WO2014065036A1 - Voice coil motor (vcm) drive device and portable terminal - Google Patents

Voice coil motor (vcm) drive device and portable terminal Download PDF

Info

Publication number
WO2014065036A1
WO2014065036A1 PCT/JP2013/074707 JP2013074707W WO2014065036A1 WO 2014065036 A1 WO2014065036 A1 WO 2014065036A1 JP 2013074707 W JP2013074707 W JP 2013074707W WO 2014065036 A1 WO2014065036 A1 WO 2014065036A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
unit
vcm
control
control unit
Prior art date
Application number
PCT/JP2013/074707
Other languages
French (fr)
Japanese (ja)
Inventor
俊治 中馬
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014065036A1 publication Critical patent/WO2014065036A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors
    • H02P25/034Voice coil motors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0075Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having an element with variable optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism

Definitions

  • the present invention relates to a voice coil motor (VCM) driving device and a portable terminal including the same.
  • VCM voice coil motor
  • VCM has the advantages of small volume, low power consumption, low price, etc., short distance actuators in electronic products, such as mobile phone vibration motor, magnetic head / optical pickup vertical movement actuator, camera autofocus It is used for actuators and the like.
  • an H-bridge circuit that is a circuit that can change the direction of a voltage applied to a motor with a single power source is well known.
  • the H-bridge circuit includes two first switching elements connected in parallel to the power supply and a second switching element connected in series to each of the two first switching elements.
  • a P-channel MOSFET field effect transistor
  • an N-channel MOSFET is used as the second switching element
  • a P-channel bipolar transistor is used as the first switching element.
  • a device using an N-channel bipolar transistor as a second switching element is known.
  • Patent Document 1 as an H-bridge circuit for driving a stepping motor, two P-channel MOSFETs connected in parallel to a power source and each of the two P-channel MOSFETs are connected in series. What is provided is a bipolar transistor having a Darlington connection configuration.
  • Patent Document 2 describes a three-phase inverter device in which a switching element constituting the upper arm side switching circuit is a MOSFET and a switching element constituting the lower arm side switching circuit is a bipolar transistor. Has been.
  • the driving voltage of the H-bridge circuit depends on the on-resistance of the P-channel MOSFET and the P-channel MOSFET. Depends on gate-source voltage. Since the gate-source voltage of the P-channel MOSFET is large, the drive voltage of the H-bridge circuit cannot be sufficiently lowered even if the power consumption is reduced by using a VCM having a low drive voltage.
  • the base current of the transistor flows to the ground without being supplied to the VCM. Current is wasted.
  • PWM pulse width modulation
  • the present invention has been made in view of the above circumstances, and provides a VCM drive device capable of reducing power loss and reducing power consumption when driving a VCM by either linear drive or PWM drive. For the purpose.
  • the VCM driving device of the present invention is a VCM driving device for driving a voice coil motor, and is connected in series to the first transistor and the second transistor connected in parallel to the DC power source and the first transistor.
  • a third transistor connected in series to the second transistor, and the first transistor, the second transistor, the third transistor, and the fourth transistor are controlled.
  • Data is a bipolar transistor of the N-channel type, respectively, said third transistor and said fourth transistor is a field effect transistor of each N-channel type.
  • VCM driving device capable of reducing power loss and reducing power consumption when the VCM is driven by either linear driving or PWM driving.
  • the figure which shows schematic structure of the digital camera for describing one Embodiment of this invention 1 is a circuit diagram showing an internal configuration of a VCM drive unit 20 in the digital camera shown in FIG.
  • FIG. 1 is a diagram showing a schematic configuration of an imaging apparatus for explaining an embodiment of the present invention.
  • the imaging device include an imaging device such as a digital camera and a digital video camera, an imaging module mounted on an electronic endoscope, a camera-equipped mobile phone, and the like.
  • a digital camera will be described as an example.
  • the imaging system of the illustrated digital camera includes a photographing lens 1 including a focus lens, a solid-state imaging device 4 such as a CCD image sensor or a CMOS image sensor, and a diaphragm 2 provided therebetween.
  • the position of the focus lens is controlled by a voice coil motor (VCM) 9.
  • VCM voice coil motor
  • the system control unit 11 that performs overall control of the entire electric control system of the digital camera drives the VCM 9 via the VCM drive unit 20 and adjusts the focus position. Further, the system control unit 11 controls the opening amount of the diaphragm 2 via the diaphragm driving unit 8 to adjust the exposure amount. In addition, the system control unit 11 drives the solid-state imaging device 4 via the imaging device driving unit 7 and outputs a subject image captured through the photographing lens 1 as a captured image signal. An instruction signal from the user is input to the system control unit 11 through the operation unit 12.
  • the electric control system of the digital camera further includes an analog signal processing unit 5 that performs analog signal processing such as correlated double sampling processing connected to the output of the solid-state imaging device 4, and a signal output from the analog signal processing unit 5. And an A / D conversion circuit 6 for converting the signal into a digital signal.
  • the analog signal processing unit 5 and the A / D conversion circuit 6 are controlled by the system control unit 11.
  • the electric control system of the digital camera performs various image processing on the main memory 14, the memory control unit 13 connected to the main memory 14, and the captured image signal output from the A / D conversion circuit 6 to capture the image.
  • a digital signal processing unit 15 that generates image data a compression / decompression processing unit 16 that compresses the captured image data generated by the digital signal processing unit 15 into a JPEG format or expands the compressed image data, and a detachable recording
  • the memory control unit 13, the digital signal processing unit 15, the compression / decompression processing unit 16, the external memory control unit 17, and the display control unit 19 are connected to each other by a control bus 24 and a data bus 25, and commands from the system control unit 11. Controlled by.
  • the battery 30 is detachable from the digital camera, and the digital camera is provided with a power supply circuit 40 that generates a DC voltage necessary for each part in the camera from the power of the battery 30.
  • the voltage generated by the power supply circuit 40 is supplied to each unit via the system control unit 11.
  • FIG. 2 is a circuit diagram showing an internal configuration of the VCM driving unit 20 in the digital camera shown in FIG.
  • the VCM drive unit 20 includes an N-channel bipolar transistor 21 and an N-channel MOSFET 24 for flowing current in one direction with respect to the coil 90 constituting the VCM 9, and a reverse direction of the one direction with respect to the coil 90.
  • An N-channel bipolar transistor 22 and an N-channel MOSFET 23 for flowing current, a current detection resistor 25, and a control unit 26 are provided.
  • the collector terminal of the bipolar transistor 21 and the collector terminal of the bipolar transistor 22 are connected to the power supply circuit 40, respectively.
  • the MOSFET 23 has a source terminal connected to the emitter terminal of the bipolar transistor 21 and a drain terminal connected to the current detection resistor 25.
  • the MOSFET 24 has a source terminal connected to the emitter terminal of the bipolar transistor 22 and a drain terminal connected to the current detection resistor 25.
  • One end of a coil 90 is connected between the emitter terminal of the bipolar transistor 21 and the source terminal of the MOSFET 23, and the other end of the coil 90 is connected between the emitter terminal of the bipolar transistor 22 and the source terminal of the MOSFET 24.
  • the bipolar transistors 21 and 22, the MOSFETs 23 and 24, and the coil 90 constitute a so-called H-bridge circuit.
  • the control unit 26 is connected to the base terminals of the bipolar transistors 21 and 22 and the gate terminals of the MOSFETs 23 and 24. The control unit 26 is also connected between the current detection resistor 25 and the MOSFET 23.
  • the current detection resistor 25 is provided to detect the current flowing through the path of the bipolar transistor 22, the coil 90, and the MOSFET 23 and the current flowing through the path of the bipolar transistor 21, the coil 90, and the MOSFET 24.
  • the control unit 26 controls the base voltage of the bipolar transistors 21 and 22 and the gate voltages of the MOSFETs 23 and 24 in accordance with a command from the system control unit 11 to control the current flowing through the coil 90.
  • the control unit 26 acquires a current value detected using the current detection resistor 25, and controls the voltage based on the current value so that the current flowing through the coil 90 is stabilized at the command value from the system control unit 11. To do.
  • the control unit 26 selectively performs either PWM control for intermittently controlling the current flowing through the coil 90 or linear control for continuously controlling the current flowing through the coil 90, or these. There are two patterns for PWM control and linear control.
  • the control unit 26 causes the MOSFET 24 or the MOSFET 23 to function as a voltage control type switch, and the PWM control is performed by intermittently applying a voltage to the base terminal of the bipolar transistor 21 or the bipolar transistor 22 with this switch turned on. I do. Since the bipolar transistors 21 and 22 are N-channel type, the base current at the time of PWM control can be used as the driving current for the coil 90, and the base current is not wasted and the driving voltage can be reduced.
  • the control unit 26 causes the MOSFET 24 or the MOSFET 23 to function as a voltage control type switch in a state where the output of the bipolar transistor 21 or the bipolar transistor 22 is saturated, and switches the switch by applying a voltage intermittently to the gate terminal of the MOSFET 24 or the MOSFET 23.
  • PWM control is performed by switching on and off.
  • the collector-emitter saturation voltage of the bipolar transistors 21 and 22 is 0.1 V
  • the voltage drop at the coil 90 is 1 V
  • the voltage drop when the MOSFETs 23 and 24 are on is 0.1 V
  • the current detection resistor Assuming that the voltage drop at 0.2 V is 0.2 V, the voltage of the power supply connected to the collectors of the bipolar transistors 21 and 22 may be 1.4 V, and the voltage can be reduced.
  • the bipolar transistors 21 and 22 have a base-emitter voltage as low as about 0.65 V, the base voltage can be lowered and the voltage can be reduced.
  • the control unit 26 functions as the voltage control type switch with the MOSFET 24 or the MOSFET 23 in a state in which the bipolar transistor 21 or the bipolar transistor 22 functions as a linear regulator and the base voltage is controlled so that the current flowing through the coil 90 becomes the command value. Then, linear control is performed by turning on this switch. At this time, power loss in the MOSFETs 23 and 24 can be reduced by applying a gate-source voltage so that the on-resistances of the MOSFETs 23 and 24 are as low as possible. In addition, since the bipolar transistors 21 and 22 have a base-emitter voltage as low as about 0.65 V, the base voltage can be lowered and the voltage can be lowered even when linear control is performed.
  • the control unit 26 causes the bipolar transistor 21 or the bipolar transistor 22 to function as a current control type switch, and with this switch turned on, causes the MOSFET 24 or the MOSFET 23 to function as a linear regulator so that the current flowing through the coil 90 is a command value.
  • Linear control is performed by controlling the gate voltage so that Even in this control, since the base-emitter voltage of the bipolar transistors 21 and 22 is as low as about 0.65 V, the base voltage can be lowered and the voltage can be lowered. Further, since the base currents of the bipolar transistors 21 and 22 can be used as the drive current for the coil 90, the base voltage can be lowered.
  • control unit 26 selects and executes either the first pattern PWM control or the first pattern linear control. Alternatively, the control unit 26 selects and executes either PWM control of the first pattern or linear control of the second pattern. Alternatively, the control unit 26 selects and executes either the second pattern PWM control or the first pattern linear control.
  • PWM control has the advantage of high power supply efficiency, and linear control has the advantage of less influence of switching noise. Therefore, in the digital camera of FIG. 1, PWM control is performed at the time of imaging by the solid-state imaging device 4 for live view image display to save energy, and the solid-state imaging device 4 for recording captured image data on the recording medium 18 is used. At the time of imaging, linear control is performed to improve image quality.
  • FIG. 3 is a diagram illustrating an example of a drive timing chart of the VCM drive unit 20 in the imaging mode of the digital camera shown in FIG.
  • the imaging mode When the imaging mode is set, periodic imaging is started by the solid-state imaging device 4, and a live view image based on captured image data obtained by each imaging is displayed on the display unit 10 every time imaging is completed.
  • the control unit 26 performs PWM control of the second pattern as shown in FIG.
  • the system control unit 11 causes the solid-state imaging device 4 to perform imaging for recording.
  • the control unit 26 performs linear control of the first pattern as shown in FIG.
  • the saturation voltage between the collector and emitter of the bipolar transistors 21 and 22 is low, power loss in the bipolar transistor can be reduced during PWM control. Also, during PWM control, the base current of the bipolar transistor can be used as the drive current for the VCM 9.
  • FIG. 4 is a diagram showing another example of a drive timing chart of the VCM drive unit 20 in the imaging mode of the digital camera shown in FIG.
  • the control unit 26 performs PWM control of the first pattern as shown in FIG.
  • the system control unit 11 causes the solid-state imaging device 4 to perform imaging for recording.
  • the control unit 26 performs linear control of the first pattern as shown in FIG.
  • PWM control is performed by intermittently controlling the base voltages of the bipolar transistors 21 and 22. Therefore, compared with the drive example shown in FIG. 3, the influence of switching noise during PWM control is reduced. can do.
  • the base current of the bipolar transistor can be used as the drive current for the VCM 9.
  • FIG. 5 is a diagram showing still another example of the drive timing chart of the VCM drive unit 20 in the imaging mode of the digital camera shown in FIG.
  • the control unit 26 performs PWM control of the first pattern as shown in FIG.
  • the system control unit 11 causes the solid-state imaging device 4 to perform imaging for recording.
  • the control unit 26 performs the second pattern linear control as shown in FIG.
  • the same effect as in FIG. 4 can be obtained during PWM control.
  • the base currents of the bipolar transistors 21 and 22 can be used as the drive current of the VCM 9, so that the gate voltages of the MOSFETs 23 and 24 can be suppressed.
  • the collector-emitter saturation voltage of the bipolar transistors 21 and 22 is low, power loss in the bipolar transistor can be reduced during linear control.
