WO2014065157A1 - Injection molding nozzle - Google Patents

Injection molding nozzle Download PDF

Info

Publication number
WO2014065157A1
WO2014065157A1 PCT/JP2013/077948 JP2013077948W WO2014065157A1 WO 2014065157 A1 WO2014065157 A1 WO 2014065157A1 JP 2013077948 W JP2013077948 W JP 2013077948W WO 2014065157 A1 WO2014065157 A1 WO 2014065157A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
diameter
injection molding
fluid
nozzle body
Prior art date
Application number
PCT/JP2013/077948
Other languages
French (fr)
Japanese (ja)
Inventor
薫 半村
忍 加山
勇司 上田
Original Assignee
矢崎総業株式会社
東レエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎総業株式会社, 東レエンジニアリング株式会社 filed Critical 矢崎総業株式会社
Priority to CN201380054737.5A priority Critical patent/CN104755246B/en
Publication of WO2014065157A1 publication Critical patent/WO2014065157A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/20Injection nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/58Details
    • B29C45/581Devices for influencing the material flow, e.g. "torpedo constructions" or mixing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/20Injection nozzles
    • B29C2045/202Laterally adjustable nozzle or nozzle tip mountings

Definitions

  • the present invention relates to an injection molding nozzle.
  • a nozzle body As a nozzle for injection molding, a nozzle body that is formed in a cylindrical shape and is provided with an introduction port through which fluid is introduced at one end side and a discharge port that leads out the fluid introduced at the other end side, and introduction of the nozzle body
  • a fluid mixing element as a plurality of elements arranged between the mouth and the outlet and introduced into the nozzle body from the inlet through the fluid passage as a plurality of element holes and kneaded.
  • the element has a structure in which two fluid passages having spiral blades provided therein are communicated with each other on the upstream side and the downstream side with respect to one fluid passage.
  • the two upstream fluid passages and the two downstream fluid passages are arranged out of phase with respect to the center of one fluid passage.
  • the injection molding nozzle as described above is arranged between the injection molding machine and the mold, introduces the fluid injected from the injection molding machine from the introduction port, kneads the fluid with a plurality of elements, and guides the fluid. Inject from the outlet into the mold.
  • An object of the present invention is to provide an injection molding nozzle capable of suppressing an increase in size of an injection molding machine.
  • An injection molding nozzle has a nozzle formed on one end side into which a fluid is introduced and has a discharge port on the other end side through which the introduced fluid is led out.
  • Between the main body and the introduction port and the outlet port in the nozzle body are arranged in series in the axial direction of the nozzle body, and have a plurality of element holes, and are introduced into the nozzle body from the introduction port.
  • a plurality of elements for introducing and kneading the fluid from the plurality of element holes suppress an increase in the injection pressure of the fluid introduced from the introduction port.
  • the length in the axial direction of the nozzle body of each element is 0.64 times or more and 1.6 times or less with respect to the diameter of each element hole.
  • the plurality of elements that suppress the increase in the injection pressure of the fluid introduced from the introduction port are provided in the nozzle body. For this reason, the rise in the injection pressure of the fluid introduced from the inlet by the plurality of elements can be suppressed, and the pressure loss of the fluid flowing through the nozzle body can be reduced. Therefore, since the increase in injection pressure can be suppressed by the plurality of elements, the increase in size of the injection molding machine can be suppressed.
  • the length of each element is set to be 0.64 to 1.6 times the diameter of each element hole in a plurality of elements. For this reason, the flow path cross-sectional area of the element when the fluid flows through the element can be efficiently increased, and the pressure loss of the fluid flowing through the nozzle body can be reduced.
  • the length of each element may be set to 0.64 times or more and 1.1 times or less with respect to the diameter of each element hole.
  • the plurality of elements has an injection pressure of fluid flowing from the inlet to the outlet through the plurality of elements, and an injection pressure of fluid when flowing directly from the inlet to the outlet It may be configured to be equivalent.
  • the injection pressure of the fluid that is circulated from the inlet to the outlet through the plurality of elements is substantially the same as the injection pressure of the fluid that is circulated directly from the inlet to the outlet. Therefore, the pressure loss can be made substantially equal to that of an open nozzle in which a plurality of elements are not provided in the nozzle body.
  • the fluid can be kneaded in the nozzle body while having a pressure loss substantially equal to that of the open nozzle.
  • each element may be 2.5 times or more the diameter of the introduction port.
  • the diameter of each element is set to 2.5 times or more the diameter of the introduction port. For this reason, the flow path cross-sectional area of the element when the fluid flows in the element can be increased, and the pressure loss of the fluid flowing in the nozzle body can be reduced.
  • FIG. 1 is a cross-sectional view of an injection molding nozzle according to a first embodiment of the present invention.
  • FIG. 2 is a front view of an element of an injection molding nozzle according to the first embodiment of the present invention.
  • FIG. 3 is a table showing injection pressures of examples and comparative examples in the injection molding nozzle according to the first embodiment of the present invention.
  • FIG. 4 is a side view of an injection molding nozzle according to the second embodiment of the present invention.
  • FIG. 5 is a front view of an element of an injection molding nozzle according to the second embodiment of the present invention.
  • FIG. 6 is a table showing the injection pressure per element of the example and the comparative example in the injection molding nozzle according to the second embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of an injection molding nozzle according to a first embodiment of the present invention.
  • FIG. 2 is a front view of an element of an injection molding nozzle according to the first embodiment of the present invention.
  • FIG. 3 is a table
  • FIG. 7 is a diagram showing the relationship between the injection molding nozzle, the ratio of the element length and the element diameter, and the range in which the injection pressure can be reduced.
  • FIG. 8 is a cross-sectional view of an injection molding nozzle according to a first reference example of the present invention.
  • FIG. 9 is a front view of an element of an injection molding nozzle according to a first reference example of the present invention.
  • FIG. 10 is a table showing injection pressures of examples and comparative examples in the injection molding nozzle according to the first reference example of the present invention.
  • FIG. 11 is a diagram showing the relationship between the number of element holes and the flow path cross-sectional area of the example and the comparative example in the injection molding nozzle according to the first reference example of the present invention.
  • FIG. 12 is a table of a second reference example showing changes in pressure loss per element due to changes in element length and element diameter.
  • FIG. 13 is a table of a second reference example showing changes in pressure loss per element due to changes in land length.
  • FIGS. 8 to 13 are reference examples of the present invention.
  • the injection molding nozzle 1 is provided with an introduction port 3 that is formed in a cylindrical shape and into which fluid is introduced on one end side, and an outlet port 5 that leads out the fluid introduced on the other end side.
  • a plurality of fluids that are disposed between the nozzle body 7 and the inlet 3 and outlet 5 of the nozzle body 7 and are introduced into the nozzle body 7 from the inlet 3 through a plurality of element holes 9 and kneaded. And an element 11.
  • a pressure increase suppression unit 13 that suppresses an increase in the injection pressure of the fluid introduced from the introduction port 3.
  • the pressure rise suppression unit 13 has two element holes 9.
  • the pressure rise suppression unit 13 circulates the injection pressure of the fluid that is circulated from the inlet 3 to the outlet 5 via the plurality of elements 11, and is circulated directly from the inlet 3 to the outlet 5, that is, circulated through the open nozzle. Approximately equal to the fluid injection pressure.
  • the nozzle body 7 is formed in a cylindrical shape and includes an inlet 3 and an outlet 5.
  • the introduction port 3 is provided on one end side of the nozzle body 7, and the outside of the nozzle body 7 is opened so as to communicate the outside and the inside of the nozzle body 7.
  • an injection molding machine (not shown) for injecting a heat-melted molding resin material as a fluid is arranged on the introduction port 3 side.
  • the molding resin material injected from this injection molding machine is introduced into the nozzle body 7 from the inlet 3 at a predetermined injection pressure, and is led out from the outlet 5.
  • the flow path extending from the inlet 3 to the inside of the nozzle body 7 is formed in a taper shape so as to increase in diameter toward the inside of the nozzle body 7, and the pressure of the molding resin material introduced from the inlet 3 Loss is reduced.
  • the outlet 5 is provided on the other end side of the nozzle body 7 and communicates the outside and the inside of the nozzle body 7.
  • a nozzle chip 15 is assembled on the outlet 5 side, and a molding resin material is injected into the mold 17 through the nozzle chip 15.
  • the molded resin material introduced from the introduction port 3 and led out from the outlet port 5 may be colored by mixing with other coloring materials.
  • an appearance defect such as color unevenness may occur in an open nozzle in which nothing is interposed between the inlet 3 and the outlet 5 of the nozzle body 7. Therefore, a plurality of elements 11 for kneading a plurality of molten molding resin materials are arranged between the inlet 3 and the outlet 5 of the nozzle body 7.
  • a plurality (six in this case) of elements 11 are arranged in series in the axial direction of the nozzle body 7 (left and right direction in FIG. 1) between the inlet 3 and the outlet 5, and the flow dividing section 19 and the mixing section 21 are connected.
  • the flow dividing portion 19 is composed of a plurality of element holes 9 communicating from the inlet 3 side to the outlet 5 side of the element body 23. Inside the element hole 9, a torsion blade 25 in which the base end on the introduction port 3 side and the base end on the lead-out port 5 side are twisted by 180 ° is disposed. For this reason, the molding resin material which distribute
  • a plurality (six in this case) of the elements 11 are arranged in series between the inlet 3 and the outlet 5, and two element holes 9 are provided in the element body 23.
  • the two element holes 9 are arranged at equal intervals from the center of the element main body 23 with an outer diameter inscribed in the inner diameter of the element main body 23 and at an interval of 180 ° in the circumferential direction of the element main body 23.
  • the element holes 9, 9 provided in the adjacent elements 11, 11 are arranged so as to be displaced by 90 ° in the rotation direction when the center of the element body 23 is the rotation axis.
  • the mixing unit 21 is provided on each of the inlet 3 side and the outlet 5 side of the element body 23 and communicates with the inlet and outlet of the element hole 9.
  • the mixing unit 21 merges and mixes the molding resin material that has circulated through the plurality of element holes 9 (the molding resin material introduced from the introduction port 3 in the element 11 closest to the introduction port 3), and is positioned on the outlet 5 side.
  • the molded resin material mixed into the plurality of element holes 9 of the element 11 (the outlet 11 for the element 11 closest to the outlet 5) is led out.
  • the molded resin material is kneaded by repeatedly flowing the molded resin material through the flow dividing section 19 and the mixing section 21.
  • the pressure increase suppression portion 13 that suppresses the increase in the injection pressure of the molding resin material introduced from the introduction port 3 provided in the nozzle body 7 is set to the number of element holes 9 in one element 11. .
  • the number of element holes 9 in this one element 11 is set to two. In the number of the element holes 9, the kneading efficiency is improved by increasing the number of divisions, and the pressure loss is reduced by increasing the flow path cross-sectional area of the molded resin material.
  • the pressure rise suppression unit 13 is set such that the diameter D1 of the element 11 is 2.5 times or more the diameter D2 of the inlet 3.
  • the pressure increase suppression portion 13 that suppresses an increase in the injection pressure of the molding resin material introduced from the introduction port 3 provided in the nozzle body 7 includes the element 11 in one element 11.
  • the diameter D1 is set.
  • the diameter D1 of the element 11 is set to 2.5 times or more the diameter D2 of the introduction port 3. With such a diameter D1 of the element 11, the flow passage cross-sectional area of the molded resin material is increased, and the injection pressure can be made substantially equal to the injection pressure of the open nozzle.
  • the pressure rise suppressing portion 13 is set such that the diameter D 1 of the element 11 is 2.5 times or more the diameter D 2 of the introduction port 3. For this reason, the flow path cross-sectional area of the element 11 when the fluid flows through the element 105 can be increased, and the pressure loss of the fluid flowing through the nozzle body 7 can be reduced.
  • Example 2 In each example and comparative example 1, the number of element holes for one element was 2, and the number of elements to be arranged in the nozzle body was 6.
  • Comparative Example 2 is an open nozzle in which no element is disposed between the inlet and the outlet.
  • the inlet diameter D2 was 8 (mm), the element diameter D1 was 19 (mm) in Examples 1 to 3, 20 (mm) in Example 4, and 16 (mm) in Comparative Example 1. .
  • the length L1 of the element was 10 (mm) in Examples 1, 2, and 4, 30 (mm) in Example 3, and 15.5 (mm) in Comparative Example 1.
  • the total of the land lengths L2 and L3 of the inlet and outlet is 25 (mm) in Examples 1, 3, and 4, 30 (mm) in Example 2, and 50 (mm) in Comparative Example 1. In Example 2, it was set to 95 (mm).
  • the injection pressure (MPa) was measured when the injection speed of the injection molding machine was 20, 50, 80 (mm / sec). The results are shown in the table of FIG.
  • each example according to the present invention had an injection pressure substantially equivalent to that of Comparative Example 2 which is an open nozzle.
  • Comparative Example 1 having an element diameter D1 less than 2.5 times the inlet diameter D2 had a very high injection pressure that increased by about 60% compared to Comparative Example 2.
  • the injection molding nozzle can be made substantially equal to the injection pressure of the open nozzle and can sufficiently knead the fluid. It can be seen that it can be obtained.
  • the length L1 (see FIG. 1) of the nozzle body 207 in the axial direction of the element 105 is 0.64 times the diameter D3 of the element hole 9. It is set to 1.6 times or less (Note that, although not limited to this, it is more preferable if the element length L1 is set to 0.64 times or more and 1.1 times or less with respect to the diameter D3 of the element hole 9 as described later). ).
  • a plurality (six in this case) of elements 105 are arranged in the axial direction of the nozzle body 7 between the inlet 3 (see FIG. 1) and the outlet 5 (see FIG. 1). Is arranged.
  • the element 105 is provided with two element holes 9.
  • the two element holes 9 have an outer diameter inscribed in the inner diameter of the element 105 at equal intervals from the center of the element 105, and are arranged at intervals of 180 ° in the circumferential direction of the element 105.
  • the element holes 9 and 9 provided in the adjacent elements 105 and 105 are arranged so as to be shifted by 90 ° in the rotation direction when the center of the element 105 is the rotation axis.
  • the inner diameter of the element 105 is the diameter D1 of the element 105.
  • the injection molding nozzle 101 having such an element 105 is arranged on the inner peripheral side of a locating ring insertion port 211 provided in a fixed plate 209 of the injection molding machine.
  • the locating ring insertion port 211 is arranged with the central part of the nozzle body 207 aligned with the central part, and the mold 17 (see FIG. 1) fixed to the fixed plate 209 of the injection molding machine on the outlet port 5 side.
  • a mold member such as is inserted and fixed. By inserting the mold member into such a locating ring insertion port 211, the center position of the mold member and the nozzle body 207 is aligned, and the molding resin material injected by the cylinder 213 of the injection molding machine is used for injection molding. It is kneaded through the nozzle 201 and injected into the mold member.
  • the size of the injection molding machine generally applied is 300 tons or less, and the maximum value of the diameter D4 of the locating ring insertion port 211 at this time is 120 (mm). For this reason, the maximum value of the diameter D1 of the element 203 is set to 50.5 (mm).
  • the maximum length of the nozzle body 207 that can be installed is 200 (mm).
  • Six elements 105 are accommodated in the nozzle body 207.
  • the maximum value of the length L1 (see FIG. 5) per element 105 takes into account the inlet 3 (see FIG. 1), the outlet 5 (see FIG. 1), or other clearances. , 20 (mm) is set.
  • the pressure increase suppression portion 103 that suppresses the increase in the injection pressure of the molding resin material introduced from the introduction port 3 provided in the nozzle body 207 includes the length L1 of the element 105 and the element hole.
  • the ratio (L1 / D3) with the diameter D3 of 9 is set.
  • the ratio (L1 / D3) between the length L1 of the element 105 and the diameter D3 of the element hole 9 the flow passage cross-sectional area of the molded resin material in the element 105 is efficiently increased. For this reason, the pressure loss of the molding resin material which distribute
  • the pressure rise suppressing portion 103 is set such that the length L1 of the element 105 is 0.64 to 1.6 times the diameter D3 of the element hole 9. For this reason, the flow path cross-sectional area of the element 105 when the fluid flows through the element 105 can be efficiently increased, and the pressure loss of the fluid flowing through the nozzle body 207 can be reduced.
  • the length of the element is set to be 0.64 to 1.1 times the diameter of the element hole.
  • Example 2 In each example and each comparative example, the number of element holes for one element was 2, and the number of elements arranged in the nozzle body was 6.
  • the element length L1 was set to 16 (mm).
  • the diameter D3 of the element hole is 10 (mm) in Example 1, 11 (mm) in Example 2, 12 (mm) in Example 3, 13 (mm) in Example 4, and Example 5 Is 14.5 (mm), 15 is (mm) in Example 6, 20 (mm) in Example 7, 25 (mm) in Example 8, 8 (mm) in Comparative Example 1, and Comparative Example 2 In Comparative Example 3, it was set to 9 (mm).
  • Example 8 has a very small injection pressure together with Comparative Example 3, but the locating ring insertion port having a diameter D4 of the maximum value 120 (mm) in the diameter of the element hole of Comparative Example 3 In Example 8, which can be arranged, was set as the upper limit value of the diameter of the element hole.
  • Example 1 has a diameter of an element hole (element) that can be placed in a locating ring insertion port having a diameter D4 of 120 (mm) or less as well as Comparative Examples 1 and 2.
  • a maximum injection pressure which is the upper limit of the performance of the injection molding machine, depending on the shape of the molded product and the resin, and molding is impossible at the upper limit of the performance of the injection molding machine.
  • each example according to the present invention can be arranged at the locating ring insertion port, and the injection pressure is reduced as compared with the conventional comparative examples 1 and 2.
  • the flow passage cross-sectional area of the element can be efficiently It can be seen that the increase in injection pressure can be suppressed.
  • the length of the element is set to be 0.64 to 1.1 times the diameter of the element hole.
  • the range of the ratio L / D of the flow path diameter ⁇ 8 is 0, 30 to 21, 21, the range of the ratio L / D of the flow path diameter ⁇ 10 is 0, 98 to 0, 24, and the flow path diameter ⁇ 14,5.
  • the range of the ratio L / D is 1,000 to 0,20, and the range of the ratio L / D of the flow path diameter ⁇ 25 is 0,99 to 0,20.
  • the range in which the injection pressure per element satisfies 2.9 MPa or less is such that the ratio L / D is 1,21 (point a) when the flow path diameter is ⁇ 8, and the flow path diameter is ⁇ 10.
  • the ratio L / D is 0,78-0,88 (b1 point-b2 point) and the channel diameter is ⁇ 14,5
  • the ratio L / D is 0,40-0,67 (c1 point-c2 point)
  • the ratio L / D is 0, 20 to 0, 40 (e1 point to e2 point).
  • the range in which the injection pressure can be reduced is the range surrounded by the above-mentioned a, b1, b2, c1, c2, e1, and e2 (shaded portion in FIG. 7).
  • the most suitable range of the number of element holes 9 is when four element holes 9 are provided for one element 11.
  • the injection pressure of the molding resin material introduced from the introduction port 3 becomes substantially equal to the injection pressure of the molding resin material flowing through the open nozzle.
  • the molding resin material cannot be sufficiently kneaded with the open nozzle, but the molding resin material can be sufficiently kneaded with the injection molding nozzle 1 in which the element 11 is arranged.
  • These four element holes 9 are arranged at equal intervals in the circumferential direction of the element body 23 with the outer diameter inscribed in the inner diameter of the element body 23 at equal intervals from the center of the element body 23.
  • the element holes 9 and 9 provided in the adjacent elements 11 and 11 are arranged so as to be displaced by 45 ° in the rotation direction when the center of the element body 23 is the rotation axis.
  • Such an injection molding nozzle 1 is provided with a pressure increase suppressing portion 13 for suppressing an increase in the injection pressure of the fluid introduced from the introduction port 3 in the nozzle body 7. For this reason, the rise in the injection pressure of the fluid introduced from the introduction port 3 can be suppressed by the pressure increase suppression unit 13, and the pressure loss of the fluid flowing through the nozzle body 7 can be reduced.
  • the pressure rise suppression unit 13 has 3 or more and 9 or less element holes 9. For this reason, the division
  • the pressure rise suppression unit 13 is configured so that the injection pressure of the fluid flowing from the inlet 3 to the outlet 5 via the plurality of elements 11 is substantially equal to the injection pressure of the fluid flowing directly from the inlet 3 to the outlet 5. To do. For this reason, it can be set as the pressure loss substantially equivalent to the open nozzle by which the several element 11 is not provided in the nozzle main body 7 by the pressure rise suppression part 13. FIG. In addition, the fluid can be kneaded in the nozzle body 7 with a pressure loss substantially equal to that of the open nozzle.
  • the pressure rise suppression unit 13 has four element holes 9. For this reason, it is possible to increase the flow sectional area of the element 11 and increase the pressure loss substantially equal to that of the open nozzle while increasing the number of fluid divisions when flowing through the element 11.
  • Example 2 The number of element holes for one element was 3 to 9 in each example, and 2 and 10 in Comparative Examples 1 and 2.
  • the plurality of element holes are arranged at equal intervals in the circumferential direction of the element with the outer diameter inscribed in the inner diameter of the element at equal intervals from the center of the element.
  • Comparative Example 3 was an open nozzle in which no element was disposed between the inlet and outlet and the diameter from the inlet to outlet was constant. For this reason, the flow path cross-sectional area of the comparative example 3 is a smaller value than the other examples and comparative examples.
  • the injection pressure (MPa) was measured when the injection speed of the injection molding machine was 20, 50, 80 (mm / sec).
  • FIG. 3 also shows the flow path cross-sectional area and the number of divisions in each example and each comparative example.
  • FIG. 4 shows the relationship between the element hole and the channel cross-sectional area.
  • Comparative Example 2 having 10 element holes per element, the injection pressure was increased as compared with Comparative Example 1.
  • Example 2 having four element holes per element, the injection pressure was substantially equivalent to the injection pressure of Comparative Example 3 which is an open nozzle.
  • the number of divisions of 46656 (times) or more in each example (minimum element hole 3, element number 6) of the present invention is about 11 times the number of divisions 4096 (times) in Comparative Example 1 (element hole 2, element number 6).
  • the injection molding nozzle according to each embodiment of the present invention can obtain a kneadability of about 11 times that of the conventional injection molding nozzle at a minimum.
  • the channel cross-sectional area of 103.8 (mm2) or more in each example of the present invention is larger than the channel cross-sectional area of 100.5 (mm2) of Comparative Example 1.
  • the element holes are provided in the range of 3 to 9 per element, the kneadability is improved and the injection pressure is reduced as compared with the conventional injection molding nozzle having two element holes per element. It can be seen that an injection molding nozzle can be obtained. In addition, it can be seen that when four element holes are provided per element, an injection molding nozzle can be obtained that can be substantially equivalent to the injection pressure of the open nozzle.
  • the element diameter is the radius, and the element length at each element diameter of 10, 16, 20, 30, 40 (mm) is changed to 5, 10, 15.5, 20 (mm).
  • the pressure loss (MPa) per element when the injection speed is 20, 50, 80 (mm / sec) is shown.
  • the element diameter is set to 2.5 times or more the diameter of the inlet, but this indicates a lower limit, and the upper limit is the element.
  • the diameter of the nozzle body is set to a size that can accommodate an element in which the diameter of the element is at least 2.5 times the diameter of the inlet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

This injection molding nozzle (1, 101, 201) comprises: a nozzle body (7, 207); and a plurality of elements (11, 105, 203) into which a fluid, which is introduced into the nozzle body (7, 207) from an introduction opening (3) in the nozzle body (7, 207), is introduced from a plurality of element holes (9) and in which the fluid is kneaded, the elements being arranged in series along the axial direction between the introduction opening (3) and a discharge opening (5) in the nozzle body. The plurality of elements (11, 105, 203) keep the injection pressure of the fluid, which has been introduced from the introduction opening (3), from rising. The length (L1) of each element (11, 105, 203) in the axial direction of the nozzle body (7, 207) is from 0.64 to 1.6 times, inclusive, the diameter (D3) of each element hole (9).

