WO2014065225A1 - Fluorophosphate glass, preform for press molding, and optical element - Google Patents

Fluorophosphate glass, preform for press molding, and optical element Download PDF

Info

Publication number
WO2014065225A1
WO2014065225A1 PCT/JP2013/078421 JP2013078421W WO2014065225A1 WO 2014065225 A1 WO2014065225 A1 WO 2014065225A1 JP 2013078421 W JP2013078421 W JP 2013078421W WO 2014065225 A1 WO2014065225 A1 WO 2014065225A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
less
fluorophosphate glass
preform
glass according
Prior art date
Application number
PCT/JP2013/078421
Other languages
French (fr)
Japanese (ja)
Inventor
茂輝 澤村
賢治 北岡
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201380054939.XA priority Critical patent/CN104755439A/en
Priority to JP2014543275A priority patent/JPWO2014065225A1/en
Publication of WO2014065225A1 publication Critical patent/WO2014065225A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/23Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
    • C03C3/247Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron containing fluorine and phosphorus

Definitions

  • the present invention relates to fluorophosphate glass, a preform for press molding, and an optical element.
  • Press molding is a technique in which spherical or cylindrical glass (hereinafter referred to as a preform) is heated in a mold to a glass transition temperature or a yield point or higher and pressed into a specific shape.
  • the optical glass used for the optical element has different glass main components for each desired optical property.
  • a glass having low refractive index and low dispersion optical properties fluorophosphate glass is mainly used since it exhibits high visible light transmittance and anomalous dispersion (for example, see Patent Document 1).
  • Low dispersion and anomalous dispersion are effective for correcting chromatic aberration, and a high visible light transmittance is an advantageous characteristic as an optical element material constituting an imaging optical system.
  • fluorophosphate glass contains fluorine, which is an easily volatile component, as an essential component. Therefore, in the fluorophosphate glass, in addition to desired optical characteristics, desired thermal characteristics that suppress volatilization of fluorine are required in order to improve preform molding and production efficiency and yield of optical elements.
  • the fluorophosphate glass has a low glass transition temperature and yield point.
  • fluorophosphate glass is required to lower the glass transition temperature and the yield point from the viewpoint of having the above-described optical characteristics and increasing the production efficiency.
  • fluorophosphate glass suitable for press molding for example, P 5+ , Al 3+ , two or more divalent cation components selected from Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ and Li + are essential. together comprising as cationic components of, F - F to the total amount of and the O 2-- the molar ratio F - / (F - + O 2-) glass is 0.25 to 0.85 has been proposed (For example, refer to Patent Document 2). However, since this glass has a low Li + content, it has a high glass transition temperature and is not sufficient in terms of ease of production.
  • the present invention is a fluorophosphate glass suitable for the production of optical elements, has low refractive index and low dispersion optical properties, is less likely to cause striae during preform molding, and is less likely to cause devitrification during press molding.
  • the purpose is to provide glass.
  • the fluorophosphate glass of the present invention is expressed in terms of cation%, P 5+ 10-45 %, Al 3+ 1-40 %, Mg 2+ 0-20 %, Ca 2+ 0-25 %, Sr 2+ 0-25 %, Ba 2+ 0-35 %, Li + 24-60%, Na + 0-10%, K + 0-10%, Y 3+ 0-10%, B 3+ 0-15 %, Containing F - the F - anion ratio to the total amount of the O 2- (F - / (F - + O 2-)) , characterized in that it contains at from 0.25 to 0.85.
  • the fluorophosphate glass of the present invention has low refractive index and low dispersion optical characteristics. Moreover, since there is much content of Li ⁇ +> , a glass transition temperature and a yield point can be made low. Therefore, the molding temperature can be lowered, the volatilization of components from the glass surface can be suppressed, and the durability of the mold can be enhanced. Furthermore, it is thermally stable and exhibits high liquid phase viscosity. Therefore, even a preform having a large volume can produce a preform having no internal defects such as devitrification, and a large-diameter lens can be produced by a press molding method using the preform.
  • the fluorophosphate glass (hereinafter abbreviated as the present glass) of the present invention will be described below.
  • the ratio of the cation component is expressed as cation% based on the molar ratio
  • the ratio of each anion component is expressed as% anion based on the molar ratio. To do.
  • P 5+ is a glass network former and is an essential component.
  • the content of P 5+ is 10 to 45%. If it is less than 10%, the stability of the glass may be lowered.
  • the upper limit of P 5+ is preferably 40% or less, more preferably 35% or less, and even more preferably 33% or less.
  • the lower limit of P 5+ is preferably 12% or more, and more preferably 15% or more.
  • As the P 5+ raw material it is preferable to use a phosphate from the viewpoint of suppressing the erosion of the platinum crucible and suppressing the volatilization of the components.
  • Al 3+ is a component that improves the stability of the glass and is an essential component.
  • the content of Al 3+ is 1 to 40%. If it is less than 1%, the stability of the glass is lowered, and if it exceeds 40%, the glass transition temperature and the liquidus temperature may be increased.
  • the upper limit of Al 3+ is preferably 37% or less, more preferably 35% or less, still more preferably 33% or less, and even more preferably 30% or less.
  • the lower limit of Al 3+ is preferably 3% or more, and more preferably 5% or more.
  • Mg 2+ is a component that improves the stability of the glass, but is not an essential component.
  • the Mg 2+ content is 0 to 20%.
  • the upper limit of Mg 2+ is preferably 15% or less, more preferably 10% or less, and even more preferably 7% or less.
  • the lower limit of Mg 2+ is preferably more than 0%, more preferably 1% or more.
  • Ca 2+ is a component that improves the stability of the glass, but is not an essential component.
  • the content of Ca 2+ is 0 to 25%.
  • the upper limit of Ca 2+ is preferably 22% or less, more preferably 15% or less, and even more preferably 10% or less.
  • the lower limit of Ca 2+ is preferably more than 0%, more preferably 1% or more.
  • Sr 2+ is a component that improves the stability of the glass, but is not an essential component.
  • the content of Sr 2+ is 0 to 25%.
  • the upper limit of Sr 2+ is preferably 22% or less, more preferably 15% or less, and even more preferably 10% or less.
  • the lower limit of Sr 2+ is preferably more than 0%, more preferably 0.5% or more, and further preferably 1% or more.
  • Ba 2+ is a component that can improve the stability of the glass and achieve a high refractive index while maintaining low dispersion, but is not an essential component.
  • the content of Ba 2+ is 0 to 35%.
  • the upper limit of Ba 2+ is preferably 31% or less, more preferably 30% or less, still more preferably 29% or less, and even more preferably 25% or less from the viewpoint of devitrification resistance.
  • the lower limit of Ba 2+ is preferably more than 0%, more preferably 1% or more, and further preferably 3% or more.
  • the total content (Mg 2+ + Ca 2+ + Sr 2+ + Ba 2+ ) is preferably 1 to 31%.
  • the upper limit of the total amount of R 2+ is preferably 30% or less, and more preferably 29% or less.
  • R 2+ When R 2+ is contained in the above total amount, it is preferable to use two or more selected from Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ . From the viewpoint of enhancing the effect of the inclusion of the alkaline earth metal, it is preferable to use Ba 2+ as an essential component and to use one or more selected from Mg 2+ , Ca 2+ and Sr 2+ . Although Sr 2+ and Ba 2+ can be introduced in a relatively large amount, the introduction of a large amount of Mg 2+ and Ca 2+ may reduce the stability of the glass.
  • Li + is a component that lowers the glass transition temperature without impairing stability, and is an essential component.
  • the content of Li + is 24 to 60%. If the content of Li + is less than 24%, the glass transition temperature cannot be lowered sufficiently and the stability is also lowered. If it exceeds 60%, the durability of the glass is impaired, and the workability also decreases. Although the effect of lowering the glass transition temperature can be obtained even if the following alkali metal component is contained, it is preferable to contain Li + because the water resistance of the glass is excellent.
  • the upper limit of Li + is preferably 50% or less, more preferably 45% or less, still more preferably 43% or less, still more preferably 41% or less, and particularly preferably less than 40%.
  • the lower limit of Li + is preferably more than 25%, more preferably 27% or more, and even more preferably more than 30%.
  • the Li + content is preferably more than 30% to 60%.
  • the upper limit of Li + is more preferably 59% or less, still more preferably 57% or less, and even more preferably 55% or less.
  • the lower limit of Li + is more preferably 31% or more and even more preferably 32% or more.
  • the Li + content is preferably 24 to 30%.
  • the upper limit of Li + is more preferably 29% or less, even more preferably 28% or less, and even more preferably 27% or less.
  • the lower limit of Li + is more preferably more than 24% and even more preferably 25% or more.
  • the ratio of the content of Li + to the total amount of alkaline earth metal components Li + / ⁇ R 2+ is preferably more than 0.8 and less than 16.
  • Li + / ⁇ R 2+ be 1 or more and less than 16.
  • the upper limit of Li + / ⁇ R 2+ is more preferably 15 or less, even more preferably 14 or less, and even more preferably 13 or less.
  • the lower limit of Li + / ⁇ R 2+ is more preferably more than 1, and even more preferably 2 or more.
  • the upper limit of Li + / ⁇ R 2+ is more preferably 0.98 or less, and even more preferably 0.97 or less.
  • the lower limit of Li + / ⁇ R 2+ is more preferably 0.82 or more, and even more preferably 0.85 or more.
  • Na + and K + are components that lower the glass transition temperature in the same manner as Li + , but are not essential components.
  • the contents of Na + and K + are both 0 to 10%. Since Na + and K + have a larger thermal expansion coefficient than that of Li + , a low content is preferable, and it is more preferable that they are not substantially contained.
  • the term “substantially does not contain” means to allow contamination by inevitable impurities although not actively containing.
  • Y 3+ is a component that improves the stability or durability of the glass, but is not an essential component.
  • the content of Y 3+ is 0 to 10%. If it exceeds 10%, the stability of the glass is rather lowered and the glass transition temperature is increased.
  • the upper limit of Y 3+ is preferably 7% or less, and more preferably 5% or less.
  • B 3+ is a vitrification component and has the effect of stabilizing the glass, but is not an essential component.
  • the content of B 3+ is 0 to 15%. From the viewpoint of ensuring the durability of the glass and suppressing the volatilization of the components, B 3+ is preferably 15% or less.
  • the upper limit of B 3+ is preferably 10% or less, and more preferably 5% or less. In order to reduce the volatilization of components, 0.5% or less is more preferable, and it is particularly preferable that the component is not substantially contained.
  • the raw material of B 3+ is preferably B 2 O 3 from the viewpoint of suppressing the volatilization of components and preventing the striae of glass.
  • the glass may contain components other than the above components as long as the object of the invention is not impaired, but P 5+ , Al 3+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Li + can be used as the cation component.