  • the VCM driving unit 20 of the present embodiment two transistors on the input power source side among the transistors configuring the H bridge circuit are N-channel bipolar transistors, and the remaining transistors are N-channel transistors. Therefore, the drive voltage of the VCM 9 can be lowered when performing either PWM control or linear control. For this reason, the battery life of the digital camera can be lengthened.
  • VCM drive unit 20 As shown in FIGS. 3, 4 and 5, switching between PWM control and linear control can be easily performed, and a camera that achieves both energy saving and high image quality can be realized. it can.
  • VCM driving unit 20 of the present embodiment can be applied to any electronic device equipped with the VCM 9.
  • the VCM drive unit 20 of the present embodiment By applying the VCM drive unit 20 of the present embodiment to a portable terminal driven by a battery such as a digital camera, the battery can be held longer or the heat generation in the terminal can be suppressed. is there.
  • FIG. 6 shows an appearance of a smartphone 200 that is an embodiment of the photographing apparatus of the present invention.
  • a smartphone 200 illustrated in FIG. 6 includes a flat housing 201, and a display input in which a display panel 202 as a display unit and an operation panel 203 as an input unit are integrated on one surface of the housing 201. Part 204 is provided.
  • Such a housing 201 includes a speaker 205, a microphone 206, an operation unit 207, and a camera unit 208.
  • the configuration of the housing 201 is not limited thereto, and for example, a configuration in which the display unit and the input unit are independent can be employed, or a configuration having a folding structure and a slide mechanism can be employed.
  • FIG. 7 is a block diagram showing a configuration of the smartphone 200 shown in FIG.
  • the main components of the smartphone include a wireless communication unit 210, a display input unit 204, a call unit 211, an operation unit 207, a camera unit 208, a storage unit 212, and an external input / output unit. 213, a GPS (Global Positioning System) receiving unit 214, a motion sensor unit 215, a power supply unit 216, and a main control unit 220.
  • a wireless communication function for performing mobile wireless communication via a base station device BS (not shown) and a mobile communication network NW (not shown) is provided.
  • the wireless communication unit 210 performs wireless communication with the base station apparatus BS accommodated in the mobile communication network NW according to an instruction from the main control unit 220. Using this wireless communication, transmission and reception of various file data such as audio data and image data, e-mail data, and reception of Web data and streaming data are performed.
  • the display input unit 204 displays images (still images and moving images), character information, and the like, visually transmits information to the user under the control of the main control unit 220, and detects user operations on the displayed information.
  • a so-called touch panel which includes a display panel 202 and an operation panel 203.
  • the display panel 202 uses an LCD (Liquid Crystal Display), an OELD (Organic Electro-Luminescence Display), or the like as a display device.
  • LCD Liquid Crystal Display
  • OELD Organic Electro-Luminescence Display
  • the operation panel 203 is a device that is placed so that an image displayed on the display surface of the display panel 202 is visible and detects one or more coordinates operated by a user's finger or stylus.
  • a detection signal generated due to the operation is output to the main control unit 220.
  • the main control unit 220 detects an operation position (coordinates) on the display panel 202 based on the received detection signal.
  • the display panel 202 and the operation panel 203 of the smartphone 200 exemplified as an embodiment of the photographing apparatus of the present invention integrally constitute a display input unit 204.
  • the arrangement 203 covers the display panel 202 completely.
  • the operation panel 203 may have a function of detecting a user operation even in an area outside the display panel 202.
  • the operation panel 203 includes a detection area (hereinafter referred to as a display area) for an overlapping portion that overlaps the display panel 202 and a detection area (hereinafter, a non-display area) for an outer edge portion that does not overlap the other display panel 202. May be included).
  • the operation panel 203 may include two sensitive areas of the outer edge portion and the other inner portion. Further, the width of the outer edge portion is appropriately designed according to the size of the housing 201 and the like.
  • the position detection method employed in the operation panel 203 include a matrix switch method, a resistance film method, a surface acoustic wave method, an infrared method, an electromagnetic induction method, a capacitance method, and the like. You can also
  • the call unit 211 includes a speaker 205 and a microphone 206, converts user's voice input through the microphone 206 into voice data that can be processed by the main control unit 220, and outputs the voice data to the main control unit 220. 210 or the audio data received by the external input / output unit 213 is decoded and output from the speaker 205. Further, as shown in FIG. 8, for example, the speaker 205 can be mounted on the same surface as the display input unit 204 and the microphone 206 can be mounted on the side surface of the housing 201.
  • the operation unit 207 is a hardware key using a key switch or the like, and receives an instruction from the user.
  • the operation unit 207 is mounted on the side surface of the housing 201 of the smartphone 200 and is turned on when pressed with a finger or the like, and turned off when the finger is released with a restoring force such as a spring. It is a push button type switch.
  • the storage unit 212 includes a control program and control data of the main control unit 220, application software, address data that associates the name and telephone number of a communication partner, transmitted / received e-mail data, Web data downloaded by Web browsing, The downloaded content data is stored, and streaming data and the like are temporarily stored.
  • the storage unit 212 includes an internal storage unit 217 built in the smartphone and an external storage unit 218 having a removable external memory slot.
  • Each of the internal storage unit 217 and the external storage unit 218 constituting the storage unit 212 includes a flash memory type (hard memory type), a hard disk type (hard disk type), a multimedia card micro type (multimedia card micro type), This is realized using a storage medium such as a card type memory (for example, MicroSD (registered trademark) memory), a RAM (Random Access Memory), a ROM (Read Only Memory), or the like.
  • a flash memory type hard memory type
  • hard disk type hard disk type
  • multimedia card micro type multimedia card micro type
  • a storage medium such as a card type memory (for example, MicroSD (registered trademark) memory), a RAM (Random Access Memory), a ROM (Read Only Memory), or the like.
  • the external input / output unit 213 serves as an interface with all external devices connected to the smartphone 200, and communicates with other external devices (for example, universal serial bus (USB), IEEE 1394, etc.) or a network.
  • external devices for example, universal serial bus (USB), IEEE 1394, etc.
  • a network for example, the Internet, wireless LAN, Bluetooth (registered trademark), RFID (Radio Frequency Identification), Infrared Data Association (IrDA) (registered trademark), UWB (Ultra Wideband) (registered trademark) ZigBee) (registered trademark, etc.) for direct or indirect connection.
  • an external device connected to the smartphone 200 for example, a wired / wireless headset, a wired / wireless external charger, a wired / wireless data port, a memory card (Memory card) connected via a card socket, or a SIM (Subscriber).
  • Identity Module Card / UIM (User Identity Module Card) card external audio / video equipment connected via audio / video I / O (Input / Output) terminal, external audio / video equipment connected wirelessly, yes / no
  • the external input / output unit 213 transmits data received from such an external device to each component inside the smartphone 200, or allows the data inside the smartphone 200 to be transmitted to the external device. Can do.
  • the GPS receiving unit 214 receives GPS signals transmitted from the GPS satellites ST1 to STn in accordance with instructions from the main control unit 220, executes positioning calculation processing based on the received GPS signals, and calculates the latitude of the smartphone 200 Detect the position consisting of longitude and altitude.
  • the GPS reception unit 214 can acquire position information from the wireless communication unit 210 or the external input / output unit 213 (for example, a wireless LAN), the GPS reception unit 214 can also detect the position using the position information.
  • the motion sensor unit 215 includes, for example, a three-axis acceleration sensor, and detects the physical movement of the smartphone 200 in accordance with an instruction from the main control unit 220. By detecting the physical movement of the smartphone 200, the moving direction and acceleration of the smartphone 200 are detected. The detection result is output to the main control unit 220.
  • the power supply unit 216 supplies power stored in a battery (not shown) to each unit of the smartphone 200 in accordance with an instruction from the main control unit 220.
  • the main control unit 220 includes a microprocessor, operates according to a control program and control data stored in the storage unit 212, and controls each unit of the smartphone 200 in an integrated manner.
  • the main control unit 220 includes a mobile communication control function that controls each unit of the communication system and an application processing function in order to perform voice communication and data communication through the wireless communication unit 210.
  • the application processing function is realized by the main control unit 220 operating according to the application software stored in the storage unit 212.
  • Examples of the application processing function include an infrared communication function for controlling the external input / output unit 213 to perform data communication with the opposite device, an e-mail function for transmitting / receiving e-mails, and a web browsing function for browsing web pages. .
  • the main control unit 220 has an image processing function such as displaying video on the display input unit 204 based on image data (still image or moving image data) such as received data or downloaded streaming data.
  • the image processing function is a function in which the main control unit 220 decodes the image data, performs image processing on the decoding result, and displays an image on the display input unit 204.
  • the main control unit 220 executes display control for the display panel 202 and operation detection control for detecting a user operation through the operation unit 207 and the operation panel 203.
  • the main control unit 220 displays an icon for starting application software, a software key such as a scroll bar, or a window for creating an e-mail.
  • a software key such as a scroll bar, or a window for creating an e-mail.
  • the scroll bar refers to a software key for accepting an instruction to move the display portion of a large image that does not fit in the display area of the display panel 202.
  • the main control unit 220 detects a user operation through the operation unit 207 or accepts an operation on the icon or an input of a character string in the input field of the window through the operation panel 203. Or a display image scroll request through a scroll bar.
  • the main control unit 220 causes the operation position with respect to the operation panel 203 to overlap with the display panel 202 (display area) or other outer edge part (non-display area) that does not overlap with the display panel 202.
  • a touch panel control function for controlling the sensitive area of the operation panel 203 and the display position of the software key.
  • the main control unit 220 can also detect a gesture operation on the operation panel 203 and execute a preset function in accordance with the detected gesture operation.
  • Gesture operation is not a conventional simple touch operation, but an operation that draws a trajectory with a finger or the like, designates a plurality of positions at the same time, or combines these to draw a trajectory for at least one of a plurality of positions. means.
  • the camera unit 208 includes configurations other than the external memory control unit 20, the recording medium 21, the display control unit 22, the display unit 23, and the operation unit 14 in the digital camera shown in FIG.
  • the captured image data generated by the camera unit 208 can be recorded in the storage unit 212 or output through the input / output unit 213 or the wireless communication unit 210.
  • the camera unit 208 is mounted on the same surface as the display input unit 204, but the mounting position of the camera unit 208 is not limited thereto, and may be mounted on the back surface of the display input unit 204. .
  • the camera unit 208 can be used for various functions of the smartphone 200.
  • an image acquired by the camera unit 208 can be displayed on the display panel 202, or the image of the camera unit 208 can be used as one of operation inputs of the operation panel 203.
  • the GPS receiving unit 214 detects a position
  • the position can be detected with reference to an image from the camera unit 208.
  • the optical axis direction of the camera unit 208 of the smartphone 200 is determined without using the triaxial acceleration sensor or in combination with the triaxial acceleration sensor. It is also possible to determine the current usage environment.
  • the image from the camera unit 208 can also be used in the application software.
  • the position information acquired by the GPS receiver 214 to the image data of the still image or the moving image, the voice information acquired by the microphone 206 (the text information may be converted into voice information by the main control unit or the like), Posture information and the like acquired by the motion sensor unit 215 can be added and recorded in the recording unit 212, or output through the input / output unit 213 and the wireless communication unit 210.
  • the VCM driving unit 20 of the camera unit 208 performs the processing illustrated in FIGS.
  • the disclosed VCM driving apparatus is a VCM driving apparatus for driving a voice coil motor, and is connected in series to the first transistor and the second transistor connected in parallel to the DC power source and the first transistor.
  • a third transistor connected in series to the second transistor, and the first transistor, the second transistor, the third transistor, and the fourth transistor are controlled.
  • Star is a bipolar transistor of the N-channel type, respectively, said third transistor and said fourth transistor is a field effect transistor of each N-channel type.
  • the disclosed mobile terminal includes the VCM driving device and the battery as the DC power source.
  • control unit selectively performs PWM control for intermittently controlling the current flowing through the coil and linear control for continuously controlling the current flowing through the coil.
  • the disclosed portable terminal includes an imaging unit that images a subject through an imaging optical system including an optical system driven by the voice coil motor, and the control unit is an imaging period for displaying a live view image by the imaging unit.
  • the PWM control is performed in the middle, and the linear control is performed during the imaging period for recording on the recording medium.
  • the PWM control intermittently applies a voltage to the base terminal of the first transistor or the second transistor with the third transistor or the fourth transistor turned on. Including those that are applied control.
  • the present invention is particularly convenient and effective when applied to a portable terminal such as a battery-powered digital camera or a cellular phone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Studio Devices (AREA)