Description

射出成形用ノズルInjection molding nozzle
 本発明は、射出成形用ノズルに関する。 The present invention relates to an injection molding nozzle.
 射出成形用ノズルとして、筒状に形成され一端側に流体が導入される導入口が設けられ他端側に導入された流体を導出する導出口が設けられたノズル本体と、このノズル本体の導入口と導出口との間に配置され導入口からノズル本体内に導入された流体を複数のエレメント穴としての流体通路から導入して混練する複数のエレメントとしての流体混合素子とを備えたものが特許文献1に提案されている。 As a nozzle for injection molding, a nozzle body that is formed in a cylindrical shape and is provided with an introduction port through which fluid is introduced at one end side and a discharge port that leads out the fluid introduced at the other end side, and introduction of the nozzle body A fluid mixing element as a plurality of elements arranged between the mouth and the outlet and introduced into the nozzle body from the inlet through the fluid passage as a plurality of element holes and kneaded. This is proposed in Patent Document 1.
 この射出成形用ノズルでは、エレメントが1つの流体通路に対して上流側と下流側とにそれぞれ内部に螺旋翼が設けられた2つの流体通路が連通される構造となっている。そして、上流側の2つの流体通路と下流側の2つの流体通路とが、1つの流体通路の中心に対して位相をずらして配置されている。このように構成されたエレメントをノズル本体内に複数配置することにより、ノズル本体内を流通する流体が、集合と分割とを繰り返し行われて混練される。 In this injection molding nozzle, the element has a structure in which two fluid passages having spiral blades provided therein are communicated with each other on the upstream side and the downstream side with respect to one fluid passage. The two upstream fluid passages and the two downstream fluid passages are arranged out of phase with respect to the center of one fluid passage. By disposing a plurality of elements configured in this manner in the nozzle body, the fluid flowing through the nozzle body is kneaded by repeatedly performing aggregation and division.
特公昭53-36182号公報Japanese Patent Publication No.53-36182
 ところで、上記のような射出成形用ノズルは、射出成形機と金型との間に配置され、射出成形機から射出される流体を導入口から導入し、複数のエレメントで流体を混練し、導出口から金型へ射出する。 By the way, the injection molding nozzle as described above is arranged between the injection molding machine and the mold, introduces the fluid injected from the injection molding machine from the introduction port, kneads the fluid with a plurality of elements, and guides the fluid. Inject from the outlet into the mold.
 しかしながら、射出成形機の最大射出圧力に近い射出ピーク圧力で成形する場合には、特許文献1のような射出成形用ノズルであると、圧力損失が大きいため、必要な射出圧力が上昇してしまい、同一の射出成形機を用いることができない恐れがあった。従って、必要な射出圧力を得るために射出成形機のサイズを大型化する必要があった。 However, in the case of molding at an injection peak pressure close to the maximum injection pressure of the injection molding machine, the injection molding nozzle as in Patent Document 1 has a large pressure loss, so that the necessary injection pressure increases. There was a fear that the same injection molding machine could not be used. Therefore, it has been necessary to increase the size of the injection molding machine in order to obtain the necessary injection pressure.
 本発明は、射出成形機の大型化を抑制することができる射出成形用ノズルを提供することを目的とする。 An object of the present invention is to provide an injection molding nozzle capable of suppressing an increase in size of an injection molding machine.
 本発明の実施形態に係る射出成形用ノズルは、筒状に形成されて流体が導入される導入口を一端側に有し、前記導入された流体を導出する導出口を他端側に有するノズル本体と、前記ノズル本体内の前記導入口と前記導出口との間に前記ノズル本体の軸方向に直列に配置され、複数のエレメント穴を有し、前記導入口から前記ノズル本体内に導入された前記流体を前記複数のエレメント穴から導入して混練する複数のエレメントとを備える。、前記複数のエレメントは、前記導入口から導入された前記流体の射出圧力の上昇を抑制する。ここで、前記各エレメントの前記ノズル本体の前記軸方向における長さが、前記各エレメント穴の径に対して0.64倍以上且つ1.6倍以下である。 An injection molding nozzle according to an embodiment of the present invention has a nozzle formed on one end side into which a fluid is introduced and has a discharge port on the other end side through which the introduced fluid is led out. Between the main body and the introduction port and the outlet port in the nozzle body are arranged in series in the axial direction of the nozzle body, and have a plurality of element holes, and are introduced into the nozzle body from the introduction port. And a plurality of elements for introducing and kneading the fluid from the plurality of element holes. The plurality of elements suppress an increase in the injection pressure of the fluid introduced from the introduction port. Here, the length in the axial direction of the nozzle body of each element is 0.64 times or more and 1.6 times or less with respect to the diameter of each element hole.
 上記構成によれば、ノズル本体内に導入口から導入される流体の射出圧力の上昇を抑制させる複数のエレメントが設けられている。このため、複数のエレメントによって導入口から導入される流体の射出圧力の上昇を抑制することができ、ノズル本体内を流通する流体の圧力損失を低減することができる。従って、複数のエレメントによって射出圧力の上昇を抑制することができるので、射出成形機の大型化を抑制することができる。 According to the above configuration, the plurality of elements that suppress the increase in the injection pressure of the fluid introduced from the introduction port are provided in the nozzle body. For this reason, the rise in the injection pressure of the fluid introduced from the inlet by the plurality of elements can be suppressed, and the pressure loss of the fluid flowing through the nozzle body can be reduced. Therefore, since the increase in injection pressure can be suppressed by the plurality of elements, the increase in size of the injection molding machine can be suppressed.
 また、この射出成形用ノズルでは、複数のエレメントにおいて、各エレメントの長さが各エレメント穴の径に対して0.64倍以上1.6倍以下に設定されている。このため、エレメント内を流体が流通するときのエレメントの流路断面積を効率的に増加することができ、ノズル本体内を流通する流体の圧力損失を低減することができる。なお、各エレメントの長さを各エレメント穴の径に対して0.64倍以上1.1倍以下に設定してもよい。 In this injection molding nozzle, the length of each element is set to be 0.64 to 1.6 times the diameter of each element hole in a plurality of elements. For this reason, the flow path cross-sectional area of the element when the fluid flows through the element can be efficiently increased, and the pressure loss of the fluid flowing through the nozzle body can be reduced. The length of each element may be set to 0.64 times or more and 1.1 times or less with respect to the diameter of each element hole.
 また、前記複数のエレメントは、前記導入口から前記複数のエレメントを介して前記導出口に流通される流体の射出圧力を、前記導入口から直接前記導出口に流通される場合の流体の射出圧力と同等にするように構成されてもよい。 In addition, the plurality of elements has an injection pressure of fluid flowing from the inlet to the outlet through the plurality of elements, and an injection pressure of fluid when flowing directly from the inlet to the outlet It may be configured to be equivalent.
 上記構成によれば、複数のエレメントが導入口から複数のエレメントを介して導出口に流通される流体の射出圧力を、導入口から直接導出口に流通される場合の流体の射出圧力と略同等にする、このため、複数のエレメントによってノズル本体内に複数のエレメントが設けられていないオープンノズルと略同等の圧力損失とすることができる。加えて、オープンノズルと略同等の圧力損失でありながら、ノズル本体内で流体を混練することができる。 According to the above configuration, the injection pressure of the fluid that is circulated from the inlet to the outlet through the plurality of elements is substantially the same as the injection pressure of the fluid that is circulated directly from the inlet to the outlet. Therefore, the pressure loss can be made substantially equal to that of an open nozzle in which a plurality of elements are not provided in the nozzle body. In addition, the fluid can be kneaded in the nozzle body while having a pressure loss substantially equal to that of the open nozzle.
 また、前記各エレメントの径が、前記導入口の径の2.5倍以上であってもよい。 Further, the diameter of each element may be 2.5 times or more the diameter of the introduction port.
 上記構成によれば、複数のエレメントにおいて、各エレメントの径が導入口の径の2.5倍以上に設定されている。このため、エレメント内を流体が流通するときのエレメントの流路断面積を増加することができ、ノズル本体内を流通する流体の圧力損失を低減することができる。 According to the above configuration, in each of the plurality of elements, the diameter of each element is set to 2.5 times or more the diameter of the introduction port. For this reason, the flow path cross-sectional area of the element when the fluid flows in the element can be increased, and the pressure loss of the fluid flowing in the nozzle body can be reduced.
 上述の構成によれば、射出成形機の大型化を抑制することができる射出成形用ノズルを提供することができる。 According to the above-described configuration, it is possible to provide an injection molding nozzle that can suppress an increase in the size of the injection molding machine.
図1は、本発明の第1実施形態に係る射出成形用ノズルの断面図である。FIG. 1 is a cross-sectional view of an injection molding nozzle according to a first embodiment of the present invention. 図2は、本発明の第1実施形態に係る射出成形用ノズルのエレメントの正面図である。FIG. 2 is a front view of an element of an injection molding nozzle according to the first embodiment of the present invention. 図3は、本発明の第1実施形態に係る射出成形用ノズルにおける実施例と比較例の射出圧力を示す表である。FIG. 3 is a table showing injection pressures of examples and comparative examples in the injection molding nozzle according to the first embodiment of the present invention. 図4は、本発明の第2実施形態に係る射出成形用ノズルの側面図である。FIG. 4 is a side view of an injection molding nozzle according to the second embodiment of the present invention. 図5は、本発明の第2実施形態に係る射出成形用ノズルのエレメントの正面図であるFIG. 5 is a front view of an element of an injection molding nozzle according to the second embodiment of the present invention. 図6は、本発明の第2実施形態に係る射出成形用ノズルにおける実施例と比較例の1エレメント当たりの射出圧力を示す表である。FIG. 6 is a table showing the injection pressure per element of the example and the comparative example in the injection molding nozzle according to the second embodiment of the present invention. 図7は、射出成形用ノズルと、エレメント長とエレメント径の比との関係を示し、射出圧力を低減することが可能な範囲を示す図である。FIG. 7 is a diagram showing the relationship between the injection molding nozzle, the ratio of the element length and the element diameter, and the range in which the injection pressure can be reduced. 図8は、本発明の第1参考例に係る射出成形用ノズルの断面図である。FIG. 8 is a cross-sectional view of an injection molding nozzle according to a first reference example of the present invention. 図9は、本発明の第1参考例に係る射出成形用ノズルのエレメントの正面図である。FIG. 9 is a front view of an element of an injection molding nozzle according to a first reference example of the present invention. 図10は、本発明の第1参考例に係る射出成形用ノズルにおける実施例と比較例の射出圧力を示す表である。FIG. 10 is a table showing injection pressures of examples and comparative examples in the injection molding nozzle according to the first reference example of the present invention. 図11は、本発明の第1参考例に係る射出成形用ノズルにおける実施例と比較例のエレメント穴数と流路断面積との関係を示す図である。FIG. 11 is a diagram showing the relationship between the number of element holes and the flow path cross-sectional area of the example and the comparative example in the injection molding nozzle according to the first reference example of the present invention. 図12は、エレメント長さとエレメント径との変化による1エレメント当たりの圧力損失の変化を示す第2参考例の表である。FIG. 12 is a table of a second reference example showing changes in pressure loss per element due to changes in element length and element diameter. 図13は、ランド長の変化による1エレメント当たりの圧力損失の変化を示す第2参考例の表である。FIG. 13 is a table of a second reference example showing changes in pressure loss per element due to changes in land length.
 図1~図7を用いて本発明の実施の形態に係る射出成形用ノズルについて説明する。なお、図8~図13は本発明の参考例である。 An injection molding nozzle according to an embodiment of the present invention will be described with reference to FIGS. 8 to 13 are reference examples of the present invention.
 (第1実施形態)
 図1~図3を用いて第1実施形態について説明する。
(First embodiment)
The first embodiment will be described with reference to FIGS.