  • the total amount of Y 3+ is preferably 95% or more from the viewpoint of stably producing a high-quality optical glass.
  • the total amount of the cation component is preferably 98% or more, more preferably 99% or more, substantially from P 5+ , Al 3+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Li + and Y 3+. It is particularly preferred that
  • components other than the above components include lanthanoids such as Ti 4+ , Zr 4+ , Zn 2+ , Bi 5+ , W 5+ , Nb 5+ , Sb 3+ , La 3+ , and Gd 3+ .
  • the total content of these is preferably 5% or less, more preferably 2% or less, and even more preferably 1% or less.
  • Si 4+ may also be included for the purpose of stabilizing the glass.
  • the content of Si 4+ is preferably 0 to 10%, more preferably 0 to 8%, and further preferably 0 to 5%.
  • Sn 2+ is preferably not substantially contained since the glass may be colored. Moreover, in order to suppress environmental load, it is preferable not to contain Pb2 + substantially.
  • the proportion of the anionic component while achieving the desired optical properties, in order to obtain a glass having excellent stability, F - the F - and anion ratio to the total amount of the O 2-( F ⁇ / (F ⁇ + O 2 ⁇ )) 0.25 to 0.85.
  • the anion ratio is preferably 0.3 to 0.8, more preferably 0.35 to 0.75.
  • the total amount of F ⁇ and O 2 ⁇ in the anion is preferably 99% or more, and more preferably substantially consists of F ⁇ and O 2 ⁇ .
  • the anionic component, F - and O 2- Besides, containing halogen is permitted.
  • the chloride raw material has higher deliquescence than the fluoride raw material and easily contains moisture. Therefore, when used simultaneously with the fluoride raw material, it may become hydrogen fluoride and promote volatilization of fluorine.
  • a chloride raw material has a high vapor pressure and is likely to volatilize. Therefore, in the present glass, it is preferable that Cl ⁇ is not substantially contained.
  • the optical constant of the present glass is preferably 1.4 to 1.58 for the refractive index (n d ) and 60 to 90 for the Abbe number ( ⁇ d ).
  • the refractive index is more preferably 1.45 to 1.575, and further preferably 1.48 to 1.56.
  • the Abbe number is more preferably 65 to 85, and further preferably 70 to 82.
  • the glass transition temperature is preferably 380 ° C. or lower.
  • the glass transition temperature is more preferably 370 ° C. or less, further preferably 360 ° C. or less, and particularly preferably 350 ° C. or less.
  • the yield point of this glass is preferably 420 ° C. or lower.
  • the yield point is more preferably 410 ° C. or lower, further preferably 400 ° C. or lower, and particularly preferably 380 ° C. or lower.
  • the liquidus temperature of this glass is preferably 750 ° C. or lower for good preform molding.
  • the liquidus temperature is higher than 750 ° C., components are volatilized from the surface of the glass melt at the time of preform molding, which may cause striae.
  • the lower the liquidus temperature the more preferable, 730 ° C. or lower is more preferable, 670 ° C. or lower is further preferable, and 650 ° C. or lower is particularly preferable.
  • the term “liquid phase temperature” refers to the lowest temperature at which crystals are not generated from a glass melt when held at that temperature for 1 hour.
  • the linear expansion coefficient of the present glass is preferably 140 to 200 ⁇ 10 ⁇ 7 / ° C.
  • the thermal expansion coefficient exceeds 200 ⁇ 10 ⁇ 7 / ° C., there is a possibility that a problem that the glass surface is missing at the time of molding may occur.
  • the fluorophosphate glass (the present glass I), which emphasizes stability, is expressed in terms of cation%, P 5+ 10-45 %, Al 3+ 1-40 %, Mg 2+ 0-20 %, Ca 2+ 0-25 %, Sr 2+ 0-25 %, Ba 2+ 0-35 %, Li + more than 30-60%, Na + 0-10%, K + 0-10%, Y 3+ 0-10%, B 3+ 0-15 %, Containing F - the F - anion ratio to the total amount of the O 2- (F - / (F - + O 2-)) with those containing at from 0.25 to 0.85.
  • fluorophosphate glass (present glass II) that emphasizes striae suppression is expressed in terms of cation%, P 5+ 10-45 %, Al 3+ 1-40 %, Mg 2+ 0-20 %, Ca 2+ 0-25 %, Sr 2+ 0-25 %, Ba 2+ 0-35 %, Li + 24-30%, Na + 0-10%, K + 0-10%, Y 3+ 0-10%, B 3+ 0-15 %, Containing F - the F - and anion ratio to the total amount of the O 2- (F - / (F - + O 2-)) are those containing at from 0.25 to 0.85.
  • the preform of the present invention is preferably obtained by molding the present glass or further polishing the molded product.
  • a glass raw material of the present glass is melted in a tank to form a glass melt, and this glass melt is discharged from a nozzle tip attached to the tank to a forming die to produce a molten glass lump (gob).
  • the glass melt is received and collected by the receiving surface of the mold, but the mold is slowly lowered so that the glass tip does not wet the tip of the nozzle.
  • the gob reaches the target volume, the mold is lowered quickly and the glass flow is cut by surface tension.
  • an inert gas such as nitrogen gas is passed through the porous mold, and the gob is lifted by the force of the gas outflow to make it elliptical or spherical, etc. Cool and mold the preform.
  • the radius of curvature R of the surface that receives the glass melt is 8 mm
  • the concave depth of the curved surface of the portion that receives the glass is 4 mm
  • Those configured to be ejected are used.
  • An inert gas such as nitrogen gas is ejected only from the R portion.
  • An inert gas such as nitrogen gas may not only float the gob but also fill it around the gob.
  • the glass composition is thermally stable and exhibits high liquid phase viscosity, even a large preform having a volume of 1 to 1.5 cm 3 does not have internal defects such as devitrification and foreign matter. Is obtained.
  • a preform free from striae, surface wrinkles and scratches can be obtained. If the preform has a volume of 1.5 cm 3 , a lens having a diameter of about 25 mm can be manufactured by press molding.
  • optical element of the present invention is preferably obtained by molding a preform formed from the present glass. Since the present glass has the optical characteristics described above, the optical design is easy when used as an optical element. Examples of such optical elements include aspherical lenses and spherical lenses used in digital cameras and the like.
  • a press molding method is preferable from the viewpoint of improving mass productivity.
  • a press molding die whose molding surface is processed into a desired shape in advance is used.
  • a pair of molds face each other, the preform of the present invention described above is placed between them, and both the mold and the preform are heated to a temperature at which the glass falls to a viscosity suitable for molding. Soften the renovation.
  • molding die is precisely transcribe
  • the present glass is free from internal defects such as devitrification and foreign matter, and is free from striae and surface wrinkles and scratches even in a large preform having a volume of 1 to 1.5 cm 3. Since a preform can be obtained, it is possible to manufacture a lens having a large aperture, which has been difficult in the past, by a press molding method.
  • a lens with a diameter of 8 mm from a preform with a volume of about 0.6 cm 3 , a lens with a diameter of 15 mm from a preform with a volume of about 1.0 cm 3 , a lens with a diameter of about 25 mm from a preform with a volume of about 1.5 cm 3 Each can be manufactured by press molding.
  • the atmosphere during press molding is preferably non-oxidizing to protect the mold surface and preform surface.
  • an inert gas such as argon or nitrogen
  • a reducing gas such as hydrogen
  • a mixed gas of an inert gas and a reducing gas can be used.
  • nitrogen gas or nitrogen gas mixed with a small amount of hydrogen gas can be used.
  • the pressure and time during pressurization can be appropriately changed according to the viscosity of the glass. After heating and pressurizing, the mold and the press-molded product are cooled, and when the temperature is preferably below the strain point, the mold is released and the press-molded product is taken out.
  • Examples 1 to 61 are examples of the present invention, and examples 62 and 63 are comparative examples.
  • Examples 62 and 63 are glasses having the compositions described in Examples 17 and 19 of JP2010-42998A. The produced glass was measured by the method described below. Tables 1 to 7 show the cation% and anion% of each glass and the measured values obtained by the following measurements. For data not measured, “-” is shown in the table.
  • the raw materials were weighed so as to obtain glasses having chemical compositions shown in Tables 1 to 7.
  • a phosphate raw material, a fluoride raw material, an oxide raw material, and a carbonate raw material were used and prepared so as to have a target composition.
  • the prepared raw material was put into a platinum crucible having an internal volume of about 300 cc, and melted, clarified and stirred at about 900 to 1000 ° C. for 1 hour. Then, after casting into a rectangular mold having a length of 100 mm and a width of 50 mm preheated to about 320 to 370 ° C., it was gradually cooled at about 1 ° C./min to obtain a sample.
  • Optical constant (refractive index, Abbe number): A sample processed into a rectangular parallelepiped shape having a side of 20 mm and a thickness of 10 mm was used and measured with a refractometer (trade name: KPR-2000, manufactured by Kalnew Optical Industry Co., Ltd.). Refractive index values are rounded to the fifth decimal place by rounding to the sixth decimal place.
  • n F and n C are refractive indexes for hydrogen F line and C line, respectively. These refractive indexes were similarly measured using the refractometer.
  • Thermal characteristics glass transition temperature, yield point
  • a sample processed into a cylindrical shape having a diameter of 5 mm and a length of 20 mm was subjected to thermal expansion using a thermomechanical analyzer (trade name: TMA4000SA, manufactured by Bruker AXS). The measurement was performed at a heating rate of 5 ° C./min.
  • Liquid phase temperature About 5 g of a glass sample was put in a platinum dish, and each of the glass samples held at 600 ° C. to 800 ° C. in increments of 10 ° C. for 1 hour was cooled by natural cooling, and then the presence or absence of crystal precipitation was observed with a microscope. The lowest temperature at which no crystal was observed was defined as the liquidus temperature.
  • Linear expansion coefficient A sample processed into a cylindrical shape having a diameter of 5 mm and a length of 20 mm, using a thermomechanical analyzer (trade name: TMA4000SA, manufactured by Bruker AXS), using quartz as a standard data, 5 ° C / The average value of 50 to 200 ° C. was calculated from the thermal expansion curve obtained at a rate of temperature increase of minutes.
  • Example 52 (Preparation of preform for press molding) The glass material of Example 52 was heated and melted and clarified at 900 ° C. in a glass melting furnace, homogenized at 800 ° C., and introduced into the outflow pipe. The molten glass introduced into the outflow pipe was caused to flow out from the nozzle and supplied onto the mold to produce a press molding preform. In the mold, the molten glass was shaped into an ellipse or a sphere while being floated with nitrogen gas. The produced preform was observed with a polarizing microscope (trade name: BX50, manufactured by OLYMPUS), and it was confirmed that there was no devitrification. The volume was 1.5 cm 3 .
  • An optical glass suitable as an optical element used in an optical system such as a digital camera can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

Disclosed is fluorophosphate glass. This glass contains, in cation %, 10-45% of P5+, 1-40% of Al3+, 0-20% of Mg2+, 0-25% of Ca2+, 0-25% of Sr2+, 0-35% of Ba2+, 24-60% of Li+, 0-10% of Na+, 0-10% of K+, 0-10% of Y3+, 0-15% of B3+, and F- in such an amount that the anion ratio of F- to the total of F- and O2-, namely F-/(F- + O2-) is 0.25-0.85.