Abstract

Provided is a VCM drive device that reduces power loss so as to enable low power consumption even in a case where a VCM is driven by either linear drive or PWM drive. A VCM drive unit (20) is provided with the following: a direct current power supply (40); N channel type bipolar transistors (21, 22) and N channel type MOSFETs (23, 24) that form an H bridge circuit; and a control unit (26) that controls the transistors and thereby controls the current that is supplied to a coil (90) that forms a VMC (9).

Description

ボイスコイルモータ(VCM)駆動装置及び携帯端末Voice coil motor (VCM) drive device and portable terminal
 本発明は、ボイスコイルモータ(VCM)駆動装置とそれを備える携帯端末に関する。 The present invention relates to a voice coil motor (VCM) driving device and a portable terminal including the same.
 VCMは体積が小さく、使用電力が少なく、価格が安い等の長所を有し、電子製品中の短距離アクチュエータ、例えば携帯電話の振動モータ、磁気ヘッド/光ピックアップの上下移動アクチュエータ、カメラのオートフォーカス用のアクチュエータ等に用いられている。 VCM has the advantages of small volume, low power consumption, low price, etc., short distance actuators in electronic products, such as mobile phone vibration motor, magnetic head / optical pickup vertical movement actuator, camera autofocus It is used for actuators and the like.
 VCMの駆動回路としては、単一の電源でモータに加える電圧の向きを変えられる回路であるHブリッジ回路がよく知られている。Hブリッジ回路は、電源に並列に接続される2つの第一のスイッチング素子と、この2つの第一のスイッチング素子の各々に直列に接続される第二のスイッチング素子とを備える。 As a VCM drive circuit, an H-bridge circuit that is a circuit that can change the direction of a voltage applied to a motor with a single power source is well known. The H-bridge circuit includes two first switching elements connected in parallel to the power supply and a second switching element connected in series to each of the two first switching elements.
 そして、第一のスイッチング素子としてPチャネル型MOSFET(電界効果トランジスタ)を用い、第二のスイッチング素子としてNチャネル型MOSFETを用いたものや、第一のスイッチング素子としてPチャネル型バイポーラトランジスタを用い、第二のスイッチング素子としてNチャネル型バイポーラトランジスタを用いたものが知られている。 Then, a P-channel MOSFET (field effect transistor) is used as the first switching element, an N-channel MOSFET is used as the second switching element, and a P-channel bipolar transistor is used as the first switching element. A device using an N-channel bipolar transistor as a second switching element is known.
 また、特許文献1には、ステッピングモータを駆動するためのHブリッジ回路として、電源に並列に接続される2つのPチャネル型MOSFETと、この2つのPチャネル型MOSFETの各々に直列に接続されるダーリントン接続構成のバイポーラトランジスタとを備えるものが記載されている。 Further, in Patent Document 1, as an H-bridge circuit for driving a stepping motor, two P-channel MOSFETs connected in parallel to a power source and each of the two P-channel MOSFETs are connected in series. What is provided is a bipolar transistor having a Darlington connection configuration.
 また、Hブリッジ回路ではないが、特許文献2には、上アーム側スイッチング回路を構成するスイッチング素子をMOSFETとし、下アーム側スイッチング回路を構成するスイッチング素子をバイポーラトランジスタとした3相インバータ装置が記載されている。 Although not an H-bridge circuit, Patent Document 2 describes a three-phase inverter device in which a switching element constituting the upper arm side switching circuit is a MOSFET and a switching element constituting the lower arm side switching circuit is a bipolar transistor. Has been.
日本国特開平5-236797号公報Japanese Patent Laid-Open No. 5-236797 日本国特開2011-205764号公報Japanese Unexamined Patent Publication No. 2011-20564
 第一のスイッチング素子としてPチャネル型MOSFETを用いたHブリッジ回路では、Pチャネル型MOSFETをリニア駆動する場合に、Hブリッジ回路の駆動電圧が、Pチャネル型MOSFETのオン抵抗とPチャネル型MOSFETのゲート・ソース間電圧に依存する。Pチャネル型MOSFETのゲート・ソース間電圧は大きいため、駆動電圧の低いVCMを用いて低消費電力化を図ろうとしても、Hブリッジ回路の駆動電圧を十分に低くすることができない。 In the H-bridge circuit using the P-channel MOSFET as the first switching element, when the P-channel MOSFET is linearly driven, the driving voltage of the H-bridge circuit depends on the on-resistance of the P-channel MOSFET and the P-channel MOSFET. Depends on gate-source voltage. Since the gate-source voltage of the P-channel MOSFET is large, the drive voltage of the H-bridge circuit cannot be sufficiently lowered even if the power consumption is reduced by using a VCM having a low drive voltage.
 第一のスイッチング素子としてPチャネル型バイポーラトランジスタを用い、第二のスイッチング素子としてNチャネル型バイポーラトランジスタを用いたHブリッジ回路では、トランジスタのベース電流がVCMには供給されずグランドに流れるため、この電流が無駄となってしまう。特に、Pチャネル型バイポーラトランジスタを飽和状態に維持して、Nチャネル型バイポーラトランジスタをPWM(パルス幅変調)駆動する場合には、より多くの電流がグランドに流れてしまい無駄となる。 In an H-bridge circuit using a P-channel bipolar transistor as the first switching element and an N-channel bipolar transistor as the second switching element, the base current of the transistor flows to the ground without being supplied to the VCM. Current is wasted. In particular, when the P-channel bipolar transistor is maintained in a saturated state and the N-channel bipolar transistor is driven by PWM (pulse width modulation), more current flows to the ground and is wasted.
 デジタルカメラや携帯電話機等のバッテリで動作する携帯端末では、消費電力の低減が大きな課題であるため、VCMを駆動する回路の駆動電圧を低くすることが求められている。しかし、これまで提案されているVCMの駆動回路は、リニア駆動、PWM駆動のいずれを行う場合でも、消費電力を下げるには限界がある。 In portable terminals that operate on batteries such as digital cameras and mobile phones, reduction of power consumption is a major issue, so it is required to reduce the driving voltage of a circuit that drives a VCM. However, the VCM drive circuit proposed so far has a limit in reducing power consumption regardless of whether linear drive or PWM drive is performed.
 本発明は、上記事情に鑑みてなされたものであり、VCMをリニア駆動とPWM駆動のどちらで駆動する場合でも、電力損失を減らして低消費電力化を図ることのできるVCM駆動装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a VCM drive device capable of reducing power loss and reducing power consumption when driving a VCM by either linear drive or PWM drive. For the purpose.
 本発明のVCM駆動装置は、ボイスコイルモータを駆動するVCM駆動装置であって、直流電源に並列に接続される第一のトランジスタ及び第二のトランジスタと、上記第一のトランジスタに直列に接続される第三のトランジスタと、上記第二のトランジスタに直列に接続される第四のトランジスタと、上記第一のトランジスタ、上記第二のトランジスタ、上記第三のトランジスタ、及び上記第四のトランジスタを制御して上記ボイスコイルモータを構成するコイルに流す電流を制御する制御部と、を備え、上記コイルの一端が上記第一のトランジスタと上記第三のトランジスタとの間に接続され、上記コイルの他端が上記第二のトランジスタと上記第四のトランジスタとの間に接続され、上記第一のトランジスタ及び上記第二のトランジスタは、それぞれNチャネル型のバイポーラトランジスタであり、上記第三のトランジスタ及び上記第四のトランジスタは、それぞれNチャネル型の電界効果トランジスタである。 The VCM driving device of the present invention is a VCM driving device for driving a voice coil motor, and is connected in series to the first transistor and the second transistor connected in parallel to the DC power source and the first transistor. A third transistor connected in series to the second transistor, and the first transistor, the second transistor, the third transistor, and the fourth transistor are controlled. And a controller for controlling the current flowing through the coil constituting the voice coil motor, and one end of the coil is connected between the first transistor and the third transistor, An end is connected between the second transistor and the fourth transistor, and the first transistor and the second transistor are connected. Data is a bipolar transistor of the N-channel type, respectively, said third transistor and said fourth transistor is a field effect transistor of each N-channel type.
 本発明によれば、VCMをリニア駆動とPWM駆動のどちらで駆動する場合でも、電力損失を減らして低消費電力化を図ることのできるVCM駆動装置を提供することができる。 According to the present invention, it is possible to provide a VCM driving device capable of reducing power loss and reducing power consumption when the VCM is driven by either linear driving or PWM driving.
本発明の一実施形態を説明するためのデジタルカメラの概略構成を示す図The figure which shows schematic structure of the digital camera for describing one Embodiment of this invention 図1に示すデジタルカメラにおけるVCM駆動部20の内部構成を示す回路図1 is a circuit diagram showing an internal configuration of a VCM drive unit 20 in the digital camera shown in FIG. 図1に示すデジタルカメラの撮像モード時におけるVCM駆動部20の駆動タイミングチャートの一例を示す図The figure which shows an example of the drive timing chart of the VCM drive part 20 at the time of imaging mode of the digital camera shown in FIG. 図1に示すデジタルカメラの撮像モード時におけるVCM駆動部20の駆動タイミングチャートの別の例を示す図The figure which shows another example of the drive timing chart of the VCM drive part 20 at the time of imaging mode of the digital camera shown in FIG. 図1に示すデジタルカメラの撮像モード時におけるVCM駆動部20の駆動タイミングチャートの更に別の例を示す図The figure which shows another example of the drive timing chart of the VCM drive part 20 at the time of imaging mode of the digital camera shown in FIG. 撮像装置としてスマートフォンを説明する図The figure explaining a smart phone as an imaging device 図6のスマートフォンの内部ブロック図Internal block diagram of the smartphone of FIG.
 以下、本発明の一実施形態について図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態を説明するための撮像装置の概略構成を示す図である。撮像装置としては、デジタルカメラ及びデジタルビデオカメラ等の撮像装置、電子内視鏡及びカメラ付携帯電話機等に搭載される撮像モジュール、等があり、ここではデジタルカメラを例にして説明する。 FIG. 1 is a diagram showing a schematic configuration of an imaging apparatus for explaining an embodiment of the present invention. Examples of the imaging device include an imaging device such as a digital camera and a digital video camera, an imaging module mounted on an electronic endoscope, a camera-equipped mobile phone, and the like. Here, a digital camera will be described as an example.
 図示するデジタルカメラの撮像系は、フォーカスレンズを含む撮影レンズ1と、CCDイメージセンサやCMOSイメージセンサ等の固体撮像素子4と、この両者の間に設けられた絞り2とを備える。フォーカスレンズは、ボイスコイルモータ(VCM)9によって位置を制御される。 The imaging system of the illustrated digital camera includes a photographing lens 1 including a focus lens, a solid-state imaging device 4 such as a CCD image sensor or a CMOS image sensor, and a diaphragm 2 provided therebetween. The position of the focus lens is controlled by a voice coil motor (VCM) 9.
 デジタルカメラの電気制御系全体を統括制御するシステム制御部11は、VCM駆動部20を介してVCM9を駆動し、フォーカス位置の調整を行う。また、システム制御部11は、絞り駆動部8を介し絞り2の開口量を制御して露光量調整を行う。また、システム制御部11は、撮像素子駆動部7を介して固体撮像素子4を駆動し、撮影レンズ1を通して撮像した被写体像を撮像画像信号として出力させる。システム制御部11には、操作部12を通してユーザからの指示信号が入力される。 The system control unit 11 that performs overall control of the entire electric control system of the digital camera drives the VCM 9 via the VCM drive unit 20 and adjusts the focus position. Further, the system control unit 11 controls the opening amount of the diaphragm 2 via the diaphragm driving unit 8 to adjust the exposure amount. In addition, the system control unit 11 drives the solid-state imaging device 4 via the imaging device driving unit 7 and outputs a subject image captured through the photographing lens 1 as a captured image signal. An instruction signal from the user is input to the system control unit 11 through the operation unit 12.
 デジタルカメラの電気制御系は、更に、固体撮像素子4の出力に接続された相関二重サンプリング処理等のアナログ信号処理を行うアナログ信号処理部5と、このアナログ信号処理部5から出力された信号をデジタル信号に変換するA/D変換回路6とを備える。アナログ信号処理部5とA/D変換回路6は、システム制御部11によって制御される。 The electric control system of the digital camera further includes an analog signal processing unit 5 that performs analog signal processing such as correlated double sampling processing connected to the output of the solid-state imaging device 4, and a signal output from the analog signal processing unit 5. And an A / D conversion circuit 6 for converting the signal into a digital signal. The analog signal processing unit 5 and the A / D conversion circuit 6 are controlled by the system control unit 11.
 更に、このデジタルカメラの電気制御系は、メインメモリ14と、メインメモリ14に接続されたメモリ制御部13と、A/D変換回路6から出力される撮像画像信号に各種画像処理を行って撮影画像データを生成するデジタル信号処理部15と、デジタル信号処理部15で生成された撮影画像データをJPEG形式に圧縮したり圧縮画像データを伸張したりする圧縮伸張処理部16と、着脱自在の記録媒体18が接続される外部メモリ制御部17と、カメラ背面等に搭載された液晶表示部10が接続される表示制御部19とを備える。メモリ制御部13、デジタル信号処理部15、圧縮伸張処理部16、外部メモリ制御部17、及び表示制御部19は、制御バス24及びデータバス25によって相互に接続され、システム制御部11からの指令によって制御される。 Furthermore, the electric control system of the digital camera performs various image processing on the main memory 14, the memory control unit 13 connected to the main memory 14, and the captured image signal output from the A / D conversion circuit 6 to capture the image. A digital signal processing unit 15 that generates image data, a compression / decompression processing unit 16 that compresses the captured image data generated by the digital signal processing unit 15 into a JPEG format or expands the compressed image data, and a detachable recording An external memory control unit 17 to which the medium 18 is connected, and a display control unit 19 to which the liquid crystal display unit 10 mounted on the rear surface of the camera or the like is connected. The memory control unit 13, the digital signal processing unit 15, the compression / decompression processing unit 16, the external memory control unit 17, and the display control unit 19 are connected to each other by a control bus 24 and a data bus 25, and commands from the system control unit 11. Controlled by.
 デジタルカメラにはバッテリ30が着脱可能となっており、デジタルカメラには、このバッテリ30の電力から、カメラ内の各部で必要な直流電圧を生成する電源回路40が設けられている。電源回路40で生成された電圧はシステム制御部11を介して各部に供給される。 The battery 30 is detachable from the digital camera, and the digital camera is provided with a power supply circuit 40 that generates a DC voltage necessary for each part in the camera from the power of the battery 30. The voltage generated by the power supply circuit 40 is supplied to each unit via the system control unit 11.
 図2は、図1に示すデジタルカメラにおけるVCM駆動部20の内部構成を示す回路図である。 FIG. 2 is a circuit diagram showing an internal configuration of the VCM driving unit 20 in the digital camera shown in FIG.
 VCM駆動部20は、VCM9を構成するコイル90に対して一方向に電流を流すためのNチャネル型のバイポーラトランジスタ21及びNチャネル型のMOSFET24と、コイル90に対して上記一方向の逆方向に電流を流すためのNチャネル型のバイポーラトランジスタ22及びNチャネル型のMOSFET23と、電流検出用抵抗25と、制御部26とを備える。 The VCM drive unit 20 includes an N-channel bipolar transistor 21 and an N-channel MOSFET 24 for flowing current in one direction with respect to the coil 90 constituting the VCM 9, and a reverse direction of the one direction with respect to the coil 90. An N-channel bipolar transistor 22 and an N-channel MOSFET 23 for flowing current, a current detection resistor 25, and a control unit 26 are provided.