 本実施の形態に係る射出成形用ノズル1は、筒状に形成され一端側に流体が導入される導入口3が設けられ他端側に導入された流体を導出する導出口5が設けられたノズル本体7と、このノズル本体7の導入口3と導出口5との間に配置され導入口3からノズル本体7内に導入された流体を複数のエレメント孔9から導入して混練する複数のエレメント11とを備えている。 The injection molding nozzle 1 according to the present embodiment is provided with an introduction port 3 that is formed in a cylindrical shape and into which fluid is introduced on one end side, and an outlet port 5 that leads out the fluid introduced on the other end side. A plurality of fluids that are disposed between the nozzle body 7 and the inlet 3 and outlet 5 of the nozzle body 7 and are introduced into the nozzle body 7 from the inlet 3 through a plurality of element holes 9 and kneaded. And an element 11.
 ノズル本体7内には、導入口3から導入される流体の射出圧力の上昇を抑制させる圧力上昇抑制部13が設けられている。 In the nozzle body 7, there is provided a pressure increase suppression unit 13 that suppresses an increase in the injection pressure of the fluid introduced from the introduction port 3.
 本実施形態では、圧力上昇抑制部13は、エレメント穴9が2つに設定されている。 In the present embodiment, the pressure rise suppression unit 13 has two element holes 9.
 圧力上昇抑制部13は、導入口3から複数のエレメント11を介して導出口5に流通される流体の射出圧力を、導入口3から直接導出口5に流通される、すなわちオープンノズルを流通される流体の射出圧力と略同等にする。 The pressure rise suppression unit 13 circulates the injection pressure of the fluid that is circulated from the inlet 3 to the outlet 5 via the plurality of elements 11, and is circulated directly from the inlet 3 to the outlet 5, that is, circulated through the open nozzle. Approximately equal to the fluid injection pressure.
 図1,図2に示すように、ノズル本体7は、筒状に形成され、導入口3と導出口5とを備えている。導入口3は、ノズル本体7の一端側に設けられ、ノズル本体7の外部と内部とを連通するようにノズル本体7の外部側が開口されている。導入口3側には、流体としての加熱溶融された成形樹脂材料を射出する射出成形機(不図示)が配置される。この射出成形機から射出された成形樹脂材料は、所定の射出圧力で導入口3からノズル本体7内部に導入され、導出口5から導出される。導入口3からノズル本体7内部側に延設された流路は、ノズル本体7内部側に向けて拡径されるようにテーパ状に形成され、導入口3から導入される成形樹脂材料の圧力損失を低減している。 As shown in FIGS. 1 and 2, the nozzle body 7 is formed in a cylindrical shape and includes an inlet 3 and an outlet 5. The introduction port 3 is provided on one end side of the nozzle body 7, and the outside of the nozzle body 7 is opened so as to communicate the outside and the inside of the nozzle body 7. On the introduction port 3 side, an injection molding machine (not shown) for injecting a heat-melted molding resin material as a fluid is arranged. The molding resin material injected from this injection molding machine is introduced into the nozzle body 7 from the inlet 3 at a predetermined injection pressure, and is led out from the outlet 5. The flow path extending from the inlet 3 to the inside of the nozzle body 7 is formed in a taper shape so as to increase in diameter toward the inside of the nozzle body 7, and the pressure of the molding resin material introduced from the inlet 3 Loss is reduced.
 導出口5は、ノズル本体7の他端側に設けられ、ノズル本体7の外部と内部とを連通している。この導出口5側には、ノズルチップ15が組付けられ、このノズルチップ15を介して金型17に成形樹脂材料が射出される。ノズルチップ15の金型17側の先端部の長さを短縮することにより、成形樹脂材料の圧力損失をさらに低減している。 The outlet 5 is provided on the other end side of the nozzle body 7 and communicates the outside and the inside of the nozzle body 7. A nozzle chip 15 is assembled on the outlet 5 side, and a molding resin material is injected into the mold 17 through the nozzle chip 15. By reducing the length of the tip of the nozzle tip 15 on the mold 17 side, the pressure loss of the molded resin material is further reduced.
 このような導入口3から導入されて導出口5から導出される成形樹脂材料は、他の着色材料を混合して着色することがある。このような場合、ノズル本体7の導入口3から導出口5までの間に何も介さないオープンノズルでは、色ムラなどの外観不良が発生する恐れがあった。そこで、ノズル本体7の導入口3と導出口5との間には、溶融された複数の成形樹脂材料を混練する複数のエレメント11が配置されている。 The molded resin material introduced from the introduction port 3 and led out from the outlet port 5 may be colored by mixing with other coloring materials. In such a case, there is a possibility that an appearance defect such as color unevenness may occur in an open nozzle in which nothing is interposed between the inlet 3 and the outlet 5 of the nozzle body 7. Therefore, a plurality of elements 11 for kneading a plurality of molten molding resin materials are arranged between the inlet 3 and the outlet 5 of the nozzle body 7.
 エレメント11は、導入口3と導出口5との間にノズル本体7の軸方向(図1における左右方向)に複数(ここでは6つ)直列に配置され、分流部19と混合部21とを備えている。分流部19は、エレメント本体23の導入口3側から導出口5側まで連通された複数のエレメント穴9からなる。このエレメント穴9の内部には、導入口3側の基端と導出口5側の基端とを180°捻ったねじり羽根25が配置されている。このため、1つのエレメント穴9を流通する成形樹脂材料は、2分割される。このような複数のエレメント穴9を流通した成形樹脂材料は、混合部21で混合される。 A plurality (six in this case) of elements 11 are arranged in series in the axial direction of the nozzle body 7 (left and right direction in FIG. 1) between the inlet 3 and the outlet 5, and the flow dividing section 19 and the mixing section 21 are connected. I have. The flow dividing portion 19 is composed of a plurality of element holes 9 communicating from the inlet 3 side to the outlet 5 side of the element body 23. Inside the element hole 9, a torsion blade 25 in which the base end on the introduction port 3 side and the base end on the lead-out port 5 side are twisted by 180 ° is disposed. For this reason, the molding resin material which distribute | circulates the one element hole 9 is divided into two. The molding resin material that has circulated through the plurality of element holes 9 is mixed in the mixing unit 21.
 エレメント11は、導入口3と導出口5との間に複数(ここでは6つ)直列に配置され、エレメント本体23にエレメント穴9が2つ設けられている。この2つのエレメント穴9は、エレメント本体23の中心から等間隔に外径がエレメント本体23の内径に内接され、エレメント本体23の周方向において180°の間隔で配置されている。隣り合うエレメント11,11に設けられたエレメント穴9,9同士は、エレメント本体23の中心を回転軸心としたときの回転方向に90°位置ずれして配置されている。このようにエレメント穴9を配置させることにより、成形樹脂材料の混練効率を向上することができる。 A plurality (six in this case) of the elements 11 are arranged in series between the inlet 3 and the outlet 5, and two element holes 9 are provided in the element body 23. The two element holes 9 are arranged at equal intervals from the center of the element main body 23 with an outer diameter inscribed in the inner diameter of the element main body 23 and at an interval of 180 ° in the circumferential direction of the element main body 23. The element holes 9, 9 provided in the adjacent elements 11, 11 are arranged so as to be displaced by 90 ° in the rotation direction when the center of the element body 23 is the rotation axis. By arranging the element holes 9 in this manner, the kneading efficiency of the molded resin material can be improved.
 混合部21は、エレメント本体23の導入口3側と導出口5側とにそれぞれ設けられ、エレメント穴9の入口及び出口と連通されている。混合部21は、複数のエレメント穴9を流通した成形樹脂材料(導入口3に最も近いエレメント11では導入口3から導入された成形樹脂材料)を合流して混合し、導出口5側に位置するエレメント11の複数のエレメント穴9(導出口5に最も近いエレメント11では導出口5)へ混合した成形樹脂材料を導出する。 The mixing unit 21 is provided on each of the inlet 3 side and the outlet 5 side of the element body 23 and communicates with the inlet and outlet of the element hole 9. The mixing unit 21 merges and mixes the molding resin material that has circulated through the plurality of element holes 9 (the molding resin material introduced from the introduction port 3 in the element 11 closest to the introduction port 3), and is positioned on the outlet 5 side. The molded resin material mixed into the plurality of element holes 9 of the element 11 (the outlet 11 for the element 11 closest to the outlet 5) is led out.
 このような分流部19と混合部21とを成形樹脂材料が繰り返し流通されることにより、成形樹脂材料が混練される。この複数のエレメント11を流通する成形樹脂材料の分割数Nは、エレメント数をn、最初の流入層(導入口3に最も近い混合部21)をN0 、エレメント穴数をHとすると、1つのエレメント穴9で2分割されるので、N=N0 ×(2×H)n となる。このため、従来のような圧力損失の大きい射出成形用ノズルでは、1つのエレメント11に2つのエレメント穴9が設けられており、1エレメント当たりの分割数が4となっている。 The molded resin material is kneaded by repeatedly flowing the molded resin material through the flow dividing section 19 and the mixing section 21. The division number N of the molding resin material flowing through the plurality of elements 11 is one when the number of elements is n, the first inflow layer (mixing portion 21 closest to the inlet 3) is N0, and the number of element holes is H. Since it is divided into two by the element hole 9, N = N0 × (2 × H) n. For this reason, in the conventional injection molding nozzle with a large pressure loss, two element holes 9 are provided in one element 11, and the number of divisions per element is four.
 そこで、ノズル本体7に設けられた導入口3から導入される成形樹脂材料の射出圧力の上昇を抑制させる圧力上昇抑制部13は、1つのエレメント11におけるエレメント穴9の数の設定となっている。この1つのエレメント11におけるエレメント穴9の数は、2つに設定される。このエレメント穴9の数では、分割数の増加により混練効率が向上されると共に、成形樹脂材料の流路断面積が増加により圧力損失が低減される。 Therefore, the pressure increase suppression portion 13 that suppresses the increase in the injection pressure of the molding resin material introduced from the introduction port 3 provided in the nozzle body 7 is set to the number of element holes 9 in one element 11. . The number of element holes 9 in this one element 11 is set to two. In the number of the element holes 9, the kneading efficiency is improved by increasing the number of divisions, and the pressure loss is reduced by increasing the flow path cross-sectional area of the molded resin material.
 本実施形態に係る射出成形用ノズル1は、圧力上昇抑制部13が、エレメント11の径D1が導入口3の径D2の2.5倍以上に設定されている。 In the injection molding nozzle 1 according to the present embodiment, the pressure rise suppression unit 13 is set such that the diameter D1 of the element 11 is 2.5 times or more the diameter D2 of the inlet 3.
 このような射出成形用ノズル1において、ノズル本体7に設けられた導入口3から導入される成形樹脂材料の射出圧力の上昇を抑制させる圧力上昇抑制部13は、1つのエレメント11におけるエレメント11の径D1の設定となっている。このエレメント11の径D1は、導入口3の径D2の2.5倍以上に設定される。このようなエレメント11の径D1では、成形樹脂材料の流路断面積が増加され、オープンノズルの射出圧力と略同等の射出圧力とすることができる。 In such an injection molding nozzle 1, the pressure increase suppression portion 13 that suppresses an increase in the injection pressure of the molding resin material introduced from the introduction port 3 provided in the nozzle body 7 includes the element 11 in one element 11. The diameter D1 is set. The diameter D1 of the element 11 is set to 2.5 times or more the diameter D2 of the introduction port 3. With such a diameter D1 of the element 11, the flow passage cross-sectional area of the molded resin material is increased, and the injection pressure can be made substantially equal to the injection pressure of the open nozzle.
 成形樹脂材料の射出圧力の圧力損失を低減させるためには、1つのエレメント11の長さL1や導入口3及び導出口5のランド長L2,L3などを縮小することが有効である。これは、成形樹脂材料がノズル本体7内を流通する際に、成形樹脂材料と各部材との接触距離が短くなり、成形樹脂材料に対する抵抗が低減されるためである。このため、射出成形用ノズル1では、エレメント11の長さL1と導入口3及び導出口5のランド長L2,L3とが混練性を低下させない程度に縮小されている。 In order to reduce the pressure loss of the injection pressure of the molding resin material, it is effective to reduce the length L1 of one element 11 and the land lengths L2 and L3 of the inlet 3 and outlet 5. This is because when the molding resin material flows through the nozzle body 7, the contact distance between the molding resin material and each member is shortened, and the resistance to the molding resin material is reduced. For this reason, in the injection molding nozzle 1, the length L1 of the element 11 and the land lengths L2 and L3 of the inlet 3 and outlet 5 are reduced to such an extent that the kneadability is not lowered.