Description

フツリン酸ガラス、プレス成形用プリフォーム、および光学素子Fluorophosphate glass, press-molding preform, and optical element
 本発明はフツリン酸ガラス、プレス成形用プリフォーム、および光学素子に関する。 The present invention relates to fluorophosphate glass, a preform for press molding, and an optical element.
 近年、プレス成形技術の向上により、プレス成形によって光学素子を製造する方法が主流となっている。プレス成形は、球状や円筒形などのガラス(以下、プリフォームという)を金型中でガラス転移温度または屈伏点程度以上に加熱し、プレスして特定の形状に成形する手法である。 In recent years, methods for manufacturing optical elements by press molding have become mainstream due to improvements in press molding technology. Press molding is a technique in which spherical or cylindrical glass (hereinafter referred to as a preform) is heated in a mold to a glass transition temperature or a yield point or higher and pressed into a specific shape.
 光学素子に使用する光学ガラスは、所望する光学特性ごとに、ガラスの主成分が異なる。低屈折率かつ低分散の光学特性を有するガラスとしては、高い可視光透過率と異常分散性を示すことから、フツリン酸ガラスが主に使用されている(例えば、特許文献1参照)。低分散性および異常分散性は、色収差の補正に有効であり、高い可視光透過率は撮像光学系を構成する光学素子材料として有利な特性である。 The optical glass used for the optical element has different glass main components for each desired optical property. As a glass having low refractive index and low dispersion optical properties, fluorophosphate glass is mainly used since it exhibits high visible light transmittance and anomalous dispersion (for example, see Patent Document 1). Low dispersion and anomalous dispersion are effective for correcting chromatic aberration, and a high visible light transmittance is an advantageous characteristic as an optical element material constituting an imaging optical system.
 一方で、フツリン酸ガラスは、揮散しやすい成分であるフッ素を必須成分として含有する。そのため、フツリン酸ガラスにおいては、所望の光学特性に加えて、プリフォーム成形や光学素子の生産効率や歩留まりを高めるために、フッ素の揮発を抑制する所望の熱的特性が求められる。 On the other hand, fluorophosphate glass contains fluorine, which is an easily volatile component, as an essential component. Therefore, in the fluorophosphate glass, in addition to desired optical characteristics, desired thermal characteristics that suppress volatilization of fluorine are required in order to improve preform molding and production efficiency and yield of optical elements.
 例えば、プレス成形時において、成形温度が高温になり過ぎると、プリフォーム表面から成分が揮散し、金型表面にフッ化物などの揮散成分が付着する。この揮発成分がガラス表面に付着すると光を散乱し、クモリ欠点となる。したがって、金型の耐久性の向上、クモリ欠点を防止するためにも、フツリン酸ガラスは、ガラス転移温度および屈伏点が低いことが望ましい。 For example, if the molding temperature becomes too high during press molding, the components are volatilized from the preform surface, and volatilized components such as fluoride adhere to the mold surface. When this volatile component adheres to the glass surface, it scatters light and becomes a spider defect. Therefore, in order to improve the durability of the mold and prevent spider defects, it is desirable that the fluorophosphate glass has a low glass transition temperature and yield point.
 すなわち、フツリン酸ガラスは、上記した光学特性を有し、かつ、製造効率を高める観点から、ガラス転移温度および屈伏点を低くすることが求められている。 That is, fluorophosphate glass is required to lower the glass transition temperature and the yield point from the viewpoint of having the above-described optical characteristics and increasing the production efficiency.
 プレス成形に適したフツリン酸ガラスとして、例えば、P5+と、Al3+と、Mg2+、Ca2+、Sr2+およびBa2+から選ばれる2価のカチオン成分を2種以上と、Liとを必須のカチオン成分として含有するとともに、FとO2-との合計量に対するFのモル比F/(F+O2-)が0.25~0.85であるガラスが提案されている(例えば、特許文献2参照)。しかし、このガラスは、Liの含有量が少ないため、ガラス転移温度が高く、製造しやすさの点で充分とはいえない。 As fluorophosphate glass suitable for press molding, for example, P 5+ , Al 3+ , two or more divalent cation components selected from Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ and Li + are essential. together comprising as cationic components of, F - F to the total amount of and the O 2-- the molar ratio F - / (F - + O 2-) glass is 0.25 to 0.85 has been proposed (For example, refer to Patent Document 2). However, since this glass has a low Li + content, it has a high glass transition temperature and is not sufficient in terms of ease of production.
特開平10-139454号公報Japanese Patent Laid-Open No. 10-139454 特開2010-042998号公報JP 2010-042998 A
 本発明は、光学素子の製造に好適なフツリン酸ガラスであって、低屈折率かつ低分散の光学特性を有し、プリフォーム成形時に脈理を生じにくく、プレス成形時に失透が生じにくい光学ガラスの提供を目的とする。 The present invention is a fluorophosphate glass suitable for the production of optical elements, has low refractive index and low dispersion optical properties, is less likely to cause striae during preform molding, and is less likely to cause devitrification during press molding. The purpose is to provide glass.
 本発明のフツリン酸ガラスは、カチオン%表示で、
5+ 10~45%、
Al3+ 1~40%、
Mg2+ 0~20%、
Ca2+ 0~25%、
Sr2+ 0~25%、
Ba2+ 0~35%、
Li 24~60%、
Na 0~10%、
 0~10%、
3+ 0~10%、
3+ 0~15%、
を含有し、
 FをFとO2-との合計量に対してアニオン比(F/(F+O2-))0.25~0.85で含有することを特徴とする。
The fluorophosphate glass of the present invention is expressed in terms of cation%,
P 5+ 10-45 %,
Al 3+ 1-40 %,
Mg 2+ 0-20 %,
Ca 2+ 0-25 %,
Sr 2+ 0-25 %,
Ba 2+ 0-35 %,
Li + 24-60%,
Na + 0-10%,
K + 0-10%,
Y 3+ 0-10%,
B 3+ 0-15 %,
Containing
F - the F - anion ratio to the total amount of the O 2- (F - / (F - + O 2-)) , characterized in that it contains at from 0.25 to 0.85.
 本発明のフツリン酸ガラスは、低屈折率かつ低分散の光学特性を有する。また、Liの含有量が多いため、ガラス転移温度や屈伏点を低くできる。そのため、成形温度を低くでき、ガラス表面から成分の揮発を抑制し、金型の耐久性を高められる。さらに、熱的に安定で、高い液相粘性を示す。そのため、体積の大きいプリフォームであっても失透などの内部欠陥のないプリフォームを製造でき、これを用いて大口径のレンズをプレス成形法により製造できる。 The fluorophosphate glass of the present invention has low refractive index and low dispersion optical characteristics. Moreover, since there is much content of Li <+> , a glass transition temperature and a yield point can be made low. Therefore, the molding temperature can be lowered, the volatilization of components from the glass surface can be suppressed, and the durability of the mold can be enhanced. Furthermore, it is thermally stable and exhibits high liquid phase viscosity. Therefore, even a preform having a large volume can produce a preform having no internal defects such as devitrification, and a large-diameter lens can be produced by a press molding method using the preform.
(光学ガラス)
 本発明のフツリン酸ガラス(以下、本ガラスと略す)を以下に説明する。本明細書では、以下、特に断らない限り、カチオン成分の割合を、モル比をベースにしたカチオン%で表示し、各アニオン成分の割合を、モル比をベースにしたアニオン%で表示するものとする。
(Optical glass)
The fluorophosphate glass (hereinafter abbreviated as the present glass) of the present invention will be described below. In the present specification, unless otherwise specified, the ratio of the cation component is expressed as cation% based on the molar ratio, and the ratio of each anion component is expressed as% anion based on the molar ratio. To do.
 P5+はガラスのネットワークフォーマーであり、必須成分である。P5+の含有量は、10~45%である。10%未満ではガラスの安定性が低下するおそれがある。P5+の含有量を高くするには、原料として正リン酸で導入することが好ましい。P5+が45%超とすると正リン酸中の水がフッ素と反応し、HFガスとして揮発するおそれがある。酸化物原料で導入する場合は、酸素比率が大きくなりすぎるため、所望の光学特性を満たさないおそれがある。P5+の上限は、40%以下が好ましく、35%以下がより好ましく、33%以下がさらに好ましい。P5+の下限は、12%以上が好ましく、15%以上がより好ましい。P5+の原料は、白金るつぼの侵食を抑制し、成分の揮発抑制の観点から、リン酸塩の使用が好ましい。 P 5+ is a glass network former and is an essential component. The content of P 5+ is 10 to 45%. If it is less than 10%, the stability of the glass may be lowered. In order to increase the content of P 5+ , it is preferable to introduce it with normal phosphoric acid as a raw material. If P 5+ exceeds 45%, the water in orthophosphoric acid may react with fluorine and volatilize as HF gas. In the case of introducing the oxide raw material, the oxygen ratio becomes too large, so that there is a possibility that desired optical characteristics are not satisfied. The upper limit of P 5+ is preferably 40% or less, more preferably 35% or less, and even more preferably 33% or less. The lower limit of P 5+ is preferably 12% or more, and more preferably 15% or more. As the P 5+ raw material, it is preferable to use a phosphate from the viewpoint of suppressing the erosion of the platinum crucible and suppressing the volatilization of the components.
 Al3+はガラスの安定性を向上させる成分であり、必須成分である。Al3+の含有量は、1~40%である。1%未満ではガラスの安定性が低下し、40%超ではガラス転移温度および液相温度が高くなるおそれがある。Al3+の上限は、37%以下が好ましく、35%以下がより好ましく、33%以下がさらに好ましく、30%以下が一層好ましい。Al3+の下限は、3%以上が好ましく、5%以上がより好ましい。 Al 3+ is a component that improves the stability of the glass and is an essential component. The content of Al 3+ is 1 to 40%. If it is less than 1%, the stability of the glass is lowered, and if it exceeds 40%, the glass transition temperature and the liquidus temperature may be increased. The upper limit of Al 3+ is preferably 37% or less, more preferably 35% or less, still more preferably 33% or less, and even more preferably 30% or less. The lower limit of Al 3+ is preferably 3% or more, and more preferably 5% or more.
 Mg2+はガラスの安定性を向上させる成分であるが、必須成分ではない。Mg2+の含有量は、0~20%である。Mg2+の上限は、耐失透性の観点から、15%以下が好ましく、10%以下がより好ましく、7%以下がさらに好ましい。Mg2+の下限は、0%超が好ましく、1%以上がより好ましい。 Mg 2+ is a component that improves the stability of the glass, but is not an essential component. The Mg 2+ content is 0 to 20%. From the viewpoint of devitrification resistance, the upper limit of Mg 2+ is preferably 15% or less, more preferably 10% or less, and even more preferably 7% or less. The lower limit of Mg 2+ is preferably more than 0%, more preferably 1% or more.
 Ca2+はガラスの安定性を向上させる成分であるが、必須成分ではない。Ca2+の含有量は、0~25%である。Ca2+の上限は、耐失透性の観点から、22%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましい。Ca2+の下限は、0%超が好ましく、1%以上がより好ましい。 Ca 2+ is a component that improves the stability of the glass, but is not an essential component. The content of Ca 2+ is 0 to 25%. From the viewpoint of devitrification resistance, the upper limit of Ca 2+ is preferably 22% or less, more preferably 15% or less, and even more preferably 10% or less. The lower limit of Ca 2+ is preferably more than 0%, more preferably 1% or more.