 バイポーラトランジスタ21のコレクタ端子とバイポーラトランジスタ22のコレクタ端子は、それぞれ電源回路40に接続されている。 The collector terminal of the bipolar transistor 21 and the collector terminal of the bipolar transistor 22 are connected to the power supply circuit 40, respectively.
 MOSFET23は、そのソース端子がバイポーラトランジスタ21のエミッタ端子に接続され、そのドレイン端子が電流検出用抵抗25に接続されている。 The MOSFET 23 has a source terminal connected to the emitter terminal of the bipolar transistor 21 and a drain terminal connected to the current detection resistor 25.
 MOSFET24は、そのソース端子がバイポーラトランジスタ22のエミッタ端子に接続され、そのドレイン端子が電流検出用抵抗25に接続されている。 The MOSFET 24 has a source terminal connected to the emitter terminal of the bipolar transistor 22 and a drain terminal connected to the current detection resistor 25.
 バイポーラトランジスタ21のエミッタ端子とMOSFET23のソース端子の間には、コイル90の一端が接続され、バイポーラトランジスタ22のエミッタ端子とMOSFET24のソース端子の間には、コイル90の他端が接続されている。 One end of a coil 90 is connected between the emitter terminal of the bipolar transistor 21 and the source terminal of the MOSFET 23, and the other end of the coil 90 is connected between the emitter terminal of the bipolar transistor 22 and the source terminal of the MOSFET 24. .
 このように、バイポーラトランジスタ21,22とMOSFET23,24とコイル90とにより、いわゆるHブリッジ回路が構成されている。 Thus, the bipolar transistors 21 and 22, the MOSFETs 23 and 24, and the coil 90 constitute a so-called H-bridge circuit.
 制御部26は、バイポーラトランジスタ21及びバイポーラトランジスタ22の各々のベース端子と、MOSFET23及びMOSFET24の各々のゲート端子とに接続されている。また、制御部26は、電流検出用抵抗25とMOSFET23との間にも接続されている。 The control unit 26 is connected to the base terminals of the bipolar transistors 21 and 22 and the gate terminals of the MOSFETs 23 and 24. The control unit 26 is also connected between the current detection resistor 25 and the MOSFET 23.
 電流検出用抵抗25は、バイポーラトランジスタ22、コイル90、及びMOSFET23の経路で流れる電流と、バイポーラトランジスタ21、コイル90、及びMOSFET24の経路で流れる電流とを検出するために設けられている。 The current detection resistor 25 is provided to detect the current flowing through the path of the bipolar transistor 22, the coil 90, and the MOSFET 23 and the current flowing through the path of the bipolar transistor 21, the coil 90, and the MOSFET 24.
 制御部26は、バイポーラトランジスタ21,22のベース電圧、MOSFET23,24のゲート電圧をシステム制御部11からの指令にしたがって制御して、コイル90に流す電流を制御する。制御部26は、電流検出用抵抗25を用いて検出した電流値を取得し、この電流値に基づいて、コイル90に流れる電流がシステム制御部11からの指令値に安定するように電圧を制御する。 The control unit 26 controls the base voltage of the bipolar transistors 21 and 22 and the gate voltages of the MOSFETs 23 and 24 in accordance with a command from the system control unit 11 to control the current flowing through the coil 90. The control unit 26 acquires a current value detected using the current detection resistor 25, and controls the voltage based on the current value so that the current flowing through the coil 90 is stabilized at the command value from the system control unit 11. To do.
 制御部26は、コイル90に流す電流を間欠的に制御するPWM制御と、コイル90に流す電流を連続的に制御するリニア制御とのいずれか、又はこれらを選択的に行う。PWM制御とリニア制御はそれぞれ2パターンある。 The control unit 26 selectively performs either PWM control for intermittently controlling the current flowing through the coil 90 or linear control for continuously controlling the current flowing through the coil 90, or these. There are two patterns for PWM control and linear control.
 (PWM制御の第1パターン)
 制御部26は、MOSFET24又はMOSFET23を電圧制御型のスイッチとして機能させ、このスイッチをオンにした状態で、バイポーラトランジスタ21又はバイポーラトランジスタ22のベース端子に間欠的に電圧を印加することで、PWM制御を行う。バイポーラトランジスタ21,22はNチャネル型であるため、PWM制御時のベース電流をコイル90の駆動電流として利用することができ、ベース電流が無駄にならず、低駆動電圧化が可能となる。
(First pattern of PWM control)
The control unit 26 causes the MOSFET 24 or the MOSFET 23 to function as a voltage control type switch, and the PWM control is performed by intermittently applying a voltage to the base terminal of the bipolar transistor 21 or the bipolar transistor 22 with this switch turned on. I do. Since the bipolar transistors 21 and 22 are N-channel type, the base current at the time of PWM control can be used as the driving current for the coil 90, and the base current is not wasted and the driving voltage can be reduced.
 (PWM制御の第2パターン)
 制御部26は、バイポーラトランジスタ21又はバイポーラトランジスタ22の出力を飽和させた状態で、MOSFET24又はMOSFET23を電圧制御型のスイッチとして機能させ、MOSFET24又はMOSFET23のゲート端子に間欠的に電圧を印加してスイッチのオンオフを切り替えることで、PWM制御を行う。
(Second pattern of PWM control)
The control unit 26 causes the MOSFET 24 or the MOSFET 23 to function as a voltage control type switch in a state where the output of the bipolar transistor 21 or the bipolar transistor 22 is saturated, and switches the switch by applying a voltage intermittently to the gate terminal of the MOSFET 24 or the MOSFET 23. PWM control is performed by switching on and off.
 この場合、バイポーラトランジスタ21,22のコレクタ・エミッタ間飽和電圧を0.1Vとし、コイル90での電圧降下を1Vとし、MOSFET23,24のオン状態での電圧降下を0.1Vとし、電流検出抵抗での電圧降下を0.2Vとすると、バイポーラトランジスタ21,22のコレクタに接続される電源の電圧は1.4Vあればよく、低電圧化を図ることができる。また、バイポーラトランジスタ21,22は、ベース・エミッタ間電圧が約0.65V程度と低いため、ベース電圧も低くすることができ、低電圧化を図ることができる。 In this case, the collector-emitter saturation voltage of the bipolar transistors 21 and 22 is 0.1 V, the voltage drop at the coil 90 is 1 V, the voltage drop when the MOSFETs 23 and 24 are on is 0.1 V, and the current detection resistor Assuming that the voltage drop at 0.2 V is 0.2 V, the voltage of the power supply connected to the collectors of the bipolar transistors 21 and 22 may be 1.4 V, and the voltage can be reduced. Moreover, since the bipolar transistors 21 and 22 have a base-emitter voltage as low as about 0.65 V, the base voltage can be lowered and the voltage can be reduced.
 (リニア制御の第1パターン)
 制御部26は、バイポーラトランジスタ21又はバイポーラトランジスタ22をリニアレギュレータとして機能させてコイル90に流す電流が指令値となるようにベース電圧を制御した状態で、MOSFET24又はMOSFET23を電圧制御型のスイッチとして機能させて、このスイッチをオンすることでリニア制御を行う。このとき、MOSFET23,24のオン抵抗は極力低くなるようにゲート・ソース間電圧を加えることで、MOSFET23,24における電力損失を減らすことができる。また、バイポーラトランジスタ21,22は、ベース・エミッタ間電圧が約0.65V程度と低いため、リニア制御する場合にも、ベース電圧を低くすることができ、低電圧化を図ることができる。
(First linear control pattern)
The control unit 26 functions as the voltage control type switch with the MOSFET 24 or the MOSFET 23 in a state in which the bipolar transistor 21 or the bipolar transistor 22 functions as a linear regulator and the base voltage is controlled so that the current flowing through the coil 90 becomes the command value. Then, linear control is performed by turning on this switch. At this time, power loss in the MOSFETs 23 and 24 can be reduced by applying a gate-source voltage so that the on-resistances of the MOSFETs 23 and 24 are as low as possible. In addition, since the bipolar transistors 21 and 22 have a base-emitter voltage as low as about 0.65 V, the base voltage can be lowered and the voltage can be lowered even when linear control is performed.
 (リニア制御の第2パターン)
 制御部26は、バイポーラトランジスタ21又はバイポーラトランジスタ22を電流制御型のスイッチとして機能させて、このスイッチをオンにした状態で、MOSFET24又はMOSFET23をリニアレギュレータとして機能させてコイル90に流す電流が指令値となるようにゲート電圧を制御することでリニア制御を行う。この制御でも、バイポーラトランジスタ21,22は、ベース・エミッタ間電圧が約0.65V程度と低いため、ベース電圧を低くすることができ、低電圧化を図ることができる。また、バイポーラトランジスタ21,22のベース電流をコイル90の駆動電流として利用できるため、ベース電圧を低くすることができる。
(Second pattern of linear control)
The control unit 26 causes the bipolar transistor 21 or the bipolar transistor 22 to function as a current control type switch, and with this switch turned on, causes the MOSFET 24 or the MOSFET 23 to function as a linear regulator so that the current flowing through the coil 90 is a command value. Linear control is performed by controlling the gate voltage so that Even in this control, since the base-emitter voltage of the bipolar transistors 21 and 22 is as low as about 0.65 V, the base voltage can be lowered and the voltage can be lowered. Further, since the base currents of the bipolar transistors 21 and 22 can be used as the drive current for the coil 90, the base voltage can be lowered.
 撮像モード中、制御部26は、これらのうち、第1パターンのPWM制御と第1パターンのリニア制御のうちのいずれかを選択して実行する。または、制御部26は、第1パターンのPWM制御と第2パターンのリニア制御のうちのいずれかを選択して実行する。或いは、制御部26は、第2パターンのPWM制御と、第1パターンのリニア制御とのうちのいずれかを選択して実行する。 During the imaging mode, the control unit 26 selects and executes either the first pattern PWM control or the first pattern linear control. Alternatively, the control unit 26 selects and executes either PWM control of the first pattern or linear control of the second pattern. Alternatively, the control unit 26 selects and executes either the second pattern PWM control or the first pattern linear control.
 PWM制御は、電源効率が高いという利点があり、リニア制御はスイッチングノイズの影響が少ないという利点がある。そこで、図1のデジタルカメラでは、ライブビュー画像表示のための固体撮像素子4による撮像時にはPWM制御を行って省エネを図り、記録媒体18への撮像画像データの記録のための固体撮像素子4による撮像時にはリニア制御を行って画質向上を図っている。 PWM control has the advantage of high power supply efficiency, and linear control has the advantage of less influence of switching noise. Therefore, in the digital camera of FIG. 1, PWM control is performed at the time of imaging by the solid-state imaging device 4 for live view image display to save energy, and the solid-state imaging device 4 for recording captured image data on the recording medium 18 is used. At the time of imaging, linear control is performed to improve image quality.
 図3は、図1に示すデジタルカメラの撮像モード時におけるVCM駆動部20の駆動タイミングチャートの一例を示す図である。 FIG. 3 is a diagram illustrating an example of a drive timing chart of the VCM drive unit 20 in the imaging mode of the digital camera shown in FIG.
 撮像モードに設定されると、固体撮像素子4により定期的な撮像が開始され、各撮像が終わる毎に、各撮像で得られる撮像画像データに基づくライブビュー画像が表示部10に表示される。このライブビュー画像を得るための撮像中、制御部26は、図3に示すように、第2パターンのPWM制御を行う。そして、ライブビュー画像の表示中に撮影指示がなされると、システム制御部11は固体撮像素子4に記録のための撮像を行わせる。この撮像中、制御部26は、図3に示すように第1パターンのリニア制御を行う。 When the imaging mode is set, periodic imaging is started by the solid-state imaging device 4, and a live view image based on captured image data obtained by each imaging is displayed on the display unit 10 every time imaging is completed. During imaging for obtaining the live view image, the control unit 26 performs PWM control of the second pattern as shown in FIG. When a shooting instruction is given while the live view image is displayed, the system control unit 11 causes the solid-state imaging device 4 to perform imaging for recording. During this imaging, the control unit 26 performs linear control of the first pattern as shown in FIG.
 図3に示す駆動例によれば、バイポーラトランジスタ21,22のコレクタ・エミッタ間飽和電圧が低いため、PWM制御時にはバイポーラトランジスタにおける電力の損失を低減することができる。また、PWM制御時には、バイポーラトランジスタのベース電流をVCM9の駆動電流としても利用することができる。 According to the driving example shown in FIG. 3, since the saturation voltage between the collector and emitter of the bipolar transistors 21 and 22 is low, power loss in the bipolar transistor can be reduced during PWM control. Also, during PWM control, the base current of the bipolar transistor can be used as the drive current for the VCM 9.
 図4は、図1に示すデジタルカメラの撮像モード時におけるVCM駆動部20の駆動タイミングチャートの別の例を示す図である。 FIG. 4 is a diagram showing another example of a drive timing chart of the VCM drive unit 20 in the imaging mode of the digital camera shown in FIG.
 ライブビュー画像を得るための撮像中、制御部26は、図4に示すように、第1パターンのPWM制御を行う。そして、ライブビュー画像の表示中に撮影指示がなされると、システム制御部11は固体撮像素子4に記録のための撮像を行わせる。この撮像中、制御部26は、図4に示すように第1パターンのリニア制御を行う。 During imaging for obtaining a live view image, the control unit 26 performs PWM control of the first pattern as shown in FIG. When a shooting instruction is given while the live view image is displayed, the system control unit 11 causes the solid-state imaging device 4 to perform imaging for recording. During this imaging, the control unit 26 performs linear control of the first pattern as shown in FIG.
 図4に示す駆動例によれば、バイポーラトランジスタ21,22のベース電圧を間欠制御することでPWM制御を行うため、図3に示す駆動例と比較すると、PWM制御時におけるスイッチングノイズの影響を少なくすることができる。また、PWM制御時において、バイポーラトランジスタのベース電流をVCM9の駆動電流としても利用することができる。 According to the drive example shown in FIG. 4, PWM control is performed by intermittently controlling the base voltages of the bipolar transistors 21 and 22. Therefore, compared with the drive example shown in FIG. 3, the influence of switching noise during PWM control is reduced. can do. In addition, during PWM control, the base current of the bipolar transistor can be used as the drive current for the VCM 9.
 図5は、図1に示すデジタルカメラの撮像モード時におけるVCM駆動部20の駆動タイミングチャートの更に別の例を示す図である。 FIG. 5 is a diagram showing still another example of the drive timing chart of the VCM drive unit 20 in the imaging mode of the digital camera shown in FIG.
 ライブビュー画像を得るための撮像中、制御部26は、図5に示すように、第1パターンのPWM制御を行う。そして、ライブビュー画像の表示中に撮影指示がなされると、システム制御部11は固体撮像素子4に記録のための撮像を行わせる。この撮像中、制御部26は、図5に示すように第2パターンのリニア制御を行う。 During imaging to obtain a live view image, the control unit 26 performs PWM control of the first pattern as shown in FIG. When a shooting instruction is given while the live view image is displayed, the system control unit 11 causes the solid-state imaging device 4 to perform imaging for recording. During this imaging, the control unit 26 performs the second pattern linear control as shown in FIG.
