WO2014064979A1 - Mycotoxin adsorbent - Google Patents

Mycotoxin adsorbent Download PDF

Info

Publication number
WO2014064979A1
WO2014064979A1 PCT/JP2013/069792 JP2013069792W WO2014064979A1 WO 2014064979 A1 WO2014064979 A1 WO 2014064979A1 JP 2013069792 W JP2013069792 W JP 2013069792W WO 2014064979 A1 WO2014064979 A1 WO 2014064979A1
Authority
WO
WIPO (PCT)
Prior art keywords
bentonite
mold
montmorillonite
range
adsorbent
Prior art date
Application number
PCT/JP2013/069792
Other languages
French (fr)
Japanese (ja)
Inventor
一則 坂尾
高橋 範行
Original Assignee
水澤化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 水澤化学工業株式会社 filed Critical 水澤化学工業株式会社
Priority to KR1020157008079A priority Critical patent/KR102106406B1/en
Priority to CN201380055928.3A priority patent/CN104754957A/en
Publication of WO2014064979A1 publication Critical patent/WO2014064979A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • C01B33/40Clays
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/20Inorganic substances, e.g. oligoelements
    • A23K20/24Compounds of alkaline earth metals, e.g. magnesium
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/20Inorganic substances, e.g. oligoelements
    • A23K20/28Silicates, e.g. perlites, zeolites or bentonites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area