 本ガラスにおいて、Sr2+はガラスの安定性を向上させる成分であるが、必須成分ではない。Sr2+の含有量は、0~25%である。Sr2+の上限は、耐失透性の観点から、22%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましい。Sr2+の下限は、0%超が好ましく、0.5%以上がより好ましく、1%以上がさらに好ましい。 In the present glass, Sr 2+ is a component that improves the stability of the glass, but is not an essential component. The content of Sr 2+ is 0 to 25%. From the viewpoint of devitrification resistance, the upper limit of Sr 2+ is preferably 22% or less, more preferably 15% or less, and even more preferably 10% or less. The lower limit of Sr 2+ is preferably more than 0%, more preferably 0.5% or more, and further preferably 1% or more.
 Ba2+はガラスの安定性を向上させ、かつ、低分散を保ちつつ高屈折率を実現できる成分であるが、必須成分ではない。Ba2+の含有量は、0~35%である。Ba2+の上限は、耐失透性の観点から、31%以下が好ましく、30%以下がより好ましく、29%以下がさらに好ましく、25%以下がより一層好ましい。Ba2+の下限は、0%超が好ましく、1%以上がより好ましく、3%以上がさらに好ましい。 Ba 2+ is a component that can improve the stability of the glass and achieve a high refractive index while maintaining low dispersion, but is not an essential component. The content of Ba 2+ is 0 to 35%. The upper limit of Ba 2+ is preferably 31% or less, more preferably 30% or less, still more preferably 29% or less, and even more preferably 25% or less from the viewpoint of devitrification resistance. The lower limit of Ba 2+ is preferably more than 0%, more preferably 1% or more, and further preferably 3% or more.
 アルカリ土類金属のカチオン成分(R2+)の含有による効果を高めるためには、これらの含有量は、合量(Mg2++Ca2++Sr2++Ba2+)で1~31%が好ましい。1%以上の含有で、ガラスの安定性を高める効果が高まる。一方で、31%超では、かえってガラスの安定性が低下する。R2+の合量の上限は、30%以下が好ましく、29%以下がより好ましい。 In order to enhance the effect of the alkaline earth metal cation component (R 2+ ), the total content (Mg 2+ + Ca 2+ + Sr 2+ + Ba 2+ ) is preferably 1 to 31%. When the content is 1% or more, the effect of increasing the stability of the glass is enhanced. On the other hand, if it exceeds 31%, the stability of the glass is rather lowered. The upper limit of the total amount of R 2+ is preferably 30% or less, and more preferably 29% or less.
 R2+を上記合量で含有する場合、Mg2+、Ca2+、Sr2+およびBa2+から選ばれる2種以上の使用が好ましい。アルカリ土類金属の含有による効果を高める観点から、Ba2+を必須として含有し、Mg2+、Ca2+およびSr2+から選ばれる1種以上の使用がより好ましい。なお、Sr2+およびBa2+は比較的多量に導入できるが、Mg2+およびCa2+の多量の導入はかえって、ガラスの安定性を低下させるおそれがある。 When R 2+ is contained in the above total amount, it is preferable to use two or more selected from Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ . From the viewpoint of enhancing the effect of the inclusion of the alkaline earth metal, it is preferable to use Ba 2+ as an essential component and to use one or more selected from Mg 2+ , Ca 2+ and Sr 2+ . Although Sr 2+ and Ba 2+ can be introduced in a relatively large amount, the introduction of a large amount of Mg 2+ and Ca 2+ may reduce the stability of the glass.
 Liは安定性を損なわずにガラス転移温度を下げる成分であり、必須成分である。Liの含有量は、24~60%である。Liの含有量が24%未満では、ガラス転移温度を充分に下げることができず、安定性も低下する。60%超ではガラスの耐久性を損ない、加工性も低下する。下記のアルカリ金属成分の含有でもガラス転移温度を下げる効果は得られるが、Liを含有する方が、ガラスの耐水性に優れるため、好ましい。Liの上限は、50%以下が好ましく、45%以下がより好ましく、43%以下がより一層好ましく、41%以下がさらに好ましく、40%未満が特に好ましい。Liの下限は、25%超が好ましく、27%以上がより好ましく、30%超がより一層好ましい。ガラスの安定性を重視する場合は、Li+の含有量を30%超~60%とすることが好ましい。この際、Liの上限は、59%以下がより好ましく、57%以下がより一層好ましく、55%以下がさらに好ましい。Liの下限は、31%以上がより好ましく、32%以上がより一層好ましい。ガラスの脈理抑制を重視する場合は、Li+の含有量を24~30%とすることが好ましい。この際、Liの上限は、29%以下がより好ましく、28%以下がより一層好ましく、27%以下がさらに好ましい。Liの下限は、24%超がより好ましく、25%以上がより一層好ましい。 Li + is a component that lowers the glass transition temperature without impairing stability, and is an essential component. The content of Li + is 24 to 60%. If the content of Li + is less than 24%, the glass transition temperature cannot be lowered sufficiently and the stability is also lowered. If it exceeds 60%, the durability of the glass is impaired, and the workability also decreases. Although the effect of lowering the glass transition temperature can be obtained even if the following alkali metal component is contained, it is preferable to contain Li + because the water resistance of the glass is excellent. The upper limit of Li + is preferably 50% or less, more preferably 45% or less, still more preferably 43% or less, still more preferably 41% or less, and particularly preferably less than 40%. The lower limit of Li + is preferably more than 25%, more preferably 27% or more, and even more preferably more than 30%. When importance is attached to the stability of the glass, the Li + content is preferably more than 30% to 60%. At this time, the upper limit of Li + is more preferably 59% or less, still more preferably 57% or less, and even more preferably 55% or less. The lower limit of Li + is more preferably 31% or more and even more preferably 32% or more. When importance is attached to striae suppression of glass, the Li + content is preferably 24 to 30%. At this time, the upper limit of Li + is more preferably 29% or less, even more preferably 28% or less, and even more preferably 27% or less. The lower limit of Li + is more preferably more than 24% and even more preferably 25% or more.
 本ガラスにおいて、ガラスの安定性と脈理抑制の効果を得るために、アルカリ土類金属成分の合計量に対するLiの含有量の比Li/ΣR2+、すなわちLi/(Mg2++Ca2++Sr2++Ba2+)が0.8超16未満となるようにすることが好ましい。特に、ガラスの安定性を重視する場合、Li/ΣR2+が1以上16未満となるようにすることが好ましい。ガラスが安定化することによって、体積の大きいプリフォームの製造が可能になり、大口径のレンズもプレス成形法によって製造することが可能になる。Li/ΣR2+の上限は、15以下がより好ましく、14以下がより一層好ましく、13以下がさらに好ましい。Li/ΣR2+の下限は、1超がより好ましく、2以上がより一層好ましい。ガラスの脈理抑制を重視する場合、Li/ΣR2+が0.8超1未満となるようにすることが好ましい。この場合、Li/ΣR2+の上限は、0.98以下がより好ましく、0.97以下がより一層好ましい。Li/ΣR2+の下限は、0.82以上がより好ましく、0.85以上がより一層好ましい。 In this glass, in order to obtain the effects of glass stability and striae suppression, the ratio of the content of Li + to the total amount of alkaline earth metal components Li + / ΣR 2+ , that is, Li + / (Mg 2+ + Ca 2+ + Sr 2+ + Ba 2+ ) is preferably more than 0.8 and less than 16. In particular, when importance is attached to the stability of the glass, it is preferable that Li + / ΣR 2+ be 1 or more and less than 16. By stabilizing the glass, it is possible to produce a preform having a large volume, and it is also possible to produce a large-diameter lens by a press molding method. The upper limit of Li + / ΣR 2+ is more preferably 15 or less, even more preferably 14 or less, and even more preferably 13 or less. The lower limit of Li + / ΣR 2+ is more preferably more than 1, and even more preferably 2 or more. When importance is attached to striae suppression of glass, it is preferable that Li + / ΣR 2+ be more than 0.8 and less than 1. In this case, the upper limit of Li + / ΣR 2+ is more preferably 0.98 or less, and even more preferably 0.97 or less. The lower limit of Li + / ΣR 2+ is more preferably 0.82 or more, and even more preferably 0.85 or more.
 NaおよびKはそれぞれLiと同様にガラス転移温度を下げる成分であるが、必須成分ではない。NaおよびKの含有量は、いずれも、0~10%である。NaおよびKは、Liに比べてガラスの熱膨張係数が大きくなるため、低含有量が好ましく、実質的に含有しないことがより好ましい。本明細書において、用語「実質的に含有しない」は、積極的には含有させないが、不可避不純物による混入を許容することを意味する。 Na + and K + are components that lower the glass transition temperature in the same manner as Li + , but are not essential components. The contents of Na + and K + are both 0 to 10%. Since Na + and K + have a larger thermal expansion coefficient than that of Li + , a low content is preferable, and it is more preferable that they are not substantially contained. In the present specification, the term “substantially does not contain” means to allow contamination by inevitable impurities although not actively containing.
 Y3+はガラスの安定性または耐久性を向上させる成分であるが、必須成分ではない。Y3+の含有量は、0~10%である。10%超では、かえってガラスの安定性低下し、ガラス転移温度が高くなる。Y3+の上限は、7%以下が好ましく、5%以下がより好ましい。 Y 3+ is a component that improves the stability or durability of the glass, but is not an essential component. The content of Y 3+ is 0 to 10%. If it exceeds 10%, the stability of the glass is rather lowered and the glass transition temperature is increased. The upper limit of Y 3+ is preferably 7% or less, and more preferably 5% or less.
 B3+はガラス化成分であり、ガラスを安定化させる効果があるが、必須成分ではない。B3+の含有量は、0~15%である。ガラスの耐久性確保と成分の揮散抑制の観点から、B3+は15%以下が好ましい。B3+の上限は、10%以下が好ましく、5%以下がより好ましい。成分の揮散低減のためには、0.5%以下がさらに好ましく、実質的に含有しないことが特に好ましい。B3+の原料は、成分の揮散を抑制し、ガラスの脈理を防止する観点から、Bが好ましい。 B 3+ is a vitrification component and has the effect of stabilizing the glass, but is not an essential component. The content of B 3+ is 0 to 15%. From the viewpoint of ensuring the durability of the glass and suppressing the volatilization of the components, B 3+ is preferably 15% or less. The upper limit of B 3+ is preferably 10% or less, and more preferably 5% or less. In order to reduce the volatilization of components, 0.5% or less is more preferable, and it is particularly preferable that the component is not substantially contained. The raw material of B 3+ is preferably B 2 O 3 from the viewpoint of suppressing the volatilization of components and preventing the striae of glass.
 本ガラスにおいては、発明の目的を損なわない限りにおいて、上記成分以外の成分を含有してもよいが、カチオン成分としてP5+、Al3+、Mg2+、Ca2+、Sr2+、Ba2+、LiおよびY3+の合計量を95%以上とすることが、高品質な光学ガラスを安定して製造する上から好ましい。前記カチオン成分の合計量は、98%以上がより好ましく、99%以上がさらに好ましく、実質的に、P5+、Al3+、Mg2+、Ca2+、Sr2+、Ba2+、LiおよびY3+からなることが特に好ましい。 The glass may contain components other than the above components as long as the object of the invention is not impaired, but P 5+ , Al 3+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Li + can be used as the cation component. And the total amount of Y 3+ is preferably 95% or more from the viewpoint of stably producing a high-quality optical glass. The total amount of the cation component is preferably 98% or more, more preferably 99% or more, substantially from P 5+ , Al 3+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Li + and Y 3+. It is particularly preferred that
 上記成分以外の成分としては、Ti4+、Zr4+、Zn2+、Bi5+、W5+、Nb5+、Sb3+、La3+、Gd3+などのランタノイドなどが挙げられる。これらの含有量は、合計で、5%以下が好ましく、2%以下がより好ましく、1%以下がさらに好ましい。 Examples of components other than the above components include lanthanoids such as Ti 4+ , Zr 4+ , Zn 2+ , Bi 5+ , W 5+ , Nb 5+ , Sb 3+ , La 3+ , and Gd 3+ . The total content of these is preferably 5% or less, more preferably 2% or less, and even more preferably 1% or less.