 図5に示す駆動例によれば、PWM制御時は図4と同様の効果を得ることができる。また、リニア制御時は、バイポーラトランジスタ21,22のベース電流をVCM9の駆動電流としても利用することができるため、MOSFET23,24のゲート電圧を抑えることができる。また、バイポーラトランジスタ21,22のコレクタ・エミッタ間飽和電圧が低いため、リニア制御時には、バイポーラトランジスタにおける電力の損失を低減することができる。 According to the driving example shown in FIG. 5, the same effect as in FIG. 4 can be obtained during PWM control. Further, during linear control, the base currents of the bipolar transistors 21 and 22 can be used as the drive current of the VCM 9, so that the gate voltages of the MOSFETs 23 and 24 can be suppressed. In addition, since the collector-emitter saturation voltage of the bipolar transistors 21 and 22 is low, power loss in the bipolar transistor can be reduced during linear control.
 以上のように、本実施形態のVCM駆動部20によれば、Hブリッジ回路を構成するトランジスタのうち、入力電源側の2つのトランジスタをNチャネル型のバイポーラトランジスタとし、残りのトランジスタをNチャネル型のMOSFETとしているため、PWM制御とリニア制御のいずれを行う場合でも、VCM9の駆動電圧を低くすることができる。このため、デジタルカメラのバッテリ持ちを長くすることができる。 As described above, according to the VCM driving unit 20 of the present embodiment, two transistors on the input power source side among the transistors configuring the H bridge circuit are N-channel bipolar transistors, and the remaining transistors are N-channel transistors. Therefore, the drive voltage of the VCM 9 can be lowered when performing either PWM control or linear control. For this reason, the battery life of the digital camera can be lengthened.
 また、VCM駆動部20によれば、図3,4,5に示したように、PWM制御とリニア制御の切り替えを容易に行うことができ、省エネと高画質を両立したカメラを実現することができる。 Further, according to the VCM drive unit 20, as shown in FIGS. 3, 4 and 5, switching between PWM control and linear control can be easily performed, and a camera that achieves both energy saving and high image quality can be realized. it can.
 なお、ここではデジタルカメラ等の撮像装置を例にしたが、VCM9を搭載する電子機器であれば、本実施形態のVCM駆動部20を適用可能である。 Note that, here, an imaging apparatus such as a digital camera is taken as an example, but the VCM driving unit 20 of the present embodiment can be applied to any electronic device equipped with the VCM 9.
 デジタルカメラ等のバッテリによって駆動する携帯端末に本実施形態のVCM駆動部20を適用することで、バッテリの持ちを長くしたり、端末内の発熱を抑制したりすることができるため、特に有効である。 By applying the VCM drive unit 20 of the present embodiment to a portable terminal driven by a battery such as a digital camera, the battery can be held longer or the heat generation in the terminal can be suppressed. is there.
 以下では、VCM駆動部20をスマートフォンに適用した例について説明する。 Hereinafter, an example in which the VCM driving unit 20 is applied to a smartphone will be described.
 図6は、本発明の撮影装置の一実施形態であるスマートフォン200の外観を示すものである。図6に示すスマートフォン200は、平板状の筐体201を有し、筐体201の一方の面に表示部としての表示パネル202と、入力部としての操作パネル203とが一体となった表示入力部204を備えている。また、この様な筐体201は、スピーカ205と、マイクロホン206と、操作部207と、カメラ部208とを備えている。なお、筐体201の構成はこれに限定されず、例えば、表示部と入力部とが独立した構成を採用したり、折り畳み構造やスライド機構を有する構成を採用したりすることもできる。 FIG. 6 shows an appearance of a smartphone 200 that is an embodiment of the photographing apparatus of the present invention. A smartphone 200 illustrated in FIG. 6 includes a flat housing 201, and a display input in which a display panel 202 as a display unit and an operation panel 203 as an input unit are integrated on one surface of the housing 201. Part 204 is provided. Such a housing 201 includes a speaker 205, a microphone 206, an operation unit 207, and a camera unit 208. Note that the configuration of the housing 201 is not limited thereto, and for example, a configuration in which the display unit and the input unit are independent can be employed, or a configuration having a folding structure and a slide mechanism can be employed.
 図7は、図6に示すスマートフォン200の構成を示すブロック図である。図6に示すように、スマートフォンの主たる構成要素として、無線通信部210と、表示入力部204と、通話部211と、操作部207と、カメラ部208と、記憶部212と、外部入出力部213と、GPS(Global Positioning System)受信部214と、モーションセンサ部215と、電源部216と、主制御部220とを備える。また、スマートフォン200の主たる機能として、図示省略の基地局装置BSと図示省略の移動通信網NWとを介した移動無線通信を行う無線通信機能を備える。 FIG. 7 is a block diagram showing a configuration of the smartphone 200 shown in FIG. As shown in FIG. 6, the main components of the smartphone include a wireless communication unit 210, a display input unit 204, a call unit 211, an operation unit 207, a camera unit 208, a storage unit 212, and an external input / output unit. 213, a GPS (Global Positioning System) receiving unit 214, a motion sensor unit 215, a power supply unit 216, and a main control unit 220. As a main function of the smartphone 200, a wireless communication function for performing mobile wireless communication via a base station device BS (not shown) and a mobile communication network NW (not shown) is provided.
 無線通信部210は、主制御部220の指示にしたがって、移動通信網NWに収容された基地局装置BSに対し無線通信を行うものである。この無線通信を使用して、音声データ、画像データ等の各種ファイルデータ、電子メールデータなどの送受信や、Webデータやストリーミングデータなどの受信を行う。 The wireless communication unit 210 performs wireless communication with the base station apparatus BS accommodated in the mobile communication network NW according to an instruction from the main control unit 220. Using this wireless communication, transmission and reception of various file data such as audio data and image data, e-mail data, and reception of Web data and streaming data are performed.
 表示入力部204は、主制御部220の制御により、画像(静止画像及び動画像)や文字情報などを表示して視覚的にユーザに情報を伝達するとともに、表示した情報に対するユーザ操作を検出する、いわゆるタッチパネルであって、表示パネル202と、操作パネル203とを備える。 The display input unit 204 displays images (still images and moving images), character information, and the like, visually transmits information to the user under the control of the main control unit 220, and detects user operations on the displayed information. A so-called touch panel, which includes a display panel 202 and an operation panel 203.
 表示パネル202は、LCD(Liquid Crystal Display)、OELD(Organic Electro-Luminescence Display)などを表示デバイスとして用いたものである。 The display panel 202 uses an LCD (Liquid Crystal Display), an OELD (Organic Electro-Luminescence Display), or the like as a display device.
 操作パネル203は、表示パネル202の表示面上に表示される画像を視認可能に載置され、ユーザの指や尖筆によって操作される一又は複数の座標を検出するデバイスである。このデバイスをユーザの指や尖筆によって操作すると、操作に起因して発生する検出信号を主制御部220に出力する。次いで、主制御部220は、受信した検出信号に基づいて、表示パネル202上の操作位置(座標)を検出する。 The operation panel 203 is a device that is placed so that an image displayed on the display surface of the display panel 202 is visible and detects one or more coordinates operated by a user's finger or stylus. When this device is operated with a user's finger or stylus, a detection signal generated due to the operation is output to the main control unit 220. Next, the main control unit 220 detects an operation position (coordinates) on the display panel 202 based on the received detection signal.
 図6に示すように、本発明の撮影装置の一実施形態として例示しているスマートフォン200の表示パネル202と操作パネル203とは一体となって表示入力部204を構成しているが、操作パネル203が表示パネル202を完全に覆うような配置となっている。 As shown in FIG. 6, the display panel 202 and the operation panel 203 of the smartphone 200 exemplified as an embodiment of the photographing apparatus of the present invention integrally constitute a display input unit 204. The arrangement 203 covers the display panel 202 completely.
 係る配置を採用した場合、操作パネル203は、表示パネル202外の領域についても、ユーザ操作を検出する機能を備えてもよい。換言すると、操作パネル203は、表示パネル202に重なる重畳部分についての検出領域(以下、表示領域と称する)と、それ以外の表示パネル202に重ならない外縁部分についての検出領域(以下、非表示領域と称する)とを備えていてもよい。 When such an arrangement is adopted, the operation panel 203 may have a function of detecting a user operation even in an area outside the display panel 202. In other words, the operation panel 203 includes a detection area (hereinafter referred to as a display area) for an overlapping portion that overlaps the display panel 202 and a detection area (hereinafter, a non-display area) for an outer edge portion that does not overlap the other display panel 202. May be included).
 なお、表示領域の大きさと表示パネル202の大きさとを完全に一致させても良いが、両者を必ずしも一致させる必要は無い。また、操作パネル203が、外縁部分と、それ以外の内側部分の2つの感応領域を備えていてもよい。更に、外縁部分の幅は、筐体201の大きさなどに応じて適宜設計されるものである。更にまた、操作パネル203で採用される位置検出方式としては、マトリクススイッチ方式、抵抗膜方式、表面弾性波方式、赤外線方式、電磁誘導方式、静電容量方式などが挙げられ、いずれの方式を採用することもできる。 Although the size of the display area and the size of the display panel 202 may be completely matched, it is not always necessary to match the two. In addition, the operation panel 203 may include two sensitive areas of the outer edge portion and the other inner portion. Further, the width of the outer edge portion is appropriately designed according to the size of the housing 201 and the like. Furthermore, examples of the position detection method employed in the operation panel 203 include a matrix switch method, a resistance film method, a surface acoustic wave method, an infrared method, an electromagnetic induction method, a capacitance method, and the like. You can also
 通話部211は、スピーカ205やマイクロホン206を備え、マイクロホン206を通じて入力されたユーザの音声を主制御部220にて処理可能な音声データに変換して主制御部220に出力したり、無線通信部210あるいは外部入出力部213により受信された音声データを復号してスピーカ205から出力させたりするものである。また、図8に示すように、例えば、スピーカ205を表示入力部204が設けられた面と同じ面に搭載し、マイクロホン206を筐体201の側面に搭載することができる。 The call unit 211 includes a speaker 205 and a microphone 206, converts user's voice input through the microphone 206 into voice data that can be processed by the main control unit 220, and outputs the voice data to the main control unit 220. 210 or the audio data received by the external input / output unit 213 is decoded and output from the speaker 205. Further, as shown in FIG. 8, for example, the speaker 205 can be mounted on the same surface as the display input unit 204 and the microphone 206 can be mounted on the side surface of the housing 201.
 操作部207は、キースイッチなどを用いたハードウェアキーであって、ユーザからの指示を受け付けるものである。例えば、図6に示すように、操作部207は、スマートフォン200の筐体201の側面に搭載され、指などで押下されるとオンとなり、指を離すとバネなどの復元力によってオフ状態となる押しボタン式のスイッチである。 The operation unit 207 is a hardware key using a key switch or the like, and receives an instruction from the user. For example, as illustrated in FIG. 6, the operation unit 207 is mounted on the side surface of the housing 201 of the smartphone 200 and is turned on when pressed with a finger or the like, and turned off when the finger is released with a restoring force such as a spring. It is a push button type switch.
 記憶部212は、主制御部220の制御プログラムや制御データ、アプリケーションソフトウェア、通信相手の名称や電話番号などを対応づけたアドレスデータ、送受信した電子メールのデータ、WebブラウジングによりダウンロードしたWebデータや、ダウンロードしたコンテンツデータを記憶し、またストリーミングデータなどを一時的に記憶するものである。また、記憶部212は、スマートフォン内蔵の内部記憶部217と着脱自在な外部メモリスロットを有する外部記憶部218により構成される。なお、記憶部212を構成するそれぞれの内部記憶部217と外部記憶部218は、フラッシュメモリタイプ(flash memory type)、ハードディスクタイプ(hard disk type)、マルチメディアカードマイクロタイプ(multimedia card micro type)、カードタイプのメモリ(例えば、MicroSD(登録商標)メモリ等)、RAM(Random Access Memory)、ROM(Read Only Memory)などの格納媒体を用いて実現される。 The storage unit 212 includes a control program and control data of the main control unit 220, application software, address data that associates the name and telephone number of a communication partner, transmitted / received e-mail data, Web data downloaded by Web browsing, The downloaded content data is stored, and streaming data and the like are temporarily stored. The storage unit 212 includes an internal storage unit 217 built in the smartphone and an external storage unit 218 having a removable external memory slot. Each of the internal storage unit 217 and the external storage unit 218 constituting the storage unit 212 includes a flash memory type (hard memory type), a hard disk type (hard disk type), a multimedia card micro type (multimedia card micro type), This is realized using a storage medium such as a card type memory (for example, MicroSD (registered trademark) memory), a RAM (Random Access Memory), a ROM (Read Only Memory), or the like.
 外部入出力部213は、スマートフォン200に連結される全ての外部機器とのインターフェースの役割を果たすものであり、他の外部機器に通信等(例えば、ユニバーサルシリアルバス(USB)、IEEE1394など)又はネットワーク(例えば、インターネット、無線LAN、ブルートゥース(Bluetooth)(登録商標)、RFID(Radio Frequency Identification)、赤外線通信(Infrared Data Association:IrDA)(登録商標)、UWB(Ultra Wideband)(登録商標)、ジグビー(ZigBee)(登録商標)など)により直接的又は間接的に接続するためのものである。 The external input / output unit 213 serves as an interface with all external devices connected to the smartphone 200, and communicates with other external devices (for example, universal serial bus (USB), IEEE 1394, etc.) or a network. (For example, the Internet, wireless LAN, Bluetooth (registered trademark), RFID (Radio Frequency Identification), Infrared Data Association (IrDA) (registered trademark), UWB (Ultra Wideband) (registered trademark) ZigBee) (registered trademark, etc.) for direct or indirect connection.
 スマートフォン200に連結される外部機器としては、例えば、有/無線ヘッドセット、有/無線外部充電器、有/無線データポート、カードソケットを介して接続されるメモリカード(Memory card)やSIM(Subscriber Identity Module Card)/UIM(User Identity Module Card)カード、オーディオ・ビデオI/O(Input/Output)端子を介して接続される外部オーディオ・ビデオ機器、無線接続される外部オーディオ・ビデオ機器、有/無線接続されるスマートフォン、有/無線接続されるパーソナルコンピュータ、有/無線接続されるPDA、有/無線接続されるパーソナルコンピュータ、イヤホンなどがある。外部入出力部213は、このような外部機器から伝送を受けたデータをスマートフォン200の内部の各構成要素に伝達することや、スマートフォン200の内部のデータが外部機器に伝送されるようにすることができる。 As an external device connected to the smartphone 200, for example, a wired / wireless headset, a wired / wireless external charger, a wired / wireless data port, a memory card (Memory card) connected via a card socket, or a SIM (Subscriber). Identity Module Card / UIM (User Identity Module Card) card, external audio / video equipment connected via audio / video I / O (Input / Output) terminal, external audio / video equipment connected wirelessly, yes / no There are a wirelessly connected smartphone, a wired / wireless personal computer, a wired / wireless PDA, a wired / wireless personal computer, an earphone, and the like. The external input / output unit 213 transmits data received from such an external device to each component inside the smartphone 200, or allows the data inside the smartphone 200 to be transmitted to the external device. Can do.
