WO2014064571A1 - Dispositif et procédé pour la préparation d'une solution oxydante - Google Patents

Dispositif et procédé pour la préparation d'une solution oxydante Download PDF

Info

Publication number
WO2014064571A1
WO2014064571A1 PCT/IB2013/059295 IB2013059295W WO2014064571A1 WO 2014064571 A1 WO2014064571 A1 WO 2014064571A1 IB 2013059295 W IB2013059295 W IB 2013059295W WO 2014064571 A1 WO2014064571 A1 WO 2014064571A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
oxidant
ions
electrode
oxidative
Prior art date
Application number
PCT/IB2013/059295
Other languages
English (en)
Inventor
Jianyu JIN
Guangwei Wang
Peixin Hu
Original Assignee
Koninklijke Philips N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips N.V. filed Critical Koninklijke Philips N.V.
Publication of WO2014064571A1 publication Critical patent/WO2014064571A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2203/00Details of cleaning machines or methods involving the use or presence of liquid or steam
    • B08B2203/005Details of cleaning machines or methods involving the use or presence of liquid or steam the liquid being ozonated
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • C02F2001/46185Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water only anodic or acidic water, e.g. for oxidizing or sterilizing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • C02F2001/4619Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water only cathodic or alkaline water, e.g. for reducing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • C02F2001/46195Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water characterised by the oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/46135Voltage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4614Current
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4618Supplying or removing reactants or electrolyte
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4618Supplying or removing reactants or electrolyte
    • C02F2201/46185Recycling the cathodic or anodic feed
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/006Processes using a programmable logic controller [PLC] comprising a software program or a logic diagram
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/18Removal of treatment agents after treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2307/00Location of water treatment or water treatment device
    • C02F2307/10Location of water treatment or water treatment device as part of a potable water dispenser, e.g. for use in homes or offices
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2307/00Location of water treatment or water treatment device
    • C02F2307/12Location of water treatment or water treatment device as part of household appliances such as dishwashers, laundry washing machines or vacuum cleaners

Definitions

  • the present invention relates to the field of preparation of an oxidative solution.
  • Oxidative solution such as oxidative water generally comprising oxidants such as H 2 0 2 , HCIO and KMn0 4 are widely used in, for example, family life, industrial production as well as diagnosis and treatment process in hospitals.
  • the oxidative water can be used in washing and cleaning, disinfection and sterilization, blanching and whitening, waste water treatment,etc.
  • the oxidative water is obtained by dissolving oxidants in water.
  • dissolving Ca(C10) 2 into water to get CIO " solution for blanching filling Cl 2 gas into water to get HCIO solution to kill the bacteria in water; or diluting H 2 0 2 (e.g., 30 wt% H 2 0 2 is commercially available) into water to get H 2 0 2 solution for teeth whitening, etc.
  • oxidative water may be changed after the preparation.
  • the preparation of these oxidative water is complex, cost ineffective and environment unfriendly. Therefore, there is a desideration of a new device and method for preparing an oxidative water in the art.
  • the present invention provides a device for preparing an oxidative liquid which can solve or at least release at least some of the defects in the prior art.
  • the device for preparing an oxidative liquid may comprise: an oxidant source configured to provide an oxidant to a liquid; and a pH adjuster configured to adjust pH of the liquid to adjust an activity of the oxidant in the liquid.
  • users no longer need to add the oxidant into the liquid (e.g., water) manually therefore the risk for the users to get hurt by the oxidant is mitigated.
  • the device for preparing an oxidative liquid may further comprise: a user interface configured to select a desired activity of the oxidant in the liquid; a controller configured to control the pH adjuster such that the oxidant in the liquid has the desired activity.
  • the user interface of the device may comprises a button array which include buttons each marked with corresponding instructions, "washing/cleaning”, "disinfection/sterilization",
  • Each button is further associated with a preset target/desired oxidant activity. Therefore, the user can easily choose according to his/her needs and get liquid including oxidant with a desired activity.
  • the controller is configured to control a voltage and/or an electrical current applied on the first electrolysis unit. Since the pH value of the oxidative liquid is related to the oxidizability of the oxidative liquid, the oxidative activity of the oxidative liquid can be conveniently adjusted.
  • the first electrolysis unit comprises a first electrolytic chamber with a first electrode and a second electrolytic chamber with a second electrode, wherein the first electrolytic chamber generates OH " ions and the second electrolytic chamber generates H ions, or the first electrolytic chamber generates H + ions and the second electrolytic chamber generates OH " ions.
  • the first electrolytic chamber or the second electrolytic chamber is arranged with a reactant capable of reacting with the H + ions or OH " ions.
  • a reactant capable of reacting with the H + ions or OH " ions.
  • the first electrode or the second electrode is made of the reactant.
  • the first electrolysis unit further comprises a first liquid input for inputting liquid, such as water, and a first liquid output for outputting the H + ions and/or OH " ions
  • the oxidant source comprises a second electrolysis unit with a second liquid input for inputting a liquid, a third electrode and a fourth electrode for generating the oxidant in the liquid, and a second liquid output for outputting the liquid containing the oxidant, and wherein the outputted H + ions or OH " ions reacts with the oxidant contained in the liquid.
  • the first electrolysis unit further comprises a first liquid input for inputting liquid, such as water, and a first liquid output for outputting the H + ions and/or OH " ions
  • the oxidant source comprises a second electrolysis unit with a second liquid input for inputting a liquid, a second electrode and a fourth electrode for generating the oxidant in the liquid, and a second liquid output for outputting the liquid containing the oxidant, wherein the second electrode is shared by the first electrolysis unit and the second electrolysis unit, and wherein the outputted H + ions or OH " ions reacts with the oxidant contained in the liquid.
  • a second aspect of the present invention provides an apparatus comprising a device for preparing an oxidative liquid as stated above.
  • a third aspect of the present invention provides a method for preparing an oxidative liquid, comprising the steps of: providing an oxidant to a liquid; and adjusting pH of the liquid to adjust an activity of the oxidant in the liquid.
  • the adjusting step may further comprise: selecting a desired activity of the oxidant in the liquid before providing the oxidant to a liquid; adjusting pH of the liquid comprising controlling the adjusting such that the oxidant in the liquid has the desired activity.
  • controlling step further comprises: controlling a voltage and/or an electrical current applied.
  • the pH value of the oxidative liquid can be effectively controlled by means of the device and method for preparing an oxidative liquid of the present invention, and by controlling a voltage and/or an electrical current applied on the first electrolysis unit, e.g., a voltage and/or an electrical current applied on the first electrode and the second electrode. Since the pH value of the oxidative liquid is related to the oxidizability of the oxidative liquid, the oxidative activity of the oxidative liquid can be conveniently adjusted.
  • the first electrolytic chamber or the second electrolytic chamber is arranged with a reactant capable of reacting with the H + ions or OH " ions, which facilitates elimination of waste water discharge, and is environment friendly.
  • the reactant also allows the user to use the device even there is no drainpipe, because it no longer produce waste water with very high/low pH which blocks further electrolyze.
  • Fig. 1 A schematically shows a device for preparing an oxidative liquid according to one embodiment of the present invention.
  • Fig. IB schematically shows a device for preparing an oxidative liquid according to a further embodiment of the present invention.
  • Fig. 1C schematically shows a device for preparing an oxidative liquid according to another embodiment of the present invention.
  • Fig. ID schematically shows a layout of a device for preparing an oxidative liquid according to one embodiment of the present invention.
  • Fig. IE schematically shows a layout of a device for preparing an oxidative liquid according to another embodiment of the present invention.
  • Fig. 2 schematically shows a block diagram of a device for preparing an oxidative liquid according to one embodiment of the present invention.
  • Fig. 3A schematically shows a block diagram of a device for preparing an oxidative liquid according to a further embodiment of the present invention.
  • Fig. 3B schematically shows a schematic diagram of input and output of electrolyzed water in the case of not using the reactant.
  • Fig. 3C schematically shows a schematic diagram of input and output of electrolyzed water in the case of using the reactant.
  • Fig. 4A schematically shows a flow chart of a method for preparing an oxidative liquid according to a further aspect of the present invention.
  • Fig. 4B schematically shows a flow chart of a method for preparing an oxidative liquid according to one embodiment of the present invention.
  • the present invention is described by taking the example of adding oxidants in water to prepare oxidative water, the skilled person in the art should understand that the present invention is not limited to the case of preparing oxidative water.
  • it can be preparation of oxidative organic solvent and substances the oxidizability of which can be adjusted, etc.
  • the oxidizability of an oxidant is related to the standard electrode potential of the oxidant, and the standard electrode potential is also associated with the pH value of the solution, thus the oxidizability of the oxidant is also associated with the pH value of the solution.
  • the standard electrode potential of HCIO in 25°C acidic aqueous solution is 1.48V, while the standard electrode potential in 25°C alkaline aqueous solution is 0.841V; the standard electrode potential of 0 3 in 25°C acidic aqueous solution is 2.08V, while the standard electrode potential in 25°C alkaline aqueous solution is 1.24V.
  • the oxidation/reduction potential (ORP) can be used to replace the standard electrode potential for characterization. Further improvements are set forth below referring to embodiments of the invention.
  • Fig. 1A schematically shows a device 10 for preparing an oxidative liquid according to one embodiment of the present invention.
  • the device 10 may comprise an oxidant source 12 configured to provide an oxidant to a liquid; and a pH adjuster 14 configured to adjust pH of the liquid to adjust an activity of the oxidant in the liquid.
  • the oxidant source 12 as such can be able to generate oxidant and provide the same to the liquid when needed, or can be a container without any oxidant generation function, thus user needs to fill the source 12 with oxidant manully accordingly.
  • Fig. 1A shows that an oxidant is provided to the oxidant source 12 via an input I (e.g., an opening on the device 10).
  • the oxidant source 12 may be a source that provides H 2 0 2 , Cl 2 , HCIO, I 2 , KMn0 4 , and 0 3 etc., to liquids such as water.
  • the oxidant source 12 provides HCIO first, and then the pH adjuster 14 adjusts the pH value of the aqueous solution containing HCIO, so as to adjust the oxidizability of the aqueous solution containing HCIO. Then the adjusted HCIO aqueous solution with a desired oxidizability is outputted via an output O.
  • the device 10 can be standalone in kitchen, washroom, living room or elsewhere, provided with water to prepare oxidative water.
  • the device 10 could be a part of an appliance such as a rice cooker, a coffee maker, a washing machine, etc., and configured to provide water with appropriate oxidability. It should be noted though water is taken as an example of liquid herein, other liquid that can be used to prepare oxidative liquid can also be used together with/instead of water.
  • the pH of the raw water can be changed by the pH adjuster 14 first before being provided with the oxidant by the source 12.
  • the pH adjuster 14 firstly decreases the pH value of the water by adding H + ions therein and then the acidic water is provided with HCIO by the source 12.
  • the pH adjuster 14 firstly increases the pH value of the water by adding OH " ions therein and then the alkaline water is provided with HCIO by the source 12, where the oxidability of HCIO is restrained.
  • Fig. 1C schematically shows a device 30 for preparing an oxidative liquid according to an alternative embodiment of the present invention, wherein the oxidant source 12 provides HCIO and the pH adjuster 14 provides an appropriate amount of H + ions and/or OH " ions simultaneously, the mixture of the two reacts to produce a HCIO aqueous solution with a desired oxidizability.
  • the device for preparing an oxidative liquid may further comprises: a user interface 16 configured to select a desired activity of the oxidant in the liquid; a controller 18 configured to control the pH adjuster 14 such that the oxidant in the liquid has the desired activity, as shown in Figs. ID and IE.
  • a user interface 16 configured to select a desired activity of the oxidant in the liquid
  • a controller 18 configured to control the pH adjuster 14 such that the oxidant in the liquid has the desired activity, as shown in Figs. ID and IE.
  • the difference as shown in Figs. ID and IE only lies in that it indicates the positions of the oxidant source 12 and the pH adjuster 14 can interchange. That is, in the case as shown in Fig.
  • the oxidant source 12 provides HCIO oxidant to the pH adjuster 14, then the pH adjuster 14 provides an appropriate amount of water containing H + ions and/or OH " ions to the HCIO oxidant based on the control instruction of the controller 18, so as to adjust the oxidative activity of the HCIO oxidative liquid.
  • the pH adjuster 14 provides an appropriate amount of water containing H + ions and/or OH " ions to the HCIO oxidant directly based on the control instruction of the controller 18, so as to adjust the oxidative activity of the HCIO oxidative liquid.
  • a key button may be arranged in the user interface 16, which characterizes for example the five options of weak, relatively weak, neutral, relatively strong, strong of the oxidative activity.
  • various other key button options e.g., washing/cleaning, disinfection/sterilization, blanching/whitening, waste water treatment, etc., may also be set based on needs, for the convenience of user to use.
  • the controller 18 controls the pH adjuster 14 based on the selected desired activity, that is, controlling the amount of the H + ions and/or OH " ions released by the pH adjuster 14, so that the HCIO aqueous solution has the desired activity.
  • an appropriate amount of water containing H + ions is added into the HCIO oxidant to enhance the oxidizability of the HCIO oxidant solution.
  • the HCIO oxidant source may provide HCIO firstly, and then the pH adjuster 14 provides an appropriate amount of water containing H + ions based on the instruction of the controller 18, so as to enhance the oxidizability of the HCIO oxidative solution. If the mode as shown in Fig.
  • the pH adjuster 14 provides an appropriate amount of water containing H + ions directly based on the instruction of the controller 18, so as to enhance the oxidizability of the HCIO oxidative solution.
  • the key button of "relatively strong”.
  • the device for preparing an oxidative liquid may perform the corresponding operation, which will not be elaborated here.
  • Fig. 2 schematically shows a block diagram of a device for preparing an oxidative liquid according to one embodiment of the present invention.
  • the pH adjuster 14 may comprises a first electrolysis unit 14a, the controller 18 is configured to control a voltage and/or an electrical current applied on the first electrolysis unit 14a.
  • the first electrolysis unit 14a may comprise a first electrolytic chamber I with a first electrode 22 and a second electrolytic chamber II with a second electrode 24, wherein the first electrolytic chamber I generates OH " ions and the second electrolytic chamber II generates H + ions, or the first electrolytic chamber I generates H + ions and the second electrolytic chamber II generates OH " ions.
  • the following reactions will occur:
  • H + ions are generated in the proximity of the first electrode 22, while OH " ions are generated in the proximity of the second electrode 24.
  • an appropriate amount of water containing H + ions or OH " ions is provided to the oxidant that need to be adjusted.
  • the inventor of the present invention recognizes for the first time that the pH value of the HCIO aqueous solution can be conveniently controlled by controlling a voltage and/or an electrical current applied on the first electrolysis unit 14a, i.e., a voltage and/or an electrical current applied on the first electrode 22 and the second electrode 24, so as to control the oxidizability of the HCIO aqueous solution conveniently.
  • a voltage and/or an electrical current applied on the first electrolysis unit 14a i.e., a voltage and/or an electrical current applied on the first electrode 22 and the second electrode 24, so as to control the oxidizability of the HCIO aqueous solution conveniently.
  • the relation between the values of the applied voltage and/or the electrical current and the oxidation reduction potential that
  • a storage (not shown) can be arranged in the controller 18, or the storage is a separate element, or the storage is integrated with the controller 18, or the controller 18 itself is a controller with the storing function for pre-storing the relation among the voltage and/or electrical current value of a particular oxidant in a particular situation, the corresponding pH value, and the
  • the first electrolysis unit 14a as shown in Fig. 2 may further comprise a first liquid input 28 for inputting water, and a first liquid output 32 for outputting the FT ions and/or OH " ions.
  • the oxidant source 12 may further comprise a second electrolysis unit 12a with a second liquid input 34 for inputting a liquid, a third electrode 36 and a fourth electrode 38 for generating the oxidant in the liquid, and a second liquid output 39 for outputting the liquid containing the oxidant.
  • the H + ions or OH " ions outputted from the first liquid output 32 react with the HCIO liquid containing the oxidant HCIO outputted from the second liquid output 39.
  • the first electrolytic chamber I or the second electrolytic chamber II is arranged with a reactant 26 capable of reacting with the H + ions or OH " ions, so as to avoid production of waste water.
  • Fig. 3A schematically chamber shows that the first electrolytic I is arranged with a reactant 26 capable of reacting with the H + ions or OH " ions.
  • the inventor of the present invention realizes that the first electrolysis chamber I is arranged with a reactant 26, e.g. CaC03, capable of reacting with the H + ions, for reacting with the H + ions:
  • the reactant 26 used in the particular embodiment of the present invention is not limited to CaC0 3 .
  • the reactant 26 may be various chemical substances that can react with the unwanted H + ions or OH " ions in the solution.
  • the reactant 26 can be metal oxidizes (MgO, ZnO, A1 2 0 3 , Fe 2 0 3 etc.), carbonates (CaC0 3 , MgC0 3 , etc.), hydroxides (Mg(OH) 2 , Al(OH) 3 , Fe(OH) 3 etc.), polymers (cation or anion exchange resins etc.) or any other substance that can react with H + or OH " .
  • the reactants used in the particular embodiment of the present invention can also be solids, liquids, solutions, gels, gas etc.
  • the selected phosphate buffer solution (PBS) can be a kind of solution reactant for maintaining the neutral pH in counter chamber
  • the selected carbon dioxide can be a kind of gaseous reactant for consuming the unwanted OH " .
  • the reactants can be filled in the counter chamber, or combined with the electrode, or used as electrodes.
  • the first electrode 22 or the second electrode 24 can be made of the reactant 26.
  • the device for preparing an oxidative liquid can also be designed as follows.
  • the first electrolysis unit 14a may comprise a first liquid input 28 for inputting water, and a first liquid output 32 for outputting the H + ions and/or OH " ions
  • the oxidant source 12 comprises a second electrolysis unit 12a with a second liquid input 34 for inputting a liquid, a second electrode 24 and a fourth electrode 38 for generating the oxidant in the liquid, and a second liquid output 39 for outputting the liquid containing the oxidant
  • the second electrode 24 is shared by the first electrolysis unit 14a and the second electrolysis unit 12a (such a situation is not shown in the figure), and the outputted H + ions or OH " ions reacts with the oxidative liquid.
  • the second electrode 24 is shared by the first electrolysis unit 14a and the second electrolysis unit 12a in order to reduce the use number of the electrodes, so that the shared second electrode 24 can be simultaneously used as the anode or cathode of the first electrolysis unit 14a and the second electrolysis unit 12a.
  • noble metal electrodes such as Pt electrode need to be used to reduce the use number of the electrodes, which facilitates reduction of cost of the device for preparing an oxidative liquid.
  • an apparatus comprising a device for preparing an oxidative liquid as stated above can be provided.
  • a method 40 for preparing an oxidative liquid comprising the steps of: providing 42 an oxidant to a liquid; and adjusting 44 pH of the liquid to adjust an activity of the oxidant in the liquid, as shown in Fig. 4 A.
  • the method 40 for preparing an oxidative liquid may further comprise the steps of: selecting 46 a desired activity of the oxidant in the liquid before providing 42 the oxidant to a liquid; adjusting 44 pH of the liquid comprising controlling 48 the adjusting such that the oxidant in the liquid has the desired activity, as shown in Fig. 4B.
  • the step of controlling 48 the adjusting such that the oxidant in the liquid has the desired activity may further comprise: controlling a voltage and/or an electrical current applied.
  • Solutions with different oxidative activities are generated by controlling the voltage applied on the first electrolysis unit 14a, i.e., the voltage applied on the first electrode 22 and the second electrode 24.
  • the first electrolysis unit 14a used in the first embodiment is a conventional water electrolysis unit.
  • the 1% NaCl solution is provided to the second electrolysis unit 12a via the second liquid input 34, and is outputted via the second liquid output 39, the voltage applied between the third electrode 36 and the fourth electrode 38 is 10V, in this way, an electrical current of 2.45A flowing through the third electrode 36 and the fourth electrode 38 is generated.
  • the NaS0 4 of 2mM is provided to the first electrolysis unit 14a via the first liquid input 28, and the wanted H + ions or OH " ions are outputted via the first liquid output 32.
  • Table 1 shows the solutions with different oxidative activities in the case of controlling the voltage (voltage applied between the first electrode 22 and the second electrode 24) applied on the first electrolysis unit 14a in the first embodiment.
  • the first electrolysis unit 14a used in the second embodiment is a reactant-assisted water electrolysis unit.
  • the 1% NaCl solution is provided to the second electrolysis unit 12a via the second liquid input 34, and is outputted via the second liquid output 39, the voltage applied between the third electrode 36 and the fourth electrode 38 is 10V, in this way, an electrical current of 2.45 A flowing through the third electrode 36 and the fourth electrode 38 is generated.
  • the phosphate buffer solution (PBS) of 150ml, 0.1 mol/L, pH 7, is filled in the first electrolysis chamber I of the first electrolysis unit 14a, as shown in Fig. 3 A.
  • the phosphate buffer solution is filled in the first electrolysis chamber I in order to avoid generating waster water in the subsequent electrolysis process.
  • the NaS0 4 of 2mM is provided to the first electrolysis unit 14a via the first liquid input 28, and the wanted H + ions or OH " ions are outputted via the first liquid output 32.
  • the first electrolysis unit 14a comprises a first electrolysis chamber I and a second electrolysis chamber II, the flow rate of the NaS0 4 solution in the second electrolysis chamber II is 50ml/min, while the NaS0 4 solution in the first electrolysis chamber I is recycled by reacting with the phosphate buffer solution. This means that the flow rate of the NaS0 4 solution in the first electrolysis chamber I is Oml/min.
  • Table 2 shows the solutions with different oxidative activities in the case of controlling the voltage (voltage applied between the first electrode 22 and the second electrode 24) applied on the first electrolysis unit 14a in the second embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

La présente invention porte sur un dispositif pour la préparation d'un liquide oxydant, comprenant : une source d'oxydant (12a, c.-à-d. une seconde unité d'électrolyse) conçue pour introduire un oxydant dans un liquide; et un ajusteur de pH (14a, c.-à-d. une première unité d'électrolyse) conçu pour ajuster le pH du liquide pour ajuster une activité de l'oxydant dans le liquide. La valeur de pH du liquide oxydant peut être efficacement réglée au moyen du dispositif et du procédé pour la préparation d'un liquide oxydant selon la présente invention et par le réglage d'une tension et/ou d'un courant électrique appliqués à la première unité d'électrolyse (14a) afin d'ajuster l'activité oxydante du liquide oxydant de façon commode. De plus, la première chambre électrolytique ou la seconde chambre électrolytique de la première unité d'électrolyse (14a) de la présente invention est dotée d'un réactif pouvant réagir avec les ions H+ ou les ions OH-, ce qui facilite l'élimination du rejet d'eau résiduaire et ce qui est respectueux de l'environnement.
PCT/IB2013/059295 2012-10-23 2013-10-11 Dispositif et procédé pour la préparation d'une solution oxydante WO2014064571A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2012/001413 2012-10-23
CN2012001413 2012-10-23

Publications (1)

Publication Number Publication Date
WO2014064571A1 true WO2014064571A1 (fr) 2014-05-01

Family

ID=49883152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/059295 WO2014064571A1 (fr) 2012-10-23 2013-10-11 Dispositif et procédé pour la préparation d'une solution oxydante

Country Status (1)

Country Link
WO (1) WO2014064571A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10900132B2 (en) 2017-01-26 2021-01-26 Diversey, Inc. Neutralization in electro-chemical activation systems
US11326261B2 (en) 2016-05-17 2022-05-10 Diversey, Inc. Alkaline and chlorine solutions produced using electro-chemical activation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07308675A (ja) * 1994-05-17 1995-11-28 Mizu Kk 電解水生成装置
EP0841305A2 (fr) * 1996-11-07 1998-05-13 Honda Giken Kogyo Kabushiki Kaisha Procédé et appareil pour la production d'eau électrolysée
WO2008131389A1 (fr) * 2007-04-22 2008-10-30 Woody America Llc Appareil et procédé de distribution de solutions
WO2010063433A1 (fr) * 2008-12-01 2010-06-10 Actides Gmbh Agent de désinfection à base d'acide hypochloreux et de ses sels et procédé de fabrication de cet agent par activation électrochimique
US20120121731A1 (en) * 2010-11-16 2012-05-17 Strategic Resource Optimization, Inc. Electrolytic System and Method for Generating Biocides Having an Electron Deficient Carrier Fluid and Chlorine Dioxide
JP2013071103A (ja) * 2011-09-29 2013-04-22 Aqua Eco Kk 電解水生成装置及び電解水生成方法
US20130146472A1 (en) * 2011-12-13 2013-06-13 Aquaox Inc. Apparatus and method for generating a stabilized sanitizing solution

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07308675A (ja) * 1994-05-17 1995-11-28 Mizu Kk 電解水生成装置
EP0841305A2 (fr) * 1996-11-07 1998-05-13 Honda Giken Kogyo Kabushiki Kaisha Procédé et appareil pour la production d'eau électrolysée
WO2008131389A1 (fr) * 2007-04-22 2008-10-30 Woody America Llc Appareil et procédé de distribution de solutions
WO2010063433A1 (fr) * 2008-12-01 2010-06-10 Actides Gmbh Agent de désinfection à base d'acide hypochloreux et de ses sels et procédé de fabrication de cet agent par activation électrochimique
US20120121731A1 (en) * 2010-11-16 2012-05-17 Strategic Resource Optimization, Inc. Electrolytic System and Method for Generating Biocides Having an Electron Deficient Carrier Fluid and Chlorine Dioxide
JP2013071103A (ja) * 2011-09-29 2013-04-22 Aqua Eco Kk 電解水生成装置及び電解水生成方法
US20130146472A1 (en) * 2011-12-13 2013-06-13 Aquaox Inc. Apparatus and method for generating a stabilized sanitizing solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11326261B2 (en) 2016-05-17 2022-05-10 Diversey, Inc. Alkaline and chlorine solutions produced using electro-chemical activation
US10900132B2 (en) 2017-01-26 2021-01-26 Diversey, Inc. Neutralization in electro-chemical activation systems

Similar Documents

Publication Publication Date Title
EP2528628B1 (fr) Dispositif de désinfection des mains
US8262872B2 (en) Cleansing agent generator and dispenser
KR101833203B1 (ko) 차아염소산염의 전기화학적 발생을 위한 시스템
KR100802361B1 (ko) 전해살균 소독수 공급장치
AU2008276573A1 (en) Cleansing agent generator and dispenser
CN204873953U (zh) 电解水生成装置
JP2018532518A (ja) 水素発生装置
US20130277211A1 (en) Reusable spray bottle with integrated dispenser
CN111593366A (zh) 一种消毒液制造装置及制造方法
JP5789900B2 (ja) 殺菌電解水の製造装置、これを含む殺菌電解水の製造システム及び方法
JP6268383B2 (ja) 電解水生成装置及びその運転方法
WO2014064571A1 (fr) Dispositif et procédé pour la préparation d'une solution oxydante
JP2009136814A (ja) 微酸性電解水の調製法
US20160097132A1 (en) Reusable spray bottle with integrated dispenser
US20140190820A1 (en) Reusable apparatus with sparingly soluble solid for cleaning and/or disinfecting
KR101485018B1 (ko) 이산화염소 가스 발생 장치 및 그 발생 시스템
KR102015125B1 (ko) 차아염소산 발생을 통해 살균수를 제조하는 장치
KR101054266B1 (ko) 살균 전해수 제조 장치, 이를 포함하는 살균 전해수 제조 시스템 및 방법
JP6831570B2 (ja) 電解水生成装置
JP2017087084A (ja) 酸性電解水およびその製造方法、該酸性電解水を含む殺菌剤および洗浄剤ならびに酸性電解水の製造装置
JP2020063463A (ja) 電解水生成装置
KR101436111B1 (ko) 살균소독제 생성 장치 및 생성 방법
US20230132694A1 (en) Methods and apparatuses for oxidant concentration control
JP5010037B2 (ja) 電解水の生成方法および組成物
JP2017202436A (ja) 電解水の製造装置及び電解水の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13814221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13814221

Country of ref document: EP

Kind code of ref document: A1