Definitions

  • the present invention relates to a mold poison adsorbent obtained from bentonite belonging to montmorillonite clay.
  • Bentonite is a typical clay belonging to the montmorillonite clay mainly composed of montmorillonite, has a high affinity for water, has ion exchange properties such as cation exchange capacity, and is an inexpensive substance produced in Japan. Therefore, it is used for various applications including adsorbents. Particularly recently, it has been proposed to use clay such as bentonite as an adsorbent for mold toxins in livestock feed (see Patent Documents 1 to 3). Since bentonite is an inexpensive natural ore produced in Japan, a mold poison adsorbent composed of such a natural ore is extremely useful industrially.
  • JP-T 6-501388 JP 2001-299237 A Japanese Patent Laid-Open No. 8-228693
  • mold poison is a toxic substance that impairs the health of humans and livestock among secondary metabolites produced by mold, and is also called mycotoxin.
  • livestock ingests contaminated grains, etc., and humans ingest the livestock products which often impairs their health, and it is extremely difficult to remove mold toxins from contaminated grains. .
  • an adsorbent that adsorbs such mold toxins is blended in livestock feed, and the mold toxin is adsorbed and excreted in the digestive tract of livestock, thereby avoiding the influence on the living body and the like.
  • mold poisons There are many types of mold poisons, the number of which exceeds 300, but the main ones are aflatoxin and zearalenone. These have been reported to be highly toxic and susceptible to corn contamination such as corn.
  • the above-mentioned natural ore-based mold poison adsorbents such as bentonite exhibit excellent adsorption characteristics for particularly toxic aflatoxin B1 (hereinafter sometimes abbreviated as AfB1), but zearalenone (hereinafter abbreviated as ZEN).
  • AfB1 toxic aflatoxin B1
  • ZEN zearalenone
  • an object of the present invention is to provide a fungus poison adsorbent exhibiting excellent adsorbability not only for aflatoxins but also for zearalenone.
  • Another object of the present invention is to provide a fungus poison adsorbent obtained from inexpensive natural bentonite, which does not require chemical treatment involving drainage treatment such as acid treatment.
  • the present inventors have conducted many studies on the adsorption performance of bentonite produced in nature for fungus poison, and as a result, by using Ca-type bentonite satisfying predetermined physical properties as a mold poison adsorbent, In addition, the inventors have found a novel finding that it exhibits excellent adsorptivity to zearalenone, and has completed the present invention.
  • the Si—O stretching vibration is in the range of 1041 to 1090 cm ⁇ 1 in infrared spectrophotometry, and water is used as the solvent at the median diameter on the volume basis measured by the laser diffraction scattering method.
  • Ca values (D 50 (W)) the ratio of the value of the case where ethanol was the solvent (D 50 (E)) ( D 50 (W) / D 50 to (E)) is in the range of 60 to 110%
  • a mold poison adsorbent comprising a bentonite type is provided.
  • the mold poison adsorbent of the present invention is generally (1) It is a calcined product of Ca-type bentonite, (2) The methylene blue adsorption amount is in the range of 10 to 45 mmol / 100 g. (3) In the X-ray diffraction measurement, the relative area intensity ratio of the X-ray diffraction peak derived from the (06) plane of montmorillonite observed at a plane spacing of 0.148 to 0.153 nm is 40% or more, (4) The specific surface area is 80 to 200 m 2 / g, (5) The ignition loss is in the range of 2 to 10% by mass, Is preferred.
  • the fungus poison adsorbent of the present invention is used as a feed formulation, adsorbs and removes aflatoxin and zearalenone in the digestive tract of livestock, prevents subsequent contamination, and prevents health damage to the living body.
  • the mold poison adsorbent of the present invention exhibits high adsorptivity to aflatoxin B1, which is particularly toxic among aflatoxins, as well as excellent adsorptivity to zearalenone, as shown in the experimental examples described below. Indicates.
  • the mold poison adsorbent of the present invention is made of Ca-type bentonite, and its Si—O stretching vibration is in the range of 1041 to 1090 cm ⁇ 1 in infrared spectrophotometry, and is based on a volume basis measured by a laser diffraction scattering method. It is necessary that the ratio (D 50 (W) / D 50 (E)) between the value when water is used as the solvent and the value when ethanol is used as the solvent at the median diameter is in the range of 60 to 110%. (Hereinafter, this ratio may be referred to as a median diameter ratio).
  • Na type bentonite is known in addition to Ca type bentonite.
  • Ca-type bentonite has small crystallites and easily obtains particles having a large specific surface area.
  • the mold poison adsorbent of the present invention can be obtained by firing or acid treatment.
  • Na-type bentonite has large crystallites, and it is difficult to obtain particles with a large specific surface area, and in order to have sufficient adsorption performance against mold poison, there are many steps such as firing after acid treatment in advance. It is considered necessary. For this reason, Ca-type bentonite is used in the present invention.
  • the Si—O stretching vibration in montmorillonite is in the range of 1020 to 1040 cm ⁇ 1 , but in the mold poison adsorbent of the present invention, the Si—O stretching vibration of the basic skeleton is in the range of 1041 to 1090 cm ⁇ 1. Higher than the vibrational energy of Si—O bond of montmorillonite. This suggests that the strength of the Si—O bond is higher than that of montmorillonite, and as a result, it is considered that the organic affinity is high and the adsorptivity to hydrophobic zearalenone is high.
  • the mold poison adsorbent of the present invention is required to be a Ca-type bentonite having a median diameter ratio D 50 (W) / D 50 (E) in the range of 60 to 110%.
  • D 50 (W) / D 50 (E) a median diameter ratio
  • the median diameter ratio takes a value in such a range, it means that the median diameter in an aqueous solvent is close to that in an ethanol solvent. That is, it shows that the property of being dispersed in water is weak and hydrophobic compared to the later-described raw material bentonite having a small median diameter ratio, and this indicates the adsorptivity to hydrophobic zearalenone. I think that it is raising.
  • the mold poison adsorbent of the present invention preferably has a methylene blue adsorption amount in the range of 10 to 45 mmol / 100 g.
  • the amount of methylene blue adsorbed is an index for determining the montmorillonite-based clay layer between layers based on the amount of methylene blue adsorbed.
  • the mold poison adsorbent of the present invention has a relative area intensity ratio of 40% or more of the diffraction peak derived from the (06) plane of montmorillonite observed at a plane spacing of 0.148 to 0.153 nm in the X-ray diffraction image. It is preferable to have
  • the relative area intensity ratio of such a diffraction peak is one index for quantifying the basic montmorillonite skeleton in bentonite.
  • the mold poison adsorbent of the present invention preferably has a specific surface area of 80 to 200 m 2 / g.
  • the specific surface area is an index that affects the amount of adsorption in the adsorptivity to the mold poison.
  • this value is small, the amount of adsorption decreases, resulting in unsatisfactory adsorptivity regardless of affinity such as hydrophilicity or hydrophobicity.
  • this value is in the above range, an adsorbent capable of sufficiently adsorbing mold poison can be obtained.
  • the mold poison adsorbent of the present invention preferably has a loss on ignition in the range of 2 to 10% by mass.
  • the loss on ignition mainly indicates the amount of hydroxyl groups in the bentonite (SiOH amount).
  • SiOH amount the amount of hydroxyl groups in the bentonite. The greater the loss on ignition, the more SiOH groups are present in the bentonite, and the lower the loss on ignition, the more SiOH. It means that there are few groups.
  • bentonite has Si—O stretching vibration, median diameter ratio, methylene blue adsorption amount, (06) relative surface area intensity ratio and ignition loss within the above ranges.
  • montmorillonite which is the main component of bentonite, is moderately present, and thus exhibits hydrophobicity as well as adsorptivity. That is, the present inventors presume that due to such properties, the adsorptivity to aflatoxin B1 and the adsorptivity to zearalenone are compatible.
  • this bentonite has a moderate montmorillonite basic structure, so that it maintains an interlayer (which will be described later) that causes adsorptivity to aflatoxin B1, and maintains some specific surface area and pores. Has been. Therefore, the adsorptivity to aflatoxin is ensured.
  • ⁇ Aflatoxin is hydrophilic
  • zearalenone is hydrophobic.
  • montmorillonite-based clays such as bentonite are hydrophilic, and such properties are considered to be a factor that lowers the adsorptivity to zearalenone.
  • bentonite that satisfies the parameters specified in the present invention has been altered to hydrophobicity while maintaining a suitable layer structure between layers and a porous surface structure, and as a result, good adsorption to zearalenone. It is considered to show sex.
  • the fungus poison adsorbent of the present invention may be a Ca-type bentonite that satisfies the above-mentioned physical properties, and the production method includes various methods such as a method of firing the raw material Ca-type bentonite and a method of subjecting to acid treatment. It is conceivable and not limited at all. In this case, a chemical treatment such as acid treatment is not particularly required, and no special drainage treatment is required during production, so that the advantage of a natural mineral that is inexpensive is maximized. be able to.
  • the mold poison adsorbent of the present invention is used as a feed composition for livestock, and adsorbs and removes highly toxic aflatoxins and zearalenone in the digestive tract of livestock (for example, in the intestine), thereby effectively suppressing the health damage of the living body. .
  • the infrared-spectral-spectrum figure of the raw material bentonite obtained in Experimental example 1 and the mold poison adsorbent of this invention is shown.
  • the mold poison adsorbent of the present invention can be obtained by using Ca-type bentonite as a raw material and performing an appropriate treatment as necessary.
  • Bentonite belongs to montmorillonite clay and is a clay mainly composed of montmorillonite, which is a kind of dioctahedral smectite. Those containing a large amount of opal after montmorillonite are sometimes called acid clay.
  • Such montmorillonite has a layered structure consisting of SiO 4 tetrahedral layers -AlO 6 octahedral layer -SiO 4 tetrahedra layer, a part of Al of these octahedral layer is Mg and Fe (II), tetrahedral
  • a part of Si in the layer has a basic skeleton in which Al is replaced with Al by a different metal element having a lower valence.
  • a negative charge is generated in the isomorphous substituted portion of the basic skeleton, but there is a balanced amount of cation and water between these laminated layers, and the charge is neutralized.
  • the basic structure of montmorillonite composed of a basic skeleton and laminated layers exhibits a cation exchange capacity according to the type and amount of such isomorphous substitution elements and interlayer ions.
  • Such a basic structure of montmorillonite has the property of exhibiting hydrophilicity due to the organic affinity of the layer surface where the Si—O—Si bond is continuous and the polarity of the isomorphous substitution site.
  • Si-O stretching vibration in the montmorillonite is in the range of 1020 ⁇ 1040 cm -1, and that of opal is near 1100 cm -1.
  • Na-type bentonite and Ca-type bentonite including clay generally referred to as acid clay
  • Na-type bentonite has a high Na content between the laminated layers, the pH of the dispersion when dispersed in water is as high as 9.5 or more in a 5% by mass suspension, for example, and the swelling power against water is also 15 mL / 2 g or more. high. Further, Na-type bentonite has a property of gelling when a large amount of water is supplied and solidifying when dried.
  • Ca-type bentonite has a large Ca content and proton amount between laminated layers, and the pH of the dispersion when dispersed in water is as low as 4.5 to 9.5, for example, in a 5% by mass suspension. Swelling power is as low as about 3 to 10 mL / 2 g. Further, gelation does not occur even when a large amount of water is supplied.
  • Na-type bentonite has large crystallites, and particles having a large specific surface area cannot be obtained only by firing. Therefore, the adsorptivity to mold poison is not as good as that of Ca-type bentonite (Experimental Example H-2). reference).
  • Ca-type bentonite has small crystallites and particles with a large specific surface area, for example, an adsorbent composed of particles having high adsorptivity to mold poisons, for example, by only one stage of baking or acid treatment. Can be obtained. Therefore, in the present invention, Ca-type bentonite is used as a raw material.
  • the chemical composition in terms of oxide of Ca-type bentonite used as a raw material bentonite is generally as follows.
  • the parenthesized examples are Na-type bentonite composition examples.
  • SiO 2 50 to 75% by mass (Na type: 61.7)
  • Al 2 O 3 12 to 25% by mass (Na type: 22.2)
  • MgO 1 to 8% by mass (Na type: 3.3)
  • Fe 2 O 3 0.5 to 10% by mass (Na type: 2.2)
  • CaO 1 to 5% by mass (Na type: 0.6) Na 2 O: 0 to 3% by mass (Na type: 3.6)
  • K2O 0 to 1.5% by mass (Na type: 0.1)
  • Other metal oxides 2.5 mass% or less (Na type: 0.3)
  • Loss on ignition 5 to 15% by mass (Na type: 6.3)
  • the swelling power of Ca-type bentonite is lower than that of Na-type bentonite.
  • cation exchange capacity and hydrophilicity expressed by isomorphous substitution for Si and Al in the basic skeleton of montmorillonite are factors that show absorptivity to aflatoxin, and hydrophilicity inhibits adsorptivity to zearalenone. It is a factor. For this reason, in many cases, it is necessary to increase the adsorptivity to zearalenone by performing an appropriate treatment according to the properties of the raw material bentonite which varies depending on the production area.
  • the mold poison adsorbent of the present invention needs to be a Ca-type bentonite satisfying predetermined physical properties.
  • This method is not particularly limited, and examples thereof include a method of firing raw material bentonite, a method of subjecting to acid treatment, and a method of ion exchange.
  • the method by baking is suitable from the viewpoint of eliminating the drainage treatment and being excellent in economic efficiency.
  • the raw material bentonite is coarsely pulverized and subjected to a water tank or a wind tank to remove impurities, and then fired, whereby a bentonite fired product that becomes the fungus poison adsorbent of the present invention can be obtained.
  • Such firing is not performed to such an extent that it completely sinters, but is performed at a temperature at which the basic structure of montmorillonite is maintained to some extent, specifically 200 to 800 ° C., preferably 300 to 600 ° C., more preferably 400 It is carried out at ⁇ 600 ° C., and the calcination time is 0.5 hours or more, preferably about 0.5 to 4 hours.
  • the firing temperature and time may be set so that the desired Si—O stretching vibration, methylene blue adsorption amount and ignition loss can be obtained.
  • the use form of the fungus poison adsorbent of the present invention is not limited at all as long as a predetermined fungus poison is adsorbed and removed. Generally, it is used as a composition of livestock feed, for example, per 100 parts by weight of feed. It is preferable to use an appropriate amount such as 0.1 to 1.0 part by mass in the feed. Thereby, AfB1 and ZEN that are contaminated with feed such as corn and are extremely harmful to the living body can be effectively adsorbed and removed in the digestive tract of livestock, and health damage caused by these mold poisons can be effectively prevented.
  • the bentonite fired product according to one embodiment of the present invention is fired at a temperature at which the montmorillonite basic skeleton is maintained to some extent, for example, in its X-ray diffraction image, the spacing between planes is 0.148 to 0.153 nm.
  • a diffraction peak derived from the (06) plane of montmorillonite is always observed.
  • the relative area intensity ratio (%) calculated from the area intensity of the diffraction peak of Kunipia F (Na-type bentonite manufactured by Kunimine Industries) as a standard substance as 100 is montmorillonite.
  • ICDD 13-135, (0010) and (300) are indexed, but here they are collectively displayed as (06) for convenience.
  • a diffraction peak derived from the (001) plane of montmorillonite may not be observed. This is because the laminated layers shrink due to firing.
  • the Si—O stretching vibration of the basic skeleton is in the range of 1041 to 1090 cm ⁇ 1 , and thus is higher than the vibration energy of the Si—O bond of the unfired montmorillonite basic skeleton.
  • the Si—O bond distance of the montmorillonite basic skeleton is short and the covalent bond is higher than usual, and as a result, the organic affinity of the layer surface where the Si—O—Si bond is connected increases. It is considered that the adsorptivity to hydrophobic zearalenone is enhanced.
  • the median diameter ratio D 50 (W) / D 50 (E) is in the range of 60 to 110%.
  • montmorillonite which is a main component of Ca-type bentonite, has the property of forming dispersed fine particles in an aqueous solvent, but this property is not exhibited in an ethanol solvent. Therefore, in bentonite in which a large amount of montmorillonite remains, the median diameter in the aqueous solvent is smaller than that in the ethanol solvent, and thus the median diameter ratio is also a small value.
  • the bentonite fired product of the present embodiment since the basic structure of montmorillonite has been appropriately altered by firing, it loses the property of being dispersed into fine particles in an aqueous solvent, and the median diameter is also close to that in an ethanol solvent. The value of the median diameter ratio increases. It is considered that the hydrophilic montmorillonite is changed to hydrophobic as described above, thereby improving the adsorptivity to the hydrophobic zearalenone.
  • the methylene blue adsorption amount of such a bentonite fired product is preferably in the range of 10 to 45 mmol / 100 g.
  • the fact that the montmorillonite structure remains so that the amount of methylene blue adsorbed becomes such a value is a major factor that maintains the adsorptivity to AfB1 while firing.
  • the amount of methylene blue adsorbed is larger than the above range, the firing is insufficient, and the ignition loss described below becomes a large value.
  • the adsorptivity to AfB1 can be satisfied.
  • the loss on ignition of this bentonite fired product is preferably in the range of 2 to 10% by mass, more preferably 2 to 8.5% by mass, most preferably 2 It is in the range of ⁇ 8% by mass.
  • the amount of SiOH is reduced and the hydrophobicity is increased so that the loss on ignition is at this level while the basic structure of montmorillonite remains, improving the adsorptivity to hydrophobic ZEN. I think that it is a big factor of doing.
  • the loss on ignition is larger than the above range, the firing is insufficient, and as in the case where the amount of methylene blue adsorbed is excessively large, the amount of SiOH is increased, so that the adsorptivity to AfB1 is good.
  • the adsorbability with respect to becomes unsatisfactory.
  • the ignition loss is smaller than the above range, since the calcination is excessively performed, the disappearance of the montmorillonite basic structure and the large decrease in the specific surface area are caused as in the case where the methylene blue adsorption amount is small, and AfB1 and ZEN The adsorptivity to any of these is unsatisfactory.
  • the bentonite calcined product the results of firing is performed moderately, 80 ⁇ 200m 2 / g, in particular shows a specific surface area of 90 ⁇ 200m 2 / g, thereby, for any AfB1 and ZEN Excellent adsorption performance is demonstrated.
  • Specific surface area It measured using Tri Star 3000 made from Micromeritics. The specific surface area was analyzed by the BET method from the adsorption side nitrogen adsorption isotherm having a specific pressure of 0.05 to 0.25.
  • Loss on ignition (mass%) (ad ⁇ bc) / (ad) ⁇ 100
  • a is the mass of the sample before firing
  • b is the mass of the sample after firing
  • c is the mass of the sample before drying
  • d is the weight of the sample after drying
  • a to d mean the mass of only the sample excluding the mass of a tare such as a crucible or a weighing bottle.
  • ZEN adsorption rate measurement Add 25 mg of adsorbent to 5 mL of 1 ppm ZE aqueous solution, shake for 1 hour, centrifuge, and use the supernatant from Shimadzu Corporation HPLC Prominence and the fluorescence detector RF-20A to determine the residual concentration. It was measured. The adsorption rate was calculated from 100 ⁇ (initial concentration ⁇ residual concentration) / initial concentration.
  • AfB1 adsorption rate measurement 25 mg of the adsorbent was put into 10 mL of 5 ppm AfB1 aqueous solution, shaken at 25 ° C. for 2 hours, filtered through a filter paper and a 0.20 ⁇ m membrane filter made of PTFE, and the obtained liquid was made by JASCO Corporation UV The residual concentration was measured using a visible spectrophotometer JASCO V-570. The adsorption rate was calculated from 100 ⁇ (initial concentration ⁇ residual concentration) / initial concentration.
  • Example 5 The acid clay used in Experimental Example 2 was acid-treated to obtain acid-activated montmorillonite (5-1) having a specific surface area of 318 m 2 / g and a pH of 3.6, and calcined at 500 ° C. for 2 hours (5-2) did.
  • the physical properties were measured and the results are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Husbandry (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Fodder In General (AREA)

Abstract

A mycotoxin adsorbent according to the present invention comprises a Ca bentonite having a Si-O stretching vibration falling within the range from 1041 to 1090 cm-1 as measured by infrared spectroscopy and a medium diameter ratio (D50(W)/D50(E)) falling within the range from 60 to 110% by volume as measured by a laser diffraction scattering method. The mycotoxin adsorbent can be produced using an inexpensive naturally-occurring bentonite as a raw material and exhibits excellent aflatoxin- and zearalenone-adsorbing performance.

Description

カビ毒吸着剤Mold poison adsorbent
 本発明は、モンモリロナイト系粘土に属するベントナイトから得られるカビ毒吸着剤に関するものである。 The present invention relates to a mold poison adsorbent obtained from bentonite belonging to montmorillonite clay.
 ベントナイトは、モンモリロナイトを主成分とするモンモリロナイト系粘土に属する代表的な粘土であり、水に対する親和性が高く、カチオン交換能などのイオン交換性を有しており、しかも国内で産出する廉価な物質であることから吸着剤をはじめ種々の用途に使用されている。
 特に最近では、ベントナイト等の粘土をカビ毒の吸着剤として家畜の飼料に配合して使用することが提案されている(特許文献1~3参照)。ベントナイトは、日本国内でも産出する廉価な天然鉱石であることから、このような天然鉱石からなるカビ毒吸着剤は、工業的に極めて有用である。
Bentonite is a typical clay belonging to the montmorillonite clay mainly composed of montmorillonite, has a high affinity for water, has ion exchange properties such as cation exchange capacity, and is an inexpensive substance produced in Japan. Therefore, it is used for various applications including adsorbents.
Particularly recently, it has been proposed to use clay such as bentonite as an adsorbent for mold toxins in livestock feed (see Patent Documents 1 to 3). Since bentonite is an inexpensive natural ore produced in Japan, a mold poison adsorbent composed of such a natural ore is extremely useful industrially.
特表平6-501388号公報JP-T 6-501388 特開2001-299237号公報JP 2001-299237 A 特開平8-228693号公報Japanese Patent Laid-Open No. 8-228693
 ところで、カビ毒とは、カビが産生する二次代謝物の中で、人や家畜の健康を損なう有毒物質であり、マイコトキシンとも呼ばれている。家畜が汚染された穀物などを摂取することで、また人がその畜産物を摂取することで、その健康を損なうケースが多く、また、汚染された穀物などからカビ毒を除去することは極めて難しい。このため、このようなカビ毒を吸着する吸着剤を家畜の飼料に配合し、家畜の消化管内でカビ毒を吸着し排泄させることにより、生体等への影響を回避しようというものである。 By the way, mold poison is a toxic substance that impairs the health of humans and livestock among secondary metabolites produced by mold, and is also called mycotoxin. In many cases, livestock ingests contaminated grains, etc., and humans ingest the livestock products, which often impairs their health, and it is extremely difficult to remove mold toxins from contaminated grains. . For this reason, an adsorbent that adsorbs such mold toxins is blended in livestock feed, and the mold toxin is adsorbed and excreted in the digestive tract of livestock, thereby avoiding the influence on the living body and the like.
 カビ毒には、多くの種類があり、その数は300を超えているが、その主なものに、アフラトキシンやゼアラレノンがある。これらは毒性が強く、トウモロコシなどの穀物汚染を生じ易いことが報告されている。 There are many types of mold poisons, the number of which exceeds 300, but the main ones are aflatoxin and zearalenone. These have been reported to be highly toxic and susceptible to corn contamination such as corn.
 前述したベントナイト等の天然鉱石系のカビ毒吸着剤は、特に毒性の強いアフラトキシンB1(以下、AfB1と略すことがある)に対して優れた吸着特性を示すものの、ゼアラレノン(以下、ZENと略すことがある)に対する吸着性はあまり報告されていない。
 僅かに、上記特許文献3中には、酸活性化モンロリロナイトがゼアラレノンに対する吸着性に関する実験結果が報告されているものの、アフラトキシンに対する吸着性に比べればかなり劣っている。
The above-mentioned natural ore-based mold poison adsorbents such as bentonite exhibit excellent adsorption characteristics for particularly toxic aflatoxin B1 (hereinafter sometimes abbreviated as AfB1), but zearalenone (hereinafter abbreviated as ZEN). There are few reports of adsorptivity to
Slightly, although the above-mentioned Patent Document 3 reports an experimental result on the adsorptivity of acid-activated montmorillonite to zearalenone, it is considerably inferior to the adsorptivity to aflatoxin.
 従って、本発明の目的は、アフラトキシンに対してのみならず、ゼアラレノンに対しても優れた吸着性を示すカビ毒吸着剤を提供することにある。
 本発明の他の目的は、酸処理などの排液処理を伴う薬剤処理が不要な、廉価な天然ベントナイトから得られるカビ毒吸着剤を提供することにある。
Accordingly, an object of the present invention is to provide a fungus poison adsorbent exhibiting excellent adsorbability not only for aflatoxins but also for zearalenone.
Another object of the present invention is to provide a fungus poison adsorbent obtained from inexpensive natural bentonite, which does not require chemical treatment involving drainage treatment such as acid treatment.
 本発明者等は、天然に産出したベントナイトのカビ毒に対する吸着性能について多くの実験を行い検討した結果、所定の物性を満足するCa型ベントナイトをカビ毒吸着剤として用いることにより、アフラトキシンに対してのみならず、ゼアラレノンに対しても優れた吸着性を示すという新規な知見を見出し、本発明を完成するに至った。 The present inventors have conducted many studies on the adsorption performance of bentonite produced in nature for fungus poison, and as a result, by using Ca-type bentonite satisfying predetermined physical properties as a mold poison adsorbent, In addition, the inventors have found a novel finding that it exhibits excellent adsorptivity to zearalenone, and has completed the present invention.
 本発明によれば、赤外分光光度測定でSi-O伸縮振動が1041~1090cm-1の範囲にあり、レーザ回折散乱法で測定される体積基準での中位径において水を溶媒とした場合の値(D50(W))とエタノールを溶媒とした場合の値(D50(E))の比(D50(W)/D50(E))が60~110%の範囲にあるCa型ベントナイトからなるカビ毒吸着剤が提供される。 According to the present invention, the Si—O stretching vibration is in the range of 1041 to 1090 cm −1 in infrared spectrophotometry, and water is used as the solvent at the median diameter on the volume basis measured by the laser diffraction scattering method. Ca values (D 50 (W)) the ratio of the value of the case where ethanol was the solvent (D 50 (E)) ( D 50 (W) / D 50 to (E)) is in the range of 60 to 110% A mold poison adsorbent comprising a bentonite type is provided.
 本発明のカビ毒吸着剤は、一般に、
(1)Ca型ベントナイトの焼成物であること、
(2)メチレンブルー吸着量が10~45mmol/100gの範囲にあること、
(3)X線回折測定では、面間隔0.148~0.153nmに観測されるモンモリロナイトの(06)面に由来するX線回折ピークの相対面積強度比が40%以上であること、
(4)比表面積が80~200m/gであること、
(5)強熱減量が2~10質量%の範囲にあること、
が好適である。
The mold poison adsorbent of the present invention is generally
(1) It is a calcined product of Ca-type bentonite,
(2) The methylene blue adsorption amount is in the range of 10 to 45 mmol / 100 g.
(3) In the X-ray diffraction measurement, the relative area intensity ratio of the X-ray diffraction peak derived from the (06) plane of montmorillonite observed at a plane spacing of 0.148 to 0.153 nm is 40% or more,
(4) The specific surface area is 80 to 200 m 2 / g,
(5) The ignition loss is in the range of 2 to 10% by mass,
Is preferred.
 本発明のカビ毒吸着剤は飼料配合物として使用され、家畜の消化管内でアフラトキシンやゼアラレノンを吸着除去し、その後の汚染を防止し、生体に対する健康被害を防止する。 The fungus poison adsorbent of the present invention is used as a feed formulation, adsorbs and removes aflatoxin and zearalenone in the digestive tract of livestock, prevents subsequent contamination, and prevents health damage to the living body.
 本発明のカビ毒吸着剤は、後述する実験例に示されているように、アフラトキシンの中でも特に毒性の強いアフラトキシンB1に対して高い吸着性を示すばかりか、ゼアラレノンに対しても優れた吸着性を示す。 The mold poison adsorbent of the present invention exhibits high adsorptivity to aflatoxin B1, which is particularly toxic among aflatoxins, as well as excellent adsorptivity to zearalenone, as shown in the experimental examples described below. Indicates.
 本発明のカビ毒吸着剤は、Ca型ベントナイトからなり、赤外分光光度測定においてそのSi-O伸縮振動が1041~1090cm-1の範囲にあるとともに、レーザ回折散乱法で測定される体積基準での中位径において水を溶媒とした場合の値とエタノールを溶媒とした場合の値の比(D50(W)/D50(E))が60~110%の範囲にあることが必要である(以下、この比を中位径比と表記することがある)。 The mold poison adsorbent of the present invention is made of Ca-type bentonite, and its Si—O stretching vibration is in the range of 1041 to 1090 cm −1 in infrared spectrophotometry, and is based on a volume basis measured by a laser diffraction scattering method. It is necessary that the ratio (D 50 (W) / D 50 (E)) between the value when water is used as the solvent and the value when ethanol is used as the solvent at the median diameter is in the range of 60 to 110%. (Hereinafter, this ratio may be referred to as a median diameter ratio).
 以下、上記の構成要件について説明する。ベントナイトとしては、Ca型ベントナイトの他にNa型ベントナイトが知られている。このうちCa型ベントナイトは結晶子が小さく、比表面積の大きな粒子を得やすいため、例えば焼成や酸処理を行うことで、本発明のカビ毒吸着剤を得ることができる。一方Na型ベントナイトは結晶子が大きく、比表面積の大きな粒子が得難く、カビ毒に対し十分な吸着性能を持たせるには、例えば予め酸処理を行った後に焼成を行うなど、多くの工程が必要と考えられる。このため本発明ではCa型ベントナイトを用いる。 Hereinafter, the above configuration requirements will be described. As the bentonite, Na type bentonite is known in addition to Ca type bentonite. Among these, Ca-type bentonite has small crystallites and easily obtains particles having a large specific surface area. For example, the mold poison adsorbent of the present invention can be obtained by firing or acid treatment. On the other hand, Na-type bentonite has large crystallites, and it is difficult to obtain particles with a large specific surface area, and in order to have sufficient adsorption performance against mold poison, there are many steps such as firing after acid treatment in advance. It is considered necessary. For this reason, Ca-type bentonite is used in the present invention.
 また、モンモリロナイトにおけるSi-O伸縮振動は1020~1040cm-1の範囲にあるが、本発明のカビ毒吸着剤においては、基本骨格のSi-O伸縮振動が1041~1090cm-1の範囲にあるため、モンモリロナイトのSi-O結合の振動エネルギーより高い。このことは、Si-O結合の強さがモンモリロナイトに比して高いことを示唆しており、その結果として有機親和性が高く、疎水性のゼアラレノンに対して高い吸着性を示すものと考える。 Further, the Si—O stretching vibration in montmorillonite is in the range of 1020 to 1040 cm −1 , but in the mold poison adsorbent of the present invention, the Si—O stretching vibration of the basic skeleton is in the range of 1041 to 1090 cm −1. Higher than the vibrational energy of Si—O bond of montmorillonite. This suggests that the strength of the Si—O bond is higher than that of montmorillonite, and as a result, it is considered that the organic affinity is high and the adsorptivity to hydrophobic zearalenone is high.
 また、本発明のカビ毒吸着剤は、中位径比D50(W)/D50(E)が60~110%の範囲にあるCa型ベントナイトであることが必要である。中位径比がこのような範囲の値をとることは、水溶媒中での中位径がエタノール溶媒中でのそれに近いことを意味する。即ち、この中位径比が小さい値にある後述の原料ベントナイトに比して、水中で分散する性質が弱く、疎水性であることを示しており、このことが、疎水性のゼアラレノンに対する吸着性を高めているものと考える。 The mold poison adsorbent of the present invention is required to be a Ca-type bentonite having a median diameter ratio D 50 (W) / D 50 (E) in the range of 60 to 110%. When the median diameter ratio takes a value in such a range, it means that the median diameter in an aqueous solvent is close to that in an ethanol solvent. That is, it shows that the property of being dispersed in water is weak and hydrophobic compared to the later-described raw material bentonite having a small median diameter ratio, and this indicates the adsorptivity to hydrophobic zearalenone. I think that it is raising.
 以下、本発明の好適な条件について説明する。本発明のカビ毒吸着剤は、そのメチレンブルー吸着量が10~45mmol/100gの範囲にあることが好適である。 Hereinafter, preferable conditions of the present invention will be described. The mold poison adsorbent of the present invention preferably has a methylene blue adsorption amount in the range of 10 to 45 mmol / 100 g.
 即ち、メチレンブルー吸着量は、メチレンブルーの吸着量によりモンモリロナイト系粘土の積層層間を定量する一つの指標であり、この吸着量が多いほど、ベントナイト中にモンモリロナイト積層層間が多く存在し、この吸着量が少ないほど、モンモリロナイト積層層間が少ないことを示す。 That is, the amount of methylene blue adsorbed is an index for determining the montmorillonite-based clay layer between layers based on the amount of methylene blue adsorbed. The larger the amount of adsorbed, the more montmorillonite layered layers existed in the bentonite and the less this amount of adsorbed. It shows that there are few montmorillonite laminated layers.
 また、本発明のカビ毒吸着剤は、そのX線回折像において面間隔0.148~0.153nmに観測されるモンモリロナイトの(06)面に由来する回折ピークが40%以上の相対面積強度比を持つことが好適である。 In addition, the mold poison adsorbent of the present invention has a relative area intensity ratio of 40% or more of the diffraction peak derived from the (06) plane of montmorillonite observed at a plane spacing of 0.148 to 0.153 nm in the X-ray diffraction image. It is preferable to have
 即ち、このような回折ピークの相対面積強度比は、ベントナイト中のモンモリロナイト基本骨格を定量する一つの指標であり、この強度比が大きいほど、ベントナイト中にモンモリロナイト基本骨格が多く存在し、この強度比が小さいほど、モンモリロナイト基本骨格が少ないことを示す。 That is, the relative area intensity ratio of such a diffraction peak is one index for quantifying the basic montmorillonite skeleton in bentonite. The larger the intensity ratio, the more montmorillonite basic skeleton exists in bentonite. It shows that there are few montmorillonite basic frame | skeleton, so that is small.
 また、本発明のカビ毒吸着剤は、比表面積が80~200m/gであることが好適である。 The mold poison adsorbent of the present invention preferably has a specific surface area of 80 to 200 m 2 / g.
 即ち、比表面積は、カビ毒に対する吸着性において、その吸着量に影響を与える指標である。この値が小さい場合は、吸着量が少なくなる結果、親水性若しくは疎水性等の親和性にかかわらず、吸着性は不満足となってしまう。この値が上記のような範囲にあることによって、カビ毒を充分に吸着することができる吸着剤となり得るのである。 That is, the specific surface area is an index that affects the amount of adsorption in the adsorptivity to the mold poison. When this value is small, the amount of adsorption decreases, resulting in unsatisfactory adsorptivity regardless of affinity such as hydrophilicity or hydrophobicity. When this value is in the above range, an adsorbent capable of sufficiently adsorbing mold poison can be obtained.
 また、本発明のカビ毒吸着剤は、その強熱減量が2~10質量%の範囲にあることが好適である。 Also, the mold poison adsorbent of the present invention preferably has a loss on ignition in the range of 2 to 10% by mass.
 即ち、強熱減量は、主としてベントナイト中の水酸基量(SiOH量)を示すものであり、この強熱減量が大きいほどベントナイト中にSiOH基が多く存在しており、強熱減量が小さいほど、SiOH基が少ないことを意味する。 That is, the loss on ignition mainly indicates the amount of hydroxyl groups in the bentonite (SiOH amount). The greater the loss on ignition, the more SiOH groups are present in the bentonite, and the lower the loss on ignition, the more SiOH. It means that there are few groups.
 上記の説明から理解されるように、ベントナイトが上記のような範囲のSi-O伸縮振動、中位径比、メチレンブルー吸着量、(06)面相対面積強度比及び強熱減量を有しているということは、ベントナイトの主成分であるモンモリロナイト基本構造が適度に存在することで、吸着性と同時に疎水性を示すことを意味している。即ち、本発明者等は、このような性質により、アフラトキシンB1に対する吸着性とゼアラレノンに対する吸着性が両立されたものと推定している。 As understood from the above description, bentonite has Si—O stretching vibration, median diameter ratio, methylene blue adsorption amount, (06) relative surface area intensity ratio and ignition loss within the above ranges. This means that the basic structure of montmorillonite, which is the main component of bentonite, is moderately present, and thus exhibits hydrophobicity as well as adsorptivity. That is, the present inventors presume that due to such properties, the adsorptivity to aflatoxin B1 and the adsorptivity to zearalenone are compatible.
 この点について説明すると、このベントナイトは、モンモリロナイト基本構造が適度に存在しているため、アフラトキシンB1に対する吸着性の要因となる(後述する)積層層間が保持され、ある程度の比表面積や細孔も維持されている。従って、アフラトキシンに対する吸着性が確保されている。 Explaining this point, this bentonite has a moderate montmorillonite basic structure, so that it maintains an interlayer (which will be described later) that causes adsorptivity to aflatoxin B1, and maintains some specific surface area and pores. Has been. Therefore, the adsorptivity to aflatoxin is ensured.
 アフラトキシンは親水性であるのに対して、ゼアラレノンは疎水性である。通常、ベントナイト等のモンモリロナイト系粘土は親水性であり、このような性質がゼアラレノンに対する吸着性を低める要因になっているものと考えられる。しかるに、本発明に規定するパラメータを満足するベントナイトは、積層層間や多孔質の表面構造が適度に維持されていながら、疎水性に変質したものであり、この結果、ゼアラレノンに対しても良好な吸着性を示すものと考えられる。 ¡Aflatoxin is hydrophilic, whereas zearalenone is hydrophobic. Usually, montmorillonite-based clays such as bentonite are hydrophilic, and such properties are considered to be a factor that lowers the adsorptivity to zearalenone. However, bentonite that satisfies the parameters specified in the present invention has been altered to hydrophobicity while maintaining a suitable layer structure between layers and a porous surface structure, and as a result, good adsorption to zearalenone. It is considered to show sex.
 本発明のカビ毒吸着剤は、上述した各物性を満足するCa型ベントナイトであれば良く、製造方法としては、原料Ca型ベントナイトを焼成する方法や、酸処理に付す方法等、種々の方法が考えられ、何ら限定されるものではない。好適には焼成による方法で、この場合は酸処理などの薬剤処理は特に必要とされず、製造に際して格別の排液処理は生じないため、廉価であるという天然産鉱物の利点を最大限に活かすことができる。 The fungus poison adsorbent of the present invention may be a Ca-type bentonite that satisfies the above-mentioned physical properties, and the production method includes various methods such as a method of firing the raw material Ca-type bentonite and a method of subjecting to acid treatment. It is conceivable and not limited at all. In this case, a chemical treatment such as acid treatment is not particularly required, and no special drainage treatment is required during production, so that the advantage of a natural mineral that is inexpensive is maximized. be able to.
 本発明のカビ毒吸着剤は、家畜用の飼料配合物として使用され、家畜の消化管内(例えば腸内)で毒性の強いアフラトキシンやゼアラレノンを吸着除去し、生体の健康被害を効果的に抑制する。 The mold poison adsorbent of the present invention is used as a feed composition for livestock, and adsorbs and removes highly toxic aflatoxins and zearalenone in the digestive tract of livestock (for example, in the intestine), thereby effectively suppressing the health damage of the living body. .
実験例1で得られた原料ベントナイトおよび本発明のカビ毒吸着剤の赤外分光スペクトル図を示す。The infrared-spectral-spectrum figure of the raw material bentonite obtained in Experimental example 1 and the mold poison adsorbent of this invention is shown. 実験例1-5で得られた本発明のカビ毒吸着剤のX線回折像(実線)、および実験例H-2で得られたNa型ベントナイトの焼成物のX線回折像(点線)を示す。The X-ray diffraction image (solid line) of the fungus poison adsorbent of the present invention obtained in Experimental Example 1-5 and the X-ray diffraction image (dotted line) of the fired Na-type bentonite obtained in Experimental Example H-2 Show.
 本発明のカビ毒吸着剤は、Ca型ベントナイトを原料とし、必要に応じて適当な処理を行うことで得ることができる。 The mold poison adsorbent of the present invention can be obtained by using Ca-type bentonite as a raw material and performing an appropriate treatment as necessary.
<原料ベントナイト>
 ベントナイトとは、モンモリロナイト系粘土に属し、ジオクタヘドラル型スメクタイトの一種であるモンモリロナイトを主成分とする粘土である。モンモリロナイトに次いでオパールを多く含有するものは、特に酸性白土と呼ばれることもある。
 かかるモンモリロナイトは、SiO四面体層-AlO八面体層-SiO四面体層からなる層状構造を有し、これらの八面体層のAlの一部がMgやFe(II)に、四面体層のSiの一部がAlにと、より低原子価の異種金属元素で同形置換された基本骨格を有している。この基本骨格の同形置換部分に陰電荷を生じるが、これらの積層層間にはそれにつり合う量のカチオンと水が存在し、電荷的には中和されている。すなわち、基本骨格と積層層間から成るモンモリロナイト基本構造はこのような同形置換元素や層間イオンの種類や量に応じたカチオン交換能を示す。このようなモンモリロナイト基本構造において、Si-O-Si結合の連なる層面の有機親和性と、同形置換部位の極性に由来して親水性を示すという特性を有している。なお、モンモリロナイトにおけるSi-O伸縮振動は1020~1040cm-1の範囲にあり、オパールのそれは1100cm-1付近にある。
<Raw material bentonite>
Bentonite belongs to montmorillonite clay and is a clay mainly composed of montmorillonite, which is a kind of dioctahedral smectite. Those containing a large amount of opal after montmorillonite are sometimes called acid clay.
Such montmorillonite has a layered structure consisting of SiO 4 tetrahedral layers -AlO 6 octahedral layer -SiO 4 tetrahedra layer, a part of Al of these octahedral layer is Mg and Fe (II), tetrahedral A part of Si in the layer has a basic skeleton in which Al is replaced with Al by a different metal element having a lower valence. A negative charge is generated in the isomorphous substituted portion of the basic skeleton, but there is a balanced amount of cation and water between these laminated layers, and the charge is neutralized. That is, the basic structure of montmorillonite composed of a basic skeleton and laminated layers exhibits a cation exchange capacity according to the type and amount of such isomorphous substitution elements and interlayer ions. Such a basic structure of montmorillonite has the property of exhibiting hydrophilicity due to the organic affinity of the layer surface where the Si—O—Si bond is continuous and the polarity of the isomorphous substitution site. Incidentally, Si-O stretching vibration in the montmorillonite is in the range of 1020 ~ 1040 cm -1, and that of opal is near 1100 cm -1.
 原料ベントナイトとしては、Na型ベントナイトやCa型ベントナイト(一般に酸性白土と称される粘土も含まれる)が知られている。
 Na型ベントナイトは、積層層間のNa含量が多く、水に分散させたときの分散液のpHが例えば5質量%懸濁液で9.5以上と高く、水に対する膨潤力も例えば15mL/2g以上と高い。さらに、Na型ベントナイトは、多くの水が供給されるとゲル化し、これを乾燥すると固結するという性質を有している。
 一方、Ca型ベントナイトは、積層層間のCa含量やプロトン量が多く、水に分散させたときの分散液のpHが例えば5質量%懸濁液で4.5~9.5と低く、水に対する膨潤力が3~10mL/2g程度と低い。また、多くの水を供給した場合においてもゲル化を生じない。
 この内でNa型ベントナイトは結晶子が大きく、焼成を行っただけでは比表面積の大きな粒子が得られないため、カビ毒に対しての吸着性はCa型ベントナイトに及ばない(実験例H-2参照)。また、予め酸処理を行って比表面積を増大させた後で焼成を行うという二段階の工程を経れば、カビ毒に対して良好な吸着性を示し得ると考えられるが、その場合でもコストの増大は免れない。一方、Ca型ベントナイトは、結晶子が小さく、大きな比表面積の粒子が得られるため、例えば焼成、又は酸処理の一段階の処理のみで、カビ毒に対して吸着性の高い粒子からなる吸着剤を得ることができる。従って、本発明においてはCa型ベントナイトを原料として用いる。
As the raw material bentonite, Na-type bentonite and Ca-type bentonite (including clay generally referred to as acid clay) are known.
Na-type bentonite has a high Na content between the laminated layers, the pH of the dispersion when dispersed in water is as high as 9.5 or more in a 5% by mass suspension, for example, and the swelling power against water is also 15 mL / 2 g or more. high. Further, Na-type bentonite has a property of gelling when a large amount of water is supplied and solidifying when dried.
On the other hand, Ca-type bentonite has a large Ca content and proton amount between laminated layers, and the pH of the dispersion when dispersed in water is as low as 4.5 to 9.5, for example, in a 5% by mass suspension. Swelling power is as low as about 3 to 10 mL / 2 g. Further, gelation does not occur even when a large amount of water is supplied.
Of these, Na-type bentonite has large crystallites, and particles having a large specific surface area cannot be obtained only by firing. Therefore, the adsorptivity to mold poison is not as good as that of Ca-type bentonite (Experimental Example H-2). reference). In addition, it is thought that if the two-step process of performing the acid treatment in advance to increase the specific surface area and then performing the firing can exhibit good adsorptivity against mold poison, it is still costly The increase is inevitable. On the other hand, since Ca-type bentonite has small crystallites and particles with a large specific surface area, for example, an adsorbent composed of particles having high adsorptivity to mold poisons, for example, by only one stage of baking or acid treatment. Can be obtained. Therefore, in the present invention, Ca-type bentonite is used as a raw material.
 本発明において、原料ベントナイトとして使用されるCa型ベントナイトの酸化物換算での化学組成は、一般に次の通りである。尚、カッコ内はNa型ベントナイトの組成例である。
  SiO:     50~75質量%  (Na型:61.7)
  Al:    12~25質量%  (Na型:22.2)
  MgO:      1~8質量%    (Na型:3.3 )
  Fe:    0.5~10質量% (Na型:2.2 )
  CaO:      1~5質量%    (Na型:0.6 )
  NaO:     0~3質量%    (Na型:3.6 )
  K2O:      0~1.5質量%  (Na型:0.1 )
  その他の金属酸化物:2.5質量%以下  (Na型:0.3 )
  強熱減量:     5~15質量%   (Na型:6.3 )
 また、Ca型ベントナイトの膨潤力はNa型ベントナイトのそれより低い。例えば、実験例H-1の膨潤力は60mL/2gであるのに対して、実験例1-1の膨潤力は6mL/2gである。
In the present invention, the chemical composition in terms of oxide of Ca-type bentonite used as a raw material bentonite is generally as follows. The parenthesized examples are Na-type bentonite composition examples.
SiO 2 : 50 to 75% by mass (Na type: 61.7)
Al 2 O 3 : 12 to 25% by mass (Na type: 22.2)
MgO: 1 to 8% by mass (Na type: 3.3)
Fe 2 O 3 : 0.5 to 10% by mass (Na type: 2.2)
CaO: 1 to 5% by mass (Na type: 0.6)
Na 2 O: 0 to 3% by mass (Na type: 3.6)
K2O: 0 to 1.5% by mass (Na type: 0.1)
Other metal oxides: 2.5 mass% or less (Na type: 0.3)
Loss on ignition: 5 to 15% by mass (Na type: 6.3)
Moreover, the swelling power of Ca-type bentonite is lower than that of Na-type bentonite. For example, the swelling power of Experimental Example H-1 is 60 mL / 2 g, while the swelling power of Experimental Example 1-1 is 6 mL / 2 g.
 ところで、モンモリロナイト基本骨格中のSiやAlに対する同形置換などにより発現したカチオン交換能及び親水性は、アフラトキシンに対する吸着性を示す要因となっており、また、親水性は、ゼアラレノンに対する吸着性を阻害する要因となっている。このため、多くの場合、産地等によって変動する原料ベントナイトの性質に応じて、適当な処理を行い、ゼアラレノンに対する吸着性を増大させる必要がある。 By the way, cation exchange capacity and hydrophilicity expressed by isomorphous substitution for Si and Al in the basic skeleton of montmorillonite are factors that show absorptivity to aflatoxin, and hydrophilicity inhibits adsorptivity to zearalenone. It is a factor. For this reason, in many cases, it is necessary to increase the adsorptivity to zearalenone by performing an appropriate treatment according to the properties of the raw material bentonite which varies depending on the production area.
<処理方法>
 本発明のカビ毒吸着剤は、所定の物性を満足するCa型ベントナイトである必要がある。このようなカビ毒吸着剤を得るには、原料ベントナイトが該物性を満足しない場合は、適当な処理を行う必要がある。この方法は特に限定されるものではないが、例として原料ベントナイトを焼成する方法、酸処理に付す方法或いはイオン交換による方法が挙げられる。このうち、排液処理が不要で経済性に優れる観点から、焼成による方法が好適である。
<Processing method>
The mold poison adsorbent of the present invention needs to be a Ca-type bentonite satisfying predetermined physical properties. In order to obtain such a mold poison adsorbent, if the raw material bentonite does not satisfy the physical properties, it is necessary to perform an appropriate treatment. This method is not particularly limited, and examples thereof include a method of firing raw material bentonite, a method of subjecting to acid treatment, and a method of ion exchange. Among these, the method by baking is suitable from the viewpoint of eliminating the drainage treatment and being excellent in economic efficiency.
<焼成>
 原料ベントナイトを、粗粉砕し、水簸や風簸に供して夾雑物を除去した後、焼成を行い、これにより、本発明のカビ毒吸着剤となるベントナイト焼成物を得ることができる。
<Baking>
The raw material bentonite is coarsely pulverized and subjected to a water tank or a wind tank to remove impurities, and then fired, whereby a bentonite fired product that becomes the fungus poison adsorbent of the present invention can be obtained.
 かかる焼成は、完全に焼結を生じる程度までは行われず、モンモリロナイト基本構造がある程度維持される温度で行われ、具体的には、200~800℃、好ましくは300~600℃、更に好ましくは400~600℃で行われ、焼成時間は0.5時間以上、好ましくは0.5~4時間程度である。 Such firing is not performed to such an extent that it completely sinters, but is performed at a temperature at which the basic structure of montmorillonite is maintained to some extent, specifically 200 to 800 ° C., preferably 300 to 600 ° C., more preferably 400 It is carried out at ˜600 ° C., and the calcination time is 0.5 hours or more, preferably about 0.5 to 4 hours.
 即ち、上記の焼成において、その温度が高いほど、SiOH基の脱水縮合が進行して、モンモリロナイト基本骨格のSi-O伸縮振動エネルギーが高まり、積層層間が消失に向かうため、モンモリロナイト基本構造が減少し、この結果、Si-O伸縮振動が高波数側に移動し、メチレンブルー吸着量が少なく、強熱減量が小さくなる。また、その温度が低く処理時間が短いほど、メチレンブルー吸着量が多く、且つ強熱減量は大きく維持される。従って、目的とするSi-O伸縮振動、メチレンブルー吸着量や強熱減量が得られるように、焼成温度及び時間を設定すればよい。 That is, in the above firing, the higher the temperature, the more the SiOH group dehydration condensation proceeds, the Si—O stretching vibration energy of the montmorillonite basic skeleton increases, and the lamination layer tends to disappear, so the montmorillonite basic structure decreases. As a result, the Si—O stretching vibration moves to the high wavenumber side, the methylene blue adsorption amount is small, and the ignition loss is small. Further, the lower the temperature and the shorter the treatment time, the more the methylene blue adsorption amount and the greater the loss on ignition. Therefore, the firing temperature and time may be set so that the desired Si—O stretching vibration, methylene blue adsorption amount and ignition loss can be obtained.
 本発明のカビ毒吸着剤は、所定のカビ毒が吸着除去される限り、その使用形態は何ら制限されないが、一般的には、家畜の飼料の配合物として使用され、例えば飼料100質量部当り0.1~1.0質量部というように適宜の量を飼料に配合して使用されるのが好適である。これにより、トウモロコシ等の飼料を汚染しており、且つ生体に極めて有害なAfB1やZENを家畜の消化管内で効果的に吸着除去でき、これらカビ毒による健康被害を有効に防止することができる。 The use form of the fungus poison adsorbent of the present invention is not limited at all as long as a predetermined fungus poison is adsorbed and removed. Generally, it is used as a composition of livestock feed, for example, per 100 parts by weight of feed. It is preferable to use an appropriate amount such as 0.1 to 1.0 part by mass in the feed. Thereby, AfB1 and ZEN that are contaminated with feed such as corn and are extremely harmful to the living body can be effectively adsorbed and removed in the digestive tract of livestock, and health damage caused by these mold poisons can be effectively prevented.
<カビ毒吸着剤>
 本発明のカビ毒吸着剤がゼアラレノンに対して高い吸着性を発揮する原理は、明確には解明されていないが、以下ではベントナイトの焼成処理による変質という観点から、本発明者の推測するところを説明する。しかしながら、この推測が本発明を何ら制限するものではない。
<Mold poison adsorbent>
The principle that the fungus poison adsorbent of the present invention exerts high adsorptivity to zearalenone has not been clearly clarified, but in the following, from the viewpoint of alteration due to the calcination treatment of bentonite, the present inventors speculate. explain. However, this assumption does not limit the present invention.
 本発明の一つの実施形態であるベントナイト焼成物は、モンモリロナイト基本骨格がある程度維持される温度で焼成が行われているため、例えばそのX線回折像では、面間隔0.148~0.153nmにモンモリロナイトの(06)面に由来する回折ピークが必ず観察される。本発明のベントナイト焼成物におけるこの回折ピークの面積強度から、標準物質としてのクニピアF(クニミネ工業製Na型ベントナイト)の回折ピークの面積強度を100として算出した相対面積強度比(%)は、モンモリロナイト基本骨格の含有量を表す指標とすることができ、40%以上であることが好適である。但し、ICDD:13-135では(0010)と(300)に指数付けされているが、ここでは便宜上まとめて(06)と表示する。
 モンモリロナイトの(001)面に由来する回折ピークは、観察されないことがある。これは、焼成により、積層層間が収縮してしまうためである。
Since the bentonite fired product according to one embodiment of the present invention is fired at a temperature at which the montmorillonite basic skeleton is maintained to some extent, for example, in its X-ray diffraction image, the spacing between planes is 0.148 to 0.153 nm. A diffraction peak derived from the (06) plane of montmorillonite is always observed. From the area intensity of this diffraction peak in the bentonite fired product of the present invention, the relative area intensity ratio (%) calculated from the area intensity of the diffraction peak of Kunipia F (Na-type bentonite manufactured by Kunimine Industries) as a standard substance as 100 is montmorillonite. It can be used as an index representing the content of the basic skeleton, and is preferably 40% or more. However, in ICDD: 13-135, (0010) and (300) are indexed, but here they are collectively displayed as (06) for convenience.
A diffraction peak derived from the (001) plane of montmorillonite may not be observed. This is because the laminated layers shrink due to firing.
 本実施形態のベントナイト焼成物においては、基本骨格のSi-O伸縮振動が1041~1090cm-1の範囲にあるため、未焼成のモンモリロナイト基本骨格のSi-O結合の振動エネルギーより高い。このことは、モンモリロナイト基本骨格のSi-O結合距離が短く、共有結合性が通常より高まっていることを示唆しており、結果としてSi-O-Si結合の連なる層面の有機親和性が増加し疎水性のゼアラレノンに対する吸着性を高めていると考える。 In the bentonite fired product of this embodiment, the Si—O stretching vibration of the basic skeleton is in the range of 1041 to 1090 cm −1 , and thus is higher than the vibration energy of the Si—O bond of the unfired montmorillonite basic skeleton. This suggests that the Si—O bond distance of the montmorillonite basic skeleton is short and the covalent bond is higher than usual, and as a result, the organic affinity of the layer surface where the Si—O—Si bond is connected increases. It is considered that the adsorptivity to hydrophobic zearalenone is enhanced.
 更に、本実施形態のベントナイト焼成物においては、中位径比D50(W)/D50(E)が60~110%の範囲にある。これについて説明すると、Ca型ベントナイトの主成分であるモンモリロナイトは、水溶媒中で分散微粒子化する性質を持つが、エタノール溶媒中ではこの性質が発揮されない。そのため、モンモリロナイトが多く残存するベントナイトにおいては、水溶媒中での中位径がエタノール溶媒中でのそれに比して小さくなるのであり、従ってこの中位径比も小さい値となる。一方、本実施形態のベントナイト焼成物においては、焼成によりモンモリロナイト基本構造が適度に変質しているため、水溶媒中で分散微粒子化する性質を失い、中位径もエタノール溶媒中のそれに近くなるため、中位径比の値が大きくなるのである。このように親水性のモンモリロナイトが疎水性に変化することで、疎水性のゼアラレノンに対する吸着性を高めていると考える。 Further, in the bentonite fired product of the present embodiment, the median diameter ratio D 50 (W) / D 50 (E) is in the range of 60 to 110%. Explaining this, montmorillonite, which is a main component of Ca-type bentonite, has the property of forming dispersed fine particles in an aqueous solvent, but this property is not exhibited in an ethanol solvent. Therefore, in bentonite in which a large amount of montmorillonite remains, the median diameter in the aqueous solvent is smaller than that in the ethanol solvent, and thus the median diameter ratio is also a small value. On the other hand, in the bentonite fired product of the present embodiment, since the basic structure of montmorillonite has been appropriately altered by firing, it loses the property of being dispersed into fine particles in an aqueous solvent, and the median diameter is also close to that in an ethanol solvent. The value of the median diameter ratio increases. It is considered that the hydrophilic montmorillonite is changed to hydrophobic as described above, thereby improving the adsorptivity to the hydrophobic zearalenone.
 また、モンモリロナイト基本構造がある程度維持される結果として、かかるベントナイト焼成物のメチレンブルー吸着量は、10~45mmol/100gの範囲にあることが好ましい。メチレンブルー吸着量がこの程度の値となるようにモンモリロナイト構造の残存していることが、焼成が行われていながらもAfB1に対する吸着性が維持されている大きな要因である。
 このメチレンブルー吸着量が上記範囲よりも多いときは、焼成が不十分であり、以下に述べる強熱減量も大きな値となり、SiOH量を多く含む結果、AfB1に対する吸着性は満足し得るとしても、疎水性のZENに対する吸着性が不満足となってしまう。また、メチレンブルー吸着量が上記範囲よりも少ないときは、焼成が過度に行われ、焼結もしくはそれに近い状態となり、モンモリロナイト基本構造が殆ど消失し、比表面積も大きく低下し、AfB1及びZENの何れに対する吸着性も不満足となってしまう。
In addition, as a result of maintaining the basic structure of montmorillonite to some extent, the methylene blue adsorption amount of such a bentonite fired product is preferably in the range of 10 to 45 mmol / 100 g. The fact that the montmorillonite structure remains so that the amount of methylene blue adsorbed becomes such a value is a major factor that maintains the adsorptivity to AfB1 while firing.
When the amount of methylene blue adsorbed is larger than the above range, the firing is insufficient, and the ignition loss described below becomes a large value. As a result of containing a large amount of SiOH, the adsorptivity to AfB1 can be satisfied. This makes the adsorptivity to ZEN unsatisfactory. When the amount of methylene blue adsorbed is less than the above range, firing is excessively performed, sintering or a state close thereto, the montmorillonite basic structure is almost lost, the specific surface area is greatly reduced, and any of AfB1 and ZEN Adsorption is also unsatisfactory.
 さらに、モンモリロナイト基本構造がある程度維持される結果として、このベントナイト焼成物の強熱減量は2~10質量%の範囲にあることが好ましく、更に好ましくは2~8.5質量%、最も好ましくは2~8質量%の範囲にある。先にも述べたように、モンモリロナイト基本構造を残しながら、強熱減量がこの程度となるようにSiOH量が低減され、疎水性が増大していることが、疎水性のZENに対する吸着性が向上することの大きな要因と考える。
 即ち、この強熱減量が上記範囲よりも大きいときには、焼成が不十分であり、メチレンブルー吸着量が過度に多い場合と同様、SiOH量を多く含む結果、AfB1に対する吸着性は良好であるが、ZENに対する吸着性が不満足となってしまう。また、強熱減量が上記範囲よりも小さいときは、焼成が過度に行われているため、メチレンブルー吸着量が少ない場合と同様、モンモリロナイト基本構造の消失及び比表面積の大きな低下を生じ、AfB1及びZENの何れに対する吸着性も不満足となる。
Further, as a result of maintaining the basic structure of montmorillonite to some extent, the loss on ignition of this bentonite fired product is preferably in the range of 2 to 10% by mass, more preferably 2 to 8.5% by mass, most preferably 2 It is in the range of ˜8% by mass. As mentioned earlier, the amount of SiOH is reduced and the hydrophobicity is increased so that the loss on ignition is at this level while the basic structure of montmorillonite remains, improving the adsorptivity to hydrophobic ZEN. I think that it is a big factor of doing.
That is, when the loss on ignition is larger than the above range, the firing is insufficient, and as in the case where the amount of methylene blue adsorbed is excessively large, the amount of SiOH is increased, so that the adsorptivity to AfB1 is good. The adsorbability with respect to becomes unsatisfactory. Further, when the ignition loss is smaller than the above range, since the calcination is excessively performed, the disappearance of the montmorillonite basic structure and the large decrease in the specific surface area are caused as in the case where the methylene blue adsorption amount is small, and AfB1 and ZEN The adsorptivity to any of these is unsatisfactory.
 また、このベントナイト焼成物は、焼成が適度に行われている結果、80~200m/g、特に90~200m/gの比表面積を示し、これにより、AfB1及びZENの何れに対しても優れた吸着性能が発揮される。 Further, the bentonite calcined product, the results of firing is performed moderately, 80 ~ 200m 2 / g, in particular shows a specific surface area of 90 ~ 200m 2 / g, thereby, for any AfB1 and ZEN Excellent adsorption performance is demonstrated.
 本発明の優れた効果を、次の実験例で説明する。
 尚、実験例における各種試験は下記の方法で行った。
The excellent effect of the present invention will be described in the following experimental example.
Various tests in the experimental examples were performed by the following methods.
(1)赤外分光光度測定
 試料はKBr粉末で錠剤に成形し、試料を含まないKBrを比較とし、日本分光(株)製FT/IR-6100を用いて測定した。分解能は4.0cm-1でアパーチャーはAutoであった。実験例の表中ではIRとして示した。解析対象範囲は、1000~1100cm-1である。
(1) Infrared spectrophotometric measurement Samples were molded into tablets with KBr powder, and KBr not containing the samples was used as a comparison and measured using FT / IR-6100 manufactured by JASCO Corporation. The resolution was 4.0 cm −1 and the aperture was Auto. In the table of experimental examples, it is indicated as IR. The analysis target range is 1000 to 1100 cm −1 .
(2)中位径(D50
 Beckman Coulter社製LS 13 320を使用し、溶媒として濃度100%のエタノールおよびイオン交換水を用いてレーザ回折散乱法で体積基準での中位径(D50)を測定した。実験例の表中では、それぞれD50(E)、D50(W)、および次式:(D50(W)/D50(E))×100により算出した中位径比(%)を示した。
(2) Median diameter (D 50 )
A Beckman Coulter LS 13 320 was used, and the median diameter (D 50 ) on a volume basis was measured by a laser diffraction scattering method using 100% ethanol and ion-exchanged water as a solvent. In the tables of the experimental examples, the median diameter ratio (%) calculated by D 50 (E), D 50 (W), and the following formula: (D 50 (W) / D 50 (E)) × 100, respectively. Indicated.
(3)メチレンブルー吸着量
 日本ベントナイト工業会標準試験方法JBAS-107-77に準拠し、0.5N硫酸を無添加で測定後、水分を補正してメチレンブルー吸着量(mmol/100g)を算出した。実験例の表中ではMB吸着量として示した。
(3) Methylene Blue Adsorption Amount According to Japan Bentonite Industry Association Standard Test Method JBAS-107-77, 0.5N sulfuric acid was not added, and then the water content was corrected to calculate the methylene blue adsorption amount (mmol / 100 g). In the table of experimental examples, it is shown as MB adsorption amount.
(4)X線回折(定量測定)
 試料1gに10vol%エチレングリコール/エタノール溶液を加え、50℃で一晩乾燥させた。乾燥した試料を乳鉢で粉砕してエチレングリコール処理した試料を得た。試料に含まれるモンモリロナイトの(06)面の含有量は、X線回折によるマトリックスフラッシング法により、flushing剤としてα―Alを用い被検試料に対して一定量の割合で添加し不定配向法(”Standard X-ray diffraction powder patterns”, NBS Monograph, 25(1971))で試料をセルに充填し下記の条件で測定した。
 X線回折装置:(株)リガク製RINT-UltimaIV
 測定条件:X線=Cu-Kα線、
 走査範囲:回折角(2θ)=42.0~44.5および60.5~63.0°
 標準物質として、エチレングリコール処理したクニピアFを用い、X線回折図のピーク面積を100%として各試料のそれの相対面積強度比(%)で示した。また、実験例の表中では(06)として示した。
(4) X-ray diffraction (quantitative measurement)
A 10 vol% ethylene glycol / ethanol solution was added to 1 g of the sample and dried at 50 ° C. overnight. The dried sample was crushed with a mortar to obtain a sample treated with ethylene glycol. The content of the (06) plane of montmorillonite contained in the sample is indefinitely oriented by adding a constant amount to the test sample using α-Al 2 O 3 as a flushing agent by a matrix flushing method by X-ray diffraction. The sample was filled into a cell by the method ("Standard X-ray diffraction powder patterns", NBS Monograph, 25 (1971)) and measured under the following conditions.
X-ray diffractometer: RINT-UltimaIV, manufactured by Rigaku Corporation
Measurement conditions: X-ray = Cu-Kα ray
Scanning range: diffraction angle (2θ) = 42.0-44.5 and 60.5-63.0 °
As a standard substance, Kunipia F treated with ethylene glycol was used, and the peak area of the X-ray diffraction pattern was taken as 100%, and the relative area intensity ratio (%) of each sample was shown. Moreover, it showed as (06) in the table | surface of an experiment example.
(5)比表面積
 Micromeritics社製Tri Star 3000を用いて測定を行った。比表面積は比圧が0.05から0.25の吸着枝側窒素吸着等温線からBET法で解析した。
(5) Specific surface area It measured using Tri Star 3000 made from Micromeritics. The specific surface area was analyzed by the BET method from the adsorption side nitrogen adsorption isotherm having a specific pressure of 0.05 to 0.25.
(6)強熱減量(Ig-Loss)
 試料を磁製るつぼに入れ質量(a)を測定した後、1000℃で1時間焼成後デシケータ中で放冷して質量(b)を測定した。別に、試料を秤量びんに入れ質量(c)を測定した後、110℃で2時間乾燥後デシケータ中で放冷し質量(d)を測定した。
 次式により110℃乾燥基準の強熱減量(質量%)を算出した。
  強熱減量(質量%)=(ad-bc)/(ad)×100
   式中、
    aは、焼成前の試料の質量(g)
    bは、焼成後の試料の質量(g)
    cは、乾燥前の試料の質量(g)
    dは、乾燥後の試料の質量(g)
 なお、a~dは、るつぼ、秤量びん等の風袋の質量を除いた、試料のみの質量を意味する。
(6) Loss on ignition (Ig-Loss)
The sample was put in a porcelain crucible and the mass (a) was measured. After firing at 1000 ° C. for 1 hour, the sample was allowed to cool in a desiccator to measure the mass (b). Separately, the sample was placed in a weighing bottle and the mass (c) was measured. After drying at 110 ° C. for 2 hours, the sample was allowed to cool in a desiccator and the mass (d) was measured.
The ignition loss (mass%) on the basis of drying at 110 ° C. was calculated by the following formula.
Loss on ignition (mass%) = (ad−bc) / (ad) × 100
Where
a is the mass of the sample before firing (g)
b is the mass of the sample after firing (g)
c is the mass of the sample before drying (g)
d is the weight of the sample after drying (g)
In addition, a to d mean the mass of only the sample excluding the mass of a tare such as a crucible or a weighing bottle.
(7)ZEN吸着率測定
 1ppmZEN水溶液5mLに吸着剤25mgを入れ1時間振とう後、遠心分離し上澄液を(株)島津製作所製HPLC Prominenceと蛍光検出器RF-20Aを使用し残留濃度を測定した。吸着率は100×(初濃度-残留濃度)/初濃度より算出した。
(7) ZEN adsorption rate measurement Add 25 mg of adsorbent to 5 mL of 1 ppm ZE aqueous solution, shake for 1 hour, centrifuge, and use the supernatant from Shimadzu Corporation HPLC Prominence and the fluorescence detector RF-20A to determine the residual concentration. It was measured. The adsorption rate was calculated from 100 × (initial concentration−residual concentration) / initial concentration.
(8)AfB1吸着率測定
 5ppmAfB1水溶液10mLに吸着剤25mgを入れ、25℃2時間振とう後、ろ紙およびPTFE製0.20μmメンブレンフィルターでろ過し、得られた液を日本分光(株)製紫外可視分光光度計JASCO V-570を使用し残留濃度を測定した。吸着率は100×(初濃度-残留濃度)/初濃度より算出した。
(8) AfB1 adsorption rate measurement 25 mg of the adsorbent was put into 10 mL of 5 ppm AfB1 aqueous solution, shaken at 25 ° C. for 2 hours, filtered through a filter paper and a 0.20 μm membrane filter made of PTFE, and the obtained liquid was made by JASCO Corporation UV The residual concentration was measured using a visible spectrophotometer JASCO V-570. The adsorption rate was calculated from 100 × (initial concentration−residual concentration) / initial concentration.
(9)膨潤力(容積法)
 日本ベントナイト工業会標準試験方法JBAS-104-77に準拠して測定した。
(9) Swelling force (volume method)
The measurement was performed according to the Japanese bentonite industry association standard test method JBAS-104-77.
(10)pH
 JIS K 5101-17-1:2004に準拠して調製した5質量%水性懸濁液のpH値を測定した。
(10) pH
The pH value of a 5% by mass aqueous suspension prepared according to JIS K 5101-17-1: 2004 was measured.
(11)化学組成
 二酸化ケイ素(SiO)、酸化アルミニウム(Al) 、酸化ナトリウム(NaO)の分析はJIS M 8853:1998に準拠して測定した。また、Fe、CaO、MgO、KOは原子吸光法を用いた。なお、測定試料は110℃乾燥物を基準とした。
(11) Chemical composition Analysis of silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and sodium oxide (Na 2 O) was measured according to JIS M 8853: 1998. Moreover, atomic absorption method was used for Fe 2 O 3 , CaO, MgO, and K 2 O. The measurement sample was based on a dried product at 110 ° C.
(実験例1)
 山形県鶴岡市産の酸性白土(1-1)は、pHが6.0であった。この物を用い、種々の温度で2時間焼成した。物性測定を行い、結果を表1に示す。
(Experimental example 1)
The pH of acid clay (1-1) from Tsuruoka City, Yamagata Prefecture was 6.0. Using this product, it was calcined at various temperatures for 2 hours. The physical properties were measured and the results are shown in Table 1.
(実験例2)
 山形県鶴岡市の別の地区に産する酸性白土(2-1)を用い、種々の温度で2時間焼成した。物性測定を行い、結果を表2に示す。
(Experimental example 2)
It was calcined at various temperatures for 2 hours using acid clay (2-1) from another area in Tsuruoka City, Yamagata Prefecture. The physical properties were measured and the results are shown in Table 2.
(実験例3)
 山形県鶴岡市のさらに別の地区に産する酸性白土(3-1)は、比表面積が133m/gでpHが5.9であった。この物を用い、500℃で2時間焼成(3-2)した。物性測定を行い、結果を表3に示す。
(Experimental example 3)
Acid white clay (3-1) produced in another area of Tsuruoka City, Yamagata Prefecture had a specific surface area of 133 m 2 / g and a pH of 5.9. Using this product, it was calcined at 500 ° C. for 2 hours (3-2). The physical properties were measured and the results are shown in Table 3.
(実験例4)
 新潟県新発田市に産する酸性白土(4-1)を用い、400℃で2時間焼成(4-2)した。物性測定を行い、結果を表3に示す。
(Experimental example 4)
Using acid white clay (4-1) produced in Shibata City, Niigata Prefecture, it was baked (4-2) at 400 ° C for 2 hours. The physical properties were measured and the results are shown in Table 3.
(実験例5)
 実験例2で用いた酸性白土を酸処理して、比表面積が318m/gでpHが3.6の酸活性化モンモリロナイト(5-1)とし、500℃で2時間焼成(5-2)した。物性測定を行い、結果を表3に示す。
(Experimental example 5)
The acid clay used in Experimental Example 2 was acid-treated to obtain acid-activated montmorillonite (5-1) having a specific surface area of 318 m 2 / g and a pH of 3.6, and calcined at 500 ° C. for 2 hours (5-2) did. The physical properties were measured and the results are shown in Table 3.
(実験例H-1,2)
 Na型ベントナイトであるクニミネ工業(株)製クニピアF(H-1)は、比表面積が5m/gで膨潤力が60mL/2gでpHが10.0であった。この物を500℃で2時間焼成(H-2)した。この焼成物について物性測定および性能評価を行い、結果を表3に示す。
(Experimental example H-1 and 2)
Kunimine F Co., Ltd. Kunipia F (H-1), which is Na-type bentonite, had a specific surface area of 5 m 2 / g, a swelling power of 60 mL / 2 g, and a pH of 10.0. This material was calcined (H-2) at 500 ° C. for 2 hours. The fired product was measured for physical properties and evaluated for performance, and the results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (7)

  1.  赤外分光光度測定でSi-O伸縮振動が1041~1090cm-1の範囲にあり、レーザ回折散乱法で測定される体積基準での中位径において水を溶媒とした場合の値(D50(W))とエタノールを溶媒とした場合の値(D50(E))の比(D50(W)/D50(E))が60~110%の範囲にあるCa型ベントナイトからなるカビ毒吸着剤。 In the infrared spectrophotometry, the Si—O stretching vibration is in the range of 1041 to 1090 cm −1 , and the value when water is used as the solvent at the median diameter on the volume basis measured by the laser diffraction scattering method (D 50 ( W)) and mold poisons composed of Ca-type bentonite having a ratio (D 50 (W) / D 50 (E)) of 60 to 110% when ethanol is used as a solvent (D 50 (E)) Adsorbent.
  2.  前記Ca型ベントナイトが焼成物である請求項1記載のカビ毒吸着剤。 The mold poison adsorbent according to claim 1, wherein the Ca-type bentonite is a fired product.
  3.  メチレンブルー吸着量が10~45mmol/100gの範囲にある請求項1に記載のカビ毒吸着剤。 The mold poison adsorbent according to claim 1, wherein the adsorption amount of methylene blue is in the range of 10 to 45 mmol / 100 g.
  4.  X線回折測定において、面間隔0.148~0.153nmに観測されるモンモリロナイトの(06)面に由来するX線回折ピークの相対面積強度比が40%以上である請求項1に記載のカビ毒吸着剤。 2. The mold according to claim 1, wherein in the X-ray diffraction measurement, the relative area intensity ratio of the X-ray diffraction peak derived from the (06) plane of montmorillonite observed at a plane spacing of 0.148 to 0.153 nm is 40% or more. Poison adsorbent.
  5.  比表面積が80~200m/gの範囲にある請求項1に記載のカビ毒吸着剤。 The mold poison adsorbent according to claim 1, wherein the specific surface area is in the range of 80 to 200 m 2 / g.
  6.  強熱減量が2~10質量%の範囲にある請求項1に記載のカビ毒吸着剤。 The mold poison adsorbent according to claim 1, wherein the loss on ignition is in the range of 2 to 10% by mass.
  7.  請求項1に記載のカビ毒吸着剤からなる飼料配合物。 Feed composition comprising the mold poison adsorbent according to claim 1.
PCT/JP2013/069792 2012-10-24 2013-07-22 Mycotoxin adsorbent WO2014064979A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157008079A KR102106406B1 (en) 2012-10-24 2013-07-22 Mycotoxin adsorbent
CN201380055928.3A CN104754957A (en) 2012-10-24 2013-07-22 Mycotoxin adsorbent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-234463 2012-10-24
JP2012234463A JP5918104B2 (en) 2012-10-24 2012-10-24 Mold poison adsorbent

Publications (1)

Publication Number Publication Date
WO2014064979A1 true WO2014064979A1 (en) 2014-05-01

Family

ID=50544360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069792 WO2014064979A1 (en) 2012-10-24 2013-07-22 Mycotoxin adsorbent

Country Status (5)

Country Link
JP (1) JP5918104B2 (en)
KR (1) KR102106406B1 (en)
CN (1) CN104754957A (en)
TW (1) TWI589229B (en)
WO (1) WO2014064979A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019077653A (en) * 2017-10-26 2019-05-23 クニミネ工業株式会社 Anti-protein toxin agent for farm animal and fish, affection prevention method of protein toxin and feed or food for farm animal and fish
JP7115720B2 (en) * 2018-07-09 2022-08-09 スリーエム イノベイティブ プロパティズ カンパニー titanium-aluminum-zirconium metal oxide
CN109287935A (en) * 2018-09-26 2019-02-01 深圳市裕农科技股份有限公司 A kind of mycotoxins in feed adsorbent and its application, feed
JP2020152614A (en) * 2019-03-20 2020-09-24 有限会社昭和窯材 Diversity material
CN110122479A (en) * 2019-06-20 2019-08-16 陕西中财润德医药科技有限公司 A kind of composition and preparation method removing aflatoxins in Chinese medicine and medicine materical crude slice
CN111685259A (en) * 2020-04-26 2020-09-22 国家食品安全风险评估中心 Method for reducing zearalenone
CN113070044B (en) * 2021-03-18 2023-06-02 武汉轻工大学 Aflatoxin detoxication agent and preparation method and application thereof
CN112875713B (en) * 2021-03-18 2021-11-16 江苏海明斯新材料科技有限公司 Preparation method and application of modified lithium magnesium silicate
CN113318701B (en) * 2021-05-20 2023-05-23 河源市食品检验所 Removing aflatoxin B in soil pressed peanut oil 1 Is an adsorbent of (a) and a process for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05503432A (en) * 1990-03-07 1993-06-10 エンゲルハード・コーポレーシヨン Animal feed additives and methods for inactivating mycotoxins present in animal feed
JPH06501388A (en) * 1990-10-01 1994-02-17 エンゲルハード・コーポレーシヨン How to select animal feed and clay containing selected montmorillonite clay as an additive
JPH08228693A (en) * 1995-01-13 1996-09-10 Amcol Internatl Corp Method and composition to increase body weight by polluted food for animal
JP2001299237A (en) * 2000-04-20 2001-10-30 Kunimine Industries Co Ltd Mineral ion formulated feed additive for animal and method for producing the same
JP2007259770A (en) * 2006-03-29 2007-10-11 Aomori Prefecture Bentonite-apple pulp-mixed molded material and method for producing the same
JP2013094072A (en) * 2011-10-28 2013-05-20 Mizusawa Ind Chem Ltd Mycotoxin adsorbent

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935623A (en) * 1998-01-15 1999-08-10 Milwhite, Inc. Use of thermally treated clays in animal feeds
JP4887626B2 (en) * 2002-09-17 2012-02-29 Jnc株式会社 Silicon compounds
ATE548113T1 (en) * 2005-11-17 2012-03-15 Waters Investments Ltd MULTI-ANALYTE AFFINITY COLUMN FOR ANALYZING AFLATOXIN, OCHRATOXIN, ZEARALENONE AND DEOXYNIVALENOL
FR2925367B1 (en) * 2007-12-20 2010-01-15 Ceca Sa AGGLOMERATED ZEOLITIC ADSORBENTS, PROCESS FOR THEIR PREPARATION AND USES THEREOF
ES2746198T3 (en) * 2008-12-22 2020-03-05 Glatt Systemtechnik Gmbh Adsorbent granule of composite material, process for its production and gas separation process
EP2289617A1 (en) * 2009-08-27 2011-03-02 Süd-Chemie AG Toxin adsorbent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05503432A (en) * 1990-03-07 1993-06-10 エンゲルハード・コーポレーシヨン Animal feed additives and methods for inactivating mycotoxins present in animal feed
JPH06501388A (en) * 1990-10-01 1994-02-17 エンゲルハード・コーポレーシヨン How to select animal feed and clay containing selected montmorillonite clay as an additive
JPH08228693A (en) * 1995-01-13 1996-09-10 Amcol Internatl Corp Method and composition to increase body weight by polluted food for animal
JP2001299237A (en) * 2000-04-20 2001-10-30 Kunimine Industries Co Ltd Mineral ion formulated feed additive for animal and method for producing the same
JP2007259770A (en) * 2006-03-29 2007-10-11 Aomori Prefecture Bentonite-apple pulp-mixed molded material and method for producing the same
JP2013094072A (en) * 2011-10-28 2013-05-20 Mizusawa Ind Chem Ltd Mycotoxin adsorbent

Also Published As

Publication number Publication date
KR20150073958A (en) 2015-07-01
JP5918104B2 (en) 2016-05-18
TWI589229B (en) 2017-07-01
JP2014082992A (en) 2014-05-12
KR102106406B1 (en) 2020-05-04
TW201422162A (en) 2014-06-16
CN104754957A (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5918104B2 (en) Mold poison adsorbent
JP5723254B2 (en) Mold poison adsorbent
JP5278869B2 (en) Synthetic smectite, dispersion containing the same, clay film, water-resistant film, and method for producing synthetic smectite and water-resistant film
CN107683173B (en) Preparation method of metal oxide-silicon dioxide composite aerogel and prepared metal oxide-silicon dioxide composite aerogel
Khraisheh et al. Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite
CN110461465B (en) Catalyst composition for Selective Catalytic Reduction (SCR) of nitrogen oxides
KR101907737B1 (en) Method for preparing metal oxide-silica complex aerogel and metal oxide-silica complex aerogel prepared by using the same
US9095842B2 (en) Diatomaceous earth filter aid containing a low crystalline silica content
KR102436077B1 (en) Zeolite adsorbents with low binder content and large external surface area, method for preparation of same and uses thereof
CN106573787B (en) Composition and its manufacturing method including the silicotitanate with SITINAKITE structure
Bounab et al. An effective functionalized Moroccan bentonite: Application for a green remediation of m-cresol
Rashwan et al. High stable Al-MCM-41: structural characterization and evaluation for removal of methylene blue from aqueous solution
Wantala et al. Synthesis and characterization of Fe-MCM-41 from rice husk silica by hydrothermal technique for arsenate adsorption
Shapkin et al. Hybrid composite materials based on natural layered silicates
Tejedor et al. Environmentally friendly synthesis of silicon dioxide nanoparticles and their application for the removal of emerging contaminants in aqueous media
WO2016093611A1 (en) Method for preparing mesoporous silica
JP7105969B2 (en) functional ingredient adsorbent
DE102020115832B3 (en) Mycotoxin adsorber based on activated carbon
KR101563984B1 (en) Method for manufacturing adsorbent using waste paper sludge
JP2017154965A (en) Silver-carrying zeolite molded body
JP5898027B2 (en) Bentonite-amorphous silica composite
Aguirre et al. Adsorption of thiocyanate anions from aqueous solution onto adsorbents of various origin
JP6913456B2 (en) Caffeine adsorbent and caffeine adsorption method
KR102608854B1 (en) Manufacturing method of nanopore type eco-friendly hydroxyapatite with flame retardant, deodorant and toxic substance adsorption performance
Takahashi et al. Adsorption of Zearalenone on Clay and Treated Clay Materials in Aqueous Solutions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849224

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157008079

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849224

Country of ref document: EP

Kind code of ref document: A1