 GPS受信部214は、主制御部220の指示にしたがって、GPS衛星ST1~STnから送信されるGPS信号を受信し、受信した複数のGPS信号に基づく測位演算処理を実行し、当該スマートフォン200の緯度、経度、高度からなる位置を検出する。GPS受信部214は、無線通信部210や外部入出力部213(例えば、無線LAN)から位置情報を取得できる時には、その位置情報を用いて位置を検出することもできる。 The GPS receiving unit 214 receives GPS signals transmitted from the GPS satellites ST1 to STn in accordance with instructions from the main control unit 220, executes positioning calculation processing based on the received GPS signals, and calculates the latitude of the smartphone 200 Detect the position consisting of longitude and altitude. When the GPS reception unit 214 can acquire position information from the wireless communication unit 210 or the external input / output unit 213 (for example, a wireless LAN), the GPS reception unit 214 can also detect the position using the position information.
 モーションセンサ部215は、例えば、3軸の加速度センサなどを備え、主制御部220の指示にしたがって、スマートフォン200の物理的な動きを検出する。スマートフォン200の物理的な動きを検出することにより、スマートフォン200の動く方向や加速度が検出される。係る検出結果は、主制御部220に出力されるものである。 The motion sensor unit 215 includes, for example, a three-axis acceleration sensor, and detects the physical movement of the smartphone 200 in accordance with an instruction from the main control unit 220. By detecting the physical movement of the smartphone 200, the moving direction and acceleration of the smartphone 200 are detected. The detection result is output to the main control unit 220.
 電源部216は、主制御部220の指示にしたがって、スマートフォン200の各部に、バッテリ(図示しない)に蓄えられる電力を供給するものである。 The power supply unit 216 supplies power stored in a battery (not shown) to each unit of the smartphone 200 in accordance with an instruction from the main control unit 220.
 主制御部220は、マイクロプロセッサを備え、記憶部212が記憶する制御プログラムや制御データにしたがって動作し、スマートフォン200の各部を統括して制御するものである。また、主制御部220は、無線通信部210を通じて、音声通信やデータ通信を行うために、通信系の各部を制御する移動通信制御機能と、アプリケーション処理機能を備える。 The main control unit 220 includes a microprocessor, operates according to a control program and control data stored in the storage unit 212, and controls each unit of the smartphone 200 in an integrated manner. In addition, the main control unit 220 includes a mobile communication control function that controls each unit of the communication system and an application processing function in order to perform voice communication and data communication through the wireless communication unit 210.
 アプリケーション処理機能は、記憶部212が記憶するアプリケーションソフトウェアにしたがって主制御部220が動作することにより実現するものである。アプリケーション処理機能としては、例えば、外部入出力部213を制御して対向機器とデータ通信を行う赤外線通信機能や、電子メールの送受信を行う電子メール機能、Webページを閲覧するWebブラウジング機能などがある。 The application processing function is realized by the main control unit 220 operating according to the application software stored in the storage unit 212. Examples of the application processing function include an infrared communication function for controlling the external input / output unit 213 to perform data communication with the opposite device, an e-mail function for transmitting / receiving e-mails, and a web browsing function for browsing web pages. .
 また、主制御部220は、受信データやダウンロードしたストリーミングデータなどの画像データ(静止画像や動画像のデータ)に基づいて、映像を表示入力部204に表示する等の画像処理機能を備える。画像処理機能とは、主制御部220が、上記画像データを復号し、この復号結果に画像処理を施して、画像を表示入力部204に表示する機能のことをいう。 Also, the main control unit 220 has an image processing function such as displaying video on the display input unit 204 based on image data (still image or moving image data) such as received data or downloaded streaming data. The image processing function is a function in which the main control unit 220 decodes the image data, performs image processing on the decoding result, and displays an image on the display input unit 204.
 更に、主制御部220は、表示パネル202に対する表示制御と、操作部207、操作パネル203を通じたユーザ操作を検出する操作検出制御を実行する。表示制御の実行により、主制御部220は、アプリケーションソフトウェアを起動するためのアイコンや、スクロールバーなどのソフトウェアキーを表示したり、あるいは電子メールを作成したりするためのウィンドウを表示する。なお、スクロールバーとは、表示パネル202の表示領域に収まりきれない大きな画像などについて、画像の表示部分を移動する指示を受け付けるためのソフトウェアキーのことをいう。 Further, the main control unit 220 executes display control for the display panel 202 and operation detection control for detecting a user operation through the operation unit 207 and the operation panel 203. By executing the display control, the main control unit 220 displays an icon for starting application software, a software key such as a scroll bar, or a window for creating an e-mail. Note that the scroll bar refers to a software key for accepting an instruction to move the display portion of a large image that does not fit in the display area of the display panel 202.
 また、操作検出制御の実行により、主制御部220は、操作部207を通じたユーザ操作を検出したり、操作パネル203を通じて、上記アイコンに対する操作や、上記ウィンドウの入力欄に対する文字列の入力を受け付けたり、あるいは、スクロールバーを通じた表示画像のスクロール要求を受け付ける。 In addition, by executing the operation detection control, the main control unit 220 detects a user operation through the operation unit 207 or accepts an operation on the icon or an input of a character string in the input field of the window through the operation panel 203. Or a display image scroll request through a scroll bar.
 更に、操作検出制御の実行により主制御部220は、操作パネル203に対する操作位置が、表示パネル202に重なる重畳部分(表示領域)か、それ以外の表示パネル202に重ならない外縁部分(非表示領域)かを判定し、操作パネル203の感応領域や、ソフトウェアキーの表示位置を制御するタッチパネル制御機能を備える。 Further, by executing the operation detection control, the main control unit 220 causes the operation position with respect to the operation panel 203 to overlap with the display panel 202 (display area) or other outer edge part (non-display area) that does not overlap with the display panel 202. And a touch panel control function for controlling the sensitive area of the operation panel 203 and the display position of the software key.
 また、主制御部220は、操作パネル203に対するジェスチャ操作を検出し、検出したジェスチャ操作に応じて、予め設定された機能を実行することもできる。ジェスチャ操作とは、従来の単純なタッチ操作ではなく、指などによって軌跡を描いたり、複数の位置を同時に指定したり、あるいはこれらを組み合わせて、複数の位置から少なくとも1つについて軌跡を描く操作を意味する。 The main control unit 220 can also detect a gesture operation on the operation panel 203 and execute a preset function in accordance with the detected gesture operation. Gesture operation is not a conventional simple touch operation, but an operation that draws a trajectory with a finger or the like, designates a plurality of positions at the same time, or combines these to draw a trajectory for at least one of a plurality of positions. means.
 カメラ部208は、図1に示したデジタルカメラにおける外部メモリ制御部20、記録媒体21、表示制御部22、表示部23、及び操作部14以外の構成を含む。カメラ部208によって生成された撮像画像データは、記憶部212に記録したり、入出力部213や無線通信部210を通じて出力したりすることができる。図6に示すスマートフォン200において、カメラ部208は表示入力部204と同じ面に搭載されているが、カメラ部208の搭載位置はこれに限らず、表示入力部204の背面に搭載されてもよい。 The camera unit 208 includes configurations other than the external memory control unit 20, the recording medium 21, the display control unit 22, the display unit 23, and the operation unit 14 in the digital camera shown in FIG. The captured image data generated by the camera unit 208 can be recorded in the storage unit 212 or output through the input / output unit 213 or the wireless communication unit 210. In the smartphone 200 illustrated in FIG. 6, the camera unit 208 is mounted on the same surface as the display input unit 204, but the mounting position of the camera unit 208 is not limited thereto, and may be mounted on the back surface of the display input unit 204. .
 また、カメラ部208はスマートフォン200の各種機能に利用することができる。例えば、表示パネル202にカメラ部208で取得した画像を表示することや、操作パネル203の操作入力のひとつとして、カメラ部208の画像を利用することができる。また、GPS受信部214が位置を検出する際に、カメラ部208からの画像を参照して位置を検出することもできる。更には、カメラ部208からの画像を参照して、3軸の加速度センサを用いずに、或いは、3軸の加速度センサと併用して、スマートフォン200のカメラ部208の光軸方向を判断することや、現在の使用環境を判断することもできる。勿論、カメラ部208からの画像をアプリケーションソフトウェア内で利用することもできる。 In addition, the camera unit 208 can be used for various functions of the smartphone 200. For example, an image acquired by the camera unit 208 can be displayed on the display panel 202, or the image of the camera unit 208 can be used as one of operation inputs of the operation panel 203. Further, when the GPS receiving unit 214 detects a position, the position can be detected with reference to an image from the camera unit 208. Furthermore, referring to the image from the camera unit 208, the optical axis direction of the camera unit 208 of the smartphone 200 is determined without using the triaxial acceleration sensor or in combination with the triaxial acceleration sensor. It is also possible to determine the current usage environment. Of course, the image from the camera unit 208 can also be used in the application software.
 その他、静止画又は動画の画像データにGPS受信部214により取得した位置情報、マイクロホン206により取得した音声情報(主制御部等により、音声テキスト変換を行ってテキスト情報となっていてもよい)、モーションセンサ部215により取得した姿勢情報等などを付加して記録部212に記録したり、入出力部213や無線通信部210を通じて出力したりすることもできる。 In addition, the position information acquired by the GPS receiver 214 to the image data of the still image or the moving image, the voice information acquired by the microphone 206 (the text information may be converted into voice information by the main control unit or the like), Posture information and the like acquired by the motion sensor unit 215 can be added and recorded in the recording unit 212, or output through the input / output unit 213 and the wireless communication unit 210.
 以上のような構成のスマートフォン200においても、カメラ部208のVCM駆動部20が図3,4,5に例示した処理を行うことで、高速高精度の位相差AFが可能になる。 Also in the smartphone 200 configured as described above, the VCM driving unit 20 of the camera unit 208 performs the processing illustrated in FIGS.
 以上説明したように、本明細書には以下の事項が開示されている。 As described above, the following items are disclosed in this specification.
 開示されたVCM駆動装置は、ボイスコイルモータを駆動するVCM駆動装置であって、直流電源に並列に接続される第一のトランジスタ及び第二のトランジスタと、上記第一のトランジスタに直列に接続される第三のトランジスタと、上記第二のトランジスタに直列に接続される第四のトランジスタと、上記第一のトランジスタ、上記第二のトランジスタ、上記第三のトランジスタ、及び上記第四のトランジスタを制御して上記ボイスコイルモータを構成するコイルに流す電流を制御する制御部と、を備え、上記コイルの一端が上記第一のトランジスタと上記第三のトランジスタとの間に接続され、上記コイルの他端が上記第二のトランジスタと上記第四のトランジスタとの間に接続され、上記第一のトランジスタ及び上記第二のトランジスタは、それぞれNチャネル型のバイポーラトランジスタであり、上記第三のトランジスタ及び上記第四のトランジスタは、それぞれNチャネル型の電界効果トランジスタである。 The disclosed VCM driving apparatus is a VCM driving apparatus for driving a voice coil motor, and is connected in series to the first transistor and the second transistor connected in parallel to the DC power source and the first transistor. A third transistor connected in series to the second transistor, and the first transistor, the second transistor, the third transistor, and the fourth transistor are controlled. And a controller for controlling the current flowing through the coil constituting the voice coil motor, and one end of the coil is connected between the first transistor and the third transistor, An end is connected between the second transistor and the fourth transistor, and the first transistor and the second transistor are connected. Star is a bipolar transistor of the N-channel type, respectively, said third transistor and said fourth transistor is a field effect transistor of each N-channel type.
 開示された携帯端末は、上記VCM駆動装置と、上記直流電源としての電池と、を備えるものである。 The disclosed mobile terminal includes the VCM driving device and the battery as the DC power source.
 開示された携帯端末は、上記制御部が、上記コイルに流す電流を間欠的に制御するPWM制御と、上記コイルに流す電流を連続的に制御するリニア制御とを選択的に行うものである。 In the disclosed portable terminal, the control unit selectively performs PWM control for intermittently controlling the current flowing through the coil and linear control for continuously controlling the current flowing through the coil.
 開示された携帯端末は、上記ボイスコイルモータによって駆動される光学系を含む撮像光学系を通して被写体を撮像する撮像部を備え、上記制御部は、上記撮像部によるライブビュー画像表示のための撮像期間中は上記PWM制御を行い、記録媒体への記録のための撮像期間中は上記リニア制御を行うものである。 The disclosed portable terminal includes an imaging unit that images a subject through an imaging optical system including an optical system driven by the voice coil motor, and the control unit is an imaging period for displaying a live view image by the imaging unit. The PWM control is performed in the middle, and the linear control is performed during the imaging period for recording on the recording medium.
 開示された携帯端末は、上記PWM制御が、上記第三のトランジスタ又は上記第四のトランジスタをオンにした状態で、上記第一のトランジスタ又は上記第二のトランジスタのベース端子に間欠的に電圧を印加する制御であるものを含む。 In the disclosed mobile terminal, the PWM control intermittently applies a voltage to the base terminal of the first transistor or the second transistor with the third transistor or the fourth transistor turned on. Including those that are applied control.
 本発明は、特にバッテリ駆動するデジタルカメラや携帯電話機等の携帯端末に適用して利便性が高く、有効である。 The present invention is particularly convenient and effective when applied to a portable terminal such as a battery-powered digital camera or a cellular phone.
 以上、本発明を特定の実施形態によって説明したが、本発明はこの実施形態に限定されるものではなく、開示された発明の技術思想を逸脱しない範囲で種々の変更が可能である。
 本出願は、2012年10月26日出願の日本特許出願(特願2012-236822)に基づくものであり、その内容はここに取り込まれる。
As mentioned above, although this invention was demonstrated by specific embodiment, this invention is not limited to this embodiment, A various change is possible in the range which does not deviate from the technical idea of the disclosed invention.
This application is based on a Japanese patent application filed on October 26, 2012 (Japanese Patent Application No. 2012-236822), the contents of which are incorporated herein.
9 ボイスコイルモータ
20 VCM駆動部
21,22 Nチャネル型バイポーラトランジスタ
23,24 Nチャネル型MOSFET
25 電流検出用抵抗
26 制御部
40 電源回路
90 コイル
9 Voice coil motor 20 VCM drive unit 21, 22 N-channel bipolar transistor 23, 24 N-channel MOSFET
25 Current detection resistor 26 Control unit 40 Power supply circuit 90 Coil

