WO2014065158A1 - Combined power generation plant - Google Patents

Combined power generation plant Download PDF

Info

Publication number
WO2014065158A1
WO2014065158A1 PCT/JP2013/077949 JP2013077949W WO2014065158A1 WO 2014065158 A1 WO2014065158 A1 WO 2014065158A1 JP 2013077949 W JP2013077949 W JP 2013077949W WO 2014065158 A1 WO2014065158 A1 WO 2014065158A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating device
temperature heating
low
heat
steam
Prior art date
Application number
PCT/JP2013/077949
Other languages
French (fr)
Japanese (ja)
Inventor
康平 篠崎
丸本 隆弘
哲夫 四方
建三 有田
Original Assignee
バブコック日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコック日立株式会社 filed Critical バブコック日立株式会社
Publication of WO2014065158A1 publication Critical patent/WO2014065158A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention collects heat from the sun and generates steam with the heat, and a first power plant (solar thermal power plant) using a solar boiler plant, and burns or generates heat (for example, in the case of nuclear fuel).
  • a first power plant solar thermal power plant
  • the present invention relates to a combined power plant combining a second power plant using a boiler plant different from the solar boiler plant that generates steam by recovering the heat of high-temperature exhaust gas.
  • the amount of heat collected in a solar boiler is unavoidably repeated as the amount of sunshine changes rapidly in a short period of time, such as the sun being blocked by clouds depending on the location.
  • solar boilers are often introduced in a region called a sun belt region, that is, a region where annual direct solar radiation exceeds 2000 kWh / m 2 .
  • the first power generation plant of the concentrating / heat collecting type is roughly divided into a single power plant and a combined power plant.
  • a stand-alone power plant most of the heat is supplied by solar heat, and part of it is backed up by fossil fuel.
  • a combined power plant most of the heat is supplied by fossil fuels and nuclear fuel, and part of it is backed up by solar heat.
  • a heat transfer tube is arranged above the inner peripheral curved surface of a condensing mirror extending in a bowl shape, and sunlight is condensed on the heat transfer tube by the condensing mirror, thereby transferring heat.
  • the heat transfer tube panel is installed on a tower having a predetermined height, while a Fresnel type that condenses and collects sunlight on the heat transfer tube by the collection mirror group to generate steam.
  • There is a tower type which arranges a condensing mirror (heliostat) and collects sunlight on a heat transfer tube panel by the condensing mirror (heliostat) group to generate steam.
  • the trough type and the Fresnel type have a short focal length, and the solar condensing degree (heat density at the heat collecting part) is low.
  • the tower type since the tower type has a long focal length, it has a feature that the degree of solar condensing (heat density at the heat collecting portion) is high.
  • the heat density in the heat collecting part is high, the amount of heat collected per unit heat transfer area is high, and higher temperature steam can be obtained.
  • the heat density is simply increased and the phase is changed from the water state to the superheated steam, there is a problem that a high temperature region is locally formed and the heat transfer tube is damaged.
  • FIGS. 24 and 25 are diagrams created based on such a proposal.
  • FIG. 24 is a schematic configuration diagram of a solar heat boiler
  • FIG. 25 is an enlarged schematic configuration diagram of a heat collecting apparatus used for the solar heat boiler.
  • reference numeral 1 is a heat collecting device
  • 2 is an evaporator
  • 3 is a superheater
  • 4 is a brackish water separator
  • 5 is a tower
  • 6 is a heliostat
  • 7 is the sun
  • 8 is a steam turbine
  • 9 is a generator.
  • 11 is a water supply pump.
  • the heat collecting apparatus 1 is functionally separated into an evaporator 2 (reheat steam system heat exchanger) and a superheater 3 (main steam system heat exchanger), and the evaporator 2 and the superheater.
  • a brackish water separator 4 is arranged between the three.
  • the heat collecting apparatus 1 is installed on a tower 5 having a height of about 30 to 100 m, and reflects light from the sun 7 by a heliostat 6 installed on the ground. Then, the evaporator 2 and the superheater 3 are heated by focusing on the heat collecting device 1. Finally, the superheated steam generated by the heat collecting apparatus 1 is sent to the steam turbine 8 to rotate the generator 9 to generate power.
  • the brackish water separator 4 as well as the evaporator 2 and the superheater 3 must be installed on the tower 5 having a height of 30 to 100 m. For this reason, in addition to the evaporator 2 and the superheater 3 which are aggregates of a large number of heat transfer tubes, the load of the brackish water separator 4 having saturated water therein can be supported, and can withstand earthquakes sufficiently. Therefore, there is a problem that the equipment cost and the construction cost increase.
  • superheated steam generated by the solar thermal power plant or the thermal power plant is any of a high pressure steam turbine, an intermediate pressure steam turbine, and a low pressure steam turbine. It was not considered whether to generate electricity by introducing it into a steam turbine. For this reason, efficient use of superheated steam is not possible, which may increase power generation costs.
  • An object of the present invention is to provide a combined power plant that eliminates the disadvantages of the prior art and does not cause an increase in power generation cost.
  • the present invention provides: A first power generation plant that collects solar heat and generates steam by the heat, a second power generation plant that generates steam by burning or generating heat from the fuel, or recovering heat of exhaust gas, and the first power generation A combined power plant comprising a steam turbine that rotates by introducing steam generated in a plant or a second power plant, and a generator that is rotationally driven by the steam turbine,
  • the first power plant separates a water-steam two-phase flow generated by the low-temperature heating device provided with a horizontal heat transfer tube for heating water supplied from a feed water pump with the solar heat into water and steam.
  • the second power plant includes a steam generator having a reheat steam heat exchanger and a main steam heat exchanger for generating steam, a feed water pump for supplying water to the steam generator, and a feed pump for supplying the water.
  • the steam turbine includes a high pressure steam turbine, an intermediate pressure steam turbine, and a low pressure steam turbine
  • the first power generation mode in which power generation is performed using the first power plant, the steam superheated by the high-temperature heating device of the first power plant is guided to the intermediate pressure steam turbine and the low pressure steam turbine to generate power
  • a second power generation mode in which power generation is performed using the second power plant, steam superheated by the main steam heat exchanger of the second power plant is transferred to the high-pressure steam turbine, intermediate-pressure steam turbine, and low-pressure steam turbine. It is characterized by being guided and generating electricity.
  • the present invention has the above-described configuration, and can provide a combined power plant that does not increase power generation costs.
  • FIG. 4D is a diagram showing an example of a ratio of power generation cost.
  • It is a schematic block diagram which shows the use condition in the 2nd electric power generation mode of the combined power plant which concerns on 2nd Embodiment of this invention.
  • It is a schematic block diagram which shows the use condition in the 1st electric power generation mode of the combined power plant which concerns on the 2nd Embodiment.
  • Figure (a) shows the flow of water-steam two-phase flow in the horizontal heat transfer tube of the low-temperature heating apparatus
  • Fig. (B) shows water-steam two-phase flow in the horizontal heat transfer tube.
  • FIG. 1 is a schematic configuration diagram showing a usage state in the second power generation mode of the combined power plant according to the first embodiment of the present invention
  • FIG. 2 shows a usage state in the first power generation mode of the combined power plant. It is a schematic block diagram. 1 and FIG. 2 have the same configuration, but different devices are used depending on the power generation mode, as will be described later.
  • This combined power plant has a first power plant (solar thermal power plant) that uses a solar boiler plant that collects heat from the sun and generates steam with the heat, and burns or generates heat (for example, in the case of nuclear fuel) Or a second power plant using a boiler plant that generates steam by recovering the heat of high-temperature exhaust gas.
  • a first power plant solar thermal power plant
  • the solar water supply valve 20 is opened and the thermal power supply valve 66 is closed.
  • Water supplied from the water supply pump 11 passes through the water supply valve 19, is sent to the water supply heater 12, is heated, passes through the solar water supply valve 20, and is introduced into the low temperature heating device 13 through the brackish water separator 4.
  • the feed water is heated by the light 32 from the sun 7, and the water is circulated between the brackish water separator 4 and the low temperature heating device 13 by the circulation pump 15.
  • the water-steam two-phase fluid generated by the low temperature heating device 13 is separated into saturated water and saturated steam by the brackish water separation device 4, and the separated steam is sent to the high temperature heating device 14 installed on the tower 16. .
  • the steam introduced into the high-temperature heating device 14 is further superheated by solar heat reflected by the heliostat 6 and guided to the high-temperature heating device 14.
  • the superheated steam generated by the high-temperature heating device 14 is sent to the intermediate-pressure steam turbine 61 (A to A in the figure), and rotates the intermediate-pressure steam turbine 61 and the low-pressure steam turbine 62.
  • the turbine generator 65 generates power.
  • a feed water valve 19 is provided between the feed water pump 11 and the feed water heater 12, and a steam is provided between the high temperature heating device 14 and the intermediate pressure steam turbine 61.
  • a valve 18 is installed. Further, a part of steam is extracted from the intermediate pressure steam turbine 61 and the low pressure steam turbine 62 and sent to the feed water heater 12 through the extraction valve 17 (C 2 and C 3 to C in the figure), and the feed water is heated. It has become a system.
  • ⁇ Second power generation mode> In the second power generation mode of the combined power plant of the present embodiment, as shown in FIG. 1, the thermal water supply valve 66 is opened and the solar heat supply valve 20 is closed.
  • Water supplied from the water supply pump 11 passes through the water supply valve 19 and is sent to the water supply heater 12 to be heated.
  • the water heated by the feed water heater 12 passes through a thermal water supply valve 66 and is introduced into a boiler plant 10 that generates steam by burning or generating heat or recovering the heat of exhaust heat gas.
  • the boiler plant 10 is provided with a reheat steam heat exchanger 10a and a main steam heat exchanger 10b, and water heated by the feed water heater 12 is overheated by the main steam heat exchanger 10b. Is done.
  • the superheated steam generated in the main steam heat exchanger 10b is sent to the high-pressure steam turbine 60 (from B to B in the figure), rotates the high-pressure steam turbine 60, and generates electricity by the generator 64 for the high-pressure steam turbine by the rotation. .
  • the superheated steam emitted from the high-pressure steam turbine 60 is again introduced into the boiler plant 10 and sent to the reheat steam system heat exchanger 10a.
  • the steam superheated in the reheat steam system heat exchanger 10a is sent to the intermediate pressure steam turbine 61 (E to E in the figure), and rotates the intermediate pressure steam turbine 61 and the low pressure steam turbine 62, and the rotation causes the medium pressure / Power generation is performed by a low-pressure steam turbine generator 65.
  • the reheat steam heat exchanger 10a and the main steam heat exchanger 10b are names given to distinguish the heat exchangers 10a and 10b from the boiler plant 10 side.
  • a feed water valve 19 is provided between the feed water pump 11 and the feed water heater 12, and a steam valve 67 is provided between the boiler plant 10 and the high-pressure steam turbine 60, respectively. is set up.
  • FIG. 3 shows that in the first power generation mode, as shown in FIG. 2, the medium pressure steam turbine 61 and the low pressure steam turbine 62 are accompanied by a change in the amount of steam passing through the steam valve 18 provided on the outlet side of the high temperature heating device 14. It is the figure which showed an example which adjusts the opening degree of the extraction valve 17 provided in the exit side.
  • 4A shows the change in the amount of steam passing through the steam valve 18, and
  • FIG. 4B shows the adjustment of the opening degree of the extraction valve 17 accompanying the change in the amount of steam.
  • the opening degree of the extraction valve 17 is decreased, and conversely, when the amount of steam passing through the steam valve 18 decreases, the opening degree of the extraction valve 17 is increased.
  • the extraction valve 17 by operating the extraction valve 17 according to the amount of steam supplied from the high-temperature heating device 14, the amount of extraction of the intermediate-pressure steam turbine 61 and the low-pressure steam turbine 62 is increased or decreased (adjusted). Large fluctuations can be avoided.
  • FIG. 4 is a principle diagram for explaining the configuration of a tower-type light collecting / collecting device provided with the high-temperature heating device 14.
  • the tower type light collecting and heat collecting apparatus is provided with a high temperature heating device 14 (heat transfer tube panel 27) on a tower 16 having a predetermined height (about 30 to 100 m).
  • a large number of heliostats 6 are arranged in various directions on the ground surface, and the heliostats 6 are focused on the high-temperature heating device 14 (heat transfer tube panel 27) while tracking the movement of the sun 7, and overheated. It is a mechanism to generate steam.
  • This tower-type concentrator / heat collector has the advantage that it can generate higher-temperature steam than the trough-type concentrator / collector, increasing the turbine efficiency and obtaining more power. is doing.
  • FIG. 5 is an enlarged schematic configuration diagram of the heat transfer tube panel 27 used in the high-temperature heating device 14.
  • the heat transfer tube panel 27 includes a superheater lower header 22 that evenly distributes the steam from the brackish water separator 4 and superheater transmissions arranged in parallel to distribute the steam distributed by the superheater lower header 22. It consists of a heat pipe 21 and a superheater upper header 23 that collects superheated steam flowing out from the superheater heat transfer pipe 21.
  • the low-temperature heating device 13 and the brackish water separation device 4 have a large amount of water inside, and the entire device becomes heavy. Therefore, the ground surface or a low foundation with a height of, for example, about 1 to 2 m is used near the ground surface. It is installed. Thus, since the low-temperature heating device 13 and the brackish water separation device 4 are installed on or near the ground surface, it is not necessary to raise the water to a height of, for example, 30 to 100 m as in the prior art, so that the pumping capacity is low. An inexpensive feed water pump 11 can be used.
  • the high-temperature heating device 14 is installed at a height of 10 m or more (for example, 30 to 100 m) from the ground surface in order to collect the light 32 from the heliostat 6 with high light density. Since the fluid flowing inside the high-temperature heating device 14 is only steam, it is much lighter than the heat collecting device 1 (see FIG. 25) comprising the general evaporator 2, superheater 3, and brackish water separator 4. It is small. Note that the heat collection ratio of the low temperature heating device 13 and the high temperature heating device 14 is approximately 9: 1 to 7: 3, and the heat collection amount of the high temperature heating device 14 is much smaller than that of the low temperature heating device 13.
  • FIG. 6 shows, in the first power generation mode of the combined power plant according to the present embodiment, for each steam turbine used, FIG. 6 (a) shows the power generation output, FIG. Fig. (C) shows the initial cost ratio for constructing the concentrator / heat collector, and Fig. (D) shows an example of the ratio of power generation cost in consideration of Fig. (B) and (c).
  • FIG. 6 shows, in the first power generation mode of the combined power plant according to the present embodiment, for each steam turbine used, FIG. 6 (a) shows the power generation output, FIG. Fig. (C) shows the initial cost ratio for constructing the concentrator / heat collector, and Fig. (D) shows an example of the ratio of power generation cost in consideration of Fig. (B) and (c).
  • the tower-type concentrating / collecting device corresponds to the reheat steam heat exchanger 10a (see FIG. 1) of this embodiment. Instead, it is necessary to superheat the steam from the high-pressure steam turbine 60 with the tower-type concentrator / heat collector and send it to the intermediate-pressure steam turbine 61, so that the scale of the tower-type concentrator / heat collector is expanded. As shown in FIG. 3C, the initial cost of the light collecting / heat collecting device increases.
  • the medium-pressure / low-pressure steam turbines 61 and 62 are operated at a constant load to suppress the increase in power generation cost most.
  • the medium pressure / low pressure steam turbines 61, 62 are used in the first power generation mode, and the high pressure / medium pressure / low pressure steam turbines 60, 61, 62 are used in the second power generation mode. Is used. Further, the high-pressure steam turbine generator 64 and the intermediate-pressure / low-pressure steam turbine generator 65 are used to prevent the high-pressure steam turbine 60 from rotating unnecessarily in the first power generation mode. Thereby, the steam turbines 60, 61, 62 suitable for the respective steam conditions of the first power generation mode and the second power generation mode can be used, and an increase in power generation cost can be suppressed. This effect is also obtained in the second and subsequent embodiments.
  • the high-pressure steam turbine 60, the medium-pressure steam turbine 61, and the low-pressure steam turbine 62 do not have to have two rotational axes.
  • a single-shaft generator for high-pressure / medium-pressure / low-pressure steam turbines is prepared.
  • the high-pressure steam turbine may be idled.
  • FIG. 7 is a schematic configuration diagram showing a use state in the second power generation mode of the combined power plant according to the second embodiment of the present invention
  • FIG. 8 shows a use state in the first power generation mode of the combined power plant. It is a schematic block diagram. Although the configuration of the complex plant shown in FIG. 7 and FIG. 8 is the same, the equipment to be used differs depending on the power generation mode as in the first embodiment.
  • This embodiment is different from the first embodiment in that a low-temperature heating device 24 including a trough-type or Fresnel-type light collecting / heat collecting device is used as shown in FIG.
  • a low-temperature heating device 24 including a trough-type or Fresnel-type light collecting / heat collecting device is used as shown in FIG.
  • Other configurations and power generation mechanisms are the same as those in the first embodiment, and a duplicate description is omitted.
  • FIG. 9 is a principle diagram for explaining the configuration of a trough-type condensing / heat collecting device.
  • this trough-type condensing / heat collecting device individually arranges heat transfer tubes 31 horizontally at the focal position above the inner peripheral curved surface of the condensing mirror 30 extending in a bowl shape, and sunlight 32 Is condensed on the heat transfer tube 31 by the condenser mirror 30.
  • Water 33 circulates in each heat transfer tube 31, and the water 33 is heated by the heat collected in the heat transfer tube 31, and a water-steam two-phase fluid 34 is obtained from the heat transfer tube 31.
  • This trough-type condensing / heat collecting apparatus has the advantages that it does not require advanced condensing technology and has a relatively simple structure.
  • the low-temperature heating device 24 composed of a trough-type condensing / heat collecting device is used, but a low-temperature heating device 24 composed of a Fresnel-type condensing / heat collecting device may be used.
  • FIG. 10 is a principle diagram for explaining the configuration of a Fresnel type light collecting / collecting device. As shown in FIG. 10, this Fresnel type condenser / heat collector has a large number of planar or slightly curved condenser mirrors 35 arranged at slightly different angles and several meters above the condenser mirror 35 group. A group of heat transfer tubes 31 in the form of a panel is arranged horizontally.
  • FIG. 11 is a schematic configuration diagram showing a use state of the combined power plant according to the third embodiment of the present invention in the second power generation mode
  • FIG. 12 shows a use state of the combined power plant in the first power generation mode. It is a schematic block diagram. 11 and FIG. 12 have the same configuration, but the devices used differ depending on the power generation mode as in the first embodiment.
  • thermometer that measures the temperature and flow rate of the fluid on the fluid return pipe 36 provided between the outlet side of the low-temperature heating device 24 and the inlet side of the brackish water separator 4. 25 and a flow meter 28 are provided, and measurement signals from the thermometer 25 and the flow meter 28 are input to the arithmetic unit 26.
  • the arithmetic unit 26 outputs a control signal for controlling the opening of the water supply valve 20, that is, the water supply flow rate, to the water supply valve 20 so that the outlet fluid temperature of the low temperature heating device 24 is always 300 ° C. or lower. Yes.
  • the outlet fluid temperature of the low-temperature heating device 24 By limiting the outlet fluid temperature of the low-temperature heating device 24 to 300 ° C. or less in this way, the structure of the low-temperature heating device 24 composed of a trough-type (or Fresnel-type) light collecting / collecting device can be simplified, and transmission can be performed. There is an advantage that a decrease in thermal efficiency can be suppressed.
  • the outer glass tube cracks due to the difference in thermal elongation between the heat transfer tube and the outer glass tube, which is a problem when using a trough-type (or Fresnel-type) light collecting / collecting device at a high temperature.
  • FIG. 13 is a partially enlarged cross-sectional view of the vicinity of a heat transfer tube used in a trough-type (or Fresnel-type) light collecting / collecting device.
  • an outer peripheral glass tube 42 is disposed on the outer periphery of the horizontal heat transfer tube 38 to form a double structure.
  • the outer peripheral glass tube 42 is provided in order to suppress heat release from the horizontal heat transfer tube 38 to the outside air by making the space between the horizontal heat transfer tube 38 and the outer peripheral glass tube 42 airtight or vacuum.
  • the heat transfer tubes 38 are joined to form a long heat transfer tube 38 by joining a plurality of heat transfer tubes in the axial direction. Since the heat transfer tube 38 is made of a metal such as carbon steel stainless steel, FIG. As shown, the heat transfer tubes 38 can be welded 43 to a predetermined length.
  • metal bonding pipes 44 are respectively arranged on the inner side and the outer side of the joint portion of the outer glass tube 42.
  • the outer peripheral glass tube 42 and the bonding tube 44 are welded to each other so that the outer peripheral glass tubes 42 are connected to each other with a predetermined length via the bonding tube 44.