 このような射出成形用ノズル1では、圧力上昇抑制部13がエレメント11の径D1が導入口3の径D2の2.5倍以上に設定されている。このため、エレメント105内を流体が流通するときのエレメント11の流路断面積を増加することができ、ノズル本体7内を流通する流体の圧力損失を低減することができる。 In such an injection molding nozzle 1, the pressure rise suppressing portion 13 is set such that the diameter D 1 of the element 11 is 2.5 times or more the diameter D 2 of the introduction port 3. For this reason, the flow path cross-sectional area of the element 11 when the fluid flows through the element 105 can be increased, and the pressure loss of the fluid flowing through the nozzle body 7 can be reduced.
 本発明の第1実施形態に係る射出成形用ノズルを、以下の実施例を用いて詳細に説明する。 The nozzle for injection molding according to the first embodiment of the present invention will be described in detail using the following examples.
 (実施例)
 各実施例及び比較例1では、1つのエレメントに対するエレメント穴数を2とし、ノズル本体内に配置させるエレメント数を6とした。
(Example)
In each example and comparative example 1, the number of element holes for one element was 2, and the number of elements to be arranged in the nozzle body was 6.
 比較例2は、導入口と導出口との間にエレメントが配置されていないオープンノズルである。 Comparative Example 2 is an open nozzle in which no element is disposed between the inlet and the outlet.
 導入口の径D2を8(mm)とし、エレメントの径D1を、実施例1~3では19(mm)とし、実施例4では20(mm)とし、比較例1では16(mm)とした。 The inlet diameter D2 was 8 (mm), the element diameter D1 was 19 (mm) in Examples 1 to 3, 20 (mm) in Example 4, and 16 (mm) in Comparative Example 1. .
 エレメントの長さL1を、実施例1,2,4では10(mm)とし、実施例3では30(mm)とし、比較例1では15.5(mm)とした。 The length L1 of the element was 10 (mm) in Examples 1, 2, and 4, 30 (mm) in Example 3, and 15.5 (mm) in Comparative Example 1.
 導入口及び導出口のランド長L2,L3の合計を、実施例1,3,4では25(mm)とし、実施例2では30(mm)とし、比較例1では50(mm)とし、比較例2では95(mm)とした。 The total of the land lengths L2 and L3 of the inlet and outlet is 25 (mm) in Examples 1, 3, and 4, 30 (mm) in Example 2, and 50 (mm) in Comparative Example 1. In Example 2, it was set to 95 (mm).
 各実施例及び各比較例において、射出成形機の射出速度を20,50,80(mm/sec)としたときの射出圧力(MPa)を測定した。この結果を図3の表に示す。 In each example and each comparative example, the injection pressure (MPa) was measured when the injection speed of the injection molding machine was 20, 50, 80 (mm / sec). The results are shown in the table of FIG.
 表から明らかなように、本発明に従う各実施例は、オープンノズルである比較例2と略同等の射出圧力となった。 As is clear from the table, each example according to the present invention had an injection pressure substantially equivalent to that of Comparative Example 2 which is an open nozzle.
 これに対して、導入口の径D2の2.5倍に満たないエレメントの径D1を有する比較例1では、比較例2よりも約60%上昇するような非常に大きな射出圧力となっていた。 In contrast, Comparative Example 1 having an element diameter D1 less than 2.5 times the inlet diameter D2 had a very high injection pressure that increased by about 60% compared to Comparative Example 2.
 このことから、エレメントの径D1を増加させることにより、エレメントにおける流体の流路断面積を増加させることができ、射出圧力の上昇を抑制することができるということがわかる。 From this, it can be seen that by increasing the element diameter D1, it is possible to increase the flow passage cross-sectional area of the fluid in the element and to suppress an increase in injection pressure.
 従って、エレメントの径D1を導入口の径D2の2.5倍以上とすることにより、オープンノズルの射出圧力と略同等とすることができると共に、流体を十分に混練することができる射出成形用ノズルを得ることができることがわかる。 Therefore, by setting the element diameter D1 to be 2.5 times or more the introduction port diameter D2, the injection molding nozzle can be made substantially equal to the injection pressure of the open nozzle and can sufficiently knead the fluid. It can be seen that it can be obtained.
 以上の結果から、本発明(実施例)の場合、導入口から導入される流体の射出圧力の上昇を抑制することができる射出成形用ノズルを得ることができる。一方、本発明を満たさない(比較例)場合、あまり魅力的でない射出成形用ノズルが得られる。 From the above results, in the case of the present invention (Example), it is possible to obtain an injection molding nozzle capable of suppressing an increase in the injection pressure of the fluid introduced from the introduction port. On the other hand, when the present invention is not satisfied (comparative example), an injection molding nozzle that is not very attractive is obtained.
 (第2実施形態)
 図4~図6を用いて第2実施形態について説明する。
(Second Embodiment)
The second embodiment will be described with reference to FIGS.
 本実施の形態に係る射出成形用ノズル101は、圧力上昇抑制部103において、エレメント105のノズル本体207の軸方向における長さL1(図1参照)がエレメント穴9の径D3に対して0.64倍以上1.6倍以下に設定されている(なお、これに限定されないが、後述するように、エレメントの長さL1がエレメント穴9の径D3に対して0.64倍以上1.1倍以下に設定すればより好ましい)。 In the injection molding nozzle 101 according to the present embodiment, in the pressure rise suppressing portion 103, the length L1 (see FIG. 1) of the nozzle body 207 in the axial direction of the element 105 is 0.64 times the diameter D3 of the element hole 9. It is set to 1.6 times or less (Note that, although not limited to this, it is more preferable if the element length L1 is set to 0.64 times or more and 1.1 times or less with respect to the diameter D3 of the element hole 9 as described later). ).
 なお、第1実施形態と同一の構成には、同一の記号を記して構成及び機能説明は他の実施形態を参照するものとし省略するが、他の実施形態と同一の構成であるので、得られる効果は同一である。 It should be noted that the same components as those of the first embodiment are denoted by the same reference numerals, and the description of the configuration and function will be omitted with reference to the other embodiments. The effect achieved is the same.
 図4,図5に示すように、エレメント105は、導入口3(図1参照)と導出口5(図1参照)との間にノズル本体7の軸方向に複数(ここでは6つ)直列に配置されている。エレメント105には、エレメント穴9が2つ設けられている。この2つのエレメント穴9は、エレメント105の中心から等間隔に外径がエレメント105の内径に内接され、エレメント105の周方向において180°の間隔で配置されている。また、隣り合うエレメント105,105に設けられたエレメント穴9,9同士は、エレメント105の中心を回転軸心としたときの回転方向に90°位置ずれして配置されている。なお、エレメント105の内径がエレメント105の径D1となっている。 As shown in FIGS. 4 and 5, a plurality (six in this case) of elements 105 are arranged in the axial direction of the nozzle body 7 between the inlet 3 (see FIG. 1) and the outlet 5 (see FIG. 1). Is arranged. The element 105 is provided with two element holes 9. The two element holes 9 have an outer diameter inscribed in the inner diameter of the element 105 at equal intervals from the center of the element 105, and are arranged at intervals of 180 ° in the circumferential direction of the element 105. In addition, the element holes 9 and 9 provided in the adjacent elements 105 and 105 are arranged so as to be shifted by 90 ° in the rotation direction when the center of the element 105 is the rotation axis. The inner diameter of the element 105 is the diameter D1 of the element 105.
 このようなエレメント105を有する射出成形用ノズル101は、射出成形機の固定盤209に設けられたロケートリング挿入口211の内周側に配置されている。このロケートリング挿入口211は、中心部にノズル本体207の中心部が位置合わせされて配置され、導出口5側に射出成形機の固定盤209に固定される金型17(図1参照)などのような型部材が挿入されて固定される。このようなロケートリング挿入口211に型部材が挿入されることにより、型部材とノズル本体207との中心位置が位置合わせされ、射出成形機のシリンダ213によって射出された成形樹脂材料が射出成形用ノズル201を介して混練され、型部材に射出される。 The injection molding nozzle 101 having such an element 105 is arranged on the inner peripheral side of a locating ring insertion port 211 provided in a fixed plate 209 of the injection molding machine. The locating ring insertion port 211 is arranged with the central part of the nozzle body 207 aligned with the central part, and the mold 17 (see FIG. 1) fixed to the fixed plate 209 of the injection molding machine on the outlet port 5 side. A mold member such as is inserted and fixed. By inserting the mold member into such a locating ring insertion port 211, the center position of the mold member and the nozzle body 207 is aligned, and the molding resin material injected by the cylinder 213 of the injection molding machine is used for injection molding. It is kneaded through the nozzle 201 and injected into the mold member.
 ここで、一般に適用される射出成形機のサイズは300ton以下であり、このときのロケートリング挿入口211の径D4の最大値は120(mm)となっている。このため、エレメント203の径D1の最大値は、50.5(mm)に設定されている。 Here, the size of the injection molding machine generally applied is 300 tons or less, and the maximum value of the diameter D4 of the locating ring insertion port 211 at this time is 120 (mm). For this reason, the maximum value of the diameter D1 of the element 203 is set to 50.5 (mm).
 これは、ノズル本体207の外径が最大でエレメント105の径D1の2倍(2×50.5=101(mm))有することとなり、ノズル本体207の外周に配置されるヒーターの厚みが8(mm)必要であり、ノズル本体207とロケートリング挿入口211とのクリアランスが10(mm)必要であり、すべての合計値(101+8+10=119(mm))がロケートリング挿入口211の径D4の最大値120(mm)を超えないようにするためである。 This means that the outer diameter of the nozzle body 207 is at most twice the diameter D1 of the element 105 (2 × 50.5 = 101 (mm)), and the thickness of the heater disposed on the outer periphery of the nozzle body 207 is 8 (mm). ) Is required, and the clearance between the nozzle body 207 and the locating ring insertion port 211 is 10 mm, and all the total values (101 + 8 + 10 = 119 (mm)) are the maximum value of the diameter D4 of the locating ring insertion port 211 This is so as not to exceed 120 (mm).
 エレメント穴9の径D3の最大値は、50.5(mm)のエレメント105の径D1に対して、25(mm)に設定されている。これは、エレメント穴9がエレメント105に対して2つ設けられており、エレメント穴9,9間の隙間を少なくとも0.5(mm)確保するため、25×2+0.5=50.5(mm)となるためである。 The maximum value of the diameter D3 of the element hole 9 is set to 25 (mm) with respect to the diameter D1 of the element 105 of 50.5 (mm). This is because two element holes 9 are provided for the element 105 and the clearance between the element holes 9 and 9 is at least 0.5 (mm), so that 25 × 2 + 0.5 = 50.5 (mm). It is.
 一方、射出成形機のサイズが300tonであるときに、設置可能なノズル本体207の長さの最大値は、200(mm)である。このノズル本体207内には、6つのエレメント105が収容されている。このため、エレメント105の1つ当たりの長さL1(図5参照)の最大値は、導入口3(図1参照)、導出口5(図1参照)、或いは他のクリアランスなどを考慮して、20(mm)に設定されている。 On the other hand, when the size of the injection molding machine is 300 tons, the maximum length of the nozzle body 207 that can be installed is 200 (mm). Six elements 105 are accommodated in the nozzle body 207. For this reason, the maximum value of the length L1 (see FIG. 5) per element 105 takes into account the inlet 3 (see FIG. 1), the outlet 5 (see FIG. 1), or other clearances. , 20 (mm) is set.
 これらの最大値を考慮して、ノズル本体207に設けられた導入口3から導入される成形樹脂材料の射出圧力の上昇を抑制させる圧力上昇抑制部103は、エレメント105の長さL1とエレメント穴9の径D3との比(L1/D3)の設定となっている。 In consideration of these maximum values, the pressure increase suppression portion 103 that suppresses the increase in the injection pressure of the molding resin material introduced from the introduction port 3 provided in the nozzle body 207 includes the length L1 of the element 105 and the element hole. The ratio (L1 / D3) with the diameter D3 of 9 is set.
 詳細には、圧力上昇抑制部103は、エレメント105の長さL1がエレメント穴9の径D3に対して0.64倍以上1.6倍以下(L1/D3=0.64~1.60)に設定されている。このようなエレメント105の長さL1とエレメント穴9の径D3との比(L1/D3)の設定により、エレメント105における成形樹脂材料の流路断面積が効率的に増加される。このため、ノズル本体207内を流通する成形樹脂材料の圧力損失を低減することができる。 Specifically, in the pressure rise suppressing portion 103, the length L1 of the element 105 is set to be 0.64 times or more and 1.6 times or less (L1 / D3 = 0.64 to 1.60) with respect to the diameter D3 of the element hole 9. By setting the ratio (L1 / D3) between the length L1 of the element 105 and the diameter D3 of the element hole 9, the flow passage cross-sectional area of the molded resin material in the element 105 is efficiently increased. For this reason, the pressure loss of the molding resin material which distribute | circulates the inside of the nozzle main body 207 can be reduced.