Claims (5)

  1.  ボイスコイルモータを駆動するVCM駆動装置であって、
     直流電源に並列に接続される第一のトランジスタ及び第二のトランジスタと、
     前記第一のトランジスタに直列に接続される第三のトランジスタと、
     前記第二のトランジスタに直列に接続される第四のトランジスタと、
     前記第一のトランジスタ、前記第二のトランジスタ、前記第三のトランジスタ、及び前記第四のトランジスタを制御して前記ボイスコイルモータを構成するコイルに流す電流を制御する制御部と、を備え、
     前記コイルの一端が前記第一のトランジスタと前記第三のトランジスタとの間に接続され、前記コイルの他端が前記第二のトランジスタと前記第四のトランジスタとの間に接続され、
     前記第一のトランジスタ及び前記第二のトランジスタは、それぞれNチャネル型のバイポーラトランジスタであり、
     前記第三のトランジスタ及び前記第四のトランジスタは、それぞれNチャネル型の電界効果トランジスタであるVCM駆動装置。
    A VCM driving device for driving a voice coil motor,
    A first transistor and a second transistor connected in parallel to a DC power source;
    A third transistor connected in series to the first transistor;
    A fourth transistor connected in series to the second transistor;
    A control unit that controls the first transistor, the second transistor, the third transistor, and the fourth transistor to control a current that flows in a coil that constitutes the voice coil motor, and
    One end of the coil is connected between the first transistor and the third transistor, the other end of the coil is connected between the second transistor and the fourth transistor;
    Each of the first transistor and the second transistor is an N-channel bipolar transistor,
    Each of the third transistor and the fourth transistor is a VCM driving device that is an N-channel field effect transistor.
  2.  請求項1記載のVCM駆動装置と、
     前記直流電源としての電池と、を備える携帯端末。
    The VCM driving device according to claim 1;
    A portable terminal comprising a battery as the DC power source.
  3.  請求項2記載の携帯端末であって、
     前記制御部は、前記コイルに流す電流を間欠的に制御するPWM制御と、前記コイルに流す電流を連続的に制御するリニア制御とを選択的に行う携帯端末。
    The mobile terminal according to claim 2,
    The said control part is a portable terminal which selectively performs PWM control which controls the electric current sent through the said coil intermittently, and the linear control which controls continuously the electric current sent through the said coil.
  4.  請求項3記載の携帯端末であって、
     前記ボイスコイルモータによって駆動される光学系を含む撮像光学系を通して被写体を撮像する撮像部を備え、
     前記制御部は、前記撮像部によるライブビュー画像表示のための撮像期間中は前記PWM制御を行い、記録媒体への記録のための撮像期間中は前記リニア制御を行う携帯端末。
    The mobile terminal according to claim 3,
    An imaging unit that images a subject through an imaging optical system including an optical system driven by the voice coil motor;
    The portable terminal that performs the PWM control during an imaging period for live view image display by the imaging unit and performs the linear control during an imaging period for recording on a recording medium.
  5.  請求項3又は4記載の携帯端末であって、
     前記PWM制御は、前記第三のトランジスタ又は前記第四のトランジスタをオンにした状態で、前記第一のトランジスタ又は前記第二のトランジスタのベース端子に間欠的に電圧を印加する制御である携帯端末。
    The mobile terminal according to claim 3 or 4,
    The PWM control is a control device that intermittently applies a voltage to a base terminal of the first transistor or the second transistor in a state where the third transistor or the fourth transistor is turned on. .
PCT/JP2013/074707 2012-10-26 2013-09-12 Voice coil motor (vcm) drive device and portable terminal WO2014065036A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012236822 2012-10-26
JP2012-236822 2012-10-26