  • the temperature of the outlet fluid of the low-temperature heating device 24 is limited to 300 ° C. or less, specifically 250 to 300 ° C., and the peripheral glass due to the difference in thermal expansion between the heat transfer tube 38 and the peripheral glass tube 42. Radiation cooling due to cracking of the tube 42 and an increase in the surface temperature of the heat transfer tube 38 is suppressed.
  • the heat collection amount of the high temperature heating device 14 can be adjusted based on the measurement signals of the thermometer 25 and the flow meter 28 so that the outlet fluid temperature of the high temperature heating device 14 is 300 ° C. or higher.
  • the amount of heat collection can be controlled by adjusting the opening of the water supply valve 19 and changing the water supply flow rate.
  • Other configurations and power generation mechanisms are the same as those in the second embodiment, and a duplicate description is omitted.
  • thermometer 25 and the flow meter 28 are installed on the outlet side of the low temperature heating device 24, and the feed water flow rate to the low temperature heating device 24 is adjusted so that the measured temperature and flow rate become predetermined values.
  • the thermometer 25 and the flow meter 28 are installed on the outlet side of the low-temperature heating device 13 (see FIG. 2) used in the first embodiment, so that the measured temperature and flow rate become predetermined values.
  • the amount of heat collection of 24 can also be adjusted.
  • the low-temperature heating device 13 (24) and the high-temperature heating device 14 ultimately use a fluid consisting of steam (water) that drives the intermediate-pressure steam turbine 61 and the low-pressure steam turbine 62 as a heat medium.
  • This is a light collecting / collecting device that directly heats it with sunlight 32.
  • the solar heat boiler does not use a heat exchanger other than the low-temperature heating device 13 (24) and the high-temperature heating device 14, the configuration of the entire boiler device is simple, and the size and cost can be reduced. have.
  • a Fresnel type or trough type light collecting / collecting device used in the low temperature heating device 13 (24) is particularly preferably disposed in the heat transfer tube.
  • the heat transfer tubes can be locally damaged thermally.
  • the Fresnel type or trough type light collecting / collecting device receives heat in the concentrated range of the outer peripheral surface of the horizontally arranged heat transfer tubes, so that the heat flux distribution is uneven over the outer periphery of the heat transfer tubes. It is the structure which is easy to produce.
  • Fresnel-type and trough-type concentrators / heat collectors are installed in a vast area with long heat transfer tubes arranged almost horizontally, and the amount of heat collected by sunlight varies greatly throughout the day. Also, it changes rapidly depending on the weather, and it is difficult to specify the range in which the two-phase flow flows in advance.
  • FIG. 14 is a schematic configuration diagram showing a use state in the second power generation mode of the combined power plant according to the fourth embodiment.
  • FIG. 15 is a schematic configuration diagram showing a use state of the combined power plant in the first power generation mode.
  • the configuration of the complex plant shown in FIGS. 14 and 15 is the same, but the devices used differ depending on the power generation mode as in the first embodiment.
  • a water supply circulation flow rate control valve 37 for adjusting the circulation flow rate and a flow meter 28 are provided on the inlet side of the low-temperature heating device 13, and the water level for detecting the water level of the brackish water separator 4 A total of 29 is provided.
  • the flow rate measurement signal of the flow meter 28 and the water level measurement signal of the water level meter 29 are input to the arithmetic device 26, and the arithmetic device 26 supplies water for adjusting the feed water flow rate so that the water level of the brackish water separator 4 becomes the target value.
  • a control signal is output to the valve 19 or (and) the feed water circulation flow rate control valve 37 for adjusting the circulation flow rate.
  • FIG. 16 is a characteristic diagram showing the relationship between the water level L (horizontal axis) of the brackish water separator 4 and the outlet quality X (vertical axis) of the low-temperature heating device 13, with the total mass flow rate G of the brackish water separator 4 as a parameter. The relationship between the water level L and the exit quality X is shown.
  • the outlet quality X of the low-temperature heating device 13 is the ratio of the mass flow rate of steam to the total mass flow rate G. Further, the total mass flow rate G of the brackish water separator 4 is a flow rate of fluid circulating through the low-temperature heating device 13 via the brackish water separator 4.
  • FIG. 17A shows the horizontal heat transfer pipe 38 (see FIG. 13) of the low-temperature heating device 13 with the horizontal axis representing the outlet quality X of the low-temperature heating device 13 and the vertical axis representing the total mass flow rate G of the brackish water separator 4.
  • FIG. 2 is a diagram showing the regions of the two-phase flow of water-steam flow divided into a spray flow, an annular flow, a bubble flow, a slag flow, and a stratified flow state.
  • FIG. 17 (b) is a schematic diagram showing each flow state of the water-steam two-phase flow in the horizontal heat transfer tube 38. The states of the spray flow, the annular flow, the bubble flow, the slag flow and the stratified flow are shown in FIG. It is shown.
  • the water-steam two-phase spray flow indicates a state in which most of the pipe is steam, and minute water droplets flow in the steam accompanying the steam.
  • An annular flow forms a very thin water film on the tube wall, and the inside thereof indicates a state of a spray flow mainly composed of steam.
  • the bubble flow indicates a state where most of the inside of the pipe is filled with water and small bubbles are present therein.
  • the slug flow is considerably larger than the bubble flow, and indicates an intermediate state between the bubble flow and the stratified flow.
  • a stratified flow indicates a state in which a gas phase and a liquid phase are vertically separated by the action of gravity. Therefore, a preferable flow state of the water-steam two-phase flow in the horizontal heat transfer tube 38 is a spray flow or an annular flow.
  • the outlet quality X of the low-temperature heating device 13 and the total mass flow rate G of the brackish water separator 4 are known, the flow of the water-steam two-phase flow in the low-temperature heating device 13 You can know the state.
  • the outlet quality is X 1.
  • the flow state is a bubble flow, an annular flow or a spray flow over all operating conditions.
  • the water level target value of the brackish water separator 4 corresponding to the value of the outlet quality X that achieves a desired flow state as described above is stored in the arithmetic device 26 in advance. Then, the measurement signals of the flow rate of the flow meter 28 and the water level of the water level meter 29 are input to the calculation device 26, and the calculation device 26 adjusts the feed water flow rate so that the water level of the brackish water separator 4 becomes the target value.
  • the control signal is output to the feed water circulation valve 19 or (and) the feed water circulation flow rate control valve 37 for adjusting the circulation flow rate, so that the power plant can be stably operated.
  • FIG. 18 shows the use state of the combined power plant according to the fifth embodiment in the second power generation mode.
  • FIG. 19 is a schematic configuration diagram showing a use state of the combined power plant in the first power generation mode.
  • the configuration of the complex plant shown in FIG. 18 and FIG. 19 is the same, but the equipment to be used differs depending on the power generation mode as in the first embodiment.
  • the low-temperature heating device 51 and the light collecting / collecting device 52 are separated, and a heat medium flow channel 53 is attached to the light collecting / heat collecting device 52.
  • a heat medium circulation pump 55 is provided.
  • a part of the heat medium flow path 53 is arranged in the low temperature heating device 51 as a heat exchanger to form a low temperature heating device 51 with a heat exchanger, and the heat medium 54 is transferred from the light collecting / heat collecting device 52 to the heat medium. It is configured to circulate in the flow path 53.
  • the heat collected by the condensing / heat collecting device 52 is transmitted to the low temperature heating device 51 through the heat medium 54 circulating in the heat medium flow path 53, and the water-vapor fluid in the low temperature heating device 51 is heated.
  • the heat exchanger in the low-temperature heating device 51 (in this embodiment, a part of the heat medium flow channel 53) is a non-contact between the heat medium 54 and the fluid composed of water-vapor in the low-temperature heating device 51. There is no particular limitation as long as it is a contact type.
  • a light collecting device and a heat collecting device can be installed at a low position near the ground surface, such as a Fresnel type or trough type light collecting / heat collecting device. Is preferred.
  • the heat medium 54 a heat medium that does not change phase in the operating temperature range is used, and the heat medium circulation pump 55 circulates the heat medium flow path 53 from the condensing / heat collecting device 52.
  • the heat medium 54 for example, a simple substance such as diphenyl oxide, biphenyl, 1, 1 diphenylethane, or a chemically synthesized oil blended can be used.
  • the maximum operating temperature of the exemplified heat medium 54 is about 400 ° C., and if it exceeds this, the performance is significantly deteriorated and lost. For this reason, strict temperature control is required, but as shown in FIG. 19, a heat medium thermometer 56 is attached to the heat medium flow path 53 to monitor the temperature of the outlet heat medium of the light collecting / heat collecting device 52.
  • the temperature of the heat medium 54 is lower than the maximum use temperature, for example, regulated to 300 ° C. or less, so that it is not necessary to take special treatment within the operation range.
  • the heat medium 54 does not change phase and does not become a two-phase flow. Therefore, thermal damage of the heat transfer tube is not caused even under uneven heat flux distribution conditions, and reliability can be improved and material cost can be reduced.
  • a heat medium thermometer 56 and a heat medium flow meter 57 for measuring the temperature and flow rate of the heat medium 54 are provided on the outlet side of the light collecting / heat collecting device 52.
  • Each measurement signal of the medium flow meter 57 is input to the arithmetic unit 26.
  • a control signal for controlling the opening of the water supply valve 20, that is, the water supply flow rate, is provided so that the outlet side heat medium temperature of the light collecting / heat collecting device 52 is 300 ° C. or less. To output.
  • the reason for restricting the outlet fluid temperature of the light collecting / heat collecting device 52 to 300 ° C. or lower is the same as that in the third embodiment, and thus a duplicate description is omitted. Further, since the other configuration is the same as that of the above-described embodiment, the overlapping description is omitted similarly.
  • the low-temperature heating device 51 uses solar heat for steam generation / heating indirectly through a heat medium heated by a separate condensing / heat collecting device 52, and the high-temperature heating device 14 uses other heat.
  • the steam is directly heated by the concentrated and collected solar heat, and so-called hybrid heating type.
  • the configuration and scale of the parts related to the circulation system of the heat medium such as the heat exchanger and the heat medium circulation pump 55 that complicate the structure of the boiler device, are minimized, and the first The problem described at the beginning of the description of the fourth embodiment can be reliably suppressed and is effective.
  • (Sixth embodiment) 6th Embodiment of this invention is a more desirable form of the low-temperature heating apparatus 24 in the said 2nd Embodiment, eliminates the same problem as 4th Embodiment, reduces the power consumption of the circulation pump 15, and makes a plant It is an embodiment for stabilizing.
  • FIG. 20 is a schematic configuration diagram illustrating a usage state in the second power generation mode of the combined power plant according to the sixth embodiment
  • FIG. 21 is a schematic diagram illustrating a usage state in the first power generation mode of the combined power plant. It is a block diagram. Although the configuration of the complex plant shown in FIG. 20 and FIG. 21 is the same, the equipment to be used differs depending on the power generation mode as in the first embodiment.
  • a plurality of low-temperature heating devices 24 comprising a trough-type or Fresnel-type condensing / heat collecting device (in this embodiment, the first low-temperature heating is used).
  • the device 24a and the second low-temperature heating device 24b) are arranged in series along the feed water flow direction, and the second low-temperature heating device 24b on the downstream side in the feed water flow direction is the first low-temperature heating device 24a on the upstream side in the feed water flow direction.
  • This is the point of using a heat collecting tube having a smaller inner diameter than that.
  • Other configurations and power generation mechanisms are the same as those in the second embodiment, and a duplicate description is omitted.
  • the purpose of this embodiment is to reduce the power consumption of the circulation pump 15 so as not to cause the separation of the two-phase flow in the heat collecting tube.
  • the upper limit value of the outlet quality of the low-temperature heating device 24 is set to approximately 0.4 to 0.6 under the condition of the tube inner diameter of about 100 mm so as not to cause separation of the two-phase flow in the tube. Since the evaporation amount is constant, setting the outlet quality of the low-temperature heating device 24 to a higher value of about 0.7 to 0.9 reduces the circulating flow rate of water and the power consumption of the circulation pump 15 There is a relationship of decline.
  • FIG. 22 is a flow pattern diagram of a gas-liquid two-phase flow in which the flow state of the gas-liquid two-phase flow in a general horizontal tube is separated by the flow mode and arranged according to the gas phase apparent velocity and the liquid phase apparent velocity in the tube. is there.
  • the horizontal axis represents the apparent velocity of the gas phase
  • the vertical axis represents the apparent velocity of the liquid phase.
  • the circulation flow rate may be increased or the pipe inner diameter may be reduced.
  • the outlet quality of the low-temperature heating device is reduced as described above to reduce the power consumption of the circulation pump.
  • the average flow velocity V is inversely proportional to the square of the tube inner diameter D due to the relationship between the tube cross-sectional area A and the tube inner diameter D expressed by Equation (6).
  • the friction loss ⁇ P f in the pipe expressed by is proportional to the square of the average flow velocity V.
  • the friction loss in the pipe increases due to the increase in the average flow velocity V, it is not necessary that all the heat transfer pipes of the low-temperature heating apparatus have a single pipe inner diameter.
  • the second low temperature heating device 24b on the side if a heat transfer tube having a smaller inner diameter than that of the first low temperature heating device 24a on the upstream side is used, the loss can be minimized and the circulation flow rate can be reduced. Thus, the power consumption of the circulation pump 15 can be reduced.
  • the mark ⁇ indicates the first low-temperature heating device 24a on the upstream side
  • the mark ⁇ indicates the second low-temperature heating device 24b on the downstream side.
  • the tube inner diameters of the first low temperature heating device 24a on the upstream side and the second low temperature heating device 24b on the downstream side are set to the same value of 100 mm, and the first low temperature heating device on the upstream side
  • the outlet quality of the heating device 24a is 0.4 to 0.6
  • the outlet quality of the second low temperature heating device 24b on the downstream side is 0.8 to 1.0.
  • Comparative Example 1 since the flow state in the pipe becomes a wave-like flow, saturated water and steam regions are formed separately in the pipe circumferential direction.
  • the steam region has a small heat and heat transfer coefficient, which causes a problem in that the temperature rises locally. Specifically, the high temperature side of the heat transfer tube expands (extends), the low temperature side contracts, and the heat transfer tube is damaged by the difference. Moreover, the glass tube installed in the outer peripheral portion of the heat transfer tube is broken or cracked, and the temperature increasing portion is deformed.
  • annular spray flow in the figure indicates a region including the annular flow and the spray flow described in the fourth embodiment.
  • the wavy flow is a flow in which saturated water flows at the bottom of the tube and steam flows at the top of the tube, and the interface of the saturated water is rippled.
  • the tube inner diameters of the first low temperature heating device 24a on the upstream side and the second low temperature heating device 24b on the downstream side are set to the same value of 80 mm, and the first low temperature heating device on the upstream side is used.
  • the outlet quality of the heating device 24a is 0.4 to 0.6
  • the outlet quality of the second low temperature heating device 24b on the downstream side is 0.8 to 1.0. Under this condition, it can be seen that there is no problem in the flow mode in the pipe over the entire area, but the inner diameter of the first low-temperature heating device 24a and the second low-temperature heating device 24b on the wake side is 80 mm. Is not preferable.
  • the tube inner diameter of the first low temperature heating device 24a on the upstream side is 100 mm
  • the outlet quality is 0.4 to 0.6
  • the tube inner diameter of the second low temperature heating device 24b on the downstream side is set. 80mm
  • exit quality is 0.8-1.0.
  • the trough-type condensing and heat collecting apparatus is a double tube in which an inner tube is constituted by a heat transfer tube 38 and an outer tube is constituted by a glass tube 42.
  • the structure is a so-called vacuum tube type light collecting / collecting device, in which the gap between the inner tube and the outer tube is used in a vacuum.
  • the condensing loss increases as the diameter of the heat transfer tube decreases due to the trough concentrating / collecting principle.
  • the fins are attached to some or all of the outer periphery of the tube over the entire length of the small diameter heat transfer tube. A decrease in light efficiency can be suppressed.
  • finned tubes does not significantly increase costs compared to measures such as the use of high-precision condenser mirrors or an increase in the number of mirrors.
  • Patent Document 3 a heat pipe is used in a vacuum tube type solar heat collector, and a fin is attached outside the heat pipe, and a fin is attached to a heat transfer tube used in a solar heat collecting / collecting device. And a structure in which the surface of the heat pipe is coated with a high emissivity material or a selective absorption film to improve the light collection and heat collection efficiency.
  • Patent Document 4 discloses a structure in which fins are provided on the inner surface of a heat transfer tube of a solar heat collector to reduce the temperature difference between the front and back surfaces of the heat transfer tube.
  • the present embodiment is a vacuum tube type condensing / collecting device in the second low-temperature heating device 24b on the downstream side where the steam quality is increased, and the heat transfer of the second low-temperature heating device 24b, which is a problem peculiar to the above configuration.
  • the fins are attached to all or part of the outer circumference of the heat transfer tube, and there are a structure in which the fin ribbon is wound around the tube, a structure in which the fin plate is welded to the tube length, a structure in which the fin is processed into a saw shape, etc. It is desirable to have a structure that increases.
  • the high emissivity material for example, a silicon-based paint can be used.
  • a silicon-based paint can be used.
  • the selective absorption film for example, nickel-black nickel, tungsten, or the like can be used.
  • FIG. 23 is a schematic configuration diagram of a solar thermal power plant according to the seventh embodiment.
  • a plurality of low-temperature heating devices 24 (first low-temperature heating device 24a and second low-temperature heating device 24b in this embodiment) composed of a trough-type or Fresnel-type light collecting / collecting device are used to supply water. They are arranged in series along the flow direction.
  • This solar thermal power plant includes a first low-temperature heating device 24a on the upstream side that heats water supplied from the feed water pump 11 with the heat of sunlight 32, a second low-temperature heating device 24b on the downstream side, and a first low-temperature heating device.
  • the brackish water separation device 4 that separates the mixed fluid of water and steam generated by the heating device 24a and the second low temperature heating device 24b into water and steam, and the steam separated by the brackish water separation device 4 is heated by the heat of sunlight 32.
  • High-temperature heating device 14 circulation pump 15 that supplies water separated by brackish water separation device 4 to low-temperature heating device 24, circulation flow rate control valve 37 for controlling the circulation flow rate, and high-temperature steam generated by high-temperature heating device 14
  • a generator 67 that generates electric power by being rotated by the steam turbine 68, and has a connection relationship as shown in the figure.
  • the inner diameter of the heat transfer tube of the second low-temperature heating device 24b on the downstream side is made smaller than the inner diameter of the heat transfer tube of the first low-temperature heating device 24a on the front flow side, or further, 2 Fins can be provided on the outer periphery of the heat transfer tube over the entire length of the heat transfer tube of the low-temperature heating device 24b, and the fin surface and the heat transfer tube surface can be coated with a high emissivity material or a selective absorption film.
  • two low-temperature heating devices are arranged in series.
  • three or more low-temperature heating devices can be arranged in series as necessary.
  • the feed water heater 12 used in each of the above-described embodiments one having a configuration in which the feed water is heated by a heat medium such as steam is used, but the feed water heater 12 is also configured to heat the feed water using solar heat. Is also possible.
  • water heated by the feed water heater 12 is introduced into the brackish water separator 4, but water from the feed water pump 11 can also be directly introduced into the brackish water separator 4.
  • the present invention eliminates the need for a structure (for example, a support base) that supports a heavy object that holds saturated water, A structure that is low and easy to install and maintain the low-temperature heating device and the brackish water separator is sufficient. Further, it is possible to simplify the structure for installing a relatively lightweight high-temperature heating apparatus that holds only steam at a high place.
  • the risk of damage to the heat transfer tube can be reduced by functionally separating the low temperature heating device and the high temperature heating device and installing a brackish water separation device between them. Further, by installing the high temperature heating device at a high place, heat exchange with high heat density is possible, and high temperature steam can be obtained efficiently. Furthermore, it is possible to keep the output of the steam turbine constant by adjusting the amount of extracted steam on the steam turbine side in accordance with fluctuations in the steam temperature and steam flow when the heat collection amount is controlled by the high-temperature heating device. Become.

Abstract

In order to provide a combined power generation plant with which an increase in power generation costs can be prevented, this combined power generation plant is equipped with: a first power generation plant that uses solar heat to generate steam; a second power generation plant that uses a boiler to generate steam; a steam turbine; and power generators (64, 65). The first power generation plant is equipped with a low-temperature heating device (13), a steam separation device (4), and a high-temperature heating device (14) that uses solar heat to superheat the steam separated by the steam separation device (4). The second power generation plant is equipped with: a steam generation unit having a reheated steam system heat exchanger (10a) and a primary steam system heat exchanger (10b); a water supply pump (11); and a water supply heater (12) that uses extracted steam from the steam turbine to heat the water from the water supply pump (11). In addition, a high-pressure turbine (60), a medium-pressure turbine (61), and a low-pressure turbine (62) are provided. In a first power generation mode that uses the first power generation plant, power is generated with the medium-pressure turbine (61) and the low-pressure turbine (62). In a second power generation mode that uses the second power plant, power is generated with the high-pressure turbine (60), the medium-pressure turbine (61), and the low-pressure turbine (62).

Description

複合型発電プラントCombined power plant
 本発明は、太陽からの熱を集熱して、その熱で蒸気を発生する太陽熱ボイラプラントを用いた第1発電プラント(太陽熱発電プラント)と、燃料を燃焼もしくは発熱(例えば核燃料の場合)させて、あるいは高温排気ガスの熱を回収して蒸気を発生する前記太陽熱ボイラプラントとは別のボイラプラントを用いた第2発電プラントを組み合わせた複合型発電プラントに関するものである。 The present invention collects heat from the sun and generates steam with the heat, and a first power plant (solar thermal power plant) using a solar boiler plant, and burns or generates heat (for example, in the case of nuclear fuel). Alternatively, the present invention relates to a combined power plant combining a second power plant using a boiler plant different from the solar boiler plant that generates steam by recovering the heat of high-temperature exhaust gas.
 太陽熱ボイラにおける集熱量は、その立地によっては雲で太陽光が遮られるなど、短時間で日照量が急激に変動することに伴い、急速な増減が繰り返されることが不可避である。 The amount of heat collected in a solar boiler is unavoidably repeated as the amount of sunshine changes rapidly in a short period of time, such as the sun being blocked by clouds depending on the location.
 一方、太陽熱ボイラは、年間の総集熱量をできるだけ多く得る観点から、サンベルト地帯と呼ばれる地域、即ち、年間の直達日射量が2000kWh/mを超える地域に導入されることが多い。 On the other hand, from the viewpoint of obtaining as much total annual heat collection amount as possible, solar boilers are often introduced in a region called a sun belt region, that is, a region where annual direct solar radiation exceeds 2000 kWh / m 2 .
 サンベルト地帯は、年間を通じて晴天が多く、天候の変化に伴う日照量の急変が生じにくく、集熱量が経時的に安定しているので、前記した課題は生じ難い。 In the Sunbelt area, there are many clear skies throughout the year, and sudden changes in the amount of sunshine due to weather changes are unlikely to occur, and the amount of heat collected is stable over time, so the aforementioned problems are unlikely to occur.
 しかし、サンベルト地帯以外の地域、例えば日本では、一日の内で天候の変化や雲の動きに伴う日射量の急激な変動が頻繁に発生し、集熱量の急速な増減が繰り返し起こる。このため、このような課題への対応が重要である。 However, in areas other than the sun belt, such as Japan, sudden fluctuations in the amount of solar radiation due to weather changes and cloud movements frequently occur throughout the day, and rapid increases and decreases in the amount of collected heat occur repeatedly. For this reason, it is important to deal with such problems.
 集光・集熱型の第1発電プラントには、大別して、単独型発電プラントと複合型発電プラントがある。単独型発電プラントでは、大部分の熱を太陽熱で賄い、一部を化石燃料等でバックアップすることもある。一方、複合型発電プラントでは、大部分の熱を化石燃料や核燃料で賄い、一部を太陽熱でバックアップしている。 The first power generation plant of the concentrating / heat collecting type is roughly divided into a single power plant and a combined power plant. In a stand-alone power plant, most of the heat is supplied by solar heat, and part of it is backed up by fossil fuel. On the other hand, in a combined power plant, most of the heat is supplied by fossil fuels and nuclear fuel, and part of it is backed up by solar heat.
 前記単独型発電プラントと複合型発電プラントのいずれの型式においても、太陽光からの熱を集熱し、その熱を加熱源として使用しており、集光・集熱装置もほぼ共通するものが使用されている。 In both the single power plant and the combined power plant, heat from sunlight is collected and used as a heat source, and a condensing and collecting device is also used in common. Has been.
 一般的に集光・集熱装置として、桶状に延びた集光ミラーの内周曲面の上方に伝熱管を配置し、太陽光を集光ミラーで伝熱管に集光することにより、伝熱管内を流通する水を加熱して蒸気を生成するトラフ式、平面状あるいは若干曲面状の集光ミラーを角度を少しずつ変えて多数枚並べ、その集光ミラー群の上方に多数の伝熱管を配置し、太陽光を前記集光ミラー群で伝熱管に集光して蒸気を生成するフレネル式、所定の高さを有するタワーの上に伝熱管パネルを設置し、一方、地上面に多数の集光ミラー(ヘリオスタット)を配置して、太陽光を前記集光ミラー(ヘリオスタット)群で伝熱管パネルに集光して蒸気を生成するタワー式などがある。 Generally, as a condenser / heat collector, a heat transfer tube is arranged above the inner peripheral curved surface of a condensing mirror extending in a bowl shape, and sunlight is condensed on the heat transfer tube by the condensing mirror, thereby transferring heat. A large number of trough-type, flat or slightly curved condenser mirrors that change the angle little by little, and produce a large number of heat transfer tubes above the condenser mirror group. The heat transfer tube panel is installed on a tower having a predetermined height, while a Fresnel type that condenses and collects sunlight on the heat transfer tube by the collection mirror group to generate steam. There is a tower type which arranges a condensing mirror (heliostat) and collects sunlight on a heat transfer tube panel by the condensing mirror (heliostat) group to generate steam.
 このうち、トラフ式とフレネル式は焦点距離が短く、太陽の集光度(集熱部での熱密度)が低い。これに対してタワー式は焦点距離が長いため、太陽の集光度(集熱部での熱密度)が高いという特長がある。 Among these, the trough type and the Fresnel type have a short focal length, and the solar condensing degree (heat density at the heat collecting part) is low. On the other hand, since the tower type has a long focal length, it has a feature that the degree of solar condensing (heat density at the heat collecting portion) is high.
 集熱部での熱密度が高ければ、単位伝熱面積当りの集熱量が高くなり、より高温の蒸気が得られる。しかし、単純に熱密度を上げて、水の状態から過熱蒸気まで相変化させると、局部的に高温の領域が形成され、伝熱管が損傷する等の課題がある。 If the heat density in the heat collecting part is high, the amount of heat collected per unit heat transfer area is high, and higher temperature steam can be obtained. However, when the heat density is simply increased and the phase is changed from the water state to the superheated steam, there is a problem that a high temperature region is locally formed and the heat transfer tube is damaged.
 火力発電ボイラ等では、燃料量が適切に管理されており、このような伝熱管の損傷はないが、太陽熱の場合は入熱量が大きく変動するため、伝熱管の熱的損傷を回避することが困難である。 In thermal power boilers, etc., the amount of fuel is properly managed and there is no such damage to the heat transfer tubes. However, in the case of solar heat, the heat input varies greatly, so it is possible to avoid thermal damage to the heat transfer tubes. Have difficulty.
 このような熱密度の高いタワー式の太陽熱ボイラにおいては、例えば特許文献1や特許文献2などに記載された提案がある。図24ならびに図25はこのような提案に基づいて作成した図であり、図24は太陽熱ボイラの概略構成図、図25はその太陽熱ボイラに使用する集熱装置の拡大概略構成図である。これらの図において、符号1は集熱装置、2は蒸発器、3は過熱器、4は汽水分離装置、5はタワー、6はヘリオスタット、7は太陽、8は蒸気タービン、9は発電機、11は給水ポンプである。 In such a tower-type solar boiler with a high heat density, there are proposals described in Patent Document 1 and Patent Document 2, for example. FIGS. 24 and 25 are diagrams created based on such a proposal. FIG. 24 is a schematic configuration diagram of a solar heat boiler, and FIG. 25 is an enlarged schematic configuration diagram of a heat collecting apparatus used for the solar heat boiler. In these figures, reference numeral 1 is a heat collecting device, 2 is an evaporator, 3 is a superheater, 4 is a brackish water separator, 5 is a tower, 6 is a heliostat, 7 is the sun, 8 is a steam turbine, and 9 is a generator. , 11 is a water supply pump.
 図25に示されているように、集熱装置1を蒸発器2(再熱蒸気系熱交換器)と過熱器3(主蒸気系熱交換器)に機能分離し、蒸発器2と過熱器3の間に汽水分離装置4を配置している。この集熱装置1は図24に示されているように、高さが30~100m程度のタワー5の上に設置されており、地上に設置されたヘリオスタット6により太陽7からの光を反射して、集熱装置1に集光することで、前記蒸発器2ならびに過熱器3を加熱する。最終的にこの集熱装置1で生成した過熱蒸気は蒸気タービン8に送られ、発電機9を回転して発電するシステムになっている。 As shown in FIG. 25, the heat collecting apparatus 1 is functionally separated into an evaporator 2 (reheat steam system heat exchanger) and a superheater 3 (main steam system heat exchanger), and the evaporator 2 and the superheater. A brackish water separator 4 is arranged between the three. As shown in FIG. 24, the heat collecting apparatus 1 is installed on a tower 5 having a height of about 30 to 100 m, and reflects light from the sun 7 by a heliostat 6 installed on the ground. Then, the evaporator 2 and the superheater 3 are heated by focusing on the heat collecting device 1. Finally, the superheated steam generated by the heat collecting apparatus 1 is sent to the steam turbine 8 to rotate the generator 9 to generate power.
国際公開2009/129166A2号公報International Publication No. 2009/129166 A2 国際公開2010/048578A1号公報International Publication No. 2010 / 048578A1 特開昭56-85652号公報JP 56-85652 A 特開2011-163592号公報JP 2011-163592 A
 しかしながら、前述した従来技術において、蒸発器2ならびに過熱器3とともに汽水分離装置4も高さが30~100mもあるタワー5の上に設置する必要がある。このため、多数本の伝熱管の集合体である蒸発器2と過熱器3の他に、内部に飽和水を保有する汽水分離装置4の荷重を支えることができ、地震にも十分耐え得ることのできる強固なタワー5を建設する必要があり、そのために設備コストおよび建設コストが増大するという課題がある。 However, in the prior art described above, the brackish water separator 4 as well as the evaporator 2 and the superheater 3 must be installed on the tower 5 having a height of 30 to 100 m. For this reason, in addition to the evaporator 2 and the superheater 3 which are aggregates of a large number of heat transfer tubes, the load of the brackish water separator 4 having saturated water therein can be supported, and can withstand earthquakes sufficiently. Therefore, there is a problem that the equipment cost and the construction cost increase.
 また、水を給水ポンプ11によって高所の汽水分離装置4の所まで上げる必要があるから、揚水能力の高い高価な給水ポンプ11が必要となり、それにより設備コストおよびランニングコストも高くなる。 Moreover, since it is necessary to raise water to the place of the brackish water separator 4 of the high place with the feed water pump 11, the expensive feed water pump 11 with a high pumping capacity is needed, and, thereby, an installation cost and a running cost also become high.
 さらに、蒸発器2や過熱器3を構成する伝熱管の熱的損傷を回避するために、集熱装置1での集熱量を抑制する必要があり、そのために蒸気タービン8へ供給される蒸気の量や温度が変動し、結果的には発電量が一定でないという課題もある。 Furthermore, in order to avoid thermal damage to the heat transfer tubes constituting the evaporator 2 and the superheater 3, it is necessary to suppress the amount of heat collected in the heat collecting device 1. The amount and temperature fluctuate, and as a result, there is a problem that the power generation amount is not constant.
 また、前記蒸発器2の伝熱管の熱的損傷を回避するために、熱媒の循環流量を高く設定することから、給水ポンプ11の消費動力が大きく、発電量に占める割合である所内率が大きいという課題もある。 Moreover, in order to avoid the thermal damage of the heat exchanger tube of the evaporator 2, since the circulating flow rate of the heat medium is set high, the power consumption of the feed water pump 11 is large, and the internal ratio that is the ratio of the power generation amount is There is also a problem that it is big.
 さらにまた、このような太陽熱発電プラントと火力発電プラントを組み合わせた複合型発電プラントでは、太陽熱発電プラントあるいは火力発電プラントで生成した過熱蒸気を高圧蒸気タービン、中圧蒸気タービンならびに低圧蒸気タービンの何れの蒸気タービンに導入して発電するかについては考慮されていなかった。そのため効率的な過熱蒸気の使用ができず、発電コストの増加を招くことがあった。 Furthermore, in a combined power plant combining such a solar thermal power plant and a thermal power plant, superheated steam generated by the solar thermal power plant or the thermal power plant is any of a high pressure steam turbine, an intermediate pressure steam turbine, and a low pressure steam turbine. It was not considered whether to generate electricity by introducing it into a steam turbine. For this reason, efficient use of superheated steam is not possible, which may increase power generation costs.
 本発明の目的は、このような従来技術の欠点を解消し、発電コストの増加を招くことのない複合発電プラントを提供することにある。 An object of the present invention is to provide a combined power plant that eliminates the disadvantages of the prior art and does not cause an increase in power generation cost.
 前記目的を達成するため、本発明は、
 太陽熱を集熱して、その熱で蒸気を発生する第1発電プラントと、燃料を燃焼もしくは発熱させて、あるいは排気ガスの熱を回収して蒸気を発生する第2発電プラントと、前記第1発電プラントまたは第2発電プラントで発生した蒸気を導入して回転する蒸気タービンと、 その蒸気タービンにより回転駆動する発電機を備えた複合型発電プラントであって、
 前記第1発電プラントは、給水ポンプから供給する水を前記太陽熱で加熱する水平伝熱管を設けた低温加熱装置と、その低温加熱装置で生成した水-蒸気二相流を水と蒸気に分離する汽水分離器と、その汽水分離器で分離した蒸気を太陽熱で過熱する高温加熱装置と、前記汽水分離器で分離した水を前記低温加熱装置に供給する循環ポンプを備え、
 前記第2発電プラントは、蒸気を発生させる再熱蒸気系熱交換器と主蒸気系熱交換器を有する蒸気発生部と、その蒸気発生部に水を供給する給水ポンプと、その給水ポンプで供給される水を前記蒸気タービンからの抽気蒸気で加熱する給水加熱器を備え、
 前記蒸気タービンは、高圧蒸気タービンと中圧蒸気タービンと低圧蒸気タービンを備えており、
 前記第1発電プラントを使用して発電を行う第1発電モードでは、前記第1発電プラントの前記高温加熱装置で過熱した蒸気を前記中圧蒸気タービンおよび低圧蒸気タービンに導いて発電し、
 前記第2発電プラントを使用して発電を行う第2発電モードでは、前記第2発電プラントの前記主蒸気系熱交換器で過熱した蒸気を前記高圧蒸気タービン、中圧蒸気タービンおよび低圧蒸気タービンに導いて発電するように構成されていることを特徴とするものである。
In order to achieve the above object, the present invention provides:
A first power generation plant that collects solar heat and generates steam by the heat, a second power generation plant that generates steam by burning or generating heat from the fuel, or recovering heat of exhaust gas, and the first power generation A combined power plant comprising a steam turbine that rotates by introducing steam generated in a plant or a second power plant, and a generator that is rotationally driven by the steam turbine,
The first power plant separates a water-steam two-phase flow generated by the low-temperature heating device provided with a horizontal heat transfer tube for heating water supplied from a feed water pump with the solar heat into water and steam. A brackish water separator, a high-temperature heating device that superheats steam separated by the brackish water separator with solar heat, and a circulation pump that supplies water separated by the brackish water separator to the low-temperature heating device,
The second power plant includes a steam generator having a reheat steam heat exchanger and a main steam heat exchanger for generating steam, a feed water pump for supplying water to the steam generator, and a feed pump for supplying the water. A water heater that heats the water to be discharged with the extracted steam from the steam turbine,
The steam turbine includes a high pressure steam turbine, an intermediate pressure steam turbine, and a low pressure steam turbine,
In the first power generation mode in which power generation is performed using the first power plant, the steam superheated by the high-temperature heating device of the first power plant is guided to the intermediate pressure steam turbine and the low pressure steam turbine to generate power,
In a second power generation mode in which power generation is performed using the second power plant, steam superheated by the main steam heat exchanger of the second power plant is transferred to the high-pressure steam turbine, intermediate-pressure steam turbine, and low-pressure steam turbine. It is characterized by being guided and generating electricity.
 本発明は前述のような構成になっており、発電コストの増加を招くことのない複合発電プラントを提供することができる。 The present invention has the above-described configuration, and can provide a combined power plant that does not increase power generation costs.
本発明の第1実施形態に係る複合型発電プラントの第2発電モードでの使用状態を示す概略構成図である。It is a schematic block diagram which shows the use condition in the 2nd electric power generation mode of the combined power plant which concerns on 1st Embodiment of this invention. その複合型発電プラントの第1発電モードでの使用状態を示す概略構成図である。It is a schematic block diagram which shows the use condition in the 1st electric power generation mode of the combined power plant. その第1実施形態において、高温加熱装置の出口側に設けた蒸気弁の通過蒸気量の変化に伴って、高圧蒸気タービン、中圧蒸気タービン、低圧蒸気タービンと給水加熱器の間に設けた抽気弁の開度を調整する一例を示した図である。In the first embodiment, the extraction provided between the high-pressure steam turbine, the intermediate-pressure steam turbine, the low-pressure steam turbine and the feed water heater in accordance with the change in the passing steam amount of the steam valve provided on the outlet side of the high-temperature heating device It is the figure which showed an example which adjusts the opening degree of a valve. 本発明の第1実施形態に係る高温加熱装置を設置したタワー式集光・集熱装置の構成などを説明するための原理図である。It is a principle figure for demonstrating the structure of the tower type condensing / heat collecting apparatus which installed the high temperature heating apparatus which concerns on 1st Embodiment of this invention. その高温加熱装置に用いる伝熱管パネルの拡大概略構成図である。It is an expansion schematic block diagram of the heat exchanger tube panel used for the high temperature heating apparatus. その第1実施形態に係る複合型発電プラントの第1発電モードにおいて、使用するタービン別に、同図(a)は発電出力、同図(b)は年間の売電による利益比率、同図(c)は集光・集熱装置を建設するための初期コスト比率、同図(d)は発電コストの比率の例をそれぞれ示した図である。In the first power generation mode of the combined power plant according to the first embodiment, the figure (a) shows the power generation output, the figure (b) shows the profit ratio from the annual power sale, and the figure (c). ) Is an initial cost ratio for constructing a light collecting / heat collecting device, and FIG. 4D is a diagram showing an example of a ratio of power generation cost. 本発明の第2実施形態に係る複合型発電プラントの第2発電モードでの使用状態を示す概略構成図である。It is a schematic block diagram which shows the use condition in the 2nd electric power generation mode of the combined power plant which concerns on 2nd Embodiment of this invention. その第2実施形態に係る複合型発電プラントの第1発電モードでの使用状態を示す概略構成図である。It is a schematic block diagram which shows the use condition in the 1st electric power generation mode of the combined power plant which concerns on the 2nd Embodiment. その第2実施形態で用いるトラフ式の集光・集熱装置の構成などを説明するための原理図である。It is a principle figure for demonstrating the structure of the trough-type condensing and heat collecting apparatus used by the 2nd Embodiment. その第2実施形態で用いるフレネル式の集光・集熱装置の構成などを説明するための原理図である。It is a principle figure for demonstrating the structure of the Fresnel type condensing and heat collecting apparatus used by the 2nd Embodiment. 本発明の第3実施形態に係る複合型発電プラントの第2発電モードでの使用状態を示す概略構成図である。It is a schematic block diagram which shows the use condition in the 2nd electric power generation mode of the combined power plant which concerns on 3rd Embodiment of this invention. その第3実施形態に係る複合型発電プラントの第1発電モードでの使用状態を示す概略構成図である。It is a schematic block diagram which shows the use condition in the 1st electric power generation mode of the combined power plant which concerns on the 3rd Embodiment. トラフ式(またはフレネル式)の集光・集熱装置に用いる伝熱管付近の一部拡大断面図である。It is a partially expanded sectional view of the vicinity of a heat transfer tube used for a trough-type (or Fresnel-type) light collecting / collecting device. 本発明の第4実施形態に係る複合型発電プラントの第2発電モードでの使用状態を示す概略構成図である。It is a schematic block diagram which shows the use condition in the 2nd electric power generation mode of the combined power plant which concerns on 4th Embodiment of this invention. その第4実施形態に係る複合型発電プラントの第1発電モードでの使用状態を示す概略構成図である。It is a schematic block diagram which shows the use condition in the 1st electric power generation mode of the combined power plant which concerns on the 4th Embodiment. 汽水分離装置の水位Lと、低温加熱装置の出口クオリティXとの関係を示す特性図である。It is a characteristic view which shows the relationship between the water level L of a brackish water separator, and the exit quality X of a low-temperature heating apparatus. 同図(a)は低温加熱装置の水平伝熱管内における水-蒸気二相流の流動状態を分類分けして示した図、同図(b)は水平伝熱管内における水-蒸気二相流の各流動状態を示した模式図である。Figure (a) shows the flow of water-steam two-phase flow in the horizontal heat transfer tube of the low-temperature heating apparatus, and Fig. (B) shows water-steam two-phase flow in the horizontal heat transfer tube. It is the schematic diagram which showed each flow state. 本発明の第5実施形態に係る複合型発電プラントの第2発電モードでの使用状態を示す概略構成図である。It is a schematic block diagram which shows the use condition in the 2nd electric power generation mode of the combined power plant which concerns on 5th Embodiment of this invention. その第5実施形態に係る複合型発電プラントの第1発電モードでの使用状態を示す概略構成図である。It is a schematic block diagram which shows the use condition in the 1st electric power generation mode of the combined power plant which concerns on the 5th Embodiment. 本発明の第6実施形態に係る複合型発電プラントの第2発電モードでの使用状態を示す概略構成図である。It is a schematic block diagram which shows the use condition in the 2nd power generation mode of the combined power plant which concerns on 6th Embodiment of this invention. 本発明の第6実施形態に係る複合型発電プラントの第1発電モードでの使用状態を示す概略構成図である。It is a schematic block diagram which shows the use condition in the 1st electric power generation mode of the combined power plant which concerns on 6th Embodiment of this invention. 水平管内における気液二相流の流動状態を流動様式で分離し、管内の気相見かけ速度と液相見かけ速度によって整理した気液二相流の流動様式線図である。It is the flow pattern diagram of the gas-liquid two-phase flow which separated the flow state of the gas-liquid two-phase flow in a horizontal pipe by a flow mode, and arranged according to the gas phase apparent velocity and the liquid phase apparent velocity in the tube. 本発明の第7実施形態に係る太陽熱発電プラントの概略構成図である。It is a schematic block diagram of the solar thermal power generation plant which concerns on 7th Embodiment of this invention. 従来の太陽熱ボイラの概略構成図である。It is a schematic block diagram of the conventional solar thermal boiler. その太陽熱ボイラに使用される集熱装置の拡大概略構成図である。It is an expansion schematic block diagram of the heat collecting device used for the solar thermal boiler.
(第1実施形態)
 次に本発明の実施形態を図面と共に説明する。図1は本発明の第1実施形態に係る複合型発電プラントの第2発電モードでの使用状態を示す概略構成図、図2はその複合型発電プラントの第1発電モードでの使用状態を示す概略構成図である。この図1ならびに図2に示す複合プラントの構成は同じであるが、後述するように発電モードによって使用する機器などが異なる。
(First embodiment)
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a usage state in the second power generation mode of the combined power plant according to the first embodiment of the present invention, and FIG. 2 shows a usage state in the first power generation mode of the combined power plant. It is a schematic block diagram. 1 and FIG. 2 have the same configuration, but different devices are used depending on the power generation mode, as will be described later.
 この複合型発電プラントは、太陽からの熱を集熱して、その熱で蒸気を発生する太陽熱ボイラプラントを用いた第1発電プラント(太陽熱発電プラント)と、燃料を燃焼もしくは発熱(例えば核燃料の場合)させて、あるいは高温排気ガスの熱を回収して蒸気を発生するボイラプラントを用いた第2発電プラントを組み合わせた複合型のプラントである。 
<第1発電モード>
 この複合型発電プラントの第1発電モードでは、図2に示すように、太陽熱用給水弁20を開き、火力用給水弁66を閉じておく。
This combined power plant has a first power plant (solar thermal power plant) that uses a solar boiler plant that collects heat from the sun and generates steam with the heat, and burns or generates heat (for example, in the case of nuclear fuel) Or a second power plant using a boiler plant that generates steam by recovering the heat of high-temperature exhaust gas.
<First power generation mode>
In the first power generation mode of the combined power plant, as shown in FIG. 2, the solar water supply valve 20 is opened and the thermal power supply valve 66 is closed.
 給水ポンプ11から供給された水は給水弁19を通り、給水加熱器12に送られて加熱され、太陽熱用給水弁20を通り、汽水分離装置4を経て低温加熱装置13に導入される。この低温加熱装置13では太陽7からの光32によって給水を加熱し、水は循環ポンプ15によって汽水分離装置4と低温加熱装置13の間を循環する。 Water supplied from the water supply pump 11 passes through the water supply valve 19, is sent to the water supply heater 12, is heated, passes through the solar water supply valve 20, and is introduced into the low temperature heating device 13 through the brackish water separator 4. In this low temperature heating device 13, the feed water is heated by the light 32 from the sun 7, and the water is circulated between the brackish water separator 4 and the low temperature heating device 13 by the circulation pump 15.
 この低温加熱装置13で生成された水-蒸気二相流体は汽水分離装置4で飽和水と飽和蒸気に分離され、分離された蒸気はタワー16上に設置されている高温加熱装置14へ送られる。その高温加熱装置14に導入された蒸気は、ヘリオスタット6で反射して高温加熱装置14に導かれた太陽熱でさらに過熱される。 The water-steam two-phase fluid generated by the low temperature heating device 13 is separated into saturated water and saturated steam by the brackish water separation device 4, and the separated steam is sent to the high temperature heating device 14 installed on the tower 16. . The steam introduced into the high-temperature heating device 14 is further superheated by solar heat reflected by the heliostat 6 and guided to the high-temperature heating device 14.
 高温加熱装置14で生成した過熱蒸気は、中圧蒸気タービン61へ送られ(図中のAからA)、中圧蒸気タービン61ならびに低圧蒸気タービン62を回転し、その回転により中圧・低圧蒸気タービン用発電機65で発電する仕組みになっている。 The superheated steam generated by the high-temperature heating device 14 is sent to the intermediate-pressure steam turbine 61 (A to A in the figure), and rotates the intermediate-pressure steam turbine 61 and the low-pressure steam turbine 62. The turbine generator 65 generates power.
 なお、中圧蒸気タービン61へ供給する蒸気量を調整するために、給水ポンプ11と給水加熱器12の間に給水弁19が、また、高温加熱装置14と中圧蒸気タービン61の間に蒸気弁18が設置されている。さらに、中圧蒸気タービン61ならびに低圧蒸気タービン62から一部の蒸気が抽気され、抽気弁17を通って給水加熱器12へ送られ(図中のC、CからC)、給水が加熱されるシステムになっている。 In order to adjust the amount of steam supplied to the intermediate pressure steam turbine 61, a feed water valve 19 is provided between the feed water pump 11 and the feed water heater 12, and a steam is provided between the high temperature heating device 14 and the intermediate pressure steam turbine 61. A valve 18 is installed. Further, a part of steam is extracted from the intermediate pressure steam turbine 61 and the low pressure steam turbine 62 and sent to the feed water heater 12 through the extraction valve 17 (C 2 and C 3 to C in the figure), and the feed water is heated. It has become a system.
<第2発電モード>
 本実施形態の複合型発電プラントの第2発電モードでは、図1に示すように、火力用給水弁66を開き、太陽熱用給水弁20を閉じておく。
<Second power generation mode>
In the second power generation mode of the combined power plant of the present embodiment, as shown in FIG. 1, the thermal water supply valve 66 is opened and the solar heat supply valve 20 is closed.
 給水ポンプ11から供給された水は給水弁19を通り、給水加熱器12に送られて加熱される。給水加熱器12で加熱された水は、火力用給水弁66を通り、燃料を燃焼もしくは発熱させて、あるいは排熱ガスの熱を回収して蒸気を発生させるボイラプラント10に導入される。 Water supplied from the water supply pump 11 passes through the water supply valve 19 and is sent to the water supply heater 12 to be heated. The water heated by the feed water heater 12 passes through a thermal water supply valve 66 and is introduced into a boiler plant 10 that generates steam by burning or generating heat or recovering the heat of exhaust heat gas.
 このボイラプラント10には再熱蒸気系熱交換器10aと主蒸気系熱交換器10bが設けられており、前述の給水加熱器12で加熱された水は、主蒸気系熱交換器10bで過熱される。主蒸気系熱交換器10bで発生した過熱蒸気は高圧蒸気タービン60に送られ(図中のBからB)、高圧蒸気タービン60を回転し、その回転により高圧蒸気タービン用発電機64で発電する。 The boiler plant 10 is provided with a reheat steam heat exchanger 10a and a main steam heat exchanger 10b, and water heated by the feed water heater 12 is overheated by the main steam heat exchanger 10b. Is done. The superheated steam generated in the main steam heat exchanger 10b is sent to the high-pressure steam turbine 60 (from B to B in the figure), rotates the high-pressure steam turbine 60, and generates electricity by the generator 64 for the high-pressure steam turbine by the rotation. .
 また、前記高圧蒸気タービン60から出た過熱蒸気は再びボイラプラント10に導入され、再熱蒸気系熱交換器10aに送られる。再熱蒸気系熱交換器10aで過熱された蒸気は中圧蒸気タービン61へ送られ(図中EからE)、中圧蒸気タービン61ならびに低圧蒸気タービン62を回転し、その回転により中圧・低圧蒸気タービン用発電機65で発電する仕組みになっている。 Further, the superheated steam emitted from the high-pressure steam turbine 60 is again introduced into the boiler plant 10 and sent to the reheat steam system heat exchanger 10a. The steam superheated in the reheat steam system heat exchanger 10a is sent to the intermediate pressure steam turbine 61 (E to E in the figure), and rotates the intermediate pressure steam turbine 61 and the low pressure steam turbine 62, and the rotation causes the medium pressure / Power generation is performed by a low-pressure steam turbine generator 65.
 なお、前記再熱蒸気系熱交換器10aと主蒸気系熱交換器10bは、ボイラプラント10側から見て、両者の熱交換器10a、10bを区別するために付けた名称である。 The reheat steam heat exchanger 10a and the main steam heat exchanger 10b are names given to distinguish the heat exchangers 10a and 10b from the boiler plant 10 side.
 高圧蒸気タービン60へ供給する蒸気量を調整するために、給水ポンプ11と給水加熱器12の間に給水弁19が、また、ボイラプラント10と高圧蒸気タービン60の間に蒸気弁67が、それぞれ設置されている。 In order to adjust the amount of steam supplied to the high-pressure steam turbine 60, a feed water valve 19 is provided between the feed water pump 11 and the feed water heater 12, and a steam valve 67 is provided between the boiler plant 10 and the high-pressure steam turbine 60, respectively. is set up.
 さらに、高圧蒸気タービン60、中圧蒸気タービン61、低圧蒸気タービン62から一部の蒸気が抽気され、抽気弁17を通って給水加熱器12へ送られ(図中のC、C、CからC)、給水が加熱されるシステムになっている。 Further, some steam is extracted from the high-pressure steam turbine 60, the intermediate-pressure steam turbine 61, and the low-pressure steam turbine 62 and sent to the feed water heater 12 through the extraction valve 17 (C 1 , C 2 , C in the figure). 3 to C), the feed water is heated.
 図3は、第1発電モードにおいて、図2に示すように、高温加熱装置14の出口側に設けた蒸気弁18の通過蒸気量の変化に伴って、中圧蒸気タービン61と低圧蒸気タービン62の出口側に設けた抽気弁17の開度を調整する一例を示した図である。同図(a)は蒸気弁18の通過蒸気量の変化を、同図(b)はその蒸気量変化に伴う抽気弁17の開度調整を示している。 FIG. 3 shows that in the first power generation mode, as shown in FIG. 2, the medium pressure steam turbine 61 and the low pressure steam turbine 62 are accompanied by a change in the amount of steam passing through the steam valve 18 provided on the outlet side of the high temperature heating device 14. It is the figure which showed an example which adjusts the opening degree of the extraction valve 17 provided in the exit side. 4A shows the change in the amount of steam passing through the steam valve 18, and FIG. 4B shows the adjustment of the opening degree of the extraction valve 17 accompanying the change in the amount of steam.
 この図に示すように、蒸気弁18の通過蒸気量が増大すれば抽気弁17の開度を小さくし、反対に蒸気弁18の通過蒸気量が減少すれば抽気弁17の開度を大きくするようにして、高温加熱装置14から供給される蒸気量に応じて抽気弁17を操作して、中圧蒸気タービン61および低圧蒸気タービン62の抽気量を増減(調整)することで、発電出力の大幅な変動を回避することができる。 As shown in this figure, when the amount of steam passing through the steam valve 18 increases, the opening degree of the extraction valve 17 is decreased, and conversely, when the amount of steam passing through the steam valve 18 decreases, the opening degree of the extraction valve 17 is increased. In this way, by operating the extraction valve 17 according to the amount of steam supplied from the high-temperature heating device 14, the amount of extraction of the intermediate-pressure steam turbine 61 and the low-pressure steam turbine 62 is increased or decreased (adjusted). Large fluctuations can be avoided.
 なお、この高温加熱装置14から供給される蒸気量に応じた、中圧蒸気タービン61および低圧蒸気タービン62の抽気量の調整は、後述する他の実施形態においても適用可能である。 It should be noted that the adjustment of the extraction amount of the intermediate-pressure steam turbine 61 and the low-pressure steam turbine 62 according to the amount of steam supplied from the high-temperature heating device 14 can be applied to other embodiments described later.
 図4は、高温加熱装置14を設置したタワー式集光・集熱装置の構成などを説明するための原理図である。 
 このタワー式集光・集熱装置は図4に示すように、所定の高さ(30~100m程度)を有するタワー16の上に高温加熱装置14(伝熱管パネル27)を設置する。一方、地上面に多数のヘリオスタット6を色々な向きに配置して、太陽7の動きを追尾しながら前記ヘリオスタット6群で高温加熱装置14(伝熱管パネル27)に集光して、過熱蒸気を生成する仕組みになっている。
FIG. 4 is a principle diagram for explaining the configuration of a tower-type light collecting / collecting device provided with the high-temperature heating device 14.
As shown in FIG. 4, the tower type light collecting and heat collecting apparatus is provided with a high temperature heating device 14 (heat transfer tube panel 27) on a tower 16 having a predetermined height (about 30 to 100 m). On the other hand, a large number of heliostats 6 are arranged in various directions on the ground surface, and the heliostats 6 are focused on the high-temperature heating device 14 (heat transfer tube panel 27) while tracking the movement of the sun 7, and overheated. It is a mechanism to generate steam.
 このタワー式の集光・集熱装置は、トラフ式の集光・集熱装置よりも高温の蒸気を生成することができ、タービン効率を上げて、より多くの電力が得られるという長所を有している。 This tower-type concentrator / heat collector has the advantage that it can generate higher-temperature steam than the trough-type concentrator / collector, increasing the turbine efficiency and obtaining more power. is doing.
 図5は高温加熱装置14に用いる伝熱管パネル27の拡大概略構成図である。この伝熱管パネル27は、汽水分離装置4からの蒸気を均等に分配する過熱器下部ヘッダ22と、その過熱器下部ヘッダ22で分配された蒸気を流通させる多数本並列に配置された過熱器伝熱管21と、その過熱器伝熱管21から流出した過熱蒸気を集合させる過熱器上部ヘッダ23で構成される。 FIG. 5 is an enlarged schematic configuration diagram of the heat transfer tube panel 27 used in the high-temperature heating device 14. The heat transfer tube panel 27 includes a superheater lower header 22 that evenly distributes the steam from the brackish water separator 4 and superheater transmissions arranged in parallel to distribute the steam distributed by the superheater lower header 22. It consists of a heat pipe 21 and a superheater upper header 23 that collects superheated steam flowing out from the superheater heat transfer pipe 21.
 前記低温加熱装置13と汽水分離装置4は、内部に多量の水を保有し、装置全体が重たくなるため、地上面あるいは高さが例えば1~2m程度の低めの土台を用いて地上面付近に設置している。このように低温加熱装置13と汽水分離装置4は地上面あるいはその付近に設置しているから、従来のように水を例えば30~100mの高所まで上げる必要がなく、そのため揚水能力が低くて安価な給水ポンプ11を用いることができる。 The low-temperature heating device 13 and the brackish water separation device 4 have a large amount of water inside, and the entire device becomes heavy. Therefore, the ground surface or a low foundation with a height of, for example, about 1 to 2 m is used near the ground surface. It is installed. Thus, since the low-temperature heating device 13 and the brackish water separation device 4 are installed on or near the ground surface, it is not necessary to raise the water to a height of, for example, 30 to 100 m as in the prior art, so that the pumping capacity is low. An inexpensive feed water pump 11 can be used.
 一方、高温加熱装置14は、ヘリオスタット6からの光32を高い光密度で集光するため、地上面より10m以上(例えば30~100m)の高所に設置している。この高温加熱装置14の内部を流れる流体は蒸気のみであるから、一般的な蒸発器2と過熱器3と汽水分離装置4からなる集熱装置1(図25参照)に比べると遥かに軽量で小型である。なお、低温加熱装置13と高温加熱装置14の集熱量比は概ね9:1~7:3であり、高温加熱装置14の集熱量は低温加熱装置13よりも遥かに少ない。 On the other hand, the high-temperature heating device 14 is installed at a height of 10 m or more (for example, 30 to 100 m) from the ground surface in order to collect the light 32 from the heliostat 6 with high light density. Since the fluid flowing inside the high-temperature heating device 14 is only steam, it is much lighter than the heat collecting device 1 (see FIG. 25) comprising the general evaporator 2, superheater 3, and brackish water separator 4. It is small. Note that the heat collection ratio of the low temperature heating device 13 and the high temperature heating device 14 is approximately 9: 1 to 7: 3, and the heat collection amount of the high temperature heating device 14 is much smaller than that of the low temperature heating device 13.
 図6は、本実施形態に係る複合型発電プラントの第1発電モードにおいて、使用する蒸気タービン別に、同図(a)は発電出力、同図(b)は年間の売電による利益比率、同図(c)は集光・集熱装置を建設するための初期コスト比率、同図(d)は同図(b),(c)を考慮して、発電コストの比率の例をそれぞれ示した図である。 FIG. 6 shows, in the first power generation mode of the combined power plant according to the present embodiment, for each steam turbine used, FIG. 6 (a) shows the power generation output, FIG. Fig. (C) shows the initial cost ratio for constructing the concentrator / heat collector, and Fig. (D) shows an example of the ratio of power generation cost in consideration of Fig. (B) and (c). FIG.
 なお、前述の使用する蒸気タービン別とは、同図の横軸に示す高圧・中圧・低圧タービン使用、中圧・低圧タービン使用、低圧タービン使用のことを指している。また、同図(b)~(d)に示す各比率は、中圧・低圧蒸気タービンを基準(1.0)としたものである。 Note that the above-described steam turbines used indicate the use of high-pressure / medium-pressure / low-pressure turbines, use of medium-pressure / low-pressure turbines, and use of low-pressure turbines shown on the horizontal axis of FIG. Further, the ratios shown in (b) to (d) in the figure are based on the medium pressure / low pressure steam turbine (1.0).
 一般的に、高温・高圧の蒸気を生成し、使用する蒸気タービンの数を増やした方が発電出力は増大するのはいうまでもない。例えば同図(a)に示すように、高圧・中圧・低圧蒸気タービン60、61、62の3つの蒸気タービンで定負荷運転した場合に350MWe、中圧・低圧蒸気タービン61、62の2つの蒸気タービンで定負荷運転した場合に254MWe、低圧蒸気タービン62のみで定負荷運転した場合に160MWeで発電できるとすると、同図(b)に示すように、年間の売電利益は発電出力が増加するほど増大する。 In general, it goes without saying that generating high-temperature and high-pressure steam and increasing the number of steam turbines used increase the power generation output. For example, as shown in FIG. 2A, when a constant load operation is performed with three steam turbines of high-pressure / medium-pressure / low- pressure steam turbines 60, 61, 62, two turbines of 350MWe, medium-pressure / low- pressure steam turbines 61, 62 are provided. Assuming that power can be generated at 254 MWe when operating at a constant load with a steam turbine and 160 MWe when operating at a constant load with only a low-pressure steam turbine 62, as shown in FIG. The more you increase.
 しかし、高圧・中圧・低圧蒸気タービン60、61、62を使用すると、本実施形態の再熱蒸気系熱交換器10a(図1参照)に相当する部分をタワー式集光・集熱装置が代用し、高圧蒸気タービン60からの蒸気をタワー式集光・集熱装置で過熱して中圧蒸気タービン61に送る必要があるため、タワー式集光・集熱装置の規模が拡大し、同図(c)に示すように、集光・集熱装置の初期コストが増大する。 However, when the high-pressure / medium-pressure / low- pressure steam turbines 60, 61, 62 are used, the tower-type concentrating / collecting device corresponds to the reheat steam heat exchanger 10a (see FIG. 1) of this embodiment. Instead, it is necessary to superheat the steam from the high-pressure steam turbine 60 with the tower-type concentrator / heat collector and send it to the intermediate-pressure steam turbine 61, so that the scale of the tower-type concentrator / heat collector is expanded. As shown in FIG. 3C, the initial cost of the light collecting / heat collecting device increases.
 一方、同図(d)に示すように、第1発電モードでは、中圧・低圧蒸気タービン61、62を定負荷運転することが最も発電コストの増加を抑制することが分かる。 On the other hand, as shown in FIG. 4D, it can be seen that in the first power generation mode, the medium-pressure / low- pressure steam turbines 61 and 62 are operated at a constant load to suppress the increase in power generation cost most.
 本実施形態に係る複合型発電プラントによれば、第1発電モードでは、中圧・低圧蒸気タービン61、62を使用し、第2発電モードでは高圧・中圧・低圧蒸気タービン60、61、62を使用する。また、高圧蒸気タービン用発電機64と中圧・低圧用蒸気タービン用発電機65を用い、第1発電モード時には、高圧蒸気タービン60を不必要に回転させることを防ぐ。 
 これにより、第1発電モードおよび第2発電モードのそれぞれの蒸気条件に適した蒸気タービン60、61、62を使用でき、発電コストの増加を抑制することが可能となる。 
 この効果は、第2実施形態以降の実施形態においても同様に得られる効果である。
According to the combined power plant according to the present embodiment, the medium pressure / low pressure steam turbines 61, 62 are used in the first power generation mode, and the high pressure / medium pressure / low pressure steam turbines 60, 61, 62 are used in the second power generation mode. Is used. Further, the high-pressure steam turbine generator 64 and the intermediate-pressure / low-pressure steam turbine generator 65 are used to prevent the high-pressure steam turbine 60 from rotating unnecessarily in the first power generation mode.
Thereby, the steam turbines 60, 61, 62 suitable for the respective steam conditions of the first power generation mode and the second power generation mode can be used, and an increase in power generation cost can be suppressed.
This effect is also obtained in the second and subsequent embodiments.
 なお、高圧蒸気タービン60、中圧蒸気タービン61および低圧蒸気タービン62の回転軸は2軸でなくてもよく、例えば1軸にして、高圧・中圧・低圧蒸気タービン用の発電機を用意し、第1発電モード時は高圧蒸気タービンを空回りさせてもよい。 

(第2実施形態)
 図7は本発明の第2実施形態に係る複合型発電プラントの第2発電モードでの使用状態を示す概略構成図、図8はその複合型発電プラントの第1発電モードでの使用状態を示す概略構成図である。この図7ならびに図8に示す複合プラントの構成は同じであるが、前記第1実施形態と同様に発電モードによって使用する機器などが異なる。
The high-pressure steam turbine 60, the medium-pressure steam turbine 61, and the low-pressure steam turbine 62 do not have to have two rotational axes. For example, a single-shaft generator for high-pressure / medium-pressure / low-pressure steam turbines is prepared. In the first power generation mode, the high-pressure steam turbine may be idled.

(Second Embodiment)
FIG. 7 is a schematic configuration diagram showing a use state in the second power generation mode of the combined power plant according to the second embodiment of the present invention, and FIG. 8 shows a use state in the first power generation mode of the combined power plant. It is a schematic block diagram. Although the configuration of the complex plant shown in FIG. 7 and FIG. 8 is the same, the equipment to be used differs depending on the power generation mode as in the first embodiment.
 本実施形態で前記第1実施形態と相違する点は、図8に示すようにトラフ式あるいはフレネル式の集光・集熱装置からなる低温加熱装置24を用いた点である。他の構成や発電の仕組みなどは前記第1実施形態と同様であるので、重複する説明は省略する。 This embodiment is different from the first embodiment in that a low-temperature heating device 24 including a trough-type or Fresnel-type light collecting / heat collecting device is used as shown in FIG. Other configurations and power generation mechanisms are the same as those in the first embodiment, and a duplicate description is omitted.
 図9は、トラフ式の集光・集熱装置の構成などを説明するための原理図である。 
 このトラフ式の集光・集熱装置は図9に示すように、桶状に延びた集光ミラー30の内周曲面上方の焦点位置に個別に伝熱管31を水平に配置し、太陽光32を前記集光ミラー30で伝熱管31に集光する。各伝熱管31内には水33が流通しており、伝熱管31に集められた熱によってその水33が加熱され、伝熱管31から水-蒸気二相流体34が得られる仕組みになっている。 
 このトラフ式の集光・集熱装置は、高度な集光技術は不要であり、構造が比較的単純であるという長所を有している。
FIG. 9 is a principle diagram for explaining the configuration of a trough-type condensing / heat collecting device.
As shown in FIG. 9, this trough-type condensing / heat collecting device individually arranges heat transfer tubes 31 horizontally at the focal position above the inner peripheral curved surface of the condensing mirror 30 extending in a bowl shape, and sunlight 32 Is condensed on the heat transfer tube 31 by the condenser mirror 30. Water 33 circulates in each heat transfer tube 31, and the water 33 is heated by the heat collected in the heat transfer tube 31, and a water-steam two-phase fluid 34 is obtained from the heat transfer tube 31. .
This trough-type condensing / heat collecting apparatus has the advantages that it does not require advanced condensing technology and has a relatively simple structure.
 なお、本実施形態ではトラフ式の集光・集熱装置からなる低温加熱装置24を用いたが、フレネル式の集光・集熱装置からなる低温加熱装置24を用いても良い。 In this embodiment, the low-temperature heating device 24 composed of a trough-type condensing / heat collecting device is used, but a low-temperature heating device 24 composed of a Fresnel-type condensing / heat collecting device may be used.
 図10は、フレネル式の集光・集熱装置の構成などを説明するための原理図である。 
 このフレネル式の集光・集熱装置は図10に示すように、平面状あるいは若干曲面状の集光ミラー35を角度を少しずつ変えて多数並べて、その集光ミラー35群の上方数メートルの箇所にパネル状になった伝熱管31群を水平に配置する。
FIG. 10 is a principle diagram for explaining the configuration of a Fresnel type light collecting / collecting device.
As shown in FIG. 10, this Fresnel type condenser / heat collector has a large number of planar or slightly curved condenser mirrors 35 arranged at slightly different angles and several meters above the condenser mirror 35 group. A group of heat transfer tubes 31 in the form of a panel is arranged horizontally.
 太陽光32を前記集光ミラー35群で伝熱管31群に集光し、各伝熱管31内を流通する水33を加熱して、伝熱管31から水-蒸気二相流体34が得られる仕組みになっている。 A mechanism in which the sunlight 32 is condensed on the heat transfer tubes 31 by the condensing mirror 35 group, and the water 33 flowing through the heat transfer tubes 31 is heated to obtain the water-steam two-phase fluid 34 from the heat transfer tubes 31. It has become.
 このフレネル式の集光・集熱装置は、前記トラフ式の曲面集光ミラー30よりも製造が簡便であり、安価に製造でき、しかも集光ミラー35が風圧に影響され難いという長所を有している。 

(第3実施形態)
 図11は本発明の第3実施形態に係る複合型発電プラントの第2発電モードでの使用状態を示す概略構成図、図12はその複合型発電プラントの第1発電モードでの使用状態を示す概略構成図である。この図11ならびに図12に示す複合プラントの構成は同じであるが、前記第1実施形態と同様に発電モードによって使用する機器などが異なる。
This Fresnel type condenser / heat collector is easier to manufacture than the trough-type curved condenser mirror 30, can be produced at a low cost, and has the advantage that the condenser mirror 35 is less susceptible to wind pressure. ing.

(Third embodiment)
FIG. 11 is a schematic configuration diagram showing a use state of the combined power plant according to the third embodiment of the present invention in the second power generation mode, and FIG. 12 shows a use state of the combined power plant in the first power generation mode. It is a schematic block diagram. 11 and FIG. 12 have the same configuration, but the devices used differ depending on the power generation mode as in the first embodiment.
 本実施形態の場合、図12に示すように、低温加熱装置24の出口側と汽水分離装置4の入口側の間に設けられた流体戻し配管36上に流体の温度と流量を測定する温度計25と流量計28を設け、その温度計25と流量計28の計測信号を演算装置26に入力する。 In the case of the present embodiment, as shown in FIG. 12, a thermometer that measures the temperature and flow rate of the fluid on the fluid return pipe 36 provided between the outlet side of the low-temperature heating device 24 and the inlet side of the brackish water separator 4. 25 and a flow meter 28 are provided, and measurement signals from the thermometer 25 and the flow meter 28 are input to the arithmetic unit 26.
 そして演算装置26では、低温加熱装置24の出口流体温度が常に300℃以下になるように、給水弁20の開度、すなわち、給水流量を制御するための制御信号を給水弁20に出力している。 The arithmetic unit 26 outputs a control signal for controlling the opening of the water supply valve 20, that is, the water supply flow rate, to the water supply valve 20 so that the outlet fluid temperature of the low temperature heating device 24 is always 300 ° C. or lower. Yes.
 このように低温加熱装置24の出口流体温度を300℃以下に制限することで、トラフ式(またはフレネル式)の集光・集熱装置からなる低温加熱装置24の構造を簡素化できると共に、伝熱効率の低下を抑制できるという利点がある。 By limiting the outlet fluid temperature of the low-temperature heating device 24 to 300 ° C. or less in this way, the structure of the low-temperature heating device 24 composed of a trough-type (or Fresnel-type) light collecting / collecting device can be simplified, and transmission can be performed. There is an advantage that a decrease in thermal efficiency can be suppressed.
 具体的には、トラフ式(またはフレネル式)の集光・集熱装置を高温下で使用する場合の課題である、伝熱管と外周ガラス管との熱伸びの差による外周ガラス管の割れ、ならびに伝熱管表面温度の高温化による放射冷却を抑制することができる。 Specifically, the outer glass tube cracks due to the difference in thermal elongation between the heat transfer tube and the outer glass tube, which is a problem when using a trough-type (or Fresnel-type) light collecting / collecting device at a high temperature. In addition, it is possible to suppress the radiative cooling due to the heat transfer tube surface temperature being increased.
 図13は、トラフ式(またはフレネル式)の集光・集熱装置に用いる伝熱管付近の一部拡大断面図である。同図に示すように水平伝熱管38の外周には外周ガラス管42が配置されて、二重構造になっている。この外周ガラス管42は、水平伝熱管38と外周ガラス管42の間を気密状態もしくは真空状態にして、水平伝熱管38から外気への熱放出を抑止するために設けられている。 FIG. 13 is a partially enlarged cross-sectional view of the vicinity of a heat transfer tube used in a trough-type (or Fresnel-type) light collecting / collecting device. As shown in the figure, an outer peripheral glass tube 42 is disposed on the outer periphery of the horizontal heat transfer tube 38 to form a double structure. The outer peripheral glass tube 42 is provided in order to suppress heat release from the horizontal heat transfer tube 38 to the outside air by making the space between the horizontal heat transfer tube 38 and the outer peripheral glass tube 42 airtight or vacuum.
 この伝熱管38は、複数本を管軸方向に接合して1本の長い伝熱管38にする訳であり、伝熱管38は例えば炭素鋼ステンレスなどの金属で構成しているため、図13に示すように伝熱管38どうしを溶接43して所定の長さにすることができる。 The heat transfer tubes 38 are joined to form a long heat transfer tube 38 by joining a plurality of heat transfer tubes in the axial direction. Since the heat transfer tube 38 is made of a metal such as carbon steel stainless steel, FIG. As shown, the heat transfer tubes 38 can be welded 43 to a predetermined length.
 一方、外周ガラス管42の方はそれらどうしを直接溶接することはできないから、図13に示すように、外周ガラス管42の接合部の内側と外側にそれぞれ金属製の接合用管体44を配置して、外周ガラス管42と接合用管体44を溶接することにより、接合用管体44を介して外周ガラス管42どうしを所定の長さに連結した構造になっている。 On the other hand, since the outer glass tube 42 cannot directly weld them, as shown in FIG. 13, metal bonding pipes 44 are respectively arranged on the inner side and the outer side of the joint portion of the outer glass tube 42. The outer peripheral glass tube 42 and the bonding tube 44 are welded to each other so that the outer peripheral glass tubes 42 are connected to each other with a predetermined length via the bonding tube 44.
 このようにして所定の長さに連結された外周ガラス管42の内側に、所定の長さに連結された伝熱管38と外周ガラス管42との熱伸び差が大きくなると、外周ガラス管42と接合用管体44の連結部付近が割れることがある。 Thus, when the difference in thermal expansion between the heat transfer tube 38 and the outer peripheral glass tube 42 connected to a predetermined length increases inside the outer peripheral glass tube 42 connected to a predetermined length, the outer peripheral glass tube 42 and The vicinity of the connecting portion of the bonding tube 44 may be broken.
 また、伝熱管38の表面温度の高温化に伴って外気との温度差が大きくなり、放射冷却現象(温度の4乗差で熱が移動)により、外気への熱放散が大きくなるといった問題がある。 In addition, as the surface temperature of the heat transfer tube 38 increases, the temperature difference from the outside air increases, and the heat dissipation to the outside air increases due to the radiation cooling phenomenon (heat moves by the fourth power difference). is there.
 そのため本実施形態では、低温加熱装置24の出口流体温度を300℃以下、具体的には250~300℃の範囲に制限して、伝熱管38と外周ガラス管42との熱伸び差による外周ガラス管42の割れ、ならびに伝熱管38の表面温度の高温化による放射冷却を抑制している。 Therefore, in this embodiment, the temperature of the outlet fluid of the low-temperature heating device 24 is limited to 300 ° C. or less, specifically 250 to 300 ° C., and the peripheral glass due to the difference in thermal expansion between the heat transfer tube 38 and the peripheral glass tube 42. Radiation cooling due to cracking of the tube 42 and an increase in the surface temperature of the heat transfer tube 38 is suppressed.
 なお、高温加熱装置14の出口流体温度は300℃以上になるように、前記温度計25と流量計28の計測信号に基づいて高温加熱装置14の集熱量が調整できるようになっている。集熱量は給水弁19の開度を調整し、給水流量を変化させることで制御できる。 
 他の構成や発電の仕組みなどは前記第2実施形態と同様であるので、重複する説明は省略する。
The heat collection amount of the high temperature heating device 14 can be adjusted based on the measurement signals of the thermometer 25 and the flow meter 28 so that the outlet fluid temperature of the high temperature heating device 14 is 300 ° C. or higher. The amount of heat collection can be controlled by adjusting the opening of the water supply valve 19 and changing the water supply flow rate.
Other configurations and power generation mechanisms are the same as those in the second embodiment, and a duplicate description is omitted.
 本実施形態では、低温加熱装置24の出口側に温度計25と流量計28を設置して、計測した温度および流量が所定の値になるように低温加熱装置24への給水流量を調整したが、前記第1実施形態で使用する低温加熱装置13(図2参照)の出口側に温度計25と流量計28を設置して、計測した温度および流量が所定の値になるように低温加熱装置24の集熱量を調整することもできる。 In this embodiment, the thermometer 25 and the flow meter 28 are installed on the outlet side of the low temperature heating device 24, and the feed water flow rate to the low temperature heating device 24 is adjusted so that the measured temperature and flow rate become predetermined values. The thermometer 25 and the flow meter 28 are installed on the outlet side of the low-temperature heating device 13 (see FIG. 2) used in the first embodiment, so that the measured temperature and flow rate become predetermined values. The amount of heat collection of 24 can also be adjusted.
 前記何れの実施形態においても、低温加熱装置13(24)および高温加熱装置14は、最終的には、中圧蒸気タービン61、低圧蒸気タービン62を駆動する蒸気(水)からなる流体を熱媒体として、これを直接、太陽光32で加熱する集光・集熱装置となっている。 In any of the above-described embodiments, the low-temperature heating device 13 (24) and the high-temperature heating device 14 ultimately use a fluid consisting of steam (water) that drives the intermediate-pressure steam turbine 61 and the low-pressure steam turbine 62 as a heat medium. This is a light collecting / collecting device that directly heats it with sunlight 32.
 従って、太陽熱ボイラとしては、低温加熱装置13(24)および高温加熱装置14以外には熱交換器を用いないので、ボイラ装置全体の構成が簡素で、小型化やコストの低減が図れるなどの特長を有している。 Therefore, since the solar heat boiler does not use a heat exchanger other than the low-temperature heating device 13 (24) and the high-temperature heating device 14, the configuration of the entire boiler device is simple, and the size and cost can be reduced. have.
 一方、水-蒸気からなる流体を直接、太陽光32で加熱する場合、特に低温加熱装置13(24)に用いられるフレネル型あるいはトラフ型の集光・集熱装置は、それの伝熱管内で水から蒸気へと相変化が起きて、二相流が生じると、伝熱管が局部的に熱的損傷を受ける可能性がある。 On the other hand, when a fluid composed of water-steam is directly heated by sunlight 32, a Fresnel type or trough type light collecting / collecting device used in the low temperature heating device 13 (24) is particularly preferably disposed in the heat transfer tube. When a phase change occurs from water to steam, resulting in a two-phase flow, the heat transfer tubes can be locally damaged thermally.
 即ち、特にフレネル型あるいはトラフ型の集光・集熱装置は、水平に配置された伝熱管の外周面のうち集光された範囲で受熱するため、伝熱管の外周にわたって不均等な熱流束分布を生じやすい構造となっている。 That is, in particular, the Fresnel type or trough type light collecting / collecting device receives heat in the concentrated range of the outer peripheral surface of the horizontally arranged heat transfer tubes, so that the heat flux distribution is uneven over the outer periphery of the heat transfer tubes. It is the structure which is easy to produce.
 このため内部流体が二相流となった場合には、瞬時に集光・集熱量の変化によって伝熱異常が生じ、その伝熱管の部位において熱的損傷を生じる可能性がある。 For this reason, when the internal fluid becomes a two-phase flow, there is a possibility that an abnormal heat transfer will occur due to a change in the amount of light collected and collected instantaneously, resulting in thermal damage at the site of the heat transfer tube.
 フレネル型やトラフ型の集光・集熱装置は、長大な伝熱管をほぼ水平に配置し、広大な領域に設置されるものであり、太陽光による集熱量が一日のうちで大きく変動し、また天候によっても急激に変化するもので、予め二相流が流れる範囲を特定しておくことが難しい。 Fresnel-type and trough-type concentrators / heat collectors are installed in a vast area with long heat transfer tubes arranged almost horizontally, and the amount of heat collected by sunlight varies greatly throughout the day. Also, it changes rapidly depending on the weather, and it is difficult to specify the range in which the two-phase flow flows in advance.
 このため、全体的に伝熱管材を高性能なもの、すなわち熱的損傷を受け難い高価なものとする必要が生じ、そのためコスト高に繋がるという問題がある。 

(第4実施形態)
 本発明の第4実施形態はこのような問題点を解消するためのもので、図14は、この第4実施形態に係る複合型発電プラントの第2発電モードでの使用状態を示す概略構成図、図15はその複合型発電プラントの第1発電モードでの使用状態を示す概略構成図である。この図14ならびに図15に示す複合プラントの構成は同じであるが、前記第1実施形態と同様に発電モードによって使用する機器などが異なる。
For this reason, it is necessary to make the heat transfer tube material high-performance, that is, an expensive material that is not easily damaged by heat, and there is a problem that the cost is increased.

(Fourth embodiment)
The fourth embodiment of the present invention is for solving such problems, and FIG. 14 is a schematic configuration diagram showing a use state in the second power generation mode of the combined power plant according to the fourth embodiment. FIG. 15 is a schematic configuration diagram showing a use state of the combined power plant in the first power generation mode. The configuration of the complex plant shown in FIGS. 14 and 15 is the same, but the devices used differ depending on the power generation mode as in the first embodiment.
 本実施形態の場合、図15に示すように、低温加熱装置13の入口側に循環流量を調整する給水循環流量制御弁37と流量計28を設けるとともに、汽水分離装置4の水位を検出する水位計29を設ける。 In the case of this embodiment, as shown in FIG. 15, a water supply circulation flow rate control valve 37 for adjusting the circulation flow rate and a flow meter 28 are provided on the inlet side of the low-temperature heating device 13, and the water level for detecting the water level of the brackish water separator 4 A total of 29 is provided.
 そして流量計28の流量計測信号と水位計29の水位計測信号が演算装置26に入力され、演算装置26では汽水分離装置4の水位が目標値となるように、給水流量を調整するための給水弁19、あるいは(および)循環流量を調整するための給水循環流量制御弁37へ制御信号を出力している。 Then, the flow rate measurement signal of the flow meter 28 and the water level measurement signal of the water level meter 29 are input to the arithmetic device 26, and the arithmetic device 26 supplies water for adjusting the feed water flow rate so that the water level of the brackish water separator 4 becomes the target value. A control signal is output to the valve 19 or (and) the feed water circulation flow rate control valve 37 for adjusting the circulation flow rate.
 本実施形態のように汽水分離装置4の水位を制御することによって、低温加熱装置13の伝熱管において相分離を発生させない運転が可能となる。この原理を図16ならびに図17を用いて説明する。 By controlling the water level of the brackish water separator 4 as in this embodiment, it is possible to operate without causing phase separation in the heat transfer tube of the low-temperature heating device 13. This principle will be described with reference to FIGS. 16 and 17.
 図16は、汽水分離装置4の水位L(横軸)と、低温加熱装置13の出口クオリティX(縦軸)との関係を示す特性図で、汽水分離装置4の全質量流量Gをパラメータとして水位Lと出口クオリティXの関係を示している。 FIG. 16 is a characteristic diagram showing the relationship between the water level L (horizontal axis) of the brackish water separator 4 and the outlet quality X (vertical axis) of the low-temperature heating device 13, with the total mass flow rate G of the brackish water separator 4 as a parameter. The relationship between the water level L and the exit quality X is shown.
 前記低温加熱装置13の出口クオリティXとは、全質量流量Gに対する蒸気の質量流量の比率のことである。また、汽水分離装置4の全質量流量Gとは、汽水分離装置4を介して低温加熱装置13を循環する流体の流量のことである。 The outlet quality X of the low-temperature heating device 13 is the ratio of the mass flow rate of steam to the total mass flow rate G. Further, the total mass flow rate G of the brackish water separator 4 is a flow rate of fluid circulating through the low-temperature heating device 13 via the brackish water separator 4.
 図17(a)は、横軸に低温加熱装置13の出口クオリティX、縦軸に汽水分離装置4の全質量流量Gをとって、低温加熱装置13の水平伝熱管38(図13参照)内の水-蒸気二相流の流動状態を噴霧流、環状流、気泡流、スラグ流ならびに成層流の状態に分けて、その領域を示した図である。 
 また、図17(b)は、前記水平伝熱管38内における水-蒸気二相流の各流動状態を示した模式図で、噴霧流、環状流、気泡流、スラグ流ならびに成層流の状態が示されている。
FIG. 17A shows the horizontal heat transfer pipe 38 (see FIG. 13) of the low-temperature heating device 13 with the horizontal axis representing the outlet quality X of the low-temperature heating device 13 and the vertical axis representing the total mass flow rate G of the brackish water separator 4. FIG. 2 is a diagram showing the regions of the two-phase flow of water-steam flow divided into a spray flow, an annular flow, a bubble flow, a slag flow, and a stratified flow state.
FIG. 17 (b) is a schematic diagram showing each flow state of the water-steam two-phase flow in the horizontal heat transfer tube 38. The states of the spray flow, the annular flow, the bubble flow, the slag flow and the stratified flow are shown in FIG. It is shown.
 この図17(b)において、水-蒸気二相流の噴霧流とは、管内の大分部が蒸気で、蒸気中に微小な水滴が蒸気に同伴されて流れる状態を示す。環状流とは、管壁に非常に薄い水膜を形成し、その内側が蒸気主体の噴霧流の状態を示す。気泡流とは、管内の大部分が水で満たされ、その中に小さな気泡が存在する状態を示す。スラグ流とは、前記気泡流に比べて気泡の大きさがかなり大きく、気泡流と成層流の中間の状態を示す。成層流とは、気相と液相が重力の作用で上下分離した状態を示す。 
 従って、水平伝熱管38内における水-蒸気二相流の好ましい流動状態は、噴霧流あるいは環状流である。
In FIG. 17 (b), the water-steam two-phase spray flow indicates a state in which most of the pipe is steam, and minute water droplets flow in the steam accompanying the steam. An annular flow forms a very thin water film on the tube wall, and the inside thereof indicates a state of a spray flow mainly composed of steam. The bubble flow indicates a state where most of the inside of the pipe is filled with water and small bubbles are present therein. The slug flow is considerably larger than the bubble flow, and indicates an intermediate state between the bubble flow and the stratified flow. A stratified flow indicates a state in which a gas phase and a liquid phase are vertically separated by the action of gravity.
Therefore, a preferable flow state of the water-steam two-phase flow in the horizontal heat transfer tube 38 is a spray flow or an annular flow.
 前記図16の結果から明らかなように、汽水分離装置4の水位Lと、低温加熱装置13の出口クオリティ(全質量流量に占める蒸気流量の割合)Xには、相関関係があることが分かる。従って、例えば汽水分離装置4の質量流量Gにおいて、汽水分離装置4の水位Lを計測することで、低温加熱装置13の出口クオリティXを求めることができる。 As is apparent from the results of FIG. 16, it can be seen that there is a correlation between the water level L of the brackish water separator 4 and the outlet quality (ratio of the steam flow rate to the total mass flow rate) X of the low-temperature heating device 13. Thus, for example, in the mass flow rate G 1 of the steam separator unit 4, by measuring the water level L 1 of the steam separator unit 4, it is possible to obtain the exit quality X 1 of the low temperature heating unit 13.
 次に、図17(a)に示すように、低温加熱装置13の出口クオリティXと、汽水分離装置4の全質量流量Gが分かれば、低温加熱装置13内の水-蒸気二相流の流動状態を知ることができる。図16に示した例で説明すれば、質量流量Gの条件で、汽水分離装置4の水位がLであれば、出口クオリティはXであることが分かる。 Next, as shown in FIG. 17A, if the outlet quality X of the low-temperature heating device 13 and the total mass flow rate G of the brackish water separator 4 are known, the flow of the water-steam two-phase flow in the low-temperature heating device 13 You can know the state. To describe the example shown in FIG. 16, in the conditions of the mass flow rate G 1, when water level in the steam separator unit 4 is in L 1, it can be seen the outlet quality is X 1.
 低温加熱装置13の水平伝熱管38内において、相分離を生じさせないためには、全運転条件にわたって、気泡流、環状流もしくは噴霧流の流動状態であることが好ましく、低温加熱装置13の熱負荷が高い状態においては、特に環状流もしくは噴霧流とすることが望ましい。 In order to prevent phase separation in the horizontal heat transfer tube 38 of the low-temperature heating device 13, it is preferable that the flow state is a bubble flow, an annular flow or a spray flow over all operating conditions. In a high state, it is particularly desirable to use an annular flow or a spray flow.
 図15に示すように片側加熱である低温加熱装置13の管内において、図17(b)に示すスラグ流や成層流のように水と蒸気の二相に分離すると、水平伝熱管38は局所的な過熱を生じ、高温クリープや管の変形といった、発電プラントの安定運用に対して好ましくない事象を生じる。よって、低温加熱装置13内における水-蒸気二相流の流動状態を適切に管理することは、発電プラントの安定運用上、極めて重要である。 As shown in FIG. 15, in the pipe of the low-temperature heating device 13 that is one-sided heating, when separated into two phases of water and steam as in the slag flow or stratified flow shown in FIG. Overheating, and undesirable events for stable operation of the power plant, such as high temperature creep and pipe deformation. Therefore, appropriately managing the flow state of the water-steam two-phase flow in the low-temperature heating device 13 is extremely important for stable operation of the power plant.
 従って、本実施形態では、前述のように望ましい流動状態になる出口クオリティXの値に対応した汽水分離装置4の水位目標値が予め演算装置26に記憶されている。そして、流量計28の流量と水位計29の水位のそれぞれの計測信号が演算装置26に入力され、演算装置26では汽水分離装置4の水位が目標値となるように、給水流量を調整するための給水弁19、あるいは(および)循環流量を調整するための給水循環流量制御弁37へ制御信号を出力する構成になっており、発電プラントの安定運用が可能となる。 

(第5実施形態)
 本発明の第5実施形態も前記第4実施形態と同様の問題点を解消するためのもので、図18は、この第5実施形態に係る複合型発電プラントの第2発電モードでの使用状態を示す概略構成図、図19はその複合型発電プラントの第1発電モードでの使用状態を示す概略構成図である。この図18ならびに図19に示す複合プラントの構成は同じであるが、前記第1実施形態と同様に発電モードによって使用する機器などが異なる。
Therefore, in this embodiment, the water level target value of the brackish water separator 4 corresponding to the value of the outlet quality X that achieves a desired flow state as described above is stored in the arithmetic device 26 in advance. Then, the measurement signals of the flow rate of the flow meter 28 and the water level of the water level meter 29 are input to the calculation device 26, and the calculation device 26 adjusts the feed water flow rate so that the water level of the brackish water separator 4 becomes the target value. The control signal is output to the feed water circulation valve 19 or (and) the feed water circulation flow rate control valve 37 for adjusting the circulation flow rate, so that the power plant can be stably operated.

(Fifth embodiment)
The fifth embodiment of the present invention is also for solving the same problems as the fourth embodiment, and FIG. 18 shows the use state of the combined power plant according to the fifth embodiment in the second power generation mode. FIG. 19 is a schematic configuration diagram showing a use state of the combined power plant in the first power generation mode. The configuration of the complex plant shown in FIG. 18 and FIG. 19 is the same, but the equipment to be used differs depending on the power generation mode as in the first embodiment.
 図19に示すように、低温加熱装置51と集光・集熱装置52とを別体とし、集光・集熱装置52に熱媒体流路53が付設され、熱媒体流路53の途中に熱媒体循環ポンプ55が設けられている。その熱媒体流路53の一部が熱交換器として低温加熱装置51内に配置されて熱交換器付き低温加熱装置51となっており、熱媒体54が集光・集熱装置52から熱媒体流路53内を循環する構成になっている。 As shown in FIG. 19, the low-temperature heating device 51 and the light collecting / collecting device 52 are separated, and a heat medium flow channel 53 is attached to the light collecting / heat collecting device 52. A heat medium circulation pump 55 is provided. A part of the heat medium flow path 53 is arranged in the low temperature heating device 51 as a heat exchanger to form a low temperature heating device 51 with a heat exchanger, and the heat medium 54 is transferred from the light collecting / heat collecting device 52 to the heat medium. It is configured to circulate in the flow path 53.
 そして集光・集熱装置52で集熱した熱を熱媒体流路53を循環する熱媒体54を通じて低温加熱装置51に伝達し、低温加熱装置51内の水-蒸気からなる流体を加熱する。 Then, the heat collected by the condensing / heat collecting device 52 is transmitted to the low temperature heating device 51 through the heat medium 54 circulating in the heat medium flow path 53, and the water-vapor fluid in the low temperature heating device 51 is heated.
 なお、低温加熱装置51内の熱交換器(本実施形態では、熱媒体流路53の一部)は、低温加熱装置51内の水-蒸気からなる流体と、熱媒体54が直接接触しない非接触型のものであれば良く、特に限定されない。 The heat exchanger in the low-temperature heating device 51 (in this embodiment, a part of the heat medium flow channel 53) is a non-contact between the heat medium 54 and the fluid composed of water-vapor in the low-temperature heating device 51. There is no particular limitation as long as it is a contact type.
 本実施形態において、集光・集熱装置52としては、フレネル型またはトラフ型の集光・集熱装置のように、地表付近の低い位置に集光手段と集熱手段とが設置可能なものが好適である。 In this embodiment, as the light collecting / heat collecting device 52, a light collecting device and a heat collecting device can be installed at a low position near the ground surface, such as a Fresnel type or trough type light collecting / heat collecting device. Is preferred.
 熱媒体54としては使用温度範囲で相変化しない熱媒体が用いられ、熱媒体循環ポンプ55により集光・集熱装置52から熱媒体流路53内を循環する。熱媒体54として、例えば、酸化ジフェニル、ビフェニル、1、1ジフェニルエタンなどの単体、あるいはブレンドした化学合成油を用いることができる。 As the heat medium 54, a heat medium that does not change phase in the operating temperature range is used, and the heat medium circulation pump 55 circulates the heat medium flow path 53 from the condensing / heat collecting device 52. As the heat medium 54, for example, a simple substance such as diphenyl oxide, biphenyl, 1, 1 diphenylethane, or a chemically synthesized oil blended can be used.
 この例示した熱媒体54の最高使用温度はいずれも400℃程度であり、これを超えると性能の著しい劣化、損失を生じる。このため厳密な温度管理を必要とするが、図19に示すように熱媒体流路53に熱媒体温度計56を付設して、集光・集熱装置52の出口熱媒体温度を監視して、熱媒体54の温度が最高使用温度よりも低く、例えば300℃以下に規制することによって、運用範囲内で特別な処理を講じる必要はなくなる。 The maximum operating temperature of the exemplified heat medium 54 is about 400 ° C., and if it exceeds this, the performance is significantly deteriorated and lost. For this reason, strict temperature control is required, but as shown in FIG. 19, a heat medium thermometer 56 is attached to the heat medium flow path 53 to monitor the temperature of the outlet heat medium of the light collecting / heat collecting device 52. The temperature of the heat medium 54 is lower than the maximum use temperature, for example, regulated to 300 ° C. or less, so that it is not necessary to take special treatment within the operation range.
 このように集光・集熱装置52において、熱媒体54が相変化せず、二相流となることがないので、瞬時の集光・集熱量の変化によって伝熱異常を生じることがない。従って、不均等な熱流束分布条件においても伝熱管の熱的損傷を引き起こすことがなく、信頼性の向上ならびに材料コストの低減を図ることができる。 In this way, in the condensing / heat collecting device 52, the heat medium 54 does not change phase and does not become a two-phase flow. Therefore, thermal damage of the heat transfer tube is not caused even under uneven heat flux distribution conditions, and reliability can be improved and material cost can be reduced.
 なお、さらに以下の構成を設けてもよい。 
 図19に示すように、集光・集熱装置52の出口側に熱媒体54の温度と流量を測定する熱媒体温度計56と熱媒体流量計57を設け、その熱媒体温度計56と熱媒体流量計57の計測信号をそれぞれ演算装置26に入力する。
Further, the following configuration may be provided.
As shown in FIG. 19, a heat medium thermometer 56 and a heat medium flow meter 57 for measuring the temperature and flow rate of the heat medium 54 are provided on the outlet side of the light collecting / heat collecting device 52. Each measurement signal of the medium flow meter 57 is input to the arithmetic unit 26.
 そして演算装置26では、集光・集熱装置52の出口側熱媒体温度が300℃以下になるように、給水弁20の開度、すなわち、給水流量を制御するための制御信号を給水弁20に出力するようになっている。 In the arithmetic unit 26, a control signal for controlling the opening of the water supply valve 20, that is, the water supply flow rate, is provided so that the outlet side heat medium temperature of the light collecting / heat collecting device 52 is 300 ° C. or less. To output.
 このように集光・集熱装置52の出口流体温度を300℃以下に制限する理由は、前記第3実施形態と同様であるので、重複する説明は省略する。また、他の構成は前述した実施形態と同じなので、同様に、重複する説明は省略する。 The reason for restricting the outlet fluid temperature of the light collecting / heat collecting device 52 to 300 ° C. or lower is the same as that in the third embodiment, and thus a duplicate description is omitted. Further, since the other configuration is the same as that of the above-described embodiment, the overlapping description is omitted similarly.
 この第5実施形態は、低温加熱装置51では、別体の集光・集熱装置52で加熱された熱媒体を通じて太陽熱を間接的に蒸気発生・加熱に用い、高温加熱装置14では、他の実施形態と同様、集光・集熱した太陽熱で、蒸気を直接的に加熱するものであり、いわばハイブリッド加熱式とでも称することができる。 In the fifth embodiment, the low-temperature heating device 51 uses solar heat for steam generation / heating indirectly through a heat medium heated by a separate condensing / heat collecting device 52, and the high-temperature heating device 14 uses other heat. As in the embodiment, the steam is directly heated by the concentrated and collected solar heat, and so-called hybrid heating type.
 この第5実施形態によれば、ボイラ装置の構成を複雑化する熱交換器および熱媒体循環ポンプ55など、熱媒体の循環系統に係わる部分の構成と規模を必要最小限に抑えつつ、前記第4実施形態の説明の冒頭で記述した課題を確実に抑制することができ有効である。 According to the fifth embodiment, the configuration and scale of the parts related to the circulation system of the heat medium, such as the heat exchanger and the heat medium circulation pump 55 that complicate the structure of the boiler device, are minimized, and the first The problem described at the beginning of the description of the fourth embodiment can be reliably suppressed and is effective.

(第6実施形態)
 本発明の第6実施形態は前記第2実施形態における低温加熱装置24のより望ましい形態であり、第4実施形態と同様の問題点を解消し、循環ポンプ15の消費動力を低減し、プラントを安定にするための実施形態である。

(Sixth embodiment)
6th Embodiment of this invention is a more desirable form of the low-temperature heating apparatus 24 in the said 2nd Embodiment, eliminates the same problem as 4th Embodiment, reduces the power consumption of the circulation pump 15, and makes a plant It is an embodiment for stabilizing.
 図20は、この第6実施形態に係る複合型発電プラントの第2発電モードでの使用状態を示す概略構成図、図21はその複合型発電プラントの第1発電モードでの使用状態を示す概略構成図である。この図20ならびに図21に示す複合プラントの構成は同じであるが、前記第1実施形態と同様に発電モードによって使用する機器などが異なる。 FIG. 20 is a schematic configuration diagram illustrating a usage state in the second power generation mode of the combined power plant according to the sixth embodiment, and FIG. 21 is a schematic diagram illustrating a usage state in the first power generation mode of the combined power plant. It is a block diagram. Although the configuration of the complex plant shown in FIG. 20 and FIG. 21 is the same, the equipment to be used differs depending on the power generation mode as in the first embodiment.
 前記第2実施形態との相違点は、図21に示すように、トラフ式またはフレネル式の集光・集熱装置からなる複数の低温加熱装置24(本実施形態の場合は、第1低温加熱装置24aと第2低温加熱装置24b)を給水の流れ方向に沿って直列に配置し、給水流れ方向後流側の第2低温加熱装置24bは給水流れ方向前流側の第1低温加熱装置24aよりも管内径の小さい集熱管を使用した点である。 
 他の構成や発電の仕組みなどは前記第2実施形態と同様であるので、重複する説明は省略する。
The difference from the second embodiment is that, as shown in FIG. 21, a plurality of low-temperature heating devices 24 comprising a trough-type or Fresnel-type condensing / heat collecting device (in this embodiment, the first low-temperature heating is used). The device 24a and the second low-temperature heating device 24b) are arranged in series along the feed water flow direction, and the second low-temperature heating device 24b on the downstream side in the feed water flow direction is the first low-temperature heating device 24a on the upstream side in the feed water flow direction. This is the point of using a heat collecting tube having a smaller inner diameter than that.
Other configurations and power generation mechanisms are the same as those in the second embodiment, and a duplicate description is omitted.
 本実施形態でも集熱管内の二相流の分離を生じさせないように、循環ポンプ15の消費動力を低減することが目的である。 The purpose of this embodiment is to reduce the power consumption of the circulation pump 15 so as not to cause the separation of the two-phase flow in the heat collecting tube.
 第4実施形態では管内二相流の分離を生じないように、管内径100mm前後の条件において、低温加熱装置24の出口クオリティの上限値が概ね0.4~0.6に設定されているが、蒸発量が一定であるので、低温加熱装置24の出口クオリティをより高い値である0.7~0.9程度に設定するとは、水の循環流量が低下し、循環ポンプ15の消費動力が低下するという関係がある。 In the fourth embodiment, the upper limit value of the outlet quality of the low-temperature heating device 24 is set to approximately 0.4 to 0.6 under the condition of the tube inner diameter of about 100 mm so as not to cause separation of the two-phase flow in the tube. Since the evaporation amount is constant, setting the outlet quality of the low-temperature heating device 24 to a higher value of about 0.7 to 0.9 reduces the circulating flow rate of water and the power consumption of the circulation pump 15 There is a relationship of decline.
 図22は、一般的な水平管内における気液二相流の流動状態を流動様式で分離し、管内の気相見かけ速度と液相見かけ速度によって整理した気液二相流の流動様式線図である。同図の横軸に気相の見かけ速度を、縦軸に液相の見かけ速度を、それぞれとっている。 FIG. 22 is a flow pattern diagram of a gas-liquid two-phase flow in which the flow state of the gas-liquid two-phase flow in a general horizontal tube is separated by the flow mode and arranged according to the gas phase apparent velocity and the liquid phase apparent velocity in the tube. is there. In the figure, the horizontal axis represents the apparent velocity of the gas phase, and the vertical axis represents the apparent velocity of the liquid phase.
 この図22によれば、管内の気相と液相の見かけ速度が十分に大きければ、低温加熱装置24の出口クオリティが高い場合であっても、第4実施形態で述べたような望ましい管内流動様式である噴霧流、気泡流、環状噴霧流の領域で運転することができる。 According to FIG. 22, if the apparent velocity of the gas phase and the liquid phase in the pipe is sufficiently large, even if the outlet quality of the low-temperature heating device 24 is high, the desirable pipe flow as described in the fourth embodiment. It is possible to operate in the areas of spray flow, bubble flow and annular spray flow which are modes.
 以下に、気液二相流の基本パラメータを示す。 
 α=ρlx/{ρlx+ρg(1-x)} ・・・ (1)
 ρ=(1-α)ρl+αρg・・・ (2)
 Vg=αV・・・ (3)
 Vl=(1-α)V・・・ (4)
 V=G/(ρA)・・・ (5)
 式中のαボイド率、ρ1は液相密度、xは蒸気クオリティ、ρgは気相密度、ρは気液二相流の平均密度、Vgは気相見かけ速度、Vは平均速度、V1は液相見かけ速度、Gは質量流量、Aは管内断面積である。
The basic parameters of gas-liquid two-phase flow are shown below.
α = ρlx / {ρlx + ρg (1-x)} (1)
ρ = (1-α) ρl + αρg (2)
Vg = αV (3)
Vl = (1−α) V (4)
V = G / (ρA) (5)
Α void fraction in the equation, ρ1 is liquid phase density, x is vapor quality, ρg is gas phase density, ρ is average density of gas-liquid two-phase flow, Vg is gas phase apparent velocity, V is average velocity, V1 is liquid The apparent speed, G is the mass flow rate, and A is the cross-sectional area in the tube.
 管内流体の平均流速Vを増加させるには、循環流量を増加させるか、管内径を小さくすればよいが、前者の場合は前記のように低温加熱装置の出口クオリティを低下させ循環ポンプの消費動力が増大するが、後者の場合には平均流速Vは、式(6)で表す管内断面積Aと管内径Dの関係より、平均流速Vは管内径Dの二乗に反比例し、式(7)で表す管内摩擦損失ΔPは平均流速Vの二乗に比例する。 In order to increase the average flow velocity V of the fluid in the pipe, the circulation flow rate may be increased or the pipe inner diameter may be reduced. In the former case, the outlet quality of the low-temperature heating device is reduced as described above to reduce the power consumption of the circulation pump. However, in the latter case, the average flow velocity V is inversely proportional to the square of the tube inner diameter D due to the relationship between the tube cross-sectional area A and the tube inner diameter D expressed by Equation (6). The friction loss ΔP f in the pipe expressed by is proportional to the square of the average flow velocity V.
 A=πD/4・・・(6)
 ΔP/L=fρV/D・・・(7)
 式中のfは管内二相流体摩擦係数、Lは管長さである。
A = πD 2/4 ··· ( 6)
ΔP f / L = fρV 2 / D (7)
In the equation, f is the in-tube two-phase fluid friction coefficient, and L is the tube length.
 上記によれば、一定の蒸発量に対して、管内径Dを小さくすることで管内流体の平均流速Vを上昇させると、従来よりも低温加熱装置の出口クオリティを高く設定しても二相分離を生じることがない。 According to the above, when the average flow velocity V of the fluid in the pipe is increased by reducing the pipe inner diameter D with respect to a certain amount of evaporation, the two-phase separation is achieved even if the outlet quality of the low-temperature heating device is set higher than before. Will not occur.
 また、平均流速Vの増大により管内摩擦損失が増大するが、低温加熱装置の全ての伝熱管を単一の管内径とする必要はなく、従来よりも蒸気クオリティが高くなる領域において、すなわち後流側の第2低温加熱装置24bにおいて、前流側の第1低温加熱装置24aよりも小さい管内径の伝熱管を用いる構成とすれば、損失を最小限とすることができて、循環流量の低下により循環ポンプ15の消費動力を低減できる。 In addition, although the friction loss in the pipe increases due to the increase in the average flow velocity V, it is not necessary that all the heat transfer pipes of the low-temperature heating apparatus have a single pipe inner diameter. In the second low temperature heating device 24b on the side, if a heat transfer tube having a smaller inner diameter than that of the first low temperature heating device 24a on the upstream side is used, the loss can be minimized and the circulation flow rate can be reduced. Thus, the power consumption of the circulation pump 15 can be reduced.
 以下、図22を用いて、より具体的な例を挙げて説明する。図中の●印は前流側の第1低温加熱装置24a、○印は後流側の第2低温加熱装置24bを、それぞれ示している。 Hereinafter, a more specific example will be described with reference to FIG. In the figure, the mark ● indicates the first low-temperature heating device 24a on the upstream side, and the mark ○ indicates the second low-temperature heating device 24b on the downstream side.
 図22に示す比較例1では、前流側の第1低温加熱装置24aおよび後流側の第2低温加熱装置24bの管内径を同じ値である100mmとし、かつ、前流側の第1低温加熱装置24aの出口クオリティを0.4~0.6、後流側の第2低温加熱装置24bの出口クオリティを0.8~1.0としている。本条件において、管内の流動様式は特定の領域以降で問題となり得る水準に達することが分かる。 In Comparative Example 1 shown in FIG. 22, the tube inner diameters of the first low temperature heating device 24a on the upstream side and the second low temperature heating device 24b on the downstream side are set to the same value of 100 mm, and the first low temperature heating device on the upstream side The outlet quality of the heating device 24a is 0.4 to 0.6, and the outlet quality of the second low temperature heating device 24b on the downstream side is 0.8 to 1.0. Under these conditions, it can be seen that the flow pattern in the pipe reaches a level that can become a problem after a certain region.
 比較例1では、管内の流動状態が波状流となるため、管周方向で飽和水と蒸気の領域が分離形成される。蒸気の領域は熱熱伝達率が小さいため、局部的に温度が上昇して問題となる。具体的には、伝熱管の高温側が膨張し(伸び、)、低温側が収縮して、その差により伝熱管が損傷する。また、伝熱管の外周部に設置しているガラス管の破損、割れが生じ、さらに、温度上昇部が変形する。 In Comparative Example 1, since the flow state in the pipe becomes a wave-like flow, saturated water and steam regions are formed separately in the pipe circumferential direction. The steam region has a small heat and heat transfer coefficient, which causes a problem in that the temperature rises locally. Specifically, the high temperature side of the heat transfer tube expands (extends), the low temperature side contracts, and the heat transfer tube is damaged by the difference. Moreover, the glass tube installed in the outer peripheral portion of the heat transfer tube is broken or cracked, and the temperature increasing portion is deformed.
  なお、図中の環状噴霧流は、第4実施形態で説明した環状流と噴霧流を含んだ領域を示している。また波状流は、管の底部に飽和水が、それの上部に蒸気が流れて、飽和水の界面が波立った状態の流れである。 In addition, the annular spray flow in the figure indicates a region including the annular flow and the spray flow described in the fourth embodiment. The wavy flow is a flow in which saturated water flows at the bottom of the tube and steam flows at the top of the tube, and the interface of the saturated water is rippled.
 図22に示す比較例2では、前流側の第1低温加熱装置24aおよび後流側の第2低温加熱装置24bの管内径を同じ値である80mmとして、かつ、前流側の第1低温加熱装置24aの出口クオリティを0.4~0.6、後流側の第2低温加熱装置24bの出口クオリティを0.8~1.0としている。本条件において、管内の流動様式は全域にわたって問題ないことが分かるが、第1低温加熱装置24aおよび後流側の第2低温加熱装置24bとも管内径を80mmとしていることから、「管内摩擦損失」が増大して好ましくない。 In Comparative Example 2 shown in FIG. 22, the tube inner diameters of the first low temperature heating device 24a on the upstream side and the second low temperature heating device 24b on the downstream side are set to the same value of 80 mm, and the first low temperature heating device on the upstream side is used. The outlet quality of the heating device 24a is 0.4 to 0.6, and the outlet quality of the second low temperature heating device 24b on the downstream side is 0.8 to 1.0. Under this condition, it can be seen that there is no problem in the flow mode in the pipe over the entire area, but the inner diameter of the first low-temperature heating device 24a and the second low-temperature heating device 24b on the wake side is 80 mm. Is not preferable.
 これに対して、本発明では、前流側の第1低温加熱装置24aの管内径を100mm、出口クオリティを0.4~0.6、後流側の第2低温加熱装置24bの管内径を80mm、出口クオリティを0.8~1.0としている。本条件において、管内の流動様式は入口から出口まで全域にわたって問題ないことが分かり、かつ、管摩擦損失も低く抑えられる。 On the other hand, in the present invention, the tube inner diameter of the first low temperature heating device 24a on the upstream side is 100 mm, the outlet quality is 0.4 to 0.6, and the tube inner diameter of the second low temperature heating device 24b on the downstream side is set. 80mm, exit quality is 0.8-1.0. Under this condition, it can be seen that there is no problem in the flow mode in the pipe from the inlet to the outlet, and the pipe friction loss is also kept low.
 ところで、第3実施形態において述べられているように、トラフ式の集光・集熱装置は図13に示すように、内管を伝熱管38、外管をガラス管42で構成する二重管構造で、内管と外管の間隙は真空にして使用される、いわゆる真空管式の集光・集熱装置である。 By the way, as described in the third embodiment, as shown in FIG. 13, the trough-type condensing and heat collecting apparatus is a double tube in which an inner tube is constituted by a heat transfer tube 38 and an outer tube is constituted by a glass tube 42. The structure is a so-called vacuum tube type light collecting / collecting device, in which the gap between the inner tube and the outer tube is used in a vacuum.
 このように構成された低温加熱装置において前記トラフ式の集光・集熱装置を用いる場合には、トラフ式の集光・集熱原理上、伝熱管の管径の縮小と共に集光損失が増大するという問題を生じる。 When the trough-type condensing / collecting device is used in the low-temperature heating apparatus configured as described above, the condensing loss increases as the diameter of the heat transfer tube decreases due to the trough concentrating / collecting principle. Cause problems.
 この問題により従来の伝熱管長さで所望の低温加熱装置出口蒸気クオリティを得られない場合には、小径伝熱管の全長に渡って、管外周部の一部または全部にフィンを取り付けることで集光効率の低下を抑制できる。 Due to this problem, when the desired heat transfer tube length steam quality cannot be obtained with the conventional heat transfer tube length, the fins are attached to some or all of the outer periphery of the tube over the entire length of the small diameter heat transfer tube. A decrease in light efficiency can be suppressed.
 また、フィン付管の採用は、高精度な集光ミラーの採用ないしミラー員数の増加といった対策に比べ費用の大幅な増加を伴わない。 Also, the use of finned tubes does not significantly increase costs compared to measures such as the use of high-precision condenser mirrors or an increase in the number of mirrors.
 太陽熱の集光・集熱装置に用いる伝熱管にフィンを取り付ける構造は、例えば特許文献3には真空管式の太陽熱集熱装置にヒートパイプを使用し、ヒートパイプの管外にフィンを付け、フィンとヒートパイプ表面に高放射率材や選択吸収膜を被覆して、集光・集熱効率用を向上する構造が開示されている。また特許文献4には、太陽熱集熱装置の伝熱管の内面にフィンを設けて伝熱管の表裏面温度差を低減する構造が開示されている。 For example, in Patent Document 3, a heat pipe is used in a vacuum tube type solar heat collector, and a fin is attached outside the heat pipe, and a fin is attached to a heat transfer tube used in a solar heat collecting / collecting device. And a structure in which the surface of the heat pipe is coated with a high emissivity material or a selective absorption film to improve the light collection and heat collection efficiency. Patent Document 4 discloses a structure in which fins are provided on the inner surface of a heat transfer tube of a solar heat collector to reduce the temperature difference between the front and back surfaces of the heat transfer tube.
 本実施形態は蒸気クオリティが上昇する後流側の第2低温加熱装置24bにおける真空管式の集光・集熱装置であって、前記構成に特有の課題である第2低温加熱装置24bの伝熱管径の縮小時に受光面の減少による集光効率の低下を防ぐために採用され、放射伝熱促進のためにフィン表面および伝熱管表面に高放射率材や選択吸収膜をコーティングすることが望ましい。 The present embodiment is a vacuum tube type condensing / collecting device in the second low-temperature heating device 24b on the downstream side where the steam quality is increased, and the heat transfer of the second low-temperature heating device 24b, which is a problem peculiar to the above configuration. Adopted to prevent a decrease in light collection efficiency due to a decrease in the light receiving surface when the tube diameter is reduced, and it is desirable to coat a high emissivity material or a selective absorption film on the fin surface and the heat transfer tube surface in order to promote radiant heat transfer.
 フィンは伝熱管の全長にわたってその外周の全部ないし一部に取り付けられ、フィンリボンを管に巻き付ける構造、フィンプレートを管長に溶接する構造、フィンを鋸状に加工した構造等があり、特に受光面積を増加させる構造とすることが望ましい。 The fins are attached to all or part of the outer circumference of the heat transfer tube, and there are a structure in which the fin ribbon is wound around the tube, a structure in which the fin plate is welded to the tube length, a structure in which the fin is processed into a saw shape, etc. It is desirable to have a structure that increases.
 前記高放射率材として、例えばシリコン系塗料などを用いることができる。また、選択吸収膜として、例えばニッケル-ブラックニッケル、タングステンなどを用いることができる。 As the high emissivity material, for example, a silicon-based paint can be used. As the selective absorption film, for example, nickel-black nickel, tungsten, or the like can be used.

(第7実施形態)
 図23は、第7実施形態に係る太陽熱発電プラントの概略構成図である。 
 同図に示すように、トラフ式またはフレネル式の集光・集熱装置からなる複数の低温加熱装置24(本実施形態では第1低温加熱装置24aと第2低温加熱装置24b)が、給水の流れ方向に沿って直列に配置されている。

(Seventh embodiment)
FIG. 23 is a schematic configuration diagram of a solar thermal power plant according to the seventh embodiment.
As shown in the figure, a plurality of low-temperature heating devices 24 (first low-temperature heating device 24a and second low-temperature heating device 24b in this embodiment) composed of a trough-type or Fresnel-type light collecting / collecting device are used to supply water. They are arranged in series along the flow direction.
 この太陽熱発電プラントは、給水ポンプ11から供給される水を太陽光32の熱で加熱する前流側の第1低温加熱装置24aと、後流側の第2低温加熱装置24bと、第1低温加熱装置24aおよび第2低温加熱装置24bによって生成した水と蒸気の混合流体を水と蒸気に分離する汽水分離装置4と、汽水分離装置4で分離された蒸気を太陽光32の熱で加熱する高温加熱装置14と、汽水分離装置4で分離した水を低温加熱装置24に供給する循環ポンプ15と、循環流量を制御するための循環流量制御弁37と、高温加熱装置14で発生した高温蒸気で回転する蒸気タービン68と、蒸気タービン68によって回転して発電する発電機67などを備え、図に示すような接続関係になっている。 This solar thermal power plant includes a first low-temperature heating device 24a on the upstream side that heats water supplied from the feed water pump 11 with the heat of sunlight 32, a second low-temperature heating device 24b on the downstream side, and a first low-temperature heating device. The brackish water separation device 4 that separates the mixed fluid of water and steam generated by the heating device 24a and the second low temperature heating device 24b into water and steam, and the steam separated by the brackish water separation device 4 is heated by the heat of sunlight 32. High-temperature heating device 14, circulation pump 15 that supplies water separated by brackish water separation device 4 to low-temperature heating device 24, circulation flow rate control valve 37 for controlling the circulation flow rate, and high-temperature steam generated by high-temperature heating device 14 And a generator 67 that generates electric power by being rotated by the steam turbine 68, and has a connection relationship as shown in the figure.
 この実施形態においても、後流側の第2低温加熱装置24bの伝熱管の内径を前流側の第1低温加熱装置24aの伝熱管の内径よりも小さくしたり、さらに前記後流側の第2低温加熱装置24bの伝熱管全長にわたって、伝熱管外周部にフィンを設けたり、さらにまたそのフィン表面および伝熱管表面に高放射率材や選択吸収膜をコーティングすることもできる。 Also in this embodiment, the inner diameter of the heat transfer tube of the second low-temperature heating device 24b on the downstream side is made smaller than the inner diameter of the heat transfer tube of the first low-temperature heating device 24a on the front flow side, or further, 2 Fins can be provided on the outer periphery of the heat transfer tube over the entire length of the heat transfer tube of the low-temperature heating device 24b, and the fin surface and the heat transfer tube surface can be coated with a high emissivity material or a selective absorption film.
 前記第6実施形態ならびに第7実施形態では、2つの低温加熱装置を直列に配置したが、必要に応じて3つ以上の低温加熱装置を直列に配置することもできる。 
 前記各実施形態で用いる給水加熱器12として、給水を例えば蒸気などの熱媒体によって加熱する構成のものを使用したが、この給水加熱器12も太陽熱を利用して給水を加熱する構成にすることも可能である。
In the sixth embodiment and the seventh embodiment, two low-temperature heating devices are arranged in series. However, three or more low-temperature heating devices can be arranged in series as necessary.
As the feed water heater 12 used in each of the above-described embodiments, one having a configuration in which the feed water is heated by a heat medium such as steam is used, but the feed water heater 12 is also configured to heat the feed water using solar heat. Is also possible.
 前記各実施形態では給水加熱器12で加熱した水を汽水分離装置4に導入しているが、給水ポンプ11からの水を直接汽水分離装置4に導入することも可能である。 In each of the above embodiments, water heated by the feed water heater 12 is introduced into the brackish water separator 4, but water from the feed water pump 11 can also be directly introduced into the brackish water separator 4.
 本発明は前述のように、低温加熱装置および汽水分離装置を地上面あるいはその付近に設置することで、飽和水を保有する重量物を支持する構造体(例えば支持土台)が不要となるか、低くて低温加熱装置および汽水分離装置の設置ならびにメンテナンスが容易な構造体で済む。また、蒸気のみを保有する比較的軽量の高温加熱装置を高所に設置するための、その方の構造体を簡素化できる。 As described above, by installing the low-temperature heating device and the brackish water separation device on or near the ground surface, the present invention eliminates the need for a structure (for example, a support base) that supports a heavy object that holds saturated water, A structure that is low and easy to install and maintain the low-temperature heating device and the brackish water separator is sufficient. Further, it is possible to simplify the structure for installing a relatively lightweight high-temperature heating apparatus that holds only steam at a high place.
 さらに、低温加熱装置と高温加熱装置を機能分離し、その間に汽水分離装置を設置することで、伝熱管の損傷リスクを低減できる。 
 また、高温加熱装置を高所に設置することで、熱密度の高い熱交換が可能となり、高温の蒸気を効率的に得ることができる。 
 さらにまた、高温加熱装置で集熱量を制御した際の蒸気温度や蒸気流量の変動に応じて、蒸気タービン側の抽気蒸気量を調整することで、蒸気タービンの出力を一定に保つことが可能となる。 
Furthermore, the risk of damage to the heat transfer tube can be reduced by functionally separating the low temperature heating device and the high temperature heating device and installing a brackish water separation device between them.
Further, by installing the high temperature heating device at a high place, heat exchange with high heat density is possible, and high temperature steam can be obtained efficiently.
Furthermore, it is possible to keep the output of the steam turbine constant by adjusting the amount of extracted steam on the steam turbine side in accordance with fluctuations in the steam temperature and steam flow when the heat collection amount is controlled by the high-temperature heating device. Become.
 4:汽水分離装置、
 6:ヘリオスタット、
 7:太陽、
 8:蒸気タービン、
 9:発電機、
10:ボイラプラント、
10a:再熱蒸気系熱交換器、
10b:主蒸気系熱交換器、
11:給水ポンプ、
12:給水加熱器、
13:低温加熱装置、
14:高温加熱装置、
15:循環ポンプ、
16:タワー、
17:抽気弁、
18:蒸気弁、
20:太陽熱用給水弁、
21:過熱器伝熱管、
24:低温加熱装置、
24a:第1低温加熱装置、
24b:第2低温加熱装置、
25:温度計、
26:演算装置、
27:伝熱管パネル、
28:流量計、
30、35:集光ミラー、
31:伝熱管、
32:太陽の光、
33:水、
34:水-蒸気二相流
37:循環流量制御弁、
38:水平伝熱管、
51:低温加熱装置、
52:集光・集熱装置、
53:熱媒体流路、
54:熱媒体、
55:熱媒体循環ポンプ、
56:熱媒体温度計、
57:熱媒体流量計
60:高圧蒸気タービン、
61:中圧蒸気タービン、
62:低圧蒸気タービン、
64:高圧蒸気タービン用発電機、
65:中圧・低圧蒸気タービン用発電機、
66:火力用給水弁、
67:発電機、
68:蒸気タービン。
4: Brackish water separator,
6: Heliostat,
7: the sun,
8: Steam turbine,
9: Generator,
10: boiler plant,
10a: reheat steam heat exchanger,
10b: main steam heat exchanger,
11: Water supply pump,
12: Feed water heater,
13: Low temperature heating device,
14: High temperature heating device,
15: Circulation pump,
16: Tower,
17: Extraction valve,
18: Steam valve,
20: Solar water supply valve,
21: Superheater heat transfer tube,
24: Low temperature heating device,
24a: first low-temperature heating device,
24b: second low-temperature heating device,
25: Thermometer,
26: arithmetic device,
27: Heat transfer tube panel,
28: Flow meter,
30, 35: Condensing mirror,
31: Heat transfer tube,
32: Sunlight,
33: Water
34: Water-steam two-phase flow 37: Circulation flow control valve,
38: Horizontal heat transfer tube,
51: Low temperature heating device,
52: Condensing / heat collecting device,
53: Heat medium flow path,
54: Heat medium,
55: Heat medium circulation pump,
56: Heat medium thermometer,
57: Heat medium flow meter 60: High-pressure steam turbine,
61: Medium pressure steam turbine,
62: low pressure steam turbine,
64: Generator for high-pressure steam turbine,
65: Medium / low pressure steam turbine generator,
66: Thermal power supply valve,
67: Generator,
68: Steam turbine.

Claims (13)

  1.  太陽熱を集熱して、その熱で蒸気を発生する第1発電プラントと、
     燃料を燃焼もしくは発熱させて、あるいは排気ガスの熱を回収して蒸気を発生する第2発電プラントと、
     前記第1発電プラントまたは第2発電プラントで発生した蒸気を導入して回転する蒸気タービンと、その蒸気タービンにより回転駆動する発電機を備えた複合型発電プラントであって、
     前記第1発電プラントは、
     給水ポンプから供給する水を前記太陽熱で加熱する水平伝熱管を設けた低温加熱装置と、
     その低温加熱装置で生成した水-蒸気二相流を水と蒸気に分離する汽水分離器と、
     その汽水分離器で分離した蒸気を太陽熱で過熱する高温加熱装置と、
     前記汽水分離器で分離した水を前記低温加熱装置に供給する循環ポンプを備え、
     前記第2発電プラントは、
     蒸気を発生させる再熱蒸気系熱交換器と主蒸気系熱交換器を有する蒸気発生部と、
     その蒸気発生部に水を供給する給水ポンプと、
     その給水ポンプで供給される水を前記蒸気タービンからの抽気蒸気で加熱する給水加熱器を備え、
     前記蒸気タービンは、高圧蒸気タービンと中圧蒸気タービンと低圧蒸気タービンを備えており、
     前記第1発電プラントを使用して発電を行う第1発電モードでは、前記第1発電プラントの前記高温加熱装置で過熱した蒸気を前記中圧蒸気タービンおよび低圧蒸気タービンに導いて発電し、
     前記第2発電プラントを使用して発電を行う第2発電モードでは、前記第2発電プラントの前記主蒸気系熱交換器で過熱した蒸気を前記高圧蒸気タービン、中圧蒸気タービンおよび低圧蒸気タービンに導いて発電するように構成されていることを特徴とする複合型発電プラント。
    A first power plant that collects solar heat and generates steam with the heat;
    A second power plant that generates steam by burning or generating heat, or recovering heat of exhaust gas;
    A combined power plant comprising a steam turbine that rotates by introducing steam generated in the first power plant or the second power plant, and a generator that is rotationally driven by the steam turbine,
    The first power plant is
    A low-temperature heating device provided with a horizontal heat transfer tube for heating water supplied from a water supply pump by the solar heat;
    A brackish water separator that separates the water-steam two-phase flow generated by the low-temperature heating device into water and steam;
    A high-temperature heating device that superheats the steam separated by the brackish water separator with solar heat,
    A circulation pump for supplying water separated by the brackish water separator to the low-temperature heating device;
    The second power plant is
    A steam generator having a reheat steam heat exchanger and a main steam heat exchanger for generating steam;
    A water supply pump for supplying water to the steam generator;
    A water heater for heating the water supplied by the water supply pump with the extracted steam from the steam turbine;
    The steam turbine includes a high pressure steam turbine, an intermediate pressure steam turbine, and a low pressure steam turbine,
    In the first power generation mode in which power generation is performed using the first power plant, the steam superheated by the high-temperature heating device of the first power plant is guided to the intermediate pressure steam turbine and the low pressure steam turbine to generate power,
    In a second power generation mode in which power generation is performed using the second power plant, steam superheated by the main steam heat exchanger of the second power plant is transferred to the high-pressure steam turbine, intermediate-pressure steam turbine, and low-pressure steam turbine. A combined power plant characterized in that it is configured to guide and generate electricity.
  2.  請求項1に記載の複合型発電プラントにおいて、
     前記低温加熱装置と汽水分離装置と循環ポンプを地上面または地上面付近に設置し、前記高温加熱装置を前記低温加熱装置ならびに汽水分離装置よりも高所に設置したことを特徴とする複合型発電プラント。
    In the combined power plant according to claim 1,
    The combined power generation characterized in that the low temperature heating device, the brackish water separation device and the circulation pump are installed on the ground surface or near the ground surface, and the high temperature heating device is installed at a higher position than the low temperature heating device and the brackish water separation device. plant.
  3.  請求項1に記載の複合型発電プラントにおいて、
     前記低温加熱装置は、
     桶状に延びた集光ミラーの内周曲面の上方に伝熱管を配置し、前記太陽光を集光ミラーで伝熱管に集光することにより、伝熱管内を流通する水を加熱して蒸気を生成するトラフ式の集光・集熱装置、または略平面状の集光ミラーを多数並べて、その集光ミラー群の上方に伝熱管を配置し、前記太陽光を前記集光ミラー群で伝熱管に集光することにより、伝熱管内を流通する水を加熱して蒸気を生成するフレネル式の集光・集熱装置からなり、
     前記高温加熱装置は、
     所定の高さを有するタワーの上に伝熱管パネルを設置し、多数の集光ミラーを配置して、太陽光を前記集光ミラー群で伝熱管パネルに集光することにより、伝熱管パネル内を流通する蒸気を過熱して過熱蒸気を生成するタワー式の集光・集熱装置からなることを特徴とする複合型発電プラント。
    In the combined power plant according to claim 1,
    The low temperature heating device is:
    A heat transfer tube is arranged above the inner peripheral curved surface of the condensing mirror extending in a bowl shape, and the sunlight is condensed on the heat transfer tube by the condensing mirror, thereby heating the water circulating in the heat transfer tube to steam. A large number of trough-type condensing / heat collecting devices or substantially planar collecting mirrors are arranged, a heat transfer tube is arranged above the collecting mirror group, and the sunlight is transmitted through the collecting mirror group. It consists of a Fresnel-type condensing / collecting device that heats the water flowing through the heat transfer tube to produce steam by condensing it on the heat tube,
    The high temperature heating device is:
    A heat transfer tube panel is installed on a tower having a predetermined height, a large number of condensing mirrors are arranged, and sunlight is condensed on the heat transfer tube panel by the condensing mirror group. A combined-type power plant comprising a tower-type light collecting and collecting device that superheats the steam flowing through the steam generator to generate superheated steam.
  4.  請求項1に記載の複合型発電プラントにおいて、
     前記低温加熱装置の出口流体温度を300℃以下に規制したことを特徴とする複合型発電プラント。
    In the combined power plant according to claim 1,
    A combined power plant characterized in that an outlet fluid temperature of the low-temperature heating device is regulated to 300 ° C or lower.
  5.  請求項4に記載の複合型発電プラントにおいて、
     前記低温加熱装置の出口側に温度計を設置して、その温度計で計測した流体温度が300℃以下になるように、前記低温加熱装置への給水流量を調整する構成になっていることを特徴とする複合型発電プラント。
    In the combined power plant according to claim 4,
    A thermometer is installed on the outlet side of the low-temperature heating device, and the feed water flow rate to the low-temperature heating device is adjusted so that the fluid temperature measured by the thermometer is 300 ° C. or lower. A featured combined power plant.
  6.  請求項4に記載の複合型発電プラントにおいて、
     前記低温加熱装置の出口側に温度計を設置して、その温度計で計測した流体温度が300℃以下になるように、前記低温加熱装置の集熱量を調整する構成になっていることを特徴とする複合型発電プラント。
    In the combined power plant according to claim 4,
    A thermometer is installed on the outlet side of the low-temperature heating device, and the heat collection amount of the low-temperature heating device is adjusted so that the fluid temperature measured by the thermometer is 300 ° C. or less. A combined power plant.
  7.  請求項1に記載の複合型発電プラントにおいて、
     前記低温加熱装置の出口側に温度計および流量計を設置して、その温度計および流量計で計測した温度および流量の値に応じて、前記高温加熱装置の集熱量を調整する構成になっていることを特徴とする複合型発電プラント。
    In the combined power plant according to claim 1,
    A thermometer and a flow meter are installed on the outlet side of the low-temperature heating device, and the amount of heat collected by the high-temperature heating device is adjusted according to the temperature and flow rate values measured by the thermometer and the flow meter. A combined power plant characterized by
  8.  請求項1に記載の複合型発電プラントにおいて、
     前記汽水分離装置の水位を計測する水位計と、前記低温加熱装置への給水流量を調整する給水弁と、前記低温加熱装置と前記汽水分離装置の間の水の循環量を調整する循環流量制御弁を設け、
     前記汽水分離装置の水位が所定の値になるように、前記給水弁あるいは循環流量制御弁によって給水流量あるいは循環量を調整する構成になっていることを特徴とする複合型発電プラント。
    In the combined power plant according to claim 1,
    A water level meter for measuring the water level of the brackish water separator, a water supply valve for adjusting the feed water flow rate to the low temperature heating device, and a circulation flow rate control for adjusting the amount of water circulating between the low temperature heating device and the brackish water separator A valve,
    A combined power plant, wherein the feed water flow rate or the circulation rate is adjusted by the feed water valve or the circulation flow rate control valve so that the water level of the brackish water separator becomes a predetermined value.
  9.  請求項1に記載の複合型発電プラントにおいて、
     前記低温加熱装置は、
     熱媒体が循環する熱媒体流路と、
     その熱媒体流路の途中に設けられた熱媒体循環ポンプと、
     前記熱媒体流路の途中に設けられ、太陽光を集光して生じた熱を前記熱媒体流路を循環する熱媒体に伝達する集光・集熱装置と、
     前記熱媒体流路の一部が熱交換器として内側に設置された熱交換器付き低温加熱装置を備え、
     前記集光・集熱装置で集熱した熱を前記熱媒体を介して前記熱交換器付き低温加熱装置内の水に伝達する構成になっていることを特徴とする複合型発電プラント。
    In the combined power plant according to claim 1,
    The low temperature heating device is:
    A heat medium flow path through which the heat medium circulates;
    A heat medium circulation pump provided in the middle of the heat medium flow path;
    A light collecting / collecting device that is provided in the middle of the heat medium flow path and transmits heat generated by collecting sunlight to the heat medium circulating in the heat medium flow path;
    A part of the heat medium flow path comprises a low-temperature heating device with a heat exchanger installed inside as a heat exchanger,
    A combined power plant configured to transmit heat collected by the condensing / heat collecting device to water in the low-temperature heating device with the heat exchanger via the heat medium.
  10.  請求項1に記載の複合型発電プラントにおいて、
     前記高圧蒸気タービン、中圧蒸気タービン、低圧蒸気タービンのいずれか1つの出口側に抽気弁を設け、
     前記高温加熱装置から供給される蒸気量に応じて前記抽気弁を操作して、前記蒸気の抽気量を調整する構成になっていることを特徴とする複合型発電プラント。
    In the combined power plant according to claim 1,
    An extraction valve is provided on the outlet side of any one of the high-pressure steam turbine, intermediate-pressure steam turbine, and low-pressure steam turbine,
    A combined power plant, wherein the extraction valve is operated according to the amount of steam supplied from the high-temperature heating device to adjust the amount of extraction of the steam.
  11.  請求項3に記載の複合型発電プラントにおいて、
     前記低温加熱装置は、少なくとも水の流れ方向の上流側に配置された第1低温加熱装置と、その第1低温加熱装置の水の流れ方向の後流側に配置された第2低温加熱装置を備え、
     前記第2低温加熱装置の伝熱管内を流れる流体の流速が、前記第1低温加熱装置の伝熱管内を流れる流体の流速よりも速くなるように構成されていることを特徴とする複合型発電プラント。
    In the combined power plant according to claim 3,
    The low-temperature heating device includes at least a first low-temperature heating device disposed on the upstream side in the water flow direction and a second low-temperature heating device disposed on the downstream side in the water flow direction of the first low-temperature heating device. Prepared,
    The combined power generation characterized in that the flow velocity of the fluid flowing in the heat transfer tube of the second low-temperature heating device is faster than the flow velocity of the fluid flowing in the heat transfer tube of the first low-temperature heating device. plant.
  12.  請求項11に記載の複合型発電プラントにおいて、
     前記第2低温加熱装置の伝熱管の内径を前記第1低温加熱装置の伝熱管の内径よりも小さくしたことを特徴とする複合型発電プラント。
    The combined power plant according to claim 11,
    A combined power plant characterized in that the inner diameter of the heat transfer tube of the second low-temperature heating device is smaller than the inner diameter of the heat transfer tube of the first low-temperature heating device.
  13.  請求項11または12に記載の複合型発電プラントにおいて、
     前記第2低温加熱装置の伝熱管の全長にわたってフィンを設けたことを特徴とする複合型発電プラント。
    The combined power plant according to claim 11 or 12,
    A combined power plant, wherein fins are provided over the entire length of the heat transfer tube of the second low-temperature heating device.
PCT/JP2013/077949 2012-10-25 2013-10-15 Combined power generation plant WO2014065158A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-235753 2012-10-25
JP2012235753 2012-10-25

Publications (1)

Publication Number Publication Date
WO2014065158A1 true WO2014065158A1 (en) 2014-05-01

Family

ID=50544538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077949 WO2014065158A1 (en) 2012-10-25 2013-10-15 Combined power generation plant

Country Status (1)

Country Link
WO (1) WO2014065158A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107013273A (en) * 2017-05-12 2017-08-04 李金山 Utilize the method and device of coke-oven plant's raw coke oven gas cogeneration
FR3051512A1 (en) * 2016-05-23 2017-11-24 Suncnim SYSTEM FOR PRODUCING HEAT ENERGY WITH AT LEAST ONE HEAT ENERGY STORAGE STORAGE VAPOR BATTERY FROM A SOLAR INSTALLATION

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121483A (en) * 2006-11-10 2008-05-29 Kawasaki Heavy Ind Ltd Heat medium supply device, composite solar heat electricity generation device, and method of controlling them
JP2012041889A (en) * 2010-08-20 2012-03-01 Ihi Corp Power generation system
WO2013002054A1 (en) * 2011-06-30 2013-01-03 バブコック日立株式会社 Solar heat boiler and solar heat electric power generation plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121483A (en) * 2006-11-10 2008-05-29 Kawasaki Heavy Ind Ltd Heat medium supply device, composite solar heat electricity generation device, and method of controlling them
JP2012041889A (en) * 2010-08-20 2012-03-01 Ihi Corp Power generation system
WO2013002054A1 (en) * 2011-06-30 2013-01-03 バブコック日立株式会社 Solar heat boiler and solar heat electric power generation plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3051512A1 (en) * 2016-05-23 2017-11-24 Suncnim SYSTEM FOR PRODUCING HEAT ENERGY WITH AT LEAST ONE HEAT ENERGY STORAGE STORAGE VAPOR BATTERY FROM A SOLAR INSTALLATION
CN107013273A (en) * 2017-05-12 2017-08-04 李金山 Utilize the method and device of coke-oven plant's raw coke oven gas cogeneration

Similar Documents

Publication Publication Date Title
JP5602306B2 (en) Solar boiler and solar power plant using the same
JP5984935B2 (en) Solar power generation system
EP2289149B1 (en) A solar steam generator
KR101788730B1 (en) Solar energy automatic soaking and heat-collecting tube, trough-type assembly, and heat power generating system and technique
JP5951396B2 (en) Heat collector for solar boiler and tower solar boiler equipped with the same
US5685151A (en) U.S. solar power supply
JP2011117447A (en) Power generation system using solar energy
KR101399714B1 (en) Heat exchanger for steam generation for a solar-thermal power plant
JP2014159892A (en) Solar heat collection device and solar heat power generation system
JP6033405B2 (en) Solar heat collection system
JP5598288B2 (en) Solar thermal power generation apparatus and operation method thereof
EP2503260B1 (en) Solar heat collecting apparatus and solar power generation system
WO2014065158A1 (en) Combined power generation plant
US11073305B2 (en) Solar energy capture, energy conversion and energy storage system
CN106121942A (en) A kind of supercritical solar power station using liquid lead bismuth heat transfer and heat accumulation
AU2013265313B2 (en) Coupling of a turbopump for molten salts
US20150082792A1 (en) Solar and renewable/waste energy powered turbine with two stage heating and graphite body heat exchanger
JP2013245685A (en) Steam rankine cycle solar plant and method of operating the plant
CN202350351U (en) Novel solar heat collector
Kalbhor Modified solar central receiver in concentrated solar power system
CN101403493A (en) Gas-liquid two-phase separation type gravity assisted heat pipe solar boiler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/07/2015)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 13848895

Country of ref document: EP

Kind code of ref document: A1