 このような射出成形用ノズル101では、圧力上昇抑制部103がエレメント105の長さL1がエレメント穴9の径D3に対して0.64倍以上1.6倍以下に設定されている。このため、エレメント105内を流体が流通するときのエレメント105の流路断面積を効率的に増加することができ、ノズル本体207内を流通する流体の圧力損失を低減することができる。 In such an injection molding nozzle 101, the pressure rise suppressing portion 103 is set such that the length L1 of the element 105 is 0.64 to 1.6 times the diameter D3 of the element hole 9. For this reason, the flow path cross-sectional area of the element 105 when the fluid flows through the element 105 can be efficiently increased, and the pressure loss of the fluid flowing through the nozzle body 207 can be reduced.
 なお、これに限定されないが、エレメントの長さがエレメント穴の径に対して0.64倍以上1.1倍以下に設定すればより好ましい。 Although not limited to this, it is more preferable that the length of the element is set to be 0.64 to 1.1 times the diameter of the element hole.
 本発明の第2実施形態に係る射出成形用ノズルを、以下の実施例を用いて詳細に説明する。 The nozzle for injection molding according to the second embodiment of the present invention will be described in detail using the following examples.
 (実施例)
 各実施例及び各比較例では、1つのエレメントに対するエレメント穴数を2とし、ノズル本体内に配置させるエレメント数を6とした。
(Example)
In each example and each comparative example, the number of element holes for one element was 2, and the number of elements arranged in the nozzle body was 6.
 各実施例及び各比較例では、エレメントの長さL1を16(mm)とした。 In each example and each comparative example, the element length L1 was set to 16 (mm).
 エレメント穴の径D3を、実施例1では10(mm)とし、実施例2では11(mm)とし、実施例3では12(mm)とし、実施例4では13(mm)とし、実施例5では14.5(mm)とし、実施例6では15(mm)とし、実施例7では20(mm)とし、実施例8では25(mm)とし、比較例1では8(mm)とし、比較例2では9(mm)とし、比較例3では35(mm)とした。 The diameter D3 of the element hole is 10 (mm) in Example 1, 11 (mm) in Example 2, 12 (mm) in Example 3, 13 (mm) in Example 4, and Example 5 Is 14.5 (mm), 15 is (mm) in Example 6, 20 (mm) in Example 7, 25 (mm) in Example 8, 8 (mm) in Comparative Example 1, and Comparative Example 2 In Comparative Example 3, it was set to 9 (mm).
 各実施例及び各比較例において、樹脂としてPBT樹脂を用い、射出率を26.5(cm/sec)としたときの1エレメント当たりの射出圧力(MPa)を測定した。この結果を図6の表に示す。なお、エレメントの長さL1とエレメント穴の径D3との比(L1/D3)及びエレメントの径D1も図6に示す。 In each example and each comparative example, PBT resin was used as the resin, and the injection pressure (MPa) per element when the injection rate was 26.5 (cm 3 / sec) was measured. The results are shown in the table of FIG. FIG. 6 also shows the ratio (L1 / D3) between the element length L1 and the element hole diameter D3 and the element diameter D1.
 本発明に従う実施例8は、比較例3と共に非常に小さな射出圧力となっているが、比較例3のエレメント穴(エレメント)の径では最大値120(mm)の径D4を有するロケートリング挿入口に配置することができないので、配置可能な実施例8をエレメント穴の径の上限値とした。 Example 8 according to the present invention has a very small injection pressure together with Comparative Example 3, but the locating ring insertion port having a diameter D4 of the maximum value 120 (mm) in the diameter of the element hole of Comparative Example 3 In Example 8, which can be arranged, was set as the upper limit value of the diameter of the element hole.
 本発明に従う実施例1は、比較例1,2と共に最大値120(mm)以下の径D4を有するロケートリング挿入口に配置可能なエレメント穴(エレメント)の径を有している。しかしながら、比較例1,2の場合には、成形品形状や樹脂によって射出成形機の性能上限である最大射出圧力を超えてしまう恐れがあり、射出成形機の性能上限では成形が不可能である。このため、1エレメント当たりの射出圧力が2.9(MPa)以下となる実施例1を下限値とした。 Example 1 according to the present invention has a diameter of an element hole (element) that can be placed in a locating ring insertion port having a diameter D4 of 120 (mm) or less as well as Comparative Examples 1 and 2. However, in the case of Comparative Examples 1 and 2, there is a risk of exceeding the maximum injection pressure, which is the upper limit of the performance of the injection molding machine, depending on the shape of the molded product and the resin, and molding is impossible at the upper limit of the performance of the injection molding machine. . For this reason, Example 1 in which the injection pressure per element was 2.9 (MPa) or less was set as the lower limit.
 以上のことから明らかなように、本発明に従う各実施例は、ロケートリング挿入口に配置可能であり、従来の比較例1,2よりも射出圧力が低減されていた。 As is clear from the above, each example according to the present invention can be arranged at the locating ring insertion port, and the injection pressure is reduced as compared with the conventional comparative examples 1 and 2.
 これに対して、エレメントの長さL1がエレメント穴の径D3に対して0.64倍以上1.6倍以下(L1/D3=0.64~1.60)に設定されていない各比較例では、比較例1,2では1エレメント当たりの射出圧力が2.9(MPa)を超えており、比較例3ではロケートリング挿入口に配置することができない。 On the other hand, in each of the comparative examples in which the element length L1 is not set to be not less than 0.64 times and not more than 1.6 times (L1 / D3 = 0.64 to 1.60) with respect to the element hole diameter D3, The injection pressure per element exceeds 2.9 (MPa), and in Comparative Example 3, it cannot be disposed at the locating ring insertion port.
 このことから、エレメントの長さL1をエレメント穴の径D3に対して0.64倍以上1.6倍以下(L1/D3=0.64~1.60)に設定することにより、エレメントにおける流体の流路断面積を効率的に増加させることができ、射出圧力の上昇を抑制することができるということがわかる。 Therefore, by setting the element length L1 to 0.64 times or more and 1.6 times or less (L1 / D3 = 0.64 to 1.60) with respect to the element hole diameter D3, the flow passage cross-sectional area of the element can be efficiently It can be seen that the increase in injection pressure can be suppressed.
 なお、これに限定されないが、エレメントの長さがエレメント穴の径に対して0.64倍以上1.1倍以下に設定すればより好ましい。 Although not limited to this, it is more preferable that the length of the element is set to be 0.64 to 1.1 times the diameter of the element hole.
 以上の結果から、本発明(実施例)の場合、導入口から導入される流体の射出圧力の上昇を抑制することができる射出成形用ノズルを得ることができる。一方、本発明を満たさない(比較例)場合、あまり魅力的でない射出成形用ノズルが得られる。 From the above results, in the case of the present invention (Example), it is possible to obtain an injection molding nozzle capable of suppressing an increase in the injection pressure of the fluid introduced from the introduction port. On the other hand, when the present invention is not satisfied (comparative example), an injection molding nozzle that is not very attractive is obtained.
 次に図7を用いて、エレメントの長さLとエレメントの径Dとの比L/Dを変更した場合の射出圧力をエレメントの流路径dを横軸とした射出圧力の分布について説明する。 Next, with reference to FIG. 7, the distribution of the injection pressure with the horizontal axis of the flow path diameter d of the element when the ratio L / D of the element length L to the element diameter D is changed will be described.
 同図において、流路径φ8の比L/Dの範囲は、0,30~1,21、流路径φ10の比L/Dの範囲は、0,98~0,24、流路径φ14,5の比L/Dの範囲は1,00~0,20、流路径φ25の比L/Dの範囲は0,99~0,20である。 In the figure, the range of the ratio L / D of the flow path diameter φ8 is 0, 30 to 21, 21, the range of the ratio L / D of the flow path diameter φ10 is 0, 98 to 0, 24, and the flow path diameter φ14,5. The range of the ratio L / D is 1,000 to 0,20, and the range of the ratio L / D of the flow path diameter φ25 is 0,99 to 0,20.
 ここで、上記した1エレメント当たりの射出圧力が2,9MPa以下を満足する範囲は、流路径φ8の場合は、比L/Dが1,21(a点)であり、流路径φ10の場合は、比L/Dが0,78~0,88(b1点~b2点)、流路径φ14,5の場合は、比L/Dが0,40~0,67(c1点~c2点)、流路径25の場合は、比L/Dが0,20~0,40(e1点~e2点)である。 Here, the range in which the injection pressure per element satisfies 2.9 MPa or less is such that the ratio L / D is 1,21 (point a) when the flow path diameter is φ8, and the flow path diameter is φ10. When the ratio L / D is 0,78-0,88 (b1 point-b2 point) and the channel diameter is φ14,5, the ratio L / D is 0,40-0,67 (c1 point-c2 point), In the case of the channel diameter 25, the ratio L / D is 0, 20 to 0, 40 (e1 point to e2 point).
 従って、射出圧力を低減可能な範囲は、上記a、b1、b2、c1、c2、e1、e2で囲まれる範囲(図7の斜線部分)であることが判る。 Therefore, it can be seen that the range in which the injection pressure can be reduced is the range surrounded by the above-mentioned a, b1, b2, c1, c2, e1, and e2 (shaded portion in FIG. 7).
 (第1参考例)
 次に、エレメント穴9が3つ以上9つ以下以下に設定されている圧力上昇抑制部13について図8乃至図11を用いて以下に説明する。本参考例では、エレメント穴9が4つ設けられている例である。なお、上記第1、第2実施形態と同構成部分については図面に同一の記号を付して構成及び機能説明は第1実施形態を参照するものとし省略するが、第1実施形態と同一の構成であるので、得られる効果は同一である。
(First Reference Example)
Next, the pressure rise suppression part 13 in which the element holes 9 are set to 3 or more and 9 or less will be described below with reference to FIGS. 8 to 11. In this reference example, four element holes 9 are provided. In addition, about the same component as the said 1st, 2nd embodiment, the same code | symbol is attached | subjected to drawing, and a structure and functional description shall be referred to 1st Embodiment, but it is the same as 1st Embodiment. Since it is a structure, the effect obtained is the same.
 この第1参考例において、エレメント穴9の数の範囲で最も好適なのは、1つのエレメント11に対してエレメント穴9を4つ設けたときである。このように1つのエレメント11に4つのエレメント穴9を設けると、導入口3から導入される成形樹脂材料の射出圧力が、オープンノズルを流通する成形樹脂材料の射出圧力と略同等となる。しかも、オープンノズルでは成形樹脂材料を十分に混練することができないが、このエレメント11が配置された射出成形用ノズル1では十分に成形樹脂材料を混練することができる。 In the first reference example, the most suitable range of the number of element holes 9 is when four element holes 9 are provided for one element 11. When four element holes 9 are provided in one element 11 in this way, the injection pressure of the molding resin material introduced from the introduction port 3 becomes substantially equal to the injection pressure of the molding resin material flowing through the open nozzle. Moreover, the molding resin material cannot be sufficiently kneaded with the open nozzle, but the molding resin material can be sufficiently kneaded with the injection molding nozzle 1 in which the element 11 is arranged.
 このような4つのエレメント穴9は、エレメント本体23の中心から等間隔に外径がエレメント本体23の内径に内接され、エレメント本体23の周方向等間隔に配置されている。また、隣り合うエレメント11,11に設けられたエレメント穴9,9同士は、エレメント本体23の中心を回転軸心としたときの回転方向に45°位置ずれして配置されている。このようにエレメント穴9を配置させることにより、成形樹脂材料の混練効率を向上することができる。 These four element holes 9 are arranged at equal intervals in the circumferential direction of the element body 23 with the outer diameter inscribed in the inner diameter of the element body 23 at equal intervals from the center of the element body 23. In addition, the element holes 9 and 9 provided in the adjacent elements 11 and 11 are arranged so as to be displaced by 45 ° in the rotation direction when the center of the element body 23 is the rotation axis. By arranging the element holes 9 in this manner, the kneading efficiency of the molded resin material can be improved.
 このような射出成形用ノズル1では、ノズル本体7内に導入口3から導入される流体の射出圧力の上昇を抑制させる圧力上昇抑制部13が設けられている。このため、圧力上昇抑制部13によって導入口3から導入される流体の射出圧力の上昇を抑制することができ、ノズル本体7内を流通する流体の圧力損失を低減することができる。 Such an injection molding nozzle 1 is provided with a pressure increase suppressing portion 13 for suppressing an increase in the injection pressure of the fluid introduced from the introduction port 3 in the nozzle body 7. For this reason, the rise in the injection pressure of the fluid introduced from the introduction port 3 can be suppressed by the pressure increase suppression unit 13, and the pressure loss of the fluid flowing through the nozzle body 7 can be reduced.
 従って、このような射出成形用ノズル1では、圧力上昇抑制部13によって射出圧力の上昇を抑制することができるので、射出成形機の大型化を抑制することができる。 Therefore, in such an injection molding nozzle 1, since the increase in injection pressure can be suppressed by the pressure increase suppression unit 13, the increase in size of the injection molding machine can be suppressed.
 圧力上昇抑制部13は、エレメント穴9が3つ以上9つ以下に設定されている。このため、エレメント11を流通するときの流体の分割数を増加させることができ、流体の混練効率を向上することができる。加えて、エレメント11内を流体が流通するときのエレメント11の流路断面積を増加することができ、ノズル本体7内を流通する流体の圧力損失を低減することができる。 The pressure rise suppression unit 13 has 3 or more and 9 or less element holes 9. For this reason, the division | segmentation number of the fluid when distribute | circulating the element 11 can be increased, and the kneading | mixing efficiency of a fluid can be improved. In addition, the flow path cross-sectional area of the element 11 when the fluid flows through the element 11 can be increased, and the pressure loss of the fluid flowing through the nozzle body 7 can be reduced.
 圧力上昇抑制部13は、導入口3から複数のエレメント11を介して導出口5に流通される流体の射出圧力を導入口3から直接導出口5に流通される流体の射出圧力と略同等にする。このため、圧力上昇抑制部13によってノズル本体7内に複数のエレメント11が設けられていないオープンノズルと略同等の圧力損失とすることができる。加えて、オープンノズルと略同等の圧力損失でありながら、ノズル本体7内で流体を混練することができる。 The pressure rise suppression unit 13 is configured so that the injection pressure of the fluid flowing from the inlet 3 to the outlet 5 via the plurality of elements 11 is substantially equal to the injection pressure of the fluid flowing directly from the inlet 3 to the outlet 5. To do. For this reason, it can be set as the pressure loss substantially equivalent to the open nozzle by which the several element 11 is not provided in the nozzle main body 7 by the pressure rise suppression part 13. FIG. In addition, the fluid can be kneaded in the nozzle body 7 with a pressure loss substantially equal to that of the open nozzle.
 圧力上昇抑制部13は、エレメント穴9が4つに設定されている。このため、エレメント11を流通するときの流体の分割数を増加させつつ、エレメント11の流路断面積を増加してオープンノズルと略同等の圧力損失とすることができる。 The pressure rise suppression unit 13 has four element holes 9. For this reason, it is possible to increase the flow sectional area of the element 11 and increase the pressure loss substantially equal to that of the open nozzle while increasing the number of fluid divisions when flowing through the element 11.
 本発明の第1参考例に係る射出成形用ノズルを、以下の実施例を用いて詳細に説明する。 The injection molding nozzle according to the first reference example of the present invention will be described in detail using the following examples.
 (実施例)
 1つのエレメントに対するエレメント穴数を、各実施例では3~9とし、比較例1,2では2,10とした。複数のエレメント穴は、エレメントの中心から等間隔に外径がエレメントの内径に内接され、エレメントの周方向等間隔に配置されるようにした。
(Example)
The number of element holes for one element was 3 to 9 in each example, and 2 and 10 in Comparative Examples 1 and 2. The plurality of element holes are arranged at equal intervals in the circumferential direction of the element with the outer diameter inscribed in the inner diameter of the element at equal intervals from the center of the element.
 各実施例及び比較例1,2では、ノズル本体内に配置させるエレメント数を6とした。 In each of Examples and Comparative Examples 1 and 2, the number of elements arranged in the nozzle body was set to 6.
 比較例3は、導入口と導出口との間にエレメントが配置されておらず、導入口から導出口までの径が一定であるオープンノズルとした。このため、比較例3の流路断面積は、他の実施例や比較例よりも小さな値となっている。 Comparative Example 3 was an open nozzle in which no element was disposed between the inlet and outlet and the diameter from the inlet to outlet was constant. For this reason, the flow path cross-sectional area of the comparative example 3 is a smaller value than the other examples and comparative examples.
 各実施例及び各比較例において、射出成形機の射出速度を20,50,80(mm/sec)としたときの射出圧力(MPa)を測定した。 In each example and each comparative example, the injection pressure (MPa) was measured when the injection speed of the injection molding machine was 20, 50, 80 (mm / sec).
 この結果を図3の表に示す。なお、図3の表には、各実施例及び各比較例における流体の流路断面積と分割数も示してある。また、図4にエレメント穴と流路断面積との関係を示す。 The results are shown in the table of FIG. The table in FIG. 3 also shows the flow path cross-sectional area and the number of divisions in each example and each comparative example. FIG. 4 shows the relationship between the element hole and the channel cross-sectional area.
 表及び図4から明らかなように、本発明に従う各実施例は、従来の1エレメント当たり2つのエレメント穴を有した比較例1よりも射出圧力が低減されていた。 As is clear from the table and FIG. 4, in each of the examples according to the present invention, the injection pressure was reduced as compared with the comparative example 1 having two element holes per element.
 これに対して、1エレメント当たり10個のエレメント穴を有した比較例2では、比較例1よりも射出圧力が増加されていた。 In contrast, in Comparative Example 2 having 10 element holes per element, the injection pressure was increased as compared with Comparative Example 1.
 1エレメント当たり4つのエレメント穴を有した実施例2では、オープンノズルである比較例3の射出圧力と略同等の射出圧力となっていた。 In Example 2 having four element holes per element, the injection pressure was substantially equivalent to the injection pressure of Comparative Example 3 which is an open nozzle.
 本発明の各実施例(最小のエレメント穴3、エレメント数6)の分割数46656(回)以上は、比較例1(エレメント穴2、エレメント数6)の分割数4096(回)の約11倍であり、本発明の各実施例に係る射出成形用ノズルでは最低でも従来の射出成形用ノズルの約11倍の混練性を得ることができる。加えて、本発明の各実施例の流路断面積103.8(mm2)以上は、比較例1の流路断面積100.5(mm2)よりも大きくなっている。 The number of divisions of 46656 (times) or more in each example (minimum element hole 3, element number 6) of the present invention is about 11 times the number of divisions 4096 (times) in Comparative Example 1 (element hole 2, element number 6). Thus, the injection molding nozzle according to each embodiment of the present invention can obtain a kneadability of about 11 times that of the conventional injection molding nozzle at a minimum. In addition, the channel cross-sectional area of 103.8 (mm2) or more in each example of the present invention is larger than the channel cross-sectional area of 100.5 (mm2) of Comparative Example 1.
 このことから、1エレメント当たりのエレメント穴数を増加させることにより、分割数を増加させることができ、混練性を向上させることができるということがわかる。 From this, it can be seen that by increasing the number of element holes per element, the number of divisions can be increased and kneadability can be improved.
 しかしながら、1エレメント当たり10個以上のエレメント穴を設けてしまうと、流路断面積が小さくなって射出圧力が増加してしまい、射出圧力を低減させることができない。 However, if 10 or more element holes are provided per element, the cross-sectional area of the flow path becomes small and the injection pressure increases, and the injection pressure cannot be reduced.
 従って、1エレメント当たり3つ以上9つ以下の範囲でエレメント穴を設けたとき、従来の1エレメント当たり2つのエレメント穴を有する射出成形用ノズルよりも、混練性が向上され射出圧力を低減することができる射出成形用ノズルを得ることができることがわかる。加えて、1エレメント当たり4つのエレメント穴を設けたとき、オープンノズルの射出圧力と略同等とすることができる射出成形用ノズルを得ることができることがわかる。 Therefore, when the element holes are provided in the range of 3 to 9 per element, the kneadability is improved and the injection pressure is reduced as compared with the conventional injection molding nozzle having two element holes per element. It can be seen that an injection molding nozzle can be obtained. In addition, it can be seen that when four element holes are provided per element, an injection molding nozzle can be obtained that can be substantially equivalent to the injection pressure of the open nozzle.
 以上の結果から、本発明(実施例)の場合、導入口から導入される流体の射出圧力の上昇を抑制することができる射出成形用ノズルを得ることができる。一方、本発明を満たさない(比較例)場合、あまり魅力的でない射出成形用ノズルが得られる。 From the above results, in the case of the present invention (Example), it is possible to obtain an injection molding nozzle capable of suppressing an increase in the injection pressure of the fluid introduced from the introduction port. On the other hand, when the present invention is not satisfied (comparative example), an injection molding nozzle that is not very attractive is obtained.
 (第2参考例)
 なお、射出成形用ノズルにおける長さと1エレメント当たりの圧力損失との関係を示す参考例として、エレメント長さによる圧力損失の変化を図12の表に示す。また、導入口及び導出口のランド長による圧力損失の変化を図13の表に示す。
(Second reference example)
As a reference example showing the relationship between the length of the injection molding nozzle and the pressure loss per element, the change in pressure loss due to the element length is shown in the table of FIG. The table of FIG. 13 shows changes in pressure loss due to land lengths of the inlet and outlet.
 図12の表では、エレメントの径が半径となっており、10,16,20,30,40(mm)の各エレメント径におけるエレメント長さを5,10,15.5,20(mm)と変化させ、射出速度を20,50,80(mm/sec)としたときの1エレメント当たりの圧力損失(MPa)が示してある。 In the table of FIG. 12, the element diameter is the radius, and the element length at each element diameter of 10, 16, 20, 30, 40 (mm) is changed to 5, 10, 15.5, 20 (mm). The pressure loss (MPa) per element when the injection speed is 20, 50, 80 (mm / sec) is shown.
 この表から明らかなように、エレメント長さが長くなるにつれて圧力損失が増加している。このため、エレメント長さを短くすることにより、流体の抵抗が低減されて射出圧力を低減できることがわかる。 As is clear from this table, the pressure loss increases as the element length increases. For this reason, it turns out that resistance of a fluid is reduced and injection pressure can be reduced by shortening element length.
 図13の表では、導入口及び導出口のランド長の合計を10,15,20,25,30,35,40,45(mm)と変化させ、射出速度を20,50,80(mm/sec)としたときの1エレメント当たりの圧力損失(MPa)が示してある。 In the table of FIG. 13, the total land length of the inlet and outlet is changed to 10, 15, 20, 25, 30, 35, 40, 45 (mm), and the injection speed is 20, 50, 80 (mm / The pressure loss per element (MPa) is shown.
 この表から明らかなように、ランド長が長くなるにつれて圧力損失が増加している。このため、ランド長を短くすることにより、流体の抵抗が低減されて射出圧力を低減できることがわかる。 As is clear from this table, the pressure loss increases as the land length increases. For this reason, it can be seen that by shortening the land length, the resistance of the fluid is reduced and the injection pressure can be reduced.
 以上の結果から、エレメント長さと導入口及び導出口のランド長とを縮小することにより、ノズル本体内を流通する流体の抵抗を低減することができ、導入口から導入される流体の射出圧力の上昇を抑制することができる射出成形用ノズルを得ることができる。 From the above results, it is possible to reduce the resistance of the fluid flowing through the nozzle body by reducing the element length and the land length of the inlet and outlet, and the injection pressure of the fluid introduced from the inlet is reduced. An injection molding nozzle capable of suppressing the rise can be obtained.
 なお、本発明の第2実施形態に係る射出成形用ノズルでは、エレメントの径が導入口の径の2.5倍以上に設定されているが、これは下限を示すものであり、その上限はエレメントを収容するノズル本体に依存している。このため、ノズル本体の径は、最低でもエレメントの径が導入口の径の2.5倍以上に設定されたエレメントを収容可能な大きさに設定されている。 In the injection molding nozzle according to the second embodiment of the present invention, the element diameter is set to 2.5 times or more the diameter of the inlet, but this indicates a lower limit, and the upper limit is the element. Depends on the nozzle body to be accommodated. For this reason, the diameter of the nozzle body is set to a size that can accommodate an element in which the diameter of the element is at least 2.5 times the diameter of the inlet.
 このように、本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本発明の技術的範囲は、上述の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められる。 Thus, it goes without saying that the present invention includes various embodiments that are not described herein. Therefore, the technical scope of the present invention is determined only by the invention specifying matters according to the scope of claims reasonable from the above description.
 特願2012-234217号(出願日:2012年10月23日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2012-234217 (filing date: October 23, 2012) are incorporated herein by reference.

Claims (3)

  1.  筒状に形成されて流体が導入される導入口を一端側に有し、前記導入された流体を導出する導出口を他端側に有するノズル本体と、
     前記ノズル本体内の前記導入口と前記導出口との間に前記ノズル本体の軸方向に直列に配置され、複数のエレメント穴を有し、前記導入口から前記ノズル本体内に導入された前記流体を前記複数のエレメント穴から導入して混練する複数のエレメントと、を備え、
      前記複数のエレメントは、前記導入口から導入された前記流体の射出圧力の上昇を抑制し、
      前記各エレメントの前記ノズル本体の前記軸方向における長さが、前記各エレメント穴の径に対して0.64倍以上且つ1.6倍以下である
    射出成形用ノズル。
    A nozzle body which is formed in a cylindrical shape and has an inlet on one end side into which fluid is introduced, and which has an outlet on the other end side through which the introduced fluid is led out;
    The fluid that is arranged in series in the axial direction of the nozzle body between the inlet and the outlet in the nozzle body, has a plurality of element holes, and is introduced into the nozzle body from the inlet A plurality of elements that are introduced from the plurality of element holes and kneaded, and
    The plurality of elements suppress an increase in injection pressure of the fluid introduced from the introduction port,
    An injection molding nozzle in which the length of each element in the axial direction of the nozzle body is 0.64 to 1.6 times the diameter of each element hole.
  2.  前記複数のエレメントは、前記導入口から前記複数のエレメントを介して前記導出口に流通される流体の射出圧力を、前記導入口から直接前記導出口に流通される場合の流体の射出圧力と同等にするように構成された
    請求項1に記載の射出成形用ノズル。
    The plurality of elements have the same injection pressure of the fluid that flows from the introduction port to the outlet through the plurality of elements as the injection pressure of the fluid that flows from the introduction port directly to the outlet. The nozzle for injection molding according to claim 1, wherein the nozzle for injection molding is configured.
  3.  前記各エレメントの径が、前記導入口の径の2.5倍以上である
    請求項1又は請求項2に記載の射出成形用ノズル。
    The nozzle for injection molding according to claim 1 or 2, wherein the diameter of each element is 2.5 times or more the diameter of the introduction port.
PCT/JP2013/077948 2012-10-23 2013-10-15 Injection molding nozzle WO2014065157A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380054737.5A CN104755246B (en) 2012-10-23 2013-10-15 injection molding nozzle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-234217 2012-10-23
JP2012234217A JP6068926B2 (en) 2012-10-23 2012-10-23 Injection molding nozzle

Publications (1)

Publication Number Publication Date
WO2014065157A1 true WO2014065157A1 (en) 2014-05-01

Family

ID=50544537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077948 WO2014065157A1 (en) 2012-10-23 2013-10-15 Injection molding nozzle

Country Status (3)

Country Link
JP (1) JP6068926B2 (en)
CN (1) CN104755246B (en)
WO (1) WO2014065157A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017119132A1 (en) * 2016-01-08 2018-10-11 富士通株式会社 Wireless communication apparatus, wireless communication system, and processing method
CN109203372A (en) * 2018-09-27 2019-01-15 昱庆塑胶五金制品(惠州)有限公司 A kind of kneading injection nozzle structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6647385B2 (en) 2016-03-18 2020-02-14 本田技研工業株式会社 Nozzle for injection molding machine
JP6838865B2 (en) * 2016-03-31 2021-03-03 宇部興産機械株式会社 Injection molding equipment and injection molding method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390063U (en) * 1976-12-25 1978-07-24
JPS5789935A (en) * 1980-11-26 1982-06-04 Akira Takeda Mixer for injection molding machine
JPS59204520A (en) * 1983-05-09 1984-11-19 Toshiba Corp Resin kneading apparatus
JPS61227825A (en) * 1985-03-21 1986-10-09 コーマツクス・システムズ、インク Stacking type stationary mixer apparatus
JP2006305505A (en) * 2005-04-28 2006-11-09 Toray Eng Co Ltd Microreactor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336182B2 (en) * 1972-08-07 1978-09-30
JPS59115424U (en) * 1983-01-20 1984-08-04 小嶋 久夫 fluid mixing heater
JPH05111691A (en) * 1991-03-22 1993-05-07 Akio Tsubota Static type mixed fluid separating device
DE59610789D1 (en) * 1996-12-23 2003-11-27 Sulzer Chemtech Ag Winterthur Nozzle for a polymer melt
CN1247795A (en) * 1998-09-16 2000-03-22 严而明 Injection molding of plastic
JP3784725B2 (en) * 2002-02-20 2006-06-14 株式会社フジキン Mixing and stirring device
WO2009088085A1 (en) * 2008-01-10 2009-07-16 Mg Grow Up Corp. Static fluid mixer
CN102355942B (en) * 2009-03-06 2014-09-24 埃尔费尔德微技术Bts有限责任公司 Coaxial compact static mixer and use thereof
WO2011121631A1 (en) * 2010-03-29 2011-10-06 株式会社技術開発総合研究所 Gas-liquid supply device
CN201664586U (en) * 2010-04-22 2010-12-08 中国石油化工集团公司 Static mixer
WO2014065216A1 (en) * 2012-10-23 2014-05-01 矢崎総業株式会社 Automotive injection-molded product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390063U (en) * 1976-12-25 1978-07-24
JPS5789935A (en) * 1980-11-26 1982-06-04 Akira Takeda Mixer for injection molding machine
JPS59204520A (en) * 1983-05-09 1984-11-19 Toshiba Corp Resin kneading apparatus
JPS61227825A (en) * 1985-03-21 1986-10-09 コーマツクス・システムズ、インク Stacking type stationary mixer apparatus
JP2006305505A (en) * 2005-04-28 2006-11-09 Toray Eng Co Ltd Microreactor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017119132A1 (en) * 2016-01-08 2018-10-11 富士通株式会社 Wireless communication apparatus, wireless communication system, and processing method
CN109203372A (en) * 2018-09-27 2019-01-15 昱庆塑胶五金制品(惠州)有限公司 A kind of kneading injection nozzle structure
CN109203372B (en) * 2018-09-27 2020-06-23 昱庆塑胶五金制品(惠州)有限公司 Mulling nozzle structure

Also Published As

Publication number Publication date
JP2014083753A (en) 2014-05-12
JP6068926B2 (en) 2017-01-25
CN104755246B (en) 2016-08-31
CN104755246A (en) 2015-07-01

Similar Documents

Publication Publication Date Title
WO2014065157A1 (en) Injection molding nozzle
JP6158496B2 (en) Mixing elements for static mixers
KR101945331B1 (en) Static mixer
US6899453B2 (en) Static mixer and method for mixing a main component with an additive
CN108454023B (en) Coinjection hot runner nozzle
DE102014107845A1 (en) Ölverteilelement
CN103534016A (en) Dynamic mixer and use thereof
KR102399584B1 (en) Hot runner system for double injection
US20130064922A1 (en) Injection Molding System having Dynamic Mixer
US20020070288A1 (en) Mixer bushing to improve melt homogeneity in injection molding machines and hot runners
WO2014065216A1 (en) Automotive injection-molded product
JP2005349821A (en) Multiple component mixing head
CA2523684C (en) Injection molding nozzle
KR102275177B1 (en) System for unstructured color mixing injection molding
JP2010023346A (en) Injection nozzle
KR101679613B1 (en) Molding material supplying apparatus
JP2017205983A (en) Screw, extruder and collar
KR102221674B1 (en) Nozzle for injection machine
KR20120042204A (en) Nozzle of hot runner system
KR102401052B1 (en) Injection Molding Machine for Manufacturing Fiber Reinforced Plastic Moldings
JP3172561U (en) Two-component mixing type injection machine
KR200353649Y1 (en) A nozzle for plastic injection molding
JPS59204520A (en) Resin kneading apparatus
KR20170110440A (en) Blending nozzle
JP2003200459A (en) Nozzle for injection molding machine and injection molding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849935

Country of ref document: EP

Kind code of ref document: A1