Publications (1)

Publication Number Publication Date
WO2014065036A1 true WO2014065036A1 (en) 2014-05-01

Family

ID=50544416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074707 WO2014065036A1 (en) 2012-10-26 2013-09-12 Voice coil motor (vcm) drive device and portable terminal

Country Status (1)

Country Link
WO (1) WO2014065036A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2511479A (en) * 2012-12-17 2014-09-10 Librae Ltd Interacting toys
US11763843B1 (en) 2022-05-11 2023-09-19 Western Digital Technologies, Inc. VCM PWM to linear mode transition offset optimization to improve PES

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05219789A (en) * 1992-01-31 1993-08-27 Tokyo Electric Co Ltd Change-over mechanism
JP2002184137A (en) * 2000-12-13 2002-06-28 Hitachi Ltd Magnetic disk storage
JP2007244183A (en) * 2006-03-13 2007-09-20 Toshiba Corp Single phase double voltage rectifier circuit and inverter device
JP2009145852A (en) * 2007-11-22 2009-07-02 Fujifilm Corp Automatic focusing device, camera, automatic focusing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05219789A (en) * 1992-01-31 1993-08-27 Tokyo Electric Co Ltd Change-over mechanism
JP2002184137A (en) * 2000-12-13 2002-06-28 Hitachi Ltd Magnetic disk storage
JP2007244183A (en) * 2006-03-13 2007-09-20 Toshiba Corp Single phase double voltage rectifier circuit and inverter device
JP2009145852A (en) * 2007-11-22 2009-07-02 Fujifilm Corp Automatic focusing device, camera, automatic focusing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2511479A (en) * 2012-12-17 2014-09-10 Librae Ltd Interacting toys
US11763843B1 (en) 2022-05-11 2023-09-19 Western Digital Technologies, Inc. VCM PWM to linear mode transition offset optimization to improve PES

Similar Documents

Publication Publication Date Title
US8925399B2 (en) Electronic apparatus use environment detecting method, electronic apparatus performance optimizing method and electronic apparatus
JP5942043B2 (en) Imaging apparatus and focus control method
JPWO2016103962A1 (en) Focus control device, imaging device, focus control method, and focus control program
JP6846575B2 (en) Image blur correction device and imaging device
US11095761B1 (en) Mobile terminal
US10983304B2 (en) Imaging device, focusing control method, and focusing control program
US10863095B2 (en) Imaging apparatus, imaging method, and imaging program
WO2014065036A1 (en) Voice coil motor (vcm) drive device and portable terminal
JPWO2020158070A1 (en) Imaging device, imaging method, and program
JP6364559B2 (en) Image blur correction device, lens device, and imaging device
JPWO2019131934A1 (en) Image blur correction device and imaging device
US10999510B2 (en) Image shake correction device, imaging device, image shake correction method, and image shake correction program
JP2008092200A (en) Photographing device and portable device
JP7147038B2 (en) Display control device, imaging device, display control method, and display control program
CN114977527A (en) Wireless charging mechanism, transmitting end, receiving end, wireless charging method and device
US20210350766A1 (en) Display control device, imaging device, display control method, and display control program
US20230209209A1 (en) Control device, imaging apparatus, control method, and control program
JPWO2014115421A1 (en) Imaging apparatus and operation control method thereof
JP7186854B2 (en) Image display device, image display method, and program
CN216134525U (en) Camera module and mobile terminal
US20230188835A1 (en) Imaging device, imaging instruction method, and imaging instruction program
US20210337113A1 (en) Face region detection device, imaging apparatus, face region detection method, and face region detection program
US20230360222A1 (en) Processing apparatus, processing method, and processing program
JP2023051392A (en) Blur correction device, imaging device, blur correction method, and blur correction program
WO2020158200A1 (en) Imaging device controller, imaging device, imaging device control method, and imaging device control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP