着速度で二元蒸着を行い、膜厚30nmの発光層5を形成した。
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
On the hole injection layer 3 formed in this manner, the benzothienoindole derivative (compound 7) obtained in Example 1 was deposited to form a hole transport layer 4 having a thickness of 40 nm.
On the hole transport layer 4, a compound 83 and a compound 84 having the following structural formula are used, and binary deposition is performed at a deposition rate at which a deposition rate ratio is 83:95:95. A 30 nm light emitting layer 5 was formed.
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
 次いで、Alqを使用し上記の発光層5の上に膜厚30nmの電子輸送層6を形成した。
 さらに、フッ化リチウムを使用し、上記の電子輸送層6の上に膜厚0.5nmの電子注入層7を形成した。
 最後に、アルミニウムを膜厚150nmとなるように蒸着して陰極8を形成し、図11に示す構造の有機EL素子を得た。
Next, an electron transport layer 6 having a film thickness of 30 nm was formed on the light emitting layer 5 using Alq 3 .
Further, lithium fluoride was used to form an electron injection layer 7 having a thickness of 0.5 nm on the electron transport layer 6.
Finally, aluminum was vapor-deposited to a thickness of 150 nm to form the cathode 8 to obtain an organic EL device having the structure shown in FIG.
 上記のようにして作製した有機EL素子について、大気中、常温で直流電圧を印加したときの発行特性の測定結果を表1にまとめて示した。 Table 1 summarizes the measurement results of the issuance characteristics of the organic EL devices produced as described above when a DC voltage was applied in the atmosphere at room temperature.
<実施例14>
 実施例1のベンゾチエノインドール誘導体(化合物7)に代えて、実施例2の化合物(化合物9)を使用して膜厚40nmの正孔輸送層4を形成した以外は、実施例13と全く同様にして有機EL素子を作製した。得られた有機EL素子について、実施例13と同様にして発光特性を測定し、その結果を表1に示した。
<Example 14>
Except that the 40 nm-thick hole transport layer 4 was formed using the compound (Compound 9) of Example 2 instead of the benzothienoindole derivative (Compound 7) of Example 1, it was exactly the same as Example 13. Thus, an organic EL element was produced. The obtained organic EL device was measured for light emission characteristics in the same manner as in Example 13, and the results are shown in Table 1.
<実施例15>
 実施例1のベンゾチエノインドール誘導体(化合物7)に代えて、実施例3の化合物(化合物36)を使用して膜厚40nmの正孔輸送層4を形成した以外は、実施例13と全く同様にして有機EL素子を作製した。得られた有機EL素子について、実施例13と同様にして発光特性を測定し、その結果を表1に示した。
<Example 15>
Except for forming the 40 nm-thick hole transport layer 4 by using the compound of Example 3 (Compound 36) instead of the benzothienoindole derivative (Compound 7) of Example 1, it was exactly the same as Example 13. Thus, an organic EL element was produced. The obtained organic EL device was measured for light emission characteristics in the same manner as in Example 13, and the results are shown in Table 1.
<実施例16>
 実施例1のベンゾチエノインドール誘導体(化合物7)に代えて、実施例4の化合物(化合物8)を使用して膜厚40nmの正孔輸送層4を形成した以外は、実施例13と全く同様にして有機EL素子を作製した。得られた有機EL素子について、実施例13と同様にして発光特性を測定し、その結果を表1に示した。
<Example 16>
Except that the 40-nm-thick hole transport layer 4 was formed using the compound of Example 4 (Compound 8) instead of the benzothienoindole derivative (Compound 7) of Example 1, it was exactly the same as Example 13. Thus, an organic EL element was produced. The obtained organic EL device was measured for light emission characteristics in the same manner as in Example 13, and the results are shown in Table 1.
<実施例17>
 実施例1のベンゾチエノインドール誘導体(化合物7)に代えて、実施例5の化合物(化合物15)を使用して膜厚40nmの正孔輸送層4を形成した以外は、実施例13と全く同様にして有機EL素子を作製した。得られた有機EL素子について、実施例13と同様にして発光特性を測定し、その結果を表1に示した。
<Example 17>
Except for using the compound (Compound 15) of Example 5 instead of the benzothienoindole derivative (Compound 7) of Example 1, the hole transport layer 4 having a thickness of 40 nm was formed to be exactly the same as Example 13. Thus, an organic EL element was produced. The obtained organic EL device was measured for light emission characteristics in the same manner as in Example 13, and the results are shown in Table 1.
<実施例18>
 実施例1のベンゾチエノインドール誘導体(化合物7)に代えて、実施例6の化合物(化合物79)を使用して膜厚40nmの正孔輸送層4を形成した以外は、実施例13と全く同様にして有機EL素子を作製した。得られた有機EL素子について、実施例13と同様にして発光特性を測定し、その結果を表1に示した。
<Example 18>
Except that the 40-nm-thick hole transport layer 4 was formed using the compound of Example 6 (Compound 79) instead of the benzothienoindole derivative (Compound 7) of Example 1, it was exactly the same as Example 13. Thus, an organic EL element was produced. The obtained organic EL device was measured for light emission characteristics in the same manner as in Example 13, and the results are shown in Table 1.
<実施例19>
 実施例1のベンゾチエノインドール誘導体(化合物7)に代えて、実施例7の化合物(化合物80)を使用して膜厚40nmの正孔輸送層4を形成した以外は、実施例13と全く同様にして有機EL素子を作製した。得られた有機EL素子について、実施例13と同様にして発光特性を測定し、その結果を表1に示した。
<Example 19>
Except for using the compound (Compound 80) of Example 7 instead of the benzothienoindole derivative (Compound 7) of Example 1, the hole transport layer 4 having a thickness of 40 nm was formed, and exactly the same as Example 13. Thus, an organic EL element was produced. The obtained organic EL device was measured for light emission characteristics in the same manner as in Example 13, and the results are shown in Table 1.
<実施例20>
 実施例1のベンゾチエノインドール誘導体(化合物7)に代えて、実施例8の化合物(化合物6)を使用して膜厚40nmの正孔輸送層4を形成した以外は、実施例13と全く同様にして有機EL素子を作製した。得られた有機EL素子について、実施例13と同様にして発光特性を測定し、その結果を表1に示した。
<Example 20>
Except that the 40-nm-thick hole transport layer 4 was formed using the compound of Example 8 (Compound 6) instead of the benzothienoindole derivative (Compound 7) of Example 1, it was exactly the same as Example 13. Thus, an organic EL element was produced. The obtained organic EL device was measured for light emission characteristics in the same manner as in Example 13, and the results are shown in Table 1.
<実施例21>
 実施例1のベンゾチエノインドール誘導体(化合物7)に代えて、実施例9の化合物(化合物81)を使用して膜厚40nmの正孔輸送層4を形成した以外は、実施例13と全く同様にして有機EL素子を作製した。得られた有機EL素子について、実施例13と同様にして発光特性を測定し、その結果を表1に示した。
<Example 21>
Except that the 40-nm-thick hole transport layer 4 was formed using the compound of Example 9 (Compound 81) instead of the benzothienoindole derivative (Compound 7) of Example 1, it was exactly the same as Example 13. Thus, an organic EL element was produced. The obtained organic EL device was measured for light emission characteristics in the same manner as in Example 13, and the results are shown in Table 1.
<比較例1>
 比較のために、実施例1のベンゾチエノインドール誘導体(化合物7)に代えて、下記の構造式Bを使用して膜厚40nmの正孔輸送層4を形成した以外は、実施例13と全く同様にして有機EL素子を作製した。
Figure JPOXMLDOC01-appb-C000102
 作製した有機EL素子について、大気中、常温で直流電圧を印加したときの発行特性の測定結果を表1にまとめて示した。
<Comparative Example 1>
For comparison, in place of the benzothienoindole derivative (Compound 7) of Example 1, the following structural formula B was used to form a hole transport layer 4 having a thickness of 40 nm. Similarly, an organic EL device was produced.
Figure JPOXMLDOC01-appb-C000102
Table 1 summarizes the measurement results of the issuance characteristics of the produced organic EL elements when a DC voltage was applied at room temperature in the atmosphere.
<比較例2>
 実施例1のベンゾチエノインドール誘導体(化合物7)に代えて、下記構造式85を使用して膜厚40nmの正孔輸送層4を形成した以外は、実施例13と全く同様にして有機EL素子を作製した。得られた有機EL素子について、実施例13と同様にして発光特性を測定し、その結果を表1に示した。
Figure JPOXMLDOC01-appb-C000103
<Comparative Example 2>
Instead of the benzothienoindole derivative (Compound 7) of Example 1, an organic EL device was produced in the same manner as Example 13 except that the hole transport layer 4 having a film thickness of 40 nm was formed using the following structural formula 85. Was made. The obtained organic EL device was measured for light emission characteristics in the same manner as in Example 13, and the results are shown in Table 1.
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-T000104
Figure JPOXMLDOC01-appb-T000104
 表1に示す様に、電流密度10mA/cmの電流を流したときの駆動電圧は、化合物Bを用いた有機EL素子の5.62V、化合物85を用いた有機EL素子の4.87Vに対して本発明の実施例1~9の化合物を用いた有機EL素子では、4.63~4.80Vといずれも低電圧化した。また、電力効率においても化合物Bを用いた有機EL素子の5.06lm/W、化合物85を用いた有機EL素子の5.06lm/Wに対して本発明の実施例1~9の化合物を用いた有機EL素子では5.16~5.57lm/Wといずれも向上した。 As shown in Table 1, the driving voltage when a current density of 10 mA / cm 2 was passed was 5.62 V for an organic EL element using Compound B and 4.87 V for an organic EL element using Compound 85. On the other hand, in the organic EL devices using the compounds of Examples 1 to 9 of the present invention, the voltage was decreased from 4.63 to 4.80 V. In terms of power efficiency, the compounds of Examples 1 to 9 of the present invention were used for 5.06 lm / W of the organic EL device using Compound B and 5.06 lm / W of the organic EL device using Compound 85. The conventional organic EL device was improved from 5.16 to 5.57 lm / W.
 以上の結果から明らかなように、本発明のベンゾチエノインドール誘導体を用いた有機EL素子は、公知の前記化合物Bまたは化合物85を用いた有機EL素子と比較しても、電力効率の向上や、実用駆動電圧の低下を達成できることがわかった。 As is clear from the above results, the organic EL device using the benzothienoindole derivative of the present invention is improved in power efficiency as compared with the organic EL device using the known compound B or compound 85, It was found that a decrease in practical driving voltage can be achieved.
 また、実施例13~21、比較例1及び比較例2で得られた有機EL素子について、発光開始電圧を測定し、その結果を以下に示した。
   有機EL素子    化合物      発光開始電圧[V]
    実施例13    化合物7       2.7
    実施例14    化合物9       2.7
    実施例15    化合物36      2.7
    実施例16    化合物8       2.7
    実施例17    化合物15      2.8
    実施例18    化合物79      2.8
    実施例19    化合物80      2.7
    実施例20    化合物6       2.7
    実施例21    化合物81      2.7
    比較例1     化合物B       2.9
    比較例2     化合物85      2.8
Further, with respect to the organic EL devices obtained in Examples 13 to 21, Comparative Example 1 and Comparative Example 2, the light emission starting voltage was measured, and the results are shown below.
Organic EL device Compound Luminescence start voltage [V]
Example 13 Compound 7 2.7
Example 14 Compound 9 2.7
Example 15 Compound 36 2.7
Example 16 Compound 8 2.7
Example 17 Compound 15 2.8
Example 18 Compound 79 2.8
Example 19 Compound 80 2.7
Example 20 Compound 6 2.7
Example 21 Compound 81 2.7
Comparative Example 1 Compound B 2.9
Comparative Example 2 Compound 85 2.8
 この結果から分かる様に、それぞれ、従来公知の化合物B及び化合物85を用いた有機EL素子に比して、本発明のベンゾチエノインドール誘導体(実施例1~9の化合物)を用いた有機EL素子は、発光開始電圧が低い。 As can be seen from the results, each of the organic EL devices using the benzothienoindole derivatives (compounds of Examples 1 to 9) of the present invention as compared with the organic EL devices using the conventionally known compounds B and 85, respectively. Has a low emission start voltage.
 本発明のベンゾチエノインドール誘導体は、正孔輸送能力が高く、電子阻止能力に優れており、薄膜状態が安定であるため、有機EL素子用の化合物として優れている。該化合物を用いて有機EL素子を作製することにより、高い発光効率および電力効率を得ることができると共に、実用駆動電圧を低下させることができ、耐久性を改善させることができる。例えば、家庭電化製品や照明の用途への展開が可能となった。 The benzothienoindole derivative of the present invention is excellent as a compound for an organic EL device because it has a high hole transport ability, an excellent electron blocking ability, and a stable thin film state. By producing an organic EL device using the compound, high luminous efficiency and power efficiency can be obtained, practical driving voltage can be lowered, and durability can be improved. For example, it has become possible to develop home appliances and lighting.
   1 ガラス基板
   2 透明陽極
   3 正孔注入層
   4 正孔輸送層
   5 発光層
   6 電子輸送層
   7 電子注入層
   8 陰極
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Transparent anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Electron transport layer 7 Electron injection layer 8 Cathode

Claims (9)

  1.  下記一般式(1)で表されるベンゾチエノインドール誘導体;
    Figure JPOXMLDOC01-appb-C000001
      式中、
       Ar~Arは、芳香族炭化水素基又は芳香族複素環基を表
      し、ArとArとは、単結合、置換基を有してもよいメチレ
      ン基、酸素原子または硫黄原子を介して互いに結合して環を形成
      してもよく、
       R~Rは、水素原子、重水素原子、フッ素原子、塩素原子
      、シアノ基、ニトロ基、炭素原子数1~6のアルキル基、炭素原
      子数5~10のシクロアルキル基、炭素原子数2~6のアルケニ
      ル基、炭素原子数1~6のアルキルオキシ基、炭素原子数5~1
      0のシクロアルキルオキシ基、芳香族炭化水素基、芳香族複素環
      基またはアリールオキシ基であって、R~R或いはR
      Rは、単結合、置換基を有してもよいメチレン基、酸素原子ま
      たは硫黄原子を介して互いに結合して環を形成してもよく、
       Aは、2価の芳香族炭化水素基、2価の芳香族複素環基また
      は単結合を表し、Aが、2価の芳香族炭化水素基又は2価の芳
      香族複素環基である場合には、Aと前記Arとは、単結合、
      置換基を有してもよいメチレン基、酸素原子または硫黄原子を介
      して互いに結合して環を形成してもよい。
    A benzothienoindole derivative represented by the following general formula (1);
    Figure JPOXMLDOC01-appb-C000001
    Where
    Ar 1 to Ar 3 represent an aromatic hydrocarbon group or an aromatic heterocyclic group, and Ar 2 and Ar 3 are a single bond or an optionally substituted methylene group, oxygen atom or sulfur atom. May be linked together to form a ring,
    R 1 to R 7 are a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, nitro group, alkyl group having 1 to 6 carbon atoms, cycloalkyl group having 5 to 10 carbon atoms, carbon atom Alkenyl group having 2 to 6 carbon atoms, alkyloxy group having 1 to 6 carbon atoms, and 5 to 1 carbon atoms
    A cycloalkyloxy group of 0, an aromatic hydrocarbon group, an aromatic heterocyclic group or an aryloxy group, wherein R 1 to R 4 or R 5 to
    R 7 may be bonded to each other via a single bond, an optionally substituted methylene group, an oxygen atom or a sulfur atom to form a ring,
    A 1 represents a divalent aromatic hydrocarbon group, a divalent or aromatic heterocyclic group represents a single bond, A 1 is a divalent aromatic hydrocarbon group or a divalent Kaoru aromatic heterocyclic group In this case, A 1 and Ar 3 are a single bond,
    A ring may be formed by bonding to each other via a methylene group, an oxygen atom or a sulfur atom which may have a substituent.
  2.  前記基Aが3位の炭素原子に結合しており、且つ下記一般式(1a):
    Figure JPOXMLDOC01-appb-C000002
      式中、
       Ar~Ar、R~R及びAは、前記一般式(1)で
      記載したとおりの意味である、
    で表される請求項1に記載のベンゾチエノインドール誘導体。
    The group A 1 is bonded to the 3-position carbon atom, and the following general formula (1a):
    Figure JPOXMLDOC01-appb-C000002
    Where
    Ar 1 to Ar 3 , R 1 to R 7 and A 1 have the same meanings as described in the general formula (1).
    The benzothienoindole derivative of Claim 1 represented by these.
  3.  前記Arが、ベンゾチエニル基であり、該ベンゾチエニル基中のチオフェン環が単結合により前記Aと結合した構造を有しており、且つ下記一般式(2):
    Figure JPOXMLDOC01-appb-C000003
      式中、
       Ar、Ar、R~Rは、前記一般式(1)で記載した
      とおりの意味であり、
       Aは、前記Aの一部の基であり、2価の芳香族炭化水素基
      、2価の芳香族複素環基または単結合を表し、
       R~R14は、水素原子、重水素原子、フッ素原子、塩素原
      子、シアノ基、ニトロ基、炭素原子数1~6のアルキル基、炭素
      原子数5~10のシクロアルキル基、炭素原子数2~6のアルケ
      ニル基、炭素原子数1~6のアルキルオキシ基、炭素原子数5~
      10のシクロアルキルオキシ基、芳香族炭化水素基、芳香族複素
      環基またはアリールオキシ基であって、R~R11或いは
      R12~R14は、単結合、置換基を有してもよいメチレン基、酸
      素原子または硫黄原子を介して互いに結合して環を形成してもよ
      い、
    で表される請求項1に記載のベンゾチエノインドール誘導体。
    The Ar 3 is a benzothienyl group, the thiophene ring in the benzothienyl group has a structure bonded to the A 1 through a single bond, and the following general formula (2):
    Figure JPOXMLDOC01-appb-C000003
    Where
    Ar 1 , Ar 2 , R 1 to R 7 have the same meanings as described in the general formula (1),
    A 2 is a part of A 1 and represents a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group or a single bond,
    R 8 ~ R 14 is a hydrogen atom, a deuterium atom, a fluorine atom, EnsoHara child, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having a carbon number of 5-10, carbon atoms Alkenyl groups having 2 to 6 carbon atoms, alkyloxy groups having 1 to 6 carbon atoms, and 5 to 5 carbon atoms
    10 cycloalkyloxy groups, aromatic hydrocarbon groups, aromatic heterocyclic groups or aryloxy groups, wherein R 8 to R 11 or R 12 to R 14 may have a single bond or a substituent. It may be bonded to each other via a methylene group, an oxygen atom or a sulfur atom to form a ring.
    The benzothienoindole derivative of Claim 1 represented by these.
  4.  下記一般式(2a): 
    Figure JPOXMLDOC01-appb-C000004
      式中、
       Ar、Ar、R~R14及びAは、前記一般式(2)
      で記載したとおりの意味である、
    で表される請求項3記載のベンゾチエノインドール誘導体。
    The following general formula (2a):
    Figure JPOXMLDOC01-appb-C000004
    Where
    Ar 1 , Ar 2 , R 1 to R 14, and A 2 represent the above general formula (2)
    Meaning as described in the
    The benzothienoindole derivative of Claim 3 represented by these.
  5.  一対の電極とその間に挟まれた少なくとも一層の有機層を有する有機エレクトロルミネッセンス素子において、
     前記有機層の少なくとも1つの層は、請求項1に記載のベンゾチエノインドール誘導体を含むことを特徴とする有機エレクトロルミネッセンス素子。
    In an organic electroluminescence device having a pair of electrodes and at least one organic layer sandwiched therebetween,
    At least one layer of the organic layer contains the benzothienoindole derivative according to claim 1.
  6.  前記ベンゾチエノインドール誘導体を含む有機層が正孔輸送層である請求項5記載の有機エレクトロルミネッセンス素子。 6. The organic electroluminescence device according to claim 5, wherein the organic layer containing the benzothienoindole derivative is a hole transport layer.
  7.  前記ベンゾチエノインドール誘導体を含む有機層が電子阻止層である請求項5記載の有機エレクトロルミネッセンス素子。 6. The organic electroluminescence device according to claim 5, wherein the organic layer containing the benzothienoindole derivative is an electron blocking layer.
  8.  前記ベンゾチエノインドール誘導体を含む有機層が正孔注入層である請求項5記載の有機エレクトロルミネッセンス素子。 6. The organic electroluminescence device according to claim 5, wherein the organic layer containing the benzothienoindole derivative is a hole injection layer.
  9.  前記ベンゾチエノインドール誘導体を含む有機層が発光層である請求項5記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent device according to claim 5, wherein the organic layer containing the benzothienoindole derivative is a light emitting layer.
PCT/JP2013/072677 2012-09-07 2013-08-26 Novel benzothienoindole derivative and organic electroluminescent element in which novel benzothienoindole derivative is used WO2014038417A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014504513A JPWO2014038417A1 (en) 2012-09-07 2013-08-26 Novel benzothienoindole derivative and organic electroluminescence device using the derivative

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012196998 2012-09-07
JP2012-196998 2012-09-07

Publications (1)

Publication Number Publication Date
WO2014038417A1 true WO2014038417A1 (en) 2014-03-13

Family

ID=50237029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072677 WO2014038417A1 (en) 2012-09-07 2013-08-26 Novel benzothienoindole derivative and organic electroluminescent element in which novel benzothienoindole derivative is used

Country Status (3)

Country Link
JP (2) JPWO2014038417A1 (en)
TW (1) TW201418260A (en)
WO (1) WO2014038417A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125679A1 (en) * 2014-02-18 2015-08-27 保土谷化学工業株式会社 Benzofuroindole derivative and organic electroluminescence element
US10388888B2 (en) 2014-12-29 2019-08-20 University Court Of The University Of St Andrews Light emitting electrochemical cells and compounds
CN112384547A (en) * 2018-07-03 2021-02-19 保土谷化学工业株式会社 Triarylamine high-molecular-weight compound having terphenyl structure in molecular main chain, and organic electroluminescent element comprising same
CN114573538A (en) * 2022-03-07 2022-06-03 京东方科技集团股份有限公司 Arylamine compound, light-emitting device and display device
CN115141209A (en) * 2021-03-29 2022-10-04 烟台显华科技集团股份有限公司 Compound with fused heterocyclic biaryl amine or carbazole parent structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3162806B1 (en) * 2014-06-27 2023-08-23 LT Materials Co., Ltd. Heterocyclic compound and organic light emitting device using same
WO2021241882A1 (en) * 2020-05-29 2021-12-02 주식회사 엘지화학 Compound and organic light-emitting device comprising same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009182034A (en) * 2008-01-29 2009-08-13 Mitsui Chemicals Inc Organic transistor
JP2010270084A (en) * 2009-05-25 2010-12-02 Idemitsu Kosan Co Ltd Indole derivative, and solar cell of organic thin film by using the same
WO2012035934A1 (en) * 2010-09-13 2012-03-22 新日鐵化学株式会社 Organic electroluminescent element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009182034A (en) * 2008-01-29 2009-08-13 Mitsui Chemicals Inc Organic transistor
JP2010270084A (en) * 2009-05-25 2010-12-02 Idemitsu Kosan Co Ltd Indole derivative, and solar cell of organic thin film by using the same
WO2012035934A1 (en) * 2010-09-13 2012-03-22 新日鐵化学株式会社 Organic electroluminescent element

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. KALINOWSKI ET AL.: "Electromodulation of Luminescence in Organic Photoconductors", J. ELECTROCHEM. SOC., vol. 143, no. 1, 1996, pages 315 - 325 *
S. J. JACOBS ET AL., INTERNATIONAL SAMPE TECHNICAL CONFERENCE (1995), 27 (DIVERSITY INTO THE NEXT CENTURY), vol. 27, 1995, pages 703 - 706 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125679A1 (en) * 2014-02-18 2015-08-27 保土谷化学工業株式会社 Benzofuroindole derivative and organic electroluminescence element
US10388888B2 (en) 2014-12-29 2019-08-20 University Court Of The University Of St Andrews Light emitting electrochemical cells and compounds
CN112384547A (en) * 2018-07-03 2021-02-19 保土谷化学工业株式会社 Triarylamine high-molecular-weight compound having terphenyl structure in molecular main chain, and organic electroluminescent element comprising same
CN112384547B (en) * 2018-07-03 2023-07-11 保土谷化学工业株式会社 Triarylamine high molecular weight compound having terphenyl structure in molecular main chain and organic electroluminescent element comprising same
CN115141209A (en) * 2021-03-29 2022-10-04 烟台显华科技集团股份有限公司 Compound with fused heterocyclic biaryl amine or carbazole parent structure
CN114573538A (en) * 2022-03-07 2022-06-03 京东方科技集团股份有限公司 Arylamine compound, light-emitting device and display device

Also Published As

Publication number Publication date
TW201418260A (en) 2014-05-16
JPWO2014038417A1 (en) 2016-08-08
JP2014101374A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP6374905B2 (en) Compound having indenocarbazole ring structure and organic electroluminescence device
JP5836358B2 (en) Compound having indolocarbazole ring structure and organic electroluminescence device
JP6329937B2 (en) Organic electroluminescence device
JP5850835B2 (en) COMPOUND HAVING ACRYDAN RING STRUCTURE AND ORGANIC ELECTROLUMINESCENT DEVICE
WO2013157367A1 (en) Novel triphenylene derivative, and organic electroluminescent element in which said derivative is used
JP6294878B2 (en) Indenoindole derivatives and organic electroluminescence devices
JP6735743B2 (en) Arylamine compound and organic electroluminescence device
JP2011178742A (en) Compound having phenoxazine ring structure or phenothiazine ring structure and organic electroluminescent element
WO2014038417A1 (en) Novel benzothienoindole derivative and organic electroluminescent element in which novel benzothienoindole derivative is used
JP6251675B2 (en) COMPOUND HAVING ACRYDAN RING STRUCTURE AND ORGANIC ELECTROLUMINESCENT DEVICE
WO2012147330A1 (en) Compound with acridan ring structure, and organic electroluminescent element
WO2013061805A1 (en) New triphenylene derivative and organic electroluminescent element using said derivative
JP6389459B2 (en) Dicarbazole derivative and organic electroluminescence device
WO2014042006A1 (en) Novel thieno-indole derivative and organic electroluminescent element using said derivative
JP6580553B2 (en) Benzofurindole derivatives and organic electroluminescence devices
JP5525665B1 (en) COMPOUND HAVING ACRYDAN RING STRUCTURE AND ORGANIC ELECTROLUMINESCENT DEVICE

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014504513

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13835080

Country of ref document: EP

Kind code of ref document: A1