 Si4+も、ガラスを安定化させる目的で含有してもよい。ただし、フツリン酸ガラスの製造においては、ガラスの溶解温度が低いため、過剰に導入するとガラス融液内に原料の溶け残りが生じ、溶解時に揮発が多くなり製造安定性を損なうおそれがある。したがってSi4+の含有量は、0~10%が好ましく、0~8%がより好ましく、0~5%がさらに好ましい。 Si 4+ may also be included for the purpose of stabilizing the glass. However, in the production of fluorophosphate glass, since the melting temperature of the glass is low, if it is introduced excessively, the raw material remains undissolved in the glass melt, and volatilization increases during melting, which may impair the production stability. Accordingly, the content of Si 4+ is preferably 0 to 10%, more preferably 0 to 8%, and further preferably 0 to 5%.
 Sn2+は、ガラスが着色するおそれがあるので、実質的に含有しないことが好ましい。また、環境負荷を抑えるため、Pb2+も実質的に含有しないことが好ましい。 Sn 2+ is preferably not substantially contained since the glass may be colored. Moreover, in order to suppress environmental load, it is preferable not to contain Pb2 + substantially.
 本ガラスにおいて、アニオン成分の割合は、所望の光学特性を実現しつつ、優れた安定性を有するガラスを得るために、FをFとO2-との合計量に対してアニオン比(F/(F+O2-))0.25~0.85で含有する。アニオン比は、0.3~0.8が好ましく、0.35~0.75がより好ましい。また、アニオン中におけるF-とO2-の合計量は、99%以上が好ましく、実質的にF-とO2-からなることがより好ましい。 In the present glass, the proportion of the anionic component, while achieving the desired optical properties, in order to obtain a glass having excellent stability, F - the F - and anion ratio to the total amount of the O 2-( F / (F + O 2− )) 0.25 to 0.85. The anion ratio is preferably 0.3 to 0.8, more preferably 0.35 to 0.75. Further, the total amount of F and O 2− in the anion is preferably 99% or more, and more preferably substantially consists of F and O 2− .
 アニオン成分としては、FとO2-以外にも、ハロゲンの含有は許容される。ただし、塩化物原料はフッ化物原料に比べ、潮解性が高く、水分を含みやすいため、フッ化物原料と同時に使用すると、フッ化水素となりフッ素の揮発を促進させるおそれがある。また、一般に、塩化物原料は、蒸気圧が高く揮発しやすい。そのため、本ガラスにおいては、Clは実質的に含有しないことが好ましい。 The anionic component, F - and O 2- Besides, containing halogen is permitted. However, the chloride raw material has higher deliquescence than the fluoride raw material and easily contains moisture. Therefore, when used simultaneously with the fluoride raw material, it may become hydrogen fluoride and promote volatilization of fluorine. In general, a chloride raw material has a high vapor pressure and is likely to volatilize. Therefore, in the present glass, it is preferable that Cl is not substantially contained.
 本ガラスの光学恒数は、屈折率(n)は1.4~1.58、アッベ数(ν)は60~90が好ましい。屈折率は、1.45~1.575がより好ましく、1.48~1.56がさらに好ましい。アッベ数は、65~85より好ましく、70~82がさらに好ましい。 The optical constant of the present glass is preferably 1.4 to 1.58 for the refractive index (n d ) and 60 to 90 for the Abbe number (ν d ). The refractive index is more preferably 1.45 to 1.575, and further preferably 1.48 to 1.56. The Abbe number is more preferably 65 to 85, and further preferably 70 to 82.
 本ガラスは、Liの含有量が多いので、ガラス転移点を低くできる。ガラス転移温度は、380℃以下が好ましい。プレス成形時の金型の劣化や、プリフォームからの成分の揮散を抑制し生産性低下を防止するためには、ガラス転移温度は低いほど好ましい。したがって、ガラス転移温度は、370℃以下がより好ましく、360℃以下がさらに好ましく、350℃以下が特に好ましい。 Since the present glass has a large Li + content, the glass transition point can be lowered. The glass transition temperature is preferably 380 ° C. or lower. In order to suppress deterioration of the mold during press molding and volatilization of components from the preform and prevent a decrease in productivity, the lower the glass transition temperature, the better. Therefore, the glass transition temperature is more preferably 370 ° C. or less, further preferably 360 ° C. or less, and particularly preferably 350 ° C. or less.
 本ガラスの屈伏点は、420℃以下が好ましい。プレス成形時の金型の劣化や、プリフォームからの成分の揮散を抑制し生産性低下を防止するためには、屈伏点は低いほど好ましい。したがって、屈伏点は、410℃以下がより好ましく、400℃以下がさらに好ましく、380℃以下が特に好ましい。 The yield point of this glass is preferably 420 ° C. or lower. In order to prevent deterioration of the mold during press molding and volatilization of components from the preform and prevent a decrease in productivity, a lower yield point is preferable. Therefore, the yield point is more preferably 410 ° C. or lower, further preferably 400 ° C. or lower, and particularly preferably 380 ° C. or lower.
 本ガラスの液相温度は、良好なプリフォーム成形のため750℃以下が好ましい。液相温度が750℃超では、プリフォーム成形時にガラス融液表面から成分が揮散し、脈理の原因になるおそれがある。液相温度は低いほど好ましく、730℃以下がより好ましく、670℃以下がさらに好ましく、650℃以下が特に好ましい。本明細書においては、用語「液相温度」は、その温度に1時間保持した場合に、ガラス融液から結晶が生成しない最低温度をいう。 The liquidus temperature of this glass is preferably 750 ° C. or lower for good preform molding. When the liquidus temperature is higher than 750 ° C., components are volatilized from the surface of the glass melt at the time of preform molding, which may cause striae. The lower the liquidus temperature, the more preferable, 730 ° C. or lower is more preferable, 670 ° C. or lower is further preferable, and 650 ° C. or lower is particularly preferable. In the present specification, the term “liquid phase temperature” refers to the lowest temperature at which crystals are not generated from a glass melt when held at that temperature for 1 hour.
 本ガラスの線膨張係数は、140~200×10-7/℃が好ましい。熱膨張係数が200×10-7/℃を超えると成形時にガラス表面が欠ける問題が発生するおそれがある。 The linear expansion coefficient of the present glass is preferably 140 to 200 × 10 −7 / ° C. When the thermal expansion coefficient exceeds 200 × 10 −7 / ° C., there is a possibility that a problem that the glass surface is missing at the time of molding may occur.
 本ガラスの組成範囲において、安定性を重視したフツリン酸塩ガラス(本ガラスI)は、カチオン%表示で、
5+ 10~45%、
Al3+ 1~40%、
Mg2+ 0~20%、
Ca2+ 0~25%、
Sr2+ 0~25%、
Ba2+ 0~35%、
Li 30超~60%、
Na 0~10%、
 0~10%、
3+ 0~10%、
3+ 0~15%、
を含有し、
 FをFとO2-との合計量に対してアニオン比(F/(F+O2-))で0.25~0.85で含有するものである。
In the composition range of the present glass, the fluorophosphate glass (the present glass I), which emphasizes stability, is expressed in terms of cation%,
P 5+ 10-45 %,
Al 3+ 1-40 %,
Mg 2+ 0-20 %,
Ca 2+ 0-25 %,
Sr 2+ 0-25 %,
Ba 2+ 0-35 %,
Li + more than 30-60%,
Na + 0-10%,
K + 0-10%,
Y 3+ 0-10%,
B 3+ 0-15 %,
Containing
F - the F - anion ratio to the total amount of the O 2- (F - / (F - + O 2-)) with those containing at from 0.25 to 0.85.
 また、本ガラスの組成範囲において、脈理抑制を重視したフツリン酸塩ガラス(本ガラスII)は、カチオン%表示で、
5+ 10~45%、
Al3+ 1~40%、
Mg2+ 0~20%、
Ca2+ 0~25%、
Sr2+ 0~25%、
Ba2+ 0~35%、
Li 24~30%、
Na 0~10%、
 0~10%、
3+ 0~10%、
3+ 0~15%、
を含有し、
 FをFとO2-との合計量に対してアニオン比(F/(F+O2-))0.25~0.85で含有するものである。
In addition, in the composition range of this glass, fluorophosphate glass (present glass II) that emphasizes striae suppression is expressed in terms of cation%,
P 5+ 10-45 %,
Al 3+ 1-40 %,
Mg 2+ 0-20 %,
Ca 2+ 0-25 %,
Sr 2+ 0-25 %,
Ba 2+ 0-35 %,
Li + 24-30%,
Na + 0-10%,
K + 0-10%,
Y 3+ 0-10%,
B 3+ 0-15 %,
Containing
F - the F - and anion ratio to the total amount of the O 2- (F - / (F - + O 2-)) are those containing at from 0.25 to 0.85.
 (プリフォーム)
 本発明のプリフォームは、本ガラスを成形するか、成形したものをさらに研磨して得られ ることが好ましい。
(preform)
The preform of the present invention is preferably obtained by molding the present glass or further polishing the molded product.
 以下、本発明のプリフォームの製造方法の一例を説明するが、これに限定されるものではない。
 タンク中で本ガラスのガラス原料を溶解してガラス融液とし、このガラス融液をタンクに付設したノズル先端から成形型に流出させて溶融ガラス塊(ゴブ)を作製する。その際、ガラス融液は成形型の受け面で受け止められて溜まっていくが、ガラス融体によりノズル先端が濡れ上がらないように成形型をゆっくり下げていく。ゴブが目標体積となったところで、成形型を素早く下げ、表面張力によりガラス流を切断する。所望の体積のゴブを作製するために、ゴブ作製中は、多孔質の成形型に窒素ガスなどの不活性ガスを通し、ガスの流出による力でゴブを浮上させながら楕円または球状などとし、その後、冷却してプリフォームを成形する。
Hereinafter, although an example of the manufacturing method of the preform of this invention is demonstrated, it is not limited to this.
A glass raw material of the present glass is melted in a tank to form a glass melt, and this glass melt is discharged from a nozzle tip attached to the tank to a forming die to produce a molten glass lump (gob). At that time, the glass melt is received and collected by the receiving surface of the mold, but the mold is slowly lowered so that the glass tip does not wet the tip of the nozzle. When the gob reaches the target volume, the mold is lowered quickly and the glass flow is cut by surface tension. In order to produce a gob with a desired volume, during the production of the gob, an inert gas such as nitrogen gas is passed through the porous mold, and the gob is lifted by the force of the gas outflow to make it elliptical or spherical, etc. Cool and mold the preform.
 成形型としては、例えば、ガラス融液を受ける面の、曲率半径Rが8mm、ガラスを受ける部分の曲面の凹み深さが4mmで、多孔質材料で形成され、R部からのみ浮上用ガスが噴出するように構成されたものが使用される。R部からのみ、窒素ガスなどの不活性ガスを噴出させる。窒素ガスなどの不活性ガスは、ゴブを浮上させるだけでなく、ゴブの周囲に充満させるようにしてもよい。成形型のサイズを大きくすることにより、より体積の大きいプリフォームを成形できる。 As the mold, for example, the radius of curvature R of the surface that receives the glass melt is 8 mm, the concave depth of the curved surface of the portion that receives the glass is 4 mm, and is formed of a porous material. Those configured to be ejected are used. An inert gas such as nitrogen gas is ejected only from the R portion. An inert gas such as nitrogen gas may not only float the gob but also fill it around the gob. By increasing the size of the mold, a preform having a larger volume can be formed.
 本発明においては、ガラス組成が熱的に安定で、高い液相粘性を示すため、体積が1~1.5cmという大きなプリフォームであっても、失透や異物などの内部欠陥のないものが得られる。特に、上記方法によれば、さらに脈理や表面のシワや傷のないプリフォームが得られる。体積が1.5cmのプリフォームであれば、口径25mm程度のレンズをプレス成形により製造できる。 In the present invention, since the glass composition is thermally stable and exhibits high liquid phase viscosity, even a large preform having a volume of 1 to 1.5 cm 3 does not have internal defects such as devitrification and foreign matter. Is obtained. In particular, according to the above method, a preform free from striae, surface wrinkles and scratches can be obtained. If the preform has a volume of 1.5 cm 3 , a lens having a diameter of about 25 mm can be manufactured by press molding.
 (光学素子)
 本発明の光学素子は、本ガラスから形成されたプリフォームを成形して得られることが好ましい。本ガラスは、上記光学特性を有するため、光学素子として使用すれば、光学設計が容易である。このような光学素子としては、デジタルカメラ等に用いられる非球面レンズや球面レンズなどが挙げられる。
(Optical element)
The optical element of the present invention is preferably obtained by molding a preform formed from the present glass. Since the present glass has the optical characteristics described above, the optical design is easy when used as an optical element. Examples of such optical elements include aspherical lenses and spherical lenses used in digital cameras and the like.
 光学素子の製造方法としては、量産性を高める観点からプレス成形法が好ましい。プレス成形法では、あらかじめ成形面を所望の形状に加工されたプレス成形型を使用する。一組の成形型を上下に対向させ、これらの間に前記した本発明のプリフォームを設置し、ガラスが成形に適した粘度に下がる温度まで成形型とプリフォームの両者を加熱して、プリフォームを軟化する。そして、これを加圧成形することにより、成形型の成形面をガラスに精密に転写する。本ガラスは、ガラス転移温度が充分低いので、プリフォームの加熱温度を低くできる。そのため、金型の耐久性を高くでき、プレス時のガラス表面からの成分の揮散を抑制できる。また、本ガラスは、前述したように、体積が1~1.5cmという大きなプリフォームであっても、失透や異物などの内部欠陥がなく、さらに脈理や表面のシワや傷のないプリフォームが得られるため、従来、困難であった口径の大きいレンズのプレス成形法による製造が可能となる。すなわち、体積約0.6cmのプリフォームから口径8mmのレンズが、体積約1.0cmのプリフォームから口径15mmのレンズが、体積約1.5cmのプリフォームから口径25mm程度のレンズがそれぞれプレス成形法によって製造できる。 As a manufacturing method of the optical element, a press molding method is preferable from the viewpoint of improving mass productivity. In the press molding method, a press molding die whose molding surface is processed into a desired shape in advance is used. A pair of molds face each other, the preform of the present invention described above is placed between them, and both the mold and the preform are heated to a temperature at which the glass falls to a viscosity suitable for molding. Soften the renovation. And by pressing this, the shaping | molding surface of a shaping | molding die is precisely transcribe | transferred to glass. Since the present glass has a sufficiently low glass transition temperature, the heating temperature of the preform can be lowered. Therefore, durability of a metal mold | die can be made high and the volatilization of the component from the glass surface at the time of a press can be suppressed. In addition, as described above, the present glass is free from internal defects such as devitrification and foreign matter, and is free from striae and surface wrinkles and scratches even in a large preform having a volume of 1 to 1.5 cm 3. Since a preform can be obtained, it is possible to manufacture a lens having a large aperture, which has been difficult in the past, by a press molding method. That is, a lens with a diameter of 8 mm from a preform with a volume of about 0.6 cm 3 , a lens with a diameter of 15 mm from a preform with a volume of about 1.0 cm 3 , a lens with a diameter of about 25 mm from a preform with a volume of about 1.5 cm 3 Each can be manufactured by press molding.
 プレス成形時の雰囲気は、金型表面やプリフォーム表面を保護するため非酸化性が好ましい。非酸化性雰囲気としては、アルゴン、窒素等の不活性ガス、水素等の還元性ガスまたは不活性ガスと還元性ガスとの混合ガスを使用できる。好ましくは、窒素ガスまたは少量の水素ガスが混合された窒素ガスを使用できる。加圧時の圧力および時間は、ガラスの粘度などに合わせて適宜変更できる。加熱、加圧した後、成形型とプレス成形品を冷却し、好ましくは歪点以下の温度となったところで、離型してプレス成形品を取り出す。 The atmosphere during press molding is preferably non-oxidizing to protect the mold surface and preform surface. As the non-oxidizing atmosphere, an inert gas such as argon or nitrogen, a reducing gas such as hydrogen, or a mixed gas of an inert gas and a reducing gas can be used. Preferably, nitrogen gas or nitrogen gas mixed with a small amount of hydrogen gas can be used. The pressure and time during pressurization can be appropriately changed according to the viscosity of the glass. After heating and pressurizing, the mold and the press-molded product are cooled, and when the temperature is preferably below the strain point, the mold is released and the press-molded product is taken out.
 以下、本発明の具体的な態様を説明する。ただし、本発明はこれらに限定して解釈されるものではない。例1~61が本発明の実施例であり、例62、63は比較例である。例62、63は特開2010-42998号公報の実施例17、19に記載された組成のガラスである。作製したガラスに対し、以下に述べる方法にて測定を行った。表1~7に各ガラスのカチオン%とアニオン%と以下の測定により得られた測定値を示す。測定していないデータについては、表中「-」を記載している。 Hereinafter, specific embodiments of the present invention will be described. However, the present invention is not construed as being limited to these. Examples 1 to 61 are examples of the present invention, and examples 62 and 63 are comparative examples. Examples 62 and 63 are glasses having the compositions described in Examples 17 and 19 of JP2010-42998A. The produced glass was measured by the method described below. Tables 1 to 7 show the cation% and anion% of each glass and the measured values obtained by the following measurements. For data not measured, “-” is shown in the table.
(ガラスの作製)
 表1~7に示す化学組成のガラスが得られるように原料を秤量した。ガラス原料として、リン酸塩原料、フッ化物原料、酸化物原料および炭酸塩原料を使用し、目標組成となるように調合した。調合した原料を、内容積約300ccの白金製るつぼに入れ、約900~1000℃で1時間溶融、清澄、撹拌した。その後、約320~370℃に予熱した縦100mm×横50mmの長方形のモールドに鋳込み後、約1℃/分で徐冷してサンプルとした。
(Production of glass)
The raw materials were weighed so as to obtain glasses having chemical compositions shown in Tables 1 to 7. As a glass raw material, a phosphate raw material, a fluoride raw material, an oxide raw material, and a carbonate raw material were used and prepared so as to have a target composition. The prepared raw material was put into a platinum crucible having an internal volume of about 300 cc, and melted, clarified and stirred at about 900 to 1000 ° C. for 1 hour. Then, after casting into a rectangular mold having a length of 100 mm and a width of 50 mm preheated to about 320 to 370 ° C., it was gradually cooled at about 1 ° C./min to obtain a sample.
(評価方法)
 得られたガラスについて、波長587.6nm(ヘリウムd線)における屈折率(n)アッベ数(ν)と、ガラス転移温度(T、単位:℃)、屈伏点(At、単位:℃)、液相温度(L、単位:℃)、線膨張係数(α、単位:×10-7/℃)および比重を測定した。これらの測定法を以下に述べる。
(Evaluation methods)
The resultant glass refractive index at a wavelength of 587.6 nm (helium d line) and (n d) Abbe's number ([nu d), the glass transition temperature (T g, Unit: ° C.), yield point (At, Unit: ° C. ), Liquid phase temperature (L T , unit: ° C.), linear expansion coefficient (α, unit: × 10 −7 / ° C.) and specific gravity were measured. These measurement methods are described below.
 光学恒数(屈折率、アッベ数):一辺が20mm、厚みが10mmの直方体形状に加工したサンプルを使用し、屈折率計(カルニュー光学工業社製、商品名:KPR-2000)で測定した。屈折率の値は、小数点以下第6位を四捨五入して小数点以下第5位まで記載した。
 アッベ数(ν)は、ν=(n-1)/(n-n)により算出し、小数点以下第2位を四捨五入して小数点以下第1位まで記載した。n、nは、それぞれ水素F線およびC線に対する屈折率である。これらの屈折率も同様に、前記屈折率計を使用して測定した。
Optical constant (refractive index, Abbe number): A sample processed into a rectangular parallelepiped shape having a side of 20 mm and a thickness of 10 mm was used and measured with a refractometer (trade name: KPR-2000, manufactured by Kalnew Optical Industry Co., Ltd.). Refractive index values are rounded to the fifth decimal place by rounding to the sixth decimal place.
The Abbe number (ν d ) was calculated by ν d = (n d −1) / (n F −n C ), rounded to the first decimal place by rounding off the second decimal place. n F and n C are refractive indexes for hydrogen F line and C line, respectively. These refractive indexes were similarly measured using the refractometer.
 熱的特性(ガラス転移温度、屈伏点):直径5mm、長さ20mmの円柱状に加工したサンプルを、熱機械分析装置(ブルカー・エイエックスエス社製、商品名:TMA4000SA)で熱膨張法により5℃/分の昇温速度で測定した。 Thermal characteristics (glass transition temperature, yield point): A sample processed into a cylindrical shape having a diameter of 5 mm and a length of 20 mm was subjected to thermal expansion using a thermomechanical analyzer (trade name: TMA4000SA, manufactured by Bruker AXS). The measurement was performed at a heating rate of 5 ° C./min.
 液相温度:白金皿にガラス試料約5gを入れ、それぞれ600℃~800℃まで10℃刻みにて1時間保持したものを自然放冷により冷却した後、結晶析出の有無を顕微鏡により観察した。結晶の認められない最低温度を液相温度とした。 Liquid phase temperature: About 5 g of a glass sample was put in a platinum dish, and each of the glass samples held at 600 ° C. to 800 ° C. in increments of 10 ° C. for 1 hour was cooled by natural cooling, and then the presence or absence of crystal precipitation was observed with a microscope. The lowest temperature at which no crystal was observed was defined as the liquidus temperature.
 線膨張係数:直径5mm、長さ20mmの円柱状に加工したサンプルを、熱機械分析装置(ブルカー・エイエックスエス社製、商品名:TMA4000SA)を使用し、石英を標準資料として、5℃/分の昇温速度で得られた熱膨張曲線より、50~200℃の平均値として算出した。 Linear expansion coefficient: A sample processed into a cylindrical shape having a diameter of 5 mm and a length of 20 mm, using a thermomechanical analyzer (trade name: TMA4000SA, manufactured by Bruker AXS), using quartz as a standard data, 5 ° C / The average value of 50 to 200 ° C. was calculated from the thermal expansion curve obtained at a rate of temperature increase of minutes.
 比重:試料の質量と、圧力101.325kPa(標準気圧)のもとにおける、それと同体積の4℃の純水の質量との比をSGとして表示し、JIS規格 Z8807(1976、液中で秤量する測定方法)に準じて測定した。 Specific gravity: The ratio between the mass of the sample and the mass of 4 ° C. pure water of the same volume under a pressure of 101.325 kPa (standard atmospheric pressure) is displayed as SG, and JIS standard Z8807 (1976, weighed in liquid) Measurement method).
 上記サンプル作製時に目視で観察した結果、実施例のガラスはいずれも、溶解性に問題がないこと、および、得られたガラスサンプルには泡や脈理のないことを確認した。 As a result of visual observation at the time of sample preparation, it was confirmed that all the glasses of the examples had no problem in solubility, and the obtained glass sample had no bubbles or striae.
(プレス成形用プリフォームの作製)
 実施例52の硝材をガラス溶融炉で900℃に加熱溶融・清澄し、800℃で均質化させ、流出管に導入した。流出管に導入した溶融ガラスをノズルから流出させ、成形型上に供給して、プレス成形用プリフォームを作製した。成形型では、溶融ガラスを窒素ガスで浮上させながら楕円乃至球状にし、成形した。作製されたプリフォームを、偏光顕微鏡(OLYMPUS社製 商品名:BX50)により観察し、失透がないことを確認した。体積は1.5cmであった。
(Preparation of preform for press molding)
The glass material of Example 52 was heated and melted and clarified at 900 ° C. in a glass melting furnace, homogenized at 800 ° C., and introduced into the outflow pipe. The molten glass introduced into the outflow pipe was caused to flow out from the nozzle and supplied onto the mold to produce a press molding preform. In the mold, the molten glass was shaped into an ellipse or a sphere while being floated with nitrogen gas. The produced preform was observed with a polarizing microscope (trade name: BX50, manufactured by OLYMPUS), and it was confirmed that there was no devitrification. The volume was 1.5 cm 3 .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 デジタルカメラ等の光学系に用いられる光学素子として、好適な光学ガラスを提供できる。 An optical glass suitable as an optical element used in an optical system such as a digital camera can be provided.

Claims (17)

  1.  カチオン%表示で、
    5+ 10~45%、
    Al3+ 1~40%、
    Mg2+ 0~20%、
    Ca2+ 0~25%、
    Sr2+ 0~25%、
    Ba2+ 0~35%、
    Li 24~60%、
    Na 0~10%、
     0~10%、
    3+ 0~10%、
    3+ 0~15%、
    を含有し、
     FをFとO2-との合計量に対してアニオン比(F/(F+O2-))0.25~0.85で含有することを特徴とするフツリン酸ガラス。
    In cation% display,
    P 5+ 10-45 %,
    Al 3+ 1-40 %,
    Mg 2+ 0-20 %,
    Ca 2+ 0-25 %,
    Sr 2+ 0-25 %,
    Ba 2+ 0-35 %,
    Li + 24-60%,
    Na + 0-10%,
    K + 0-10%,
    Y 3+ 0-10%,
    B 3+ 0-15 %,
    Containing
    F - the F - and anion ratio to the total amount of the O 2- (F - / (F - + O 2-)) fluorophosphate glass characterized by containing at 0.25 to 0.85.
  2.  前記アルカリ土類金属成分の合計量に対するLiの含有量のカチオン比(Li/(Mg2++Ca2++Sr2++Ba2+))が0.8超16未満である請求項1記載のフツリン酸ガラス。 2. The fluorophosphate glass according to claim 1, wherein a cation ratio (Li + / (Mg 2+ + Ca 2+ + Sr 2+ + Ba 2+ )) of the content of Li + to the total amount of the alkaline earth metal component is more than 0.8 and less than 16. .
  3.  Liを30超~60カチオン%含有する請求項1記載のフツリン酸ガラス。 The fluorophosphate glass according to claim 1, comprising Li + in an amount of more than 30 to 60 cations.
  4.  前記アルカリ土類金属成分の合計量に対するLiの含有量のカチオン比(Li/(Mg2++Ca2++Sr2++Ba2+))が1以上16未満である請求項3記載のフツリン酸ガラス。 4. The fluorophosphate glass according to claim 3, wherein a cation ratio (Li + / (Mg 2+ + Ca 2+ + Sr 2+ + Ba 2+ )) of the content of Li + to the total amount of the alkaline earth metal component is 1 or more and less than 16. 5.
  5.  Liを24~30カチオン%含有する請求項1記載のフツリン酸ガラス。 The fluorophosphate glass according to claim 1, comprising Li + in an amount of 24 to 30 cations.
  6.  前記アルカリ土類金属成分の合計量に対するLiの含有量のカチオン比(Li/(Mg2++Ca2++Sr2++Ba2+))が0.8超1未満である請求項5記載のフツリン酸ガラス。 6. The fluorophosphate glass according to claim 5, wherein the cation ratio (Li + / (Mg 2+ + Ca 2+ + Sr 2+ + Ba 2+ )) of the content of Li + to the total amount of the alkaline earth metal component is more than 0.8 and less than 1. .
  7.  屈折率(n)が1.4~1.58、アッベ数(ν)が60~90である請求項1~6のいずれか1項記載のフツリン酸ガラス。 The fluorophosphate glass according to any one of claims 1 to 6, which has a refractive index (n d ) of 1.4 to 1.58 and an Abbe number (ν d ) of 60 to 90.
  8.  アルカリ土類金属成分の合計量(Mg2++Ca2++Sr2++Ba2+)が1~31カチオン%である請求項1~7のいずれか1項記載のフツリン酸ガラス。 The fluorophosphate glass according to any one of claims 1 to 7, wherein the total amount of the alkaline earth metal component (Mg 2+ + Ca 2+ + Sr 2+ + Ba 2+ ) is 1 to 31 cation%.
  9.  アルカリ土類金属成分が、
    Mg2+ 0~20%
    Ca2+ 0~25%、
    Sr2+ 0~25%、
    Ba2+ 1~31%、
    である請求項1~8のいずれか1項記載のフツリン酸ガラス。
    Alkaline earth metal component
    Mg 2+ 0-20 %
    Ca 2+ 0-25 %,
    Sr 2+ 0-25 %,
    Ba 2+ 1-31 %,
    The fluorophosphate glass according to any one of claims 1 to 8, wherein
  10.  アルカリ土類金属成分が、
    Mg2+ 0~20%
    Ca2+ 0超~22%、
    Sr2+ 0~25%、
    Ba2+ 3~30%、
    である請求項1~9のいずれか1項記載のフツリン酸ガラス。
    Alkaline earth metal component
    Mg 2+ 0-20 %
    Ca 2+ more than 0-22 %,
    Sr 2+ 0-25 %,
    Ba 2+ 3-30 %,
    The fluorophosphate glass according to any one of claims 1 to 9, wherein
  11.  アルカリ土類金属成分が、
    Mg2+ 0超~10%
    Ca2+ 0超~10%、
    Sr2+ 0超~10%、
    Ba2+ 3~29%、
    である請求項1~10のいずれか1項記載のフツリン酸ガラス。
    Alkaline earth metal component
    Mg 2+> 0 to 10%
    Ca 2+ over 0-10%,
    Sr 2+> 0 to 10%,
    Ba 2+ 3 to 29%,
    The fluorophosphate glass according to any one of claims 1 to 10, wherein
  12.  ガラス転移温度(T)が380℃以下である請求項1~11のいずれか1項記載のフツリン酸ガラス。 The fluorophosphate glass according to any one of claims 1 to 11, which has a glass transition temperature (T g ) of 380 ° C or lower.
  13.  屈伏点(At)が420℃以下である請求項1~12のいずれか1項記載のフツリン酸ガラス。 The fluorophosphate glass according to any one of claims 1 to 12, which has a yield point (At) of 420 ° C or lower.
  14.  内部に失透を含まない体積1cm以上のプレス成形用プリフォームが得られる請求項1~13のいずれか1項記載のフツリン酸ガラス。 The fluorophosphate glass according to any one of claims 1 to 13, wherein a preform for press molding having a volume of 1 cm 3 or more free from devitrification is obtained.
  15.  請求項1~14のいずれか1項記載のフツリン酸ガラスよりなるプレス成形用プリフォーム。 A press-molding preform comprising the fluorophosphate glass according to any one of claims 1 to 14.
  16.  請求項15記載のプリフォームをプレス成形してなる光学素子。 An optical element formed by press-molding the preform according to claim 15.
  17.  直径が8mm以上のレンズである請求項16記載の光学素子。 The optical element according to claim 16, which is a lens having a diameter of 8 mm or more.
PCT/JP2013/078421 2012-10-23 2013-10-21 Fluorophosphate glass, preform for press molding, and optical element WO2014065225A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380054939.XA CN104755439A (en) 2012-10-23 2013-10-21 Fluorophosphate glass, preform for press molding, and optical element
JP2014543275A JPWO2014065225A1 (en) 2012-10-23 2013-10-21 Fluorophosphate glass, press-molding preform, and optical element

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-233701 2012-10-23
JP2012233701 2012-10-23
JP2012282837 2012-12-26
JP2012-282837 2012-12-26
JP2013090800 2013-04-23
JP2013-090800 2013-04-23

Publications (1)

Publication Number Publication Date
WO2014065225A1 true WO2014065225A1 (en) 2014-05-01

Family

ID=50544605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078421 WO2014065225A1 (en) 2012-10-23 2013-10-21 Fluorophosphate glass, preform for press molding, and optical element

Country Status (3)

Country Link
JP (1) JPWO2014065225A1 (en)
CN (1) CN104755439A (en)
WO (1) WO2014065225A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015209353A (en) * 2014-04-25 2015-11-24 株式会社オハラ Optical glass, optical element and preform
JP2018145028A (en) * 2017-03-02 2018-09-20 Hoya株式会社 Optical glass and optical element
JP2020111497A (en) * 2019-01-11 2020-07-27 株式会社オハラ Optical glass, optical element, and preform
JP2021014401A (en) * 2020-10-28 2021-02-12 Hoya株式会社 Optical glass and optical element
CN112707640A (en) * 2021-01-21 2021-04-27 成都光明光电股份有限公司 Fluorophosphate optical glass, optical element and optical instrument
JP2022516920A (en) * 2019-01-25 2022-03-03 シーディージーエム グラス カンパニー リミテッド Fluorophosphate glass, glass preforms, optical elements and optical instruments with them

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108751698B (en) * 2018-06-14 2021-09-28 成都光明光电股份有限公司 Optical glass, optical preform and optical element
CN109626818B (en) * 2019-01-07 2021-12-07 成都光明光电股份有限公司 Fluorophosphate optical glass, optical preform, optical element and optical instrument
CN112010554B (en) * 2019-05-31 2022-04-12 成都光明光电股份有限公司 Fluorophosphate glass, glass preform, optical element and optical instrument having the same
CN111995247B (en) * 2020-09-08 2022-04-15 成都光明光电股份有限公司 Optical glass, optical preform, optical element and optical instrument

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343139A (en) * 1998-05-28 1999-12-14 Nihon Yamamura Glass Co Ltd Clad glass composition for halide core glass and glass composition for coating halide core glass
JP2007076958A (en) * 2005-09-14 2007-03-29 Hoya Corp Optical glass, preform for precise press molding, and optical element
JP2007099604A (en) * 2005-09-06 2007-04-19 Hoya Corp Near infrared ray absorbing glass, near infrared ray absorbing element provided with the same and imaging device
WO2010119964A1 (en) * 2009-04-17 2010-10-21 旭硝子株式会社 Filter glass cutting near infrared rays
WO2012018026A1 (en) * 2010-08-03 2012-02-09 旭硝子株式会社 Near-infrared cut filter glass and process for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343139A (en) * 1998-05-28 1999-12-14 Nihon Yamamura Glass Co Ltd Clad glass composition for halide core glass and glass composition for coating halide core glass
JP2007099604A (en) * 2005-09-06 2007-04-19 Hoya Corp Near infrared ray absorbing glass, near infrared ray absorbing element provided with the same and imaging device
JP2007076958A (en) * 2005-09-14 2007-03-29 Hoya Corp Optical glass, preform for precise press molding, and optical element
WO2010119964A1 (en) * 2009-04-17 2010-10-21 旭硝子株式会社 Filter glass cutting near infrared rays
WO2012018026A1 (en) * 2010-08-03 2012-02-09 旭硝子株式会社 Near-infrared cut filter glass and process for manufacturing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015209353A (en) * 2014-04-25 2015-11-24 株式会社オハラ Optical glass, optical element and preform
JP2018145028A (en) * 2017-03-02 2018-09-20 Hoya株式会社 Optical glass and optical element
JP2020111497A (en) * 2019-01-11 2020-07-27 株式会社オハラ Optical glass, optical element, and preform
JP2022516920A (en) * 2019-01-25 2022-03-03 シーディージーエム グラス カンパニー リミテッド Fluorophosphate glass, glass preforms, optical elements and optical instruments with them
JP7254937B2 (en) 2019-01-25 2023-04-10 シーディージーエム グラス カンパニー リミテッド Fluorophosphate glass, glass preform, optical element and optical equipment having same
JP2021014401A (en) * 2020-10-28 2021-02-12 Hoya株式会社 Optical glass and optical element
JP7090678B2 (en) 2020-10-28 2022-06-24 Hoya株式会社 Optical glass and optical elements
CN112707640A (en) * 2021-01-21 2021-04-27 成都光明光电股份有限公司 Fluorophosphate optical glass, optical element and optical instrument

Also Published As

Publication number Publication date
JPWO2014065225A1 (en) 2016-09-08
CN104755439A (en) 2015-07-01

Similar Documents

Publication Publication Date Title
WO2014065225A1 (en) Fluorophosphate glass, preform for press molding, and optical element
KR101617178B1 (en) Optical glass, glass material for press molding, optical element blank, optical element and manufacturing method thereof
US8609560B2 (en) Optical glass, preform for precision press molding, optical element, and method for manufacturing optical element
KR101379559B1 (en) Phosphate glass, fluorophosphate glass, preforms for precision press molding, optical elements, and processes for the production of them
JP2015067459A (en) Fluorophosphate glass, preform for press molding and optical element
JP5931173B2 (en) Optical glass and use thereof
US20090247388A1 (en) Fluorophosphate glass, glass material for press molding, optical element blank, optical element and methods of manufacturing the same
JP2006225220A (en) Optical glass, glass gob for press forming, optical part, and methods for manufacturing glass shaped article and optical part
JP6480722B2 (en) Glass, Glass Material for Press Molding, Optical Element Blank, and Optical Element
JP5760789B2 (en) Optical glass
JP5734587B2 (en) Optical glass, precision press-molding preform, optical element and manufacturing method thereof, and imaging apparatus
JP2016113348A (en) Fluorophosphate glass, preform for press molding and optical element
JP5927227B2 (en) Optical glass, precision press-molding preform, and optical element
US8633121B2 (en) Fluorophosphate glass, glass material for press molding, optical element blank, optical element, processes for production of same, and process for production of glass moldings
JP2013180919A (en) Optical glass and preform for precision press molding using the same and optical element
JP5922228B2 (en) Optical glass, precision press-molding preform, and optical element and manufacturing method thereof
CN106660859A (en) Optical glass
CN110325483B (en) Optical glass
WO2010021329A1 (en) Optical glass
JP5442952B2 (en) Fluorophosphate glass, glass material for press molding, optical element blank, optical element, manufacturing method thereof, and manufacturing method of glass molded body
JP5987228B2 (en) Optical glass, glass material for press molding, optical element and manufacturing method thereof
JP2016023111A (en) Fluorophosphate glass, preform for press molding, and optical element
JP5589929B2 (en) Optical glass, precision press molding preform, and optical element
JP5805161B2 (en) Fluorophosphate glass, glass material for press molding, optical element blank, optical element, manufacturing method thereof, and manufacturing method of glass molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849065

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014543275

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849065

Country of ref document: EP

Kind code of ref document: A1